
A transputer based parallel database system.

GRAY, Jonathan Patrick.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19717/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

GRAY, Jonathan Patrick. (1991). A transputer based parallel database system.
Doctoral, Sheffield Hallam University (United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Sheffield City Polytechnic Library

REFERENCE ONLY

Fines are charged at 50p per hour

2S HII ?00<
4" l Mrp/S

ProQuest Number: 10697019

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697019

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A Transputer Based Parallel Database System

by

Jonathan Patrick Gray

A thesis subm itted to the Council for National Academic Awards in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

Sponsoring Establishment: School of Computing and
Management Sciences,
Sheffield City Polytechnic

Collaborating Establishment: National Transputer Support Centre,
Sheffield

January 1991

m3f>

Abstract

A sophisticated database application generation environment known as
DB4GL has been developed at Sheffield City Polytechnic. A unique feature
of DB4GL is the object-oriented application model used to specify and
generate database applications. Although DB4GL has many advanced and
powerful features, such as a self-describing data dictionary and extensive
integrity rule processing facilities; the system has not been designed for high
performance in either the generation tools or the generated database
applications. The Parallel-DB4GL (P-DB4GL) project represents an attempt to
improve the performance of the generated database applications, by
constructing a new concurrent implementation of DB4GL for execution on
transputer-based parallel hardware.

This thesis describes the DB4GL system as developed to the commencement
of the P-DB4GL project. A prototype P-DB4GL system has been implemented
that demonstrates how significant performance gains can be obtained from a
concurrent implementation on transputer-based parallel hardware. Based
on the successful results of this prototype system, designs for a fully
functional multiprocessor P-DB4GL system are proposed. The details of this
prototype and the fully functional designs are presented in this thesis. The
thesis also provides an evaluation of the P-DB4GL project as a whole, and
concludes with some suggestions for further research in the areas of parallel
databases and object-oriented system implementation.

Acknowledgements

I would like to take this opportunity to thank my supervisor, Professor
Frank Poole, for the excellent supervision and encouragement he has given.
In addition I would also like to thank Mrs Innes Jelly for her valuable
comments in the preparation of this thesis and other reports. Finally I
would like to thank Ms Susan Cleary for her assistance in typing, proof
reading, and printing of this thesis.

Contents

Chapter 1
Introduction

1.1 Motivation for the Research...1
1.2 Aims of the Research...2
1.3 The P-DB4GL Approach... 3
1.4 P-DB4GL Project Development...5
1.5 Outline of Thesis Contents... 6

Chapter 2
The DB4GL Database Application Generation System

2.1 DB4GL Project Overview..10
2.2 Application Generation and Prototyping.. 10
2.3 DB4GL Application Development... 11
2.4 The DB4GL Application Model..12

2.4.1 A Generic Architecture.. 12
2.4.2 Presentation Objects.. 13
2.4.3 Information Units..14
2.4.4 Data Relationships... 15
2.4.5 Levels of Data Description..16

2.5 Implementation of the Application Model.......................................16

Chapter 3
Object-Oriented Database Approaches

3.1 A Classification of Object-Oriented Approaches............................. 30
3.2 Object-Oriented Approaches and DB4GL... 32

Chapter 4
Transputers. Occam, and Databases

4.1 Transputers..38
4.2 Occam...38
4.3 Transputers and Databases.. 39
4.4 Project Resources...42

Chapter 5
Developing the Prototype Parallel-DB4GL

5.1 Project Objectives... 45
5.2 Design Methodology... 45
5.3 Development Approach.. 46

5.4 Implementation...47
5.5 Testing...51
5.6 Results.. 53
5.7 Evaluation.. 54

Chapter 6
Designs for a Fully Functional P-DB4GL

6.1 A Multiprocessor Fully Functional P-DB4GL..................................67
6.2 Channel Multiplexors and Message Routers...................................68

6.2.1 Channel Multiplexing...68
6.2.2 P-DB4GL Channel Multiplexors... 69
6.2.3 P-DB4GL Message Routing...70

6.3 Communication Loads and Protocol Overheads............................ 72
6.4 Designs for P-DB4GL Hardware Configurations 75
6.5 Code Factoring..77
6.6 Code Generation..78

Chapter 7
P-DB4GL Project Evaluation

7.1 Summary.. 90
7.2 Communication Loads and Object Clustering................................. 90
7.3 Object Inheritance.. 91
7.4 Occam 2 as an Implementation Language....................................... 91
7.5 Improvements in Secondary Storage Technology........................... 92
7.6 The Next Generation of Transputer Products.................................93
7.7 Advantages of a Prototyping Development Cycle.......................... 95

Chapter 8
Conclusions..97

Bibliography... 99

Appendices
Appendix A - Algorithm Syntax Definition... 110
Appendix B - Message Formats and Occam Channels......................................I l l
Appendix C - Entity and Schema Handler Algorithms....................................115
Appendix D - Disc and Filer Algorithms... 126
Appendix E - Filer Harness Specification.. 130
Appendix F - User Process Test Harness ..138
Appendix G - Test Data and Test Configurations...144

Appendix H - Test Results...
Appendix I - Test Application Performance Optimization,
Appendix J - Routers and Multiplexors..............................
Appendix K - System Constants...
Appendix L - Channel Protocols..

List of Figures

Figure 1.1 - Thesis Contents..9
Figure 2.1 - DB4GL Development Environment......................... 18
Figure 2.2 - Information for Application Specification..................................... 19
Figure 2.3 - DB4GL Application Model...20
Figure 2.4 - Database Applications as Instantiations..21
Figure 2.5 - Examples of Application Structures.. 22
Figure 2.6 - Data Dependencies and Object Activity... 23
Figure 2.7 - Prime View and Non-prime View Information Units................ 23
Figure 2.8 - Domains and Relationships... 24
Figure 2.9 - Information Unit Groups and Schema Links...............................24
Figure 2.10 - ANSI/SPARC DBMS Model...25
Figure 2.11 - Levels of DB4GL Data Description..26
Figure 2.12 - Implementation of the Application Model.................................27
Figure 2.13 - Generated Application Instances... 28
Figure 2.14 - DB4GL Code Generation... 29
Figure 2.15 - Modular Structure of Implemented Applications 29
Figure 3.1 - An Object-Oriented Design... 36
Figure 3.2 - DBMS/Object-Oriented Environment Interface........................... 37
Figure 4.1 - Transputer Architecture... 43
Figure 4.2 - The Occam Language...44
Figure 5.1 - System Configuration for P-DB4GL..58
Figure 5.2 - Concurrent Message Passing Processes.. 58
Figure 5.3 - Typical P-DB4GL Database Application.. 59
Figure 5.4 - DB4GL and P-DB4GL Message Passing... 59
Figure 5.5 - Concurrent Execution of Data Access Processes............................ 60
Figure 5.6 - Developing the Prototype P-DB4GL System..................................61
Figure 5.7 - Mapping Entity Handlers to Discs.. 62
Figure 5.8 - Typical Test Application Configuration.. 63
Figure 5.9 - Version 4 Handlers Test Run Times..64
Figure 5.10 - Normalized Coupling Entity Update... 64
Figure 5.11 - Version 4 Handlers Improvement Factor....................................65
Figure 5.12 - Test Run Processor Loading..65
Figure 5.13 - Processing/Disc Access Ratio... 66
Figure 5.14 - Processor Loading and Parallel Configuration............................ 66
Figure 6.1 - Insufficient Links for Filer Connection... 80
Figure 6.2 - Distributing the Data Access Code...80
Figure 6.3 - Designs for a Fully Functional Multiprocessor P-DB4GL............ 81
Figure 6.4 - Configuration Mismatch Between Channels and Links...............82

Figure 6.5 - Addition of Multiplexor Processes.. 83
Figure 6.6 - Modified Prime Entity Handler..83
Figure 6.7 - P-DB4GL Decoder Process.. 84
Figure 6.8 - Routing Messages Through a P-DB4GL Network........................ 84
Figure 6.9 - Different Types of P-DB4GL Messages..85
Figure 6.10 - Multiplexing Filer Channels...85
Figure 6.11 - A Separate Interconnection Network..86
Figure 6.12 - A Reconfigurable Network...87
Figure 6.13 - Replacement of Schema Handler by IUG Process........................88
Figure 6.14 - An Alternative Presentation Object Implementation................ 88
Figure 6.15 - Methods of Code Generation..89
Figure 7.1 - An HI Based P-DB4GL Design..96
Figure B1 - P-DB4GL Message Formats... 114
Figure El - Filer Harness Record Representation...136
Figure FI - A Single Transaction..140
Figure F2 - Optimised Sequence of Transactions ;.. 141
Figure F3 - A Sequence of BCU Messages..142
Figure F4 - Effect of User Harness Delays...143
Figure G1 - Test Entities (Information Units)..147
Figure G2 - Test Schemas..148
Figure G3 - Test Data Access Code..149
Figure G4 - Test Configurations..150
Figure II - Effect of Message Size on Transfer Rate..174
Figure 12 - Channel Protocol Converter Processes.. 174
Figure 13 - Protocol Conversion Test Configuration.. 175
Figure J1 - P-DB4GL Router Process... 188
Figure J2 - Network8 Ring Router Process.. 188
Figure J3 - Network9 Ring Router Process.. 189
Figure J4 - Netl6 Ring Routing Test Configuration... 190
Figure J5 - Netl8 Ring Routing Test Configuration... 190
Figure J6 - Netl9 Ring Routing Test Configuration... 191

Chapter 1

Introduction

1.1 Motivation for the Research

This PhD thesis describes the work undertaken and results obtained from
the Parallel DB4GL (P-DB4GL) research project. The P-DB4GL project is an
extension of continuing research at Sheffield City Polytechnic in the areas of
databases and automated systems development. During recent years several
research projects concerned with data dictionaries, 4th Generation
Languages (4GL's), and application prototyping have been undertaken at the
Polytechnic [Cooper83] [Beazley84] [Ewin84] [Bal85] [Priti86] [Kilo86]];
culminating in the development of a sophisticated database application
generation environment known as DB4GL (Data Base 4th Generation
Language) [Ewin85a] [Ewin85b] [Poole87] [Hird89].

