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Abstract

The introduction o f  self-tuning control techniques to the Automatic Gauge Control 
(AGC) system o f  a rolling mill is considered. This is a new application o f  pole-placement 
self-tuning control and no comparable examples have been found in the literature.

Initially, an existing ACSL model was investigated and a simpler version, suitable for on­
line use was developed. A simpler MATLAB model o f  the system was also produced.

A data logging exercise was then carried out to allow PRBS testing and provide data for 
model validation. System identification and correlation analysis were then used to obtain 
a simplified parametric model. Included in this stage was a thorough investigation into 
the practical aspects o f  the PRBS method for system identification and the requirements 
for successful implementation noted.

Through extensive simulation studies it was successfully demonstrated that a pole- 
placement self-tuning controller using simple least squares estimation can be used to 
control the position loop o f  the AGC system. There appears no good reason why this 
procedure could not be applied to other rolling mill control loops.
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1.0 I N T R O D U C T I O N

This project was carried out in collaboration with Davy International Sheffield who 

supply manufacturing and processing equipment to the worlds metals industries. One o f  

their main areas o f  expertise is Automatic Gauge Control (AGC) systems applied to 

rolling mills. As a result o f  Davy completing a program to develop a DDC (Direct Digital 

Control) system, the foundations existed on which to develop a more sophisticated 

controller. The current DDC basically does the same job as an analogue system and as 

such, has no real advantages over the old analogue loops, except that the problem o f  

drifting signals is removed and it is easier to log data from the digital system. Some form 

o f  adaptive control would hopefully tackle non-linearities and reduce the time spent on 

commissioning. In addition to these benefits, such a system would also improve control 

over a wide range o f  materials.

1.1 Background (Histp i t )

Processes have been controlled by conventional Proportional plus Integral plus 

Derivative (PID) [1,2,3] controllers for over half a century [4,5]. This strategy has 

remained unchanged despite the introduction o f  microprocessor based control systems. 

However, the control calculations involved in a microprocessor implementation o f  a PID 

controller algorithm are fairly trivial [6], With an increase in computer pow er and a 

decrease in costs, the next step was to provide further features. Although it is generally 

recognised that the conventional PID controller is very effective, in practice its initial 

tuning and any subsequent tuning on a plant with many control loops can be very time 

consuming. The effectiveness o f  a PID controller is also reduced on plants with varying 

parameters. Therefore one obvious method for improvement was to provide self-tuning 

and adaptive capabilities [7,8,9,10],

A self-tuning controller has the ability to calculate its own control parameters, assumed 

unknown but constant, at the time o f  commissioning. An adaptive controller extends this
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concept by altering its control parameters on-line to suit changing process conditions. 

These two ideas are virtually the same, incorporating similar estimation algorithms, see 

section 1.2.1 below. Potential candidates for the application o f  adaptive control are 

processes that are non-linear and stochastic, thus, they are difficult to analyse and 

control. I f  they were linear they could be controlled by classical linear controllers. I f  they 

were not stochastic or uncertain in some way there would be no requirement to learn in 

the form o f  self adjustment or coefficient estimation. There are no general design 

procedures for non-linear stochastic processes.

Adaptive control theory has been developed over the last twenty years and several 

thousand papers have been written [11,12,13,14]. Although there appears to be a great 

number o f  practical applications for such techniques, and developments in computer 

technology have resulted in making implementation o f  the algorithms possible, the 

number o f  successful applications actually reported is very limited. The main reason for 

this is that much o f  the information, for competitive reasons, is kept “in-house” thus, 

specific details remain unpublished.

1.2 Adaptive schemes

Three classes o f  theoretical adaptive controllers exist [15,16]:

In a gain scheduling controller the designer makes use o f  his knowledge o f  the process 

non-linearities to develop a schedule for the controller gain (plus derivative and integral 

gains as required). The schedules are then used to program the controller coefficients as 

a function o f  one or more o f  the process variables. Gain scheduling is an open loop 

compensation and can be thought o f  as a feedback control system in which the gains are 

adjusted by feed forward compensation. There is no feedback from the performance o f  

the closed loop system to compensate for an incorrect schedule. It is contentious 

whether gain scheduling should be considered as an adaptive system because the 

parameters are changed in open loop.



In model reference adaptive control systems [17] the user defines at the outset, the 

closed loop system response. The desired response to set point changes is expressed in 

mathematical terms and then implemented as a dynamic model. The model is subjected to 

the actual set point changes and calculates in real time, the corresponding idealised 

output. Within the model reference system is a conventional feedback controller with 

adjustable coefficients. The process and model outputs are compared and the differences 

are used to adjust the coefficients o f  the feedback controller.

The two schemes above are known as implicit (or direct) methods because the 

adjustment rules tell directly how the controller parameters should be updated. A 

different scheme is obtained if the process model is updated and then the updated 

controller coefficients are obtained from the solution o f  a design problem, this is often 

termed an explicit method. A self-tuning controller uses a highly simplified and linear 

mathematical model o f  the process. The technique uses a feedback control system 

together with an identification system which continually monitors the process inputs and 

outputs to produce a mathematical representation o f  the process dynamics. This model is 

in the form o f  a generalised equation with a finite number o f  parameters which are 

estimated recursively. The model is then used to calculate the coefficients o f  the 

controller based on a defined performance requirement. Thus, there are tw o separate 

functions being carried out, the first is a learning process (model generation) and the 

second is the actual control o f  its behaviour [15], It is useful at this stage to provide brief 

details o f  the methods available for each function.

1.2.1 Estimation

In adaptive controllers observations o f  the system input and output signals are obtained 

sequentially in real time. It is desirable to make calculations recursively in order to save 

computation time [10], The algorithms are therefore arranged in such a way that the
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results already obtained can be used to obtain the new estimate o f  the current dynamics 

o f  the process.

The most commonly used family o f  algorithms is that o f  least squares [11,18,19] as they 

are easy to program and work well. I f  the same input is applied to both the system and 

the mathematical model the outputs can be compared, giving rise to an error which is 

dependent on how poor the estimates are. This gives an indication o f  how close the 

model is to the actual system. In an attempt to obtain a better model, the sum o f  the 

squares o f  the errors is minimised by the adjustment o f  the model parameters.

1.2.2 Design

Self-tuning controllers are flexible with respect to a design method. Virtually any design 

technique can be accommodated. Minimum variance control is especially useful in the 

design o f  regulators which maintain an output value constant despite process 

disturbances. It is most effective when the process is not changing. The main 

disadvantage o f  this method is that it does not perform well when the set point is being 

varied.

A simple and direct design procedure is that o f  pole placement. The objective here is to 

locate the closed loop system poles at pre specified locations in order to obtain the 

desired response. Designs based on gain and phase margins and on linear quadratic 

Gaussian control have also been developed [15,16],

1.3 A u to m atic  G auge  C ontro l (A G C ) [20,21]

The gauge or thickness o f  a rolled piece o f  metal may vary across its width or, along its 

length. Normally variations across the width are associated with shape or flatness control 

and variations along the length, with gauge control. Both these factors must be 

controlled effectively in real time [22], to meet custom ers’ requirements for higher



tolerances, increased rolling speeds for higher productivity and to reduce “off-gauge” 

material, that would be scrapped or need re-working.

—  hack up roll

strip.

 J chock | /

/
hydraulic capsule 

Side View End View

Figure 1.1, Mill stand.

The system in question is a single stand cold reversing mill which uses fast acting 

hydraulic cylinders or capsules for roll adjustment. Figure 1.1 shows the mill stand 

configuration, consisting of, a pay-off winder, two work rolls, two back up rolls and a 

take-up winder. The back up rolls are housed in chocks (as are the work rolls normally) 

and the hydraulic cylinders are placed between these chocks and the stand housings on 

either side o f  the mill, also see section 3.2.2.

Before rolling can begin, the mill must be threaded. This involves slowly taking strip off  

the pay-off winder and passing it through the mill between the work rolls, to the take-up 

winder. The mill is now set up to roll the strip which will be carried out at a greater 

speed. Almost the full length o f  strip is then passed between the work rolls, set to give 

the required gauge reduction, leaving the mill threaded and the end o f  the strip in what 

was the pay-off winder. The gap between the work rolls is then reduced further and the 

process repeated in the reverse direction. For operational purposes the number o f  passes 

will generally be an odd number. Both the winders are driven and controlled by the mill



control system o f which the AGC is only a part. In the roll gap, the metal is plastically 

elongated in the direction o f rolling. As the strip passes between the work rolls it speeds 

up, thus, the strip speed is quicker on the exit side of the mill.

The control objective o f the AGC system is to ensure minimal variation in out going strip 

thickness, which is controlled by varying the gap between the work rolls. Such a system 

uses one basic mode of control around the hydraulic capsules, either position control or 

load (pressure) control. Other more complex control loops produce trims which adjust 

the reference to the basic loop. For example, the out going strip thickness can be easily 

measured and this value fed back for comparison with the desired thickness. However, 

the thickness can only be measured “down stream” of the roll gap which leads to a 

transport delay. As a result such measurements can only be used as slow trims, leaving 

the major control effort to the fast acting position or load control loop around the 

capsule. A simple extension to this principle is to fit a thickness measuring device to the 

entry side of the mill and thus allow the control system to anticipate errors before the 

strip enters the roll gap and correct them using feedforward control.

top plateref. error
CONTROLLER

position
transducerservo

currenl
measured
position

hydraulic AGC cylinder

Figure 1.2, Position loop of AGC.

Figure 1.2 shows the basic position loop of the hydraulic AGC. Note 1, Appendix F. In 

order to convert to a load loop, the position transducer would be replaced with a 

pressure transducer. In practice there would be two servo valves and two transducers of 

each type to improve accuracy. In either mode, the major parameters affecting the exit



gauge are tension, entry gauge disturbances, material hardness changes and roll 

eccentricity. In general, only proportional control is used. The servo valve and hydraulic 

cylinder provide a natural integrator. Flow is proportional to input current and flow 

integrates to give a load change. An additional integral term may sometimes be added to 

remove any remaining steady state errors. In general, load control loops are more 

difficult to stabilise than position loops.

1.4 Project Objectives

The overall aim of the project is to investigate some form of adaptive control for an 

hydraulic AGC system applied to a single stand cold reversing mill. Initially, effort will 

be directed towards self-tuning and will only be concerned with the position loop 

controlling the hydraulic capsules. The response of this loop is well defined and the loop 

can be modelled relatively easily from its basic components. If successful, the 

development o f an adaptive system should:

• reduce commissioning time

• improve control over a wide range of materials

• be a selling point

• allow re-tuning by the mill operator.

A further advantage is that the lessons learnt and algorithms developed here could be 

applied to other loops and systems at a later stage.

1.5 Major Contributions

This is a new application and the proposed control technique has been shown to be 

possible through extensive simulation studies; in addition, no comparable applications 

have been found in the literature. In addition to the simulation work, logging o f plant
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data was also carried out to aid in the modelling o f the system. The practical aspects o f 

the PRBS method for system identification, which are omitted from the texts, have been 

thoroughly investigated and the requirements for successful implementation noted.
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2.0 MODELLING OF A SINGLE STAND COLD REVERSING 
MILL

The suggested self-tuning controller of chapter one requires a simplified, linear model o f 

the system to be controlled. In addition to this model, a more complex model would be 

extremely useful in the development stage for simulating the controller’s response. The 

difficulty in building a mathematical model is balancing two opposing factors; including 

all the relevant factors affecting system response and minimising computing time. The 

question o f overall accuracy must also be answered, ie what are the “relevant factors”? 

These problems are obviously amplified under the constraints of real time computing.

A block diagram o f a simple mill stand model based on physical elements, relating servo 

valve current to hydraulic cylinder position is shown in figure 2.1. Note 2, Appendix F.

cylinder
velocity

servo
flowservo

current cylinder
position

forceServo valve pressure

Vs

Figure 2.1. Block diagram of mill stand model.

where:

G)n natural frequency of servo valve (rad.s’*)

£ damping ratio for servo valve

kq flow gain of servo valve (m^/s per A)

B oil compressibility (Nm"2)

A cylinder area (m^)

V cylinder volume (m^)

M moving mass o f mill (kg)

kj! mill housing stiffness (Nm"l) continued...
9



d d a m p in g  term =  2 . p . V ( k |1.M )  ( p  =  d a m p in g  fac tor  - . 1 )

The servo valve is represented by a second order transfer function, with natural 

frequency con, damping ratio C, and gain kq. The output o f  the servo valve is oil flow to 

the hydraulic cylinder. Flow into the cylinder will obviously be affected by any movement 

o f  the ram, altering the available volume and hence the pressure. The flow is integrated 

to give the pressure change and thus, a change in the force acting on the ram. This force 

is also dependent on the ram ’s current position. The actual cylinder is then represented 

by a first order transfer function with the force acting on the ram as the input producing 

a movement. This cylinder model contains a damping term, d, which is calculated from 

the mill housing stiffness, the moving mass o f  the mill and a damping factor, p, to 

produce the required response.

2.1 The ACSL mill model

The ACSL (Advanced Continuous Simulation Language) [23] mill model is a computer 

model o f  a rolling mill designed for the simulation and testing o f  gauge control systems. 

This model was developed and used previously by Davy. The model is two dimensional 

in the sense that it does not consider variations across the roll bite. A complete mill stand 

model can be constructed from basic blocks, or modules, that include, mill stand with 

hydraulic capsule, main motor drive with speed control and pay-off and take-up winders. 

Each block being a complex non-linear ACSL model o f  that particular component.

In order to understand the principles involved, a mill model was constructed by

connecting together the major modules. Once initialised, the model ran satisfactorily.

However, difficulties were experienced in maintaining tension between the roll bite and

the winders on either side o f  the stand. The model had been set up using data from a

number o f  previous projects and as such was not related to any one particular real mill.

The model thus required tailoring to a specific mill, it was hoped that this step would

reduce the stability problems being experienced.

