
A requirements elicitation framework for agent-oriented
software engineering.

HILL, Richard.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19793/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

HILL, Richard. (2006). A requirements elicitation framework for agent-oriented
software engineering. Doctoral, Sheffield Hallam University (United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

H oseus oen ire ony L/ampus
Sheffield S1 1WB

1 0 1 8 5 7 3 4 5 3

Return to Learning Centre of issue
Fines are charged at 50p per hour

2 2 NOV 200?

2 3 NOV 200?

Ik I 3
I Sf l tOS

9

ProQuest Number: 10697095

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697095

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A Requirements Elicitation Framework for
Agent-Oriented Software Engineering

Richard Hill

A Thesis Submitted in Partial Fulfilment of the Requirements of

Sheffield Hallam University

for the Degree of Doctor of Philosophy

14th December, 2006

Abstract

The hypothesis of this research is as follows: “Conceptual modelling is a useful
activity for the early part of gathering requirements for agent-based systems.”

This thesis examines the difficulties of gathering and expressing require
ments for agent based systems, and describes the development of a require
ments elicitation framework. Conceptual modelling in the form of Conceptual
Graphs is offered as a means of representing the constituent parts of an agent-
based system. In particular, use of a specific graph, the Transaction Model,
illustrates how complex agent concepts can be modelled and tested prior to de
tailed design specification, by utilising a design metaphor for an organisational
activity.

Using an exemplar in the healthcare domain, a preliminary design frame
work is developed showing how the Transaction Agent Modelling (TrAM) ap
proach assisted the design of complex community healthcare payment models.
Insight gained during the design process is used to enrich and refine the frame
work in order that detailed ontological specifications can be constructed, before
validating with a mobile learning scenario. The ensuing discussion evaluates
how useful the approach is, and demonstrates the following contributions:

• Use of the Transaction Model to impose a rigour upon the requirements
elicitation process for agent-based systems;

• Use of Conceptual Graph type hierarchies for ontology construction;

• A means to check the transaction models using graphical inferencing with
Peirce Logic;

• Provision of a method for the elicitation and decomposition of soft goals;

• The TrAM process for agent system requirements elicitation.

Acknowledgments

Of course a piece of work this size could not have been completed without
the help of others. In particular my supervisory team, Allan Norcliffe (DoS)
and Paul Crowther (Supervisor) provided the day-to-day support and encour
agement, as well as Simon Polovina, whom I publish with. Gary Swann pro
vided invaluable assistance with proof-reading. I must also recognise my long-
suffering work colleagues in the ‘snake pit’, Bob Drake, Hugh Lafferty and
Peter Lake; their collective acidic wit and blunt speaking kept me sane during
the tough times. Mo Rezai and Dharmendra Shadija provided undying sup
port and constant entertainment. Paul Henderson allowed me to moan without
interruption. Other smaller (but no less significant) contributions were made
by Ian Morrey and Pete Collingwood. This research would not have continued
without the countless discussions with ‘agent-people’ such as Simon Thomp
son, Antonio Moreno, Sue Greenwood and co. at Oxford Brookes, Steve Will-
mott and Julian Padgett. Although intensely irritating, some thanks is due
to the vast number of friends and family that kept asking “have you finished
your PhD yet?”. Finally, I must thank ‘the Wife’ who relentlessly reminded
me of the need to complete the thesis and return our lives to some degree of
normality.

Contents

1 Introduction and M otivation for Research 1

1.1 In troduction... 1

1.2 M otivation... 1

1.2.1 Hypothesis.. 6

1.3 Research Approach ... 7

1.4 C ontribu tions.. 7

1.5 Overview of T h e s is ... 8

1.6 Prior Work ... 9

2 Agents and Agent-O riented Software Engineering 13

2.1 In troduction ... 13

2.2 Intelligent Agents E xplained ... 13

2.2.1 Agents and O b jec ts..16

2.2.2 What is a Multi-Agent S y stem ?... 20

2.3 Com m unication...21

2.3.1 Speech A c t s .. 21

2.3.2 Agent Communication Languages (A C L)...............................23

2.4 Ontologies... 25

2.4.1 Syntactic Interoperability ...27

v

2.4.2 Semantic Interoperability..28

2.4.3 Communicating In ten tio n s...30

2.5 Agent-Oriented Software Engineering... 33

2.6 Design Methodologies..34

2.6.1 G a i a ... 35

2.6.2 P ro m eth eu s .. 41

2.6.3 T ro p o s ..45

2.7 D iscussion..51

2.8 Criteria for Fram ew ork..54

2.9 C onclusions...59

3 M odelling Concepts 61

3.1 Introduction ...61

3.2 Capturing Domain Knowledge...61

3.3 Conceptual G ra p h s ..63

3.3.1 N o ta tion ...63

3.3.2 Concepts...67

3.3.3 R ela tionsh ips... 69

3.4 Ontology... 73

3.4.1 T y p e s ..73

3.4.2 Defining T y p e s ..74

3.4.3 Type H ierarch ies 75

3.4.4 Lambda E xpressions.. 76

3.4.5 Coreference L in k s ...77

3.4.6 P ro jec tio n ..77

3.4.7 Predicate C a lc u lu s ..81

3.4.8 Inferencing .. 81

vi

3.5 D iscussion..86

3.6 C onclusions...87

4 A Unifying Framework 88

4.1 In troduction ...88

4.2 The Need for a Metaphor ... 89

4.2.1 Complex S ystem s.......................... 89

4.3 Event A ccounting... 90

4.3.1 Modelling an E n te rp r ise ..93

4.4 Transaction Agent Modelling (T rA M)..95

4.4.1 Capture Scenarios...97

4.4.2 Identify Agent R o le s .. 97

4.4.3 Allocate Tasks to A gen ts..97

4.4.4 Identify Collaborations...97

4.4.5 Apply Transaction Model .. 98

4.4.6 Design Artefacts ...98

4.5 D iscussion.. 100

4.6 Using T rA M ...104

4.7 B ackground ...104

4.8 Rationale for Choice of D o m a in ..104

4.9 A Community Healthcare Case S tu d y ..105

4.9.1 Developing an Agent-based A pproach....................................107

4.9.2 Designing Community Care S y s te m s 109

4.9.3 Building the Model with T r A M ... 112

4.9.4 Limitations of the A pproach..130

4.10 C onclusions.. 132

vii

5 Refining the Framework 136

5.1 In troduction...136

5.2 The TrAM P ro c e s s .. 136

5.3 Issues with T rA M ... 142

5.4 A Recap of Agent BDI Concepts ..144

5.4.1 Norms and P o lic ies.. 146

5.5 Towards a Refined Fram ew ork...147

5.5.1 A Transaction O n to lo g y ... 148

5.6 An Improved P ro cess ...151

5.7 D iscussion..155

5.7.1 Desired C haracteristics..155

5.8 C onclusions...161

6 Applying TrAM to M OBIlearn 162

6.1 In troduction...162

6.2 Rationale for Case S tu d y .. 163

6.3 MBA Scenario... 164

6.3.1 Capture Concepts... 164

6.3.2 Transform with T M ..172

6.3.3 Gather Use C ases ... 179

6.3.4 Verify TM G r a p h s ..181

6.3.5 Allocate A g en ts .. 187

6.4 C onclusions...188

7 Conclusions and Further Work 190

7.1 Hypothesis..190

7.2 Research A pp ro ach ..191

viii

7.3 C on tribu tions.. 193

7.4 Further W o r k .. 196

References 199

A OWL Listings 224

A .l Belief-Desire-Intention O ntology..224

A.2 Transaction Model O ntology.. 225

B M OBIlearn Case Study 234

B.l MOBIlearn Case Study Background... 234

B.1.1 O bjectives...237

B.1.2 On Pedagogical I s s u e s .. 238

B.1.3 On Human Interaction and Technical I s s u e s238

B .l.4 On Business I s s u e s ... 238

B.2 Case Study: Description of MBA Use-Case Scenario...................... 241

ix

List of Figures

2.1 The Gaia Methodology Models (redrawn from Wooldridge et

ah, 2000).. 37

2.2 Concepts within the Analysis stage of Gaia..38

2.3 Role Schema for Coffee-filler (Wooldridge et ah, 2000)................. 39

2.4 The Prometheus Methodology (Padgham and Winikoff, 2002). . 42

2.5 Goal-plan tree showing goal decom position...................................... 48

3.1 ‘A relation of Concept.l is Concept_2’ graph in display form. . . 64

3.2 A part of a bicycle is a wheel...64

3.3 A bicycle is on the ground..64

3.4 Lattice diagram of an example o n to lo g y .. 68

3.5 Example of triadic relation...72

3.6 DF Graph illustrating coreferent links between graphs.................... 78

3.7 First graph to be joined.. 79

3.8 Second graph to be joined.. 80

3.9 Possible projections..80

3.10 Common generalisation... 81

3.11 Common specialisation..81

3.12 An extended common specialisation resulting in a maximal join. 82

3.13 ‘If Graph A then Graph B’ ... 82

x

3.14 Deiterated g r a p h ... 83

3.15 Denegation ...83

3.16 Original g r a p h s .. 84

3.17 Specialised g raphs...84

3.18 Deiterated g ra p h s ...85

3.19 Denegation ...85

4.1 The Transaction Model (TM) Graph... 94

4.2 The TrAM Framework.. 96

4.3 TrAM Process in Detail..99

4.4 The Transaction Model (TM)... 112

4.5 Use case model for maintaining the ICP...................................... 114

4.6 Use case model for positive care...115

4.7 Use case model for daily care..117

4.8 Emergency scenario use case model..118

4.9 Quality assurance use case model... 119

4.10 Overview of care model...121

4.11 Initial actor to agent mappings..121

4.12 Agent collaboration model..123

4.13 Iterated agent collaboration model... 125

4.14 CG Model of Community Care Scenario...125

4.15 CG Model of Generic TM..126

4.16 Overall Transaction Model of care scenario...................................... 126

4.17 Initial type hierarchy of care scenario.. 127

4.18 Local Authority pays for care in full.. 129

4.19 TM showing care recipient receiving care package at zero cost. . 130

4.20 Care recipient pays for care in full.. 131

xi

4.21 Emergent CG model... 132

4.22 Updated TM showing care recipient receiving care package at

full cost...133

4.23 Incomplete TM .. 133

4.24 Part payment scenario with shared liabilities for care cost. . . .134

4.25 New rule for ontology. ..134

4.26 Revised type hierarchy..134

4.27 Refined payment model..135

5.1 The TrAM Framework... 141

5.2 CG Representation of a BDI Agent...146

5.3 Type Hierarchy of BDI concepts (Absurdity Type omitted). . . 147

5.4 Visualisation of OWL file, translated from the type hierarchy. . 148

5.5 Amended type hierarchy to include P olicy concept.................... 149

5.6 Type hierarchy from the generic Transaction Model....................149

5.7 Refined TrAM Type Hierarchy... 150

5.8 Visualisation of TM o n to lo g y ...151

5.9 Example of a display form graph to be parsed into natural lan

guage...152

5.10 Specialised healthcare TM graph... 153

6.1 Modelling a MOBIlearn objective with CGs..................................166

6.2 The M-Learning platform’s duty of care towards students. . . . 166

6.3 CG representing an MBA student..167

6.4 CG model of the MOBIlearn service characteristics.....................168

6.5 Initial overall model Part 1... 169

6.6 Overall model part 2 (note coreferent links to Part 1 model). . . 169

xii

6.7 Some high level desires of the stakeholders....................................... 170

6.8 Iterated CG model of Student desires.. 171

6.9 Iterated CG model of Tutor desires.. 172

6.10 Exploring the enjoy course goal.. 174

6.11 The generic Transaction Model... 175

6.12 MOBIlearn scenario Transaction Model...176

6.13 Amended Transaction Model... 176

6.14 A trade-off between studying and spending time with the family. 177

6.15 Capturing a student transaction..177

6.16 Type hierarchy from TM.. 178

6.17 MBA top-level scenario use case model... 180

6.18 Updated TM graph from MBA use cases.. 181

6.19 Refined model of Student desires.. 182

6.20 The MOBIlearn system employs a pedagogical approach to fa

cilitate mobile learning... 184

6.21 Students may participate as individuals, as a member of a group

or both...184

6.22 All learning content must be administered and managed remotely. 185

6.23 The Local Authority pays for the education in full where it is

deemed that the student is eligible...185

6.24 The Student pays for the education in full where it is deemed

that the Student is ineligible for financial assistance........................186

6.25 A Student may be eligible for financial assistance if they are

female and between the ages of 18 and 65 years old.........................186

6.26 The eligibility is determined by reference to current educational

policy..187

List of Tables

2.1 Evaluation rankings (Sturm and Shehory, 2003).............................. 60

2.2 Evaluation of agent design methodologies against desired char

acteristics 60

3.1 Reading conceptual graphs from left to right....................................... 65

3.2 Reading conceptual graphs from right to left....................................... 66

4.1 Agent types and allocated t a s k s ..122

4.2 Iterated agent types and allocated tasks... 124

5.1 Evaluation of TrAM against desired characteristics identified in

Chapter 2.. 160

6.1 Some of the high-level stakeholder goals from the CG models. . 173

6.2 MOBIlearn agent roles.. 188

6.3 Task allocation for the Student Agent... 189

xiv

Chapter 1

Introduction and M otivation for

Research

1.1 Introduction

This chapter introduces the motivation for the research and identifies the re

search hypothesis. Existing work is briefly introduced, highlighting the limi

tations of current approaches to requirements capture. The research approach

is described, followed by an overview of the remainder of the thesis.

1.2 M otivation

Multi-agent System (MAS) architectures are used to build complex systems,

which often comprise many autonomous entities that communicate across mul

tiple organisational tiers. Gathering requirements for such systems is a chal

lenge. The MAS paradigm appears however, to make this simpler since the

more comprehensive abilities of agents are easier to map to real-world ac

tors. Similarly it is possible to map the aspirations, intentions and beliefs

of individual actors, thus creating constraints that become part of the design

1

Chapter 1 Introduction and Motivation for Research 2

specification for each agent. This simplifies the process of gathering require

ments by moving the model nearer to reality, reducing the need for functional

decomposition from the outset.

In practice the process of requirements gathering for agent based systems

is not simple and it is common for agent systems to be modified post-model

creation in order to achieve the requirements of the relevant stakeholders.

This gap between understanding of the system (the model representation)

and implementation (program code) is not uncommon, and is a continuing

challenge for software engineering in general.

The collection of data pertaining to processes and specific terminology is

normally conducted with the assistance of domain expertise. MAS architec

tures must be able to communicate freely, employing communicative acts as

a fundamental part of their collaboration mechanism. Agent Communication

Languages (ACL) typically comprise a performative and some message content

that must be represented in a way that can be understood by potential agent

collaborators. The key to a common, shared understanding of knowledge in a

particular domain is by the use of a description of the concepts within a par

ticular domain, or an ontology. Consequently, any ACL must make use of an

ontology in order to enable communication between different parties, ensuring

what was said is what was meant.

One aspect that proves particularly difficult is the generation of the on

tology. It would seem that ontology creation requires a significant input from

domain experts and the design models need to be iterated in order to de

velop the ontology to a more comprehensive state. It should be noted that an

ontology comprises not only domain specific concepts (and their associated ter

minology), but also the relationships between those concepts plus any domain

Chapter 1 Introduction and Motivation for Research 3

constraint rules.

Methodologies and tools tend to require an ontology as an input into their

respective methods. Tools in particular can then use the ontology to check the

models that are developed against a conceptual representation. Unfortunately

the amount of effort and expertise required to generate the ontology in the first

instance is considerable and therefore it would be helpful if a method existed to

assist this first step. If it was possible to generate even a rudimentary ontology

from the outset then existing tool-based methods for MAS modelling would

be better supported.

Of course ontology generation is not straightforward, and whilst MAS ar

chitectures seem easier to map to real systems, the complexity lies in the

ontological representation of that knowledge.

Once an ontological representation has been produced, it is prudent to

verify the domain concepts and relations, typically utilising the services of a

domain expert. This activity is also fraught with difficulties as it is likely that

the representation of the ontology will not be familiar to the domain expert

and thus some transformation is needed in order that the domain expert can

concentrate on verifying the model. Since the resources of a domain expert are

generally regarded as scarce, it would be advantageous if the demands upon

such a role were minimised.

When considering the domain specific terms, there also exists the com

plexity of qualitative concepts. Unlike quantitative concepts, which can be

measured, qualitative concepts have not yet evolved into measurable entities.

For instance consider the goal ‘maintain quality of life’. How can this be con

sidered by a MAS? In this case the ontology requires some work before such a

qualitative issue can be expressed and understood quantitatively.

Chapter 1 Introduction and Motivation for Research 4

It also follows that the MAS might be designed differently if an ontology

existed prior to modelling; indeed the fact that systems are modified after

initial modelling suggests that the current methods are flawed. If the ontology

could be generated earlier, then it would seem reasonable to assume that fewer

modifications to the system would be required post design specification.

Therefore, in order to generate the ontology earlier, there needs to be a

framework that can:

1. Capture fundamental domain concepts whilst minimising the use of a

domain expert;

2. Expose qualitative issues much earlier in the process, in order that they

might be quantified later;

3. Produce representations that can be tested prior to design specification

and;

4. Represent complex qualitative issues in a repeatable way.

A key challenge for an improved agent design framework is the ability

to capture domain knowledge in a way that faithfully represents the needs

of the intended system, whilst permitting the expression of that knowledge

in the widest sense possible. Since ontologies can assist the design of new

applications, be it through the process of capturing domain knowledge or the

sharing and re-use of existing domain ontologies, it seems prudent to consider

the development of such a framework.

Furthermore, ‘early’ requirements capture is important as it contains the

high level goals (hard and soft) of the stakeholders. Conventional approaches

to modelling, with the subsequent modelling iterations, can dilute these goals

Chapter 1 Introduction and Motivation for Research 5

(desires) to the point where they lose importance. The capture and expression

of high-level concepts is therefore fundamental to the requirement for a more

faithful representation.

Whilst it is feasible that much of this work can be performed manually by

the agent system designer, the potential complexity of these systems is such

that it is inevitable that inconsistencies will present themselves. Therefore it is

necessary to consider processes that support either the automation of tasks, or

the individual steps are able to implicitly build a rigorous model. This would

assist the agent system designer considerably, and reduce the reliance upon

domain experts.

It follows that there is a need for a modelling environment which:

1. Utilises a notation that is rich, expressive and can tolerate both quanti

tative and qualitative high-level domain concepts;

2. Provides a mechanism whereby models can be queried, reasoned against

and verified;

3. Supports the implicit capture and explicit expression of ontological data;

4. Imposes a rigour upon the modelling process.

This supports a tool-based approach to MAS modelling as it would assist

the initial (and currently ‘pre’) requirements gathering stages by creating an

ontology that could subsequently be used for automated model-checking. It

would also enable higher-level issues to be discussed and debated much earlier.

It is feasible that high-level goals are not captured and represented correctly

and therefore compromised by a system implementation. Thus the motivation

for this research is described.

Chapter 1 Introduction and Motivation for Research 6

1.2.1 H ypothesis

The hypothesis of this research is: “Conceptual modelling is a useful activity

for the early part of gathering requirements for agent-based systems.” For the

purposes of this thesis, ‘usefulness’ is characterised by the following:

1. An opportunity to reduce the need for input from domain experts;

2. A means by which system models are tested earlier in the requirements

capture process;

3. An ability to capture abstract domain terms as concepts;

4. The elicitation of an ontology that reflects the domain more faithfully;

5. An approach that complements other MAS design methodologies and;

6. An approach that is sufficiently abstract to be generally applicable in the

wider context.

The use of the TrAM framework illustrates how high-level concepts can be cap

tured in the community healthcare and m-learning domains, and demonstrates

the process by which qualitative concepts are quantified and used to populate

a hierarchy of types prior to ontology generation. From the earliest stage, con

cept types, relations and domain terms can be qualified with domain experts.

TrAM offers the significant advantage of being able to focus in on areas that

require concentrated analysis, thus guiding the agent system analyst, whilst

also concentrating the efforts of the domain expert. The capture, representa

tion and subsequent analysis of early requirements is also supported by TrAM,

and since the framework explicitly supports BDI concepts the resulting design

artefacts can be used as a precursor to detailed implementation with existing

Chapter 1 Introduction and Motivation for Research 7

agent design methodologies. Finally, the TrAM approach conveniently uses a

transaction metaphor that is sufficiently abstract to be domain independent.

As such, it is established that conceptual modelling is a useful activity and

therefore the hypothesis is believed to be true.

1.3 Research Approach

The research combines the characteristics of the case study approach with

those of action research. Initially an in-depth study of a complex scenario

in the community healthcare domain is used to develop a draft requirements

elicitation framework. A second case study in a disparate domain (m-learning)

is then used in order to:

• provide new insight and refine the proposed framework;

• communicate the process undertaken whilst applying the framework;

• demonstrate the characteristics of the framework that are generally ap

plicable, and identify domain specific aspects of the framework.

Whilst the application of the framework to a domain is in itself a contribu

tion, it is also recognised that there is significant benefit in terms of rigour

to be gained from documenting and monitoring the process of applying the

framework to a second domain.

1.4 Contributions

The primary contributions of this research are as follows:

Chapter 1 Introduction and Motivation for Research 8

• Use of the Transaction Model to impose a rigour upon the requirements

elicitation process for agent-based systems;

• Use of Conceptual Graphs type hierarchies for ontology construction;

• A means to check the transaction models using graphical inferencing with

Peirce Logic;

• Providing a method for the elicitation and decomposition of soft goals;

• The TrAM process for agent system requirements elicitation.

1.5 Overview of Thesis

Chapter 2 establishes some basic agent concepts before examining the current

literature in relation to existing Agent-Oriented Software Engineering (AOSE)

approaches. Requirements capture for AOSE is introduced, and considered

in relation to three Agent-Oriented design methodologies. The limitations of

each of the approaches are briefly described and the basic criteria for a design

framework is introduced, upon which the rest of the research is based.

Chapter 3 explores the use of conceptual modelling for AOSE and intro

duces Conceptual Graphs (CG) as a notation for gathering agent system re

quirements. The formal underpinnings of CGs are explained and type hierar

chies are used to describe the concepts and relations in a domain in order to

generate an ontology. Finally, inferencing using Peirce logic is utilised to test

conceptual models prior to detailed design specification.

Chapter 4 looks at some theoretical foundations upon which an improved

requirements elicitation design framework might be based. Event accounting

is explored and offered, through the Transaction Model (TM), as a means by

Chapter 1 Introduction and Motivation for Research 9

which conceptual models can be queried and tested during the requirements

gathering process. Additionally the TM is used to illustrate how domain on

tologies can be derived from CG Type Hierarchies and how a unified, robust

approach to model creation and checking assists AOSE. Chapter 4 introduces

the Transaction Agent Modelling (TrAM) Framework and describes its use by

way of an exemplar case study in the community healthcare domain. In partic

ular the complexities of healthcare payments are examined and the framework

demonstrates the ease with which this complex problem was modelled and

tested prior to design specification. Additionally the case study illustrates

limitations of the framework and provides an opportunity to refine the process

accordingly in Chapter 5.

After the framework has been developed further in Chapter 5 it is then

applied to MobiLearn, an EU Funded project in the m-learning domain in

Chapter 6. The results illustrate the extent to which each of the key crite

ria identified in Chapter 2 are addressed. Areas of generic applicability are

identified, as are domain specific aspects of the modelling process. Chapter 7

explores the results and establishes commonality between the two disparate do

mains, identifying the elements of the framework that are generally applicable,

prior to a discussion of the areas for future development.

1.6 Prior Work

Elements of this thesis have been published in the following:

• Hill, R., (2007). “Capturing and Specifying Multi-agent System Re

quirements for Community Healthcare” in In H. Yoshida, A. Jain, A.

Chapter 1 Introduction and Motivation for Research 10

Ichalkaranje, L. Jain, and N. Ichalkaranje, eds., “Advanced Computa

tional Intelligence Paradigms in Healthcare” , Volume 48 of Studies in

Computational Intelligence, Chapter 6, Springer-Verlag, Berlin, pp. 121-

158.

• Hill, R., Polovina, S., & Shadija, D. (2006). “Transaction Agent Mod

elling: From Experts to Concepts to Multi-agent Systems” , In Proceed

ings of the Fourteenth International Conference on Conceptual Struc

tures (ICCS ’06): Conceptual Structures: Inspiration and Application,

July 16-21, Aalborg, Denmark, Lecture Notes in Artificial Intelligence

(LNAI) 4068, Springer-Verlag, Berlin, pp. 247-259.

• Hill, R., Polovina, S., & Beer, M. D., (2006). “Improving AOSE with an

Enriched Modelling Framework” , In Proceedings of the Sixth Interna

tional Workshop on Agent-Oriented Software Engineering (AOSE-2005),

Utrecht University, The Netherlands, Lecture Notes in Computer Science

(LNCS) 3859, Springer-Verlag, Berlin.

• Hill, R., Polovina, S., & Beer, M. D. (2005b). “Managing Community

Healthcare Information in a Multi-agent System Environment” . In Pro

ceedings of the Fourth International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-05) - BIOMED Workshop,

Utrecht University, The Netherlands.

• Hill, R., Polovina, S., & Beer, M. D. (2005a). “From Concepts to Agents:

Towards a Framework for Multi-agent System Modelling” . In Proceed

ings of the Fourth International Joint Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS-05). ACM Press, Utrecht University,

The Netherlands, pp. 1155-1156.

Chapter 1 Introduction and Motivation for Research 11

• Hill, R., Polovina, S., & Beer, M. D. (2005). “Managing Healthcare

Workflows in a Multi-agent System Environment” , In Proceedings of

the Agents Applied in Healthcare Workshop, Nineteenth International

Joint Conference on Artificial Intelligence (IJCAI-05), University of Ed

inburgh, Scotland, UK, 9 pages.

• Polovina, S., Hill, R., & Beer, M. D. (2005). “Enhancing the Ini

tial Requirements Capture of Multi-Agent Systems through Conceptual

Graphs”. In Pfeiffer, H., Wolff, K. E., & Delugach, H. S., eds., Con

ceptual Structures at Work: Contributions to ICCS 2005 (Thirteenth

International Conference on Conceptual Structures), Lecture Notes in

Artificial Intelligence (LNAI), Springer-Verlag, Berlin.

• Hill, R., Polovina, S., & Beer, M. D. (2004). “Towards a Deployment

Framework for Agent-Managed Community Healthcare Transactions” .

In The Second Workshop on Agents Applied in Health Care, Proceedings

of the 16th European Conference on Artificial Intelligence (ECAI 2004),

pp. 13-21. ECCAI, IOS Press, Valencia, Spain.

• Polovina, S., Hill, R., Crowther, P., & Beer, M. D. (2004). “Multi-agent

Community Design in the Real, Transactional World: A Community

Care Exemplar” , In Conceptual Structures at Work: Contributions to

ICCS 2004 (Twelfth International Conference on Conceptual Structures),

Pfeiffer, H., Wolff, K. E., Delugach, H. S., eds., Shaker Verlag (ISBN 3-

8322-2950-7, ISSN 0945-0807), pp. 69-82.

• Huang, W., Beer, M. D., & Hill, R. (2003). “Community Care System

Design and Development with AUML”, 9th International Conference on

Chapter 1 Introduction and Motivation for Research 12

Information Systems Analysis and Synthesis (ISAS ’03), July 31-August

2 2003, Orlando, Florida, USA.

Additionally this work has been partly funded by an AgentCities Deploy

ment Grant from the European Union AgentCities.rtd Project (IST-2000-

28385), AgentCitiesUK (GR/S57617/01) and the MOBIlearn project, IST-

2001-37440.

Chapter 2

Agents and Agent-Oriented

Software Engineering

2.1 Introduction

This chapter introduces agents, multi-agent systems and Agent-Oriented Soft

ware Engineering (AOSE). Three popular methodologies for specifying and

designing agent based systems are examined and some criteria for an improved

design framework are proposed.

2.2 Intelligent Agents Explained

As computing moves from isolated, standalone systems into vast, powerful

distributed networks of processing, the need for systems to be able to operate

with more autonomy is greater than ever. It is clear that there are tangible

business benefits associated with integrating disparate, heterogeneous infor

mation systems and repositories, and presently much effort is being expended

within the computer science community to make this happen.

This evolution of computing is creating a demand for systems with traits

13

Chapter 2 Agents and Agent-Oriented Software Engineering 14

that would normally be considered ‘human’. For instance, businesses are com

posed of many functions that interoperate with other functions, within con

strained and open environments, making decisions and forming strategies to

attain pre-determined goals. Such businesses may be physically distributed

worldwide, and there might be functions that are mobile, moving from place

to place. Information systems have developed considerably to support these

functions, to the extent where it is difficult to imagine an organisation oper

ating without one.

Indeed, many organisations are reliant upon their systems, as critical busi

ness processes harness the capabilities of the information system, especially as

new developments in technology offer new opportunities to conduct business

in new, more effective ways. These systems however, may help coordinate,

organise and distribute information, but the real power of the organisation is

within the employees who can communicate, interact, react and plan; both

themselves and those that they manage, to achieve tangible business goals.

The Object Oriented (0 0) paradigm has much to offer businesses in terms

of system design. Business ‘objects’ can be created that allow the organisation

to be modelled, designed, deployed and maintained at an abstract level. Such

abstraction hides detail which might prove distracting, enabling much more

tangible representations to be developed. Additionally the abstraction assists

those who wish to coordinate the activities of ‘islands’ of information and

functionality, as they can concentrate on the flow of messages that are passed

between discrete objects. Considering an object as a ‘black box‘, which accepts

inputs and produces predictable outputs, improves maintainability and future

extensibility. As a result there has been a proliferation of 0 0 systems devel

oped using technologies such as Sun Microsystems Java 2 Enterprise Edition

Chapter 2 Agents and Agent-Oriented Software Engineering 15

(J2EE) (Sun, 2004) and Microsoft .NET (Microsoft, 2004).

To develop an organisation further, it is necessary to provide a means by

which existing systems can be integrated. For some time now organisations

have been integrating internal systems, creating ‘enterprise level’ applications

such as SAP (2004). With the trend towards eliminating geographical bound

aries and using the Internet as an infrastructure, forward-thinking businesses

are developing open systems that can be interconnected between organisations;

extending the possibilities for rationalising the effort expended and becoming

more profitable.

Additionally, it is vital that organisational systems can themselves be del

egated tasks to complete autonomously in pursuit of the business goals. So

far the integration of disparate systems is creating even more quantities of

information, that still needs processing. If we are to make use of this informa

tion then we have to find a way of automatically processing it, whilst ensuring

that our pre-determined goals are met, in a dynamic and rapidly changing

environment.

Finally we need to find a mechanism that permits these actions to be

coordinated and communicated, in a way that the pertinent information is

available when required. More importantly, the relevant knowledge is shared

and understood across different parties.

Thus we require systems that have an ability to:

• React to a dynamic, open business environment;

• Coordinate future activities in a way that takes control of a process in

order to meet a business objective;

• Communicate across business functions to facilitate the devolvement of

Chapter 2 Agents and Agent-Oriented Software Engineering 16

information and knowledge, whilst also providing an interaction mecha

nism to support the above.

In essence we require business functions that can operate with some degree

of autonomy, and act in our best interests. To do this we need a computer

system that is (Wooldridge and Jennings, 1995):

“...situated in some environment, and that is capable of autonomous

action in this environment to meet its design objectives.”

Such a system is described as an agent.

Wooldridge (2002) has further refined the description of an agent by pro

viding some distinguishing characteristics of an intelligent agent, that being

reactive, proactive and social behaviours.

The definition that follows is probably the most accepted description of an

agent, though discussion still exists within the research community (Wooldridge

and Jennings 2005):

“An agent is a computer system that is situated in some envi

ronment, and that is capable of autonomous action in this environ

ment in order to meet its design objectives.”

2.2.1 Agents and Objects

There has been significant debate as to whether agent-oriented applications are

merely 0 0 applications, and many discussions as to the distinction between

‘agents’ and ‘objects’. Some would argue that an object can be made to

be proactive and possess some degree of autonomy (two facets that seem to

provide most of the necessary differentiation). Wooldridge (2002) argues that

Chapter 2 Agents and Agent-Oriented Software Engineering 17

such assertions are “missing the point” . If an object exhibits the characteristics

of an agent, then it is by definition an agent.

Put another way, if an object is told to do something, it will do it in a

predictable way. An agent will decide for itself whether it wishes to complete

the task. The notions of choice, planning and autonomy are immediately at

tractive concepts for system designers and business modellers. These facets lift

the potential capabilities of software systems to new levels, promising adaptive,

flexible and self-maintaining business processes.

Of course such promise also demands the clarity of thought and practical

skills to be able to successfully design and deploy these capabilities. It is at

the point of implementation that the system development can become con

fusing; software agents are typically deployed with 0 0 tools and application

programming interfaces (API). The primary distinction between agents and

objects is that agents are autonomous entities that choose what they are going

to do, and who they are going to interact with. It follows that an agent’s be

haviour (method) cannot be directly invoked, unlike an object. All interaction

with an agent is performed by communication only, as one would expect when

interacting with a human agent. These traits however, do not preclude the

construction of agents from 0 0 tools.

There are many solutions to computational problems that are dealt with

reactively, continually adapting to their environment in response to changing

conditions. Similarly, proactive solutions demonstrate that it is possible (and

eminently practicable) to model systems that take pre and post conditions,

and compute an action in pursuit of a goal. It is the combination of these

two characteristics however, that best describes what we want from an agent.

Human agents regularly exhibit the ability to plan whilst also reacting to

Chapter 2 Agents and Agent-Oriented Software Engineering 18

changes in the environment. This is important if software agents are to offer

capabilities beyond those of objects.

An agent in the context of this thesis will generally be assumed to be a

software system (or software agent) rather than the human equivalent, though

when modelling a business organisation it is inevitable that human agents will

exist. When such cases arise however, the distinction will be reiterated.

The first characteristic described in the definition of an agent is of situated

ness. This becomes important when we consider the environments in which we

expect an agent to exist. One of the attractions of the agent paradigm is that

they are expected to operate in dynamic, open environments and as such they

should exhibit reactive characteristics in order to cope with a rapidly changing

set of conditions and achieve a particular goal.

In order for an agent to influence its own environment in response to unpre

dictable external influences, it must possess autonomy. Autonomous behaviour

is a key distinction between agents and objects, and agents are often referred

to as autonomous agents. To avoid confusion from the proliferation of terms

this thesis will persist with the use of agent.

Whilst it is feasible that an agent should react to its environment to pur

sue a goal, this in itself provides nothing more than the capabilities of an

object. Proactive behaviour serves to further differentiate agents from objects

by enabling the pursuit of several goals. Similar to a human being, an agent

can react to pursue one goal in isolation or plan to achieve multiple goals.

Similarly, an agent must also strike a balance between reactive and proactive

behaviours if it is to be successful. Achieving such a balance is a particular

challenge for agent designers. One way of addressing this challenge is to adopt

the Belief Desire and Intention (BDI) architecture (Georgeff et al., 1999).

Chapter 2 Agents and Agent-Oriented Software Engineering 19

Finally agents need to be able to communicate if they are to interact with

other agents. Amongst other things they need to describe their intentions,

make requests and deal with responses. Social interactions are then converted

into the most appropriate method to invoke by each agent. From a program

mer’s perspective an object has no control over its publicly available methods;

any other object can directly invoke the receiving object’s methods at will.

An agent remains in control of its own methods however, and will exercise its

autonomy to decide whether or not it will respond to a request from another

agent. The messages exchanged by agents are referred to as communicative

acts, and are usually expressed in an Agent Communication Language (ACL).

The characteristics described so far are used to classify agents as those with

weak agency. The embodiment of additional characteristics such as mental

attitudes tends to lead to an agent being described as having strong agency,

though this has even been extended further to include mobility, veracity and

benevolence.

Irrespective of strong or weak agency, the combination of reactive and

social abilities enables agents to react to changing circumstances by influencing

other agents in the same environment, making them extremely flexible. The

ability to make decisions by exercising autonomy, together with goal-directed,

proactive behaviour goes some way towards providing robust systems, which

are essential if agents are to operate in truly open environments.

Thus, the definition of an agent for the purposes of this thesis is a software

system that:

1. Is situated in an environment;

2. Reacts to changes in its environment;

Chapter 2 Agents and Agent-Oriented Software Engineering 20

3. Exhibits autonomy and controls itself;

4. Can demonstrate proactivity in pursuit of several goals;

5. Communicates socially with other agents in order to interact.

Agents therefore have much to offer compared with objects and they appear

to offer many advantages when designing complex software systems.

2.2.2 W hat is a M ulti-Agent System?

If an agent can embody reactive, proactive and social characteristics, then

it also possesses the necessary traits to permit interaction with other agents.

Immediately this notion opens up a new set of possibilities whereby agents

can interact to exchange knowledge, whilst also using their planning abilities

to coordinate and control activities, thus influencing their own environment.

Similarly their ability to work towards goals by combining proactive with re

active behaviour, using a degree of autonomy, means that agents can initiate

other agents into action. The autonomous trait also imbues an agent with the

ability to say ‘no’, or select another means of completing a task.

In the same way that collections of autonomous business functions formu

late an organisation, a number of interacting agents within an environment is

referred to as a Multi-Agent System (MAS).