The DB4GL research was motivated chiefly by concerns of improving
programmer productivity and automating software development. DB4GL,
like many 4GL's, exists as a collection of productivity enhancing tools
[Nelson85]. These tools, such as data dictionaries, normalization engines,
screen painters, report generators, and code generators, are used by system
analyst/designers and programmers to improve efficiency and shorten
development time in the traditional software system development cycle, or
"waterfall" life cycle [Boehm76], of analysis-specification-design-
implementation-testing [Cobb85] [Forage85]. Such 4GL tools can also be used
to rapidly build, or "prototype", applications in a modified software
development cycle [Brittan80] [McCraken82] [Appleton83] [Johnson83].

DB4GL represents an attempt to create a unifying ordered approach to the
construction of database-oriented information systems (or database
applications) within the context of a prototyping system development
methodology. DB4GL integrates both processing and information
descriptions, combined with rule-based integrity constraints, in a formal
homogeneous object-oriented structure known as the DB4GL application
model. This application model is fundamental to the generation of database
applications; it is a generic structure, or template, from which generated
applications are derived. Generated database applications are defined as
specific instances of this generic structure.

L,napter i

The DB4GL generated database applications, and the DB4GL tools
themselves, have not been designed with performance in mind. Some of
the DB4GL tools, the generator tools in particular, are very slow in
operation. The compiled program code that constitutes the generated
DB4GL applications is slow in execution, and could have been more
efficiently designed and coded. Because DB4GL has been developed as a
research vehicle rather than a commercial product, performance issues have
not been a major concern. Fortunately, DB4GL is fully portable to any
system supporting a COBOL compiler, and many of the performance
problems can be solved by transferring to target hardware of a higher
specification than the PC system currently used. However, even with more
efficient coding and faster hardware, there is a limit to the improvements
that can be obtained with the existing DB4GL implementation.

The motivation for the P-DB4GL project is performance. To try and solve
the performance problems encountered in the sequential COBOL
implementation of DB4GL, a radically different approach has been taken,
that is, the construction of an entirely new parallel implementation of
DB4GL.

1.2 Aims of the Research

The aim of the P-DB4GL project is to redesign the DB4GL generated database
applications so that they can be executed on parallel hardware. The
potentially massive processing power of this parallel hardware can then be
used to speed-up the performance of the generated applications, and also
allow the applications to be scaled-up to much larger database sizes without
loss of performance. The DB4GL application model is retained. This has
been shown to be a suitable software architecture for application
specification and generation, and the P-DB4GL project is a test of the
application model's suitability for parallel implementation. In particular,
the object-oriented aspects of the application model are examined to see if an
object-oriented specification facilitates parallel implementation.

The parallel hardware chosen for the P-DB4GL implementation is
transputer based. Transputers [Inmos88a] are a family of VLSI devices,
including RISC (Reduced Instruction Set Computer) [Bell86] [Gimarc87]
microprocessors and peripheral controllers, specially designed for the
construction of distributed memory MIMD (Multiple Instruction Multiple

- 2 -

u napter i

Data) [Flynn72] architectures. Each transputer microprocessor is a "computer
on a chip" and combines on a single integrated circuit, CPU, RAM and high
speed serial communication links. Transputers are relatively cheap and are
easily connected together by their serial communications links to produce
large extensible parallel architectures. The low cost and extensibility of
transputers, combined with the availability of several high level parallel
languages, makes them suitable candidates for the parallel hardware. Also,
at the start of the P-DB4GL project, it was envisaged that the parallel DB4GL
database applications would be essentially "shared nothing" architectures
[Stonebraker86], and the transputer's built-in communication facilities were
considered appropriate for the construction of such architectures.

1.3 The P-DB4GL Approach

The P-DB4GL project differs significantly from many other research projects
concerned with database performance issues. In particular, there are three
aspects to the P-DB4GL approach which differentiate it from other database
approaches. First, it differs architecturally from established database
machine approaches. Secondly, the DB4GL application model represents a
novel approach to database application development. Thirdly, P-DB4GL is
intended for use in a prototyping development environment, and this offers
certain advantages; in particular, it facilitates performance "tuning" of the
generated database applications.

The P-DB4GL project is not an attempt to construct a dedicated "backend"
database machine [Hsiao83]. Typically, such database machines are
constructed from specialized custom hardware, and are invariably concerned
with improved disc access and file processing, for example: CAFS [Babb79].
DIRECT [DeWitt79], SABRE [Gardarin83], RDBM [Schweppes83], DBMAC
[Missikof83], Gamma [Schneider89]. They are generally not stand-alone
machines, but dependent on either a host machine (usually a mainframe
computer) in which they replace some of the operating system's functions
and execute DBMS code more efficiently than the host machine; or else
function as a database server forming part of a networked or distributed
system, receiving database queries (typically in SQL [BSI88]) from client
processors, processing these requests and returning results of this query to
the clients. DB4GL differs from such database machines in that all of the
database application executes entirely on the transputer-based hardware,
there are no separate client or host processes being serviced by P-DB4GL.

-3-

y^ riu jJ izT 1

Secondly, P-DB4GL applications are fully distributed parallel applications,
and exhibit inter-query parallelism which arises from the inherently
concurrent specification of DB4GL applications.

A unique feature of the P-DB4GL research is the DB4GL application model.
This application model represents an attempt to specify and generate
database applications in their entirety. It encompasses all facets of a database-
oriented information system - that is, processing, data model, user interface,
and integrity constraints - within a uniform structure. Thus, DB4GL differs
from other database approaches, in that there is no distinction between
DBMS functions and separate application programs using the DBMS. The
application model is not relational, but has certain object-oriented
characteristics. Specifically, a database application is defined by the model as
a set of concurrently executable message passing Presentation Objects, and
each particular generated application is considered as an instantiation of the
application model. DB4GL is further distinguished from some other
database approaches by the special emphasis placed upon the attribute, rather
than tuple or relation, as the primary data item.

The use of DB4GL within a prototyping development environment has a
significant effect on some implementation features. DB4GL applications are
oriented towards on-line transaction processing (OLTP) rather than on-line
query processing. This means that all the access paths (explicit data
relationships) and patterns of data usage are known and defined in advance
of end-user operation of the generated application. Consequently certain
optimizations to data access mechanisms, such as the establishment of
indexes on frequently used tables, are possible. Indexes reduce search time
and improve response time to transactions, however, one disadvantage of
indexes is the processing overhead entailed by the maintenance of indexes
following an update to the table over which they are defined. The use of
parallel processing hardware to improve index maintenance is a key feature
of the P-DB4GL system.

A possible solution to the problem of providing an ad hoc query processing
facility for a DB4GL system (assuming an appropriate DB4GL application
does not already exist to satisfy a given query) is the rapid building of a
specific (OLTP-oriented) application for that query. However, with the
existing slow DB4GL generator tools this can take several minutes, and
hardly constitutes on-line ad hoc query processing. An advantage of a faster

-4-

K-rwpier 1

P-DB4GL running on parallel hardware is the potential for greatly reduced
application generation time, thereby improving the query processing
facilities of DB4GL.

The prototyping development cycle facilitates the "tuning" of P-DB4GL
applications for optimal performance. A problem common to many parallel
database implementations is efficient resource utilization, that is, matching
processing and communication loads of the database software to the
available hardware. Because P-DB4GL development is cyclic, at each cycle in
the application development, the system analyst/designer has the
opportunity of altering the mapping of application code and database data to
the available processors and secondary storage devices (disks). Thus
allowing the possibility of experimentation with different configurations to
find a well balanced configuration offering optimal performance.

1.4 P-DB4GL Project Development

The first stage in the parallel DB4GL investigation was the development of a
prototype P-DB4GL system. In this prototype system, simplified "cut-down"
database applications were designed and implemented. These P-DB4GL test
applications are of reduced functionality, and are equivalent to applications
generated by the original [Ewin85a] DB4GL. In a fully functional P-DB4GL,
the parallel database applications would be generated automatically by P-
DB4GL generation tools, but these tools are not yet fully implemented, and
in the prototype system the test applications were hand coded. The test
applications were run on several different network configurations, and
designs for a fully functional P-DB4GL system are proposed based on the
results obtained from these tests.

The reasons for constructing a prototype P-DB4GL are:
determine the exact amount of parallelism inherent in the DB4GL
application model;
test the soundness of the design approach, that is, of a relatively
simple translation from an object-oriented specification to an
implementation of concurrent communicating processes;
assess the suitability of Occam as an implementation language for
P-DB4GL;

K^riujJiZT i

examine the feasibility of using transputers as the basis of the
parallel processing hardware, both for P-DB4GL in particular and
other database (and data intensive) systems in general.