10



2.1.1 E nh an cem en ts  and s impli f icat ions

The existing model was found to be extremely complex and slow in execution and so not 

suitable for any real time simulations that may be required later. The electrical drive 

modules were particularly detailed and were used in three sections o f  the overall mill 

stand model: in the main drive and in both the pay-off and take-up winders. Thus, any 

improvements made here would be amplified.

The main drive system was isolated as an ACSL model with two inputs (rolling torque 

and reference speed) and one output (roll speed). A frequency response and a number o f  

step tests were carried out on the model in order to understand its operation. These 

results would also act as a reference when testing any alterations. Throughout the tests 

the armature voltage was monitored for saturation which would introduce a non linearity 

into the system.

The step responses were found to be basically second order. For small steps, up to base 

speed, a second order model was fitted, working with percentage overshoot and time to 

cross final value. It was assumed that by alteration o f  the gain at higher speeds and loads, 

a similar response would be obtained, and that this was representative o f  real drive 

control systems. To remove any steady state error between the reference speed and the 

actual speed an integral term was added to the proportional controller and a provision 

made to avoid integral wind-up. Figure 2.2 shows the block diagram for the simplified 

drive model.

11
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krvi

erri max

7T\

Figure 2.2, Simplified drive model

where:

rvref speed reference (rad.s"^)

rtq rolling torque (Nm)

rv mill speed (rad.s"l)

Jm moment ot inertia (kgm-)

Bm Damping coefficient (5% o f  max. torque)

krv torque speed gain (Nm/rad.s- ^)

krvi integral gain (Nm.rad- ^)

tqmax maximum torque (Nm) (dependent on speed)

Tern time constant (s)

The system has two inputs, reference speed, rvref and rolling torque (load), rtq, and one 

output, mill speed, rv. The difference between the actual speed and the reference 

produces an error, err, for the proportional plus integral controller to give the control 

signal, errk (the term erri is used in the prevention o f  integral wind-up). The maximum 

torque o f  the motor, tqmax, is limited by the m otor’s speed, so the value o f  tqmax is 

altered as the motor speed changes once it is greater than the base speed o f  the motor. A 

lag term is introduced to provide a phase lag between a speed change and a torque 

change. The rolling torque, rtq, is the load on the motor, this is subtracted from the 

torque produced by the motor to give the torque available for acceleration. This torque 

is then transferred to a speed through a first order transfer function. The AC SL code for 

this simplified model can be found in appendix A l.



The response o f  the modified drive model to a step in reference speed o f  amplitude o f  

.05 rad.s"!, from an initial speed o f  5 rad.s~l, (approximately the base speed o f  the 

m otor being modelled) is shown in figure 2.3. Figures 2.4 and 2.5 also show step 

responses o f  the modified drive model, in both cases the amplitude o f  the step is much 

greater, 5 rad .s ' l .  Figure 2.4 shows the step from 5 rad.s"! to 10 rad.s"^ and figure 2.5 a 

similar step but from a much greater initial speed o f  30 rad.s’ l. These two responses 

although unrealistic, (a ramp would be more appropriate for larger changes in speed), 

clearly show the effect o f  torque available for acceleration limiting the m otor’s speed 

response.

The other area for improvement was the complete winder models. Although there are 

two separate models, they are basically the same. The winders are used to pay out the 

metal strip in to the mill for rolling and to coil the strip after its gauge has been reduced. 

As above, the ACSL code was isolated (the take-up reel was used). On investigation this 

model was found to be very oscillatory and almost impossible to set up as a stand alone 

model. It was therefore decided to start again. The major problem in modelling this 

system was where to introduce damping. It is not known where exactly the damping 

comes from in the actual system. Two methods were investigated; damping as a result o f  

frictional and other forces acting on the winder against the direction o f  rotation, and 

damping as a result o f  the tension within the strip. Another major problem is that o f  

inertia. Obviously, as a winder pays-off or takes-up strip its radius and therefore its 

moment o f  inertia alters.

A model was built which included a damping term based on the tension o f  the strip, 

figure 2.6.
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speedtorque

A T Q
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Figure 2.6, Simplified winder model block diagram.

where:

Vout speed out o f  mill (m.s- )̂

FTREF Ref. tension force (N)

Von speed onto winder (m.s“ l) (winder peripheral speed)

FT Front tension (N.m"-)

E Y oung’s modulus (Nm--)

L stand-winder distance (m)

Dt tension damping term (ms"^/Nm"2)

G gauge out o f  stand (m)

W width out o f  stand (m)

R coil radius (m)

J moment o f  inertia o f  coil and motor (kgm2)

Ds speed damping term (Nm/rad.s- ^)

ATQ accelerating torque (Nm)

The aim o f  the above model is to relate two linear speeds, the speed out o f  (or in to) the

mill and the speed on to (or off) the winder. The difference between the two speeds

integrated with respect to time gives AL, which when converted to a strain and

multiplied by Y oung’s modulus gives the tension within the strip. This tension is then

easily converted to a torque acting on the winder. This torque is only valid in one

direction, ie the strip will not push the winder round, it will only act to oppose the
17



winder drive. Thus, figure 2.6 requires the addition on a non-linear block before the 

summation to calculate ATQ. The mill operator will have set a desired tension in the 

strip, FTREF, there will therefore be a resultant torque attempting to prevent the winder 

from turning. Integration of the resulting acceleration leads to the rotational speed. The 

major problem with this model is deciding where damping is introduced in to the system. 

It was decided to introduce a damping term based on the tension in the strip as a result 

of the speed difference between winder and mill stand. As the model stands, the 

alteration in moment of inertia o f each winder as strip passes through the mill is not 

taken in to account.

Figure 2.7 shows the response of the take-up winder peripheral speed to a step change in 

strip exit speed from the roll gap. The response is highly damped, giving no overshoot 

and has a rise time of approximately 75ms. Figure 2.8 shows the corresponding variation 

in strip tension. The strip becomes “slack” while the winder speeds up to maintain the 

required tension in strip. The strip becomes “slack” because the strip is leaving the roll 

gap much quicker than it is being coiled. The tension in the strip is recovered as the 

winder speed increases. It should be noted that the linear speed of the strip onto the 

winder is slightly greater than the speed out o f the mill, this difference is needed to 

maintain the required tension. The damped response is highly desirable as any oscillation 

could alter the exit gauge by drawing the metal out of the roll gap.

Unfortunately, despite the large amount of effort expended, this model failed to improve 

on the performance of the previous attempt when combined with the other modules to 

give a complete stand model, still being very difficult to set up and stabilise. This was 

due to lack of understanding about the real winder control system. The ACSL code for 

the simplified winder model is listed in appendix A2.
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2.1.2 Mo del  s tructure

Although considerable simplifications have been made, the overall mill stand model 

remains fairly complex. Figure 2.9 attempts to show all the interactions taking place in 

the mill stand model by showing the individual modules and the interactions between 

them. In general the data flows from top to bottom. At the centre o f  the model is the 

actual roll gap where the strip gauge is reduced, the actual distance between the w ork

rolls being determined by the servo valves in the stand model.

f ro n t
tension
r t f .

Stllllll 
ex it speed

DRIVE

L COIL ROLL C AP

STAND

R COIL

w in d e r
speed

Figure 2.9. The structure of  the complete mill stand model.

The stand module represents a mill stand with a bottom mounted capsule. The top rolls 

and the top o f  the mill housing are assumed to move together as one mass. As detailed 

above, the servo valve dynamics are represented as a second order transfer function. The 

model also takes in to account mill housing stretch and known non-linearities such as 

hysteresis in the capsule and limiting o f  the servo valve spool travel. L_COIL and 

R_COIL represent the left and right hand winder models respectively. Figure 2.9 is 

drawn for strip being rolled from left to right.
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The roll gap module uses a FORTRAN subroutine to calculate rolling load, rolling 

torque, deformed roll radius and forward slip [24]. The annealed gauge is used to 

introduce a hardness variable into the model. The main output o f  this module is the strip 

exit gauge. As stated earlier, the major factor affecting winder speed is tension. The 

tension within the strip also has an effect on the exit gauge. If  tensions are high, the strip 

is drawn plastically out o f  the mill, thus giving a thinner gauge than would be expected 

from the rolling load alone.

2.2 T he  M A T L A B  model

As mentioned above, the model required tailoring to a specific mill, so a data logging 

exercise was carried out (actual details in section 3.2.1, below). Due to difficulties 

experienced in identifying a model from the recorded data (see below), a model based on 

the block diagram in figure 2.1, was developed within MATLAB [25]. M ATLAB stands 

for matrix laboratory and is a powerful interactive software package for numerical 

analysis. This simple model was later used heavily, in preference over the ACSL model, 

being quicker and easier to use for developing identification algorithms (section 3.3.2) 

and designing controllers (section 4.3). Once coded in MATLAB, it is possible to alter 

the form o f  the model eg from transfer function to state space form [26], A number o f  

block diagram transformations were required as the original model was found to be ill- 

conditioned. This problem arose from the difference in orders o f  magnitude between 

microns (10"^m) and the forces within the model (lO^N).

Figure 2.10 shows the step response on the M ATLAB model. The M ATLAB code for 

this model, modbld.m, can be found in appendix B l .  The model is seen to have a small 

delay o f  approximately 5ms and a rise time o f  15ms. Obviously, the times will be affected 

by altering the natural frequency or damping ratio o f  the servo valve or any o f  the
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o ther parameters o f  the model. The frequency response o f  this model is given in figure 

2.11, the frequency range o f  interest is 0-30Hz.

2.3 Conclusions

The m otor drive components o f  the existing ACSL mill stand model have been 

simplified. Unfortunately, the attempt at improving the winder models was not as 

successful as had been hoped. During the course o f  the remaining w ork the M ATLAB 

model became the preferred model for simulation providing a reasonable representation 

o f  the real plant. This model is much simpler and as a result easier and quicker to use.
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3.0 DATA ACQUISITION AND SYSTEM IDENTIFICATION

As previously stated, a number of problems had been experienced in building a 

simulation model using physical insight alone. Further, the existing model, written in the 

ACSL software had been constructed via a number of different projects and as a result, 

did not represent any one particular mill. By carrying out a data acquisition and 

identification exercise on a real mill, the simulation model could be tailored to a specific 

mill and an attempt made to improve those aspects of the model known to be poor. In 

addition, the data would be required in the initial testing of any control system designed. 

Note 3, Appendix F.

3.1 System Identification Options

System identification is the process by which a mathematical model of a dynamic system 

may be derived, from system input and output measurements. Application of the 

procedure requires three elements [27,28];

• the observed input / output data

• a set of possible model structures

• a selection criterion, (the identification method) based on the information 

recovered from the data.

The identification process amounts to repeatedly selecting a model structure, fitting the 

best model to the structure and then evaluating the model’s properties to see if  they are 

satisfactory.

Identification methods can be classified according to the type of model that results:

• non parametric methods, eg correlation analysis

• parametric methods, eg parameter estimation techniques.

26



3.1.1 Correlation  Analysis

Correlation techniques are used in a wide variety o f  applications and give a measure o f  

the similarity between two signals. Correlation analysis produces a non parametric model 

[29,30], to which a parametric model may be fitted [31,32].

Correlation analysis is used to determine an estimate o f  the impulse response o f  a linear 

system w ho’s output is corrupted with noise. This technique requires that an external 

signal be input to the system, as the input during normal operation does not generally 

contain enough information. One o f  the most common signals used for this purpose is a 

Pseudo Random Binary Sequence (PRBS) [29,33,34,35], PRBS signals are simple to 

generate, (see Appendices B2 and C l for MATLAB and C [36] listings) and can easily 

be injected into a system. The signal intensity is low, with energy spread over a wide 

range o f  frequencies. As a result the PRBS signal appears as noise on the normal input 

signal and causes very little additional disturbance as long as its amplitude is carefully 

selected. Also refer to appendix B3 for the correlation function M ATLAB code.

3.1.2 Parametric Estimation

Probably the most commonly used models in system identification are parametric 

models. Such structures are based on previous values o f  the output, current and previous 

values o f  the input and usually current and previous values o f  a disturbance signal 

(noise). The general parametric model structure is:

A(z_,)y(t) = B(z '1)u(t-nk) +C (z*1)e(t)

F ( z ' )  D ( r ‘)

where:

y(t) output data sequence

u(t) input data sequence continued...
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e(t) white noise sequence

nk pure time delay o f  nk samples between input and output 

A ( z ' l )  polynomial in the delay operator z"l o f  order na 

A(z"l)  = 1 + a j z ‘ 1 + a2 Z‘^ + ... +  anaz"na 

B(z"l), C(z_l), D(z"l), F(z"l)  are polynomials in the delay operator o f  order nb, 

nc, nd and n f  respectively.

The simplest parametric model having the above form is the ARX (Auto Regressive with 

exogenous  input) [27,33] structure, where nc=nd=nf=0.

A (z ' ')y ( t)=  B (z '])u(t-nk) + e ( t)

The main disadvantage o f  this very simple structure is the simplicity o f  the disturbance 

term which is assumed to be a white noise sequence. A slightly more complex model, the 

ARM AX (Auto Regressive Moving Average with exogenous  input) structure 

corresponds to nf=nd=0. Model structures o f  the above form are often referred to as 

“black box” models. For further discussion the reader is referred to [27,28,33].

The most useful class o f  methods for parameter estimation is that o f  Prediction Error 

Methods. The same input is applied to both the system and the model, the resulting 

outputs are compared giving rise to an error which is dependent on how poor the 

estimate o f  the model is. Thus, this error gives an indication o f  how close the model is to 

the actual system. This error is known as the prediction error or loss function, its 

magnitude and not the sign o f  the error is o f  greatest use. Therefore, the square o f  the 

error is used and this forms the basis o f  the majority o f  identification procedures.