Jennings (2000) offers a description of a MAS whereby the control ex

erted by an individual agent over its environment is referred to as a sphere

of influence. The human-like traits of an agent suggest that a MAS is a

society that needs managing. The convenience of replacing abstract repre

sentations of business actors with agents makes the MAS approach an im

mediately attractive proposition for modelling complex systems. Each of the

Chapter 2 Agents and Agent-Oriented Software Engineering 21

autonomous roles can now be suitably described, without decomposing roles

into behaviours and entity objects. Jennings et al. (2001) remark that agents

provide a design metaphor for system designers that supports the development

of the autonomous systems required to solve complex computational problems.

Methodologies for MAS development are still immature and with the rapid ex

pansion of Web Services and the Semantic Web (Berners-Lee, 1999), tools and

architectures are now more in demand.

2.3 Communication

So far we have considered agents as an abstraction of a particular computer

system that exhibits enhanced behaviours, and MASs as collections of interact

ing agents in a particular domain. For the collaboration to take place, agents

must be able to communicate their intentions in an unambiguous way.

As described earlier, the 0 0 approach is to allow ‘message passing’ by

directly invoking a publicly available method of an object. As an agent has

control over its own state and behaviour, there is no concept of a ‘public’

method. An initiating agent would communicate its intention to invoke a

behaviour (method). The receiving agent would then consider its own agenda

before responding, or not, as the case may be.

Such characteristics place demands on the format and structure of agent

communication, as there are fundamental conversational protocols that need

to be represented.

2.3.1 Speech Acts

Austin (1962) writes of speech acts as a collection of utterances that appear to

Chapter 2 Agents and Agent-Oriented Software Engineering 22

have some influence over a physical world. He identified a number of speech

acts that can be represented by performative verbs, and defined three aspects

of the acts:

• Locution - ‘Please wash the dishes.’ The act of making an utterance.

• Elocution - ‘She asked me to wash the dishes.’ The action that was

performed in response to the utterance.

• Perlocution - ‘She got me to wash the dishes.’ The resulting effect of the

act.

The performative verbs are a means by which the action of the speech act is

described. Examples include request, inform, and promise. Successful com

pletion of the performative was classified as three felicity conditions (Austin,

1962):

• There must be an accepted conventional procedure for the performative,

and the circumstances must be as specified in the procedure.

• The procedure must be executed correctly and completely.

• The act must be sincere, and any uptake required must be completed,

insofar as is possible.

Searle (1969) extended this work to include a much more rigorous specification

of the domain in which the coversation takes place. For instance we must

consider whether the ‘hearer’ can hear the ‘speaker’, or if the domain has

specific characteristics that might affect the comprehension of a speech act.

We would expect that an agent that receives a speech act instructing the

murder of someone would be able to differentiate between the domain context

of a theatre play and the real world.

Chapter 2 Agents and Agent-Oriented Software Engineering 23

2.3.2 Agent Communication Languages (ACL)

The means by which agents communicate is via an Agent Communication

Language (ACL). Such languages have been informed by the work of Austin

(1962) and Searle (1969), and most notably with regard to agents has led to the

Knowledge Query Manipulation Language (KQML) described by Finin et al.

(1993) and Labrou et al. (1999). The intention of this work was to generate

(Finin et al., 1993):

“...protocols for the exchange of represented knowledge between

autonomous information systems.”

KQML

KQML itself is akin to a wrapper that is used to transport the message be

tween agents whilst also encoding the illocution part of the speech act. Using

an example from Wooldridge (2002) each message is composed as follows:

(ask-one

:content (PRICE IBM ?price)

:receiver stock-server

:language LPR0L0G

:ontology NYSE-TICKS

)

The performative is represented by the ask-one parameter which is interpreted

as a question that requires a single answer. Next is the : content parameter,

which contains the actual message content. Note that KQML ignores the mes

sage content (Patil et al., 1992), (Mayfield et al., 1996), and as such this field

could contain natural language, Structured Query Language (SQL) or some

Chapter 2 Agents and Agent-Oriented Software Engineering 24

other message format. : re c e iv e r specifies the identity of the intended recipi

ent, and : language identifies the language of the : content field. In this case

the message content is expressed in LPROLOG, and the : language parame

ter confirms this. The last parameter of the message, : ontology describes the

terminology that the message uses. To satisfy the requirement for knowledge

exchange, the Knowledge Interchange Format (KIF) (Genesereth and Fikes,

1992) was developed from first-order logic (Enderton, 1972), and the intention

was not for KIF to represent messages, but to represent the message content

Thus KQML communications can contain message content encoded in KIF,

for automated knowledge transfer between agents.

FIPA ACL

As an alternative to KQML, the Foundation for Intelligent and Physical Agents

(FIPA) attempted to develop a standards-based ACL that had a much wider

collection of suitable semantics (FIPA, 1999) than KQML. FIPA used the work

of Cohen and Levesque (1990) and Bretier and Sadek (1997) when developing

the ACL, creating a Semantic Language (SL) that permits not only actions to

be communicated but also beliefs, desires and uncertain beliefs as well.

The inclusion of a representation for semantics means that it is possible to

specify constraints that the sending agent must adhere to if it is to be FIPA

ACL compliant. FIPA describes this as the feasibility condition. Additionally,

the SL is used to describe the purpose of the message (perlocution) by encoding

the rational effect of the communication. Since an agent can choose whether

or not to respond to a communicative act, conformance to the FIPA standard

cannot be enforced when receiving messages.

Chapter 2 Agents and Agent-Oriented Software Engineering 25

However, ACLs such as FIPA and KQML only provide protocols for com

munication between agents. Using the term agent as an abstraction for a

variety of autonomous entities (such as human agents, or other MASs) it is

conceivable that it will be necessary to consider communication protocols that

can cross more disparate domains. In fact it is vital that issues such as hu

man/agent interaction interfaces, knowledge transfer from user to agent and

back again, and the level of abstraction required when delegating tasks to

agents are resolved before significant progress can be made.

2.4 Ontologies

As we gradually explore the behaviours and abilities of agents, it is important

to consider the practicalities of what, in some cases, are quite abstract con

cepts. If agents are to communicate successfully then there has to be some

shared understanding of the message structure and content. ACLs offer an

architecture that facilitates the exchange of speech acts, permitting the con

struction of messages that describe beliefs and intentions; although if knowl

edge is to be exchanged then there has to be some consensus as to to what the

message content means. Without this we cannot delegate tasks to agents and

MASs and thus derive the benefits of devolved decision-making.

Philosophy describes ontology as the study of being. Within the context of a

system that shares knowledge, an ontology is an explicit, formal specification of

how to represent the objects, concepts and other entities that exist in a domain

of interest, together with the relationships between them (Gruber, 1993).

There are three principal objectives of an ontology:

1. It must represent a conceptualisation that can be shared and re-used;

Chapter 2 Agents and Agent-Oriented Software Engineering 26

2. The ontology must represent all of the applications within a domain and

not be specific to one type;

3. It must contain all of the required information to permit knowledge to

be explicitly stated, together with rules and constraints to facilitate the

inference of new knowledge.

The advent of the extensible Markup Language (XML), (W3.org, 2004a),

which is a subset of the Standard Generalized Markup Language (SGML)

(W3.org, 1986), has made the generation of ontology documents much more

accessible. Darpa Agent Markup Language (DAML, 2001) and latterly the

Web Ontology Language (OWL) W3.org (2004b) are examples of XML-based

languages that enable the inclusion of semantic information within documents,

permitting automated analysis and processing.

One such example of a practical use for an ontology is a knowledge dic

tionary, in which the domain concepts, their relationships and constraints are

defined in order to improve consistency of communication and facilitate system

integration. Ontologies are also beneficial when constructing domain-specific

applications, as they guide the system designer who has to interpret the de

mands of the end-users, the result being a set of more realistic application

requirements and better long-term reliability (Uschold and Griininger, 1996).

Additionally the recording of ontological artefacts can be used as part of the

requirements specification, assisting the design, build and test of domain ap

plications.

Tools that facilitate ontology generation are crucial to improvements in

business performance as the increased amount of information available still

needs filtering, sorting and correlating, even though predominantly it is per

formed manually. Automating such tasks presents new opportunities as well

Chapter 2 Agents and Agent-Oriented Software Engineering 27

as the challenges of dynamically generating ontologies as information changes.

The Knowledge Reuse and Fusion/Transformation (KRAFT) project (Preece

et ah, 2000) demonstrated that agents can locate information from distributed,

heterogeneous data sources and ‘fuse’ the knowledge to create new, pertinent

knowledge for problem-solving.

2.4.1 Syntactic Interoperability

As discussed above, an agent communicates a representation of its mental

state to a receiving agent, rather than directly manipulating the receiver’s

methods. This means that the responsibility for the outcome of an action

is transferred to the receiving agent, rather than lying with the sender in an

object environment.

This enables an agent to delegate responsibilities (and by implication its

goals) to other agents, in the same way that responsibilities are delegated

by human managers in a typical hierarchical management structure (Castel-

franchi, 1998). Since agent architectures facilitate delegation, the following

issues are addressed:

• It is easier to capture and specify the requirements of hitherto complex

systems, thus embodying autonomy, delegation and proactivity;

• The resulting software models represent the domain more faithfully.

The imperative message passing approach of objects results only in receiving

objects being forced to perform actions in a particular way, whereas agents

can make requests without specifying how that request might be achieved.

The fact that objects need to specify how something is performed, has led to

Chapter 2 Agents and Agent-Oriented Software Engineering 28

the development of messaging protocols that rely on syntactic arguments; an

object message specifically orders the execution of a method.

Such an approach delivers systems that need developers to program to the

appropriate interface, using the correct syntax. It also means that the receiver

has no information as to the intended outcome of the request, other than

the specific method invocation, thus the receiver cannot reason about how an

outcome might be achieved.

Whilst interoperability can be achieved between systems using specific syn

tactics, this is somewhat restrictive if the systems to be integrated are dis

parate, and certainly prevents the potential capabilities of agent architectures

for open systems, since every agent needs to understand every other agents’

communication syntax.

2.4.2 Semantic Interoperability

If the semantics of a request are considered, a different scenario is presented:

• Communicating agents would not have to rely on restrictive syntactic

messages, and would be able to interpret those messages within the con

text of the agent’s own belief-base;

• Agents could delegate responsibilities to achieve goals without specifying

how those goals should be achieved;

• Environments of semantically-able agents could be assembled automati

cally, safe in the knowledge that they could interoperate and cooperate

independently of syntactical restrictions, whilst maintaining loose cou

pling and agent autonomy;

Chapter 2 Agents and Agent-Oriented Software Engineering 29

• Communication is simplified as agents only have to communicate the

goals that they wish to achieve.

Agent Communication Languages (ACL) such as FIPA-ACL (FIPA, 2006) de

fine syntactic and semantic standards for inter-agent communication in terms

of speech acts (Austin, 1962).

In particular, FIPA-ACL has a rich set of performatives that formally spec

ify meaning for communication primitives, based upon speech acts, enabling

agents to interpret messages correctly and act accordingly. Agents that can

understand the meaning of a communication, by interpreting its semantics,

stand a much better chance of reacting properly. This, in turn, facilitates

improved system flexibility within open environments.

If an agent wishes to know the time it would need to express a commu

nicative act that represents “What is the time?”. Using FIPA-ACL this would

look like:

(Query-ref

:sender Agent_A

:receiver Clock_Agent

:content ‘‘((any ?t (time ?t)))}5

)

The following statement is also valid: “I want to know the tim e”. This

would result in the Inform performative being used.

(Inform

:sender Agent_A

:receiver Clock_Agent

:content ‘‘((I Agent_A (exists ?t (B Agent_A (time ?t))))),}

Chapter 2 Agents and Agent-Oriented Software Engineering 30

)

In essence, both of these communicative acts should receive the same an

swer, even though the original language is grammatically different. An agent

with semantic capability can interpret both of these messages and use the

following communicative act as a reply:

(Inform-ref

:sender Clock_Agent

:receiver Agent_A

:content <{((any ?t (time ?t))),J

)

This approach simplifies agent construction considerably as the agent sys

tem designer can concentrate upon developing cooperative and domain-specific

features instead of attempting to capture (or predict) every variant of conver

sation with the associated message handling protocol.

Domains in an open environment will be rich with diversity and inconsis

tency, particularly since they are composed of many disparate heterogeneous

systems. Such environments demand flexible communications, and applica

tions that rely upon syntactic exchange of knowledge cannot offer the potential

of a semantic agent approach.

2.4.3 Communicating Intentions

Having established that a semantic approach to agent communication is desir

able for an open environment, it is necessary to consider the means by which

the agent intentions (communicative acts) can be constructed. The process of

Chapter 2 Agents and Agent-Oriented Software Engineering 31

capturing requirements, gathers together, amongst other artefacts, the busi

ness rules by which an organisation operates. If agents are to operate as a

flexible MAS, then it is important that the business processes, rules and pro

tocols are captured in order that they can be utilised by a MAS. In general:

1. Domain rules should be written by the individuals who perform the tasks,

not necessarily domain experts;

2. Each role within the domain may require a bespoke interface for com

posing context dependent rules;

3. Domain rules should ideally be dynamically generated by interacting

with the system;

4. Rules are likely to be incomplete and will be refined over a period of

time.

The complexity of a MAS domain is such that a large proportion of the knowl

edge is held with the users of the various systems. This, in turn, leads to

informal processes and protocols that have evolved over time to accommodate

deficiencies in the existing command and control systems. Sowa (2000) pro

poses Controlled English as a formal language for description, which could be

used to facilitate the generation of ACL message content whilst maximising

semantic interoperability.

Organisation protocol rules can be convoluted however, and it is proba

ble that rule generation can become an overwhelming task. Compton et al.

(2006) and Compton and Jansen (1990) describe ‘Ripple-Down Rules (RDR)’,

a method of ‘ rules maintenance5 whereby rules are created or edited within the

context of a specific task, resulting in easier comprehension and more stable

Chapter 2 Agents and Agent-Oriented Software Engineering 32

rule building. A key part of this approach is the realisation that the post

conditions of a task in a particular context need capturing and expressing if a

representative rule is to be generated.

For example, a Bank Agent needs to assess the financial status (‘credit

check’ in UK) of a potential Loan Applicant, via the Loan Applicant Agent.

This rule can be expressed simply as:

If Loan_Applicant has salary < 20000 Then

Loan.Applicant is rejected

However, this blanket rule takes no account of other circumstances, such as

whether the Loan Applicant is self-employed. Since the overall rule has been

created, modification is required rather than composing a new rule.

If Loan_Applicant has salary < 20000 Then

If Loan_Applicant is self.employed Then

Loan.Applicant must submit proof_of_income

Else

Loan.Applicant is rejected

Whilst the nesting of these statements will undoubtedly result in large rule

trees, it is necessary only to consider each rule within the context of the par

ticular case of use, and therefore the justification for a change is localised.

Such an approach therefore enables agents to update their belief sets as they

encounter new scenarios, by tailoring general rules with new specific variants.

Chapter 2 Agents and Agent-Oriented Software Engineering 33

2.5 Agent-Oriented Software Engineering

Agent-Oriented Software Engineering (AOSE) is a variation of traditional soft

ware engineering approaches that facilitate the analysis, design and implemen

tation of software systems. In particular, the additional characteristics offered

by agents are offered as a means by which more complex software applica

tions can be constructed, in favour of more established software engineering

approaches such as structured programming and object orientation (0 0).

Early attempts at encapsulation, using subroutines in structured program

ming, has steadily matured into the 0 0 paradigm whereby the four software

engineering goals are much easier to satisfy. The ability to encapsulate code

and abstract away from low-level detail is a significant advantage of the 0 0

approach, and as a result the software industry is heavily influenced by trends

in 0 0 development. Whilst 0 0 goes some way towards simplifying software

design by providing a better fit with ‘the real world’ through object repre

sentations, the essential characteristics of passive objects do not support the

dynamic and proactive abilities that agents possess. AOSE addresses this by

applying agents to the analysis, design and construction of software, in order

that more de-centralised capabilities are available to systems, as demanded

by increased take-up of the Internet and emergent Semantic Web. The au

tonomous behaviours of agents and multi-agent systems makes AOSE partic

ularly suited to the design and robust construction of complex applications.

These systems are able to take the initiative and exhibit qualities such as self-

healing, negotiation and brokering in dynamic open environments. One aspect

of AOSE that is particularly interesting is the potential for the approach to

be used for the analysis and design of software systems, that may eventually

be constructed with established 0 0 methods. The application of agents to

Chapter 2 Agents and Agent-Oriented Software Engineering 34

a design problem allows system designers to manage the software engineering

process in a more realistic way; the abstraction of discrete, autonomous entities

drastically simplifies requirements gathering, and as such is a case for using

agents as a design metaphor. Similarly, the increased capabilities of agents per

mits complex organisational workflows to be represented, whilst also enabling

the application of existing organisational models to agent representations, in

order to represent inter-dependencies and complex interactions (Luck et ah,

2004).

2.6 Design M ethodologies

Even though agents and AOSE appear to simplify the design of software sys

tems, the process of eliciting requirements, system analysis, design and con

struction still requires guidance if a system is to be successfully completed.

Methodologies provide the steps required to convert abstract, high-level re

quirements into a design specification, and should include the detail neces

sary to enable the process to be repeatable. Since many of the programming

languages for agent systems are based upon 0 0 principles, and 0 0 design

methodologies are now quite mature, it seems sensible to use an 0 0 approach

when designing an agent system. 0 0 methodologies offer design abstraction

with objects and communication via message passing, which could be used

to produce a representation of an agent based system. Such a representa

tion would allow a reactive system to be built, albeit with passive objects,

which compromises any agent model somewhat. If an agent design methodol

ogy is to produce a faithful representation of an agent system then the design

methodologies for agent systems need to reflect the enhanced characteristics

Chapter 2 Agents and Agent-Oriented Software Engineering 35

that agents demonstrate.

For example, as described in Section 2.2, agents have proactive behaviours

that require goals to be expressed. As such, a methodology should provide the

steps required to elicit and model goals if the proactive behaviours are to be

included as part of an agent’s capabilities. 0 0 methodologies generally model

all objects as passive, and do not differentiate between the active states of

agents and passive data. Similarly, architectures such as BDI require mental

attitudes to be elicited, described and applied to agent software, which is not

something that is included within 0 0 design methodologies.

Consequently there is a motivation to develop an agent design methodol

ogy that embraces the enhanced abstract characteristics of agents and agency.

A number of methodologies (Massonet et al., 2002) have emerged from es

tablished software engineering methodologies such as Gaia (Zambonelli et al.,

2003; Garcia-Ojeda and Arenas, 2004; Juan et al., 2002), Prometheus (Padgham

and Winikoff, 2002), MaSE (DeLoach, 1999), and Tropos (Bresciani et al.,

2001), together with a number of toolkits that assist the generation of MASs

(Bergenti and Poggi, 2001), (DeLoach and Wood, 2000). Three of these agent

design methodologies, Gaia, Prometheus and Tropos, are now briefly described

and discussed in relation to their relative strengths and weaknesses.

2.6.1 Gaia

The Gaia Methodology (Wooldridge et al., 2000) attempts to provide an ab

stract framework for the design of agent systems. It is based upon OO princi

ples and as such makes the transition from OO to agent design much easier as

it is likely that the system designer will have at least some familiarity with OO

methodologies. Whilst the selection of an OO approach is ‘safe’, it also means

Chapter 2 Agents and Agent-Oriented Software Engineering 36

that enhanced agent characteristics need to be appended to the 0 0 concepts,

and as a result they are more abstract than in some other methodologies.

Also, Gaia assumes a requirements specification as an input, thus restricting

the extent to which agents can simplify requirements capture through use of

an agent design metaphor. The design process consists of two distinct phases:

1. Analysis - abstract conceptual models are built from the requirements

specification, prior to;

2. Design - whereby the models are transformed into entities via a design

specification language, in order that program code can subsequently be

generated.

An overview of the models within Gaia is shown in Figure 2.1. The key thrust

with Gaia is that the eventual system should be viewed as an organisation,

comprising entities, roles, goals (individual and organisational) and interac

tions. This organisational metaphor serves to represent the system at macro

and micro levels. The two stages are described briefly below.

Analysis

The analysis phase enables the system designer to explore and understand the

structure and organisation of the system (Figure 2.2), expressed as a collection

of roles that interact with each other.

Roles are a key concept within Gaia, which are used to provide a conceptual

representation of the system. The role model contains a role schema for each

of the roles identified. This describes the behaviours that an agent would need

to possess. The role model is defined by the collection of Role Schemata for

the entire system. Figure 2.2 illustrates the concepts and relationships within

Chapter 2 Agents and Agent-Oriented Software Engineering 37

Requirements
Specification

Role Model

Service
Model

Agent Model Acquaintance
Model

Interaction
Model

Analysis

>- Design

Figure 2.1: The Gaia Methodology Models (redrawn from Wooldridge et ah,
2000).

the Gaia Analysis phase.

The first step upon receipt of the requirements specification is to build

a Role Model which comprises a list of identified roles and role descriptions.

These specifications give an abstract representation of the functionality of each

role, by specifying the following attributes:

1. Permissions - This is a description of the scope of the rights of a role’s

behaviours, in terms of what resources the role has access to, and what

it can (or cannot) modify or create.

2. Responsibilities - These describe the functionality of each role and are

categorised by two types: (1) Liveness Properties state the ideal, in that

they describe the solution that an agent must bring about in certain

environmental conditions, whereas (2) Safety Properties are the proper

ties that an agent must always protect when undertaking the role, in an

attempt to maintain stability during execution.

Chapter 2 Agents and Agent-Oriented Software Engineering 38

3. Activities - These are specific actions that the agent might perform with

out involving any other agents.

4. Protocols - These define how a role can interact with other roles, such as

the use of a Contract Net protocol (FIPA, 2002) for instance.

Interactions

PermissionsResponsibilities

Liveness
Properties

Safety
Properties

System

Roles

Figure 2.2: Concepts within the Analysis stage of Gaia.

The other artefact produced during the analysis phase is the Interaction Model.

The collaboration between roles is explored in order to represent the interac

tions that need to take place for the system to function correctly. Gaia offers

guidance by specifying the interaction characteristics for each role, otherwise

known as a Protocol Definition. Each protocol is defined in terms of its pur

pose, the initiator role, the responder role, any inputs and outputs and finally

any processing. Before progressing to the Design phase, more detail is added

to each of the roles identified, and appended to the Role Schema. An example

Chapter 2 Agents and Agent-Oriented Software Engineering 39

of a Role Schema is shown in Figure 2.3 (Wooldridge et ah, 2000).

Role Schema: C o n iu-Fu.LHR___

Description:
This role involves ensuring that the coffee pot is kept filled, and informing
the workers when fresh coffee has been brewed.

Protocols and Activities:
Fill, InformWorkers. CheckStock, AwaitEmpty__________________________

Permissions:
reads supplied coffeeMaker H name of coffee maker

coffeeStatus I f full or empty
Changes coffeeStock // stock level of coffee

Responsibilities
Live ness:

C o f f e u F i u . h r = (Fill. InformWorkers. CheckStock. AwaitEmpty)"
safety:

• coffeeStock > 0

Figure 2.3: Role Schema for Coffee-filler (Wooldridge et al., 2000).

Design

The Gaia Design phase consists of three models, that when completed form

the output design artefacts from this approach. The first model (agent model)

describes the agent types that are required in the system. This model is similar

to a class model in that each agent will result in one or more instances that

are realised at execution time. Each agent type may undertake one or more

roles identified in the Analysis phase, and conversely a role may be attributed

to one or more agent types.

The second model describes the services provided by each of the roles.

Wooldridge et al. (1999) defines a service as a:

“...single block of activity in which an agent will engage.”

The protocol definition from the Analysis phase is used to define the inputs

Chapter 2 Agents and Agent-Oriented Software Engineering 40

and outputs for each service, and the pre and post-conditions are mapped from

each role’s safety properties. Thus the Service Model is a comprehensive list

of the services that each agent offers.

Finally the Acquaintance Model is derived from the Interaction Model and

Agent Model. It identifies the communicative links between each of the agent

types, providing a representation of agent coupling.

Issues w ith Gaia

Gaia was the first MAS design methodology that addressed the need to ex

plicitly deal with agent abstractions rather than use other, more compromised

approaches. Whilst it has been developed with MASs in mind, there are some

significant issues that should be considered.

Gaia assumes that the requirements gathering/specification phase has been

completed, and offers no guidance as to how this might be performed. The

organisational metaphor goes some way to allowing agent models to be har

monised with more traditional methods of requirements capture, but the use

of agents as a metaphor for gathering system requirements is not addressed.

As a result, the potential simplification of requirements models is missing and

therefore the methodology could be more comprehensive.

The capture and representation of domain knowledge is a fundamental part

of any MAS design process, and Gaia offers no guidance for the definition and

modelling of ontologies.

Gaia assumes that all of the agents will cooperate, and therefore the envi

ronment is deemed to be closed and controlled, rather than open and dynamic.

There is no explicit means of modelling agent goals, nor a means of defining

goal and task delegation. Since the content and sequences of the messages are

Chapter 2 Agents and Agent-Oriented Software Engineering 41

ignored, the interaction model does not provide the necessary detail required

to fully represent message content semantics.

The models produce agents that have a pre-determined organisational struc

ture, and there is no provision for organisational relationships that might

change during execution. This facet is not unique to Gaia, though it does

reinforce the importance of an effective, accurate requirements capture stage.

Finally, whilst a design methodology need not specify an implementation

platform, Gaia requires an experienced agent designer to convert the abstract

concepts into concrete entities.

2.6.2 Prom etheus

Prometheus is a comprehensive design methodology that attempts to encom

pass the whole system design life-cycle, from initial requirements specification

through to testing and debugging. The approach is based upon a process

that has been designed to be used by both experienced agent developers and

newcomers to agent development. Most of the steps of the process result in

an artefact, leading to a comprehensive set of design documents. Prometheus

consists of three phases:

1. System Specification - this phase concentrates on eliciting system goals

and functionality, and investigates and documents inputs and outputs of

the system to be designed.

2. Architectural Design - this phase determines the types and quantities of

agents required to deliver the outputs of the system specification phase.

3. Detailed Design - after determining the types of agent required, specific

details of each agents’ capabilities are described, in order to develop an

Chapter 2 Agents and Agent-Oriented Software Engineering 42

implementation.

The last phase of the Prometheus approach is implementation. The first three

stages result in a design that is ‘platform neutral’ in keeping with a general

purpose methodology. However, through the use of the Prometheus Design

Tool, PDT (Padgham et al., 2005) and the JACK agent platform (Busetta

et al., 1999), automatic code generation is provided. Figure 2.4 illustrates the

first three phases of Prometheus. The following sections explore each of the

» Initial
Functionality
descriptors

. final design
J artifact

System goals

Actions, percepts intermediate
design tool

— ► crosscheck

derives

Data
coupling

Interaction
diagrams

agent
acquaintance

shared
data

m essages

Agent
descriptors

System
Overview

1
Prohicols]

r

[Process
VI

■§
•oj)
IB<•*
09
Q

Agent Capability
Overview descriptors

Event
descriptors

Data
descriptions

P/an
descriptors

W

Capability
overview

Figure 2.4: The Prometheus Methodology (Padgham and Winikoff, 2002).

phases in more detail.

Chapter 2 Agents and Agent-Oriented Software Engineering 43

System Specification

This phase concentrates upon eliciting the goals and functionality of the sys

tem, developing use case scenarios, and describing the requirements of an in

terface between the system and its environment. System goals are used as a

means of capturing high-level requirements, and after some iteration sub-goals

are discovered, together with their relationships, thus creating a hierarchy.

Eventually this will allow similar sub-goals to be grouped together, in order

to specify functionalities. The following information is contained within each

functionality descriptor:

• Name and description of the functionality;

• Event triggers;

• Goals to be achieved;

• Actions performed;

• Messages sent and received;

• Data used and created.

Use case models enable the system designer to use graphical models to

visualise the system in particular scenarios, whilst scrutinising the textual

sequence of steps during execution. This ‘process check’ serves to elicit any

goals that have not yet been identified, that are essential for the functionality

to meet the overall system goals.

Architectural Design

The architectural design phase determines:

Chapter 2 Agents and Agent-Oriented Software Engineering 44

• The agent types and how they are described with agent descriptors;

• The overall structure of the system with the system overview diagram;

• The dynamic behaviour of the system with interaction diagrams and

interaction protocols.

Agent types are determined by grouping together agent functionalities, with

particular attention paid to coupling and cohesion. Data coupling diagrams

are used to assess how successful this has been, in conjunction with an agent

acquaintance diagram as a cross-check. The culmination of this is the agent

descriptor.

After determining the agent types, each agent is appraised in terms of

whether it reacts to a percept, and the actions it performs upon the envi

ronment are also described. Message exchange is also specified at this point,

enabling the system overview diagram to be assembled. Whilst the message

exchanges have now been identified, it is necessary to explicate the timing and

sequence of messages. This is provided within the agent interaction diagrams.

Such diagrams utilise Agent-oriented Unified Modelling Language (AUML) to

represent interaction protocols.

D etailed Design

This phase develops a hierarchical capability model for each agent, in order

to determine events, plans and any data structures that might be required.

The capability descriptor is the means by which information about events is

contained, including interactions with other capabilities, access to data, and

details of any events that might be received. Moving nearer to implementation,

descriptors for events, data and individual plans provide the required detail.

Chapter 2 Agents and Agent-Oriented Software Engineering 45

Agent overview diagrams illustrate the inner workings of an agent by de

scribing the organisation of an agent’s capabilities. If the system designer has

chosen a platform other than JACK, then the latter part of this phase will be

influenced by the elected agent platform. If JACK is to be used, then the PDT

can assist with code generation during the subsequent implementation phase.

Issues w ith Prom etheus

Unlike Gaia, Prometheus does support the gathering of requirements in terms

of goal elicitation, and this is useful for indicating the intentions of the eventual

system stakeholders. Since goals are often high-level concepts, they are much

less likely to change than requirements (van Lamsweerde, 2001), which are of

ten modified as the models are iterated. This makes goal elicitation important

for agent oriented systems and Prometheus supports this in part during the

system specification stage. From the architectural design phase onwards there

is a shift in emphasis from goals to agent communication and data access, thus

resorting back to a coding approach to agent system development.

Beyond the identification of goals however, Prometheus does not provide

as much detail in the system specification phase as the approach does in latter

phases. Thus the elicitation of system requirements is relatively weak and

there is a reliance upon expert knowledge from the target domain.

2.6.3 Tropos

Tropos attempts to facilitate the modelling of systems at the knowledge level

and highlights the difficulties encountered by agent developers, especially since

notations such as UML (OMG, 2005) force the conversion of knowledge con

cepts into program code representations (Bresciani et al., 2001). The design

Chapter 2 Agents and Agent-Oriented Software Engineering 46

of Tropos is influenced by the i* framework from Yu (1997). It seeks to cap

ture and specify ‘soft’ and ‘hard’ goals during an ‘Early Requirements’ cap

ture stage, in order that the Belief-Desire-Intention (BDI) architectural model

(Georgeff et ah, 1999) of agent implementation can be subsequently supported.

Once the goals have been specified, plans for actors can be constructed that

enable agent desires to be pursued. Model-checking is provided through the

vehicle of Formal Tropos (Fuxman et al., 2001); although this is an optional

component and is not implicit within the agent realisation process. Briefly,

Tropos consists of four phases:

1. Early Requirements concentrates on the modelling and analysis of the in

tentions of system stakeholders. Using the work of Yu (1995), goals are

elicited that, after subsequent analysis, can be later specified as func

tional and non-functional requirements (Dardenne et al., 1993).

2. Late Requirements provides a prescriptive requirements specification that

describes all of the functional and non-functional aspects of the system.

3. Architectural Design. This stage develops an overall architecture, by

harmonising the MAS architecture into its organisational setting.

4. Detailed Design provides guidance for the development of agent be

haviours and interactions by applying ‘social patterns’ (Do et al., 2003).

The notion of ‘early requirements’ is a key differentiator between Tropos and

other agent-oriented design methodologies, and it supports agent design by

providing guidance at the earliest stage of the development process.

Chapter 2 Agents and Agent-Oriented Software Engineering 47

Early Requirem ents

Tropos attempts to assist the process of eliciting both stakeholders and their

intentions, in order that they can be specified as actors and goals. Tropos

classifies the intentions as either hard goals or soft goals. Hard goals have

satisfaction conditions that can be specifically defined, whereas soft goals have

conditions that are difficult to define or represent. The identification of hard

goals will enable functional requirements to be specified. Similarly, soft goals

allow non-functional requirements to be specified.

Early requirements in Tropos are communicated using two models:

1. Actor Diagram, - This diagram shows the actors and the relationships

between actors. Tropos describes the relationships as “social dependen

cies” , since the actors will depend on other actors for goals to be achieved,

tasks to be delegated and resources to be consumed.

2. Goal Diagram - Each actor undergoes an analysis that will result in an

individual specification of goals and plans, in order to give the actor

(agent) the required capabilities in the final system.

The methodology offers three approaches to the analysis of the goals:

1. Means-end Analysis requires goals to be scrutinised for smaller, sub

goals, in order that the associated plans and resources required for suc

cessful attainment of the goal are specified.

2 . Contribution Analysis represents goal interactions, and illustrates how

the achievement of one goal can affect another.

3. AND/OR Decomposition (Nilsson, 1971). Since each goal could be achieved

Chapter 2 Agents and Agent-Oriented Software Engineering 48

in several different ways (plans), then each sub-goal that has been iden

tified can also have a number of plans associated with it. This can be

represented by the goal-plan tree in Figure 2.5, in which the OR rela

tionship indicates the alternative plans that could be used to achieve a

goal or sub-goal. Since a goal can only be achieved if all of the sub-goals

have been successfully achieved, an AND relationship relates these two

concepts together.

Goal

OR

Plan
AND

Plan Plan Plan Plan Plan Plan Plan Plan Plan Plan Plan Plan

Figure 2.5: Goal-plan tree showing goal decomposition

The processes of defining social dependency relationships and the specification

of goals and plans for each actor are inextricably linked, and it is necessary to

iterate the early requirements stage until a suitable specification for the late

requirements stage is generated.

Late Requirem ents

The late requirements stage is more akin to the system specification phase of

Prometheus, except that the Tropos approach has not only identified what the

system should do, but also conducted some analysis based upon the rationale

Chapter 2 Agents and Agent-Oriented Software Engineering 49

for the functionality, or the ‘why This stage takes the individual goals of each

actor and builds a strategic rationale model that represents the contributions

of all of the system actors. As a consequence it is possible to represent quan

titative (soft) goals with some alternative qualitative measure as is common

during late requirements analysis (Dardenne et ah, 1993).

Architectural Design

A series of architectural organisation patterns are provided to assist the agent

system designer refine the models produced so far in order that sufficient detail

for a complete design specification can be produced. Architectural analysis

enables detailed actor capabilities to be explored, which may result in new

actors or sub-actors being introduced into the model. Subsequently, each sub

actor will have intentions, and therefore goals and plans, which will require

further iterations to develop completely.

D etailed Design

This stage uses social design patterns (Do et al., 2003) to enrich the design

specification for each actor and its subsequent agent, by specifying the specific

behaviours required to achieve a goal, with respect to the organisational and

social architecture of a particular domain. Interactions between agents are de

scribed (typically using AUML) and a detailed design specification is produced

in readiness for implementation.

M odel Checking

Throughout the Tropos methodology there is an opportunity to perform model

checking by using formal analysis techniques described by the Formal Tropos

Chapter 2 Agents and Agent-Oriented Software Engineering 50

(FT) specification language (Fuxman et al., 2001, 2004). FT permits the

dynamic aspects of the model to be considered from a strategic viewpoint, and

the model can be checked by posing queries.

The automation of many of the tasks in Tropos is yet to be realised, how

ever, the ‘T-Tool’ described by Fuxman et al. (2004) is an example of tool

support.

Im plem entation

The Tropos methodology is closely related to the JACK agent platform (similar

to Prometheus), and the agent system designer must map Tropos concepts to

BDI concepts, before mapping BDI concepts to the JACK language constructs.

Issues w ith Tropos

Tropos is an agent design approach that differentiates itself from other agent-

oriented methodologies in two key areas. Firstly it makes the process of early

requirements gathering not only explicit for agent-oriented design, but it also

offers techniques and a method for analysing and modelling the system from

an intentional standpoint.

Secondly, the concepts of stakeholders, actors, roles, intentions and social

organisation are carried through all of the stages of the methodology. Whilst

there is the potential for such ‘high-level’ concepts to be considered in an un

disciplined fashion, there is the formal specification language FT to assist any

desire for rigour.

FT, however, is an optional component and is not a pre-requisite for use

of Tropos. Additionally there is a need to conduct some modelling activity

before the use of FT, if unnecessary effort is not to be expended. Fortunately

Chapter 2 Agents and Agent-Oriented Software Engineering 51

the T-Tool goes someway towards preventing this.

Even though Tropos provides support for the specification of systems to be

implemented upon the JACK platform, the ability to represent models in terms

of BDI concepts permits the model to be transferable across BDI compliant

platforms.

Tropos embraces the use of ‘organisational’ patterns to assist the specifi

cation, analysis and design of the agent system, and also utilises more design

patterns for more detailed agent description. There lacks guidance however,

as to how any agent interaction protocols (other than FIPA) might be defined

that support the specific semantic demands of an organisation’s domain. Addi

tionally, the task of goal decomposition can be difficult without specific domain

expertise, and it would be useful to have an organisation-focused metaphor to

assist in this process.