Briefly, the main findings from the prototype P-DB4GL investigation are:
• significant performance benefits were obtained from parallel index

maintenance;
• speed-up of any given application by the simple addition of more

processors is very difficult to obtain;
• good scale-up in performance by the addition of more processors

and discs can be obtained as an application grows larger;
• the P-DB4GL database applications do not significantly load the

processors, but applications often become communication bound.
Based on these findings, some design considerations for a fully functional P-
DB4GL system are discussed in Chapter 6.

1.5 Outline of Thesis Contents

The P-DB4GL research project, as described in this thesis, brings together a
number of strands, or themes, of different research interests (Figure 1.1).
One of the core themes, providing motivation and background to the
DB4GL project, concerns database application generation and prototyping
software development. Another core theme is concerned with the
technology of parallel processing hardware, specifically transputers and
Occam, and the application of transputer technology to data intensive
application areas. Parallel architectures for databases and knowledge based
systems, including dedicated database machines, specialized relational and
logic language machines, and hardware support for object-oriented
environments, is a third theme of research. Finally, a concern with software
design and development methodologies for concurrent systems completes
the picture.

These four different themes of research interest are all components in the P-
DB4GL project, and are present in various chapters of this thesis. In the
following description of each chapter's contents, the relevance and influence
of these themes is indicated.

Chapter 1, the Introduction, introduces the research themes, and explains
the motivation and aims of the P-DB4GL project.

-6-

simpler 1

Chapter 2 describes the DB4GL Database Application Generation System.
DB4GL is the result of research encompassed by the theme of database
application generation. Chapter 2 describes the DB4GL system as developed
by [Hird89], and pays particular attention to the DB4GL application model
which has been greatly influenced by developments in object-oriented
research.

Chapter 3, Object-Oriented Database Approaches, provides a simple
classification of object-oriented approaches to database development. This
classification is used to provide a background, or framework, in which the
influence of object-oriented concepts on DB4GL is explained. DB4GL is not
representative of the "mainstream1' Object-Oriented Database Systems, but
the development of DB4GL has drawn heavily on research developments in
the object-oriented fields.

Chapter 4, Transputers, Occam and Databases, provides a short introduction
to the transputer technology, and the concurrent programming language
Occam, used in the construction of the parallel architecture for P-DB4GL.
Other database research projects, also using transputer-based technology, are
described; and the advantages of transputers for parallel database
implementations is explained.

Chapter 5 describes the development of the Prototype Parallel-DB4GL
system. The design, implementation, and testing of the prototype P-DB4GL
implementation is described in detail. In particular, the design approach, a
translation from concurrent object specification to an implementation of
communicating concurrent Occam processes, is explained. Based on the
results obtained from this prototype system, designs for a fully functional P-
DB4GL system are proposed.

Chapter 6, Designs for a Fully Functional P-DB4GL. describes design
proposals for a multiprocessor fully functional P-DB4GL system. Some
features of these designs, such as channel multiplexing and message routing,
have been implemented and tested, and in the light of these results,
revisions to the designs are made.

-7-

K^napier 1

Chapter 7 provides an Evaluation of the P-DB4GL Project, including both the
prototype P-DB4GL system and the fully functional designs, and indicates
where opportunities for further research lie.

Chapter 8 provides some overall Conclusions from the P-DB4GL project.

Lastly, there is Bibliography of all works cited in the thesis. Followed by a
number of Appendices, which mostly contain very detailed information
about test data, test results, and algorithms; this has been removed from the
main text to make it more concise and readable.

Themes

DB App.
Gen. >

Parallel
DB/KB

machines
Transputer
hardware .
and Occam ’

Design \
and Dev.
Methods

prototyping RISC
backend
DBMS

data flows
OLTP parallel

DBMS
Occam

00
DesignMIMD

OODB Dist.
DBMS

Data
Dictionary

parallel
SQL
servers

Comms.
JSD

Data ̂
Models

relat ionl
engines >

links
Mascot

logic
machines

generation
tools

routing
CSP

f rames/
sem. nets4GLs interf aces ADTs

DB4GL

Parallel—DB4GL

How ?
- prototype

P-DB4GL
implementat ion

Why ?
- performance

So What ?
- implications:

full P-DB4GL
Parallel DBs
00 systems

Figure 1.1 - Thesis Contents

Chapter 2

The DB4GL Database Application Generation System

2.1 DB4GL Project Overview

DB4GL (Data Base 4th Generation Language) [Ewin85a] [Ewin85b] [Hird89]
[Poole87] is a database application generation environment that has been
developed at Sheffield City Polytechnic. It is a result of research conducted
in the Department of Computer Studies (now incorporated into the School
of Computing and Management Sciences) in the areas of database
application prototyping and Fourth Generation Languages (4GL's). DB4GL is
intended for use within a rapid system building (or prototyping)
development cycle [Appleton83] [Dearnley83] [McCraken82]. DB4GL is
designed primarily for the generation of on-line transaction processing
systems, rather than on-line enquiry systems.

Although DB4GL has been developed principally as a research vehicle, it has
been applied to commercial problems. The first version of DB4GL [Ewin85a]
was used successfully to generate database applications for a construction
company [Ewin84] [Ewin85a]. Subsequent DB4GL research [Poole87j [Hird89],
concentrating in the areas of improved specification tools, integrity rule
processing, and data dictionary operation, has transformed the original
DB4GL system into a sophisticated 4GL environment with a unique object-
oriented application model.

2.2 Application Generation and Prototyping

The term "prototyping", when used in the context of software development,
means rapidly building an implementation for trial purposes. This provides
users with a (sometimes partially) working model of the proposed system in
order to identify and define their requirements more precisely. There are
two main forms of prototyping:

• "throw-away" requirements analysis prototyping, whereby the
prototype systems are discarded once user requirements are fully
established;

• "evolutionary" prototyping, in which successive prototypes are
developed and the final prototype becomes the delivered system.

Typically, 4GL's (fourth generation languages) or "application generators"
[Horowitz85] [Luker86] are used for prototyping.

-1 0 -

L,napter z

An application generator is a piece of software (more normally a suite of
software tools) that produces a program in some object language, which is
tailor-made to fit a specific set of requirements. Application generators (or
4GL's) differ from general purpose high level language translators in that:

• the target language is usually another high level language;
• the range of programs that can be generated, is limited to a

particular application domain, for example, database applications;
• often, input to a 4GL does not have to conform to rigid rules of

syntax, input is via a dialogue with the user, who may respond in
some free format;

• the user of 4GL may not be a professional programmer, he may be
an end user or system analyst/designer.

2.3 DB4GL Application Development

DB4GL is an application generation system specifically for database
applications. DB4GL generates single user database applications to run on an
IBM PC AT microcomputer. The target language generated by DB4GL is
COBOL. The specifications of required applications are input to DB4GL
using menu-driven screen-based database maintenance applications. DB4GL
can be used for either "throw-away" prototyping or for "evolutionary"
prototyping. The DB4GL system is intended to be used principally by a
system analyst/designer rather than an application end user.

DB4GL is a collection of tools - report generators, screen painters, code
generators - based around a data dictionary. The DB4GL data dictionary is
active, in that, applications are generated from the specifications stored in
the data dictionary at generation time, the data dictionary does not just
passively describe applications. The DB4GL data dictionary is itself
maintained by DB4GL generated applications and uses a hybrid self-
describing [Mark85] [Mark86] [Roussopoulos85] data model [Hird89] [Poole87],
originally based on the Entity-Relationship approach [Chen76] [Howe83], but
also influenced by other data models, for instance, DIAM [Senko73]
[Senko76] and CODASYL [011e78].

The DB4GL application development cycle is illustrated in Figure 2.1: the
specification/generation/user-feedback cycle iterates until the system
designer and application user are satisfied with the generated database

-1 1 -

\~rutjjicr

application. DB4GL is used mainly for "evolutionary" prototyping, in
which the final generated prototype is the delivered database system. The
delivered database system can then be operated by the application user
without further DB4GL support.

Figure 2.2 illustrates the types of information that constitute the
specification of a DB4GL database application, it includes:

• data model description, in terms of entities, attributes, domains,
and schema links (access paths);

• processing requirements, in terms of standard maintenance
operations and query and report producing functions defined over
the entities and attributes of the application;

• user interface, in terms of screens and windows of input and
ouput data requested and produced by the processes specified
above.

Often, considerable data analysis skills are needed, particularly in the case of
large complex applications, in order to properly specify the required database
application. Such skills are not normally possessed by application end users.
It is therefore unlikely that an application end user would be able to define
and generate a DB4GL database application without the help of a skilled
system analyst/designer.

2.4 The DB4GL Application Model

2.4.1 A Generic Architecture

The DB4GL application model, or "architecture of a database application", is
central to the generation of database applications (Figure 2.3). This
application model is a generic structure or template from which particular
application instances are derived. The DB4GL generation tools use the
specifications stored in the DB4GL data dictionary to produce a required
database application that is an instantiation of the generic DB4GL application
model (Figure 2.4). The key features of the application model are:

• an application task is defined as a set of Presentation Objects
(PO’s);

• each constituent PO of an application task includes both
information entities and their associated processing tasks;

• each PO is, in principle, capable of concurrent execution, and only
interacts with other PO's in the application task by

-1 2 -

L,napter z

communicating control/data messages;
• during the execution of an application task, the course of

computation is message driven.