Before commencing parameter estimation a model structure must be selected. There are 

two further choices to be made, the model order (number o f  parameters to be estimated) 

and the time delay. Parameter estimation is based on minimising the loss function, the 

difference between the actual output and the predicted output. It would therefore seem

reasonable to determine the model structure from variations in the loss function caused
28



by varying the model order and delay [31,32], For a single value o f  delay, the loss 

function first decreases then remains approximately constant or increases slightly as the 

model order is increased. It is also possible to get an idea o f  the time delay from the 

estimated impulse response. Further details o f  model order selection can also be found in 

[37,38].

3.2 Data Acquisition

There were three main aims o f  the data acquisition exercise:

• obtain plant data during normal rolling

• enable the ACSL simulation model to be tailored to a specific mill and

an attempt to answer a number o f  remaining questions concerning the 

adequacy and accuracy o f  the model.

• cany  out PRBS tests on various loops o f  the control system

By analysing the available signals during normal rolling it was expected that it would be 

possible to determine if the signals contained enough information for on-line 

identification without having to inject an external signal [39],

3.2.1 Plant Data

The available mill was a Sendzimir, or ‘2 ’ mill, and not o f  the 4-high configuration 

originally envisaged, figure 1.1 [24,40,41], A 4-high mill consists o f  four horizontal rolls, 

one above the other, the direction o f  which may be reversed to pass the metal forwards 

and backwards. The 4-high configuration is a common special case o f  a simple 2-high 

mill in an attempt to lower work roll diameter (which allows greater reductions), whilst 

avoiding roll bending with the use o f  the two larger back up rolls. The Sendzimir mill is 

an extension to this idea. It uses a cluster o f  rolls o f  increasing diameter to support very 

thin work rolls, and is most often used for rolling exceptionally hard material. It was not
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anticipated that this would cause any problems as the differences in mill construction 

were not in the main drive, winder and gap control areas. Also, the mill was highly 

instrumented and all the required signals were available. The data recorded were the 

same for the majority o f  the test records and the details o f  these experiments can be 

found in appendix D.

The data were recorded using a Bakker Electronics 2570 Signal Analyser. However, 

before analysis, the data had to be transferred to an Hewlett Packard (HP) workstation. 

This step proved extremely time consuming as the two machines have very different 

operating systems. The majority o f  the data analysis was carried out using the M ATLAB 

software.

Initial investigation o f  the data showed that some o f  the tests had been unsuccessful (in 

terms o f  the usefulness o f  their results), however, other results were encouraging. The 

delay and rise times o f  the estimated impulse response, obtained by correlation analysis, 

were as expected but, the amplitudes were low and the waveforms noisy. Thus, 

misleading results were obtained and the estimated impulse response o f  the system was 

generally poor. These problems were thought to be due to noise. However, the use o f  

time averaging and maximum PRBS amplitude, without saturating the servo valve, 

yielded no improvements. The data sequences were normalised by the subtraction o f  the 

mean value from each sample to remove any offset and the division by the standard 

deviation. This improves numerical conditioning as the input and output signals are then 

o f  the same order o f  magnitude. After normalisation quantisation was seen to be a 

problem as the data was only utilising six levels out o f  the possible twelve o f  the 

Analogue to Digital Converter (ADC).

Little success was achieved at fitting simple parametric models to data obtained from 

testing the position loop. This loop was chosen for simplicity and because it had a more 

or less known response. The System Identification Toolbox for M ATLAB [28] was used
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for these first identification tests. Due to their apparent failure a number o f  Least 

Squares algorithms [27,33,42,43] were developed as .m files [25] (.m files are simply 

text (ASCII) files that contain M ATLAB statements. They are particularly useful for 

writing user defined functions for use within MATLAB. It is easiest to think o f  .m files 

as computer programs written within MATLAB). However, the simulated responses o f  

the models remained poor. Indeed it was possible to fit a more successful model to the 

estimated impulse response by hand, figures 3.1 and 3.2.

Figure 3.1 shows an attempt to fit a fifth order ARM AX model to the estimated impulse 

response o f  the position loop. It was assumed that there was a delay between the input 

and output signals o f  approximately 10ms and so the first section o f  the curve was 

ignored. However, it was later found, section 3.4, that a delay just shifts the complete 

curve to the right so this assumption was incorrect. Figure 3.2 shows the same estimated 

impulse response with a smooth curve fitted to the data by hand. The curve is basically 

the sum o f  a phase shifted exponentially decaying cosine and an exponential. The 

equation is o f  the form

Ae~^cos(C t +<})) - De 

The five parameters A,B,C,D and E were estimated from approximations made o f  the 

noisy waveform with the amplitude, A, and phase shift, (j), chosen to give the best fit.

A number o f  tools were employed through MATLAB in an attempt to improve the 

results. Filtering o f  the data to remove any high frequency noise made little improvement 

nor did effectively re-sampling the data at a lower frequency.

The signals during normal operation were found not to contain enough information 

(sufficient frequencies within the range o f  interest) for identification. Therefore, an on­

line implementation o f  the identification algorithms requires the injection o f  an external 

signal such as a PRBS.
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3.2 .2  Test Rig

A fairly simple experimental test rig with known responses was also available, figure 3.3. 

The test rig consists o f  a stand housing with bottom mounted hydraulic cylinder with 

load and position loop AGC, full details can be found in appendix E. A number o f  the 

previous tests were repeated on this rig and the effects o f  altering the parameters o f  the 

PRBS were examined. Similar problems to those experienced with the actual mill 

occurred and the small changes (altering the period and reducing the clock frequency 

slightly) made to the PRBS had little effect. The problems experienced throughout the 

data acquisition exercise indicated problems with the data recorded as all the 

identification methods produced poor results. The tests were carried out at a pressure 

approximately equal to half the full working pressure (equivalent to a rolling load o f  600 

tonnes). This value was chosen to give the same response whether the load was moved 

up or allowed to fall.

3.3 Identification

Primarily as a result o f  the work detailed above, and after using the au thor’s own 

parameter estimation routines (section 3.3.2), it became obvious that there was a major 

problem with the set-up o f  the PRBS tests.

3.3.1 Discussion

The bit interval o f  the PRBS should be short compared to the shortest feature o f  interest 

(based on the expected response), and its period should be longer than the system 

settling time [33], The bit interval should be less than half the smallest time constant, 

preferably less than a quarter [30], The system was expected to have an approximate 

response consisting o f  a delay o f  10ms and a rise time o f  10ms. The PRBS was set up 

clock frequency, Fc=3kHz dt=.3xl0"3 s

No. o f  bits, p= 1023

period, pdj= .34 s
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Therefore, the set up would appear to be reasonable, the aim being to record sufficient 

data points to obtain an approximate impulse response. However, it is required to have a 

flat power spectrum up to the highest frequency o f interest [35], assumed to be 

Fh=30Hz. Assuming the power spectrum is required to be flat to within ldB before 

falling away, this occurs at a frequency equivalent to .25FC [35].

.' . 4Fh=Fc => F£=120Hz.

With a much slower clock frequency it is necessary to sample data at a greater rate in 

order to obtain enough data points to give a smooth response curve. If the system was 

linear the clock frequency being too high would be less important as a linear system 

would act a low pass filter and its output would look like the response to a PRBS with a 

lower effective clock frequency. The system was however, highly non-linear and, being 

plant data, the signals were contaminated with noise. Also, there were many other loops 

affecting the position loop, it was possible that the signal had not been injected into the 

inner most loop. As Fc was too high the system could not respond. The PRBS was seen 

as general noise due to the non-linearities spoiling the required properties and the 

parameter estimation algorithms could not cope as they are generally only used to fit 

very simple noise models. Therefore, it had not been immediately obvious that there was 

a problem.

3.3.2 Algorithm Development

When trying to identify models from the mill data many problems were encountered. 

During the analysis a number of algorithms were written for use within MATLAB in an 

attempt to obtain reasonable models. By far the most common estimation technique 

[11,12] is that of least squares. A number of implementations of recursive least squares 

and recursive extended least squares [16,43] were developed and shown to work 

satisfactorily in simulation, appendices B4 and B5. The practical problem o f the build up
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o f  round-off errors within the recursive estimator was overcome by using U-D 

factorisation [44], appendix B5.

In order to cany  out Correlation analysis successfully it was found that a number o f  

restrictions must be placed on the data record. The sampling frequency must be an 

integer multiple o f  the clock frequency. If  this is not the case the correlation curve is seen 

to be noisy. Better results are obtained if the data record contains an integer number o f  

PRBS periods.

3.4 Discussion of findings

Due to the restrictive settings available on the PRBS generator only two reasonably valid 

clock frequencies were available, 100Hz and 300Hz. A number o f  tests were carried out 

on the test rig at these clock frequencies, varying the number o f  bits in the PRBS and the 

sample frequency. A much slower PRBS with a clock frequency o f  30Hz was also 

investigated.

For these tests the original data logging equipment was unavailable and so a PC based 

system was used. The board used was an RTI-850, having 8 channels and a 16 bit ADC. 

This was used in conjunction with Snapshot storage scope software. The data were 

stored in an ASCII format which made transfer to the HP system much simpler. (The 

previous data were stored in DOS binary format and required conversion to H P  binary 

then to ASCII before analysis.) The sampling rate was not always exactly that requested 

due to timing limitations within the ADC. Although there was a slight difference between 

sample frequency and the PRBS clock frequency, the amount o f  noise introduced to the 

correlation analysis was seen to be minimal.

In the first instance, correlation techniques were used to look at the test results. Figure

3.4 shows the effect o f  altering the clock frequency. As expected a clock frequency o f  

30Hz is too slow, there is little correlation between the two signals as the response is
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over within a few samples. A clock frequency o f  300Hz appears to be a little too fast and 

the correlation curve does not settle. As the clock frequency increases the output 

response amplitude decreases. The most useful result is achieved with a clock frequency 

o f  100Hz. It was found that altering the length o f  the PRBS had little effect and that 

sampling at twice the clock frequency, ie 200Hz, was sufficient.

A number o f  further tests varying the PRBS amplitude were also carried out with a clock 

frequency o f  100Hz, figure 3.5. The smallest amplitude, equivalent to 12pm, is basically 

lost in noise. For small steps much o f  the response will be lost due to friction. The largest 

amplitudes, 100pm and 200pm, show as expected, saturation o f  the servo valves. Within 

the range o f  the test, the most appropriate amplitude o f  25pm  give the best results.

The signals from the test using a 100Hz clock frequency and 200Hz sample frequency 

were taken and used for identification. It was found that the system could be represented 

by a very simple 5 ^  order ARX model, figure 3.6, containing 10 parameters. This model 

only requires the simplest Least Squares algorithm as there is no noise model. M ore 

complex models were investigated but no significant improvement in the simulated 

responses were obtained. It is important to remember that the model structure dictates 

the number o f  parameters to be estimated and hence computation time. This structure is 

the same as that obtained from the simple mill model developed in M ATLAB earlier, 

section 2.2.

The frequency response o f  the data and the model can be easily compared, figures 3.7 

and 3.8. There is seen to be good correspondence over the frequency range o f  interest, 

0-30Hz. Cross validation [45] was used successfully in testing the models. This 

technique involves using two different data sets, with the same sampling frequency. The 

first is used to identify the system and the second is then used to validate the model.
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As in all digital control applications it is important to have proper conditioning o f  the 

signals [46]. Due to problems o f  aliasing it is necessary to eliminate all frequencies above 

the Nyquist frequency before sampling (the Nyquist frequency is defined as being equal 

to half the sampling frequency.). A number o f  methods are available when initialising the 

estimator, the simplest is to take the minimum number o f  samples required to calculate 

an estimate before actually starting the estimator. I f  employing this method it is good 

practice to allow the system to settle before starting to record samples. I f  the estimator 

has been used previously it could be initialised with the final settings from a previous run.

The data during normal rolling was seen to contain insufficient information and was thus 

unsuitable for identification purposes. This is the reason for using a PRBS. Estimator 

“blow up” or parameter divergence can occur if the input to the system is not sufficiently 

and persistently excited. The parameter estimator is the critical element o f  a self-tuner. I f  

the model is not being improved the results should be discarded. The management o f  the 

estimator [11,12,47] is often called jacketing. In an extreme case this may consist o f  an 

“o f f ’ switch for an operator.

3.5 Conclusions

The AGC position loop can be successfully identified using recursive least squares but 

this requires the injection o f  a test signal. Such a signal is a PRBS with a clock frequency 

o f  100Hz being sampled at 200Hz. If  the sample frequency is not an integer multiple o f  

the clock frequency the results from any correlation analysis will be noisy. The period o f  

the PRBS was found to have less effect as long as it was greater than the system settling 

time. The results imply that there is only a small band o f  suitable clock frequencies. 

However, this is heavily influenced by the restrictive settings o f  the PRBS generator used 

for the tests. This could be a problem if the system was found to be so non-linear that its 

response altered the validity o f  the choice o f  clock frequency.
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4.0 CONTROLLER DESIGN

Having successfully demonstrated that the position loop of the ACG system could be 

identified the next stage was to decide on the control strategy and develop the self-tuning 

controller. Note 4, Appendix F.

4.1 Background

As stated in section 1.2, there are a number of options when deciding on the form of an 

adaptive controller. The majority of papers published are of a theoretical nature and 

suggest a large number of applications. The adaptive systems that have been 

implemented are at least as good as the original control scheme. For the most part, 

applications have been to fairly slow systems, in for example, the chemical industry

[48.49] and ship steering [50], in such cases the sampling times are of the order of 

minutes. The majority of papers do not give specific details but only note the techniques 

used. No detailed examples of adaptive systems applied to gauge control in the rolling of 

metals were found and the number of applications to any kind of “fast” plant is very 

limited.

By far the most popular estimation techniques are those based on least squares. As stated 

earlier a number of design methods can be catered for. Examples o f pole-placement

[48.49], minimum variance [50,51,52] and the use of multivariable ideas [53,54,55] have 

been published. Suggested general texts are [14,15,16].