2.7 Discussion

Gaia, Prometheus and Tropos all describe different approaches to the design of

agent-oriented systems. Gaia is the oldest, and as a result has been discussed

at length in the research literature. The main criticisms of Gaia are its lack

of a requirements analysis stage and a need for a richer set of semantics to

better model the organisation in an open environment. Variations such as

ROADMAP (Juan et al., 2002) and Gaia v.2 (Cernuzzi et al., 2004) have

introduced extensions that enable more aspects of open environments to be

catered for, but the methodology is still weak in relation to other approaches

in this area.

The Prometheus approach is very comprehensive and the focus upon a

Chapter 2 Agents and Agent-Oriented Software Engineering 52

process of design artefacts provides structure during the analysis and design

phases. Methods for goal elicitation are provided; although only during the

system specification phase.

Tropos addresses the need for more guidance during the early requirements

stage and provides organisational metaphors to assist the determination of

goals and actors. Formal rigour is introduced (optionally) by the use of the

FT specification language. However, like Gaia, Tropos assumes that the agent

system designer has control over a closed environment (Dastani et al., 2004).

None of the above methodologies offer support for the generation of an

ontology. It is important to recognise that just as UML models for 0 0 sys

tems require a degree of expertise on the part of the designer, the creation of

agent based and domain ontology models is complicated (Ehrler and Crane-

field, 2004). This arises not only because an agent solution is generally more

complex (Chopra and Singh, 2004) (protocols, tasks, roles, etc.), but the prob

lem and domain is almost always more convoluted (Beer et al., 2003b).

Prior experience with AUML and the Zeus Methodology (Beer et al., 2001)

illustrated that several problems remain at the requirements capture stage

(Dastani et al., 2004):

1. Most agent design methodologies do not incorporate inherent model ver

ification. It is therefore probable that some significant details are missed

from the first iteration (Mellouli et al., 2002). Whilst actors are iden

tified, they might not offer the best approach for the revised solution

(Dastani et al., 2003a). Together these problems require an experienced

systems analyst who can look beyond the notation and offer improved

business processes so that the new system offers significant worthwhile

added benefits.

Chapter 2 Agents and Agent-Oriented Software Engineering 53

2. Use case analysis captures process-level tasks without challenging quali

tative issues. If the potential of an agent based system is to be realised,

then the agents must be able to understand and process decisions or

actions that require qualitative reasoning.

3. Role modelling is an inherent part of the MAS modelling process (Depke

et al., 2001), yet there is little guidance as to how roles should be allo

cated for best performance (Dastani et al., 2003b).

4. Generation of terms for an ontology is largely based upon the existing

processes together with the system analyst’s knowledge and experience.

Prom a systems modelling perspective, the process of describing and

articulating use cases serves to elicit the majority of the eventual agent

behaviours.

5. Even though actors appear to map straight to agents, the assignment

of behaviours is often arbitrary, based on current practice, rather than

systematically developing a coherent model (Dastani, 2004). Whilst this

offers a distinct advantage for the systems modeller as the capture of

system requirements is quick, simple and readily verifiable by reference

to the current system users, there is no inherent check to verify the

validity of each process or role, nor how the roles were delegated.

Agent design and development makes specific demands upon the developer

(Jennings, 2001), especially with regard to the capture of system require

ments. Except for Tropos (Bresciani et al., 2004) however, little work has been

published that encompasses the whole cycle from early requirements capture

through to implementation of an agent system (Giorgini, 2003).

Chapter 2 Agents and Agent-Oriented Software Engineering 54

An alternative approach utilises MAS platforms and toolkits such as the

Java Agent Development Environment (JADE) (Bellifemine et ah, 2001), to

replicate existing systems from class model representations. This is potentially

attractive to developers as relatively simple mappings from classes to agents are

realised, though it does require a familiarity with low-level agent programming

concepts and an understanding of how real-life interaction scenarios can be

decomposed and translated into program code. A common result however is

that the program code can quickly deviate from the model, as the limitations

of such simplistic translations are realised (Dastani et al., 2003b)._ /

It is important to have a much deeper level of understanding of a system

from the outset, ensuring that fundamental business Concepts are captured,

described and understood. Whilst conceptual modelling is often a means by

which rich, flexible scenarios can be captured, there is an inherent difficulty in

specifying a design later in the development life cycle. This is compounded by

the fact that flexibility often leads towards lack of discipline, or consistency, in

modelling, thus there is a need for a concept-led, rigorous elicitation process,

prior to MAS specification and design. A conceptual approach that has the

capability to capture complex, real-world problems, yet with the addition of

model-checking, consistency and rigour, would address these challenges.

2.8 Criteria for Framework

Whilst extensions to the UML meta model such as AUML (Bauer, 2001; Bauer

et al., 2001), have simplified the design and specification of agent characteris

tics such as interaction protocols (Odell et al., 2001), the process of gathering

and specifying initial requirements using established notations such as use case

Chapter 2 Agents and Agent-Oriented Software Engineering 55

modelling (OMG, 2005) is often limited by the discipline and experience of the

MAS designer.

It would therefore be useful if it was possible to provide an extended and

more rigorous means of capturing requirements for agent-based systems by

addressing the need to scrutinise and verify agent concepts that exist in the

environment, prior to more detailed analysis and design with existing method

ologies (Hill et ah, 2004, 2005a,b, 2006a; Polovina et ah, 2004).

Considering the review of the three methodologies considered so far, a

number of key characteristics for an agent design framework become evident.

Each of these characteristics is identified in relation to the relative strengths

and weaknesses of each approach.

1. A clearly defined process that describes how the framework is applied to

gether with the details of any implicit process. Gaia addresses this aspect

to a limited extent in that an abstract process is described that lacks de

tail. Both Prometheus and Tropos are much better in this respect in that

the process is articulated in much more depth, particularly Prometheus

which is described in considerable detail. Process detail reduces ambigu

ity and improves repeatability and rigour. It is important however, that

the imposed rigour does not limit expressivity.

2 . An ability to manage differing levels of abstraction, from the highest (so

cietal) down to the most detailed (agent) descriptions. Again this is

addressed partially by Gaia in that the different levels of abstraction are

clearly identified, and there is a reliance upon the use of roles within the

models. However, the assumption that requirements capture has already

taken place means that the potential benefits of agent-oriented require

ments capture are not exploited. Similarly the lack of a mechanism to

Chapter 2 Agents and Agent-Oriented Software Engineering 56

model agent goals or task delegation results in an equally abstract in

teraction model that does not provide the detail necessary to represent

rich message content semantics. Prometheus is much more prescribed

in that there is a clear route from requirements gathering, through goal

elicitation and role allocation through to a more comprehensive specifi

cation model. Whilst Prometheus does provide a model that is ‘closer’

to the code, there is a clear emphasis upon data access rather than goal

description and delegation, thus resorting to a coding approach to de

sign. Tropos offers the most comprehensive range of representations by

supporting the gathering of early requirements, whilst providing a means

of managing the hard and soft goals elicited. The use of BDI concepts

enables the abstractions to be specified in an implementation language

that supports BDI constructs such as JACK. The process of verifying

the requirements modelling process is less comprehensive and is either

ignored, supplemented with another approach, or satisfied using the For

mal Tropos tools. Tropos is also supported by the use of organisational

patterns that assist the specification, analysis and design of an agent

system, supporting the need for added relevance that an organisational

metaphor can bring to the approach.

3. An ability to capture and model high-level qualitative concepts at an

‘embryonic7 requirements stage. Gaia permits concepts to be modelled at

a high level, providing that they have been captured already. Prometheus

supports the capture of requirements, though there is the assumption

that the abstract concepts have already been defined. Tropos provides

explicit support for the acquisition and management of early require

ments for agent based systems.

Chapter 2 Agents and Agent-Oriented Software Engineering 57

4. A guide to the elicitation of stakeholders and their goals, and be able

to manage the discovery of system goals. Both Tropos and Prometheus

explicitly treat the elicitation and decomposition of goals in some detail,

though it is only Tropos that provides guidance during early require

ments. Gaia does not directly address the need to elicit goals and assumes

that this is performed as part of the initial requirements generation.

5. A mechanism for eliciting and deriving pertinent agent and domain con

cepts, allowing the representation and open expression of agent concepts

such as: belief, desire, intention, role, society, task. Gaia is abstract

enough to allow these concepts to be accommodated, but offers little

guidance as to how the process can be managed. Both Prometheus and

Tropos support the specification of agent models for BDI platforms, how

ever only Tropos directly supports and manages the process of high-level

goal discovery.

6 . A process that includes an implicit model check to verify the elicitation

of key domain concepts at the earliest opportunity. This process must

be able to enable checking of the model’s consistency, ideally with tool

support. Again the abstract Gaia approach does not provide explicit

instructions to support the verification of models. Prometheus has a

series of opportunities to check the models as part of the process, but

there is no absolute demand for model verification. Tropos can be used

in conjunction with the Formal Tropos tool, though this is an optional

component.

7. A process whereby focus is directed upon inconsistencies or parts of the

model that are ambiguous. This particular aspect is influenced by the

Chapter 2 Agents and Agent-Oriented Software Engineering 58

amount of detail that is required by each of the design approaches.

Clearly there is much more (unspecified) work to do when using Gaia,

and it is therefore likely that required features of the eventual system

may be missing. Prometheus is very prescriptive and therefore provides

an indication of any gaps in the models. However this does assume that

the early requirements stage has been completed successfully and the

the high-level concepts have been captured. Tropos therefore provides a

much better foundation upon which the subsequent stages can be based,

though unfortunately it lacks the later rigour imposed by Prometheus.

8 . A means by which domain terms, constraints and rules can be captured

and represented in an ontology. This is a particular weakness of Gaia

in that there is no attempt to support the generation of an ontology.

Prometheus and Tropos support the creation of ontologies in part by

at least attempting to specify the key domain concepts, though there is

no emphasis upon reasoning against the ontology in order to verify its

existence.

9. A representation medium that permits the transfer of models across do

mains, and that serves to complement other agent design methodologies.

Gaia is sufficiently abstract to be completely transferable. Prometheus

and Tropos offer direct support for the use of JACK, whilst also sup

porting any other platform that embraces BDI constructs as the model

representation. The rigour of Prometheus suggests that some support

for early requirements gathering (which is absent) would be useful. Con

versely Tropos would benefit from more rigour during the architectural

phase, to make better use of the early requirements capability of the

Chapter 2 Agents and Agent-Oriented Software Engineering 59

approach.

10. A process that is intuitive and enables novices and experts to design agent

models. All of these approaches require some familiarity with the agent

design process, therefore this aspect will consider the extent to which

agent expertise is required. Gaia is the most abstract and demands imple

mentation expertise. Tropos is gaining maturity and offers good support

for the capture of high-level system goals and stakeholders. Prometheus

has a very prescriptive approach that permits implementations with some

degree of repeatability to be produced. As such Prometheus restricts the

flexibility or creativity that can be applied to the agent design process,

by defining clearly what artefacts have to be produced and in what order.

For comparison, the three agent design methodologies discussed earlier were

evaluated against these criteria, using the ranking method proposed by Sturm

and Shehory (2003) and described below in Table 2.1. Each of the specific

criteria was ranked from 1-7 and the results are summarised in Table 2.2.

2.9 Conclusions

So far we have looked at the concepts of agents and multi-agent systems, and

started to explore some of the issues for AOSE. In particular we have seen that

popular agent-oriented design methodologies have a general lack of support for

ontology capture and modelling, and only (at the time of writing) does Tropos

assist the analysis of high-level early requirements. Finally some criteria for an

improved agent-oriented design framework are identified. Chapter 3 explores

the modelling of agent concepts in more detail.

Chapter 2 Agents and Agent-Oriented Software Engineering 60

R an k E valua tion c rite ria
1 Indicates that the methodology does not address the property.
2 Indicates that the methodology refers to the property but no

details are provided.
3 Indicates that the methodology addresses the property to a

limited extent. That is, many issues that are related to the
specific property are not addressed.

4 Indicates that the methodology addresses the property, yet
some major issues are lacking.

5 Indicates that the methodology addresses the property, how
ever, it lacks one or two major issues related to the specific
property.

6 Indicates that the methodology addresses the property with
minor deficiencies.

7 Indicates that the methodology fully addresses the property.

Table 2.1: Evaluation rankings (Sturm and Shehory, 2003).

C h arac te ris tic G A IA P ro m eth eu s Tropos
1. Process 4 6 5
2. Abstraction 4 5 5
3. Early requirements 1 1 5
4. Goal discovery 1 5 5
5. Agent concepts 2 5 5
6 . Consistency checking 2 3 4a

7. Analysis by exception 2 3 3
8 . Ontology support 1 2 2
9. Transferability 4 4 4
10. Intuitive 3 6 5

“If however, Formal Tropos is used (which is optional), the rating would be 7.

Table 2.2: Evaluation of agent design methodologies against desired charac
teristics.

Chapter 3

M odelling Concepts

3.1 Introduction

This chapter explores and reviews the use of an established method of con

ceptual modelling to assist the representation of agent and ontological con

cepts. Conceptual Graphs (CGs) and Peirce (pronounced ‘Purse’) logic are

introduced as a means of building agent-based conceptual models that can

be verified, whilst also assisting the creation of ontologies. In particular, CG

type hierarchies are used to illustrate how CGs can implicitly provide the con

cepts and relationships required for an ontology, together with the capability

to produce inference rules.

3.2 Capturing Domain Knowledge

As discussed in Chapter 2 a key challenge for an improved agent design frame

work is the ability to capture domain knowledge in a way that faithfully repre

sents the needs of the intended system, whilst permitting the expression of that

knowledge in the widest sense possible. Since ontologies can assist the design

of new applications, be it through the process of capturing domain knowledge

61

Chapter 3 Modelling Concepts 62

or the sharing and re-use of existing domain ontologies, it seems prudent to

consider the development of such a framework.

Furthermore, ‘early’ requirements capture is important as it contains the

high level goals (hard and soft) of the stakeholders. Conventional approaches

to modelling, with the subsequent modelling iterations, can dilute these goals

(desires) to the point where they lose importance. The capture and expression

of high-level concepts is therefore fundamental to the requirement for a more

faithful representation.

Whilst it is feasible that much of this work can be performed manually by

the agent system designer, the potential complexity of these systems is such

that it is inevitable that inconsistencies will present themselves. Therefore it is

necessary to consider processes that support either the automation of tasks, or

the individual steps are able to implicitly build a rigorous model. This would

assist the agent system designer considerably, and reduce the reliance upon

domain experts.

It follows that there is a need for a modelling environment which:

1. Utilises a notation that is rich, expressive and can tolerate both quanti

tative and qualitative high-level domain concepts;

2. Provides a mechanism whereby models can be queried, reasoned against

and verified;

3. Supports the implicit capture and explicit expression of ontological data;

4. Imposes a rigour upon the modelling process.

The following section reviews the background to this research by considering

an approach to conceptual modelling that attempts to address the criteria

above.

Chapter 3 Modelling Concepts 63

3.3 Conceptual Graphs

Conceptual Graphs (CGs) are a means of representing knowledge using con

cepts and the relationships between those concepts. They are based upon the

work of John Sowa (1984), who was influenced by the work of Charles Sanders

Peirce, and semantic nets (Sowa, 2000). John Sowa’s prime motivation was

to be able to represent the semantics of natural language, such that meaning

could be described in a ‘ logically precise, humanly readable and computation

ally tractable'> way (Sowa, 2000). The formal underpinnings provided by Peirce

logic has enabled CGs to be used as an intermediary between natural language

and computer oriented formalisms, and as a consequence they have been im

plemented in a variety of projects for information retrieval, database design

and expert systems (Sowa, 2000).

The remainder of this chapter introduces the use of CGs and describes the

features of this approach that are particularly appropriate for the capture and

organisation of knowledge for an agent.

3.3.1 N otation

A CG contains concept and relation nodes that are linked together by arcs.

Each arc has a direction that describes how the linked nodes (concepts and

relations) should be interpreted. For example:

[Bicycle]->(Part)->[Wheel].

This graph, expressed in linear form (LF) makes the statement that, ‘Part of

a Bicycle is a WheeV. The following convention should be used when reading

a graph:

[Concept_l]->(Relation)->[Concept_2] .

Chapter 3 Modelling Concepts 64

This equates to ‘the Relation of Concept-1 is Concept-2\ The full stop

indicates the end of the graph.

So far we have seen CGs represented in linear form (LF). An alternative

representation of a CG is the display form (D F)1. The graph above would now

look like Figure 3.1. From earlier, Figure 3.2 illustrates the DF of ‘Part of a

Concept_1 Relation Concept_2

Figure 3.1: ‘A relation of Concept_l is Concept_2’ graph in display form.

Bicycle is a Wheel'. Similarly, Figure 3.3 describes ‘A bicycle is on the ground’.

Note tha t the reading convention does not always give the ‘best’ grammar; the

reading of graphs soon becomes intuitive and it should only be necessary to

resort back to graph decomposition when a particular CG is complex. Often,

rather than the graph being complex, it is the concept or relation names tha t

are unsuitable. These should be revised accordingly until the graph becomes

more readable.

Bicycle Part Wheel

Figure 3.2: A part of a bicycle is a wheel.

Bicycle * On Ground

Figure 3.3: A bicycle is on the ground.

1 All DF graphs were drawn using the CharGer tool (Delugach, 2006a).

Chapter 3 Modelling Concepts 65

Standard Language

Since conceptual graphs require interpretation from the inside out (starting

with the relation), and then often from right to left, a significant barrier to

wards becoming proficient at reading graphs is presented. The period between

decomposing graphs and reading graphs ‘intuitively’ is often too great for non

technical people, which could of course include domain experts. In such cases,

a standard language exists to assist graph comprehension. Using standard

language, conceptual graphs can be read either in the direction of the arrows,

or against them. Tables 3.1 and 3.2 below, redrawn from the online course

materials developed by Aalborg University (2006), illustrate the use of stan

dard language when reading conceptual graphs. Applying these rules to the

following graph:

[Wheel]<-(Part)<-[Bicycle].

Reading from left to right: “Wheel is a Part of Bicycle” . From right to

left: “Bicycle has a Part which is Wheel” .

Exceptions

Unfortunately these rules are not all-encompassing and the exceptions are

those graphs that are based upon prepositions. Figure 3.3 illustrates one such

prepositional relation, ‘on’. Expressed in LF the graph is:

[Concept]<-(Relation)
“is a”

[Concept]->(Relation)
“has a”

(Relation)<-[Concept]
“of”

(Relation)->[Concept]
“which is”

Example:
[Fat]<-(Attr)<-[Cat] .

Fat “is an” attribute “of” Cat

Example:
[Cat]->(Attr)->[Fat].

Cat “has an” attribute “which is” Fat

Table 3.1: Reading conceptual graphs from left to right.

Chapter 3 Modelling Concepts 66

[Concept]< -(R elation)
“which is”

[Concept]-> (R elation)
“of”

(R e la tio n)< - [Concept]
“has a”

(R e la tio n)- > [Concept]
“is a”

Example:
[F a t]< -(A ttr)< -[C a t] .

Cat “has an” attribute “which is” Fat

Example:
[C a t] -> (A ttr) -> [F a t] .

Fat “is an” attribute “of” Cat

Table 3.2: Reading conceptual graphs from right to left.

[B icycle]-> (On)- > [Ground] .

Using the convention from earlier, the graph is read as “the On of Bicycle is

Ground” . This is clearly nonsense and does not assist comprehension. Apply

ing the rules of standard language, the graph reads:

“Bicycle is an On of Ground” or “ Ground has an On which is Bicycle”.

Similarly the standard language offers no assistance, and the preposition

should be stated as the graph is read in the direction of the arcs. Therefore

[Bicycle] -> (On) -> [Ground] ., becomes‘A Bicycle is On the Ground’.

W ell-formed Graphs

Whilst it is useful to show multiple concepts and relations within a graph, the

existence of a singular concept by itself, without any connecting arcs, is an

acceptable, or ‘well-formed’ graph. For instance:

[B icy c le] .

This is a well-formed graph, as it means ‘There is a bicycle’. This type of CG

is referred to as a singleton. Conversely a relation must have at least one arc

attached to it for the CG to be deemed well-formed. Thus:

(Part)

Chapter 3 Modelling Concepts 67

is not a well-formed graph, whereas, [Wheel] -> (Part) -> [Spoke], demon

strates a well-formed graph as the relation has at least one arc associated with

it.

3.3.2 Concepts

All concepts comprise a type and a referent, and are represented in the general

form:

[Type: Referent].

An example would be:

[Bicycle: Brompton].

which means ‘there exists a bicycle whose name is Brompton\ Sometimes

there may not be an explicit referent; in such a case the graph looks like this:

[Cyclist].

meaning ‘there exists a cyclist\ Whilst referents can be blank, types cannot.

C oncept T ypes

Types allow the concepts to be categorised into groups of entities with similar

characteristics. The ability to define and specify concept types is a fundamen

tal part of building an ontology. However whilst it is useful to be able to spec

ify different concept types, the resulting ontology is incomplete without some

definition of the relationships that exist between the concepts. Inter-concept

relationships are described by using subtypes and supertypes. An example of

an ontology is as follows:

Chapter 3 Modelling Concepts 68

Person, Vehicle < Entity

Cyclist < Person

Commuter, Professional < Cyclist

Bicycle, Car < Vehicle

Racer, Tourer, Folder < Bicycle

Referring to this ontology, Person is a subtype of Entity. Vehicle is a

supertype of Car. Such relationships are written Subtype < Supertype. Figure

3.4 illustrates this graphically. The lattice shows that every concept type is a

subtype of Entity, and Absurdity is a subtype of every other concept. Since

Entity is the supertype of every concept in the lattice (otherwise referred to

as the universal type), everything can be referred to as being of type Entity.

Similarly, no concept can be a subtype of Absurdity. Since subtypes inherit

the characteristics of supertypes, an instance of the Absurdity type cannot be

realised hence the name.

Entity

VehiclePerson

Cyclist CarBicycle

Commuter Professional Racer I I Tourer I I Folder

Absurdity

Figure 3.4: Lattice diagram of an example ontology.

Chapter 3 Modelling Concepts 69

The importance of the Entity and Absurdity types will be explained in

Section 3.4.3.

Concept Referents

Referring to the earlier example of [Bicycle: Brompton], the concept type

is Bicycle and the referent is Brompton. In other words, Brompton is an

instance of the Bicycle concept type. Some other examples of referents that

conform to the ontology described above are:

[Person: Daniel]

[Cyclist: Lance]

[Bicycle: Brompton]

[Car: Land-Rover]

[Folder: Brompton]

3.3.3 Relationships

A CG is a bipartite graph, which means that the nodes can be partitioned

into two distinct sets. In the case of CGs the concept nodes are joined to

other concepts via relationships. Therefore an arc must connect a concept

to a relation. Arcs connecting concepts together, and likewise relations, are

invalid. Referring back to an earlier graph: [Bicycle]->(Part)-> [Wheel] .,

the concepts Bicycle and Wheel are related by Part. Relations can also be

classified by type, as well as valence and signature.

R elation Type

Relations are similar to concepts in that they must have a type. However unlike

concepts, relation nodes do not have referents. A relation type is determined

Chapter 3 Modelling Concepts 70

by the name given to the relation. Examples of relation types so far are:

(Part)

(On)

Each of these types has been used to relate other, and the
/

s '

name (and therefore type) has been chosen to suit the situation that the CG

is describing. Other relation types include:

• (Obj) - Object

• (Srce) - Source

• (Rcpt) - Receipt j

• (Chrc) - Characteristic

• (Agnt) - Agent

Sowa illustrates examples of concepts and relations in his conceptual catalogue

(Sowa, 1984) to assist in the generation of graphs, but the list is not meant to

be definitive and other words can be introduced as required. Long before the

advent of agent oriented computing, Sowa introduced the concept Agnt (agent)

as a means of relating act concepts to animate concepts. For example:

[Cycle]->(Agnt)->[Person: Richard]->(Loc)->[City: Sheffield].

This can be read as: ‘ There is a person called Richard who is the agent of

cycle. This same person is located in Sheffield\ A less unwieldy representation

might read thus: ‘Richard is cycling in Sheffield’. Whilst there are parallels

with agent computing in terms of how Sowa uses ‘agent’ as a relation, it is

important to recognise the distinction as an agent relation might not include all

Chapter 3 Modelling Concepts 71

of the characteristics identified in Chapter 2 as befitting an intelligent agent. It

follows that the presence of an agent relation in a CG also does not necessarily

identify an intelligent agent, nor indeed a multi-agent system.

Valence

Valence refers to the number of arcs that belong to a relation. The number of

arcs that belong to Agnt is always two, as the relation always connects an act

concept to an animate concept.

[Cycle]->(Agnt)-> [Person: Richard]-

->(Loc)->[City: Sheffield].

Similarly Loc (location) connects a concept of any type to a place concept.

If n refers to the valence of a relation, then it is described as an n-adic rela

tionship. The last graph demonstrates examples of dyadic or 2-adic relations

with Agnt and Loc. The application of tense to a graph illustrates a monadic

or 1-adic relation:

(Past)->[Situation: [Cycle]->(Agnt)-

->[Person: Richard]->(Loc)->[City: Milan]].

‘/n the past, there was a situation where Richard cycled in Milan\ Betw (Be

tween) is an example of a triadic (3-adic) relation.

[Person: Daniel]<-(Betw)-

<-1-[Person: Mum]

< -2 -[Person: Dad].

This graph reads: ‘Daniel is between Mum and Dad\ The LF graph also illus

trates how the order of the concepts is mandated by the numerical designation.

Chapter 3 Modelling Concepts 72

Person: Mum

Person: Daniel betw

Person: Dad

Figure 3.5: Example of triadic relation.

Figure 3.5 illustrates the DF equivalent. The third arc is left without a num

ber, though by deduction it is the only arc that points away from the relation,

hence it need not be considered in the same way as the other concepts.

Signature

Sowa (1984) explains that each n-adic relation (r) has a signature of n concept

types associated with it. For the triadic relation Betw, three concepts are

associated. For the diadic relation Agnt, the signature is two concepts, Act

and Animate. This is written as: <Act, Animate>. The signature enforces

the concept types that can be related, so for Agnt, the following is true:

[Cycle]->(Agnt)->[Person].

The two concepts that make up the signature are Cycle and Person. Cycle

is a subtype of Act and Person is a subtype of Animate. Relation signatures

also provide one other piece of information. The direction of the arcs between

concepts and relations affects how the graph is read. Each signature indicates

the order in which the arcs should be interpreted. For the previous example,

the signature of Agnt is <Act, Animate>. Therefore the arc points away from

the Act concept and towards the Animate concept.

Chapter 3 Modelling Concepts 73

[Act]-> (Agnt)-> [Animate].

For monadic relations, of which the signature is one, the arc points away from

the relation.

3.4 Ontology

Chapter 2 introduced ontology as a means of describing domain knowledge

in order that collaborating agents can share understanding. In essence an

ontology is a categorisation of the entities that exist in a domain, and it is

conceivable that an agent would require this information in order to process

the inputs from its sensors as well as considering incoming messages from other

agents. This section explores ontologies and examines how conceptual graphs

can be utilised to build new ontologies.

3.4.1 Types

Conceptual graphs are composed of two types:

1. Concepts

2. Relations

With reference to Figure 3.4, concept types are arranged within a lattice struc

ture, and it is possible to deduce information about a particular concept type

from the position within the lattice. Each concept type refers to a collection

of entities that have similar characteristics, whether they are concrete or ab

stract. Whilst a type may describe a concrete entity, the type itself is still an

abstract label, as it refers not to an individual entity but to the collection of

entities. Consequently, Daniel is a specific instance of the type Person.

Chapter 3 Modelling Concepts 74

3.4.2 Defining Types

In order to compile a robust ontology, it is necessary to be able to accurately

define a type. There are four basic approaches:

1. By extension. Types are defined by extension when a comprehensive

list of each instantiation is made. Therefore the type TheHillFamily

contains <Richard, Hazel, Daniel> as these are the names of each

individual in the Hill Family.

2. By intension. Rather than listing each individual belonging to this type

(which might result in a very long list), the properties of each member

are listed. This defines whether or not an individual can conform to

the overall properties of the type. For example, if the intension of the

type ‘bird’ consists of the characteristics ‘lays eggs’, ‘has wings’, ‘flies’,

and ‘builds nests above ground’, every member of the category must

demonstrate all of the defining properties.

3. By axiom, which is a statement that need not be proven or, has been

accepted that a proof is not required.

4. By referring to other types. When concept types are created, it is pos

sible to create new types by defining additional criteria. For instance,

FoldingB icycle is ‘a B icycle that has a hinge in the main frame to

permit folding to a smaller overall size for storage’. When new con

cept types are created with conceptual graphs (in particular conceptual

type hierarchies discussed in Section 3.4.3), each new type is specified by

referring to previously defined types.

Chapter 3 Modelling Concepts 75

Since the specification of types is central to conceptual graphs, it follows that

type definition can only help the creation of ontologies.

3.4.3 Type Hierarchies

As shown earlier (Figure 3.4), related types can be presented as a type hierarchy

or lattice. The subtype relation is used to relate concepts by a partial order.

A < B means that A is a subtype of B. Referring back to Figure 3.4, Person <

Entity, Cyclist < Person, Commuter < Cyclist, and so on.

When a subtype relation is declared such as A < B, then either A is B or A

is a specialisation of B. It follows that Commuter < Cyclist, since Folder is a

specialisation of Bicycle. When a type is specialised, the original properties

of the supertype are inherited by the subtype, with the addition of some extra

constraints.

A Folder therefore, has all the properties of Bicycle with some extra

characteristics such as:

• It has a hinge in the main frame to permit folding;

• It has a hub gear;

• It has a folding left-hand pedal.

A proper subtype relation signifies that the subtype is only a specialisation of

the supertype and they are not the same. This is represented as A < B.

Type hierarchies can also be used to describe transitivity. For example:

If Folder < Bicycle and, Bicycle < Vehicle, then

Folder < Vehicle.

Chapter 3 Modelling Concepts 76

Entity and Absurdity

Entity is the universal supertype (often referred to as ‘T ’) of every type in a

hierarchy. Conversely, Absurdity (J_) is a subtype of everything in the hierar

chy. Since Absurdity cannot be equivalent to Entity it is a proper subtype as

follows; Absurdity < Entity. Similarly, Entity > Absurdity holds also, as

Entity is a proper supertype of Absurdity. The universal supertype enables

any entity to be represented, which can assist the generation of graphs before

all of the types have been specified.

3.4.4 Lambda Expressions

Lambda expressions allow graphs to illustrate referents to other concepts. The

following expression specifies a person, with an associated A referent:

[Person: A]< -(Agnt)<-[Cycling].

“A person, X, is cycling” More commonly the A is replaced with the ?x desig

nation. Thus the previous graph would read as follows:

[Person: ?x]<-(Agnt)<-[Cycling].

“A person, ?x, is cycling” Another example is:

type FoldingBicycle(*x) is [Bicycle: ?x]->(Chrc)-

->[Frame: Folding].

If we consider another graph:

[FoldingBicycle: Brompton]->(Attr)->[Colour: Black].

Both graphs can now be combined and expanded to give the following:

[[Bicycle: ?x]->(Chrc)->[Frame: Folding]: Brompton]->(Attr)

->[Colour: Black].

Chapter 3 Modelling Concepts 77

Therefore the new type FoldingBicycle can be added to the type hierarchy

since FoldingBicycle is a proper subtype of Bicycle due to the specialisation

of Bicycle:

Bicycle > FoldingBicycle

3.4.5 Coreference Links

Figure 3.6 illustrates how graphs can be related to other graphs via coreference

links (Sowa, 2000). The Person: Richard has two beliefs, bounded by a

Proposition context. Thus Cycling is Fun, yet Decorating is Tedious. The

dashed line indicates the coreference link (or line of identity), meaning that

the link refers to the same instance of that concept. Therefore the Person who

believes that Cycling is Fun and Decorating is Tedious is the same person

who is Decorating.

3.4.6 Projection

As a graph increases in complexity with the addition of more concepts, types

and relations, it becomes more specialised. Similarly the substitution of specific

referents for generic referents, or subtypes for types, increases the ‘uniqueness’

of a graph. Since a general graph can be specialised in many different ways,

the general graph must exist within all of the specialised variants. A general

graph is said to project into a specialised graph. If the projection can exist

beyond one graph, then this is referred to as a common generalisation.

Chapter 3 Modelling Concepts 78

Person: Richard Expr Belief Thme

Proposition

► ChrcCycling

Decorating T e d io u s

Person Agnt Decorating

Figure 3.6: DF Graph illustrating coreferent links between graphs.

Chapter 3 Modelling Concepts 79

C om bining G raphs

Projection is im portant when graphs are to be combined to produce larger,

more specialised graphs. As graphs are joined, new projections become possi

ble. The largest projection, whereby the maximum commonality between both

graphs is achieved, is referred to as a maximal join. Once the graphs have been

joined, the resulting projection is referred to as a common specialisation. This

is now illustrated with an example.

Figure 3.7 shows a graph tha t reads:

“A Cyclist located in Sheffield is a Brompton enthusiast

Figure 3.8 reads:

“Richard, a cyclist, is enthusiastic about his black bicycle

We shall now consider how these two graphs can be joined. Using the

following type hierarchy, we can attem pt to identify some projections.

C y c lis t < Person

B icycle < Vehicle

Person, subtyped as C yclist , exists in both graphs, therefore there is the

possibility of a projection. However, Figure 3.9 illustrates tha t two other

graphs exist tha t are potentially larger projections. Figure 3.10 shows the

|^— Expr —► Obj —■►

I
Loc City: Sheffield

Figure 3.7: First graph to be joined.

common generalisation graph tha t is:

[C yclis t] < - (Expr) [Enthusiasm] (Qbj) - > [Bicycle]

Chapter 3 Modelling Concepts

— Expr «Cyclist: Richard

80

— ► Obj — ►

\4— Chrc

BicycleEnthusiasm

Colour: Black

Figure 3.8: Second graph to be joined.

\4— fcxpr

\4— Expr Obj

Cyclist

Person

Person VehicleEnthusiasm

Enthusiasm

Figure 3.9: Possible projections.

The common specialisation in Figure 3.11 shows the concepts and relations

where the two original graphs join. We can now see tha t C y c lis t has been spe

cialised to C y c lis t : Richard and B icycle to B icycle: Brompton. This

graph can be extended further by including the specialised concepts City:

S h e f f ie ld and Colour: Black, together with the associated relationships

Loc and Chrc - the maximally joined graph in Figure 3.12, is also a com

mon specialisation. It is important to realise tha t graph joining assumes tha t

the contexts are identical, and therefore by implication tha t the concepts are

known to be coreferent. C y c lis t might be any cyclist other than Richard,

and B icycle could feasibly be a Pace RC3 or any other unspecified type. 2

Chapter 3 Modelling Concepts 81

Expr Obj

Figure 3.10: Common generalisation.

Expr A— — ► ObjEnthusiasmCyclist: Richard

Cyclist BicycleEnthusiasm

Bicycle: Brom pton

Figure 3.11: Common specialisation.

3.4.7 Predicate Calculus

Conceptual graphs map readily to predicate calculus. Using the ‘Bicycle on

the ground' example from Figure 3.3, in LF the graph reads:

[B ic y c le] - > (On)- > [Ground].

This is represented in Conceptual Graph Interchange Format (CGIF) as:

[B icycle: *x] [Ground: *y] (0n?x?y)

To translate to predicate calculus, the following mappings are used:

• Relations become predicates;

• Arcs become arguments;

• Concepts become typed variables.

Thus the following is derived:

(3x:Ground)(Bicycle) A on(B icyc le , x)

3.4.8 Inferencing

Sowa developed Conceptual Graphs as an existential notation, perm itting di

rect mappings between graphs and first order predicate logic (Sowa, 2000),

the basis of which is the logic of Charles Sanders Peirce. This capability en

ables CGs to be inferenced against, allowing the representation of concepts

Chapter 3 Modelling Concepts 82

Expr ^ — j — ► Obj —►

Loc — ► N— Chrc

Enthusiasm

Colour: Black

Cyclist: Richard

City: Sheffield

Bicycle: Brompton

Figure 3.12: An extended common specialisation resulting in a maximal join.

and reasoning between those concepts. This is particularly attractive for the

representation of complex systems since the graphical view (display form, DF)

captures ‘visual semantics’, whilst also supporting logic and inferencing.

To illustrate, consider the following simple example:

i f Graph A then Graph B

This can be interpreted as:

‘I f Graph A projects into any graphs in the knowledge base, then Graph B

can be asserted'.

Logically this could be w ritten as:

not (Graph A and not (Graph B))

Figure 3.13 illustrates this using DF. It can be seen tha t the ‘Knowledge

Base Graphs’ dominate both Graph A and Graph B as they are contained

within a negative context (black border). Indeed, Graph B is also dominated

by Graph A, as it is in yet another negative context. The example above il

lustrates tha t parentheses replace the black borders in DF. If a graph projects

Knowledge Base Graphs

Figure 3.13: ‘If Graph A then Graph B'

into a dominating graph, then it can be deiterated. Therefore, if Graph A is

Chapter 3 Modelling Concepts 83

projected into the Knowledge Base Graphs the following would occur:

((Graph B))

Since each pair of the parentheses represents a negative context, the state

ment reads logically as:

not (not Graph B), therefore Graph B is asserted as true.

The process of removing oddly-enclosed negative contexts is known as dou

ble negation or denegation.

Repeating these operations graphically, we derive Figures 3.14 and 3.15.