In the simplest of database application, all the required data and processing
can be encompassed in a single application task. It is, however, more usual
for a DB4GL database application to be constructed as a suite of application
tasks. The application tasks are linked together by a menu-driven selection
program, produced by a DB4GL menu generator tool. The menu program is
used by the application user to select a database processing option, and the
menu program invokes the appropriate application task.

2.4.2 Presentation Objects

The concept of the Presentation Object (PO), and its role in the Application
Model (AT), is of fundamental importance to DB4GL. Essentially, a
Presentation Object combines descriptions of:

persistent database data;
processing operations, with their associated transient data,
performed upon this persistent data;
integrity rules, controlling updates to the persistent data.

The definition of an AT partitions a database into a number of disjoint,
though related, parts; and each PO operates upon one of these separate parts
of the database. The execution model is one of co-operating non-interfering
objects.

Specifically, each PO is composed of:
• a Presentation Unit (PU), which defines the sequence of data access

and program control required to support the user interaction for
the PO;

• an Information Unit Group (IUG), that is, a collection of related
data entities, known as Information Units (IU's), processed by the
PO;

• a Process Schema (PS), with a number of Process Tasks (PT's) for
processing the IUG, the PT's may be functions performing simple
data type conversions, or they can be complex processes generating
aggregate values and derived data from the IUG;

• a Presentation Format (PF), describing both the appearance of the
PO to application users and the interface to other PO's within an

-13-

L,napter z

application;
• a set of Integrity Rules controlling updates to the IUG, some of

these may be Generic rules applicable to all application tasks,
others may be application dependent rules specific to this
application task.

When a Presentation Object (PO) is activated, its Presentation Unit (PU)
controls the PO's user interaction. The PU provides a dialogue between the
PO and application user, whereby the application user can effect a range of
query and maintenance operations upon the data defined in the PO.
Typically, these are operations to select, insert, modify, and delete particular
entities and attributes in the PO's IUG. The user dialogue includes
commands to suspend the PO's activity and transfer user interaction to
another PO within the application task.

The component Presentation Objects (PO's) in a DB4GL application are, in
principle, capable of concurrent execution. However, relationships between
PO’s, based on data dependencies between the data entities defined within
each PO, determine the order in which PO's are activated during application
execution. This ordering of PO activation during application execution is
known as an application structure, and a notation for expressing this
application structure has been developed in [Hird89]. Many different
application structures can be defined using this notation, Figure 2.5
illustrates some of these. Figure 2.6 provides an example of the use of this
notation to define a simple application structure composed of just two PO’s.
It illustrates how a sequence of PO activation is imposed by a relationship
between the ORDER entity, defined in superordinate POl, and the
dependent ORDER-LINE entity, defined in subordinate P02.

2.4.3 Information Units

In DB4GL, the attribute is considered to be the primary data item. However,
to support efficient storage and retrieval of data from backing store,
attributes are aggregated into data entities known as Information Units
(IU's). An IU is a collection of attributes functionally dependent on a
primary key. An IU identifies some unit of information in the application
domain. All access to IU occurrences is via the IU primary key. There are
two types of IU: prime view IU's; and non-prime view IU's (Figure 2.7).
Each prime view IU may have many non-prime view IU’s associated with

-14-

L,napter a

it. A non-prime view IU permits access to its prime view IU occurrences
using a non-key attribute, and is formed from a concatenation of the non
key attribute with the primary key of the prime view IU. A non-prime view
IU is said to be closely coupled to its prime view IU, in that, any updates to
the prime IU must also be accompanied by corresponding updates to all the
associated non-prime IU's. At the physical storage level, each IU is realised
by a single relation implemented as an Indexed-Sequential file of records
and a processing object known as an entity handler. Prime view IU's have a
prime entity handler, non-prime IU's have a coupling entity handler. Thus,
a non-prime view IU's coupling entity handler can be seen as maintaining a
kind of "index" to a prime IU's "base relation".

2.4.4 Data Relationships

All attributes are defined over domains. These domains specify the range
and type of possible attribute values, eg 4 digit integer, 80 character
alphanumeric, 5 digit fixed point with 2 d.p., etc. Relationships between
Information Units (IU's) are established on the basis of their domain related
attributes. Figure 2.8 illustrates one-to-many relationships between ORDER,
ORD-LINE, and PART IU's, established through the common domains 0#
and P#.

When application tasks are defined, relationships between IU's are made
explicit through the specification of schema links. Schema links are
represented by unidirectional arcs (Figure 2.9). Each link has a source
attribute, which may be key or non-key, and a target attribute, which must be
a key attribute. Within an IUG, a schema link denotes a one-to-one
relationship between the connected IU's. Between IUG’s, a schema link
normally denotes one-to-many relationships.

For a given application task, the set of all IU's contained in the IUG's of the
constituent PO's, combined with all inter- and intra- IUG schema links, is
collectively known as the application task's data access schema. In the
implementation of DB4GL applications, a processing object known as a
schema handler controls access to the IU's of a schema. The schema handler
uses the schema links to prefetch (or realise) related IU occurrences (records)
from the filestore.

nap ter z

2.4.5 Levels of Data Description

DB4GL contains a number of levels of data description or data abstraction.
In terms of the ANSI/SPARC [Jardine77] [Tsichritzis78] DBMS reference
model (Figure 2.10), it is possible to identify the three corresponding levels
of data description in DB4GL (Figure 2.11). The DB4GL conceptual level is
represented by the set of all the information units (IU's) defined in a DB4GL
system, together with the complete set of generic integrity rules defined over
these IU's. Explicit data relationships between IU's, defined by schema links,
are not represented at the conceptual level. The definition of application
tasks with their presentation objects, information unit groups, schema links,
and application specific integrity rules belong to the external level. The
indexed-sequential files (tables of records), used to implement the IU's,
correspond to the physical level.

2.5 Implementation of the Application Model

The DB4GL application model is implemented by a number of generic code
modules (Figure 2.12). These modules can be broadly classified into:

• User Modules (Screen, Window, and Process modules) that
process user requests and send commands to the data access
schemas, and;

• Data Access M odules (Schema handler and Entity handler
modules) that retrieve and store persistent application data in the
filestore.

Figure 2.12 shows the mapping from the application model to the code
modules. The user modules implement the presentation units, process
schemas and process tasks of an application task's presentation objects. Each
information unit in an application task is supported by an entity handler
module. A schema handler module supports the application task's data
access schema.

When a database application is generated, the required application is
specified as an instance of the DB4GL application model. The specification is
in terms of presentation objects with IU's, IUG's, schema links, process
schemas and process tasks. It is in this form that the specification is entered
into and stored in the DB4GL data dictionary. The DB4GL generation tools
take this specification stored in the data dictionary, and, using the generic
code modules, produce instantiated code modules which constitute the

-16-

K-nupitT z

implemented application instance (Figure 2.13). The generic code modules
are in fact skeleton COBOL programs. The instantiated code modules
(completed source code) then have to be compiled (Figure 2.14). The
implemented application instance is executed as a collection of separately
compiled COBOL modules linked together by an overall hierarchical control
structure. Data and control messages are passed as parameters at code
module calls (Figure 2.15).

l .napter

System
Designer

7T
/

/
/Feedback

f rom
applicat ion
user

t
\
\
N

\

\
Application

User

Application
Specif icat ions

Specs

Data
Diet ionary

Generated
< Database ^

Applicat ion
Program

Database

Generat ion
Tools

Database
Spec Tools

Figure 2.1 - DB4GL Development Environment

unapter z

SUPPLIERS

data model

SUP-PART

SNameEl S# SLocat ion

PARTS
E3 P# PName PType

E2 S# P# Qnty-ordered

processing

Procl fEl
(entry ^ —
point)

Proc2
(repeat
n times)

windowl

E3 write

E2 write
— - - window2

App = (Procl (Proc2)).

user interface

screenl

windowl
window2

Specification of a simple D84GL application to process a
small (3 entitles) Suppllers-Parts database

Figure 2.2 - Information for Application Specification

Application Task

Presentat ion
Objects

i=l

Presentation Object i

Presentation
Format i

Present at ion
Unit i

Process
Schema

Inf ormat ion
Unit
Group i

Applicat ion
Dependent
Integrity
Rules

ProcessInf ormat ion

Generic
Integrity
Rules

Process
Task i,K

Inf ormation
Unit i, M

Figure 2.3 - DB4GL Application Model

unapter

- architecture is a GENERIC structure or TEMPLATE
from which particular application INSTANCES are
derived

O

- O

S. D.
Specs

I n s t a n t i a t e

A

Architecture
(Generic) Generated

Application
(Instance)

Figure 2.4 - Database Applications as Instantiations

cnapter

initiated by the appearance of "trigger
data items in superordinate PO's.

P03

P01 App = <P01 (P02) CP03 (P04) CP05) <P06>>>.

Tree structures are the most common
form of application structure.

P02 P03

P04, P05, and P06 can be
concurrently active.

P04 P05 P06

Figure 2.5 - Examples of Application Structures

Chapter

App = <P01 (P02)).