4.2 Options

Intuitively, a “one-shot” self-tuning controller able to tune on request, applied to the 

position or load control loop of the hydraulic cylinders would be the simplest scheme to 

adopt initially. Such a system could be later extended to allow continuous tuning
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(adaptive control) and be applied to other loops. The time constraint will require a very 

simplified model in order to minimise the number of parameters requiring estimation. If 

the computing time is found to be too great it should be possible to use a batch (off-line) 

algorithm. Such algorithms process all the observations simultaneously and produce a 

single estimate of the parameters. Such a system would work by recording a number of 

measurements in real time and then calculate the controller parameters, for example 

every second.

Minimum variance [16,56] could be used to minimise exit strip gauge variations. 

However this requires the minimisation of a complicated cost function which would 

require a large amount of computing time. Also, minimum variance does not work well 

when the set point is being varied, which is the case when considering the reference to 

the position loop which is altered constantly by other loops.

The other main option is that of pole-placement [15,16] which is simpler. A further 

advantage is that the desired response can be specified in terms of a second order 

transient response. Also, this method allows for combined regulation and servo control. 

The disadvantage of this method is that excessive control signals may be produced as the 

controller tries to drive the system too hard in an attempt to meet ambitious control 

objectives.

4.3 Pole Placement Design

The pole placement design method was chosen primarily because of its relative simplicity 

and the fact that the desired response can be specified in terms of a second order system 

[16]. Note 5, Appendix F.
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Figure 4.1 Pole Placement Self-Tuning System.

The system output y(t) is required to follow the reference r(t) rejecting random 

disturbances, according to a specified design rule. The problem therefore is one o f  

regulation and servo following. Consider the system [16], figure 4.1, defined by

Ay(t) = B u(t- l)  + Ce(t)

= B z 'u (t)  + Ce(t)

this model assumes a delay o f  one sample between system input and output. With 
controller

Fu(t) = Hr(t) - Gy(t)

where:
F = 1 + f  j z~  ̂ + . . .+  fnfz"n* A = 1 + a j z -  ̂ +  ... + anaz"na
G = g 0  + g i z _l + ••• + gngz"ng B = bo + b i z " 1 + ... + b nt,z_nb
H = Iiq + hjz"^ + ... + hn|-jZ"nb C = 1 + c j z ' l  + ... + cncz-nc

the closed loop equation is then

y(t)(AF + B G z '1) = BHz'VCt) + FCe(t)

The required closed loop poles are then specified by T = 1 + tjz"^ + ... + tntz"nt and the 

controller parameters in F and G are calculated according to the polynomial identity

AF + B G z '1 = TC
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The polynomial T specifies the desired poles. These poles may be expressed in terms o f  

complex conjugate pairs, being roots o f  T. For a unique solution the degrees n f  and ng 

should be selected as 

nf  = nb

ng = na-1 (na^O)

inserting in the system equation
y(t) = HB r ( t- l )  +_F_e(t) 

TC T

note that the noise polynomial has been cancelled in the disturbance term. The 

precompensator H is selected to achieve low frequency gain matching. In the simplest 

form H is chosen so that C is cancelled from the pole set, ie:

H = C

1

Therefore, the closed loop equation is

y(t) = r( t- l )  +_Fe(t) 
T T

Z=1

4.3.1 Simulations

Having successfully identified a model from the test rig data the M ATLAB code for a 

pole placement controller was developed, appendix B6. The desired response was 

specified in terms o f  a second order system, ie natural frequency and damping ratio. 

Figure 4.2 shows the control signal u(t) and system output y(t) from the identified model 

o f  section 3.4, in response to a 4Hz square wave reference. Initially, the controller is 

switched off  with only the identification algorithm in operation. With no controller in 

operation, the control signal (system input) is the 4Hz reference signal. After 0.5 seconds 

the model has been successfully identified and the controller is switched on, a change in 

the control signal is clearly observed. After initial transients, the response is as required.
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This value of 0.5 seconds was chosen arbitrarily to demonstrate the controller principle. 

The identification algorithm can successfully construct a usable model in less than half 

this time. Note 6, Appendix F.

As more unrealistic demands are put on the system, in terms o f harsher desired 

responses, the amplitude of the control signal becomes excessive. In a real system there 

is a danger that the controller will try and drive the system too hard. It is therefore 

important to monitor the control signal and take care when specifying the desired 

response. Other implementation aspects are considered later in section 4.4.

4.3.2 Location of the other poles

In specifying the desired response in terms of a second order system the control 

algorithm is placing two of the closed loop poles in the required positions. The control 

system toolbox [26] was used to investigate the location of the other poles. The pole- 

placement algorithm moves the dominant poles from their open loop positions, figure 

4.3, to the required closed loop positions, figure 4.4, and the other poles are moved so as 

to have no visible effect on the system response. In the z-plane this involves moving the 

remaining poles to the neighbourhood of the origin. (In the s-plane the other poles are 

moved far to the left and are grouped very close to the negative real axis).

The closed loop poles are detailed in table 4.1, below. The desired second order system 

response corresponding to a natural frequency o f200 rad.s"! with a damping ratio of .7, 

are clearly seen as the dominant poles.
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con rad.s"! C
200.000 .700
200.000 .700
670.948 .996
670.948 .996
691.475 .968
691.475 .968
730.175 .919
730.175 .919
783.530 .858
783.530 .858
848.140 .794
848.140 .794
921.361 .731

Table 4.1, Closed loon poles.

4.4 Discussion

There is the possibility o f  ill-conditioning within the estimated model. It is highly 

unlikely that an exact pole / zero cancellation will occur within the identified model. This 

problem is overcome by using Kucera’s algorithm [16,57] before controller synthesis, 

appendix B7. As a result o f  applying Kucera’s algorithm the minimal realisation o f  the 

system is achieved by the detection o f  any approximate pole / zero cancellation. The 

decision on how approximate the cancellation should be requires further experimentation 

with the algorithm and is expressed in terms o f  a tolerance. This algorithm has also been 

developed and incorporated into the MATLAB version o f  the controller, appendix B8.

There are a number o f  factors to consider in the implementation o f  such a controller 

[11,12,46]. When initialising the controller it is possible to set it up with proportional or 

proportional plus integral gain. I f  the system has been controlled before, the previous 

values o f  the controller parameters can be used. Before allowing the controller loose on 

the system its output can be compared to that o f  the existing controller, thus, avoiding 

any problems due to excessive control signals. Although the possibility o f  this problem 

occurring should be minimised through simulation studies carried out at the design stage. 

The implementation aspects o f  the identification algorithms, section 3.4, must also be

5 3



considered. These requirements are just as important as the controller will only ever be 

as good as the model it utilises to control the process.

4.5 Conclusions

A pole placement self-tuning controller using the model successfully identified 

previously in chapter 3, has been shown through simulation, to be possible. This 

controller is based on a second order system response o f  2 0 0  rad.s"* natural frequency 

and with a damping ratio o f  .7.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

It has been demonstrated that a relatively simple, fifth order parametric model, to 

represent the dynamics o f  the position loop o f  an AGC system can be identified. This 

procedure requires the injection o f  a PRBS signal into the loop, as the input during 

normal operating conditions does contain sufficient information. A recursive least 

squares estimation algorithm can then used to calculate the parameters o f  the model.

In order to use the PRBS successfully, it was discovered that a good deal o f  information 

about the system response must be known before identification can begin. This data is 

required to enable the correct choices to be made about the sampling frequency and 

parameters o f  the PRBS. Incorrect choices can lead to misleading results.

Through computer simulations it has been further shown that the system identified above 

(the position loop o f  an AGC) can be successfully controlled by a pole-placement self­

tuning controller. This controller was to chosen to have a desired response based on a 

second order system having a natural frequency o f  200 rad.s"^ and a damping ratio o f  .7.

5.2 Recommendations for further work

As stated above, the self-tuning controller has been shown to w ork  in simulation. 

Obviously, the next major stage in the project will be to develop a prototype system. The 

development o f  the C code has already started and awaits completion and 

implementation by Davy personnel. Although the fundamental code is relatively straight 

forward, (this basically requires the translation o f  the M ATLAB code already developed) 

the real-time and supervisory aspects still require careful examination.

A number o f  the practical issues concerning the implementation o f  the proposed

controller have already been discussed in sections 3.4 and 4.4, and suggestions made on
35



the handling o f  these aspects. The constraints o f  real time computing may mean that the 

estimation algorithms cannot be used at every sample interval. I f  this is the case, some 

form o f  off-line (or batch processing) o f  the least squares algorithm will be required, that 

for example, stores and then processes the data every second.

The magnitude o f  the control signal applied to the system must be monitored at all times, 

as problems could easily occur due to saturation, and abrupt changes in this signal could 

cause the metal strip to break. This potential problem must also be considered when 

selecting the desired closed loop response. Although, this should be carried out in 

simulation at the design stage, prior to the testing the controller.

The proposed controller is based on a self-tuning assumption that the system has 

unknown but constant parameters. Once the controller is achieving satisfactory control, 

the estimator algorithms can be “switched o f f ’. It should however be possible to monitor 

performance and restart the self-tuning procedure at some later stage as required. In any 

extension to adaptive control, provision must be made for parameter variations. With the 

system in continuous operation, it is essential [58] to monitor the performance o f  the 

estimator. It is vital that the estimator can react quickly to sudden changes, but does not 

allow the parameter estimations to diverge.

The continued development o f  the self-tuning controller, as outlined above, will require 

further experimentation and comparison with the current control systems at all stages.
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APPENDIX A - ACSL code

This appendix lists the ACSL code for the simplified drive macro, SDRIVE, and for the 
simplified winder macro, SCOILR.

A1 Simplified drive macro

ma c r o  s d r i v e (r v , r v r e f , r t q , i d )

" T h i s  ma c r o  r e p r e s e n t s  m i l l  d r i v e  s y s t e m "
" t h i s  i s  b a s i c a l l y  a 2nd o r d e r  m o d e l  w i t h  a m o t o r  t o r q u e "  
" l i m i t  d e p e n d e n t  on m i l l  s p e e d "

" i n  r v r e f  -  r e f .  s p e e d  ( r a d / s e c ) "
" r t q  -  r o l l i n g  t o r q u e  (Nm)"

" o u t  r v  -  m i l l  s p e e d  ( r a d / s e c ) "

" i d  i s  an i d e n t i f i e r  e g  FI"
" u s e d  s o  mac r o  c a n  b e  c a l l  a number o f  t i m e s "
" w i t h  l o c a l l y  g e n e r a t e d  v a r i a b l e s "

"macro r e d e f i n e  t q , e r r , e r r i , e r r k , a t q , t q m a x "
" e n s u r e s  t h e s e  v a r i a b l e s  a r e  u n i q u e  t o  t h i s  m a c r o  c a l l "

p a r a m e t e r s

c o n s t a n t jm i d = 1 90 0 0 $ "m o f  i  o f  s y s t e m  ( k g m 2 ) "
c o n s t a n t bm i d = 100 $ "damp c o e f f  5% o f  max t o r q
c o n s t a n t k r v  i d = 2 7 5 0 0 0 $ "t o r q u e - s p e e d  g a i n "
c o n s t a n t k r v i  i d = 2 7 5 0 0 $ " i n t e g r a l  term"
c o n s t a n t tmax i d = 4 5 0 0 0 0 $ "max t o r q u e  (Nm)"
c o n s t a n t t g r d  i d = - 6 7 0 0 $ " t o r q u e - s p e e d  g r a d i e n t "
c o n s t a n t tern i d = . 0 5 $ "a t i m e  c o n s t a n t "
c o n s t a n t v c u t  i d = 5 $ " t o r q u e  c u t  o f f  s p e e d "

i n i t i a l  c o n d i t i o n s

c o n s t a n t r v i  i d = 5 $ " i c f o r  r o l l  s p e e d "
c o n s t a n t mvi  i d = 500 $ " i c f o r  m o t o r  s p e e d "

" t i m e s  damping"
c o n s t a n t i n t i  i d = 0 $ " i c f o r  i n t e g r a l  t erm"
c o n s t a n t t q i  i d = 1 2 0 5 0 0 $ " i c f o r  t o r q u e "
c o n s t a n t e r r k = 0

" t h e  m o d e l  "

p r o c e d u r a l
" c o s  s p e e d  b o t h  an i n p u t  and c a l c u l a t e d  o u t p u t "

" t o r q u e  v a r i e s  w i t h  s p e e d "  
tqmax = t m a x _ i d
i f  ( r v  . I e .  v c u t _ i d )  go  t o  l a b e l l
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tqmax = t g r d _ i d  * r v  + 4 8 3 5 0 0  

l a b e l l . . c o n t i n u e

e r r  __ r v r e f  _ r v

" c h e c k  f o r  i n t e g r a l  l i m i t "  
e r r i  = e r r
i f  ( e r r k * * 2  . l e .  t q ma x * * 2 )  go t o  l a b e l 2  

i f  ( e r r * e r r k  . l e .  0) go t o  l a b e l 2  
e r r i  = 0

l a b e l 2 . . c o n t i n u e

e r r k  = k r v _ i d * e r r  + k r v i _ i d * i n t e g ( e r r i , i n t i _ i d )

t q  = b o u n d ( - t q m a x , t q m a x , e r r k )

a t q  = r e a l p l ( t c m _ i d , t q , t q i _ i d )  -  r t q  
" a v a i l a b l e  t o r q u e "

r v  = r e a l p l  ( jm_id /bm__id ,  a t q ,  m v i _ i d )  /  b m_ i d  
"s p e e d "

e nd  $ " o f  p r o c e d u r a l "  

ma cr o  e n d  $ " s d r i v e "

A2 Sininlified winder macro

m a c r o  s c o i l r ( v o n , r s t r e s , v o u t , f t r e f ’

" v e r s i o n
" d a t e
" a u t h o r
" f i l e n a m e

1 . 0 "

7 - 8 - 9 1 "
eng"
s c o i l r  1 . 0 "