Figure 3.14: Deiterated graph

Graph B

Figure 3.15: Denegation

To further illustrate the power of this approach for designing more complex

models, let us consider another example:

‘A resident of Sheffield who is a taxpayer can receive care from the United

Kingdom Welfare system if they are ill. ’

We also have a particular case, ‘Betty \ who will be used to test our model.

'Betty is a taxpayer, resident in Sheffield who is ill. Can Betty receive care

from the United Kingdom Welfare system ?’

Thus these two statem ents are represented by the initial graphs in Figure

3.16.

Chapter 3 Modelling Concepts 84

P e r s o n : B e t t y

C h r c

x

C h r c

T

L o c

J _____

7 \
C h r c C h r c

L o c

T a x p a y e rI l l n e s s

U K C i t y

U n i t e d _ K i n g d o m _ W e l f a r e

P r o v i d e r

Figure 3.16: Original graphs

The first step is to specialise the projecting graph with those of the query

graph. As shown in Figure 3.17, Person, Taxpayer and UK.City are all spe

cialised in the projecting graph to become:

Person: Betty

Taxpayer: NX12_34_56

UK.City: S h ef f ie ld

P e r s o n : B e t t y

7
C h r cx C h r c

. J _ _

L o c

___ J ____

C h r c C h r c P r o v i d e r

L o c

C a r eI l l n e s s

P e r s o n : B e t t y

U K _ C i t y : S h e f f i e l d

T a x p a y e r : N X 1 2 _ 3 4 _ 5 6

U n i t e d _ K i n g d o m _ W e l f a r e

Figure 3.17: Specialised graphs

Chapter 3 Modelling Concepts 85

The projecting graph, once specialised with the query graph, can now be

deiterated, giving Figure 3.18.

C h r c C h r c

L o c

C a r eI l l n e s s

P e r s o n : B e t t y

U K _ C i t y : S h e f f i e l d

T a x p a y e r : N X 1 2 _ 3 4 _ 5 6

U n i t e d _ K i n g d o m _ W e l f a r e

P r o v i d e r

Figure 3.18: Deiterated graphs

Finally the two negative contexts can be removed by denegation to leave

Figure 3.19. Thus Betty does receive care from the United Kingdom Welfare

system, since she has the characteristics of ‘illness’, is a taxpayer and is resident

in Sheffield.

Chrc Chrc Provider

Loc

CareIllness

Person: Betty

UK_City: Sheffield

Taxpayer: NX12_34_56

United_Kingdom_Welfare

Figure 3.19: Denegation

Chapter 3 Modelling Concepts 86

The graphical placement of concepts into contexts allows dominating con

cepts to be identified and the resulting number of contexts to be reduced.

This is particularly powerful when combined with agent models, as the initial

graphs enable high-level concepts to be captured, yet the inferencing capability

permits the models to be queried in a repeatable way.

3.5 Discussion

This chapter has introduced Conceptual Graphs as a means of representing

agent and ontological concepts. The underlying formality of CGs means that

not only can knowledge be captured and represented, but also the models can

be reasoned against. Reasoning is an important capability for agency, which

any agent design approach must be able to accommodate.

Section 3.2 presented some criteria by which a modelling environment might

be evaluated. Firstly, CGs provide a notation that permits the richest concepts

to be represented, and it is tolerant of qualitative, as well as quantitative

concepts.

Secondly, the inferencing capabilities permit graphs to be queried, enabling

model checking at a conceptual level. This is seen as a key feature that would

serve to address the difficulties and ambiguity faced when gathering ‘early’

system requirements.

Ontological concepts are fundamental to modelling with CGs, and are a

crucial part of building agents that can communicate and share knowledge

across the myriad repositories that exist in an open environment. The use

of type hierarchies enables ontologies to be created as graphs are assembled.

Furthermore, the iteration of graphs also enables lattices to be updated in

Chapter 3 Modelling Concepts 87

accordance with any new modelling insight.

There is a dichotomy however, between the richness of expression possible

with CGs and the desired modelling rigour; whilst CGs can be mapped to

First Order Logic, concepts and relationships can be added, removed and sub

typed at will. It is conceivable that the breadth of expression possible, whilst

attractive when gathering high-level organisational concepts, may lead to a

lack of coherence and consistency when attempting to refine the models and

build agent design specifications. Whilst CGs can contribute much towards

the development of agent system models, there is a need for some overall rigour

or indeed a design metaphor, that can be used to guide the design process.

3.6 Conclusions

This chapter has considered the needs of a modelling environment and has

proposed Conceptual Graphs as a modelling notation. CGs provide a rich no

tation that enables high-level agent and organisational concepts to be captured

and represented, whilst providing mechanisms for model checking and transfer

to other representations such as FOL. For the agent design framework to be

complete however, there still remains the requirement for an overall design

metaphor that can permit the richness of early requirements capture, whilst

also providing the discipline of process to iterate design models. Chapter 4

will explore how CG models can be rigorously developed to take account of

not only the knowledge requirements of an agent-based system, but also the

operational aspects such as business protocols, which govern how individual

agents will behave in their intended environment.

Chapter 4

A Unifying Framework

4.1 Introduction

One of the criteria required in Chapter 2 is that of being able to check models

prior to implementation, and if possible, to introduce model checking at the

earliest opportunity. Chapter 3 introduced Conceptual Graphs as a means of

offering the necessary formality for model-checking, whilst including a notation

that enables a rich expression of high-level concepts. As such, there is now a

suitable foundation for the modelling of domain knowledge, upon which the

protocols by which an agent will act can be built. It is the business and

organisational protocols that provide the relevant ‘business rules’ for a system

and so it is crucial that any design framework must utilise a design metaphor

to guide the agent system designer. This chapter looks at some theoretical

underpinnings upon which an agent design framework might be based. Event

accounting is explored and offered, through the Transaction Model, as a means

by which conceptual organisational models can be queried and tested during

the early requirements gathering process. A transaction ontology is produced

from the model and proposed as part of the process for an improved agent

design framework. Finally, use of the framework is demonstrated by way of an

Chapter 4 A Unifying Framework 89

exemplar case study in the community healthcare domain.

4.2 The Need for a Metaphor

Whilst Conceptual Graphs offer the combination of an expressive notation

and formal rigour, this is not enough in itself to provide a useful agent design

framework. Conceptual Graphs, and other notations for that matter, can be

used to develop abstract agent models with varying degrees of success. The

ability to capture early requirements and incorporate model checking, whilst

building a rudimentary ontology, are all facets that can improve the design

process if a suitable framework exists to guide the designer through the maze.

W hat is lacking so far, is an over-arching framework that enables the pow

erful capabilities of Conceptual Graphs to be used in a business setting. The

following sections explore an approach to unify the various capabilities dis

cussed so far, within a framework that serves to exploit the potential of agents

and also produce model artefacts that are faithful representations of the even

tual system.

4.2.1 Complex Systems

Prior work (Hill et al., 2004) demonstrated that consideration of the qualita

tive aspects of complex agent managed community care systems gave insight

into concepts which had not been clear at the outset, thereby demonstrating a

greater need to more accurately map the problem domain. Lucid representa

tions of qualitative and quantitative transactions have been demonstrated by

Sowa (1984) using Conceptual Graphs. This was not only to accurately record

complex interactions, but also to provide a means of eliciting domain facets

Chapter 4 A Unifying Framework 90

that are difficult to determine with other more recognised notations.

An aspect of the Conceptual Graphs approach that is particularly relevant

to agent systems is that the production of Conceptual Graphs, and the result

ing predicate logic, can be easily transferred across domains using Conceptual

Graph Interchange Format (CGIF) and Knowledge Interchange Format (KIF)

(Harper and Delugach, 2003). This could assist the rapid generation of domain

ontologies, whilst also considering qualitative issues from the initial modelling

activities. This capture of the qualitative transactions allows much broader

issues to be modelled, and through an iterative process, representations can

‘drill-down’ to reveal new aspects. Complex agent systems need to manage an

enormous range of services, and this inevitably will include the resolution of

unsatisfactory service, as well as the provision of satisfactory service.

The use of Conceptual Graphs for such analysis only serves to simplify the

process if either the system designers have access to a domain expert, or they

have the domain expertise themselves. It is therefore necessary to establish

the following:

1. A suitable guiding metaphor for the representation of business opera

tions;

2. An implicit means of providing model checking of domain processes;

3. A series of discrete activities for the production of design artefacts.

Firstly a guiding metaphor shall be explored.

4.3 Event Accounting

McCarthy (1979, 1982) and Geerts and McCarthy (1991) have proposed a

Chapter 4 A Unifying Framework 91

framework for understanding accounting, based upon traditional bookkeeping

that avoids the restrictions of double-entry systems. It attempts to address the

difficulties experienced when accounting for qualitative entities in enterprises,

and is based upon the notion of economic scarcity.

Double-entry bookkeeping allows all economic events to be documented in

a ledger. The ledger is divided into two parts, debits and credits. As each

business transaction is completed, the value of each transaction is entered into

the ledger, thus allowing an economic view of the enterprise to be created.

The traditional bookkeeping approach however, assumes that all of the

economic events have a prescriptive monetary value and therefore cannot take

account of qualitative amounts.

For instance, an individual may wish to become a Landlord and purchase a

property to rent out to tenants. Using the double-entry bookkeeping model, a

debit of £150,000 would be recorded in the Cash Account, and a corresponding

credit of £150,000 would be recorded in the Fixed Assets Account. Addition

ally, the potential Landlord recognises that there might also be some other,

more qualitative ‘costs’ associated with this transaction. These might manifest

themselves as:

• Reduction in time spent with family;

• Reduction in time available to complete PhD studies;

• Reduction in time available for research funding applications.

The benefits of not engaging with the transaction are all visible; a stable and

rewarding upbringing for a young family; recognition for a sustained research

effort resulting in a contribution to a body of knowledge; increased income gen

eration for the University and enhanced reputation amongst peers. Such costs

Chapter 4 A Unifying Framework 92

and benefits are difficult to quantify and as a result do not rest easily within

the double-entry model as it stands. This is an example of the qualitative,

rather than purely quantitative, exchange of resources (Piaget, 1973), indicat

ing that there are many more aspects to explore and scrutinise in complex

multi-agency domains.

The Resource-Event-Agent (REA) model (McCarthy, 1979, 1982) is an

attempt to abstract away from the prescriptive nature of double-entry book

keeping, yet still permit the recording of exchanges of economic resources, or

transactions. To quote Ijiri (1967):

“In a sense, the economic activities of an entity are a sequence

of exchanges of resources - the process of giving up some resources

to obtain others. Therefore, we have to not only keep track of

increases and decreases in the resources that are under the control

of the entity but also identify and record which resources were

exchanged for which others.”

Event accounting with REA enables models to be constructed that reflect

business activities which may include monetary transactions. These models

are built using the following core concepts:

• Resource - any resource that is the subject of an exchange or transaction;

• Event - the activities that are required for a transaction to take place;

• Agent - a person, system or organisation that participates in the trans

action.

As such, REA captures the essence of accounting by providing abstract con

structs to model organisational transactions, whilst including the bookkeeping

Chapter 4 A Unifying Framework 93

notion of duality. The duality relationship permits two economic events to be

represented as a mirror-image exchange of resources, thereby forming the basis

of a transaction.

4.3.1 M odelling an Enterprise

REA supports the modelling of enterprises by facilitating the representation

of non-accounting activities. Each economic process embodies two, opposing,

economic events (associated by a duality relationship) that exchange scarce

resources.

Indeed many organisational scenarios are rich with qualitative transactions.

Each transaction concludes when the relevant parties have gained from the

participation, and is represented as a balance in that very debit is countered

by a credit. The inclusion of a balance within the transaction ensures an

implicit validation that the transaction has occurred successfully. The agent

transactions evident in community healthcare systems (Hill et al., 2004) are one

such example that a desire for robust multi-agent systems must be underpinned

by a solid transaction foundation. Figure 4.1 illustrates the REA model of a

transaction using Conceptual Graphs (Polovina, 1993).

In a MAS trading environment, the goal-directed behaviour of an agent

dictates that success occurs when both parties have gained from their par

ticipation in a transaction. In essence, the transaction describes a condition

where both parties have exchanged resources, resulting in a balance.

Figure 4.1 illustrates that all transactions comprise two Economic Events,

denoted by *a and *b. The transaction is complete when both Economic

Events balance, which indicates that *a always opposes *b, representing debits

and credits. Additionally there are two related Economic Resources, *c and

Chapter 4 A Unifying Framework 94

*d. each having independent source and d estin a t io n agents. The Inside

Agent and Outside Agent refer to the parties involved with the transaction.

The Inside and Outside prefix denotes the relative perspective of the trans

action for each party.

Economic_Event: {*a} Economic_Event: {*b}

vent_subjec Source lnside_Agent: {*}

Economic_Resource: {*c}

Jestin a tio ^ ^ y e r r t s u b je c ^

Economic_Resource: {*d}

estination Outside Agent: {*} ^Source

Figure 4.1: The Transaction Model (TM) Graph.

The TM graph provides guidance for modelling organisational processes in

an abstract way which satisfies in part the first criterion in Section 4.2.1. It also

introduces the concept of balance, which supplements the existing capability of

the Conceptual Graph notation for model-checking, by ensuring tha t the TM

is completely populated (criteria 2). This provides two significant benefits for

the agent system designer:

1. A transaction can only be deemed complete when all of the corresponding

nodes have been populated;

2. Each concept reflects a type in the type hierarchy, which in tu rn forms

the basis of an ontology. In particular, the choice of term to represent

a concept can affect how a concept is understood or processed in the

future. The TM forces discussion about the most appropriate domain

term (and its name in the type hierarchy, and subsequently the ontology)

at a very early stage.

Chapter 4 A Unifying Framework 95

Since the use of Conceptual Graphs allows qualitative concepts to be repre

sented, the TM graph also permits qualitative transactions to be represented.

As such, concepts such as ‘quality of service received’ can be included within

the TM. Of course for an agent to be able to compute a result for a quali

tative transaction, it will require a more detailed representation of how the

qualitative concept can be represented in a quantitative way. In such cases

the TM serves to focus attention upon qualitative concepts, in order that a

suitable representation is derived. The third criteria (Section 4.2.1) will now

be addressed with the following proposed framework.

4.4 Transaction Agent M odelling (TrAM)

To briefly summarise the discussions so far, a framework is required that can:

• Address the gathering of early requirements and provide a means of

representing those findings;

• Provide consistency checks for design artefacts;

• Implicitly build an ontology of domain terms;

• Provide a representation medium that permits the transfer of models

across domains, and that serves to complement other agent design method

ologies;

These basic criteria are addressed by the Transaction Agent Modelling (TrAM)

framework. An overview of TrAM is shown in Figure 4.2.

Chapter 2 identified that support for the capture of early requirements

for agent systems is generally lacking, and therefore provides much of the

Chapter 4 A Unifying Framework 96

Requirements Capture Specify ^ j j ^ e menlation^ >

V U se C ases

r ModeH
A/erificatioi

Design
Spec.

Conceptual Graphs MAS
Deployment

Figure 4.2: The TrAM Framework.

motivation for this research. TrAM employs Conceptual Graphs to enrich the

gathering of early requirements by:

1. Providing a means of capturing and modelling high-level, qualitative

concepts;

2. Exploiting the formal underpinnings of Conceptual Graphs and Peircian

Logic to enable consistency checks in the notation to be made;

3. Using the Transaction Model (TM) to provide both design guidance and

a mechanism for checking high-level transactions;

4. Deriving a hierarchy of types and a set of constraints upon which an

ontology can be built.

The following sections and Figure 4.3 illustrate the TrAM process in more

detail.

Chapter 4 A Unifying Framework 97

4.4.1 Capture Scenarios

The first step of the approach is to identify the key stakeholders in the system,

represent them as UML actors and describe the roles that they undertake.

Once the actors have been discovered, system interactions can then be de

scribed with the aid of written use cases and use case models.

4.4.2 Identify Agent Roles

After the individual use cases have been captured, the next stage is to identify

the agents that will be required to complete a model of the eventual system.

Prior work (Hill et al., 2004) has shown that actors can be mapped straight to

actors.

4.4.3 Allocate Tasks to Agents

Once the agents have been identified, the next step is to identify and allocate

tasks to each of the agents. Each task is taken from the use case descriptions

and assigned to the perceived owner of that task, or the agent who is deemed

to be responsible for its satisfactory completion.

4.4.4 Identify Collaborations

It is now possible to examine the collaborations between the agents. Each allo

cated task is considered in terms of identifying the agents that will be involved

in the collaboration. As each task is mapped to an instance of collaboration

between two agent types, each potential conversation is considered and new

tasks are derived.

Chapter 4 A Unifying Framework 98

4.4.5 Apply Transaction M odel

The application of the TM consists of two discrete activities. First, the con

cepts in the domain are captured and documented.

M odel Concepts

The high level concepts are modelled as Conceptual Graphs. All of the con

cepts deemed relevant are recorded, irrespective of whether a quantitative rep

resentation exists or not.

Inference M odel w ith Queries

Secondly the TM is populated and a type hierarchy is produced. Concept

names are examined for suitability and modified where appropriate. Once

the TM is complete, queries are created from the use case scenarios and used

to test the TM using Peirce Logic. The results of these queries are used to

further specialise the relevant TM and provide rules for the type hierarchy, so

that domain specific constraints can be captured and included within the final

solution. This process is iterative and will serve to elicit new stakeholders,

goals and qualitative concepts, which are used to enrich the use case models

generated earlier.

4.4.6 Design Artefacts

The TrAM Framework produces the following outputs:

• Use case descriptions and models that describe high level business pro

cesses and the relevant stakeholders;

• Task allocations for each agent;

Chapter 4 A Unifying Framework 99

Identify
Collaborations

Capture
Scenarios

Identify
Agent
Roles

Allocate
Tasks to
Agents

Model
Verification

Apply Transaction Model

Inference Model
with Queries

Model
Concepts

Figure 4.3: TrAM Process in Detail.

• Agent collaboration diagrams;

• Transaction Model Conceptual Graphs for each of the high-level trans

actions identified;

• A rudimentary ontology consisting of a type hierarchy together with

domain constraint rules modelled with Peirce Logic.

These artefacts result in a design specification for the eventual system that does

not impose a particular implementation architecture, and serves to complement

agent design methodologies that lack a requirements gathering stage such as

Gaia. Furthermore, since TrAM addresses early requirements, it can be used

as a precursor to methodologies such as Prometheus.

Chapter 4 A Unifying Framework 100

4.5 Discussion

Agent based architectures provide the semantic interoperability capabilities to

accommodate complex scenarios, enabling delegation, brokering, negotiation,

cooperation and coordination to take place across the myriad systems. The

notion of economic transactions provides a framework by which agent systems

can be designed and implemented by addressing the following:

1. Gathering agent system requirements can be difficult, and the lack of

model verification (even though use case models enable the various actor

representations to be established) presents a significant risk that some

details are missed from the first modelling iteration (Mellouli et al., 2002).

2. A successful MAS must include the ability to reason about the qualita

tive issues that exist in the community healthcare domain, and system

designers must be able to challenge the issues from a business process

perspective.

3. The capture and modelling of roles is a crucial step in the MAS modelling

process (Depke et al., 2001), yet there is little guidance as to how roles

should be allocated for best performance (Dastani et al., 2003b).

4. Ontological rules and terms enable semantic interoperability, however,

system designers tend to rely on the process of eliciting use cases from

existing processes to obtain the majority of the agents’ behaviours.

5. The convenience of actor-to-agent mappings means that the assignment

of agent behaviours is often arbitrary and based on current working prac

tices. Whilst the capture of current working practices is vital to the

Chapter 4 A Unifying Framework 101

proper analysis of the existing system, this approach restricts the poten

tial of an interoperable MAS solution. Additionally there is no implicit

check as to the validity of a role, nor is there an audit trail of how the

roles were delegated.

The TrAM approach enables the early elicitation of domain knowledge,

and subsequent outputs for an ontology, whilst incorporating a robust transac

tion model from the beginning. This allows representations of agent-managed

transactions to be assembled at a much faster rate, especially since there is

greater confidence that the underlying design is based upon a solid framework.

The key features of this approach are as follows:

1. CGs represent the problem in a more abstract way, and provide a foun

dation for modelling the knowledge exchange within a system. The ab

straction is such that high-level, qualitative issues such as ‘quality of

health care received’ are addressed, so it is feasible that the system is

questioned from the point of view of concepts, rather than relying on an

individual’s prior experience.

2. CGs are similar to AUML in that there are some obvious mappings from

concepts to agents, however there are also subtleties that CGs reveal

more consistently.

3. The inherent balance check of the model ensures that ontological terms

are agreed upon before the model is complete.

4. The transactions approach makes model verification implicit as any miss

ing nodes (concepts or relations) render the model out of balance and

unable to satisfy both sides of the transaction.

Chapter 4 A Unifying Framework 102

The TrAM approach allows agent based systems to be designed that exploit

many different aspects of agent technology. In particular:

1. The development of conceptual models that support conversation seman

tics to characterise interaction between local and remote agents (Beer

et al., 1999);

2. Matching capabilities of agents with current system needs using negoti

ation protocols (Beer et al., 2001);

3. Building scalable communities of agents (Beer et al., 2003b);

4. Defining semantic economic models to represent the complex relation

ships that exist between agents (Hill et al., 2005b) in an interoperable

way;

5. Implementing agent architectural models that promote agent autonomy

and privacy while ensuring that organisational commitments are realised.

The production of conceptual graph models enables higher-order issues to

be captured, scrutinised and considered in an abstract way. This complements

use case analysis and promotes early discussion. Use of the Transaction Model

means that these concepts can be evaluated in a way akin to transactional

analysis. The implications of ‘duty of care’, ‘debt to society’, and other high

level concepts typically would attract little interest as they are difficult to

model and even consider. The richness of conceptual graphs firstly allows

these concepts to be represented lucidly.

Secondly, the application of the TM enables opposing concepts to be rep

resented. Often one side of the transaction is clearly evident, but the opposing

concept or concepts are not always clear. The application of the TM forces

Chapter 4 A Unifying Framework 103

such hidden concepts to the fore, promoting discussion and consideration from

the outset.

Thirdly, the ensuing discussion results in the generation of the most suitable

term to represent each concept. This definition assists the documentation of

an ontology, lessening the requirement for a domain expert. Indeed the process

steers system designers so that at least the most pertinent questions can be

asked of the expert, rather than requiring the system designers to be domain

experts themselves.

Also, the ability to query the representation allows models to be tested

and verified much earlier in the agent system design process. The use of a

collaborative agent architecture for a community care system illustrates how

agent cooperation can accomplish the provision of health care services and

resources for both routine and emergency scenarios (Hill, 2007). This approach

also indicates the possibility that agent-based technologies could be utilised in

order to achieve distributed demand and supply issues within an integrated

domain, whilst retaining existing actors and agencies.

Additionally, each actor’s autonomy is still retained. Integrating external

data sources by the use of information agents enables MAS models to be assem

bled rapidly and show that it is possible to integrate disparate data sources

as part of an overall agent-based system, especially those associated with a

variety of organisations.

Chapter 4 A Unifying Framework 104

4.6 Using TrAM

This section describes how the Transaction Agent Modelling framework is used

by way of an exemplar case study in the community healthcare domain. In par

ticular the complexities of healthcare payments are examined and the frame

work demonstrates the ease with which this complex problem was modelled

and tested prior to design specification. Additionally the case study illustrates

limitations of the framework and provides an opportunity to propose refine

ments.

4.7 Background

Previous chapters have discussed how a representation such as Conceptual

Graphs might assist the design of an agent system. With reference to Event

Accounting (Chapter 4) the use of the Transaction Model (TM) illustrates

both how concept types and relationships could be identified earlier in the

requirements gathering process. This enables an ability to query the models

produced in order to develop a more comprehensive conceptual model. This

chapter uses an exemplar scenario in the Community Healthcare domain to

demonstrate how the draft Transaction Agent Modelling (TrAM) (Hill et al.,

2006a) framework should be used, and explicates the individual steps of the

process.

4.8 Rationale for Choice of Domain

In order to demonstrate the effectiveness of the TrAM approach a suitable case

study is required. Community healthcare was selected as it is a domain that

Chapter 4 A Unifying Framework 105

exhibits the following characteristics:

• Community healthcare management is inherently a multi-agency model,

and there is a multitude of complex communications and interactions

between many agencies; each of which demonstrate autonomous be

haviours. The infrastructure is rich with policies, norms and traditions.

• The process of care delivery is distributed, in that each agent is required

to deliver care either wholly or in conjunction with another agency.

• It is a domain that includes ‘hard’ and ‘soft’ goals; some of the goals are

straightforward to elicit, yet there remains a large number of difficult to

manage, qualitative goals, that may be excluded from the current care

model.

• Collaboration is a fundamental system mechanism. Human agents reg

ularly conduct transactions, but any process automation reaches far be

yond the capabilities offered by the 0 0 model, which explains why agents

are required.

Additionally, prior work (Beer et al. (1999)) established that there were several

shortcomings with regard to the modelling of complex community care man

agement systems, which could potentially be addressed by the use of TrAM.

4.9 A Community Healthcare Case Study

The delivery of home-based community healthcare services to frail and disabled

people provides a complex set of challenges for UK Local Authority Care Man

agers. Whilst there are arguments that support the perceived desire for people

Chapter 4 A Unifying Framework 106

to remain in their home environment for as long as possible, it is extremely dif

ficult to coordinate and control the wide range of separate care agencies, both

in terms of effective delivery and efficient resource utilisation. Since there is a

strong motivation to effectively manage the recipients’ quality of life, there is

a temptation to introduce redundant resources. This contributes towards high

levels of cost.

Each care service is provided by an independent autonomous party, a prac

tice that has been encouraged by UK Local Authorities in pursuit of cost sav

ings generated by an open, economic market. Inevitably each party instigates

and maintains their own management information systems, leading to a sce

nario that includes many disparate heterogeneous repositories. The prospect

of integrating these resources seems rather onerous, and as a consequence there

is a continued reliance upon more informal methods of control.

Beer et al. (1999) proposed the development of an architecture to address

these issues that utilised collaborative intelligent agents (Wooldridge and Jen

nings, 1995) to mediate queries amongst the myriad agencies and platforms.

As discussed in Chapter 2 it would seem that the reactive, proactive, social and

autonomous behaviours exhibited by intelligent software agents have much to

offer in terms of designing and developing more effective healthcare manage

ment systems.

The realities of attempting to accurately capture healthcare system re

quirements indicates that more assistance is required, particularly during the

earlier stages of analysis, over and above a convenient mapping of actors to

agents. In particular, collaborating agents must be able to share and re-use

domain knowledge if they are to interact effectively. Therefore the means of

capturing and expressing domain knowledge must be able to accommodate not

Chapter f A Unifying Framework 107

only complex interactions, negotiation and brokering, but also the complicated

qualitative information that exists in healthcare environments.

4.9.1 Developing an Agent-based Approach

The use of agents enables disparate systems to be integrated into a single, col

laborative, cooperative system since the social abilities of agents permit con

versational changes to be made between different agencies. Such an approach

makes the job of monitoring the whole system much easier, with tangible ben

efits for UK Local Authority Care Managers who need to assemble the most

effective package of care for each care recipient, without employing redundant

resources.

Aside from appropriateness of care, a fundamental goal of a fully integrated

community healthcare system is to provide a timely response to care requests,

both from the care recipient and the care assessors such as Social Workers (SW)

and Occupational Therapists (OT). Such a system should be able to negotiate

at many levels if disparate, autonomous care services are to be managed and

coordinated, especially since the response must be suited to the nature of the

request.

For example the speed of response is more of an issue in the event of an

emergency. It follows that there is also an associated cost that is a function

of the response time. The system therefore must be able to assess an incident

and select the most appropriate response, balancing economic costs against

the quality of care delivered. Existing systems are generally limited by the

lack of relevant information that is available at any particular time, and there

are many instances of care scenarios whereby comprehensive informal systems

have evolved to supplement the more formal system operated by the Local

Chapter 4 A Unifying Framework 108

Authority.

For instance, a neighbour may be able to offer assistance based upon their

proximity to the care recipient, providing support until a care professional

arrives at the scene of the incident. Similarly, help from extended family is

often ignored by formal care systems, leading to duplication of resources. This

level of cooperation is too advanced for current systems, and demands much

more comprehensive exchanges of information between the relevant agencies.

Speed of response is particularly important when the system has to accom

modate real-world scenarios such as service delivery failures. In such cases,

the system needs to be able to recognise faults and offer an alternative course

of action. Human agents would generally negotiate a new commitment, or

find an alternative supplier. MAS architectures permit individual agents to

act in a similar fashion, enabling not only the better provision of services, but

also the generation of a history of the reliability of various services, assisting

decision-making and subsequent negotiations in the future.

M odelling System s

Bauer et al. (2001) describe Agent Oriented UML (AUML) as a notation for

the description of agents and their environment. All of the models can be

constructed, viewed, developed and evaluated during systems analysis and

design. It is based on the meta-model that is the Unified Modeling Language

(OMG, 2005), which is a notation for expressing object-oriented analysis, and

presents a consistent representation for specifying, visualising, constructing

and documenting the artefacts of software systems. Agent modelling requires

a greater richness of description, especially since the complex interactions often

need to be represented graphically to assist comprehension.

Chapter 4 A Unifying Framework 109

Prior work by (Beer et al., 2001) with the Intelligent Community Alarm

(INCA) Demonstrator, illustrated that the design process created a require

ment to formally represent various aspects of the agent-managed community

healthcare system. AUML facilitated a large proportion of this work, enabling

agent models and the resultant stub-code, to be generated in readiness for

deployment with the ZEUS Agent-Building Toolkit (Nwana et a l, 1999).

Whilst it was possible to produce models of the agents that embodied the

required behaviours, and consider the nuances of the community healthcare

domain concurrently, it became apparent that some real-world issues were

much more difficult to capture. In particular the representation of relatively

simple payment transactions proved elusive, as AUML lacked the ability to

capture high-level qualitative scenarios.

4.9.2 Designing Community Care System s

A specification for INC A was initially determined by consulting the ZEUS

role-modelling guide (Nwana et al., 1999), and using this approach to derive

the roles of agents, services offered and task descriptions to be described using

AUML. These models were then used as an input specification for implemen

tation activities with the ZEUS Agent-Building Toolkit. The abstract input

specification was described by a collection of use case, class, interaction and

deployment diagrams, which provided a consistent representation of the com

munity healthcare complexities across a number of disparate domains (Huang

et al., 2003).

Whilst this process was remarkably simple in some areas, as the agent

architecture mapped directly onto significant portions of the problem domain,

a number of areas were identified that proved more problematic. The tasks

Chapter 4 A Unifying Framework 110

of selecting the most appropriate care service and brokering service requests

were particularly difficult without compromising the accuracy of the model.

It is fundamentally important that agent representations are not unduly

compromised if they are to gain acceptance as a resilient and life-like solution

for complex management problems, and it was deemed appropriate to investi

gate the aspects of the community healthcare scenario that did not translate

as effectively to an agent architecture.

The payment transactions required for community healthcare do not im

mediately appear complicated as they are conducted (albeit often quite ineffi

ciently) by human agents, who are familiar with the concept that the agency

who requests a service does not always pay for that service, or pays a propor

tion of the total amount, depending on a variety of circumstances (Beer et al.,

2001).

It is also noted that in effect, community healthcare management systems

are similar to commercial enterprise systems that manage the delivery of ser

vices by controlling and recording transactions. Human agents have of course

become accustomed to interact with transactions in a commercial environ

ment, and they often question computer-delegated transactions, particularly

with regard to their robustness.

The allure of reduced resource requirements, improved service delivery,

and quality assurance offered by multi-agent architectures, combined with the

complexities of community healthcare systems means that we need our agents

to assume control of the fundamental transaction workload. The inclusion

of human agents implies that issues of ‘trust’ with regard to agent-managed

services will arise. It is therefore fundamental that the transactions should be

represented in a robust way, and paramount that any solution should include

Chapter 4 A Unifying Framework 111

a robust transaction model as its foundation from the outset.

Using the TrAM approach, agent representations of the community care

system model have been developed that address the issues of community care

payment complexity and agent-managed transactions. In particular, Local

Authority agents who tender the services of community care provider agents,

is an example agent trading scenario that has a fundamental requirement for

a model that is robust and life-like. Initially AUML representations of auc

tion protocols (Huang et al., 2003) were included within INC A, but the com

bination of quantitative and qualitative aspects of transaction management,

together with the ‘gap’ between abstract life-like representations and low-level

deployment practicalities directed the research towards an alternative method

of representation. This resulted in the TrAM Framework.

TrAM addresses the difficulties attributed to the production of agent-based

models in the following ways:

1. The transactions approach makes model verification implicit as any miss

ing nodes (concepts or relations) render the model out of balance and

unable to satisfy both sides of the transaction.

2. The richness of CGs permits qualitative issues to be challenged and doc

umented, before refining further by drilling-down for more detail. Qual

itative reasoning is an important agent capability and the use of concep

tual graphs addresses this at the earliest opportunity within the design

lifecycle.

3. Roles are identified using the transaction model via the ‘inside’ and ‘out

side’ agents.

4. Ontological terms are derived from the transaction model during the

Chapter 4 A Unifying Framework 112

Source lestination;vent_subjecl

Sourcedestination

Transaction

lnside_Agent: {*}

Outside_Agent: {*}

Economic Event: {*b}Economic_Event: {*a}

Economic_Resource: {*c} Economic_Resource: {*d}

Figure 4.4: The Transaction Model (TM).

process of capturing requirements.

5. CGs are similar to AUML in tha t there are some obvious mappings from

concepts to agents. Prior experiences with AUML illustrated tha t actors

mapped to agents.

A combination of the requirement for a transactions-based model, and a need

to represent a community care domain tha t is inherently complex, has led

to the demand for an MAS design framework tha t embodies the notion of

robustness. This represents the real-world scenario more faithfully, negating

the need to compromise the implementation unduly.

4.9.3 Building the M odel with TrAM

Having considered the various methods of representing the complexity of the

community care environment, this section illustrates by way of an exemplar

how Transaction Agent Modelling (TrAM) can be utilised to gather system

requirements and produce a model.

Chapter 4 A Unifying Framework 113

Capturing Care Scenarios and Early Requirements

Beer et al. (2002) describes five scenarios that a community healthcare system

would be required to manage. The following section illustrates how a MAS

approach can be used to accommodate such scenarios within an integrated

community care system. These scenarios are summarised as follows:

1. The creation and maintenance of an Individual Care Plan (ICP) for each

care recipient, which details the package of care services that are required

to address the specific needs of an individual.

2. The provision of positive care to maintain and improve the quality of life

of a care recipient (Sixsmith et al., 1993).

3. Using the ICP as a reference, the delivery of regular routine care in order

to support daily living.

4. The provision of emergency care in response to some unexpected event,

such as an accident or medical emergency.

5. Quality assurance management, by monitoring the delivery of care, man

aging exceptions and interventions to the ICP when required.

The first step of the approach is to identify the actors in the system and

describe the roles that they undertake. Once the actors have been discovered,

system interactions can then be described with the aid of written use cases

and use case models.

M aintaining the Individual Care Plan

The Individual Care Plan (ICP) is created by taking information from one

or more assessments of the potential care recipient. This activity is managed

/ l u s i i no .

2 ^ 4-3

Chapter 4 A Unifying Framework 114

o

A
Care recipient

Monitor activity

; « Includes »

Data a n a ly sis^

/ J \ « Includes »
Local Authority

Report excep tion s

« Includes »

ICP M aintenance

Figure 4.5: Use case model for maintaining the ICP.

by the Local Authority and typically employs the services of an Occupational

Therapist (OT) for an initial assessment. Once the need has been assessed,

the ICP is created to specify the package of care services that are required to

meet the needs of the care recipient.

In-home assessments enable all aspects of the home environment to be

taken into account, though they do require a significant amount of resource to

execute. Since a community care system like INC A can monitor the activities

of each individual, there is a wealth of information available for analysis. Figure

4.5 illustrates the use case model representing this scenario.

Improving Quality of Life

The argument for improving quality of life is compelling and it is often the case

that when the delivery of care breaks down for some reason, the reaction is

to over-allocate resource to the scenario until the situation returns to normal

Chapter 4 A Unifying Framework 115

Collaborate

Local Authority

R e lea se relevant
. information y

Care Recipient « Includes »

Query
Information Care Provider

Figure 4.6: Use case model for positive care.

operating conditions. Successful delivery of the ICP not only includes the

effective allocation of resources, but also the inclusion of care services that at

least maintain and preferably improve the care recipient’s quality of life. Such

actions are referred to as ‘positive care’. Positive care aims to improve the

psychological and social well-being of the care recipient, by supporting and

promoting:

1. Enhanced social interaction between the care recipient, Local Authority

and care providers;

2. The provision of information surrounding leisure activities and opportu

nities for new experiences. Such information needs to be tailored to the

specific needs and preferences of the care recipient.

Figure 4.6 shows the use cases required to facilitate positive care.

Chapter 4 A Unifying Framework 116

Providing D aily Care

The objective of daily care (Figure 4.7) is to provide each care recipient assis

tance with eating, washing, bodily functions, or any other care need. Main

tenance of an accurate ICP is paramount and it is important to monitor the

actual delivery of care services and report back any exceptions. Unfortunately,

towards the end of a care recipients’ life, the rate of deterioration is much

greater than the responsiveness of the care management system.