0

^P02^

A one-to-many relationship between the data entity ORDER,
defined in POl, and ORDER-LINE, defined in P02, imposes a
sequence of Presentation Object activity. P02 cannot
process member ORDER-LINE occurrences until "triggered" by
the processing of an owner ORDER occurrence in POl.

ORDER
OrderNo Customer Date

ORDER-LINE A
OrderNo OrderLine Quant ity PartNo

Figure 2.6 - Data Dependencies and Object Activity

IU CUSTOMER
(prime view) non-key attributes

CustNo CustName CustAddress CustLoc CustCredit

key
at tribute

IU CUST-LOCATION
(non-prime view)

Cust Loc CustNo
'--------- „---------- i
key attributes

Non-prime view Information Unit CUST-LOCATION is closely
coupled to its prime view Information Unit CUSTOMER, in
that, updates performed on CUSTOMER must also be
accompanied by corresponding updates to CUST-LOCATION.

Figure 2.7 - Prime View and Non-prime View Information Units

s^napier

IU ORDER
OrderNumber Cust omer Date
O#

IU PART
Part Number PartDesc
P#

IU ORD-LINE
OrdNo LineNo PNo Quant ity
O# P#

The common attribute domain O#, over which both
OrderNumber and OrdNo are defined, is the basis of an
implicit one-to-many relationship between IU's ORDER and
ORD-LINE. Similarly, the common domain P# implies a
relationship between PART and ORD-LINE.

Figure 2.8 - Domains and Relationships

App = (POl (P02 >) .

i iugi

i
| IUG2

J

An application task with two Presentation Objects <PO's)
is defined. Each PO has an Information Unit Group (IUG)
identified with it, and explicit data relationships are
specified using schema links. The intra-IUG link for P02
denotes a one-to-one relationship, the inter— IUG link
between POl and P02 denotes a one-to-many relationship.

OrdNo PartNumber

OrderNumber

Figure 2.9 - Information Unit Groups and Schema Links

L,napter

mappings

mapping

External
Schema 2

External
Schema 1

External
Schema N

Conceptual
Schema

Physical
storage
Schema

Figure 2.10 - ANSI/SPARC DBMS Model

L,napter

Appl AppN Applicat ion
Tasks

EXTERNAL LEVEL

IU IU
Generic Integrity Rules

IU IU

CONCEPTUAL LEVEL

tables of
records

| O lI. S.
f iles

processing objects
(code modules)

PHYSICAL LEVEL

Figure 2.11 - Levels of DB4GL Data Description

Chapter 2

App
Screen

PO User
Process
modulesI---

PFi

Window 1 Window N

IUG1 PSi

IUi, 1 Tl, I
Schema

Data
Access
modules

IUI, n 'Tl, m

!_____ Entity 1 Entity N

f i l e s t o r e

Object-oriented generic
application structure

Generic code modules used
to implement the model

Figure 2.12 - Implementation of the Application Model

-27-

L^napter z

\ P02

f i l e s to r e

Enty0013EntyOOl1 Enty0014

Wind0102WindOlOl

SchmOlOO

ScrnOlOO

A simple database application
as an instance of the generic
application model

Instantiated code modules produced
by the DB4GL code generators

Figure 2.13 - Generated Application Instances

K_riUJJltT z

speci f icat ions
as
database
data

D. D.
file
store

compiled code modules
generated source code
generated source code
skeleton code modules
and application __
specif ications

I INPUT
t erminal
keyboard)

OUTPUT
terminal,
screen;
printer

DB4-GL DB4GL COBOL
Applicat ion Code Compiler
Specif icat ion Generators
Programs

© ©

Figure 2.14 - DB4GL Code Generation

•- > - denotes parameters

calls

calls

Schema
Handler

Ent ity
Handler N

Ent ity
Handler 2

User
Process

Ent ity
Handler 1

Hierarchical control structure of separately compiled code
modules, calling and passing parameters that communicate
control and data information.

Figure 2.15 - Modular Structure of Implemented Applications

Chapter 3

Object-Oriented Database Approaches

3.1 A Classification of Object-Oriented Approaches

The ’’object-oriented" literature is vast. However, a useful collection of
papers giving an introduction to this area can be found in Proc. of ECOOP88
[Gjessing88]. The terminology in the area of object-oriented programming
in general, and object-oriented databases in particular, tends to be
inconsistent and somewhat confusing. There is some disagreement about
what an object-oriented database is, authors in this field each have their own
opinions. The position taken in this thesis, is not to give the definition of
"an object-oriented database"; but to first identify a number of object-
oriented database approaches, and then use this as a framework in which to
explain the influence and relevance of object-oriented concepts to DB4GL

An object-oriented database approach is a theoretical or practical approach to
the design and implementation of database systems that is influenced by the
object-oriented perspective [Lindsjorn88]. This perspective is derived from
object-oriented programming [Cox84] [Cook86] [Stefik84], which is
characterised by the following features:

• type/instance differentiation;
• encapsulation of code and data within objects;
• inheritance of object properties via a generalisation/specialisation

hierarchy;
• inter-object interaction via message passing.

It is possible to identify a number of database approaches influenced by the
object-oriented perspective. A (non-exhaustive) list of the main object-
oriented database approaches can be made:-

Approach I
The enhancement of data modelling languages and DBMS's with
object-oriented concepts and facilities (such as generalisation and
inheritance hierarchies), for example, Iris [Fishman87], OODM
[Zhao88], Cactis [Hudson89]; this approach can be partly seen as an
extension of semantic database models. The main aims of this
approach are: to capture more application domain semantics in the
data model; to represent complex data objects; and support multi-media
data. Usual accompaniments to this approach are: sophisticated user

-30-

L.napter 5

interfaces; support of functionally defined (derived) data; and
concurrent/parallel implementations with message-driven
computation.

Approach II
The use of an object-oriented development approach [Booch86]
[Korson90] (Figure 3.1) to the specification and implementation of
database systems, for example [Baroody81] [Neuhold86] [Sernadas87].
This has similarities with the Abstract Data Type (ADT) approach to
software engineering [Kerridge89], and, to a lesser extent, with the
modelling approach of JSD [Jackson83] [Hull89]. In this approach (II),
the principal object-oriented concerns are those of:
encapsulation/abstraction; system decomposition based on the object
concept; the use of object structures as models of the real world; and
issues of concurrency and communication. A recent development in
this area is the amalgamation of object-oriented design with structured
design methodologies, for example [Wasserman90].

Approach III
The use of an object-oriented programming language (OOPL) to
implement database systems. This could be an object-oriented
language such as Smalltalk [Xerox81] or C++ [Stroustrup86].
Alternatively, it could be an OOPL specifically tailored for
programming knowlege-based/database systems; for example OOPS+
[Laenens88], in which database concepts are integrated with knowledge
representation techniques such as demons and rule based inference.
Note that - approach (IE) is different, because approaches (I) and (II) do
not necessarily involve an object-oriented programming language;
also, the implemented database system might not be recognized as an
object-oriented DBMS of the type described in approach (I).

Approach IV
Interfacing a database system to an object-oriented programming
environment, whereby a conventional relational DBMS maintains the
persistent data, and an interface component constructs from this data,
complex objects required by the object-oriented environment (OOE)
(Figure 3.2). An example of this approach can be found in
[Wiederhold86] which emphasises the similarity between objects in an
OOE and the view concept in relational databases. A single complex

-31-

^napter j

object when stored in a relational database is decomposed into a
number of tuples which are distributed across many separate relations.
When this complex object is retrieved from the relational database it
has to be reconstructed from the many separate tuples; this is effected
by the application of relational operations to the appropriate relations.
Views in a relational database can be defined by the application of
relational operations to a number of base relations. Thus, there is a
similarity between the storage and retrieval (decomposition and
reconstruction) of complex objects and the maintenance of views in
relational database.

3.2 Object-Oriented Approaches and DB4GL

Such a crude taxonomy of ideal-typical object-oriented database approaches
inevitably oversimplifies the situation. Any particular example of an actual
object-oriented database project will normally contain elements of more
than one approach. In the DB4GL project, there is a mixture of principally
approaches (I) and (II). The vocabulary of the object-oriented paradigm, in
particular, the terminology of "mainstream" OODB research (approach I) is
used in the description of the DB4GL application model. This is not because
DB4GL was originally intended to be an example of such an OODB system,
in fact, the original motivation and direction of DB4GL research was in the
area of application generation and prototyping system development. In the
search for a unifying formal structure for database application specification
and generation the DB4GL application model has been developed, and this
model has acquired several features normally associated with the object-
oriented paradigm.

A key feature of the application model is the grouping together of database
data and processing, along with integrity rules and user interface, and their
incorporation into entities known as Presentation Objects (PO's). PO's not
only unite these different facets of a database application, but also effect a
partitioning of the application's database data. The interaction between the
loosely coupled independent PO's that constitute a DB4GL database
application is primarily based on data-flow realised through message
passing. As data attributes within PO's become active (ie derived data is
generated, or persistent data is updated) messages containing control and
data information are communicated between the PO's. Thus, the course of
computation within a DB4GL application is essentially message driven.

-32-

L*napter j

Central to the operation of DB4GL as an application generator is the self
describing DB4GL data dictionary. The data dictionary contains a description
of the application model, and is also used to store the specifications of
particular database applications. These specification are in terms of
Presentation Objects, combining data with processing and integrity rules.
For this reason, the data dictionary can be described as an object dictionary.
Furthermore, the relationship between the application model and the
generated database applications is one of generic type to particular instances;
that is, the generated database applications can be considered as
instantiations of the DB4GL application model.