" t h i s  ma c r o  r e p r e s e n t s  a c o i l e r  s y s t e m  RH o r  t a k e u p  
" b a s i c a l l y  2nd o r d e r  w i t h  da mp i n g  c o m i n g  from"  
" r o t a t i o n a l  s p e e d  o f  c o i l e r  and s t r i p  t e n s i o n "

" i n  v o u t  -  s p e e d  o u t  o f  s t a n d  ( m s - 1 ) "
" f t r e f  -  f r o n t  t e n s i o n  r e f  f o r c e  ( N ) "

" o u t  v o n  -  c o i l e r  p e r i p h e r a l  s p e e d  ( m s - 1 ) "
" r s t r e s  -  s t r i p  t e n s i o n  (N/m2)"

" p a r a m e t e r s  "

c o n s t a n t  r e  = 2 . 1 E + 1 0  $"E /  s t a n d - c o i l e r  d i s t "
c o n s t a n t  r g a u g e  = . 0 0 2  $ " g a u g e  o u t  o f  s t a n d  (m)
c o n s t a n t  r w i d t h  = 1 . 2 7  $ " w i d t h  o u t  o f  s t a n d  (m)
c o n s t a n t  rdamps  = 200  $ " s p e e d  da mp i n g  t erm"
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constant rmandr = .36 $"mandrel radius (m)"
c o n s t a n t  rdampt  = 3 . 8 E - 0 9  $ " t e n s i o n  d a mp i n g  t erm"

" s e t  a t  e n d  o f  i n i t i a l  s e c t i o n "
" r s p d i  = v o u t  /  r r a d "
" r d l i  = ( f t r e f * r r a d - r s p d i * r d a m p s ) / (  
r r a d * r g a u g e * r w i d t h * r e ) "

" t h e  m o d e l  "

p r o c e d u r a l

r t f b k  = rdampt  * r s t r e s

r s t r e s  = r e  * i n t e g (v o n - r t f b k - v o u t , r d l i ) 

r f o r c e  = r s t r e s  * r g a u g e  * r w i d t h  

rmt q  = f t r e f  * r r a d

r t o r q  = rmtq  -  r f o r c e * r r a d  -  r d a m p s * r s p e e d  

r i n r t  = r i n r t i  + r w i d t h * 8 0 0 0 * (r r a d * * 4 - r m a n d r * * 4) 

r s p e e d  = i n t e g ( r t o r q / r i n r t , r s p d i ) 

v o n  = r s p e e d  * r r a d

e n d  $ " o f  p r o c e d u r a l "  

mac r o  e nd  $ " s c o i l r "

c o n s t a n t  r r a d  
c o n s t a n t  r i n r t i

. 4
500 0

$ " c o i l  r a d i u s  ( m) "
$"m o f  i  RH m o t o r + c o i l e r  (kgm2)"
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APPENDIX B - MATLAB code

This appendix contains listings of  useful .m files.

B1 Code for building the model

% m o d b l d . m  
% d e f i n e  c o n s t a n t s
k g a p = 2 5 ;  % o r i g i n a l  50
B=1 . 4  e 9;
k m i l l = 4 . 5 e 8 ;
a r e a = . 5 8 ;
v = . 0 4 * a r e a ;
d d = 5 e 6 ;
m = l e 5 ;

w n = 6 0 * 2 * p i ;  % o r i g i n a l  60;
d a m p = l . 1 ;

% d e f i n e  b l o c k s  
n l = k g a p ; d l = l ;
n2=wn/N2 ; d2= [ 1 2*damp*wn wnA2 ] ;  
n 3 = l ; d 3 = [1 0 ] ;
n 4 = B * a r e a ; d 4 = [ v * m  dd * v  v * k m i l l + B * a r e a A2 ] ;  
n b l o c k s = 4 ; 
b l k b u i l d  
d i s p  ( ' 1 )
d i s p ( ' f i n i s h e d  b l k b u i l d ' )
•6 i n t e r c o n n e c t i o n s
q=[
1 - 4 0 0  
2 1 0  0
3 2 0 0
4 3 0 0 ] ;
i u = [ l ] ;  v, i n p u t  b l o c k
i y = [ 4 ] ;  1 o u t p u t  b l o c k
% i n t e r c o n n e c t  t o  c r e a t e  SS m o d e l  
[ a c  b e  c c  d c ] = c o n n e c t ( a , b , c ,  d,  q,  i u ,  i y )  ;
?> m i n i m i s e  s t a t e s
[acm bem ccm d c m ] = m i n r e a l (a c , b e , c c ,  d c ) ;
[ num, de n]  = s s 2 t f (a c m , b e m , c c m , d c m , 1 ) ;
[ a d , b d ]  = c 2 d ( a c m , b e m ,  1 / 2 0 0 )  ;
[numd dend]  = s s 2 t f ( a d , b d , c c m , d c m , 1 ) ;  

b = numd; b (1) = [ ] ; 
a = d e n d ;  a (1) = [ ] ;  
c  = 0;

B2 PRBS generator

f u n c t i o n  p = p r b s ( n , h )
o'o
% p = p r b s ( n , h )
o'o
% g e n e r a t e s  a p r b s  s e q u e n c e  o f  l e n g t h  2 An -
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•6 h = n o .  o f  s a m p l e s  e a c h  p r b s  l e v e l  h e l d  f o r
V. i f  w a nt  a p r b s  s a m p l e d  a t  t w i c e  t h e  c l o c k  f r e q u e n c y  h=2
q

% n=2 ,  3 , 4 , 5 , 6 , 7 , 9 , 1 0 , 1 1 .

% f e e d b a c k  c o n n e c t i o n s  f r om -  G o d f r e y  KR, C o r r e l a t i o n  
M e t h o d s ,
% A u t o m a t i c a  16 ( 1980 )

% C h r i s  G r o v e s  5 - 3 - 9 2

i f  n<2 | n > l l  | n== 8 ,  e r r o r  ( 'Mus t  u s e  2 , 3 , 4 , 5 , 6 , 7 , 9 , 1 0 , 1 1  
r e g i s t e r  s t a g e s ' ) / e n d  
i f  n a r g i n = = l ,  h = l ; e n d
i f  a b s  ( h - f  i-x (h) ) > e p s ,  e r r o r  ( ' h  m u s t  b e  i n t e g e r ' ) ,  e n d

r e g = o n e s ( n ) ; p = [ ] ; f b k i = 0 ; h l d = o n e s ( h ,  1) ;

i f  n = = 2 ,  f b k i = l ;  end  
i f  n == 3 ,  f b k i = 2 ;  end  
i f  n==4 | n==5 ,  f b k i = 3 ;  end  
i f  n==6 | n== 9 ,  f b k i = 5 ;  end  
i f  n==7 ,  f b k i = 4 ;  end  
i f  n = = 1 0 ,  f b k i = 7 ;  end  
i f  n = = l l ,  f b k i = 9 ;  end  
i f  f b k i = = 0 ,  b r e a k ,  end

f o r  p e r i o d = l : 2 /sn - l  
v = r e g ( n )  ;
i f  v == 0 ,  v = - l ;  end  
p = [ p ; v * h l d ] ;
f b k = e o r ( r e g ( n ) , r e g  ( f b k i ) ) ;  
f o r  s h i f t = n - l : - 1 : 1

r e g ( s h i f t + 1 ) = r e g ( s h i f t ) ;
end
r e g ( l ' ) = f b k ;

e nd

B3 Correlation function

f u n c t i o n  a = c o r r ( u , y )
o'O
% a = c o r r ( u , y )
% u&y n x l  v e c t o r s
% . c a l c u l a t e s . c r o s s  c o r r e l a t i o n  b e t w e e n  u ( i n p u t )  a n d  y  
( o u t p u t )
% y=u f o r  a u t o  c o r r e l a t i o n .

n u = l e n g t h ( u ) ; 
f o r  k = l : n u

i f  k==l
u s h i f t = u ;

e l s e
V



ushift=[ushift(nu);ushift(1:nu-1)];
e nd
a ( k ) =  s u m ( y . * u s h i f t ) / n u ;

en d  
a = a ' ;

B4 Single step extended least squares

f u n c t i o n [ t h e t a , e r r o r , p ]  =
s s e l s ( y , u , e r r , N , n a , n b , n c , n k , o l d p , o l d t h e t a , 1)
O'o
% s i n g l e  s t e p  e x t e n d e d  l e a s t  s q u a r e s
Q.t)
n = n a +n b + nc ;  
x = z e r o s ( n ,  1) ;
f o r  k y = l : n a ,  x ( k y ) = - y ( N - k y ) ; end  
f o r  k u = l : n b ,  x ( n a + k u ) = u ( N - k u - n k + 1 ) ; e nd  
f o r  k c = l : n c ,  x ( n a + n b + k c ) = e r r ( N - k c ) ; e nd  
e r r i  = y(N)  -  x ' * o l d t h e t a ;
p = o l d p / 1 * ( e y e ( n ) - ( x * x ! * o l d p / ( 1 + x ' * o l d p * x ) ) ) ;  
t h e t a  = o l d t h e t a  + p * x * e r r l ;  
e r r o r  = z e r o s ( n , l ) ;  
e r r o r  (1) = e r r i ;

B5 Comparison of matrix inversion nlgortihms and U P  factorisation

% t e s t 2 . m
% c o mp ar e  two m a t r i x  i n v e r s i o n  a l g o r i t h m s  and  
% UD f a c t o r i s a t i o n
% z = [y u] t h e  o u t p u t  i n p u t  d a t a  i n  c o l u m n  v e c t o r s  
% nn = [na nb nc  nk]
% more  t e s t s  r e q u i r e d  -  n o t  v e r y  r o b u s t  - B E W A R E  ! ! !  

[ N c a p , n z ]  = s i z e ( z ) ;  nu = n z - 1 ;
i f  n u > l ,  e r r o r ( ' o n l y  o n e  i n p u t  a l l o w e d ! ! ! ! ' ) ,  r e t u r n , e n d  
na = n n ( 1 ) ;  nb = n n ( 2 ) ;  n c  = n n ( 3 ) ;  nk = n n ( 4 ) ;  
n = na + nb + n c ;  
i f  n == 0,  r e t u r n ,  e nd

k = m a x ( [ n a + l  nb+nk n c + 1 ] ) ;  
j j  = ( k : N c a p ) ; 
x l  = z e r o s ( n , 1 ) ;  
x2  = x l ;  
x3  = x l ;
p i  = 1 0 0 0 0 * e y e ( n ) ; 
p2 = p i ;
t h e t a l  = z e r o s ( n , 1 ) ;
t h e t a 2  = t h e t a l ;
t h e t a 3  = t h e t a l ;
m a t r i x l  = z e r o s ( n , l e n g t h ( j j ) ) ;
m a t r i x 2  = m a t r i x l ;
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m a t r i x 3  = m a t r i x l ;
f  = z e r o s ( n , l ) ;  g = z e r o s ( n , 1 ) ;  b e t a  = z e r o s ( n , l ) ;  
u = [ ] ;  f o r  j = u = [ u ; z e r o s ( 1 , n - j ) 1 o n e s ( l , j -
1 ) * 1 0 0 0 0 ] ;  e nd
d = o n e s ( n , 1 ) * 1 0 0 0 0 ;  mu = z e r o s ( n , l ) ;  v  = z e r o s ( n , 1 ) ;  
l ambda  = 1;

e l  = z e r o s ( N e a p , 1 ) ;  
e2  = e l ;  
e 3  = e l ;

f o r  f r e d  = l : l e n g t h ( j j )
N = j j ( f r e d ) ;

% MIL v l
f o r  k y = l : n a ,  x l ( k y ) = - z ( N - k y , 1 ) ; e nd

f o r  k u = l : n b ,  x l ( n a + k u ) = z ( N - k u - n k + 1 , 2 ) ; e n d  
f o r  k c = l : n c /  x l ( n a + n b + k c ) = e l ( N - k c ) ; e nd  
e l ( N )  = z ( N , 1 ) - x l ' * t h e t a l ; 
o l d p l  = p i ;
p i  = o l d p l - ( o l d p l * x l * x l ' * o l d p l ) / ( 1 + x l ' * o l d p l * x l ) ;  
t h e t a l  = t h e t a l  + p l * x l * e l ( N ) ; 
m a t r i x l ( : , f r e d )  = t h e t a l ;

% MIL v2
x 2 ( l : n a + n b )  = x l ( l : n a + n b ) ;  
f o r  k c = l : n c /  x 2 ( n a + n b + k c ) = e 2 ( N - k c ) ; e nd  
e 2 ( N )  = z ( N , 1 ) - x 2  1 * t h e t a 2 ; 
o l d p 2  = p2;
1 = o l d p 2 * x 2 / ( l + x 2 ' * o l d p 2 * x 2 ) ;  
t h e t a 2  = t h e t a 2 + l * e 2  (N) ; 
p2 = o l d p 2 - l *  ( o l d p 2 ' t x 2 ) 1 ; 
m a t r i x 2 ( : , f r e d )  = t h e t a 2 ;

% UD f a c t o r i s a t i o n  ! ! ! ! !
x 3 ( l : n a + n b )  = x l ( l : n a + n b ) ;
f o r  k c = l : n c ,  x 3 ( n a + n b + k c ) = e 3 ( N - k c ) ; e nd
e 3 ( N )  = z ( N , 1 ) - x 3 1 * t h e t a 3 ;
o l d u  = u;  o l d d  = d;
f  = o l d u ' * x 3 ;
g = d i a g ( o l d d ) * f ;
b e t a O  = l ambda;
b e t a ( l )  = b e t a O + f ( 1 ) * g ( 1 ) ;
d (1) = o l d d ( 1 ) / b e t a ( 1 ) ;
v  (1) = g (1) ;
m u d )  = - f  (1) / b e t a O ;
f o r  j _ u d  = 2 : n

b e t a ( j _ u d )  = b e t a (j _ u d - l ) + f ( j _ u d ) * g (j _ u d ) ; 
d ( j _ u d )  = b e t a ( j _ u d -  

1 ) * o l d d (j _ u d ) / ( b e t a ( j _ u d ) * l a m b d a ) ;
v ( j _ u d )  = g ( j  u d ) ;
m u ( j _ u d )  = - f (j _ u d ) / b e t a ( j _ u d - l ) ;  
f o r  i _ u d  = l : j _ u d - l  

u ( i _ u d , j _ u d )  = 
o l d u ( i _ u d , j _ u d ) + v ( i _ u d ) * m u (j _ u d ) ;

v ( i _ u d )  = v ( i _ u d ) + o l d u ( i _ u d , j _ u d ) * v ( j _ u d )  ;
end
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e nd
l u d  = v / b e t a ( n )  ;
t h e t a 3  = t h e t a 3 + l u d * e 3 ( N ) ;

. m a t r i x 3 ( : , f r e d )  = t h e t a 3 ;

e nd

% MIL v l  and  MIL v2  f r om W e l l s t e a d  & Z a r r o p  SELF-TUNING 
SYSTEMS
% a l s o  UD f a c t o r i s a t i o n .