This is less of an issue in a hospital or residential home environment as the

care is delivered on demand. In-home care delivery is provided however, in

relation to a strict schedule to minimise logistical arrangements. This results

in a care service that is inflexible, and that cannot accommodate exceptions

unless there are informal carers who are able to provide the assistance required.

Em ergency Support

Support for emergency situations presents a challenge for community care sys

tems. Whilst it is feasible that monitoring of the care recipient would enable a

more proactive approach to care management, an emergency scenario is unpre

dictable and therefore the system must provide the most appropriate response

in a timely manner. The use of agents to collaborate and coordinate their

activities means that the results of all interventions can be monitored, and

therefore used to update the dynamic ICP. These interactions are shown in

Figure 4.8.

Chapter 4 A Unifying Framework 117

Care
Provider

Request
care « Includes »

« Includes » \ Arrange
intervention

Monitor
activitiesCare

Recipient

« Includes >>,
Identify N \ j

need v

'— Re P° rt
« Includes » \ v exception

Query
info

Local
AuthorityProvide

info

Figure 4.7: Use case model for daily care.

Chapter 4 A Unifying Framework 118

Verify OK

Care
Provider^includes 5̂>

Arrange
intervention

« Includes »Raise
alarm < - - -

« Includes »
Care

Recipient « Includes >> Includes »

Monitor \<<Jncludes >:
activities /

Identify
problem

Update
ICP Local

Authority

Figure 4.8: Emergency scenario use case model.

Quality Assurance

After creation of the ICP, it is necessary to monitor the requirements of the

care recipient in order that the ICP can be updated to reflect any changes. Fig

ure 4.9 shows the interaction involved in Quality Assurance procedures. Figure

4.10 shows the Local Authority as the manager of this role. The concept of

a dynamic rather than static ICP is fundamental to community care manage

ment, if quality of life is to be improved whilst also minimising duplication of

resources.

It is also important to ensure that all the care specified in the ICP is

delivered at a satisfactory service level, at the appropriate time, standard

and in the correct place. The monitoring of care staff is problematic in the

community context, as direct supervision is difficult. The community care

system needs to facilitate effective monitoring in two ways:

1. Care providers should log their interventions directly into the system at

Chapter 4 A Unifying Framework 119

Care
Recipient

Update
ICP

'' A/ ' i '
« Includes » /

Make
complaint

. « Includes »

' A f Record
intervention

« |ln c lu d e s >^x
\ « Includes » \ \

Compare \ \
actual/) Q j

planned y V I
^ N Report

« Includes » V exceptions

Care
Provider

Local
Authority

Figure 4.9: Quality assurance use case model.

each visit. These can then be compared directly with the contents of the

ICP. Any deviations can then be investigated and either the ICP can be

updated or other appropriate action undertaken.

2. Complaints procedures can be based upon direct communication with

the Local Authority, improving monitoring and responsiveness.

Now that the early requirements have been gathered, the next stage is to

produce an agent model, identify and allocate tasks to each of the agents and

then scrutinise the transactional nature of inter-agent communication.

Identify Agents

After the individual use cases have been captured, the next stage is to identify

the agents that will be required to complete a model of the eventual system.

Prior work (Hill et al., 2004; Beer and Hill, 2006a,b) has shown that actors

can be mapped straight to agents. Thus, using Figure 4.10 as an exemplar

Chapter 4 A Unifying Framework 120

overview model, the following agents can be quickly derived:

1. Care Recipient Agent (CR Agent)

2. Occupational Therapist Agent (OT Agent)

3. Local Authority Agent (LA Agent)

4. Care Provider Agent (CP Agent)

Whilst the agent characteristics of reactivity, proactivity, autonomy, intelli

gence and social ability assist the representation of human agent roles, there

still exist a number of entities that do not possess such characteristics, such as

knowledge bases and databases.

One such example is the use case ‘Query ICP’ from Figure 4.10, which will

need to access a repository to read the contents of a particular ICP. Similarly

the use case ‘Schedule care’ will also require access to a database so that

care delivery can be managed. In these cases, each information repository is

assumed to map to an ‘information agent’, who manages the access to each

data source. Figure 4.11 illustrates both the actor to agent mappings, plus the

information agents who marshal each data source.

One of the key facets of an agent-based community care management sys

tem is the ability to harmonise all of the disparate data sources together with

out resorting to the drastic action of re-writing existing legacy code. Therefore

in this example it is suitable to introduce information agents that reduce in

terference with existing systems.

A llocate Tasks to Agents

Once the agents have been identified, the next step is to identify and allocate

tasks to each of the agents. Each task is taken from the use case descriptions

Chapter 4 A Unifying Framework 121

Monitor
activities

M anage
care

, Local
< !< lncludes» Authority

Care
recipient R equest

care cclncludes:
/ >

Schedule
care

« l n c lu d e s » v

Query ICP

« l n c l u d e s »
« l n c l u d e s »

Deliver
care

A s se s s
recipientOccupational

Therapist
Care

Provider

Figure 4.10: Overview of care model.

Care
Recipient

CR Agent LA Agent Local
Authority

ICP Agent ICP
Database

Occupational
Therapist

OT Agent CP Agent Care
Provider

Schedule
Agent

Schedule
Database

Figure 4.11: Initial actor to agent mappings.

Chapter 4 A Unifying Framework 122

and assigned to the perceived owner of that task, or the agent who is deemed

to be responsible for its satisfactory completion. Table 4.1 shows the initial

task allocation.

A gent T ype Task
Care Recipient Agent (CR Agent) 1. Make request for care.

2. Raise alarm.
3. Interact with home monitoring unit.

Occupational Therapist Agent (OT Agent) 4. Assess Care Recipient.
Care Provider Agent (CP Agent) 5. Deliver care to Care Recipient.

6. Query schedule information.
Local Authority Agent (LA Agent) 7. Query Individual Care Plan (ICP).

8. Schedule care services.
9. Monitor ICP.

Table 4.1: Agent types and allocated tasks

Iden tify C o llaborations

It is now possible to examine the collaborations between the agents. Each allo

cated task is considered in terms of identifying the agents that will be involved

in the collaboration. As each task is mapped to an instance of collaboration

between two agent types, each potential conversation is considered and new

tasks are derived. Figure 4.12 shows the agent collaboration model, together

with the tasks allocated from Table 4.2.

This process is iterative and it is likely that several refinements are required

before a comprehensive model is produced. For brevity the results of only one

iteration are shown in Table 4.2, each additional task being shown in italics.

Once the tasks have been discovered, they are added to the overall agent

collaboration model as in Figure 4.13.

Chapter 4 A Unifying Framework 123

C P A gentCR A gent

LA A gent

[7, 9]

S c h e d u leOT A gent ICP A gent
A gent

Figure 4.12: Agent collaboration model.

A pply Transaction M odel

After identifying the set of overall collaborations from the use cases and subse

quent task allocation stage, the model now undergoes further scrutiny in order

to ensure robustness. Using the event accounting model described in the pre

vious chapter and the Transaction Model (TM), the community care scenario

is scrutinised in terms of specific transactions. In such a complex environment

it is clear that many transactions exist.

For the purposes of this explanation, only one transaction will be demon

strated. As discussed earlier, prior work with INC A demonstrated that existing

representations such as AUML could not successfully express the complexities

of community care payment management, particularly with regard to qual

itative transactions. To demonstrate the power of a transactional approach

Chapter f A Unifying Framework 124

A gent T ype Task
Care Recipient Agent (CR Agent) 1. Make request for care.

2. Raise alarm.
3. Interact with home monitoring unit.

Occupational Therapist Agent (OT Agent) 4. Assess Care Recipient.
10. Update ICP.

Care Provider Agent (CP Agent) 5. Deliver care to Care Recipient.
6. Query schedule information.

Local Authority Agent (LA Agent) 7. Query Individual Care Plan (ICP).
8. Schedule care services.
9. Monitor ICP.
11. Select care provider.

Table 4.2: Iterated agent types and allocated tasks.

to modelling an MAS, the following exemplar will describe how the payment

modelling was finally resolved.

M odel C oncepts

Initially, the whole care scenario is represented as a Conceptual Graph (CG) (Figure

4.14). This notation is utilised as it permits the lucid representation of quali

tative as well as quantitative concepts.

As described earlier, the Transaction Model (TM) provides a useful means

of introducing model-checking to the requirements gathering process (Hill

et al., 2006a,b). The specialisation of the generic TM of Figure 4.4 and Figure

4.15 onto the community healthcare scenario (Figure 4.14) is illustrated by the

CG in Figure 4.16. This specialisation serves two fundamental objectives:

1. The concepts identified within the care scenario are ‘balanced’ and there

fore represent a transaction;

2. Since each concept is classified in terms of type, a hierarchy of types for

an ontology can be derived.

Chapter 4 A Unifying Framework 125

[11]
CR A gent CP A gent

LA A gent

[7, 9]

[10]

OT A gent S c h ed u leICP A gent
A gent

Figure 4.13: Iterated agent collaboration model.

Care Recipient

Care Provider

Local Authority

equester

deliverer

anager

Care

Figure 4.14: CG Model of Community Care Scenario.

Chapter 4 A Unifying Framework

|«<-(Part)<—Economic_Event: {*a} Transaction — KPa^t)—►

126

Economic_Event: {*b}

vent_subjec Source lnside_Agent: {*}

Economic_Resource: {*c}

)estinationp C^vent subject

Economic_Resource: {*d}

estination Outside_Agent: {*} ^Source

Figure 4.15: CG Model of Generic TM.

The overall model (Figure 4.16) does not explain which party pays the bill

for the care, or who is the ‘source’ of the money. The UK Welfare System has

three particular scenarios:

1. The Local Authority pays for the care in full.

2. The Care Recipient pays for the care in full.

3. The Local Authority and the Care Recipient make ‘part payments’ tha t

amount to 100% of the care cost.

‘Purchase Agent’ is derived as the supertype of ‘Local A uthority’ and ‘Care

Recipient’ in order to satisfy the TM.

Raise Debtor Transaction — K ^ a rt)—►

(gy en tsu b jec t^ ^ o u rc e)

*
Purchase Agent

Money

(vent_subject,lestination

Care

Care Provider ^source

Figure 4.16: Overall Transaction Model of care scenario.

The most significant contribution of this stage is the implicit ‘balance check’

that immediately raises the analysts’ awareness of the need for appropriate

Chapter 4 A Unifying Framework 127

terminology. Figure 4.17 illustrates the hierarchy of types deduced from Figure

4.16.

T y p e : T

T y p e : E c o n o m i c E v e n t T r a n s a c t i o n

u b t y p e ^

11
u b t y p e , u b t y p e , u b t y p e

u b t y p e ,

T y p e : L o c a l A u t h o r i t y I T y p e : C a r e R e c i p i e n t

Figure 4.17: Initial type hierarchy of care scenario.

Once the generic model has been created, it is tested with some general

rules. First, the specific scenario (Figure 4.18), whereby a Care Recipient

has been assessed and is deemed to be eligible to receive care at zero cost is

explored.

Figure 4.19 shows th a t the ‘source’ of the money to pay for the care is

the Local Authority ‘Sheffield City Council (SCC)’, who also manages the

provision of the care.

However, the care package is not delivered by the Local Authority, who

buys services from designated Care Providers. For this example, the Local

Authority is managing a ‘Meals on Wheels’ service. The party which incurs

the cost of the care package is represented by the ‘destination’ concept.

Alternatively the Care Recipient may be deemed to have sufficient assets,

and is therefore ineligible for free care (Figure 4.20).

Figure 4.19 illustrates eligibility for free care, where it can also be seen

tha t the care package is still managed by the Local Authority. In both cases,

Chapter 4 A Unifying Framework 128

whether the care recipient has sufficient funds to pay for the care (Figure 4.19)

Or not (Figure 4.22), the original relationships of Figure 4.14 are included.

This ensures that the relevant aspects of the transaction are retained and can

be recognised in subsequent development.

Inference M odel w ith Queries and Validate

From the prior figures the general CG pattern in Figure 4.21 emerges. To

evaluate this scenario we query the model. Firstly, we examine the case where

the Care Recipient’s (‘Betty’) ‘Assets’ are deemed to be less than a particular

threshold set by the Local Authority. In such a case, the Local Authority

(Sheffield City Council) would be the destination of the care, and would there

fore be liable for the bill. Figure 4.18 shows this particular query graph, which

states:

If requester of Care is Care Recipient whose

characteristic is assets < threshold Then

Local Authority is destination of Care

Updating the TM with this gives Figure 4.19.

Alternatively, the Care Recipient may be deemed to have sufficient assets

to be able to afford the care package. Figure 4.20 illustrates the relevant

query graph, showing the ‘less-than-threshold’ asset test being set in a negative

context (false):

If requester of Care is Care Recipient whose

characteristic is assets > threshold Then

Care Recipient is destination of Care

Chapter 4 A Unifying Framework 129

CareCare Recipient equester

Asset: {*}

Local Authority Care

ptal value

£: @less-than-threshold

Figure 4.18: Local Authority pays for care in full.

Again the TM is specialised and is illustrated in Figure 4.22, showing tha t

the Care Recipient is indeed the destination of the care, and therefore is liable

for the full cost.

So far the opposing scenarios whereby either the Local Authority or the

Care Recipient settles the bill for the care in full have been explored; for

completeness the part-payment scenario, whereby each party makes a contri

bution towards the total cost, must also be examined. As before, the generic

model of concepts is produced, before specialising with an individual scenario.

The part-payment model in Figure 4.21 comprises Local Authority and

Care Recipient, plus the Purchase Agent derived earlier in Figure 4.17. Af

ter specialisation of the TM (Figure 4.23) the OR relationship between Local

Authority: SCC and Care Recipient: Betty does not allow joint parties

to be the Purchase Agent.

First we consider the scenario whereby the Local Authority and Care Re

cipient have a split liability for the care costs. The liability is apportioned

in relation to the amount of assets that a Care Recipient is judged to have.

Chapter 4 A Unifying Framework 130

4----- (p art} 4 ~ ! “ ► ^ a r ^ -------- ►

Local A uthority: SCC lestination !vent_subject,s v e n ts u b ject^) (so u r ce

C are: #1Money: @ £10,000

C are R ecipient: Betty e q u e s te r

leliverer

C are Provider: M eals on W heelslestination .source

Figure 4.19: TM showing care recipient receiving care package at zero cost.

Figure 4.24 illustrates tha t the Care Recipient and Local Authority agents are

no longer sub-types of the Purchase Agent as originally illustrated, but are

instead associated via ‘liability’ relations.

In order to correct the original type hierarchy (Figure 4.17), the case

whereby Care Recipient and Local Authority agents are sub-types of P ur

chase agent is false. Accordingly a rule is created, which informs the eventual

ontology tha t such a type relation is also false. Figure 4.25 demonstrates this

rule, which is negated by setting in a negative context. Having elicited this

information, the type hierarchy is modified to reflect the new insight and is

illustrated in Figure 4.26. Subsequently the TM is also updated with the lia

bility relationship (Figure 4.27) in order tha t the model can now accommodate

all three payment scenarios.

4.9.4 Limitations of the Approach

Whilst some significant advantages have been demonstrated by the TrAM ap

proach so far, it would be prudent to consider some of the limitations tha t the

Chapter 4 A Unifying Framework 131

CareCare_Recipient

A sset: {*}

Asset: {*} Care_Recipient Carelestination

£: @ less-than-threshold

Figure 4.20: Care recipient pays for care in full.

exemplar also illustrates.

The process of using TrAM produces a set of design artefacts, including

type hierarchies and constraint rules modelled with Peircian Logic. Unless the

ontology is specified using a common standard (such as OWL, W3.org (2004b))

then the output requires further translation.

Also, the use of CGs as a modelling notation assumes tha t the resultant

models will be used to communicate knowledge between those who understand

CGs. Bearing in mind the issues discussed in Chapter 3, this is likely to restrict

the process to a smaller audience.

Additionally, whilst the approach enables high-level concepts to be cap

tured and analysed, the declaration of goals is not m andatory and can be

ignored. This relies on the agent system designer's self-discipline, and may

result in applications tha t cannot accommodate agent concepts such as goals,

plans, beliefs and reasoning.

Chapter 4 A Unifying Framework 132

Raise Debtor \4 (part)4 -

<^vent subject^> S o u rc e ,

Transaction

Purchase Agent

-fr(par?) ►]

|4 < 5 estin a ti^ > < g^ n t s u b i^ >

Money

^estinatio^-

Local Authority Care Recipient

Care Provider

Figure 4.21: Emergent CG model.

4 . 1 0 C o n c l u s i o n s

This chapter has proposed Transaction Agent Modelling (TrAM) as a means of

eliciting early requirements for agent based systems and demonstrated the use

of TrAM in the community healthcare domain. The exemplar has illustrated

some of the potential of this approach, particularly with regard to the robust

elicitation and analysis of early requirements. The case study has also indicated

some limitations, which will be examined in the next chapter.

Chapter 4 A Unifying Framework 133

R aise Debtor: #3 4 (p a r t) 4 - T ransaction : #4 - > (p a r t) E1 Sale: #2

C are R ecipient: Betty lestination.source

C are: #1Money: @£10,000 eq u e s te r

Local A uthority: SCC lanager,

leliverer

Care Provider: M eals on W heelslestination .source.

Figure 4.22: Updated TM showing care recipient receiving care package at full
cost.

Raise Debtor: #3

source(g v e n ts u b je c t^

Money: @£10,000

Transaction: ?

Purchase Agent: {*}

Sale: #2

■ 4 ^ e s t in a t i^ p ̂ £vent_subject^

Care: #1

Care Recipient: BettyLocal Authority: SCC

Care_Provider: Meals on Wheels .source.

Figure 4.23: Incomplete TM.

Chapter 4 A Unifying Framework 134

liability

jiability_

%: @70

%: @30

%: @100 Purchase Agent: #5 Care: #1

Care Recipient: Betty

Local Authority: SCC

Figure 4.24: Part payment scenario with shared liabilities for care cost.

Type: O u tside A gent

iubtype

Type: P u rc h a se A gent

Type: Local A uthority

su b ty p e ,

Type: C are R ecipient

Figure 4.25: New rule for ontology.

T r a n s a c t i o nT y p e : E c o n o m i c E v e n t i u b t y p e ,

s u b t y p e ,

i u b t y p e ,i u b t y p e , i u b t y p e ,

T y p e : C a r e P r o v i d e r [T y p e : C a r e [T y p e : M o n e y

Figure 4.26: Revised type hierarchy.

Chapter 4 A Unifying Framework 135

U 2 2 E 2 S ^ B ̂ —^a^4
+ ___

^ v e n t_ s u b je c t^ S o u r c e) — ► lestination

Requester,

lan a g e r .

d eliverer

lestination.

T ransaction

Care Recipient

Local Authority

Sale

P u rch ase AgentP u rch ase A gent

P u rch ase A gent

CareMoney

Jiabilih l i a b i l i t y

Local A uthority C are Recipient

Care_Provider

Figure 4.27: Refined payment model.

Chapter 5

Refining the Framework

5.1 Introduction

The framework introduced in Chapter 4 is now discussed in relation to the

experience of applying it to the community healthcare case study, and the

process for applying TrAM is described. Some limitations of the approach are

examined and improvements to the framework are proposed. The inclusion

of ontologies to support the framework, that recognise the explicit recogni

tion of BDI concepts is presented, concluding with a summary of the refined

framework.

5.2 The TrAM Process

A graphical representation of the framework is shown in Figure 5.1. The

process steps are as follows:

• TrAM Requirem ents Phase

— Step 1 - Model the system with CGs. Since this is a requirements

capture exercise, all concepts, relations, stakeholders and goals need

136

Chapter 5 Refining the Framework 137

to be gathered and modelled ‘as-is’ by freely generating graphs of

concepts and relationships. For instance some sample graphs might

be:

[Care]->(Manager)->[Local Authority].

Person, Vehicle < Entity

Carer, Care Manager, Care Recipient < Person

Van, Car < Vehicle

Meals-on-wheels < Van

Paramedic, General Practitioner, District Nurse < Car

Not only are the system stakeholders being identified, the type hi

erarchy is being built by the process of the concepts being specified.

This initial stage should be performed with the domain expert, to

ensure that important key concepts and the accurate vocabulary

is captured. The graphs should now be reconciled by examining

for joins and common specialisations (Chapter 3). This assists the

identification and specification of quantitative and qualitative goals

in the following step. The intention of this stage is to produce a

graph of the whole scenario, and it may be necessary to abstract

some of the detail by using Lambda Expressions 3.

— Step 2 - Using the high-level graph artefact from Step 1, transform

the graph with the TM. It is now possible to identify the system

goals. These should be expressed as individual graphs. For instance,

the initial capture process may produce goals such as enjoy social

contact and provide healthcare service. The equivalent in TrAM

Chapter 5 Refining the Framework 138

would be:

[Social contact]->(Exp)->[State: Enjoy].

[Provide]->(Obj)->[Service]->(Chrc)->[Healthcare].

This process enables the type hierarchy for each transaction to be

populated and identify any missing concepts or relations. Should

any concept nodes be missing, the relationships surrounding the

missing concepts are scrutinised and reasoned against in order to

determine a concept or concepts that provides a good fit. Equally

it may be required to consider the fit of the new concept within the

type hierarchy, amending the TM to suit if the ontology appears to

be inaccurate. This process is repeated until the missing nodes are

populated, and the goals are not seen to be violated. The graphs

can now be parsed into controlled English and used to help query

the representation of the system with a domain expert. This assists

the clarification of concept terms and relationships. As a result

of this new knowledge will be generated and this is appended to

the TM and type hierarchy graphs. Finally the type hierarchies

are considered and examined for any concept types that could be

generalised.

— Step 3 - Use cases for each scenario are gathered in order to provide

the means by which the TM model can be tested. Potential queries

are determined from considering the information contained within

each use case.

- Step 4 - Each of the queries raised from the use cases are repre

sented as query graphs that depict a particular scenario. Using

Chapter 5 Refining the Framework 139

graphical Peirce logic inferencing the query graphs are refined until

the specific scenario is accurately depicted. Once the query graph

has been defined it is appended to the overall TM graph. Steps 2-4

are iterated to refine the specification of requirements. The process

is not concluded until all of the use case requirements have been

accommodated within the overall TM.

• TrAM Architectural Phase

— Step 5 - Using the stakeholders identified in Step 1, along with the

use case scenarios in Step 3, agents are allocated individual roles.

Following on from this the tasks and goals are then allocated to

agent roles. At this stage it may be prudent to introduce agent roles,

particularly if some of the roles have a large number of tasks. In

such cases the goals assigned to an agent role should be delegated to

other agent roles, thus creating a management task for the managing

agent role.

— Step 6 - Define agent interactions and specify interaction proto

cols. Each of the interactions required to support the use cases and

the overall TM are defined for each interacting agent. If additional

agents have been appended to the model to balance workloads, then

it is necessary to identify the message semantics of the additional

communicative interactions by referring to Step 5. Furthermore, de

pending upon the messaging protocol utilised (or demanded by the

target domain), it may be necessary to add further communicative

acts. Such acts may require tasks adding to the respective agent

role.

Chapter 5 Refining the Framework 140

• D etailed Im plem entation Phase

- Step 7 - Use the design artefacts created as an input for an agent

implementation approach. The TrAM process has enabled the pro

duction of a set of models whereby a rigour has been imposed

upon the requirements elicitation process for agent-based systems.

These models can now be implemented using the agent construc

tion toolkit of choice, though there is a particular emphasis upon

the generation of a design that supports BDI constructs.

Refinements to the process from the experience of modelling exemplars have

influenced the process so that far more emphasis is placed upon the modelling

of conceptual requirements, exploiting the power not only of CGs, but also

the agent design metaphor. Use cases are only dealt with after the process

has gathered the high-level, qualitative concepts, in order that the soft goals

can be elicited. There is also a discrete set of design artefacts specified to

document the output of the Framework.

This is further supported by the transaction metaphor, which is in effect

passive (the transaction has to have taken place successfully in the past for

it to exist), and this supports a goal-directed system as the graphs that have

been projected onto the TM are a specification for ‘success’. If anything is

missing from the model then the transaction cannot take place. Similarly if

the transaction is too ambiguous, even though it is valid conceptually, then

further specialisation is required. Consequently a transaction is an excellent

framework for the specification of agent goals, and the intentions (plans of

tasks) can be declared in sufficient detail for the agents.

Chapter 5 Refining the Framework 141

TrAM Requirements Phase

1. Capture concepts

2. Transform with TM

3. Gather use cases for
each scenario

4. Verify TM graphs by
directing queries from
use cases

Model the system with CGs.
Capture all concepts, relations,
stakeholders, goals, governing bodies,
norms, 'custom and practice’
Examine graphs for joins and common
specialisations.
Identify goals.

Transform models with TM.
Identify qualitative and quantitative goals
Produce type hierarchy and identify missing
nodes. Verify models against initial
requirements and high-level goals.
Parse TM models for NL and check
statements with domain expert.
Specialise TM models with new knowledge.
Update type hierarchies and examine for
concept type generalisation.

Create/gather existing use cases for each
scenario.

Create CG queries from use cases and
verify TM models.
Return to Step 2 as necessary.

5. Define Agent roles,
tasks and goals

6. Define agent
interactions

TrAM Architectural Phase

Allocate agents to roles, define and allocate
tasks and plans to achieve goals.

Define agent interactions and
collaborations. Update tasks and goals as
appropriate.
Identify new tasks.

Detailed Implementation Phase
Existing Agent
Implementation Method

Figure 5.1: The TrAM Framework.

Chapter 5 Refining the Framework 142

5.3 Issues with TrAM

The previous chapter illustrated the development of some agent design arte

facts under the guidance of the TrAM Framework. So far, the following im

portant characteristics have been demonstrated:

1. The use of conceptual modelling to capture and represent high-level con

cepts;

2. The generation of types and relations to support the creation of an on

tology;

3. The use of the Transaction Model as a design metaphor.

Of these, items (1) and (2) in particular deserve more consideration. Firstly,

whilst the use of CGs permits high-level concepts to be captured, and with

the use of Peircian Logic, subsequently analysed, the elicitation of goals is

not explicit. Goal specification, or the analysis of hard and soft goals (as per

Tropos), is not mandated by the framework; rather it is assumed that the

agent system designer will exploit the flexibility and richness of the notation

to explore such issues.

It would be more useful if TrAM provided guidance for the elicitation and

analysis of goals, in the same way that Prometheus supports this important

activity (Chapter 2). Goals are a fundamental concept of agents, and their

discovery is crucial to the success of the system design. Since TrAM provides

the notation for capturing concepts, it would seem that the framework should

also provide the guidance necessary to ensure that the fundamental concepts

are accommodated.

The community healthcare case study also demonstrated a reliance upon

UML use case modelling, which as a notation itself can be used to model

Chapter 5 Refining the Framework 143

qualitative scenarios. There is a method element that is lacking however, un

like Tropos where a clear process is defined for the capture of hard and soft

goals. Whilst the CGs were used to verify the use case models during the early

requirements capture phase, there is an assumption that the requirements cap

ture process in place is satisfactory - which is what this research is attempting

to address and improve upon.

Secondly, the potential power of producing hierarchies of types whilst de

veloping conceptual models, is marred by the fact that the resulting artefacts

still require translation into another format, such as RDF or OWL. Again

the framework would be more useful if a representation was available that il

lustrated the mapping from concept to ontology. This would help the agent

system designer by providing ‘prompts’, whilst also addressing the constant

need for consistency.

Item (3) has shown how a design metaphor can assist the production of

agent models, however the eventual artefact produced can suffer from the in

herent generic abstraction; a more specialised graph, that incorporates core

agent concepts, could assist the process considerably. With reference to Chap

ter 2, more explicit links to Belief-Desire-Intention (BDI) concepts (Georgeff

et ah, 1999) would provide not only extra support when populating the con

ceptual models, which is fundamental for realistic actor to agent mappings,

but it would also make more agent-specific declarations in the ontology. As

a result, agent-literate ontologies are more likely to be re-used and designers

could take the ontology as a basis for new systems, knowing that the core BDI

concepts are included.

Additionally, the initial TrAM Framework does not explicitly make refer

ence to domain norms or policies. Again the flexibility of the notation and

Chapter 5 Refining the Framework 144

the TM graph is such that these concepts can be appended to the models, but

there is a reliance upon domain expertise.

In summary there are three key areas for improvement:

1. Goal discovery and analysis;

2. Recognition of agent mental aspects;

3. Explicit inclusion of domain policies.

Since both the explicit declaration of goals and mental aspects are core

concepts of the BDI model, the TrAM Framework shall now be developed

further to accommodate these features. Similarly, the consideration of policies

will also demonstrate not only how TrAM can be refined, but also the ease with

which the models can be adapted for specific purposes, without compromising

the flexibility of the early requirements capture stage. First of all, a brief recap

of the pertinent BDI concepts will be described.

5.4 A Recap of Agent BDI Concepts

For the TrAM Framework to demonstrate ‘usefulness’ to the agent system

designer, it must be able to accommodate agent specific concepts. The Belief-

Desire-Intention model of agency (Georgeff et al., 1999) describes three core

concepts:

• Belief - a fact or collection of facts about the world that an agent believes

to be true;

• Desire - is something that is false, that an agent wishes were true. These

manifest themselves as goals for an agent, which may or may not conflict

depending upon the current circumstances;

Chapter 5 Refining the Framework 145

• Intention - is a means of realising a desire (goal), by way of a plan, which

may be a list of ordered tasks.

BDI refers to the mental aspects of an agent, and serves to simplify the

design, specification and subsequent coding of agents. Similarly, for collections

of agents in a MAS, who work together to achieve a common purpose, it is

useful to be able to consider abstract representations such as organisation.

Similarly a society is a collection of organisations and agents that collaborate

to promote their own goals. From such concepts we can begin to consider (and

model) the effect of organisational guidelines (norms, often expressed as rules)

upon a particular society.

Thus if the TrAM Framework could accommodate BDI concepts, they

would by nature be made explicit and therefore become a mandatory part

of the process. Figure 5.2 illustrates a CG representation of a BDI Agent.

Belief, Desire and Intention concepts have been appended to the Agent

concept, which has now been specialised to become BDI Agent. The object

(Obj) of Intention is a Plan, the content (Cont) of which is Action. The

Desire concept has four characteristics (Perich et ah, 2004):

1. AchievableDesire - It is likely that an agent will have many desires, but

only some of them will be achievable at any given time.

2 . Non AchievableDesire - is a desire that cannot be achieved at present.

3. ConflictingDesire - is a desire that conflicts with another desire, norm,

action or personal belief.

4. NonConflictingDesire - a desire that has no other conflicts.

Chapter 5 Refining the Framework 146

ExprExprExpr

ObjChrc Chrc ThemeChrcChrc

ContObjObj

Subj 4

Plan

Goal: {*}

BDIAgent

Belief: {*}Desire: {*}

Action: {*}

Intention: {*}

ConflictingDesireAchievableDesire NonConflictingDesire

NonAchievableDesire

Figure 5.2: CG Representation of a BDI Agent.

As such, AchievableDesire and NonConflictingDesire can both be sub

classed as a Goal. A type hierarchy can be deduced from Figure 5.2 to derive

Figure 5.3. W ithout adding any rules, constraints or cardinality, a simple

translation into OWL gives Figure 5.4 and the listing in Appendix A, section

A.I.

5.4.1 Norms and Policies

Institutional norms can often appear as qualitative concepts, such as politically-

charged mandates, and using CGs they can be modelled as has been described

earlier. However, the capture of such concepts does not guarantee their success

ful translation into an agent design specification, and organisations typically

express their norms in the form of policies. Of course, there are norms which

‘exist’ but are not written down, or formally recognised. The advantage of

conceptual modelling for early requirements is that there is no discrimination

between formal and informal norms; they can both be specified as policies.

Chapter 5 Refining the Framework 147

I AchievableDesire I NonAchievableDesireNonConflictingDesire ConflictingDesire

Plan

Goal

Belief ActionIntention BDIAgent Desire

Figure 5.3: Type Hierarchy of BDI concepts (Absurdity Type omitted).

With reference to the MoGATU BDI Ontology of Perich et al. (2004), policies

are used to represent the concepts gathered by declaring the pre and post con

ditions of an agent’s action. The amended type hierarchy is shown in Figure

5.5. Again, the types can be transferred into OWL relatively easily.

5.5 Towards a Refined Framework

So far, the TrAM Framework has been developed to accommodate BDI con

cepts via the use of ontologies. Additionally, the use of an existing ontology

from the MoGATU project Perich et al. (2004) also illustrates the simplicity

of mapping agent concepts back into the TrAM models. For completeness,

an ontological representation of the Transaction Model is required. This will

ensure that the framework provides comprehensive support for all aspects of

the agent requirements gathering process. As a result of this work it is likely

that the over-arching process introduced in Chapter 4, and critiqued at the

Chapter 5 Refining the Framework 148

Goal

Figure 5.4: Visualisation of OWL file, translated from the type hierarchy.

beginning of this chapter, will also require rework. First, the development of

a transaction ontology is described.

5.5.1 A Transaction Ontology

In its current form, the TM graph serves as an aid to structuring the early

requirements efforts by providing a convenient metaphor. This also means th a t

the concept types are defined in readiness for the generation of an ontology. It

should be noted tha t the requirement for specifying relation names in the CG

models implicitly creates relationship properties for an ontology, saving design

time and supporting consistency in modelling.

The hierarchy of types from the generic TM is shown in Figure 5.6. Since

NonConflictingDesire

Conflicting Desire

Desire

/ \/ ->w

BDIAgent)

(> a / Action

owl:Thing

X
Intention

•— ___________ / V

AchievableDesire

NonAchievable Desire

Belief

X - s
(Plan

Chapter 5 Refining the Framework 149

PolicyD esire A ctionPlan BDIAgentBelief Intention

N onA chievableD esireN onC onflictingD esire C onflictingD esireA chievableD esire

Goal

Figure 5.5: Amended type hierarchy to include Pol icy concept.

Absurdity

Econom ic R esourceEconom ic_Event T ransaction Outside_A gent lnside_A gent

Figure 5.6: Type hierarchy from the generic Transaction Model.

Chapter 5 Refining the Framework 150

BDIAgent

A bsurdity

T ransactionEconom ic Event Econom ic R esource

O utside_A gent 11 In s id e A g e n t

Figure 5.7: Refined TrAM Type Hierarchy.

both the InsideAgent and OutsideAgent are specialisations of a Type: Agent,

this relationship can be generalised. To reuse the ontology discussed in the

previous section, the type has been generalised to BDIAgent, as in Figure 5.7.

The classes in OWL are concrete implementations of concepts so:

[Transaction] becomes <owl:Class rdf:ID=‘‘Transaction' } >

Similarly OWL properties map to relations. However, from the TM CG we

have the Part relationship between Transaction and Economic Event.

[Transaction]->(Part)->[EconomicEvent].

To satisfy the OWL ‘property’, an inverse relationship has also to be de

clared. this results in two relationships:

hasPart and isPartOf

Giving:

Transaction hasPart EconomicEvent, and

EconomicEvent isPartOf Transaction. The relevant OWL is as follows:

<owl:ObjectProperty rdf:about="#hasPart">

Chapter 5 Refining the Framework 151

InsideAgent

Outside A gent

Figure 5.8: Visualisation of TM ontology.

< rd fs :range r d f :resource="#EconomicEvent"/>

<owl: inverseOf>

<owl:ObjectProperty r d f :ID="isPartOf"/>

< /owl: inverseOf>

< rd fs :domain r d f :resource="#Transaction"/>

</owl:Obj ectProperty>

The corresponding visualisation of the OWL ontology is shown in Figure

5.8, and the entire OWL listing can be found in Appendix A, section A.2.

5 .6 A n I m p r o v e d P r o c e s s

This chapter has developed the TrAM Framework in order tha t it can explicitly

mandate the elicitation of relevant agent concepts, whilst also mapping the

models to an existing ontology. Furthermore, the Transaction Model has been

mapped to an ontology to support the whole process.

However, reflecting critically upon the case study in Chapter 4, the whole

E c o n o m i c R eso u re e

(B D I.Ag e nt
' - V3- — •
owl:Thing

■--r —-— —------- —

* - Transaction

E c o n o m ic E v e n t

Chapter 5 Refining the Framework 152

of the analysis was predominantly driven by UML use cases, and made use of

domain expertise tha t had already been acquired prior to modelling. Whilst

the TM was used to refine the use case information, there was little ‘early'

requirements gathering and as such, the potential of CGs and the TM were

not demonstrated fully.

Additionally, Chapter 4 recognised tha t a degree of familiarisation with

CGs helps the process enormously and it is probable tha t most domain experts

will neither have the time nor the inclination to study another notation.

John Sowa approached the CG notation from the perspective of natural

language (NL) and CGs can be parsed into NL. A previous example is illus

trated in Figure 5.9. The associated NL (parsed by the CharGer tool, Delugach

(2006a)) is as follows:

There is a Proposition where

betw Person Mum and Person Dad is Person Daniel

Person: Mum

Person: Daniel betw

Person: Dad

Figure 5.9: Example of a display form graph to be parsed into natural language.

A more pertinent example is shown below, with the associated graph in Figure

Chapter 5 Refining the Framework 153

•4~(part)^— — ►

^ yen t subjecT^ (so u rc e Care_Recipient: Betty jestination^ ($ven ^ su b je c t^

1 _
L .

Care: #1

lestinatiorr. Care Provider: Meals On W heels

equeste r

eliverer

source

Figure 5.10: Specialised healthcare TM graph.