The object-oriented development approach (II) has been another source of
object-oriented influence upon the DB4GL project, particularly with respect
to the software engineering task involved in the construction of a parallel
version of DB4GL. A specific object-oriented design methodology has not
been adopted in either the original DB4GL implementation or in the P-
DB4GL implementation. However, the principal concerns of this approach
(II) are addressed in the DB4GL implementations; less so in the original
implementation, but more obviously in the parallel P-DB4GL
implementation. In the original DB4GL implementation, the design
translation from specification objects to executable code modules
endeavoured to produce well factored modular program designs with clearly
defined module interfaces. The message driven computation inherent in
the application model was retained, but the implementation in a sequential
programming language necessitated a data flow inversion, converting the
inter-object message passing into parameter passing at sub-module calls.
The object-oriented development concern with the use of object structures
as models of the real world is reflected in the use of Presentation Objects to
define applications. For example: an ORDER PO corresponds to an item of
concern in the application domain, and in common with the real world
Order item, the ORDER PO encapsulates the many different properties (such
as data attributes, processing/methods, life history/update dependencies,
presentation/interface) of this Order item.

The influence of the object-oriented development approach (II) is far more
significant in the P-DB4GL project. The principal design approach has
involved a relatively direct translation from specification objects to
implementation processes. In order to construct the prototype P-DB4GL

-33-

implementation this design approach has been somewhat compromised,
and the translation made less clear, the reasons for this compromise are
given in Chapter 5 section 5.4. The objective of this translation was to retain
the parallelism inherent in the specification of an application as a set of
independent, concurrently executable, Presentation Objects, and transform it
into an explicitly concurrent process based program suitable for execution on
parallel transputer hardware. The process based implementation language
(Occam) provides good encapsulation of data and code. In the course of P-
DB4GL development certain design concerns have been examined in great
detail. For example, the granularity of concurrency: Occam permits arbitrary
levels of concurrent decomposition, whereas some other concurrent design
methodologies (JSD) only permit a single level of concurrent description.
The choice of suitable concurrent units has been very important in P-DB4GL
designs, especially when considering how the concurrent programs are to be
distributed. Also, the details of the communication mechanisms used to
implement inter-object message passing (such as synchronization, buffering,
layered protocols, message formats) have been examined to a greater degree
of detail than might be encountered in some design methodologies.

There is no evidence of the third object-oriented approach (HI) within the
DB4GL project. The DB4GL systems have not been implemented in an
object-oriented language or environment - the original version was
implemented in COBOL, whilst the parallel version used Occam. Although
the object-oriented development approach (II) has been influential, the
process based concurrent Occam language has been used in preference to an
object-oriented language. This is in order to extract the maximum possible
performance from the transputer based parallel hardware. During the
development time of the P-DB4GL project, no fully functional example of an
object-oriented programming environment has been available on
transputers. It is doubtful whether such an environment would permit full
advantage of the transputers' parallel performance. The processing
overheads and types of communication mechanism provided by a general
object-oriented environment may not be suitable for the specific
requirements of the DB4GL system.

The remaining object-oriented approach, interfacing an object-oriented
environment (OOE) to a relational DBMS (approach IV), is not present in
the DB4GL project. In fact, this approach is not at all appropriate to DB4GL
(original and parallel versions), for the following reasons. First, DB4GL does

-34-

^ ..r tu y tc r o

store persistent data in a tabular form, but DB4GL is not strictly relational.
Secondly, DB4GL is not a conventional DBMS, it is an application
generation environment in which database applications are produced in
their entirety, there is no distinction between separate application programs
and DBMS functionality. Thirdly, the Presentation Objects (PO’s) of a
DB4GL application are of a very different scale and purpose to the individual
complex objects manipulated in an OOE. The PO's of a DB4GL application
serve to partition the underlying persistent data within an application, and
define the application's processing and interface activity upon that partition.
There is no notion of fragmentation and reconstruction of individual
complex object instances associated with the storage and retrieval activities
present in approach (IV).

\~najner o

p e /\ct e k cC(

Figure 3.1 - An Object-Oriented Design

unapter

Data
Base

R elational]
DBMS

I n t e r f a c e
Component

O b j e c t - o r i e n t e d
Environment <OOE)

r e l a t i o n r e l a t i o n

r e l a t i o n

complex
obj a c t
m anipulat ad
in OOE

Figure 3.2 - DBMS/Object-Oriented Environment Interface

Chapter 4

Transputers, Occam, and Databases

4.1 Transputers

Transputers are a family of programmable VLSI devices produced by Inmos
Ltd [Inmos89b]. Transputers are principally designed for the construction of
parallel processing architectures based on local memory and point-to-point
serial communication [Inmos89a]. The family of devices includes:
microprocessors; dedicated peripheral controllers; digital signal processors;
and communications devices. A typical transputer 32 bit microprocessor (eg
T414-20) contains in a single integrated circuit: a CPU; internal memory (2K
on-chip RAM); an external memory interface; four high-speed (20 Mbit/s)
bidirectional serial links, and is capable of 20 MIPS (peak) instruction rate
(Figure 4.1). Transputer microprocessors have a low level microcoded
scheduler which enables any number of processes to execute together on a
single processor, with each process sharing processor time.

Using transputers, parallel systems are built as networks of microprocessors
and peripheral controllers connected by the devices' point-to-point serial
links. Various network topologies can be constructed, for example, rings,
trees, regular arrays, and hypercubes. Because there is no shared memory or
communication bus connecting the processors, the communication
bandwidth of a transputer based system grows in proportion to the number
of processors present. Thus, transputer based parallel architectures tend to
be very scalable, it is usually just as simple to construct a ten processor
network as a thousand processor network. However, not all parallel
algorithms can benefit from such large numbers of processors, and though
the parallel hardware may be readily scalable, many parallel algorithms are
not.

4.2 Occam

Occam [Inmos88b] is a high level programming language designed for
concurrent programming and derived from Hoare's CSP language [Hoare78].
Occam is based on a process model of computing, and uses unbuffered
unidirectional point-to-point channels for inter-process communication,
with the communication between connected processes synchronizing
otherwise independent processes (Figure 4.2). The transputer and Occam

-38-

s^riuyicr *

were designed together, every transputer implements the Occam concepts of
concurrency and communication, and the transputer instruction set
contains instructions for the optimal implementation of Occam [Inmos88d].

When a transputer network is programmed in Occam, configuration
information has to be supplied to an Occam program. This configuration
information places particular processes at numbered processors in the
network, additionally, the Occam channels connecting processes have to be
mapped onto the point-to-point serial links connecting the transputers.
Configuration information is static, and fixed when a compiled program is
linked. All the code intended to rim on a processor must be explicitly placed
on it during configuration. Occam programs do not allow one process to
remotely invoke another process placed on a separate processor. Operating
systems, providing facilities such as dynamic load balancing of networks,
message routing, program scheduling, and filestore management, are now
becoming available for transputers, for example Helios [Perihelion89]
[Grimsdale89] and Mercury [Oakley89]. However, it is more usual for
transputer applications to run without operating system support;
applications are typically developed on a host computer (such as a PC), then
the compiled, linked and configured programs are loaded onto the target
transputer network.

4.3 Parallelism and Databases

Parallel architectures are being applied to database applications in a number
of ways. One type of approach is to transfer some of the database processing
normally performed in the CPU into the storage devices. Using specialized
hardware, these associative storage devices can perform database operations
equivalent to relational selections and projections, thus relieving the CPU of
such computationally intensive tasks. These devices are essentially single
instruction multiple data (SIMD) architectures, and generally only
implement specialized search functions of a DBMS, most of the DBMS code
executes on a separate host machine. Some of these associative storage
devices perform "logic per track" processing [Parker71], for example RAP
[Ozkarahan75] [Ozkarahan77], CASSM [Su75a] [Su75b], and RARES [Lin76].
Other devices such as CAFS [Babb79] do not have a processor per track, but
process a number of multiplexed disk channels.

-39-

K̂ ruipier <±

A different type of parallel approach is to execute all of the DBMS on a
multiple instruction multiple data (MIMD) architecture constructed from a
collection of storage devices, memory modules, and processing units
interconnected in some fashion, for example DIRECT [DeWitt79]. A
classification and evaluation of these multiprocessor architectures is
provided in [Stonebraker86], in which three classes of architecture are
identified:

shared memory (SM);
shared disk (SD);
shared nothing (SN).

An advantage of SM architectures, for example XPRS [Stonebraker88], is that
generally fewer modifications to algorithms are required when porting
DMBS software from a non-parallel machine. However, SM architectures
suffer from poor scalability, the common central memory becomes a highly
contended resource as the number of processors is increased. In SD
architectures, such as Amoeba [Shoens85], VAX DBMS [kronenberg86]
[Rengarajan89], and DCS [Sekino84], each processor has its own private
memory, and memory contention is not a problem. But as SD architectures
are scaled up to larger sizes, the shared disc channels become a point of high
contention with consequent performance limitation.