[ t h e t a l  t h e t a 2  t h e t a 3 ]

B6 Pole-nlacenient controller synthesis

f u n c t i o n  t h e t a _ c  = s y n t h ( a , b , c ,  t )
Q.
'O

% f u n c t i o n  t o  s y n t h e s i s e  c o n t r o l l e r  c o e f f s  
% u s i n g  p o l e  p l a c e m e n t  m et h o d
O'o

% t h e t a _ c  = s y n t h ( a , b , c , t ) ;
o.
'o

% t h e t a _ c  -  r e t u r n e d  c o n t r o l l e r  c o e f f s  
% a -  A p o l y n o m i a l  c o e f f s
% b -  B p o l y n o m i a l  c o e f f s
% c -  C p o l y n o m i a l  c o e f f s
% t  -  T p o l y n o m i a l  c o e f f s  ( d e s i r e d  p o l e  s e t )
C)'O
% p o l y ' s  s h o u l d  be  c o l u m n s  !
% d o n ' t  r e q u i r e  l e a d i n g  1 ' s  im A C T

i f  c  == [ ] ,  c = 0; end

na = l e n g t h ( a ) ;
nb = l e n g t h  (b) -  1; v> f i d d l e  !!
n = na  + nb;
A = z e r o s ( n ) ;

f o r  j = l : n b
A ( j , j ) -  1 ;
A( j + 1 : j + n a ,  j ) = a;

e nd
f o r  j = n b + l : n

A( j - n b : j , j ) =b;
e nd

B = c o n v ( [ 1 ; t ] , [ 1 ; c ] ) ;
B (1) = [ ] ;
f o r  j = l e n g t h ( B ) + 1 : n 

B ( j ) = 0;
e nd
B ( 1 :na)  = B ( 1 : n a ) - a ;  
t h e t a  c  = i n v ( A )  * B;
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B7 K u cera ’s a lgorithm

f u n c t i o n  [ n e w a , n e w b ]  = k u c e r a ( a , b )
Q- * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  'O
% * b a s i c s  o f  a f u n c t i o n  t o  c a r r y  o u t  K u c e r a ' s  a l g o r i t h m  
% * u s e d  b e f o r e  c o n t r o l l e r  s y n t h e s i s .  R e q u i r e s  a & b a s  
% * c o l u m n  v e c t o r s  b a s e d  on
P- *  o

% * H ( Z ^ - l ) = ZA- l ( b O  b l  b2 ____ )

% * 1 a l  a2   a s  u s u a l
g *0
% * b = [bO b l  b2 _____] 1
% * a = [ a l  a2
% * a n s w e r  g i v e n  i n  same f o r m a t .
% * a s s u m e s  na >= nb
1 * e n g  1 0 / 8 / 9 2  f r om w e l l s t e a d  and z a r r o p
Q- * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * : * :O
% 2 4 / 8 / 9 2

na  = l e n g t h ( a ) ; 
nb = l e n g t h ( b ) ;
d e g d i f f  = n a - n b + 1 ;  % m u s t  b e  >=0

F = [ [ 1 ; a ] [ 0 ; b ; z e r o s ( d e g d i f f - 1 , 1 ) ] ] ;
V = [ [ z e r o s ( n b , 1 ) ; 1 ]  z e r o s ( n a + 1 , 1 ) ;  z e r o s ( n b + 1 , 1 )
[ z e r o s ( n a , 1 ) ; 1 ] ] ;

nr owsV = n a+ n b + 2 ;  
f i n i s h  = 0;
% m a i n  l o o p  
w h i l e  f i n i s h  == 0

[ nr ows  n c o l s ]  = s i z e ( F ) ;
% c a l c u l a t e  d e g d i f f  
nna = n r o w s ;  
f o r  i  = 1 : nr ows  

i f  F ( i , l )  == 0,  nna = n n a - 1 ;  e n d  
end
nnb = n r o w s ;  
f o r  i  = 1 : n r o w s  

i f  F ( i , 2 )  == 0,  nnb n n b - 1 ;  e nd  
e nd
d e g d i f f  = a b s ( n n a - n n b ) ;

i f  F ( 1 , 1 )  ~= 0
lambda = F ( l , 1 ) / F ( 1 + d e g d i f f , 2) ; h i g h  = 1;  l o w  = 2

e l s e
lambda = F ( 1 , 2 ) / F ( 1 + d e g d i f f ,  1 ) ;  h i g h  = 2;  l o w  = 1

end

% s u b t r a c t  c o l u m n s
% s h i f t  l o w  c o l u m n  up by  d e g d i f f  e l e m e n t s  = m u l t  b y  

ZAd e g d i f f



l o w s h i f t F  = z e r o s ( n r o w s , 1 ) ;  
f o r  i  = 1 : n r o w s - d e g d i f f

l o w s h i f t F ( i )  = F ( i + d e g d i f f , l o w ) ;
e nd
F ( : , h i g h )  = F ( : , h i g h )  -  l a m b d a * l o w s h i f t F ;
•6 same o p e r a t i o n  on V 
l o w s h i f t V  = z e r o s ( n r o w s V , 1 ) ;  
f o r  i  = 1 : n b + l - d e g d i f f

l o w s h i f t V ( i )  = V ( i + d e g d i f f , l o w ) ;
e n d
f o r  i  = n b + 2 : n r o w s V - d e g d i f f

l o w s h i f t V ( i )  = V ( i  + d e g d i f f ,  l o w ) ;
e n d
V ( : , h i g h )  = V ( : , h i g h )  -  l a m b d a * l o w s h i f t V ;

% c h e c k  f o r  " z e r o "  p o l y n o m i a l  
% m u s t  do b e f o r e  d e l e t e  a row 
suma = 0;  sumb = 0;
SOME_NUMBER = . 0 0 0 0 0 0 1 ;  % ! ! ! ! ! ! ! ! ! !  c h o i c e  o f  t h i s

number ? ? ? ? ? ? ? ? ?
% i f  ' t r u e '  t o o  e a r l y  w i l l  g e t  
% more  t h a n  o n e  p o l e - z e r o  
i  c a n c e l a t i o n  ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

f o r  i  = 1 : n r o w s  
suma = suma + F ( i , l ) A2;  

sumb = sumb + F ( i , 2 ) A 2;
e nd
i f  h i g h  == 1

i f  s u ma/ s umb  < SOME_NUMBER, f i n i s h  = 1; e n d
e l s e

i f  s umb/ suma < SOME_NUMBER, f i n i s h  = 1;  e nd  
e nd

% r e mo v e  z e r o s  row = l o s e  p owe r  o f  Z 
i f  s u m (F (1,  : ) )  == 0 

F (1 ,  : ) = [] ;
e nd

% F, V, d e g d i f f ,  d i s p ( ' A n y  k e y ' ) /  p a u s e  
e nd
% d i s p ( ' R e s u l t  = ' )

% s o r t  o u t  a n s w e r  
r e s u l t  = V ( : , h i g h ) ;
% f i n d  h i g h e s t  p o w e r  o f  Z i n  a 
f i n i s h  = 0;  i  = 1;  
w h i l e  f i n i s h  == 0 

i  = i + 1 ;
i f  r e s u l t ( n b + i )  ~= 0,  f i n i s h  = 1; e nd
i f  n b + i  == nrowsV,  f i n i s h  = 1; e n d  % e r r o r  !!

e nd
r e s u l t  = r e s u l t / r e s u l t ( n b + i ) ;  
newb = - r e s u l t ( i : n b + 1 ) ;
%newb
newa = r e s u l t ( n b + i + 1 : n r o w s V ) ;

X



% newa

B8 Self-tuning controller

% b u b b l e _ k . m
% 2 6 / 8 / 9 2  now u s e s  k u c e r a ' s  a l g o r i t h m
% e n g
c l c
c l e a r
d i s p ( 1 c l e a r  1)
d i s p ( ' B u i l d i n g  m o d e l .....................P l e a s e  w a i t ' )
mo db l d
d i s p ('  1 ) / d i s p  ( ' ' )
d i s p ( 1 1 .  S q u a r e  wave  @ 4 H z ' )
d i s p ( 1 2 .  S i n e  wave  @ 4 Hz ' )
d i s p  ( 1 3 .  PRBS N = 9,  f c  = 100  Hz ' )
d i s p ( '  4 .  Low a m p l i t u d e  w h i t e  n o i s e ' )
d i s p (' 5 .  S t e p ')
d i s p  ( ' ' ) , d i s p ( '  ( s a m p l e  f r e q u e n c y  = 2 0 0  H z ) ' )
d i s p  ( ' ')
c h o i c e  = i n p u t (' C h o o s e  y o u r  r e f e r e n c e  ' ) ;  
i f  c h o i c e  < 1 I c h o i c e  > 5,  b r e a k ,  e n d  
i f  c h o i c e  == 1

r e f  = [ o n e s ( 2 5 , 1 ) ; - o n e s ( 25 ,  1) ] ;
r e f  = [ r e f ; r e f ; r e f ; r e f ; r e f ; r e f ; r e f ; r e f ] ;

e nd
i f  c h o i c e  == 2

t  = ( 0 : 3 9 9 )  ' / 2  0 0;  
r e f  = s i n ( 2 * p i * 5 * t ) ;

end
i f  c h o i c e  == 3

r e f  = p r b s ( 9 , 2 ) ;

e nd
i f  c h o i c e  == 4

r a n d ( ' n o r m a l ')
r e f  = r a n d  ( 4 0 0 , 1 ) / 1 0 0 0 ;

e nd
i f  c h o i c e  == 5

r e f = [ z e r o s ( 1 0 0 , 1 ) ; o n e s ( 3 0 0 , 1 ) / I 0 0 0 ] ;
end
d i s p  (' ' )
c h o i c e  = i n p u t  ( ' Us e  Ku ce r a  ( y / n ) , d e f a u l t  = y ' , ' s ' ) ;  
i f  c h o i c e  == ' n '  | c h o i c e  == 'N'

u s e _ k u c e r a  = 0;
e l s e

u s e _ k u c e r a  = 1;
e nd

dd = . 7 ;  wn = 2 00;
t l  = - 2 * e x p ( - d d * w n / 2 0 0 ) * c o s ( w n / 2 0 0 * ( l - d d A2 ) A. 5 ) ; 
t 2  = e x p ( - 2 * d d * w n / 2 0 0 ) ; 
t  = [ t l  t 2 ]  ' ;
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%t  = - . 6
i f  c == [ 0 ] ,  c  = [ ] ;  end  
r a n d ( ' n o r m a l 1 )
e = r a n d ( l e n g t h ( r e f ) ,  1) 1/ 1 0 ;  
na = l e n g t h ( a ) ;  nb = l e n g t h ( b ) ;  
n c  = l e n g t h ( c ) ; 
nk = 1;
n t  = l e n g t h ( t ) ;  n f  = n b - 1 ;  ng  = na;
N = l e n g t h ( r e f ) ; 
u = z e r o s ( N , 1 ) ;  
y  = z e r o s ( N , 1 ) ;  
r a n = r a n d / 1 0 ;
a e s t  = o n e s ( n a , 1 ) * l e - 1 5 ;  b e s t  = o n e s ( n b , 1 ) * l e - 1 5 ;  c e s t  = 
o n e s ( n c , 1 ) * l e - 1 5 ;
f  = z e r o s ( n f , l ) ;  g = z e r o s ( n g , 1 ) ;  g y  = 0;  
n = na  + nb + n c ;
o l d p  = 1 0 0 0 0 * e y e ( n ) ; o l d t h e t a  = [ a e s t ; b e s t ; c e s t ] ; 
m a t r i x  = z e r o s ( n , N ) ;  e r r  = z e r o s ( N , 1 ) ;  1 = 1;  
m a t r i x c  = z e r o s ( n f + n g , N ) ; 
p t r a c e  = z e r o s ( N , 1 ) ;

i f  n c  == [ 0 ] ,
e = z e r o s ( N , 1 ) ;  1 comment  o u t  t o  add

n o i s e ;
c  = 0;  c e s t  - 0;

e nd
h r  = 0; g y  = 0; f u  = 0;
f o r  t i m e = m a x ( [na+1 nb+nk n c + l ] ) : N
q q = r a n d * 1 0 + 3 5 ; d i s p ( [ b l a n k s ( q q )  ’ o ' ] )

f o r  i = l : n b ,  y ( t i m e )  = y ( t i m e )  + b ( i ) * u ( t i m e - i - n k + 1 ) ;
e nd

f o r  i = l : n a ,  y ( t i m e )  = y ( t i m e )  -  a ( i ) * y ( t i m e - i ) ; e n d
y ( t i m e )  = y ( t i m e )  + e ( t i m e ) ;
f o r  i = l : n c ,  y ( t i m e )  = y ( t i m e )  + c ( i ) * e ( t i m e - i ) ; e n d
[ t h e t a  c e  p] = 

s s e l s ( y , u , e r r , t i m e , n a , n b , n c , n k , o l d p , o l d t h e t a , 1 ) ;  
m a t r i x ( : , t i m e )  = t h e t a ;  
p t r a c e ( t i m e )  = t r a c e ( p ) ; 
o l d p  = p;
e r r ( t i m e )  = c e ( 1 ) ;  
to r e s e t  e s t i m a t o r  ? 
i f  a b s ( y ( t i m e )  -  y ( t i m e - l ) )  > . 5  