5.10.

There is a Proposition where

manager of Care #1 is Local_Authority SCC

deliverer of Care #1 is Care_Provider Meals_On_Wheels

part of Transaction is Sale

part of Transaction is Raise_Debtor

requester of Care #1 is Care_Recipient Betty

source of Money 0 6,000 is Care_Recipient Betty

destination of Care #1 is Care_Recipient Betty

event_subject of Sale is Care #1

event_subject of Raise_Debtor is Money @ 6,000

destination of Money 0 6,000 is Care_Provider Meals_0n_Wheels and

source of Care #1 is Care_Provider Meals_0n_Wheels

The parsed output depends upon at which concept the reader attem pts to

interpret the graph. This can be m andated with an LF graph (since we tend

to read from left to right, and from top to bottom), in contrast to a DF graph.

In this respect, the following issues are important:

LF requires the concept order to be read correctly, which is absent from

Chapter 5 Refining the Framework 154

a DF CG. Thus we need to represent where a DF CG ‘starts’, and maybe

direct the order in which the concepts are evaluated. This deals with the

criticism of a lack of process (order) that DF graphs have.

• CharGer produces an ‘English’ output from DF graphs that ideally needs

transforming into LF (in order that the ‘start’ concept might be iden

tified), after which it might be further transformed back into NL for

the domain expert. This would reduce the intellectual distance between

model and NL for the domain expert, simplifying knowledge capture and

accuracy.

• Some of the relation names from DF do not read very well in LF -

Sowa has attempted to define a conceptual dictionary (Sowa, 1984), with

models that are based upon NL. Translating from NL to LF, then DF

might make the LF more readable for the expert, or at least be more

sensible as an input for conversion back into NL for a domain expert to

understand.

In essence TrAM overcomes this by providing the TM metaphor; this simplifies

the comprehension of the graph as it uses a vocabulary that is sufficiently

abstract to accommodate a wide variety of concepts, yet is straightforward

enough to comprehend in terms of a perceived organisational activity. This

restricted vocabulary also provides guidance as to the ‘fit’ of possible domain

terms, aiding the agent system designer and domain expert alike.

However, since LF and NL assist the framing of questions for the domain

expert to check the validity of the model, the use of CGs and the TM do not

preclude the use of NL at the outset for requirements capture, though this is

beyond the scope of this research.

Chapter 5 Refining the Framework 155

5.7 Discussion

This chapter has described the refinement of the TrAM Framework and whilst

generic features such as high-level conceptual modelling, ontology generation

and model-checking have been illustrated through the healthcare case study,

the TrAM Framework shall now be evaluated with reference to Section 2.8 in

Chapter 2 , in order to critically assess the usefulness of this approach.

5.7.1 Desired Characteristics

Chapter 2 established a set of desirable characteristics for an agent design

framework, thus describing a mandate for this research. Each of these char

acteristics shall now be considered in relation to TrAM by using the ranking

model proposed by Sturm and Shehory (2003):

1. A clearly defined process that describes how the framework is applied

together with the details of any implicit process. The TrAM Framework

process describes the steps required to perform modelling and analysis of

requirements capture for a MAS. To supplement this, a series of design

artefact documents illustrate how the models are processed and refined

in an iterative way (Appendix C). Much of the model analysis could be

automated, and the current lack of an automated tool means that this

particular criteria is not yet comprehensively satisfied.

Ranking = 5.

2. An ability to manage differing levels of abstraction, from the highest down

to the most detailed descriptions. Both of the case studies and associated

prior work (Hill et al., 2006a,b) have demonstrated the wide variety of

levels of abstraction that the CG notation can represent, from individual

Chapter 5 Refining the Framework 156

agent goal and task analysis through to societal motivation concepts.

Unlike Gaia however, TrAM does not specify an organisational meta

model, even though the notation can support it. This is less of an issue

for an experienced agent system designer, but the inclusion of a meta

model would improve comprehension considerably, and offer guidance

when dealing with complex domain problems.

Ranking = 5.

3. An ability to capture and model high-level qualitative concepts at an

‘embryonic’ requirements stage. The representation and analysis of qual

itative concepts is a key strength of the TrAM approach, enabling high-

level concepts to be scrutinised and included within the resulting system.

This reduces the temptation to compromise system functionality in or

der to successfully implement an a MAS application. Prometheus gives

considerable support for the decomposition of goals, though it assumes

that the ‘early’ requirements have been established already. Tropos is

much better in this respect, as it explicitly addresses early requirements.

The treatment of qualitative goals with Tropos is less obvious, though

it is likely that ‘hard’ and ‘soft’ goal analysis will prompt the designer

sufficiently that the necessary qualitative analysis is performed.

Ranking = 1

4. A guide to the elicitation of stakeholders and their goals, and be able to

manage the discovery of system goals. The consideration of high-level

concepts with TrAM means that societal stakeholders can be elicited. It

is conceivable that prior experience with other agent design methodolo

gies may cause the agent system analyst to ‘rule out’ societal or strategic

Chapter 5 Refining the Framework 157

stakeholders, restricting the potential benefit of utilising TrAM. In con

trast to Tropos and Prometheus however, goal elicitation is performed

by iterative analysis, rather than the process of AND/OR decomposi

tion. Therefore TrAM is more flexible in its representation, though it is

possible to be less disciplined.

Ranking = 5

5. A mechanism for eliciting and deriving pertinent agent and domain con

cepts, allowing the representation and open expression of agent concepts

such as: belief, desire, intention, role, society, task. Again, the CG no

tation permits the widest variety of concepts to be represented. TrAM

formalises the representation of BDI concepts in CG notation, by mak

ing reference to a BDI ontology and producing the Transaction Model

type hierarchy and resulting ontology of types. The connection between

concepts, type hierarchies and ontology, within the framework of the

Transaction Model graph, means that TrAM specifically supports the

evolution of a domain ontology as the models are iterated and refined.

This process is currently performed manually, and would benefit from

automation, thus improving speed of analysis and also provide consis

tency checking.

Ranking = 6

6 . A process that includes an implicit model check to verify the elicitation

of key domain concepts at the earliest opportunity. This process must be

able to enable checking of the model’s consistency, ideally with tool sup

port. Use of the TM graph ensures that ‘balance’ checks upon opposing

concepts is implicitly performed. Any missing nodes in the model result

Chapter 5 Refining the Framework 158

in an incomplete graph, and consequently the ontology is lacking also.

The use of CG notation means that the very first TM graph produces a

rudimentary domain ontology, thus supporting the production of differ

ent views of a system at the earliest opportunity. System analysts can

use the CG type hierarchies to refine their models, and they may also

check the appropriateness of domain terms with a domain expert. Addi

tionally the simple parsing of CG models into natural language is also a

convenient vocabulary check for both system analyst and domain expert.

The use of tools is important since the complexities of agent systems of

fer many opportunities for inconsistencies to present themselves, and

whilst CharGer (Delugach, 2006a) supports the maipulation of CGs and

Protege (Stanford Medical Informatics, 2006) the manipulation of on

tologies, there is currently no automated interoperability between these

tools. Since ontologies produced with Protege can be utilised with agent

programming APIs such as Jade (Bellifemine et al., 2001), and the trans

formations between CGs and ontologies are now mapped under the TrAM

Framework, this is clearly an area that requires work.

Ranking = 5

7. A process whereby focus is directed upon inconsistencies or parts of the

model that are ambiguous. Model generation with TrAM is focused al

most entirely upon the realisation of ‘problematic’ concepts. The in

herent balance check of the TM forces qualitative and difficult-to-realise

concepts to the fore, resulting in the analysts’ efforts being expended in

the most challenging areas.

Ranking = 1

Chapter 5 Refining the Framework 159

8 . A means by which domain terms, constraints and rules can be captured

and represented in an ontology. TrAM offers explicit support for on

tology generation by providing a mapping from the TM model, that

incorporates agent specific characteristics. The FOL underpinnings of

CGs imposes a rigour upon the modelling process that together with

the visuality of DF graphs and Peircian logic, presents a comprehensive

means of building rules that can be used to query models and derive new

knowledge. At present this aspect lacks a theorem prover to automate

the process, though the work of Heaton and Kocura (1993) provides a

basis for this operation.

Ranking = 6

9. A representation medium that permits the transfer of models across do

mains, and that serves to complement other agent design methodologies.

The use of TrAM enables models to be transferred in a variety of ways,

and the FOL underpinnings and exchange formats such as CGIF (Del-

ugach, 2006b) permit concepts, relationships and logic to be preserved.

Use of the TM graph allows the abstract transaction concept to be used

as a design metaphor, that is specialised with domain specific termi

nology, policies and rules. Consequently the two case studies illustrate

both the transferable abstract qualities of TrAM, as well as the domain

specifics that appear as a result of modelling with this approach. Addi

tionally, the notion of early requirements capture means that TrAM can

be used as a precursor to other agent design methodologies that require

some initial documented requirements analysis as an input, such as Gaia.

Ranking = 6

Chapter 5 Refining the Framework 160

10. A process that is intuitive and enables novices and experts to design agent

models. TrAM documentation artefacts support the description of the

process, however, there are two issues that this research has exposed.

Firstly, the use of Peirce logic with DF graphs requires familiarity with

both CG notation and rule-base logic. This can be problematic for non

computing domain experts, and may limit the potential audience for

TrAM. Secondly, the CG notation is very flexible, and by its very nature

can be used without reference to the TrAM Framework process. One

strategy would be to impose more stringent process models (akin to

Prometheus), or even to derive a series of design patterns that provide

pre-built models to populate, similar to the abstract TM.

Ranking = 5

C h arac te ris tic G A IA P ro m eth eu s Tropos TrA M
1. Process 4 6 5 5
2. Abstraction 4 5 5 5
3. Early requirements 1 1 5 7
4. Goal discovery 1 5 5 5
5. Agent concepts 2 5 5 6
6 . Consistency checking 2 3 4 5
7. Analysis by exception 2 3 3 7
8 . Ontology support 1 2 2 6
9. Transferability 4 4 4 6
10. Intuitive 3 6 5 5

Table 5.1: Evaluation of TrAM against desired characteristics identified in
Chapter 2.

Chapter 5 Refining the Framework 161

5.8 Conclusions

This chapter has examined the limitations of the initial TrAM approach and

has considered the lack of support for agent concepts such as BDI. The pro

duction of ontologies is regarded as a key advantage of this approach, yet the

initial framework only produced type hierarchies and rules in the form of CGs.

To make the approach more useful, a collection of ontologies have been mapped

that recognise the core agent concepts and the TM, providing the necessary

support for the TrAM Framework. Chapter 6 will demonstrate the improved

framework in a second case study, in the m-Learning domain.

Chapter 6

Applying TrAM to M OBIlearn

6.1 Introduction

The refined framework introduced in Chapter 5 will now be applied to M 0-

Bllearn1 an EU Funded project in the m-learning domain. The TrAM Frame

work is used to produce a series of artefacts including:

• High-level conceptual models demonstrating qualitative and political in

fluences upon the case study;

• Specialised Transaction Models (TM) illustrating duality relationships

between events and resources;

• Hierarchies of concept types and an audit trail of key modelling decisions;

• Ontology development from the requirements models.

These results illustrate the extent to which each of the key criteria identified

in Chapter 2 have been addressed. Areas of generic applicability are identified,

as are domain specific aspects of the modelling process.

1EU Project IST-2001-37440

162

Chapter 6 Applying TrAM to MOBIlearn 163

6.2 Rationale for Case Study

The MOBIlearn Project (more details in Appendix B Section B.l) is an at

tempt to improve access to knowledge for selected users, by retrieving learning

materials from the Internet via mobile connections and devices, to “foster their

life long learning and enhance their working experience” . Three specific groups

of users have been identified:

1. Workers - providing learning for continual, work-based skills and knowl

edge development;

2. Citizens as members of a culture - to enrich the learning and offer new

possibilities for embracing cultural knowledge during a visit to a city;

3. Citizens as family members - to provide simple medical information on

demand.

The aim of the project is to provide a set of requirements, pedagogical guide

lines, best practices and an architectural framework to support mobile-learning

(m-learning) (Haley et al., 2004). MOBIlearn is similar to the community

healthcare case study discussed in Chapter 4 in that they are both inherently

multi-agent systems, and they are both complex. The m-learning platform

however, differs somewhat in that the students must engage with the technol

ogy and utilise mobile devices to assist their own learning process. In contrast

the community healthcare domain abstracts the technology away from the re

cipient and attempts to make it as invisible to the user as possible. There

is also a need to build interactive communities, amongst not only the man

agers and facilitators of learning (tutors), but also the learners themselves.

This makes the process of gathering requirements more challenging as a much

wider range of demands will need to be accommodated.

Chapter 6 Applying TrAM to MOBIlearn 164

As such, MOBIlearn is a particularly suitable candidate for a second case

study as the preliminary work packages concentrated upon requirements cap

ture, and some significant issues have been identified with regard to the difficul

ties encountered during the categorisation and management of domain terms

(Haley et ah, 2004). Specifically, one of the ‘lessons learned’ was:

“People have varying concerns and want to examine the require

ments from different perspectives. These concerns change over time

and during different stages of the project.”

The key outcome was that a requirements management system needs to be

able to permit ad hoc updating of categorisation criteria from the requirements

models. The use of TrAM to build ontologies from high-level conceptual models

is an attempt to address this.

6.3 M BA Scenario

The MBA scenario explores formal learning by highly motivated, busy profes

sionals and first-year students. It investigates the use of new and emerging

technologies as part of a time and cost optimised learning process.

6.3.1 Capture Concepts

The first step is to capture some concepts. Prom Appendix B, Section B .l,

one of the objectives of the project is:

“... to improve the knowledge level of individuals through cost

and time optimisation of learning processes.”

Chapter 6 Applying TrAM to MOBIlearn 165

This is simply modelled as a CG, to define some of the concepts, and to start

thinking about the relationships between concepts. Figure 6.1 illustrates the

relevant graph. Such is the richness of the notation that two individuals may

produce two different graphs; this is typical during requirements gathering

exercises and the TrAM approach is no exception. The debating process can

start early, and it typically focuses attention upon a particular area for further

analysis. Additionally a parsed English version of the graph is as follows:

There is a Proposition where

Level of Knowledge is Increase

Provider of Learning is MOBIlearn_service

Srce of Honey {*} is Person {*}

Srce of Commitment is Person {*}

Subj of Commitment is Time

Chrc of Cost is Money {*}

optimise are Cost and Time and Process

Expr of Learning is Person {*}

Inst of Learning is Process

Chrc of Learning_materials is Cost

Rslt of Learning is Knowledge and

Obj of Learning is Learning_materials

This process is repeated until all of the concepts seem to be captured. Un

like other agent modelling approaches however, it is anticipated that designers

will not have to immediately derive process-level use cases. It is also prefer

able to model high-level concepts such as, society, government, economy and

culture. For instance, the system has a duty of care to ensure that the stu

dents’ experience is maintained or improved. Figure 6.2 gives an example

of how this might be modelled. Immediately, Meas (measure) relationships

Chapter 6 Applying TrAM to MOBIlearn 166

<---- (Ex£)«Person: {*} Learning r o v i d e r

I n c r e a s e

C o m m i t m e n t K n o w l e d g e Learnmg_materials

t i m i s

MOBIlearn service

Money: {*} 12 J 3 1 d t

Figure 6.1: Modelling a MOBIlearn objective w ith CGs.

identify probable qualitative concepts, in this case Quality and Feedback.

Looking specifically at the MBA scenario, Figure 6.3 describes the basic char-

System: {*} Student: {*}

Obligation Obligation

Maintain ImproveImprove Feedback

Meas

Quality Meas

Figure 6.2: The M-Learning platform’s duty of care towards students.

acteristics of the MBA student. Again, concepts are being brought to the

fore ready for debate. The services offered by the MOBIlearn platform are

also considered arid the model begins to show some of the stakeholders of

Chapter 6 Applying TrAM to MOBIlearn 167

Student: MBA

@Higher_than_averageMotivation

Subject

Study

Figure 6.3: CG representing an MBA student.

the system, together with the roles they play. For instance, the Student

will request LearningJDpportunities in order to acquire knowledge. The

M aterials will be authored by a Tutor. The Tutor will also facilitate various

LearningJDpportunities such as T utoria l_A ctiv ity and Group_Working,

and deliver a Lecture or Presentation. Whilst these models are being cre

ated, several other elements of the process are also occurring:

• The analyst is thinking about domain terms - both concept names and

relation names. These will eventually become part of the classes and

properties of an ontology.

• Analysis is continually focused on modelling that is either too abstract,

qualitative or just too difficult to represent with the current knowledge.

This concentrates effort upon the areas tha t need the most work.

• ‘ Why' questions are being asked of the model, as well as the more typical

what and how. This helps build up a rationale for the modelling decisions,

which is implicitly documented as part of the process artefacts.

• The analyst will also be thinking about how this system will be realised

in terms of goals - what are they, where are they and how they will be

Chapter 6 Applying TrAM to MOBIlearn 168

expressed.

Student :{*}Telecom_Organisation 'rovider

Platform lequester,lanager

Learning_Opportunities Obj MaterialsMOBIlearn service 'roducer

C h r c C h r c C h r cC h r c C h r c C h r c

Tutoriai_artivity M On mp wuilmn|Multimedia ■ Print ■ Presentation Lecture

acilitator.leliverer leliverer

Tutor :{*}

Figure 6.4: CG model of the MOBIlearn service characteristics.

Once a number of graphs have been created, recurring concepts will start

to emerge. At this point it becomes possible to join graphs to make a more

comprehensive model of the system. Figures 6.5 and 6.6 show graphs tha t can

be joined. The graphs remain separate for legibility, however the coreferent

concepts [Student: {*x}] and [Learning_Materials:{*y}] illustrate where

the graphs will join. It should be noted tha t the graph of Figure 6.4 contains

the concept Materials, whereas Figure 6.1 contains Learning_Materials.

Clearly they are referring to the same entity and this is one such example

of how domain concepts are reconciled throughout the process of modelling.

As the concepts become more grounded, the analyst can begin to consider the

desires tha t each stakeholder would like to pursue.

For instance, the Learning_provider would like a course tha t is recognised

as P restig iou s , whilst also offering Value-forjnoney. Similarly a Student

also desires Value_f orunoney.

Chapter 6 Applying TrAM to MOBIlearn 169

S u b j e c t) ►

M o t i v a t i o n @ H i g h e r _ t h a n _ a v e r a g e

B u s y

S t u d e n t : { * y } L e a r n i n g ' r o v i d e r . M O B I l e a r n s e r v i c e. S r c e

ObiS r c e , R s H I n s tI n c r e a s e

K n o w l e d g e L e a r n i n g _ m a t e r i a l s : { * x }C o m m i t m e n t

S u b i T i m e

> t i m i s (P r o c e s s

M o n e y : { * } C o s t

Figure 6.5: Initial overall model Part 1.

T e l e c o m _ O r g a n i s a t i o n S t u d e n t : { * y }' r o v i d e r ,

P l a t f o r ml a n a g e r ,

L e a r n i n g _ O p p o r t u n i t i e sM O B I I e a r n _ s e r v i c e O b j L e a r n i n g _ m a t e r i a l s : { * x }' r o d u c e r

.Chrc . C h r c. C h r c , . C h r c , . C h r c , . C h r c ,

I 11 I n n B T i i t n r i n l _ a c t i v i t y J G r o u p _ w o r k i n gM u l t i m e d i a P r e s e n t a t i o n

;a c i l i t a t o r . ra c i l i t a t o r A u t h o rl e l i v e r e r l e l i v e r e r

| T u t o r : { * } [

Figure 6.6: Overall model part 2 (note coreferent links to Part 1 model).

Chapter 6 Applying TrAM to MOBIlearn 170

The Learning_provider also wants academic integrity, in both Students

and Tutors. Immediately conflicting goals such as ‘recruit more students' and

‘raise course fees’ present themselves as part, of the elicitation process. Figure

6.7 illustrates some of these desires. Using the preliminary model in Figure

^ — 1230S t u d e n t : { * x }

T h e m e ,

P r o p o s i t i o n

V a l u e _ f o r _ m o n e yC o u r s e : { * a } i s s e s s m e n]
P r o p o s i t i o n

S t u d e n t q * x } B T u t o r : { * y } |

T h e m e ,
. A g n t , £ g n t ,

- ► (t h e m e .D e s i r eL e a r n i n g _ p r o v i d e r
B e h a v i o u r

T h e m e , . C h r c

H o n e s tP r o p o s i t i o n

P r e s t i g i o u s[C o u r s e : { * a } C o n s i d e r e d

Figure 6.7: Some high level desires of the stakeholders.

6.7, analysis is now conducted upon the individual stakeholders. From Figure

6.8 we can see tha t the high level desires of the Student can be broken down

further. In order to pass the course, the Student must attain a Total_Mark

of at least 40%. To achieve this, it is necessary to engage with the learning

opportunities and participate in group activities. Improved-Prospects are

also a goal, as is the acquisition of new and relevant Knowledge. Repeating

the exercise for the Tutor, we derive Figure 6.9. The high-level goals for

Student and Tutor are summarised in Table 6.1.

Desires such as enjoy course and obtain better prospects are of course ex

amples of qualitative goals tha t would give an agent little indication of the

Chapter 6 Applying TrAM to MOBIlearn 171

ObiD e s i r e R s l t, E x p r , .Chrc

G o a l : { * } L g q u i s i t i q i K n o w l e d g eA s s e s s m e n t : { * }

C h r c T h e m e .

P r o p o s i t i o n P e r s o n : { * } R e l e v a n t
T o t a l _ M a r k

S t u d e n t : { * x }

. C h r c ,
. C h r c ,l e a s u r e

S t u d e n t : { * } J P r o f e s s i o n a l@->_40%
S t a t e : H a p p y

l e c e s s a i
L e a r n i n g O p p o r t u n i t i e s

P r o p o s i t i o n

S t u d e n t : { * x }

' r o d u c e r , i n n o t a t e r ,i u b m i t t e r . l a n a g e r , l i s c u s s e r

S t u d y i n g M a t e r i a lG r o u pA s s i g n m e n t : { * }T u t o r : { * }

Figure 6.8: Iterated CG model of Student desires.

Chapter 6 Applying TrAM to MOBIlearn 172

T u t o r : { * y } | O b jD e s i r e

P r o p o s i t i o n

S t u d e n t : {* }I S t u d e n t : {* } G o a l : { * } | S t a t e : H a p p yExpr

—►Approvement Approvement T h e m e ,
K n o w l e d g e

P r o p o s i t i o n
:a c i l i t a t o r C o u r s e : { a } P r e s t i g i o u s

T u t o r : { * y } |l e c e s s a i

P r o p o s i t i o n

l e l i v e r e rl o d e r a t o r

D i s c u s s i o n i u t h o r:a c i l i t a t o r L e c t u r e

T u t o r i a lL e a r n i n g M a t e r i a l s

.Chrc.Chrc M u l t i m e d i al o l l e c t i o n ,

rm ummm mS t u d e n t : {*}

Figure 6.9: Iterated CG model of Tutor desires.

intention (plan) required, and as such require more scrutiny before the system

is implemented.

If enjoy course is considered, then the analyst is directed towards defining

an output or set of results tha t would indicate that the goal has been success

fully achieved. Some indication of the Students' state could be gleaned via

feedback mechanisms, the result of which is some data tha t might be used for

a performance indicator (PI). Figure 6.10 illustrates how the Measure relation

ship is utilised to achieve this.

6.3.2 Transform with TM

From the models gathered so far the CGs are reviewed to determine how they

fit in to the generic TM (repeated in Figure 6.11).

Chapter 6 Applying TrAM to MOBIlearn 173

S takeho lde r G oal
Student Enjoy course

Pass course
Acquire new knowledge
Acquire relevant knowledge
Obtain better prospects
Engage with learning opportunities

Tutor Facilitate knowledge acquisition
Facilitate student group discussion
Author learning materials
Deliver lectures and tutorials
Moderate student discussion
Engage student
Increase number of students on course
Facilitate a prestigious reputation for the course

Table 6.1: Some of the high-level stakeholder goals from the CG models.

The TM denotes that Acquire_knowledge is a transaction that arises due

to the occurrence of two complementary economic events, namely Sale and

Raise_Debtor as shown in Figure 6.12.

These are considered economic events because they illustrate the demand

upon a limited resource. The Raise_Debtor requires limited resources of the

Learning_provider, who has to make provision for this cost at the potential

expense of other events such as developing new materials, marketing courses

or investing in new infrastructure, upon which their finances could be spent.

Similarly the Sale calls upon the Tutors priorities, in terms of potentially

being required elsewhere or more simply the ‘contact-time’ spent with a stu

dent. Hence the Learning_provider needs to manage (source) some optimally

cost-effective time. Clearly if money was no object then an infinite number of

tutors could be employed and the time available would be maximised, and as

a result the greatest opportunity for learning would take place.

Chapter 6 Applying TrAM to MOBIlearn 174

(E ^ r)------- ►

Student: {*x}

1r
JL

Desire Goal: {*} -►(Them e)

P roposition

S tudent: {*x}

State: Happy

4---------(S o u rc e)^ ----------- 4— ^ e a s u r ^ ^ - - |

Figure 6.10: Exploring the enjoy course goal.

Since the Learning_providers finances are limited, and there are compet

ing prioritising demands for tha t finance to be spent elsewhere, money is an

economic resource tha t is scarce. This in turn makes an unrestricted number

of Tutors' hours impossible, and as a consequence Time is an economic re

source. This is demonstrated by the very fact tha t Time denotes a restriction

caused by competing demands (e.g. another Student being attended to by the

Tutor) or the geographical timezone of the Tutors’ location when the Sale is

made. The corresponding benefit for these costs is the economic resource of

the Learning, the D estination of which is the Student.

The consideration of Time, Money and Learning, brings the realities of

the Learning_provider as a business to the fore. The cost-benefit trade-off

for the Learning_provider is tha t there may be sacrifices tha t are too great to

make, such as high Tutor to Student ratios. Since this transaction depends

quite heavily upon the optimal ‘spend’ of time against money, there is a focus

Chapter 6 Applying TrAM to MOBIlearn 175

towards considering efficiency gains tha t might make the transaction more

profitable.

The graph of Figure 6.12 should also show a transaction between the

Student and the Learning_provider. However this is difficult to ascertain

since the graph appears to indicate tha t the Learning_provider, like the

Student, is the D estination of the Learning. This clearly does not model

the relationship between the concepts in a realistic manner, and therefore it is

necessary to represent the economic resource with a meaningful measure such

as a performance indicator (as shown before in Figure 6.10). This PI would

then be used to measure the effectiveness of the Learning_provider in provid

ing learning opportunities. This measure thereby offers the focus for a relevant

quantifiable concept upon which the Learning_provider and Tutor can make

the most informed decisions, as indeed would their software agents. The fol

lowing CG in Figure 6.13 captures these dimensions, therefore demonstrating

tha t intangible qualitative economic resources need to have a characteristic of

being measurable.

Economic_Event: { a}

Sourcevent_subjec

« -(P a rt)« — Transaction —KPart)-> Economic_Event: {*b}

lnside_Agent: {*}

Economic_Resource: {*c}

Jestinatior^ ^ v e n t s u b je c t

Economic_Resource: {*d}

Outside_Agent: {*} ^Source

Figure 6.11: The generic Transaction Model.

We can repeat this activity for other transactions. One such pertinent case

is the investment of time to study at the cost of time spent with the family

(Figure 6.14).

Chapter 6 Applying TrAM to MOBIlearn 176

Raise Debtor

C ^ v en ts u b jec£> (Source

Commitment

Acquire_knowledge

Learning_provider

I K S) -

^ - ^ e s t i n a t i o ^ <^v en t^u b jec t7>

Learning

-><C^mimisatjo5>^"

estination

Source

Figure 6.12: MOBIlearn scenario Transaction Model.

Raise Debtor

^vent_subjecj^> (Source

Commitment

Acquire knowledge

Learning_provider

-►(Part)------------ ► H I S

destination^ ^ vent s u b je c ^

▼

i s a t io ^ > 4 -

estination

estination

Source

Learning

Figure 6.13: Amended Transaction Model.

Chapter 6 Applying TrAM to MOBIlearn 177

C rea te Debt "(parj)4- lm p ro v e _ p ro sp e c ts Study_M BA

d y en t_ su b ject^> ^ s o u rc e)

C ost: M oney C ost: T ime

Fam ily

L ea rn ing_P rov ide r

estination^) V£yent_subject

B enefit: H igher S alary

e s tin a tio nes tin a tio n S tu d e n t ^source

Figure 6.14: A trade-off between studying and spending time with the family.

Figure 6.15 illustrates another transaction, where the Student, by taking

the course, produces performance indicator (Pi) data. Therefore a potential

student could infer the aggregate quality of student care by comparing this

data with respect to a particular benchmark. As before in the previous case

<--------- (? a r t) 4 — |Provide course

^yentsubject^

Acquire_knowledge

Learning_provider

Duty_of_care_action

Passed MBA course

1
destination^- Student

•^-destination^ d y e n t subjec^)

Source

Figure 6.15: Capturing a student transaction.

study, (Chapter 4) transformation with the TM graph enables a type hierarchy

to be mapped from the concepts derived (Figure 6.16).

The models are repeatedly iterated until the obvious missing concepts are

derived. A useful operation at this stage is to check the Natural Language

representation of a graph. This produces statem ents that:

1. Flave domain concept names th a t can be verified in terms of grammar,

Chapter 6 Applying TrAM to MOBIlearn 178

T ransaction 1 Econom ic R esource I

' / * T \
Com m itm ent | I Time 11 Money

/
Acquire know ledge | 1 PI 1

|_BDIAgentJ

, 4 \
I O u ts ld e A g e n t^ J jn s ld ^ ^ g e n t J

/ \ t
^Tuto rJ ^S tu d e n tJ L ea rn ing ,p rov ide r

|_Econom k_Event_

/ \
RalseDebtorJ

Figure 6.16: Type hierarchy from TM.

and;

2 . Are verified in relation to the domain context.

For example, the following has been generated from Figure 6.13. Most of

the statements appear to make sense. If we consider however, Measure of

Learning is PI, it might be more appropriate to use a domain-related term

such as Examination_mark or Overall_mark. If this is judged to be necessary,

then the type hierarchy can be amended accordingly. This is a suitable point

to consult a domain expert, since a considerable amount of analysis has already

been performed purely on the high level concepts. The creation of the models

is such that they serve as a framework for domain specifics such as terms, and

the TM and resulting type hierarchies are easily modified. NL is an important

step as it enables the analyst to perform a rudimentary check of the work

conducted so far, whilst presenting the analysis in a straightforward way for

domain experts.

There is a Proposition where

Measure of Learning is PI

Destination of Learning is Student

Destination of Money is Tutor

Optimisation of Time and Money is Commitment

Chapter 6 Applying TrAM to MOBIlearn 179

Part of Acquire_knowledge is Sale

Part of Acquire_knowledge is Raise_Debtor

Source of Commitment is Learning.provider

Destination of PI is Learning_provider

Event_subject of Sale is Learning

Event_subject of Raise_Debtor are Money and Time and

Source of Learning is Tutor

The graphs are now amended to reflect any new knowledge that has been

derived.

6.3.3 Gather Use Cases

W ith reference to the MBA use case scenario text in Appendix B, section B.2 ,

Figure 6.17 illustrates the top-level use case model. The following stakeholders

are shown as actors:

• Teacher,

• Student Administrator,

• Student, and

• Group, a generalisation of the Student actor.

The use case provide the necessary process logic that is absent from the TM

graphs produced so far, whilst also enabling both model types to be iterated

into a cohesive requirements model. Consequently the next step is to verify

and refine the TM graphs.

Chapter 6 Applying TrAM to MOBIlearn 180

Communication
« e x te n d »Reference context

objects in discussion

Discuss about learning
coordination Group

Communicate
interpersonal Be aware

of situation

Create
subgroup

Material Handling

Tutor Transform
communication into
material

Student

Produce
material

Manage
material

Evaluate learning
performanceGuide learning activities

Administrate learner

Student
Administrator

Figure 6.17: MBA top-level scenario use case model.

Chapter 6 Applying TrAM to MOBIlearn 181

6.3.4 Verify TM Graphs

Upon producing the use case models, it is clear tha t some inconsistencies al

ready exist. First, the domain term Teacher appears, rather than Tutor.

This can be accommodated w ithin the eventual ontology. Secondly, a Student

Administrator actor is specified in the use case model. Whilst no such stake

holder exists in the TM graphs, the Student Administrator is a role w ithin

the rem it of the Learning Provider and is therefore a specialisation. From

the original TM of Figure 6.13, the two simple amendments are demonstrated

in Figure 6.18.

| Kfiiart)--------- ►1)233Raise Debtor Acquire_knowledge

•^pestinatiqr^ <^yent_subjec^>C jv e n ts u b ject]]) (Source, Learning_provider: {*}

Student_Administrator: {*}

LearningCommitment leasure

Student :{*}Time itimisatioj •estination

Teacher: {*} .Source•estinatioi

Figure 6.18: Updated TM graph from MBA use cases.

Further iterations refine the individual goal models of the stakeholders, as

the focus is directed upon more of the detail. For instance, the desires ex

pressed in the graph of Figure 6.8 has yet to offer sufficient detail to document

the concept of Assessment. W hilst this graph shows tha t the Student must

achieve a Total_Mark in excess of 40%, the components w ithin tha t assessment

are not articulated. Figure 6.19 shows the extra facets tha t are derived during

modelling.

Chapter 6 Applying TrAM to MOBIlearn 182

Student: {*x}

ObjsExpr,

A ssessm en t: {*} Ichievem enj

yChrc,
Proposition

Student: (*x)

‘roducer.ktmmunicatoj iubmitte^, jarticipatio i lanager.

A ssignm ent: (*}Exam ination
@_>_40%

Subject.Chrc, :acilitator, Activity: {'

tequiremenj

.Part

Self-D irected>_40%

Figure 6.19: Refined model of Student desires.

The next stage is to perform some analysis upon the models to ascertain

any inconsistencies, whilst also verifying the requirements gathered from the

use cases.

Q uery ing th e M odel

Using Peirce logic (described in Chapter 3) the models are queried and amended

where necessary to take account of deficiencies in the modelling so far. This is

performed by directing queries at the TM in the form of rules. For example:

The MOBIlearn system employs a pedagogical approach to facilitate mobile

learning.

The linear form CG would be:

-i [[Learning: {*x}] - > (Delivery) - > [MOBIlearn] -

-i [[Mobile] < - (Chrc) < - [Learning: {*x}] -

- > (Approach) - > [Pedagogy]]] .

Chapter 6 Applying TrAM to MOBIlearn 183

The display form graph is shown in Figure 6.20. The following rules are

further examples and are not an exhaustive list:

1. Students may participate as individuals, as a member of a group or both.

Figure 6.21.

2. All learning content must be administered and managed remotely. Figure

6 . 22 .

3. The Local Authority pays for the education in full where it is deemed that

the student is eligible. Figure 6.23.

4. The Student pays for the education in full where it is deemed that the

Student is ineligible for financial assistance. Figure 6.24.

5. A Student may be eligible for financial assistance if they are female and

between the ages of 18 and 65 years old. Figure 6.25.

6. The eligibility is determined by reference to current educational policy.

Figure 6.26.

As each rule is scrutinised, the TM can be appended with the new knowl

edge in order to specialise it further. This serves to establish the conditions

required for a transaction to successfully occur, whilst building the required

ontology of domain terms. In order to assess the viability of the model, it

is then tested by using domain-specific situations. This stage is important

as it assists the verification of consistency with the application domain, as

shortcomings in the model are easier to elucidate with a concrete example.

Chapter 6 Applying TrAM to MOBIlearn 184

Delivery MOBIlearnLearning: {*x}

Learning: {*x}

(Chrc>

pproach,

Mobile

Pedagogy

Figure 6.20: The MOBIlearn system employs a pedagogical approach to facil
itate mobile learning.

Student: #1234 \4— (Agnt)4— Participation Group

[Student: #1234 4—(^gnj)4 — K^Tanne^—► Individual

S tudent: #1234 \4—(AgntH--- Participation

a n n e r

Group

Individual

Figure 6.21: Students may participate as individuals, as a member of a group
or both.

Chapter 6 Applying TrAM to MOBIlearn 185

Learning_M aterials: {*}

.Chrc. Loc Rem ote

M anagem ent

A dm inistration

Learning_M aterials: {*}

Figure 6.22: All learning content must be adm inistered and managed remotely.

StudentLearning lequester

Local_Authority S tatus: Eligible'estinatioiLearning

Figure 6.23: The Local Authority pays for the education in full where it is
deemed th a t the student is eligible.

Chapter 6 Applying TrAM to MOBIlearn 186

Learning — ► ^tequeste^ ► S tudent -►(Chrg)

CLearning S tudent 3 S ta tu s: Eligible

S ta tu s: Eligible)
Figure 6.24: The Student pays for the education in full where it is deemed
tha t the Student is ineligible for financial assistance.

\

A ge: @ >18 < 65Student: {*x}

G ender: Fem aleChrc

P roposition

Student: {*x}Student: {*x} o ss ib le ,

.Chrc.

S tatu s: E ligible

✓

Figure 6.25: A Student may be eligible for financial assistance if they are
female and between the ages of 18 and 65 years old.