In SN architectures, neither memory nor discs are shared amongst
processors, each processor has its own private memory and local disc;
consequently contention is not a problem as the architecture scales up in
size. Examples of SN architectures include: Terradata DBC [Neches86]
[Terradata88]; Bubba [Alexander88] [Boral88] [Copeland88]; and Gamma
[DeWitt88] [Schneider88]. However, SN architectures can be prone to
message handling delays. In order to reduce the number of inter-processor
messages, and keep message distances to a minimum, processing of disc
resident data should be as kept as local as possible, and great care is needed in
database design. Stonebraker's opinion (expressed in [Stonebraker86]) is that
most transaction-oriented database applications are amenable to the parallel
design tuning needed in SN architectures, and that SN architectures offer
the best opportunity for parallel speed-up and scale-up.

Transputers offer a number of advantages as the basis of parallel hardware
for database applications. Each transputer contains processor, memory, and
communications facilities in a single package, and large distributed memory

-40-

Chapter 4

architectures can be constructed in which the communications bandwidth
grows proportionately to the number of processors. Special peripheral
interface transputers, such as the M212, permit disc storage to be easily
integrated into a distributed transputer based architecture, making SN type
database architectures simple to construct. Furthermore, transputers offer a
relatively inexpensive entry path into parallel architectures, they are
available as "off the shelf" packages conforming to published standards.
Transputer based systems are highly extensible, and provide significant
advantages, both to researchers and commercial system designers, over
parallel database architectures based on specialized custom built (and
generally expensive) hardware.

Transputer based parallel architectures have already been used in database
applications in a number of ways. One approach, for example [Stringer89], is
to download an entire database into a transputer network, all the database
data can then be searched in parallel, with each processor searching the
database partition held in its own local memory space. Obviously, such an
approach is only possible if the database is small enough to be temporarily
held in main memory. A 32 bit transputer has a maximum address space of
4 GigaBytes, and the total available memory in a network can grow
proportionately with the number of processors. However, there are a
number of problems associated with such "main memory" database systems,
both on transputers and on other parallel hardware. The time needed to
transfer a large database from disc to memory before processing can
commence, can be quite considerable. This would tend to restrict such an
approach to applications with (relatively) small databases which are either
static or else occasionally updated off-line. If updates are performed on-line
to an "in memory" database, some provision for saving the updated data on
non-volatile (magnetic) secondary store must be made for recovery
purposes. If a database is small enough, it may be possible to hold it entirely
in non-volatile electronic store, however the cost of such non-volatile
memory makes such a solution infeasible for most databases.

For database applications with very large amounts of updatable data, which
for reasons of size and/or cost require magnetic secondary (disc) storage,
different transputer based approaches are being tried. One is DRAT
[Kerridge87], a design for a relational database machine using dynamically
reconfigurable networks of transputers. The DRAT design incorporates
several transputer controlled hard disc drives and C004 transputer crossbar

-41-

L.napter 4

switches: relations are read from disc and the tuples are “piped” through a
network of transputers in which relational operations such as joins are
performed in parallel. Another approach is LSDM [Rishe89] [Li90], for a
database system based on a Semantic Binary Model; this proposes a
hypercube architecture of many transputers each with its own small local
disc, in which as much processing as possible is performed locally without
having to move data to other nodes.

The main advantages of transputer based architectures for database systems
can be summarised as:

• scalability of communications and memory bandwidths in
proportion to increasing numbers of processors;

• proximity of processing and data afforded by tight coupling
between processors and discs, made possible by the processors' on-
chip serial links and peripheral controllers using these high speed
links;

• high disc 1/O bandwidth, made possible by using a large number of
discs, these can be small cheap Winchester discs.

All the above features have been utilised in the design of Parallel-DB4GL (P-
DB4GL), but the P-DB4GL system has not been designed for a specific
network topology. Also, the P-DB4GL project has been restricted in
considerations of physical storage details to the level of the disc interface
(ST506, SCSI), that is simply to reading and writing of blocks of records from
disc sectors. Although it has been assumed that small Winchester discs
would predominantly be used, the possibly of incorporating "silicon discs",
particularly for optimising access to frequently accessed tables, has not been
excluded.

4.4 Project Resources

The Department of Computer Studies at Sheffield City Polytechnic has made
a number of transputer resources available to the P-DB4GL project. This
includes: two development environments, the Transputer Development
Environment (TDS) [Inmos88c] and the Occam 2 Toolset [Inmos89d]; several
boards containing transputers (B004, B006, B008 boards and TRAMs
[Inmos89c]); additional language compilers (C and FORTRAN); and a
transputer controlled Winchester hard disk board. These resources have
been extensively used in both the development of the prototype P-DB4GL
system and the partial implementation of the fully functional P-DB4GL.

-42-

L,napter 4

i) Typical Transputer Microprocessor Architecture with
memory, processor, and communication links on a
single integrated circuit

internal
RAM

syst em
services

32 bit
procesor

— :— I
4 high speed
bidirect ional
serial links

ii> Networks of Transputers connected together by
their serial links

regular array ring with
peripheral
controllers

P i■ disc

P > i■ disc

discM212

M212

M212

Figure 4.1 - Transputer Architecture

i^napier

i) Concurrent programs using the PAR construct

PROC A PROC B

— process A defined
PROC A <CHAN out)

I NT a :
SEQ

a : = 0
out ! a

— process B defined
PROC B (CHAN in)

INT b :
SEQ

in ? b

— A called concurrently with B
CHAN a. to. b :
PAR

A(a. to. b)
B (a. to. b)

ii) Placing code on hardware for parallel execution

processor 0 processor
T414 T414

Link 1 Link 0

— configuration information
CHAN a. to. b :
PLACED PAR

PROCESSOR 0 T4
PLACE a. to. b AT Link lout :
ACa. to. b)

PROCESSOR 1 T4
PLACE a. to. b AT LinkOin :
B (a. to. b)

Figure 4.2 - The Occam Language

Chapter 5

Developing the Prototype Parallel-DB4GL

5.1 Project Objectives

The Parallel-DB4GL (P-DB4GL) project is an extension of the DB4GL research
programme. It centres on an investigation into ways of enhancing the
performance of the DB4GL generated database applications by using parallel
processing hardware. Previous DB4GL research [Hird89] suggested that
performance gains could be obtained from running DB4GL applications on
transputer based parallel architectures [Inmos88a]. The principal aims of the
P-DB4GL project are:

• determine the exact amount of parallelism inherent in DB4GL
database applications;

• develop suitable hardware and software architectures for
execution of the applications on parallel processing hardware;

• test the feasibility of using transputers as the basis of the parallel
processing hardware.

The parallel hardware should be transparent to the end users of the
generated applications. The P-DB4GL applications should look and behave
exactly like the sequential DB4GL, the only difference being improved
execution times. The parallel hardware - transputer microprocessors, disc
controllers, and disc drives - is carried on PC expansion boards, mounted
either inside the host PC or externally in a separate rack. All of the parallel
DB4GL database application code, and the DB4GL system tools (such as the
code generators), executes on the transputers, the host PC is used simply as a
terminal interface for the application user (Figure 5.1). The DB4GL
development cycle remains unchanged: the database application is generated
from the specifications entered to the data dictionary by the system designer,
but the generation tools are redesigned to produce a concurrent program for
parallel execution on the transputer network.

5.2 Design Methodology

The DB4GL application model or "architecture of a database application"
contains a high degree of inherent parallelism. The constituent
Presentation Objects (PO’s) of an application task are independent, though
related, processing objects, and in principle are capable of concurrent

-45-

Chapter 5

operation. The interaction between PO’s consists of communicating data
and control messages. An application task can be viewed as a network of
PO's, with data/control messages flowing between related PO's. The PO’s
are related by the data dependencies between the data entities (Information
Units) processed by each PO. Processing activity is propagated through the
network as "trigger" data items are processed, generated, and communicated
between related PO's.

The implementation of this concurrent specification of an application task,
as sequential program structures on a single tasking microcomputer,
required an inversion design transformation of the specification. The inter-
PO data message flow between concurrent objects was transformed, by an
inversion of the data flows, into parameter passing at sub-module procedure
calls. The inversion implementation technique used in data-driven
software design methodologies such as JSD and JSP, is documented in
[Jackson83], [Cameron86], and [Storer88]. This design transformation
obscured the parallelism inherent in the application model.

In P-DB4GL, the inversion transformation is not necessary. The concurrent
specification of an application task is implemented using a concurrent
programming language, Occam. A direct translation, from concurrently
executable DB4GL objects to concurrent Occam processes, is possible. The
inter-object message passing is implemented by inter-process
communication using Occam channels. The concurrent Occam programs
can be loaded onto transputer networks for parallel execution (Figure 5.2).

5.3 Development Approach

The development approach taken has been to construct a prototype P-DB4GL
system. In the prototype system, simple database applications have been
designed, implemented, and test run on different transputer networks. The
practical experience gained from constructing a prototype implementation
has been used to assess the suitability of Occam as an implementation
language. Results obtained from test runs of the simple applications on
transputer networks provide measurements of the transputer networks'
performance under realistic loads, and have identified key areas of further
development. Based on the data obtained from the prototype P-DB4GL
implementation, designs for a fully functional P-DB4GL are proposed (see
Chapter 6).