[ t i m e  y ( t i m e ) - y ( t i m e - 1 )]  
o l d p  = 1 0 0 0 0 * e y e ( n ) ; 
d i s p ( ' P RESET’ )

end

o l d t h e t a  = t h e t a ;  
a e s t  = t h e t a  ( l : n a ) ;  
b e s t  = t h e t a  ( n a + 1 : n a + n b ) ; 
i f  nc  > 0

c e s t  = t h e t a ( n a + n b + 1 : n a + n b + n c ) ;
end
u ( t i m e )  = r e f ( t i m e ) ;

i f  t i m e  >= 100
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i f  u s e _ k u c e r a  == 1
[ k a e s t , k b e s t ] = k u c e r a  ( a e s t , b e s t ) ;

e l s e
k a e s t  = a e s t ;  k b e s t  = b e s t ;

e nd
k n f  = l e n g t h ( k b e s t ) - 1 ;  
kng = l e n g t h  ( k a e s t ) ;

Q = s y n t h (k a e s t , k b e s t , c e s t , t ) ;
f  = Q (1:  k n f )  ;
g = Q ( k n f + 1 : k n f + k n g ) ;
n f d i f f  = n f - k n f ;
f f  = [ f ; z e r o s ( n f d i f f , 1 ) ] ;
n g d i f f  = n g - k n g ;
gg  = [ g ; z e r o s ( n g d i f f , 1 ) ] ;
Q = [ f f ; g g ] ; 
m a t r i x c ( : , t i m e ) = Q ;

% e nd
h r  = 0;
h = ( 1 + s u m ( t ) ) / s u m ( b e s t ) * [ 1  c e s t 1 ] ;
f o r  i = l : l e n g t h ( h ) , h r  = h r  + h ( i ) * r e f ( t i m e - i + 1 ) ;

e n d
gy  = 0;
f o r  i = l : k n g ,  g y  = g y  + g ( i ) * y ( t i m e - i + 1 ) ; e n d  
f u  = 0;
f o r  i = l : k n f ,  f u  = f u  + f ( i ) * u ( t i m e - i ) ; e n d  
u ( t i m e )  = h r  -  gy  -  f u ;

e nd
e n d
c l c
r e f l e n  = l e n g t h ( r e f ) ;  
t i m e  = ( 0 : r e f l e n - 1 ) / 2 0 0 ; 
i n d e x  = 1 0 0 : r e f l e n ;
d i s p  ( 1 ' ) , d i s p ( ' r e f  and s y s t e m  o u t p u t 1)
p l o t ( t i m e , [ r e f  y ] )
p a u s e
d i s p  ( 1 1 ) / d i s p ( ' m o d e l  p a r a m e t e r s ' )  
f o r  i = l : 1 0

p l o t ( t i m e , m a t r i x ( i , : ) )  
p a u s e

e nd
d i s p ('  ' ) , d i s p ( ' c o n t r o l  p a r a m e t e r s ' )
f o r  i = l :9

p l o t ( t i m e ( i n d e x ) , m a t r i x c ( i , i n d e x ) ) 
p a u s e

e n d
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APPENDIX C - C code

Below are listed three files containing C code.

• prbs.c - a prbs generator
• cng3.c - program to identify a fifth order ARX model using least squares

estimation
• cng.h - header file containg functions for the above program

Cl PRBS g e n e ra to r

/ *
■ k - k - k - k - k ' k - k - k - k - k - k ' k - k - k ' k - k ' k ' k ' k - k ' k ' k - k - k ' k ' k - k ' k ' k ' k ' k - k ^ c - k - k ' k - k ' k - k - k ' k - k ' k - k ' k ^ c - k - k - k - k - k - k - k - k - k - k - k ' k - k

*

*** p r b s . c  
* * *
*** 6 / 1 1 / 9 2
i t  i t  t  

i t  i t  i t  

t  i t  - t

*** r e q u i r e s  r e g i s t e r  l e n g t h  a s  command l i n e  a r g u m e n t  
*** *** c a n  a i s o  g i v e  n o .  o f  p e r i o d s  
*** *** o u t p u t  c u r r e n t l y  s e n t  t o  s c r e e n
k  k  k  k  k  k  

k  k  k

*** G o d f r e y  KR, C o r r e l a t i o n  M e t h o d s ,  A u t o m a t i c a  16  
( 1 9 8 0 ) *  * * ***

i t  ★  i t

i t i t i t i t i t i t i t i t i t i t - t ' t - t - t i t i t i t i t ' t - t i t i t i t - t i t i t i t i t i t i t i t i t i t i t - t - t i t i t i t i t i t - t i t i t i t i t i t i t i t i t i t i t i t i t i t ' t i t i t i t

- t

* /

# i n c l u d e < s t d i o . h>
# i n c l u d e < m a t h . h>
# i n c l u d e < s t d l i b . h>

s t r u c t  prbs__reg  / *  u s e d  t o  p r o d u c e  s e q u e n c e  * /
{

i n t  v a l u e ;
s t r u c t  p r b s _ r e g  * n e x t ;  
s t r u c t  p r b s _ r e g  * l a s t ;

In­

s t r u c t  p r b s _ s e q  / *  u s e d  t o  s t o r e  s e q u e n c e  * /
{

i n t  v a l u e ;
s t r u c t  p r b s _ s e q  * n e x t ;

} ;

m a i n ( a r g c , a r g v )  
i n t  a r g c ;  
c h a r  * a r g v [] ;

{
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i n t  g e t _ v a l ( ) ;  
v o i d  s h i f t _ r e g ( ) ;  
s t r u c t  p r b s _ r e g  

* r e g _ s t a r t , * r e g _ l a s t , * r e g _ t e m p , * r e g _ n e x t ;
s t r u c t  p r b s _ s e q  * s e q _ s t a r t , * s e q _ t e m p , * s e q _ n e x t ;
i n t  n , i , r e g _ s i z e , f b k _ s t a g e , p e r i o d , f b k ,  s e q _ s i z e , o k , s e q s ;

/ *  e r r o r  c h e c k i n g  and s e t  up * /  
i f  ( a r g c < 2  | |  a r g c > 3 )
{

p r i n t f ( " \ n E  R R 0 R -  I n t e g e r  a r g u m e n t ( s )  
r e q u i r e d \ n " ) ;

p r i n t f ("\nFORMAT -  p r b s  r e g _ l e n g t h  n o _ o f _ p e r i o d s  
( D e f a u l t  1 p e r i o d ) \ n " ) ;  

e x i t ( 1 ) ;
}
n = a t o i ( a r g v [ 1 ] ) ;  
i f  (n<2 | |  n > l 1 |I n==8)
{

p r i n t f ( " \ n E  R R 0 R -  o n l y  2 3 4 5 6 7 9  10 o r  11 
r e g i s t e r  s t a g e s \ n " ) ;  

e x i t ( 1 ) ;
}
p e r i o d = ( ( i n t ) p o w ( 2 . 0 ,  ( d o u b l e ) n ) ) - 1 ;  / *  ' c o s  pow

r e q u i r e s  d o u b l e s  * /  
i f  ( n = = 2 )

f b k _ s t a g e = l ; 
i f  (n==3)

f b k _ s t a g e = 2 ; 
i f  (n==4 I I n==5)  

f b k _ s t a g e = 3 ; 
i f  (n==6 I I n==9)  

f b k _ s t a g e = 5 ;  
i f  ( n = = 7 )

f b k _ s t a g e = 4 / 
i f  (n==10)

f b k _ s t a g e = 7 ; 
i f  ( n = = l l )

f b k _ s t a g e = 9 ;

i f  ( a r g c = = 3 )
{

s e q s = a t o i ( a r g v [ 2 ] ) ;  
i f  ( s e q s c l )
{
p r i n t f ( " \ n E  R R 0 R -  No.  o f  p e r i o d s  m u s t  b e  

p o s i t i v e \ n " ) ;
e x i t  ( 1 ) ;
}

}
e l s e

s e q s = l ;

/ *  i n i t i a l i s e  * /
r e g _ s i z e = s i z e o f ( s t r u c t  p r b s _ r e g ) ; 
s e q _ s i z e = s i z e o f ( s t r u c t  p r b s _ s e q ) ;
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r e g _ s t a r t = ( s t r u c t  p r b s _ r e g  * ) m a l l o c (r e g _ s i z e ) ;  
r e g _ t e m p = ( s t r u c t  p r b s _ r e g  * ) m a l l o c ( r e g _ s i z e ) ; 
s e q _ s t a r t = (s t r u c t  p r b s _ s e q  * ) m a l l o c ( s e q _ s i z e ) ; 
s e q _ t e m p = ( s t r u c t  p r b s _ s e q  * ) m a l l o c ( s e q _ s i z e ) ; 
r e g _ s t a r t - > v a l u e = l ; 
r e g _ s  t a r t - > n e x t = r e g _ t  empi­
r e  g _ s  t a r t - > l a s  t=NULL;  
s e q _ s t a r t - > v a l u e = l ; 
s e q _ s t a r t - > n e x t = s e q _ t e m p ;  
r e g _ l a s t = r e g _ s t a r t ; 
f o r  ( i = l ; i < n ; i + + )
{

i f  ( i ! = ( n - 1 ))
r e g _ n e x t = ( s t r u c t  p r b s _ r e g  * ) m a l l o c ( r e g _ s i z e ) ; 
e l s e
r e g _ n e x t =N U L L ;  
r e g _ t e m p - > v a l u e = l ; 
r e g _ t e m p - > n e x t = r e g _ n e x t ; 
r e g _ t e m p - > l a s t = r e g _ l a s t ; 
r e g _ l a s t = r e g _ t e m p ;  
r e g _ t e m p = r e g _ n e x t /

} / *  s h i f t  r e g i s t e r  i n i t i a l i s e d  * /

/ *  c a l c  r e s t  o f  s e q u e n c e  * /  
f o r  ( i = 0 ; i < p e r i o d - l ; i + + )
{

f b k = g e t _ v a l (r e g _ s t a r t , n ) Ag e t _ v a l (r e g _ s t a r t , f b k _ s t a g e ) ; 
s h i f t _ r e g ( r e g _ s t a r t ) ;  
r e g _ s t a r t - > v a l u e = f b k ;
s e q _ n e x t = ( s t r u c t  p r b s _ s e q  * ) m a l l o c ( s e q _ s i z e ) ; 
s e q _ _ t e m p - > v a l u e = g e t _ v a l  ( r e g _ s t a r t , n )  ; 
s e q _ t e m p - > n e x t = s e q _ n e x t ; 
i f  ( i = = p e r i o d - 2 )
/ *  l a s t  t i m e  s o ,  l o o p  b e a k  t o  s t a r t  * /  
s e q _ t e m p - > n e x t = s e q _ s t a r t ; 
s e q _ t e m p = s e q _ n e x t /

} / *  s e q u e n c e  c o m p l e t e  * /

/ *  o u t p u t  s e q u e n c e  * /  
p r i n t f ( " B u i l t  s e q u e n c e \ n " ) ;  
s e q _ t e m p = s e q _ s t a r t ; 
f o r  ( i = 0 ; i < s e q s ; i  + + )
{

o k= 1;
p r i n t f ( "t i g g e r . . " ) ;  
w h i l e ( o k )
{
f p r i n t f ( s t d o u t , "I d  " , s e q _ t e m p - > v a l u e ) ; 
s e q _ t e m p = s e q _ t e m p - > n e x t ; 
i f  ( s e q _ t e m p = = s e q _ s t a r t ) 

o k= 0;
}
p r i n t f ( " \ n " ) ;

}
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} /* end of main */

i n t  g e t _ v a l ( r e g ,  x)
/ *  g e t  v a l u e  i n  e l e m e n t  x o f  r e g i s t e r  r e g  * /
/ *  x = l  g i v e s  f i r s t  e l e m e n t ,  x=2 g i v e s  s e c o n d  e t c  * /  
s t r u c t  p r b s _ r e g  * r e g ;  
i n t  x ;

{
s t r u c t  p r b s _ r e g  * t emp;  
i n t  i ;  
t e m p = r e g ;  
f o r  ( i = l ; i < x ; i + + )  

t e m p = t e m p - > n e x t ; 
r e t u r n ( t e m p - > v a l u e ) ;

v o i d  s h i f t _ r e g ( r e g )
/ *  s h i f t  o p e r a t i o n  on r e g i s t e r  r e g  * /  
s t r u c t  p r b s _ r e g  * r e g ;

{
s t r u c t  p r b s _ r e g  * l a s t , * p r e v , * t emp;  
w h i l e ( ( r e g = r e g - > n e x t ) ! = N U L L )  

t e m p = r e g ;  
l a s t = t e m p ;
w h i l e  ( ( p r e v = l a s t - > l a s t ) ! =NULL)
{

1 a s t - > v a l u e = p r e v - > v a l u e ;  
l a s t = p r e v ;

}

C2 Least squares estimation

/ *  c n g 3 . c  * /
# i n c l u d e < s t d i o . h>
# i n c l u d e " c n g . h"

# d e f i n e  Na 5 / *  b e c a u s e  o f  way d a t a  c u r r e n t l y
s t o r e d * /
# d e f i n e  Nb 5 / *  Na m u st  e q u a l  Nb
j m m m  m  j i M M M M *  /