Chapter 6 Applying TrAM to MOBIlearn 187

F inancial A s s is ta n c e e q u e s te r^ — - ► S tu d e n t: {*x}

E lig ib ility_S tatus

Local_A utho rity : {*y}

S tu d e n t: {*x}O utcom e

Propositioi!i

Local_A utho rity : {*y} Policy E duca tion

C urren t

Figure 6.26: The eligibility is determined by reference to current educational
policy.

6.3.5 Allocate Agents

Once the models have been checked, Agents are allocated to each of the roles

tha t have been identified. These roles are summarised in Table 6.2. As before

in the community healthcare exemplar (Chapter 4), each agent is now allocated

tasks. For brevity only some of the tasks for the Student and Teacher agents

are illustrated in Table 6.3. The last stage is to examine the interactions

between the agents, in order to build a collaboration model. Once this has

been completed, the design artefacts are ready for use by an existing agent

design methodology such as Tropos or Gaia.

Chapter 6 Applying TrAM to MOBIlearn 188

A gent T ype Role
Student Agent The representation of the Student within the sys

tem.
Teacher Agent The representation of the Teacher within the sys

tem.
Learning
Provider (LP)
Agent

This agent represents the provider of the learn
ing environment to support work-based learning,
in this case the MBA scenario.

Student Admin
istrator (SA)
Agent

Responsible for all aspects of student-related ad
ministration such as enrolment, processing of re
sults, etc.

Local Authority
(LA) Agent

The body that represents the local face of govern
ment, which may provide a means of assistance to
the student in terms of learning facilities or finan
cial support.

Presentation
Agent

A role that manages the provision of learning con
tent via different access mediums such as personal
computers, personal digital assistants, tablet PCs
and smartphone devices.

Learning Mate
rials (LM) Agent

An information agent that marshalls learning ma
terials repositories.

Schedule Agent An agent that manages the provision of schedule
information.

Student Records
(SR) Agent

The agent that oversees the administration and
management of student records.

Table 6.2: MOBIlearn agent roles.

6.4 Conclusions

This chapter has described the use of TrAM in the m-learning domain, and has

incorporated the refinements introduced in Chapter 5. After producing a series

of design artefacts that includes high-level conceptual models, a generic TM, a

specialised TM for the MBA Scenario, query graphs (rules), together with the

associated type hierarchies and OWL ontologies, the framework demonstrates

how the criteria identified in Chapter 2 are addressed.

Chapter 6 Applying TrAM to MOBIlearn 189

A gent T ype Task
Student Agent Access learning materials.

Take examination.
Complete coursework.
Manage materials.
Transform communications into materials.
Manage group work.
Evaluate own performance.
Find materials.

Teacher Agent Produce learning materials.
Transform communications into materials.
Set coursework.
Mark coursework.
Moderate coursework marks.
Create coursework marking scheme.
Set examination.
Mark examination.
Moderate examination marking.
Create examination marking scheme.
Manage student groups.
Moderate discussions.
Evaluate learning performance.

Table 6.3: Task allocation for the Student Agent.

Chapter 7

Conclusions and Further Work

7.1 Hypothesis

The hypothesis of this research is: “Conceptual modelling is a useful activ

ity for the early part of gathering requirements for agent-based information

systems.” For the purposes of this thesis, ‘usefulness’ is characterised by the

following:

1. An opportunity to reduce the need for input from domain experts;

2. A means by which system models are tested earlier in the requirements

capture process;

3. An ability to capture abstract domain terms as concepts;

4. The elicitation of an ontology that reflects the domain more faithfully;

5. An approach that complements other MAS design methodologies and;

6. An approach that is sufficiently abstract to be generally applicable in the

wider context.

190

Chapter 7 Conclusions and Further Work 191

The use of TrAM has illustrated how high-level concepts can be captured

in the community healthcare and m-learning domains, and demonstrates the

process by which qualitative concepts are quantified and used to populate a

hierarchy of types prior to ontology generation. From the earliest stage, con

cept types, relations and domain terms can be qualified with domain experts.

TrAM offers the significant advantage of being able to focus in on areas that

require concentrated analysis, thus guiding the agent system analyst, whilst

also concentrating the efforts of the domain expert. The capture, representa

tion and subsequent analysis of early requirements is also supported by TrAM,

and since the framework explicitly supports BDI concepts the resulting design

artefacts can be used as a precursor to detailed implementation with existing

agent design methodologies. Finally, the TrAM approach conveniently uses a

transaction metaphor that is sufficiently abstract to be domain independent.

As such, it is established that conceptual modelling is a useful activity and

therefore the hypothesis is believed to be true.

7.2 Research Approach

The choice of a case study approach might be contentious in some quarters

since there is a view that case study research is only suitable for either pi

lot studies or for generating hypotheses (Abercrombie et al., 1984). For this

research the approach has provided two significant advantages:

1. The use of case studies has enabled authentic, realistic models to be de

veloped that capture context-specific details. Models based upon theory

however, rely upon general rules that may apply in the wider domain,

thereby restricting the depth to which a scenario can be explored.

Chapter 7 Conclusions and Further Work 192

2. The opportunity for learning from a scenario is maximised when the

investigator is immersed within the particular case. Furthermore, the

detailed examination of a specific scenario enables real-life issues to be

captured and included within a model. In particular the consideration of

social interaction, which is a characteristic of a multi-agent environment,

requires deep understanding. Such understanding is difficult to achieve

from general theories.

Upon reflection the use of a case study to develop the framework in Chapter

4 enabled the ‘nuances’ of a real-life situation to be considered. An addi

tional benefit was the assistance of domain expertise available when problems

inevitably occurred. Such expertise aided verification of the process steps,

particularly when an attempt was made to establish the most appropriate se

quence of activities. Indeed the subsequent development of the framework in

Chapter 5 was underpinned by prior detailed work upon an exemplar. Subse

quent work with the second case study (Chapter 6) enabled the framework and

its process to be refined further, facilitating the test of a problematic domain

which contains many qualitative aspects.

One difficulty encountered during the research was the process of sum

marising the results. It is tempting to seek generalisations from the specific

scenarios, and to expect that the results will somehow be validated by increas

ing the number of cases introduced. Rather than producing a large data set

in an attempt to summarise the cases, the ensuing process required to gen

erate the models was abstracted away from the domain-specific detail of the

scenario. As such the TrAM Framework describes the process, whereas each

case describes an instance of a real-life scenario for an agent-based system.

Chapter 7 Conclusions and Further Work 193

Since deeper understanding will be developed by applying TrAM to other

domains, the selection of new cases is very important. In fact case study

choice can have a significant impact on the ability to generalise results. Thus,

further work to develop and refine TrAM must consider scenarios that have the

potential to polarise a result; cases that are either likely to support or falsify

a particular hypothesis.

7.3 Contributions

In summary, the primary contributions of this research are as follows:

1. Use of the Transaction Model to impose a rigour upon the requirements

elicitation process for agent-based systems. The respected Event Ac

counting model of Geerts and McCarthy (1991) has been utilised as a

metaphor for the design of an agent based system. The TM is used as a

business metaphor to elicit the pertinent qualitative concepts and assist

the agent system designer discover quantitative metrics for the imple

mentation, and introduces a balance check in order that the conceptual

models are checked prior to further analysis. The TM graph provides the

guidance necessary for the TrAM framework, permitting rich modelling

activity, yet within the constraints of a suitable organisational represen

tation. In particular, the work of Polovina (1993) has been extended

to include BDI concepts. The TM has been translated into a generic

ontology, and specialisations have produced domain specific ontologies

for community healthcare payment systems and an m-learning scenario,

using OWL.

2. Use of Conceptual Graphs type hierarchies for ontology construction.

Chapter 7 Conclusions and Further Work 194

Each CG has an associated hierarchy of types. Use of the TM enables a

rudimentary ontology to be created much earlier than with other agent

design approaches, which is used in conjunction with more iterations

of the TM to refine the domain terms and their relations. In particular,

the TM promotes the verification of domain terms, specifically when am

biguous qualitative concepts exist, and its use has demonstrated how new

terms and revised relationships were derived. The CG notation provides

sufficient abstraction to be able to model at the societal level.

3. A means to check the transaction models using graphical inferencing with

Peirce Logic. TrAM offers three aspects of model checking:

(a) TM balance check - TM models remain incomplete until the trans

action is satisfied.

(b) Consistency check - Type hierarchies and NL parsing enable the

TM to be verified in terms of the suitability of domain terms, and

the associated super/sub type relations. This work can also be

conducted with a domain expert if required.

(c) Graph querying with Peirce logic - Once the generic TM has been

populated, specific scenarios can be modelled and used as test queries

for the TM. This checks the suitability of the model whilst also de

riving new knowledge, resulting in a more specialised model.

Since the models can be queried graphically with IF-THEN rules, includ

ing AND/OR reasoning where applicable - this can be used to demon

strate the behaviours of the system being modelled and check whether

the intended specifications will be met.

Chapter 1 Conclusions and Further Work 195

4. Providing a method for the elicitation and decomposition of soft goals.

Typically, guidance for agent requirements capture is limited to identify

stakeholders, identify goals, and then suggest that a goal hierarchy is

produced. The resulting AND/OR decomposition can derive hard goals

from soft goals, but this does assume that the identify goals activity has

been sufficiently comprehensive. TrAM improves upon this by ensuring

that:

(a) Goal names are correctly defined - the goal must fit with the rest

of the model and it must describe the concept accurately, in a way

that is commonly understood (for the type hierarchy and subsequent

ontology).

(b) The TM metaphor enables these high level goals to be scrutinised

within the discipline of a particular graph. Balanced models that

contain goals which are too abstract cannot be realised until the

concepts are grounded.

TrAM provides more guidance at the beginning of the requirements cap

ture process and provides mechanisms for the capture and analysis of

system goals.

5. The TrAM process for agent system requirements elicitation. The TrAM

process forces concepts to be considered so that the models can be com

pleted. It may be possible to populate the TM with a particular concept

name, and though the hierarchy of types is completed, the concept may

still be too abstract or qualitative. Effort is then focused upon this con

cept, representing the term in a measurable, quantitative way.

Chapter 7 Conclusions and Further Work 196

Furthermore the early requirements capability of TrAM enables methodologies

without this capability to be extended, improving discovery of stakeholders

and qualitative goals. Models produced with TrAM introduce more formality

at the outset by specifying a notation for the capture of requirements. For

instance, Tropos may produce goals such as enjoy visit and provide cultural

service. The equivalent in TrAM would be:

[Visit]->(Exp)->[State: Enjoy].

[Provide]->(Obj)->[Service]->(Chrc)->[Cultural].

This simple example demonstrates how the TrAM approach specifies domain

terms and relationships at the earliest opportunity, enabling ontologies to be

built iteratively, in conjunction with the modelling and analysis activities.

Since TrAM can be used at the highest levels of abstraction, it is possible to

include the what and who questions for stakeholders and goals, and also the

why. Why is this a relevant issue? Why does the stakeholder regard this goal

as important? Why is this policy in place?

7.4 Further Work

The key areas for further work as a result of this research are:

• Automation. Much of this research has exploited the transformation of

one formalism to another and as such there is much work to be done

with regard to the automation of these repetitive tasks. One particular

candidate is the automation of the Peirce logic inferencing, which may

present difficulties with its intended audience; as the author’s experience

with postgraduate and final year undergraduate students illustrates, it

Chapter 1 Conclusions and Further Work 197

can be challenging to comprehend. An alternative approach might be

to simplify the model querying stage by utilising graph projections only;

business and ontology rules would be built up by specialisations and then

graphs would be projected until a desired set of conditions is obtained.

This makes the process of graph specialisation much easier for potential

users, since rule building is a convenient metaphor for domain experts

and it is therefore a primary research activity for the future. Tool support

is already available for some elements of the TrAM process (Charger,

(Delugach, 2006a), Protege, (Stanford Medical Informatics, 2006)), but

there needs to be better interoperability of tools for the process to be

mechanised. This would improve consistency, and also enable measures

of consistency to take place.

• Metamodels. The flexibility of the CG notation is such that it is possible

to build models that stray from the TrAM process, and it may be useful to

supplement the framework with a metamodel or collection of metamodels

that describe a variety of abstractions such as organisation and society.

• Patterns. A series of design patterns may emerge that represent some

of the more convoluted organisational transactions, assisting the system

analyst compile a solution from tested solutions to common problems.

In particular, it is feasible that domain specific patterns may emerge,

supported by a relevant ontology.

• Semantic interoperability. This thesis has not considered the need for se

mantic representations in agent communication languages, but the devel

opment of a framework that can capture and create ontological represen

tations from a domain means that this is an area worthy of exploration.

Chapter 1 Conclusions and Further Work 198

The use of a controlled language (or at least a defined vocabulary) can

assist the mapping of graphs to agent models and it would be useful

to examine the extent to which such a vocabulary would be beneficial.

The first stage is to define some simple semantics that can be applied to

the graphs. The use of (Agnt) and (Obj) relations helps define graph

concepts considerably. The second stage is to incorporate interaction

protocols into the framework, by concentrating on more of the detailed

agent design. This activity may be provided by an existing agent design

approach. The next stage is then to investigate the communication se

mantics demanded by the BDI approach and then provide a means by

which these can be generated.

References

Aalborg University (2006). “Online Course in Knowledge Representation using

Conceptual Graphs” . Online. Accessed 30th July 2006.

URL h t t p : //www. hum inf. aau . dk /cg /

Abercrombie, N., Hill, S., and Turner, B. S. (1984). Dictionary of Sociology.

Penguin, 3rd edition.

Alsinet, T., Bjar, R., Fernanadez, C., and Many, F. (2000). “A Multi-

Agent System Architecture for Monitoring Medical Protocols”. In C. Sierra,

M. Gini, and J. Rosenschein, eds., “Proceedings of the Fourth International

Conference on Autonomous Agents” , pp. 499-505. ACM-AAAI, ACM Press.

ISBN 1-58113-230-1.

Andronache, V. and Scheutz, M. (2004). “Integrating Theory and Practice:

The Agent Architecture Framework APOC and its Development Environ

ment ADE”. In “Proceedings of the Third International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS-04)” , ACM Press,

New York, USA.

Ardissono, L., Goy, A., and Petrone, G. (2003). “Enabling Conversations with

Web Services”. In “Proceedings of the Second International Joint Conference

199

on Autonomous Agents and Multi-Agent Systems (AAMAS-03)” , pp. 819—

826. ACM Press. ISBN 1-58113-683-8.

Austin, J. L. (1962). How To Do Things With Words. Oxford University Press,

Oxford.

Bauer, B. (2001). “UML Class Diagrams and Agent-Based Systems” . In

“Proceedings of the Fifth International Conference on Autonomous Agents” ,

pp. 104-105. ACM Press, Montreal, Quebec, Canada. ISBN 1-58113-326-X.

Bauer, B., Muller, J., and Odell, J. (2001). “Agent UML: A Formalism for

Specifying Multi-Agent Interaction”. In Ciancarini and Wooldridge, eds.,

“Agent-Oriented Software Engineering” , volume 1957, pp. 91-103. Springer-

Verlag.

Beer, M. D., Anderson, I., and Huang, W. (2001). “Using Agents to Build

a Practical Implementation of the INC A (Intelligent Community Alarm)

System”. In “Proceedings of the Fifth International Conference on Au

tonomous Agents” , pp. 106-107. ACM Press, Montreal, Quebec, Canada.

ISBN 1-58113-326-X.

Beer, M. D., Bench-Capon, T., and Sixsmith, A. (1999). “Some Issues in Man

aging Dialogues between Information Agents” . In “Proceedings of Database

and Expert Systems Applications ‘99” , volume 1677 of Lecture Notes in

Computer Science (LNCS), pp. 521-530. Springer, Berlin.

Beer, M. D. and Hill, R. (2004). “Teaching Multi-Agent Systems in a UK

New University” . In “Teaching Multi-agents Workshop: Proceedings of the

200

Third International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS-04)” , IEEE Computer Society, New York, NY,

USA. ISBN 1-58113-864-4.

Beer, M. D. and Hill, R. (2005). “Integrating Multi-Agent Systems into the

Wider Computing Curriculum” . In “Proceedings of the Fourth International

Joint Conference on Autonomous Agents and Multi-Agent Systems (AA-

MAS) - Teaching Agents Workshop”, Autonomous Agents and Multi-Agent

Systems, Utrecht, The Netherlands.

Beer, M. D. and Hill, R. (2006a). “Building a Community Care Demonstra

tor with JADE Semantic Agents” . International Transactions on Systems

Science and Applications, volume l(l):pp . 1-14. ISSN 1751-1461.

Beer, M. D. and Hill, R. (2006b). “Building a Community Care Demonstra

tor with Semantic Agents” . In “Proceedings of the Second International

Workshop on Multi-Agent Systems for Medicine, Computational Biology,

and Bioinformatics (MAS*BIOMED2006)” , Future University, Hakodate,

Japan.

Beer, M. D., Hill, R., Huang, W., and Sixsmith, A. (2002). “Using Agents

To Promote Effective Coordination In A Community Care Environment” .

In Y. Ye and E. F. Churchill, eds., “Agent Supported Collaborative Work”,

chapter 3, pp. 53-77. Kluwer Academic Publishers. ISBN 1-4020-7404-2.

Beer, M. D., Hill, R., and Sixsmith, A. (2003a). “Building an Agent-Based

Community Care Demonstrator on a Worldwide Agent Platform” . In

“Agents and Healthcare” , Multi-Agent Systems, pp. 19-34. Whitestein.

Beer, M. D., Hill, R., and Sixsmith, A. (2003b). “Deploying an Agent-Based

201

Architecture for the Management of Community Care” . In “Proceedings

of the Second International Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS-03)” , pp. 932-933. ACM Press, Melbourne,

Victoria, Australia. ISBN 1-58113-683-8.

Bellifemine, F., Poggi, A., and Rimassa, G. (2001). “JADE: a FIPA2000

Compliant Agent Development Environment” . In “Proceedings of the Fifth

International Conference on Autonomous Agents” , pp. 216-217. ACM Press,

Montreal, Quebec, Canada. ISBN 1-58113-326-X.

Bergenti, F. and Poggi, A. (2001). “A Development Toolkit to Realize Au

tonomous and Interoperable Agents” . In “Proceedings of the Fifth Interna

tional Conference on Autonomous Agents” , pp. 632-639. ACM Press, Mon

treal, Quebec, Canada. ISBN 1-58113-326-X.

Bergenti, F., Poggi, A., Rimassa, G., and Turci, P. (2002). “CoMMA: a Multi-

Agent System for Corporate Memory Management” . In “Proceedings of

the First International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS-02)” , pp. 1039-1040. ACM Press, Bologna, Italy.

ISBN 1-58113-480-0.

Berners-Lee, T. (1999). Weaving the Web. Orion Business, London.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A.

(2004). “TROPOS: An Agent-Oriented Software Development Methodol

ogy” . Journal of Autonomous Agents and Multi-Agent Systems, volume 8:pp.

203-236.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos,

J. (2001). “A Knowledge Level Software Engineering Methodology for

202

Agent-Oriented Programming” . In J. P. Muller, E. Andre, S. Sen, and

C. Frasson, eds., “Proceedings of the Fifth International Conference on Au

tonomous Agents (AGENTS-01)” , pp. 648-655. ACM Press, Montreal, Que

bec, Canada. ISBN 1-58113-326-X.

Bretier, P. and Sadek, D. (1997). “A Rational Agent as the Kernel of a Coop

erative Spoken Dialogue System: Implementing a Logical Theory of Interac

tion”. In J. P. Muller, M. Wooldridge, and N. R. Jennings, eds., “Intelligent

Agents III” , volume 1193 of Lecture Notes in Artificial Intelligence (LNA1),

pp. 189-204. Springer, Berlin.

Busetta, P., Ronnquist, R., Hodgson, A., and Lucas, A. (1999). “JACK -

Components for Intelligent Agents in Java” . Technical Report 1, Agent-

Oriented Software Pty. Ltd., Melbourne, Australia.

URL h t t p : //www. a g en t-so ftw are . com

Castelfranchi, C. (1998). “Modelling Social Action for AI Agents” . Artificial

Intelligence, volume 103(1).

Cernuzzi, L., Juan, T., Sterling, L., and Zambonelli, F. (2004). “The Gaia

Methodology” . In F. Bergenti, M.-P. Gleizes, and F. Zambonelli, eds.,

“Methodologies and Software Engineering for Agent Systems”, chapter 4,

pp. 69-88. Kluwer Academic Publishers. ISBN 1-40208-057-3.

Chopra, A. K. and Singh, M. P. (2004). “Commitments for Flexible Business

Protocols” . In “Proceedings of the Third International Joint Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS-04)” , pp. 1360-

1361. IEEE Computer Society, New York, NY, USA. ISBN 1-58113-864-4.

203

Cohen, P. R. and Levesque, H. J. (1990). Rational Interaction as the Basis for

Communication. MIT Press.

Compton, P. and Jansen, R. (1990). “A Philosophical Basis for Knowledge

Acquisition” . Knowledge Acquisition, volume 2:pp. 241-257.

Compton, P., Peters, L., Edwards, G., and Lavers, T. (2006). “Experience with

Ripple-Down Rules”. In A. Macintosh, R. Ellis, and T. Allen, eds., “Ap

plications and Innovations in Intelligent Systems XIII: Proceedings of the

Twenty-fifth SGAI International Conference on Innovative Techniques and

Applications of Artificial Intelligence”, pp. 109-121. Springer, Cambridge,

UK. ISBN 1-84628-223-3.

DAML (2001). “The DARPA agent markup language” . Online.

URL http: //www. daml. org

Dardenne, A., van Lamsweerde, A., and Flickas, S. (1993). “Goal-Directed Re

quirements Acquisition”. Science of Computer Programming, volume 20(1-

2):pp. 3-50.

Dasgupta, P. R. and Hashimoto, Y. (2004). “Multi-Attribute Dynamic Pricing

for Online Markets Using Intelligent Agents” . In “Proceedings of the Third

International Joint Conference on Autonomous Agents and Multi-Agent Sys

tems (AAMAS-04)” , IEEE Computer Society, New York, NY, USA.

Dastani, M. (2004). “Programming Multi-Agent Systems”. Technical forum

group meeting, AgentLink-III, Rome, Italy.

Dastani, M., de Boer, F., Dignum, F., and Meyer, J.-J. (2003a). “Programming

Agent Deliberation: An Approach Illustrated Using the 3APL Language” .

204

In “Proceedings of the second international joint conference on Autonomous

Agents and Multi-Agent systems”, pp. 97-104. ACM Press. ISBN 1-58113-

683-8.

Dastani, M., Dignum, V., and Dignum, F. (2003b). “Role-Assignment in

Open Agent Societies” . In “Proceedings of the second international joint

conference on Autonomous Agents and Multi-Agent systems” , pp. 489-496.

ACM Press. ISBN 1-58113-683-8.

Dastani, M., Hulstjn, J., Dignum, F., and Meyer, J.-J. C. (2004). “Issues in

Multi-Agent System Development” . In “Proceedings of the Third Interna

tional Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS)” , pp. 920-927. ACM Press, New York, New York, USA.

Dau, F. (2003). The Logic System of Concept Graphs with Negation and its

Relationship to Predicate Logic, volume 2892 of Lecture Notes in Computer

Science. Springer Verlag, Heidelberg.

DeLoach, S. A. (1999). “Multi-Agent Systems Engineering: A Methodology

and Language for Designing Agent Systems”. In “Proceedings of Agent-

Oriented Information Systems”, pp. 45-57.

DeLoach, S. A. and Wood, M. (2000). “Developing Multi-Agent Systems with

AgentTool” . In “Intelligent Agents VII. Agent Theories, Architectures and

Languages. 7th International Workshop 2000, Boston USA.” , Lecture Notes

in Artificial Intelligence. Springer-Verlag, Berlin.

Delugach, H. (2006a). “CharGer - Conceptual Graph Editor” . Online. Ac

cessed 30th July 2006.

URL http://sourceforge.net/projects/charger/

205

http://sourceforge.net/projects/charger/

Delugach, H. (2006b). “Common Logic Standard”. Online.

URL h t t p : / / c l . tamu. edu/

Depke, R., Heckel, R., and Kuster, J. M. (2001). “Improving the Agent-

Oriented Modeling Process by Roles” . In “Proceedings of the fifth interna

tional conference on Autonomous agents” , pp. 640-647. ACM Press. ISBN

1-58113-326-X.

Dickinson, I. and Wooldridge, M. (2003). “Towards Practical Reasoning Agents

for the Semantic Web”. In “Proceedings of the second international joint

conference on Autonomous agents and Multi-Agent Systems” , pp. 827-834.

ACM Press. ISBN 1-58113-683-8.

Do, T., Kolp, M., and Pirotte, A. (2003). “Social Patterns for Designing Multi-

Agent Systems”. In “Proceedings of the 15th International Conference on

Software Engineering and Knowledge Engineering (SEKE’03)” , .

Ehrler, L. and Cranefield, S. (2004). “Executing Agent UML Diagrams” . In

“Proceedings of the Third International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS)”, pp. 904-911. ACM Press, New

York, New York, USA.

Enderton, H. B. (1972). A Mathematical Introduction to Logic. Academic

Press, London.

Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., and Arcos, J. L. (2004).

“AMELI: An Agent-Based Middleware for Electronic Institutions” . In “Pro

ceedings of the Third International Joint Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS)” , New York, USA.

206

Finin, T., Weber, J., Wiederhold, G., Genesereth, M., McKay, D., Fritzson,

R., Shapiro, S., Pelavin, R., and McGuire, J. (1993). “Specification of the

KQML Agent-Communication Language - plus example agent policies and

architectures” .

FIPA (1999). “Specification part 2 - agent communication language” .

FIPA (2002). “FIPA Contract Net Interaction Protocol Specification” . Online.

Las accessed 31st August 2006.

URL h ttp ://w w w .fip a .o rg /sp ec s /f ip a 0 0 0 2 9 /

FIPA (2006). “FIPA Agent Communication Language Specification”. Online.

Last accessed 10th June 2006.

URL http://www.fipa.org/repository/aclspecs.html

Fuxman, A., Kazhamiakin, R., and Pistore, M. (2004). “Formal Tropos: lan

guage and semantics” .

Fuxman, A., Pistore, M., Mylopoulas, J., and Traverso, P. (2001). “Model

Checking Early Requirements Specifications in Tropos” . In “Proceedings of

the 9th IEEE International Requirments Engineering Conference” , IEEE,

IEEE, Toronto, Canada.

Garcia-Ojeda, J. C. and Arenas, A. E. (2004). “Extending the Gaia Method

ology with Agent-UML” . In “Proceedings of the third international joint

conference on Autonomous agents and Multi-Agent systems (AAMAS)” ,

ACM Press, New York, New York, USA.

Geerts, G. L. and McCarthy, W. E. (1991). “Database Accounting Systems” .

In B. Williams and B. J. Sproul, eds., “Information Technology Perspectives

in Accounting: and Integrated Approach”, pp. 159-183. Chapman and Hall.

207

http://www.fipa.org/specs/fipa00029/
http://www.fipa.org/repository/aclspecs.html

Geerts, G. L. and McCarthy, W. E. (1997). “Modelling Business Enterprises as

Value-Added Process Hierarchies with Resource-Event-Agent Object Tem

plates” . In J. Sutherland and D. Patel, eds., “Business Object Design and

Implementation” , pp. 94-113. Springer-Verlag.

Geerts, G. L., McCarthy, W. E., and Rockwell, S. R. (1996). “Automated

Integration of Enterprise Accounting Models throughout the Systems Devel

opment Life Cycle” . Intelligent Systems in Accounting, Finance and Man

agement, volume 5:pp. 113-128.

Genesereth, M. R. and Fikes, R. E. (1992). “Knowledge Interchange Format” .

Version 3.0 Reference Manual logic-92-1, Computer Science Department,

Stanford University.

Georgeff, M., Pell, B., Pollack, M., Tambe, M., and Wooldridge, M. (1999).

“The Belief-Desire-Intention Model of Agency”. In J. Muller, M. P. Singh,

and A. S. Rao, eds., “Proceedings of the 5th International Workshop on

Intelligent Agents V : Agent Theories, Architectures, and Languages (ATAL-

98)” , volume 1555, pp. 1-10. Springer-Verlag: Heidelberg, Germany.

Giorgini, P. (2003). “Agent-Oriented Software Engineering Report on the 4th

AOSE Workshop (AOSE 2003)”. SIGMOD Rec., volume 32(4):pp. 117-119.

ISSN 0163-5808.

Giorgini, P., Perini, A., Mylopoulos, J., Giunchiglia, F., and Bresciani, P.

(2001). “Agent-Oriented Software Development: A Case Study”. In “In

Proc. of the 13th Int. Conference on Software Engineering & Knowledge

Engineering (SEKE01)” , Buenos Aires, Argentina.

Giovannucci, A., Rodriguez-Aguilar, J. A., Reyes, A., Noria, F. X., and

208

Cerquides, J. (2004). “Towards Automated Procurement via Agent-Aware

Negotiation Support” . In “Proceedings of the third international joint con

ference on Autonomous agents and Multi-Agent systems (AAMAS)”, ACM

Press, New York, USA.

Griffiths, N. and Luck, M. (2003). “Coalition Formation Through Motivation

and Trust” . In “Proceedings of the second international joint conference

on Autonomous Agents and Multi-Agent systems”, pp. 17-24. ACM Press.

ISBN 1-58113-683-8.

Gruber, T. (1993). “A Translation Approach to Portable Ontologies” . Knowl

edge Acquisition, pp. 199-220.

Griininger, M. and Fox, M. S. (1994). “The Role of Competency Questions in

Enterprise Engineering”. In “Proceedings IFIP WG5.7 Workshop on Bench

marking - Theory and Practice” , Trondheim, Norway.

Guessoum, Z., Ziane, M., and Faci, N. (2004). “Monitoring and

Organizational-Level Adaptation of Multi-Agent Systems”. In “Proceed

ings of the third international joint conference on Autonomous agents and

Multi-Agent systems (AAMAS)” , pp. 514-521. ACM Press, New York, New

York, USA.

Haigh, K. Z., Phelps, J., and Geib, C. W. (2002). “An open agent architecture

for assisting elder independence”. In “Proceedings of the first international

joint conference on Autonomous agents and Multi-Agent systems” , pp. 578-

586. ACM Press. ISBN 1-58113-480-0.

Haley, D., Nuseibeh, B., Sharp, H. C., and Taylor, J. (2004). “The Conundrum

of Categorising Requirements: Managing Requirements for Learning on the

209

Move.” In “12th IEEE International Conference on Requirements Engineer

ing (RE 2004), Kyoto, Japan.” , pp. 309-314. IEEE Computer Society 2004,

ISBN 0-7695-2174-6.

Harper, L. and Delugach, H. S. (2003). “Using Conceptual Graphs to Capture

Semantics of Agent Communication”. In A. de Moor, W. Lex, and B. Ganter,

eds., “Conceptual Structures for Knowledge Creation and Communication:

Proceedings of the 11th International Conference on Conceptual Structures

(ICCS 2003)” , volume 2746, pp. 392-404. Springer-Verlag.

Heaton, J. E. and Kocura, P. (1993). “Presenting a Pierce Logic Based In

ference Engine and Theorem Prover for Conceptual Graphs” . In “ICCS

’93: Proceedings on Conceptual Graphs for Knowledge Representation”,

pp. 381-400. Springer-Verlag, London, UK. ISBN 3-540-56979-0.

Hendler, J. (2001). “Agents and the Semantic Web” . IEEE Intelligent Systems,

volume 16(2):pp. 30-37.

Hill, R. (2007). “Capturing and Specifying Multi-Agent System Requirements

for Community Healthcare” . In H. Yoshida, A. Jain, A. Ichalkaranje, L. Jain,

and N. Ichalkaranje, eds., “Advanced Computational Intelligence Paradigms

in Healthcare” , volume 48 of Studies in Computational Intelligence, chap

ter 6, pp. 121-158. Springer-Verlag.

Hill, R., Polovina, S., and Beer, M. D. (2004). “Towards a Deployment Frame

work for Agent-Managed Community Healthcare Transactions” . In “The

Second Workshop on Agents Applied in Healthcare, Proceedings of the 16th

European Conference on Artificial Intelligence (ECAI 2004)” , pp. 13-21.

ECCAI, IOS Press, Valencia, Spain.

210

Hill, R., Polovina, S., and Beer, M. D. (2005a). “From Concepts to Agents:

Towards a Framework for Multi-Agent System Modelling”. In F. Dignum,

V. Dignum, S. Koenig, S. Kraus, M. R Singh, and M. Wooldridge, eds.,

“Proceedings of the Fourth International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS 05)” , pp. 1155-1156. ACM

Press, Utrecht, The Netherlands. ISBN 1-59593-093-0.

Hill, R., Polovina, S., and Beer, M. D. (2005b). “Managing Community Health

care Information in a Multi-Agent System Environment” . In “Proceedings

of the Fourth International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS) - BIOMED Workshop” , pp. 35-49. Utrecht

University, Netherlands.

Hill, R., Polovina, S., and Beer, M. D. (2005c). “Managing Healthcare Work

flows in a Multi-Agent System Environment” . In “Proceedings of the Third

Workshop on Agents Applied in Healthcare, International Joint Conference

on Artificial Intelligence (IJCAI)” , IJCAI, Edinburgh.

Hill, R., Polovina, S., and Beer, M. D. (2006a). “Improving AOSE with an

Enriched Modelling Framework”. In J. Muller and F. Zambonelli, eds.,

“Proceedings of the Sixth International Workshop on Agent-Oriented Soft

ware Engineering (AOSE-2005)” , volume 3859 of Lecture Notes in Computer

Science (LNCS). Springer-Verlag, Utrecht, The Netherlands.

Hill, R., Polovina, S., and Shadija, D. (2006b). “Transaction Agent Modelling:

From Experts to Concepts to Multi-Agent Systems” . In “Proceedings of

the Fourteenth International Conference on Conceptual Structures (ICCS

’06): Conceptual Structures: Inspiration and Application” , volume 4068

211

of Lecture Notes in Artificial Intelligence (LNAI), pp. 247-259. Springer-

Verlag, Aalborg, Denmark.

Hirsch, T., Forlizzi, J., Hyder, E., Goetz, J., Kurtz, C., and Stroback, J. (2000).

“The ELDer Project: Social, Emotional, and Environmental Factors in the

Design of Eldercare Technologies” . In “Proceedings of the 2000 Conference

on Universal Usability” , pp. 72-79. ACM Press. ISBN 1-58113-314-6.

Huang, I., Jennings, N. R., and Fox, J. (2001). “An Agent-Based Approach

to Healthcare Management” . International Journal of Applied Artificial

Intelligence, volume 9:pp. 173-184.

Huang, W., Beer, M. D., and Hill, R. (2003). “Community Care System Design

and Development with AUML”. In “Proceedings of the 9th International

Conference on Information Systems Analysis and Synthesis (ISAS ’03)” ,

Orlando, Florida, USA.

Huget, M.-P. and Odell, J. (2004). “Representing Agent Interaction Protocols

with Agent UML”. In “Proceedings of the third international joint con

ference on Autonomous agents and Multi-Agent systems (AAMAS)”, ACM

Press, New York, USA.

Ijiri, Y. (1967). The Foundations of Economic Accounting. Prentice Hall,

Englewood Cliffs, NJ.

Jennings, N. R. (2000). “On Agent-Based Software Engineering”. Artificial

Intelligence, volume 117:pp. 277-296.

Jennings, N. R. (2001). “An Agent-Based Approach for Building Complex

Software Systems”. Communications of the ACM , volume 44(4):pp. 35-41.

ISSN 0001-0782.

212

Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Wooldridge, M. J.,

and Sierra, C. (2001). “Automated Negotiation: Prospects, Methods and

Challenges” . Group Decision and Negotiation, volume 10(2):pp. 199-215.

Juan, T., Pearce, A., and Sterling, L. (2002). “ROADMAP: extending the

gaia methodology for complex open systems” . In “Proceedings of the First

ACM International Joint Conference on Autonomous Agents and Multi-

Agent Systems” , pp. 3-10. ACM Press. ISBN 1-58113-480-0.

Klugl, F., Bazzan, A. L. C., and Wahle, J. (2003). “Selection of Informa

tion Types Based on Personal Utility: a Testbed for Traffic Information

Markets” . In “Proceedings of the second international joint conference on

Autonomous agents and Multi-Agent systems” , pp. 377-384. ACM Press.

ISBN 1-58113-683-8.

Kurbel, K. and Loutchko, I. (2003). “Towards Multi-Agent Electronic Market

places: W hat is There and What is Missing?” The Knowledge Engineering

Review, volume 18(l):pp. 33-46.

Labrou, Y., Finin, T., and Peng, Y. (1999). “Agent Communication

Languages: the Current Landscape” . IEEE Intelligent Systems, vol

ume 14(2):pp. 45-52.

Luck, M., McBurney, P., and Preist, C. (2004). “A Manifesto for Agent Tech

nology: Towards Next Generation Computing”. Autonomous Agents and

Multi-Agent Systems, volume 9(3) :pp. 203-252.

Massonet, P., Deville, Y., and Nave, C. (2002). “From AOSE Methodology

to Agent Implementation”. In “Proceedings of the first international joint

213

conference on Autonomous agents and Multi-Agent systems”, pp. 27-34.

ACM Press. ISBN 1-58113-480-0.

Mavetera, N. and Kadyamatimba, A. (2003). “A Comprehensive Agent: Me

diated e-Market Framework” . In “Proceedings of the 5th international con

ference on Electronic commerce” , pp. 158-164. ACM Press. ISBN 1-58113-

788-5.