# d e f i n e  N Na+Nb

t y p e d e f  d o u b l e  v e c t o r [ N ] ; 
t y p e d e f  d o u b l e  m a t r i x [ N ] [ N ] ;

m a i n ()
{

j  -k k-k'k-kk'kkkk'k i n i t i a l i s e  k k k k k k k k k k  k J
FILE * f i 1 e _ p t r ; 
i n t  i , j , c o u n t ;
d o u b l e  u [ N b + 1 ] , y [ N a + 1 ] , dummy; 
d o u b l e  e , y _ e s t i m a t e , d e n , n e x t ; 
v e c t o r  X , t h e t a , v l , v 2 ;

XVII



matrix oldp,p,ml,num;

f o r  ( i = 0 ; i < N ; i  + + )
o l d p [ i ] [ i ] = 1 0 0 0 0 . 0 ;  

f i l e _ p t r = f o p e n ( Mt e s t _ d a t a " , " r t " ) /  / *  95 s a m p l e s
/

/ * f i l e _ p t r = f o p e n ( " o c t _ t e s t l . m a t ", " r t " ) ; * /  / *  9 9 5  s a m p l e s
/

i f  ( f  i l e__ptr==NULL)
{

p r i n t f ( " U n a b l e  t o  o p e n  f i l e \ n " ) ;  
e x i t  ( 1 ) ;

}
f o r  ( i = 0 ; i < N a ; i + + )

/ * f s c a n f ( f i l e _ p t r , "%le %le %le %le %l e " , &dummy,&u[Nb-  
] ,  & y [ N a - i ] ,  &dummy,&dummy,&dummy); * /

f s c a n f ( f i l e _ p t r , "%l e  %l e "; & y [ N a - i ] , & u [ N b - i ] ) ;

j ±  * * * * * * * * * *  s t a r t  o f  m a i n  l o o p  * * * * * * * * * *  * /  
f o r  ( c o u n t = 0 ; c o u n t < 9 5 ; c o u n t + + )
{

/ *  r e a d  n e x t  s a m p l e  * /
/ *  f  s c a n f  ( f i l e _ p t r ,  "&le %le %le -ole 

l e " , & d u m m y , u , y , &dummy,&dummy, &dummy); * /  
f  s c a n f  ( f  i l e _ p t r ,  " -Sle %le" , y ,  u) ;

/ *  make X v e c t o r  * /  
f o r  ( i = 0 ; i < N a ; i + + )
X [ i ] = y [ i + 1 ] * - 1 . 0 ;  
f o r  ( j = i ; j < N ; j + + )
X [ j ] = u [ j - i + 1 ] ;

/ *  c a l c  e r r o r  * /  
y _ e s t i m a t e = v v t m u l t ( X , t h e t a , N ) ; 
e = ( * y ) - y _ e s t i m a t e ;

/ *  c a l c  p * /  
m v m u l t ( o l d p , X ,  v l , N ) ; 
v v m u l t (v l , X , m l , N ) ; 
mmm u l t ( ml , o l d p , n u m , N ) ; 
v m m u l t ( X , o l d p , v 2 , N ) ; 
d e n = v v t m u l t (v 2 , X , N ) ; 
d e n + = l . 0 ;  
m d i v d ( n u m , d e n , N ) ; 
m s u b t r a c t ( o l d p , n u m , p , N ) ;

/ *  u p d a t e  t h e t a  * /
m v m u l t ( p , X , v l , N) ;
f o r  ( i = 0 ; i < N ; i + + )
t h e t a [ i ] = t h e t a [ i ] + v l [ i ] * e ;
s h i f t ( u , N b + 1 ) ;
s h i f t ( y , N a + 1 ) ;
m c o p y ( p , o l d p , N ) ;

}
p r i n t f ( " t h e t a " ) ;
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v d i s p ( t h e t a , N ) ; 
f c l o s e ( f i l e _ p t r ) ;

) /  ^  - k - k - k ' k - k ' k ' k ' k - k - k  Q d  O f  IU S  i  n  ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  + j

Header file

/ *  c n g . h  * /

v o i d  s h i f t  (x, in)  
d o u b l e  *x;  
i n t  m;

{
d o u b l e  * l a s t , * p r e v ;  
i n t  i ;

l a s t = x + m - l ; 
p r e v = x + m - 2 ; 
f o r  ( i = 0 ; i < m ; i + + )

( * l a s t - - ) = ( * p r e v - - ) ; 
*x = 0 ;

v o i d  v d i s p ( x , m) 
d o u b l e  *x;  
i n t  m;

{
i n t  i  ;
p r i n t f ( " \ n " ) ;  
f o r  ( i = 0 ; i < m ; i + + )

p r i n t f ( " 1 . 1 5 e \ n " , * x + + ) ;
}

d o u b l e  v v t m u l t ( x , y , m )  
d o u b l e  * x , *y;  
i n t  m;

{
i n t  i ; 
d o u b l e  z ;

f o r  ( i = z = 0 ; i < m ; i + + ) 
z + = ( +x + + ) * ( * y + + ) ;  

r e t u r n  ( z ) ;
}

v o i d  m d i s p ( x , m )  
d o u b l e  * x ;  
i n t  m;

{
i n t  i , j ;
f o r  ( i = 0 ; i < m ; i + + )
{

f o r  ( j = 0 / j < m ; j + + )  
p r i n t f ( " i e  " , * x + + ) ;  
p r i n t f ( " \ n " ) ;
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}
}

v o i d  m m m u l t ( x , y , z , m )  
d o u b l e  * x , * y , * z ; 
i n t  m;

{
i n t  i , j , k ; 
d o u b l e  * x r o w , * y c o l ;  
f o r  ( i = 0 ; i < m ; i + + )
{

x r o w = x ;
y c o l = y ;
f o r  ( j = 0 ; j < m ; j + + )
{
f o r  ( k = ( * z ) = 0 ; k<m;k++)
{

(* z ) + = ( + x r o w ) * ( * y c o l ) ;  
x r o w + + ; 
y c o l + = m ;

}
x r o w = x ; 
y c o l = y + j  + 1;  
z + +;
}
x+=m;

}
}

v o i d  v v m u l t ( x , y , z , m) 
d o u b l e  * x , * y , * z ;  
i n t  m;

{
d o u b l e  * y c o l ;  
i n t  i / j ;
f o r  ( i = 0 ; i < m ; i + + )
{

y c o l = y ;
f o r  (j = 0 ; j < m ; j + + )
('*rz++) = ('*rx)'*: ( * y c o l + + )  ;

X +  + ;

}

v o i d  v m m u l t ( x , y , z , m )  
d o u b l e  * x , * y , *z ;  
i n t  m;

{
d o u b l e  * x c o l , * y c o l ;
i n t  i , j ;
y c o l = y ;
f o r  ( i = 0 ; i < m ; i + + )
{

x c o l = x ;
f o r  ( j = ( +z ) = 0 ; j < m ; j + + )
{
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(* z ) + = ( * x c o l ) * ( * y c o l ) ;
x c o l + + ;
y c o l + = m ;
}
y c o l = y + i + l ; 
z + + ;

}
}

v o i d  mvmul t  (x ,  y ,  z ,  m) 
d o u b l e  * x , * y , * z ; 
i n t  m;

{
d o u b l e  * x c o l , * y c o l ;
i n t  i , j ;
x c o l = x ;
f o r  ( i = 0 ; i < m ; i + + )
{

y c o l = y ;
f o r  (j = ( * z ) = 0 ; j < m ; j + + )  
{
(* z )+= ( * x c o l ) * ( * y c o l ) ; 

y c o l + + ; 
x c o l + + ;
}
x c o l = x + m * ( i + 1 ) ;  
z + + ;

}

v o i d  m s u b t r a c t ( x , y , z , m) 
d o u b l e  * x , * y , * z ; 
i n t  m;

{
i n t  i  ;
f o r  ( i = 0 ; i < ( m * m ) ; i + + )

( * z + + ) = ( * x + + ) - ( * y + + ) ;
}

v o i d  m c o p y ( x / y / m) 
d o u b l e  * x , * y ;  
i n t  m;

{

i n t  i  ;
f o r  ( i = 0 ; i < ( m * m ) ; i + + )

(* y + + ) = (* x+ + ) ;
}

v o i d  m d i v d ( x , y , m )  
d o u b l e  * x , y ;  
i n t  m;

{
i n t  i ;
f o r  ( i = 0 ; i < ( m * m ) ; i ++ )

(*x)  = ( *x + + ) / y ;
}
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A P P E N D I X  D - Data logging details

Below is an example o f  the information that was stored as a data record.

f i l e n a m e p r b s l
h e a d e r h e a d e r 2
d a t e 2 3 / 1 0 / 9 1
s u b j  e c t s y s t e m  i d e n t i f i c a t i o n  -  PRBS t e s t i n g  AGC
c l o c k  F 3kHz
r e g i s t e r 10
a m p l i t u d e 50mv
c o n t r o l gap
c h a n n e l s 25
s a m p l e 7kHz
l e n g t h 16k
n o t e s w e r e  r o l l i n g ,  d i t h e r  p r e s e n t ,  no c h a n  16

SIGNAL NAME CALIBRATION ADC RANGE
1 p o s i t i o n  r e s e t POS RE - l v / m m 5
2 s t a n d  s p e e d ST SPD 1 0 v = 3 5 0 m / m i n 10
3 l e f t  t e n s i o n LTNSN 1 0 v = l 9 6 k N 10
4 r i g h t  t e n s i o n RTNSN 10 v = 1 9 6 kN 10
5 e n t r y  g a u g e  e r r o r ENTGER 1 0 v = 1 0 0 u  t h i c k 10
6 e x i t  g a u g e  e r r o r EXTGER 1 0 v = 1 0 0 u  t h i c k 10
7 e x i t  g a u g e  r e f EXTREF lv / mm 5
8 e n t r y  g a u g e  r e f ENTREF lv / mm 5
9 e n t r y  s p e e d ENTSPD 1 0 v = 3 5 0 m / m i n 10
10 e x i t  s p e e d EXTSPD 1 0 v = 3 5 0 m / m i n 10
11 l o a d LOAD 5 v = 2 0 0 t o n n e s 5
12 r a c k  p u l l  ( p r e s s u r e ) PRESS l v = l t o n n e 10
13 t r u e  p o s i t i o n TRUPOS - 2v / mm 10
14 p o s i t i o n  r e f POSREF - l v / m m 10
15 s e r v o v a l v e  c u r r e n t SERVOI 1v=2 0mA 2 . 5
16 r o t  s p e e d  LH w i n d e r RSLHW 1 0 v = 1 3 25 r p m 10
17 r o t  s p e e d  RH w i n d e r RSRHW 1 0 v = 1 3 2 5 r p m 10
18 s t a n d  s p e e d  r e f STDREF 1 0 v = 3 5 0 m / m i n 10 + v e
r o l l  r i g h t
19 l e f t  t e n s i o n  r e f LTREF - 1 0 v = 1 9 6 k N 10
20 r i g h t  t e n s i o n  r e f RTREF - 1 0 v = 1 9 6 k N 10
21 m a in  d r i v e  f i e l d  I FIELDI 5v= 18A 5
22 m a in  d r i v e  a r m a t u r e I ARM I 5 v = 1 2  00A 5
23 m a i n  d r i v e  a r m a t u r e V ARM V - 5 v = 5 8 0 v 5
24 p r b s CHAN24 2 . 5
25 t r i g g e r  o / p CHAN25 10
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A P P E N D I X  E - Test  rig detai ls

Mill Stand

Housing posts 
Height o f  housing 
W indow size 
Maximum load

Total mass 
Mill spring

150 tonnes
450 tonnes/mm @ 200 tonnes load 
700 tonnes/mm @ 2000 tonnes load 
1020mm x 780mm 
7600mm
1524mm x 5072mm

1100 tonnes

Roll /  C h o ck  blocks

Two steel blocks o f  mass 25 tonnes each to simulate the roll /  chock masses.

Pump set

Maximum pressure greater than 400 bar (6000psi)
Flow: 230 1/min (50gpm) @ 190 bar (2500psi)

160 1/min (25gpm) @ 276 bar (4000psi)

Capsule installation

Hydraulic rams to raise or lower roll / chock blocks plus hydraulic ram to slide capsule in 
and out o f  housing. Capsule stroke changed by adding or subtracting packers.

Development capsule

850mm bore single acting capsule with maximum 300mm stroke. Designed for either top 
or bottom mounting with different manifold arrangements.
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APPENDIX F - Additional notes

These notes have been included to clarify a number of points raised by the examiners.

1. Figure 1.2 shows the overall control loop considered in the majority of this thesis. It is 

the position loop o f the hydraulic AGC system, with capsule position reference as input 

and measured capsule position as output.

2. Figure 2.1 shows a model of the hydraulic AGC capsule and servo valve which is 

shown pictorially in figure 1.2.

3. Chapter 3 is primarily concerned with the identification of the position loop of the 

AGC system, figure 1.2. There are a number of sources (including gauge variations, roll 

eccentricity and trims from other control loops) resulting in a random disturbance 

affecting this loop.

4. Chapter 4 looks at the development of a self-tuning controller, based on the pole- 

placement technique, to control the position loop of the AGC by utilising the model 

identified in chapter 3. The desired response of the controller was specified in terms of a 

second order system.

5. Figure 4.1 shows the block diagram of the pole-placement controller and the plant. 

r(t) is the same as the reference signal of figure 1.2, u(t) corresponds to servo valve 

current and y(t) to measured capsule position.
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6. Figure 4.2 relates to figures 1.2 and 4.1. The position reference signal r(t) is not 

shown but is a ±10 microns square wave. Although unrealistic, this reference was chosen 

to demonstrate the self-tuning action. u(t), the control signal, is the servo valve current, 

a suitably scaled version o f this signal is included on the same axis as the output signal, 

again to demonstrate the self-tuning action. y(t), the system output (measured capsule 

position), is seen to follow the reference with the desired response, giving no steady 

state error, once the controller is active.
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