Mayfield, J., Labrou, Y., and Finin, T. (1996). “Evaluation of KQML as an

Agent Communication Language”. In M. Wooldridge, J. P. Muller, and

M. Tambe, eds., “Proceedings on the IJCAI Workshop on Intelligent Agents

II : Agent Theories, Architectures, and Languages” , volume 1037, pp. 347-

360. Springer-Verlag: Heidelberg, Germany. ISBN 3-540-60805-2.

Mazouzi, H., Seghrouchni, A. E. F., and Haddad, S. (2002). “Open Protocol

Design for Complex Interactions in Multi-Agent Systems”. In “Proceedings

of the first international joint conference on Autonomous agents and Multi-

Agent systems” , pp. 517-526. ACM Press. ISBN 1-58113-480-0.

McCarthy, W. E. (1979). “An Entity-Relationship View of Accounting Mod

els” . The Accounting Review, pp. 667-686.

McCarthy, W. E. (1982). “The REA Accounting Model: A Generalized Frame

work for Accounting Systems in a Shared Data Environment” . The Account

ing Review, pp. 554-578.

McCarthy, W. E. (1999). “Semantic Modeling in Accounting Education, Prac

tice and Research: Some Hierarchies with Resource-Event-Agent Object

Templates” . In P. P. Chen, J. Akoka, H. Kangassalo, and B. Thalheim,

214

eds., “Conceptual Modeling: Current Issues and Future Directions” , pp.

144-153. Springer-Verlag.

Mellouli, S., Mineau, G. W., and Pascot, D. (2002). “The integrated modeling

of Multi-Agent systems and their environment” . In “Proceedings of the

first international joint conference on Autonomous agents and Multi-Agent

systems”, pp. 507-508. ACM Press. ISBN 1-58113-480-0.

Microsoft (2004). “Microsoft .NET home page” , www.

URL h t t p : / / www. m ic ro so ft. com /net/

Moreno, A. and Isern, D. (2002). “A first step towards providing health-care

agent-based services to mobile users” . In “Proceedings of the first interna

tional joint conference on Autonomous agents and Multi-Agent systems” ,

pp. 589-590. ACM Press. ISBN 1-58113-480-0.

Mouratidis, H., Giorgini, P., and Manson, G. (2003). “Modelling secure Multi-

Agent systems”. In “Proceedings of the second international joint conference

on Autonomous agents and Multi-Agent systems” , pp. 859-866. ACM Press.

ISBN 1-58113-683-8.

Munroe, S., Luck, M., and d ’Inverno, M. (2003). “Towards a motivation-

based approach for evaluating goals” . In “Proceedings of the second inter

national joint conference on Autonomous agents and Multi-Agent systems” ,

pp. 1074-1075. ACM Press. ISBN 1-58113-683-8.

Mynatt, E. D., Rowan, J., Craighill, S., and Jacobs, A. (2001). “Digital

family portraits: supporting peace of mind for extended family members” .

In “Proceedings of the SIGCHI conference on Human factors in computing

systems”, pp. 333-340. ACM Press. ISBN 1-58113-327-8.

215

Ndumu, D. T., Nwana, H. S., Lee, L. C., and Collis, J. C. (1999). “Visualising

and debugging distributed Multi-Agent systems”. In “Proceedings of the

third annual conference on Autonomous Agents” , pp. 326-333. ACM Press.

ISBN 1-58113-066-X.

Nguyen, T. D. and Jennings, R., Nicholas (2004). “Coordinating multiple

concurrent negotiations” . In “Proceedings of the third international joint

conference on Autonomous agents and Multi-Agent systems (AAMAS)”,

ACM Press, New York, USA.

Nilsson, N. (1971). Problem Solving Methods in Artificial Intelligence. McGraw

Hill.

Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collis, J. C. (1999). “ZEUS:

A Toolkit and Approach for Building Distributed Multi-Agent Systems” .

Applied Artificial Intelligence Journal, volume 13(1):pp. 129-186.

Nwana, H. S., Rosenschein, J., Sandholm, T., Sierra, C., Maes, P., and

Guttmann, R. (1998). “Agent-Mediated Electronic Commerce: Issues, Chal

lenges and Some Viewpoints” . In “Proceedings of the second international

conference on Autonomous agents” , pp. 189-196. ACM Press. ISBN 0-89791-

983-1.

Odell, J., Parunak, H. V. D., and Bauer, B. (2001). “Representing Agent

interaction protocols in UML”. Agent-Oriented Software Engineering - Pro

ceedings of the First International Workshop AOSE-2000, LNCS, volume

1957:pp. 121-140.

OMG, O. M. G. (2005). “UML Resource Page”.

URL http: //www. uml. org

216

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., and Tummolini, L. (2004).

“Environment-based coordination for intelligent agents” . In “Proceedings of

the third international joint conference on Autonomous agents and Multi-

Agent systems (AAMAS)”, ACM Press, New York, USA.

Padgham, L., Thangarajah, J., and Winikoff, M. (2005). “Tool Support for

Agent Development using the Prometheus Methodology.” In “QSIC”, pp.

383-388.

Padgham, L. and Winikoff, M. (2002). “Prometheus: A Methodology for

Developing Intelligent Agents” . In “Proceedings of the Third International

Workshop on Agent-Oriented Software Engineering”, AAMAS.

Pan, J., Cranefield, S., and Carter, D. (2003). “A lightweight ontology repos

itory” . In “Proceedings of the second international joint conference on Au

tonomous agents and Multi-Agent systems” , pp. 632-638. ACM Press. ISBN

1-58113-683-8.

Patil, R., Fikes, R. F., Patel-Schneider, P. F., McKay, D., Finin, T., Gru

ber, T., and Neches, R. (1992). “The DARPA Knowledge Sharing Effort:

Progress Report” . In B. Nebel, C. Rich, and W. Swartout, eds., “Proceed

ings of the Third International Conference on Knowledge Representation,

KR’92. Principles of Knowledge Representation and Reasoning” , pp. 777-

788. Morgan Kaufmann, San Mateo, California.

Perich, F., Finin, T., Joshi, A., and Yesha, Y. (2004). “MoGATU BDI Ontol

ogy”. Online.

URL h t t p : //m ogatu . umbc. ed u /b d i/

Piaget, J. (1973). Sociological Studies. Routledge, London.

217

Poggi, A. and Rimassa, G. (2000). “An agent model platform for realizing

efficient and reusable agent software” . In “Proceedings of the fourth inter

national conference on Autonomous agents” , pp. 74-75. ACM Press. ISBN

1-58113-230-1.

Polovina, S. (1993). The Suitability of Conceptual Graphs in Strategic Man

agement Accountancy. Ph.D. thesis, Loughborough University.

URL h t t p : / / www. p o lo v in a . me. uk/phd

Polovina, S. and Heaton, J. (1992). “An Introduction to Conceptual Graphs”.

A I Expert, volume 7(5):pp. 36-43.

Polovina, S., Hill, R., and Beer, M. D. (2005). “Enhancing the Initial Re

quirements Capture of Multi-Agent Systems through Conceptual Graphs”.

In H. Pfeiffer, K. E. Wolff, and H. S. Delugach, eds., “Proceedings of the

Thirteenth International Conference on Conceptual Structures. Conceptual

Structures at Work: Contributions to ICCS 2005” , LNAI, pp. 439-452.

Springer.

Polovina, S., Hill, R., Crowther, P., and Beer, M. D. (2004). “Multi-Agent

Community Design in the Real, Transactional World: A Community Care

Exemplar” . In H. Pfeiffer, K. E. Wolff, and H. S. Delugach, eds., “Concep

tual Structures at Work: Contributions to ICCS 2004 (12th International

Conference on Conceptual Structures)” , pp. 69-82. Shaker Verlag. ISBN

3-8322-2950-7, ISSN 0945-0807.

Preece, A. D., ying Hui, K., Gray, W. A., Marti, P., Bench-Capon, T. J. M.,

Jones, D. M., and Cui, Z. (2000). “The KRAFT architecture for knowledge

218

fusion and transformation”. Knowledge Based Systems, volume 13(2-3):pp.

113-120.

SAP (2004). “SAP Global Home Page”, www.

URL http: //www. sap. com/

Sauvage, S. (2004). “Agent oriented design patterns: a case study”. In “Pro

ceedings of the third international joint conference on Autonomous agents

and Multi-Agent systems (AAMAS)”, p. 23. ACM Press, New York, USA.

Searle, J. R. (1969). Speech Acts: an Essay in the Philosophy of Language.

Cambridge University Press.

Shehory, O. and Sturm, A. (2001). “Evaluation of modeling techniques for

agent-based systems”. In “Proceedings of the fifth international conference

on Autonomous agents” , pp. 624-631. ACM Press. ISBN 1-58113-326-X.

Sixsmith, A., Hawley, C., Stilwell, J., and Copeland, J. (1993). “Delivering

‘Positive care’ in Nursing Homes”. International Journal of Geriatric Psy

chiatry, volume 8(5):pp. 407-412.

Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind

and Machine. Addison-Wesley.

Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical and

Computational Foundations. Brooks-Cole.

Stanford Medical Informatics (2006). “The Protege Ontology Editor and

Knowledge Acquisition System”. Online.

URL http: //protege. Stanford. edu/

219

Sturm, A., Dori, D., and Shehory, 0 . (2003). “Single-model method for specify

ing Multi-Agent systems”. In “Proceedings of the second international joint

conference on Autonomous agents and Multi-Agent systems” , pp. 121-128.

ACM Press. ISBN 1-58113-683-8.

Sturm, A. and Shehory, 0 . (2003). “A Framework for Evaluating Agent-

Oriented Methodologies” . In P. Giorgini and M. Winikoff, eds., “Proceed

ings of the 5th International Bi-Conference Workshop on Agent-Oriented

Information Systems” , pp. 60-67.

Sun (2004). “Java Technology web page”, www.

URL h t t p : / / j ava . sun . com/

Taylor, J., Mistry, V., Sharpies, M., Bo, G., and Ahonen, M. (2002). “MO-

Bllearn WP 2 - Evaluation Framework, Open University UK, D2.2 Evalua

tion Methodology” . Technical report, MOBIlearn.

URL http://www.mobilearn.org/download/results/

public_deliverables/M0BIlearn_D2.2_Final. pdf

Uschold, M. and Griininger, M. (1996). “Ontologies: Principles, Methods

and Applications” . The Knowledge Engineering Review, volume ll(2):pp.

93-155.

Van Dyke Parunak, H. and Odell, J. (2001). “Representing social structures in

UML” . In “Proceedings of the fifth international conference on Autonomous

agents” , pp. 100-101. ACM Press. ISBN 1-58113-326-X.

van Lamsweerde, A. (2001). “Goal-Oriented Requirements Engineering: A

Guided Tour.” In “5th IEEE International Symposium on Requirements

Engineering (RE 2001)” , p. 249. IEEE Computer Society, Toronto, Canada.

220

http://www.mobilearn.org/download/results/

Vasconcelos, W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., and

Wooldridge, M. (2004). “Rapid prototyping of large Multi-Agent systems

through logic programming” . Annals of Mathematics and Artificial Intelli

gence, volume 41:pp. 135-169. Kluwer Academic Publishers.

W3.org (1986). “ISO 8879. Information Processing - Text and Office Systems

- Standard Generalized Markup Language (SGML)”.

W3.org (2004a). “Extensible Markup Language (XML) 1.0 (Third Edition)

Recommendation”, www.

URL h t t p : //www.w3. org/TR/2004/REC-xml-20040204/

W3.org (2004b). “Web Ontology Language (OWL)”, www.

URL h t t p : / /www.w3. org/2004/0WL/#specs

W illmott, S., Beer, M., Hill, R., Greenwood, D., Calisti, M., Mathieson, I.,

Padgham, L., Reese, C., Lehmann, K., and Scholz, T. (2005). “NETDEMO:

openNet Networked Agents Demonstration”. In “AAMAS ’05: Proceedings

of the Fourth International Joint Conference on Autonomous Agents and

Multiagent Systems”, pp. 129-130. ACM Press, New York, NY, USA. ISBN

1-59593-093-0.

Wooldridge, M., Fisher, M., Huget, M.-P., and Parsons, S. (2002). “Model

checking Multi-Agent systems with MABLE”. In “Proceedings of the First

International Joint Conference on Autonomous Agents and Multi-agent Sys

tems” , pp. 952-959. ACM Press. ISBN 1-58113-480-0.

Wooldridge, M. and Jennings, N. R. (1995). “Intelligent agents: theory and

practice” . The Knowledge Engineering Review, volume 10(2):pp. 115-152.

221

http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/2004/0WL/%23specs

Wooldridge, M. and Jennings, N. R. (1998). “Pitfalls of agent-oriented de

velopment” . In “Proceedings of the second international conference on Au

tonomous agents” , pp. 385-391. ACM Press. ISBN 0-89791-983-1.

Wooldridge, M., Jennings, N. R., and Kinny, D. (1999). “A methodology for

agent-oriented analysis and design” . In “Proceedings of the third annual

conference on Autonomous Agents” , pp. 69-76. ACM Press. ISBN 1-58113-

066-X.

Wooldridge, M. J. (2002). An Introduction to Multiagent Systems. Wiley, 1

edition.

Wooldridge, M. J., Jennings, N. R., and Kinny, D. (2000). “The Gaia Method

ology for Agent-Oriented Analysis and Design” . International Journal of

Autonomous Agents and Multi Agent Systems, volume 3(3):pp. 285-312.

Xueguang, C. and Haigang, S. (2004). “Further extensions of FIPA Contract

Net Protocol: threshold plus DoA”. In “Proceedings of the 2004 ACM

symposium on Applied computing” , pp. 45-51. ACM Press. ISBN 1-58113-

812-1.

Yu, E. S. K. (1995). Modelling Strategic Relationships for Process Reengineer

ing. Ph.D. thesis, University of Toronto.

Yu, E. S. K. (1997). “Towards Modelling and Reasoning Support for Early-

Phase Requirements Engineering”. In “Proceedings of the 3rd IEEE Int.

Symp. on Requirements Engineering (RE’97)” , pp. 226-235. Washington

D.C., USA.

Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003). “Developing

222

Multi-Agent Systems: The Gaia Methodology”. ACM Trans. Softw. Eng.

Methodol., volume 12(3):pp. 317-370. ISSN 1049-331X.

Zhang, L., Ahn, G.-J., and Chu, B.-T. (2002). “A role-based delegation frame

work for healthcare information systems” . In “Proceedings of the seventh

ACM symposium on Access control models and technologies” , pp. 125-134.

ACM Press. ISBN 1-58113-496-7.

223

Appendix A

OWL Listings

A .l Belief-Desire-Intention Ontology

<?xml version="l.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.owl-ontologies.com/0ntologyll55291197.owl#"

xml:base="http://www.owl-ontologies.com/Ontologyl155291197.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Goal">

<rdfs:subClassOf>

<owl:Class rdf:ID="AchievableDesire"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:ID="NonConflictingDesire"/>

</rdfs:subClassOf>

</owl:Class>

224

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2001/XMLSchema%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.org/2002/07/owl%23
http://www.owl-ontologies.com/0ntologyll55291197.owl%23
http://www.owl-ontologies.com/Ontologyl155291197.owl

Cowl:Class rdf:ID="Action"/>

Cowl:Class rdf:ID="Plan"/>

Cowl:Class rdf:ID="Belief"/>

Cowl:Class rdf:about="#NonConflictingDesire">

Crdfs:subClassOf>

Cowl:Class rdf:ID="Desire"/>

c/rdfs:subClassOf>

c/owl:Class>

Cowl:Class rdf:ID="NonAchievableDesire">

Crdfs:subClassOf rdf:resource="#Desire"/>

c/owl:Class>

Cowl:Class rdf:ID="ConflictingDesire">

Crdfs:subClassOf rdf:resource="#Desire"/>

c/owl:Class>

Cowl:Class rdf:ID="BDIAgent"/>

Cowl:Class rdf:ID="Intention"/>

Cowl:Class rdf:about="#AchievableDesire">

Crdfs:subClassOf rdf:resource="#Desire"/>

c/owl:Class>

c/rdf:RDF>

A. 2 Transaction M odel Ontology

c?xml version="l.0"?>

Crdf:RDF

xmlns="http://www.owl-ontologies.com/Ontology1155310434.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

225

http://www.owl-ontologies.com/Ontology1155310434.owl%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://www.owl-ontologies.com/Ontologyl155310434.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Transaction">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPart"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XHLSchema#int"

>2</owl:minCardinality>

</owl:Restriction>

</owl:equivalentClass>

<owl:disj ointWith>

<owl:Class rdf:ID="EconomicEvent"/>

</owl:disj ointWith>

<owl:disj ointWith>

<owl:Class rdf:ID="EconomicResource"/>

</owl:disj ointWith>

<owl:disj ointWith>

<owl:Class rdf:ID="OutsideAgent"/>

</owl:disj ointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

226

http://www.w3.org/2001/XMLSchema%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.org/2002/07/owl%23
http://www.owl-ontologies.com/Ontologyl155310434.owl
http://www.w3.org/2001/XHLSchema%23int

Cowl:Class rdf:about="#EconomicEvent"/>

</owl:someValuesFrom>

Cowl:onProperty>

Cowl:ObjectProperty rdf:about="#hasPart"/>

< /owl:onProperty>

< /owl:Restriction>

c/rdfs:subClassOf>

Crdfs:subClassOf rdf:resource=

"http://www.w3.org/2002/07/owl#Thing"/>

Crdfs:comment rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string"

>the satisfactory exchange of scarce resources between

two agents via opposing eventsc/rdfs:comment>

Cowl:disj ointWith>

Cowl:Class rdf:ID="InsideAgent"/>

c/owl:disj ointWith>

c/owl:Class>

Cowl:Class rdf:about="#0utsideAgent">

Crdfs:subClassOf>

Cowl:Class rdf:ID="BDIAgent"/>

c/rdfs:subClassOf>

Crdfs:comment rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string"

>the perspective of the transaction from the agentc/rdfs:comment>

Cowl:disj ointWith>

Cowl .-Class rdf :about="#InsideAgent"/>

c/owl:disj ointWith>

Cowl:disjointWith rdf:resource="#Transaction"/>

227

http://www.w3.org/2002/07/owl%23Thing%22/
http://www.w3.org/2001/XMLSchema%23string
http://www.w3.org/2001/XMLSchema%23string

Cowl:disj ointWith>

Cowl:Class rdf:about="#EconomicResource"/>

< /owl:disj ointWith>

Crdfs:subClassOf>

Cowl:Restriction>
Cowl:someValuesFrom>

Cowl:Class rdf:about="#EconomicResource"/>

c/owl:someValuesFrom>

Cowl:onProperty>

Cowl:ObjectProperty rdf:ID="isDestinationOf"/>

< /owl:onProperty>

< /owl:Restriction>

c/rdfs:subClassOf>

Crdfs:subClassOf>

Cowl:Restriction>
Cowl:someValuesFrom rdf:resource="#OutsideAgent"/>

Cowl:onProperty>

Cowl:TransitiveProperty rdf:ID="isSourceOf"/>

c/owl:onProperty>

c/owl:Restriction>

c/rdfs:subClassOf>

Cowl:disj ointWith>

Cowl:Class rdf:about="#EconomicEvent"/>

c/owl:disj ointWith>

c/owl:Class>

Cowl:Class rdf:about="#EconomicResource">

Crdfs:comment rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string"

228

http://www.w3.org/2001/XMLSchema%23string

>the scarce resource to be exchanged</rdfs:comment>

<owl:disjointWith rdf:resource="#Transaction"/>

<owl:disjointWith rdf:resource="#OutsideAgent"/>

<owl:disj ointWith>

Cowl:Class rdf:about="#InsideAgent"/>

</owl:disj ointWith>

Cowl:disj ointWith>

Cowl:Class rdf:about="#EconomicEvent"/>

c/owl:disj ointWith>

c/owl:Class>

Cowl:Class rdf:about="#InsideAgent">

Cowl:disj ointWith>

Cowl:Class rdf:about="#EconomicEvent"/>

c/owl:disj ointWith>

Crdfs:subClassOf>

Cowl:Restriction>

Cowl:someValuesFrom rdf:resource="#EconomicResource"/>

Cowl:onProperty>

Cowl:TransitiveProperty rdf:about="#isSourceOf"/>

c/owl:onProperty>

c/owl:Restriction>

C/rdfs:subClassOf>

Cowl:disj ointWith rdf:resource="#Transaction"/>

Crdfs:subClassOf rdf:resource="#BDIAgent"/>

Cowl:disjointWith rdf:resource="#OutsideAgent"/>

Cowl:disjointWith rdf:resource="#EconomicResource"/>

Crdfs:comment rdf:datatype=

"http://www.w3.org/2001/XHLSchema#string"

229

http://www.w3.org/2001/XHLSchema%23string

>the perspective of the transaction from the agent</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#EconomicResource"/>

Cowl:onProperty>

Cowl:ObjectProperty rdf:about="#isDestinationOf"/>

c/owl:onProperty>

c/owl:Restriction>

c/rdfs:subClassOf>

c/owl:Class>

Cowl:Class rdf:about="#EconomicEvent">

Crdfs:subClassOf>

Cowl:Restriction>

Cowl:onProperty>

Cowl:ObjectProperty rdf:ID="hasSubject"/>

c/owl:onProperty>

Cowl:someValuesFrom rdf:resource="#EconomicResource"/>

< /owl:Restriction>

c/rdfs:subClassOf>

Cowl:disjointWith rdf:resource="#OutsideAgent"/>

Crdfs:subClassOf rdf:resource=

"http://www.w3.org/2002/07/owl#Thing"/>

Cowl:disjointWith rdf:resource="#InsideAgent"/>

Cowl:disj ointWith rdf:resource="#Transaction"/>

Cowl:disjointWith rdf:resource="#EconomicResource"/>

Cowl:equivalentClass>

Cowl:Restriction>

Cowl:onProperty>

230

http://www.w3.org/2002/07/owl%23Thing%22/

<owl:ObjectProperty rdf:about="#hasSubject"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int"

>l</owl:minCardinality>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

<owl:ObjectProperty rdf:about="#hasPart">

<rdfs:range rdf:resource="#EconomicEvent"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="isPartOf"/>

</owl:inverseOf>

<rdfs:domain rdf:resource="#Transaction"/>

</owl:Obj ectProperty>

<owl:Obj ectProperty rdf:ID="isEventSubj ectOf">

<rdfs:domain rdf:resource="#EconomicResource"/>

<rdfs:range rdf:resource="#EconomicEvent"/>

<owl:inverseOf>

Cowl:Obj ectProperty rdf:about="#hasSubj ect"/>

</owl:inverseOf>

</owl:ObjectProperty>

Cowl:ObjectProperty rdf:about="#isPartOf">

Crdfs:domain rdf:resource="#EconomicEvent"/>

Crdfs:range rdf:resource="#Transaction"/>

Cowl:inverseOf rdf:resource="#hasPart"/>

c/owl:ObjectProperty>

Cowl:ObjectProperty rdf:about="#isDestinationOf">

231

http://www.w3.org/2001/XMLSchema%23int

Cowl:inverseOf>

Cowl:TransitiveProperty rdf:about="#isSourceOf"/>

c/owl:inverseOf>

Crdfs:domain>

Cowl:Class>

Cowl:unionOf rdf:parseType="Collection">

Cowl:Class rdf:about="#OutsideAgent"/>

Cowl:Class rdf:about="#InsideAgent"/>

c/owl:unionOf>

c/owl:Class>

c/rdfs:domain>

Crdfs:range rdf:resource="#EconomicResource"/>

c/owl:Obj ectProperty>

Cowl:ObjectProperty rdf:about="#hasSubject">

Crdfs:range rdf:resource="#EconomicResource"/>
Crdfs:domain rdf:resource="#EconomicEvent"/>

Cowl:inverseOf rdf:resource="#isEventSubjectOf"/>

c/owl:Obj ectProperty>

Cowl:TransitiveProperty rdf:about="#isSourceOf">

Cowl:inverseOf rdf:resource="#isDestinationOf"/>

Crdfs:range>

Cowl:Class>

Cowl:unionOf rdf:parseType="Collection">

Cowl:Class rdf:about="#OutsideAgent"/>

Cowl:Class rdf:about="#InsideAgent"/>

c/owl:unionOf>

c/owl:Class>

c/rdfs:range>

232

Crdf:type rdf:resource="http://www.w3.org/2002/07/owl#0bjectProperty"/>

Crdfs:domain rdf:resource="#EconomicResource"/>

c/owl:TransitiveProperty>

C/rdf:RDF>

c!— Created with Protege (with OWL Plugin 2.2, Build 331)

http://protege.stanford.edu — >

233

http://www.w3.org/2002/07/owl%230bjectProperty%22/
http://protege.stanford.edu

Appendix B

M OBIlearn Case Study

B .l MOBIlearn Case Study Background

The integration of new technologies (e.g., personalisation, multimedia, ambi

ent intelligence, haptic interactions, mobile devices) in education and training

is basically a culturally driven process with the need to bring about change not

only in people, but in the entire learning environment. This is a part of the

comprehensive eEurope Action Plan for European uptake of digital technolo

gies, in which a basic objective is for education systems to use developments in

information and communication technology (ICT). Another important part of

MOBIlearn is the free circulation of knowledge, in forms that are appropriate

for individual users. In the last decades political and social progresses have

underlined the importance of the free circulation of knowledge as the most

advanced answer to the increasing needs of new skills related to new technolo

gies and new socio-economic models brought by the Information Society. On

these social and technological premises, MOBIlearn aims at improving access

to knowledge for selected target users (such as mobile workers and learning cit

izens), giving them ubiquitous access to appropriate (contextualised and per

sonalised) learning objects, by linking to the Internet via mobile connections

234

and devices, according to innovative paradigms and interfaces. The project

will focus, in fact, on the target markets (individuals or small groups of people

spread Europe-wide in many and various sites, willing to access knowledge

on demand, just in time and in the field to foster their life long learning

and enhance their working experience). The final objective is to improve the

knowledge level of individuals through cost and time optimisation of learning

processes. This maximises the opportunities of three representative groups:

• Workers, to meet their job requirements and to update their knowledge

continually;

• Citizens as members of a culture, to improve the learning experience

while visiting a cultural city and its museums;

• Citizens as family members, to have simple medical information for ev

eryday needs.

The MOBIlearn system will allow acquisition of ways to meet user needs and

build knowledge spaces. Impacts of the solution on self-learning will be ex

plored in three selected and very representative applications for mobile learning

(m-learning), namely:

1. Master in Business Administration (MBA) schools, where international

MBA institutes (partners of MOBIlearn) will extend the reach and scope

of their current blended-learning offering, by providing learners with per

sonalised and tailored subscriptions to content on mobile networks;

2 . A European city famous worldwide for its art (Florence), where Firenze

Musei (not a partner, but a member of the MOBIlearn Special Interest

Users’ Group), a consortium managing all the European historical and

235

cultural heritage locations of the city, will improve its offerings enabling

learning citizens to access context sensitive art, historical and cultural

knowledge with mobile devices while visiting museums and galleries;

3. Access to basic medical knowledge to enable support for anywhere and

anytime interventions.

The certified knowledge basis is provided by the European Resuscitation Coun

cil (not a partner, but a member of the MOBIlearn Special Interest Users’

Group), which already trains non-specialised citizens in basic medical proce

dures (such as Basic Life Support), with quick reference, audiovisual procedu

ral guides and VR simulations. Nevertheless the solution could be applied in

many other business sectors and knowledge domains and applications for many

kinds of learning and many circumstances and areas. The MOBIlearn project

contributes to breaking traditional barriers to learning for many people, which

exist for them now due to their limited access to information, limited time

for learning and isolated environment. It should be borne in mind that these

application areas are selected to provide a diverse set of user requirements and

technical challenges, to draw upon previous EU-funded projects, and to allow

consideration of a broad range of user activities. The MOBIlearn project has

international relevance by proposing the conception, population and experi

mentation and exploitation of new models of learning and information use, via

next-generation mobile networks, through:

• creation of pedagogical paradigms to support learning in a mobile envi

ronment (such as collaborative learning, organisational learning, dynamic

knowledge creation in a group);

• new architectural layouts to support creation, brokerage, delivery and

236

tracking of learning and information contents on the mobile network,

which extend existing systems;

• selection and adaptation of existing eLearning contents for mobile de

vices, enabling automatic multi channel and multi device versioning;

• realization of new business models, based on existing success-cases (e.g.

DoCoMo iMode), for the self sustainability and deployment of the con

ceived solutions beyond the research timeframe within Europe’s Knowl

edge Society framework for the third Millennium.

The goal of MOBIlearn is the creation of a virtual network for the diffusion

of knowledge and learning via a mobile environment where, through common

themes, it is possible to demonstrate the convergence and merging of learn

ing supported by new technology, knowledge management, and new forms of

mobile communication. This also creates a virtual point of mobile access to

content that could be used at a European and International level. A sub

sidiary goal is to develop deeper understandings of the social processes and

interactions that arise when connectivity reaches a critical point, so that we

are alert to the possible emergence of “ambient intelligence” equivalents of the

widespread take-up by users of SMS. The objectives and scope of MOBIlearn

appear to be very challenging, yet achievable thanks to the multi facet and in

novative layout of the proposed architecture and model specifically addressing

the variety of pedagogical, social and working contexts that a typical European

mobile worker and learning citizen might experience.

B.1.1 Objectives

The specific objectives and challenges of the MOBIlearn are:

237

B.1.2 On Pedagogical Issues

The definition of theoretically-supported and empirically-validated models for:

• Effective learning/teaching/tutoring in a mobile environment;

• Instructional design and eLearning content development for mobile learn

ing.

B.1.3 On Human Interaction and Technical Issues

The development of a reference mobile-learning architecture that is attractive

to key actors in Europe and beyond, and that supports:

• Human interfaces adaptive to the mobile device in use and the nature

(e.g., bandwidth, cost) of the ambient intelligence that is available in a

given location;

• Context-awareness tools for exploiting context and capturing learning

experience;

• Integration of mobile media delivery and learning content management

systems;

• Collaborative learning applications for mobile environments.

B .1.4 On Business Issues

The conception of a business model for future deployment, starting from:

• A study of existing business models and market trends;

238

• An appraisal of the external environment (e.g., to take into account the

business tactics of large non-European organisations entering EU mobile

markets).

To achieve these objectives, MOBIlearn aims:

• To define new pedagogical models and guidelines for learning and teach

ing and for effective instructional content design for mobile environment.

Since research in this field goes far beyond the MOBIlearn lifecycle, the

definition of roadmaps for further research on pedagogical aspects of mo

bile learning is essential;

• To conceive, design and implement a mobile-learning reference architec

ture that supports the flexibility needed for the effective deployment of

new pedagogical and business paradigms for knowledge access and shar

ing in mobile environments;

• To influence international standards and specifications bodies (i.e. ISO,

IEC JTC1, SC36, ADL SCORM, CEN/ISSS WSLT, IEEE LTSC, XML,

3GPP, DVB-MHP) for extensions and integrations for mobile-learning

requirements;

• To verify proposed models and solutions with real life scenarios and user

trials, namely in the business administration education, in accessing cul

tural heritage knowledge, and basic medical information.

MOBIlearn will develop a significant and innovative mobile learning architec

ture. This will have elements (layers) that reflect the needs of each constituency

represented by the Consortium partners and Special Interest Groups. Those

constituencies include end-users (in each of the test markets), pedagogical

239

experts, 3G mobile operators, mobile devices manufacturers (mobile phones,

laptops, and PDA’s), content providers with large Digital Repositories, and

technology providers (integrating and extending pre-existing technologies, such

as Learning Content Management, Media Streaming, collaborative software).

The project will foster architectural integration and upgrades to satisfy new

methodologies for mobile learning environments. These will include practical

implementations and trials using learning materials in selected contexts (i.e.

business administration and management education for the mobile worker, art

and cultural heritage information access for the learning citizen, basic med

ical knowledge for everyday life). There are many aspects of learning that

mobile technology could address (such as support of informal learning, mobile

conversational learning, mentoring of mobile learners, outdoor science learn

ing experiments). We envisage exchanging results with projects that will be

addressing those aspects specifically. Our primary focus, however, is on an

aspect of mobile learning that is of immediate economic significance: content

delivery for adult learning and professional development enabled with collab

orative spaces, context awareness and adaptive human interfaces. The value

of the “content delivery” model of learning has been widely debated and it is

particularly appropriate for well-motivated learners (e.g. adult professionals,

people on cultural trips) to address a clearly defined learning need. And these

are exactly the typology of learners that MOBIlearn addresses, as indicated

also by the selected user trials. MOBIlearn shall not, therefore, be addressing

all the emerging areas of mobile learning in this project, but it explores the

chosen aspects in terms of all its different components (pedagogy, technical

and human interaction, business). Furthermore, according to this approach,

and following a recommendation of the EC report on “Next Steps in Learning

240

Futures” , MOBIlearn research has been based on a multi-disciplinary approach

taking into account joint pedagogical, technological and organisational aspects

of learning in mobile environment. As far as mobile devices are concerned, even

if the conceived architecture will be open for any device, MOBIlearn will use

leading-edge laptops, mobile phones and PDA’s as test-beds for development

and for user trials. The company manufacturers of these devices are partners

of the MOBIlearn project, and, if research proves it is necessary, it will be

possible to access even low-level specifications to implement middleware (e.g.

using MHP, Multimedia Home Platform standard) or to improve existing mi-

crobrowsers.

http://www.mobilearn.org

B.2 Case Study: Description of M BA Use-

Case Scenario

Hans Beerli is a manager of Finance Suisse and participating in the Executive

MBA. In the course of two years, Hans takes a total of 80 contact days, mostly

structured into three-day modules. The class size is 30 students. On Tuesday

March, 9th 2004 he will start the module on Information Management. The

previous week he has received his course preparation pack with a printed case

study “Printpro’s odysee through E-Business” . As he had been busy working,

he can only open the package on Saturday: it contains a printed version of

the case and his personalised prepaid course card1. He reads the case and is

fascinated by the similarities between his own experiences at Finance Suisse

1This course card pays for all conversation and interactions in the MBA-learning com
munity and identifies the user to all the course resources

241

http://www.mobilearn.org

and Printpos.

On Tuesday there are mainly classical lecture classes in the University

lecture halls. He uses his PhonePDA to annotate the PowerPoint presentation

of the slides and to link the relevant part of them to his notes on the case

study. He also very much liked the example of a process analysis presented

to the class in a film. As he has the feeling that others are puzzled, too, he

requests to view it again. After a short discussion with the teacher, the control

over the projection device is transferred to his PDA and he rewinds the film

to the critical section. Having control over the shared media, he is now able

to lead the class discussion on the open issues.

On Wednesday the group has to work on the case study. They meet in

a University electronic meeting room for face-to-face collaboration. First the

teacher asks one student to summarize the main points of the case and then

, the group is engaged in an electronic discussion on the underlying problems of

Printpro. Some people link their PDAPhone directly to the electronic mod

eration toolset; the others prefer to attach it to the tablet PCs available in

the room. The group identifies possible problems, and selects and structures

the most important problems again using the electronic moderation toolset.

Still, the outcome appears fragmented and often superficial. After a break, the

teacher then presents applicable theories in order to give them a more solid

foundation for the analysis.

After lunch-break, the group is split in 6 subgroups with 5 persons each.

Each subgroup receives the task to analyse the case using a different perspec

tive (marketing, financial, strategy, IS-Architecture...). As a resource they

receive a shared electronic desk. The teacher has prepared specific informa

tion in an electronic library and a set of tools for each group. They use their

242

PDAPhone for adding information to the shared environment as well as for

controlling it. After two hours of intensive work in subgroups, the group recon

venes and each subgroup presents its results to the plenary on public electronic

displays. Using the Phone PDA as a remote control and annotation tool in

tensively, the group members are able to link the different perspectives to a

comprehensive picture.

Next each subgroup has to provide a strategy for Print pro and a concept

for solutions to the problems identified. The students are explicitly asked to

link their subgroups proposals to their companies E-Business approaches. In a

final lecture, the teacher provides the students with an overview over applicable

concepts for the solutions.

During the rest of the week, Hans Beerli spends considerable time in finding

out Finance Suisse’s E-Business strategy. He uses his PhonePDA to support

his interviewing and to exchange intermediate results with his subgroup’s mem

bers. A virtual group room is used to collect immediate results and serves as

a context for asynchronous group discussions and chats. A virtual classroom

supports the information exchange and discussion in the plenary. As Hans

has been elected leader of his subgroup, he has a longer tele-meeting with the

teacher on the subgroup’s progress. Twice the subgroup meets for an hour

in a restaurant and during an elaborate lunch they assemble each subgroup

members to a comprehensive solution. To support these activities they create

a shared environment linking applications on their PhonePDA.

Next Tuesday, the subgroups present and discuss their results in a similar

way as on Wednesday afternoon. A general background lecture on E-Business

gives them a comprehensive overview over E-Business aspects not covered so

far. In the closing electronic questionnaire the participants indicate that they

243

were happy with most aspects of the course. The ad-hoc evaluation on the

public screen however shows that the group is split on the issue whether more

anonymous participation would have been useful. The teacher reserves some

time for an oral discussion to get more input on this issue. The participants

quickly note that the preference for anonymity depends on their companies

attitude towards criticism.

All group output has been electronically documented. The teacher promises

to support the electronic course community as long as there is still activity.

As Hans Beerli returns home, he still downloads the most important material

to his computer. He is determined to use it to improve Finance Suisse’s E-

Business approach.

244