-46-

Chapter b

The test applications used in the prototype P-DB4GL have not been
generated automatically from data dictionary specifications by P-DB4GL
generation tools, but have been directly hand coded in the target
programming language, Occam. The P-DB4GL generation tools will form
part of the fully functional P-DB4GL system when improved code modules
have been developed, and the exact mechanism of code generation
established. The version of Occam used is the latest release, Occam 2
[Inmos88b]. The P-DB4GL software had initially been developed using the
Transputer Development System (TDS) [Inmos88c] hosted on a PC, but the
software has now been converted to run under the Inmos Toolset
[Inmos89d]. All of the original DB4GL system had been written in COBOL,
and though a COBOL compiler is not currently available for the transputer,
it may be possible to re-use some of the original DB4GL code when a COBOL
compiler becomes available.

5.4 Implementation

The prototype test applications do not implement the entire functionality of
the fully developed DB4GL application model as described in [Hird89]. Some
features, such as the integrity rule processing and involuted (or recursive)
data relationships, have been omitted from the prototype implementation.
The test applications are functionally equivalent to the applications
generated by an earlier version of DB4GL described in [Ewin85a]. The
original factoring and classification of DB4GL code modules into User
Process modules and Data Access modules has been retained; but with
separately compiled (SC) Occam processes replacing the separately compiled
COBOL program modules used in the original DB4GL implementation.

The decision to retain the original factoring and classification of code
modules in the prototype P-DB4GL implementation necessitated
compromising the design methodology of a direct object to process
translation. Consequently, the resultant translation from application model
specification to concurrent process implementation is not so clear. The
reasons for this decision and the implications are discussed in the next two
paragraphs.

At the start of the P-DB4GL research project the DB4GL application model
had not been fully developed to the level of sophistication described in

-47-

L-napter d

[Hird89]. The fully developed application model contains many
sophisticated, and complicated to implement, features such as the integrity
rule processing. In order to reduce the software engineering effort needed to
implement a prototype P-DB4GL system, some of the functionality of the
application model was discarded, and a version of DB4GL described in
[Ewin85a] and [Poole87] was taken as the basis for the prototype P-DB4GL
construction. The design translation performed in this earlier DB4GL
version had to be first reconstructed by working backwards from the
executable code modules and performing the design in reverse to arrive at
the original specifications.

In a further attempt to reduce the software engineering effort, it was decided
that parts of the prototype P-DB4GL implementation would be represented
by simulations and test harnesses. Only the data access modules would be
fully implemented. The resultant data access processes in the P-DB4GL
implementation, that is, the prime and coupling entity handlers and the
Filer and Disc processes, would have been present with the same
functionality even if a more direct translation from Presentation Objects to
concurrent process had been performed. Many of the modules in the
original factoring, for example, the User Process (Screen and Window)
modules, which have no correspondence in a direct translation were not
present in the prototype P-DB4GL system, they were only simulated.
Consequently, the most important results obtained from testing the
prototype, concerning data access process performance, would have been
substantially the same even with a direct design translation (and partial
simulation). In particular, the conclusions drawn about processor loading,
communications/processing ratio, and message passing overheads, can with
justification be applied to an implementation based on a direct Presentation
Object to concurrent process design translation.

A Presentation Object (PO) is not implemented by a single (SC) Occam
process. Each Information Unit (IU) is implemented by an Entity Handler
process. An application task's data access schema (the IUG and schema link
processing) is implemented by a Schema Handler process. The Presentation
Units, Process Schemas, and Process Tasks of the constituent PO's are
realised by a number of User Processes. The propagation of processing
activity through the network of PO's in an application task is realised as
message passing on the Occam channels that connect the separately

-48-

simpler o

compiled Occam processes which constitute the implemented application
task.

The P-DB4GL applications have not been designed for execution on a specific
transputer network topology, although some general features are assumed.
The transputer network contains a large number of small (typically 20-50
Mbyte capacity), transputer controlled, Winchester hard discs. Each disc
stores only one, or at most very few, of the files required by any particular
application. Within the network, some transputers (normally the majority)
will be designated as Filing nodes, some transputers will be Processing
nodes, and some (usually one) will be User Interface nodes (Figure 5.3). One
of the objectives of the prototype P-DB4GL implementation has been to
experiment with different network topologies and mappings of concurrent
program to these topologies.

A uniform communication protocol for P-DB4GL inter-object message
passing has been used that accommodates both control and data messages.
This protocol, known as the Basic Communication Unit (BCU), is modelled
on the BCU described in [Ewin85a] and [Hird89] for DB4GL inter-object
message passing. In DB4GL, message passing is achieved by parameter
passing between calling and called code modules. In P-DB4GL, this is
replaced by a two-way Request-Reply protocol (Figure 5.4): if processl wishes
to send a message (control or data) to process2, a BCU-Request is sent to
process2 suspending processl's execution; after reception and processing of
the BCU-Request, process2 sends a BCU-Reply to processl; upon receipt of
BCU-Reply, processl continues its execution. The BCU message packet is
composed of a number of fields identifying: the type of information
contained (data or control); the source and destination objects; the error
status of the message request; the data length and data (if any). The full
message format and the Occam protocols for BCU channels is given in
Appendix B.

As with many database applications it is the disc access that is the limiting
factor to overall system performance, in DB4GL the processing time of the
user modules is negligible compared to the time it takes the data access
modules to retrieve and store records. It is for these reasons that the data
access processes have received the most attention in the attempt to gain
maximum benefit from the parallel processing hardware. The data access
processes (Schema handlers and Entity handlers) have been designed to

-49-

Chapter b

provide the same functionality as the original (sequential) DB4GL data access
modules, but they incorporate concurrent algorithms which can provide
improved performance using the parallel transputer hardware. Figure 5.5
shows where the main benefits of concurrent data access lie in the P-DB4GL
applications:

• concurrent schema processing, the schema handler process can be
processing data access messages whilst its entity handlers
independently process and access their files;

• concurrent entity processing, all the entity handler processes can
access their files in parallel when the files are stored on separate
discs, thus increasing disc throughput;

• concurrent coupling update, a prime entity handler can update its
coupling entity handlers in parallel;

A number of test harnesses and simulations have been used in the
implementation of the P-DB4GL test applications (Figure 5.6). The User
processes, that "drive" the data access processes have not been fully
implemented. In the P-DB4GL test applications, a User Process Test Harness
(User Harness) has simulated the behaviour of the User Processes. The User
Harness delivers a stream of BCU request-reply messages to the data access
processes. This message stream, which incorporates variable length delays
between messages, is representative of the interaction between genuine user
processes and data access processes in a P-DB4GL application. A full
description of the User Harness is given in Appendix F. A simulation of a
multi-disc parallel filestore has been used to support the filing requirements
of the test applications. The simulation is composed of Disc and Filer
processes. It is possible to alter both, the number of simulated discs, and the
distribution of files to discs (Figure 5.7). The Filer process provides the
functions of a single Index-Sequential file of records. The Disc process
incorporates delays simulating mechanisms such as head movements. The
Disc and Filer processes are described in detail in Appendix D. In a fully
functional P-DB4GL system, genuine filing processes and transputer
controlled discs will replace this simulation.

P-DB4GL has a coarse grained level of concurrency. In P-DB4GL, the unit of
distribution, suitable for allocation to a processor, is the separately compiled
(SC) Occam process equivalent to a separately compiled code module of
DB4GL (ie Entity handler, Schema handler, User process). A processor may
be allocated more than one SC process, but usually an SC process cannot be

-50-

Chapter 5

decomposed into further levels of concurrent execution. Where a P-DB4GL
SC process does contain nested concurrent process, these processes cannot be
distributed across multiple processors.

Occam programs, when executed on transputer networks, only permit a
static allocation of code to processor. Before a P-DB4GL test application can
be executed on a network, it has to be configured. The constituent SC
processes have to be allocated to processors, and logical communication
channels between processes have to be mapped onto physical point-to-point
serial links. This configuration information can be altered without
recompiling the SC processes of the program, and different configuration
can easily be tested on a network. The P-DB4GL test applications have been
executed on a variety of networks with many different configurations.
Because the test applications contain a small number of SC processes, the
mapping of channels to links has been simple and straightforward. As the
number of processes in a program increases, the mapping of channels to
links becomes progressively more difficult, eventually there are more
channels than links available and it becomes necessary to multiplex
channels over links. This has not been necessary in the configuration of the
P-DB4GL test applications, but it is an issue that is addressed in the designs
for a fully functional P-DB4GL system.

5.5 Testing

Each P-DB4GL test application consists of:
• a User Harness and filing simulation;
• a number of data access processes (Schema and Entity handlers)

that constitute a data access test schema;
• test data;
• network configuration information.

For each test application several test runs have been conducted, in which the
User Harness behaviour and filing simulation parameters have been varied.
The test runs have been conducted on different network configuration with
between one and five transputers. A typical configuration for a test run is
shown in Figure 5.8. A detailed description of the test schemas and
configurations can be found in Appendix G.

The User Harness supplies test data to the test application, and can be
operated in either interactive or batch modes. In interactive mode, single

-51-

L.napter b

BCU Request-Reply messages are sent to and received from the data access
processes. When used in batch mode, a sequence of transactions is
performed on the data access processes. Each transaction is composed of a
number of BCU messages, which together perform some complete database
action such as storing or updating a record. The term "transaction" is not
being used in the normal database sense of an indivisible collection of
updates. Currently, P-DB4GL is a single user database system, concurrent
processes within a P-DB4GL application do not interfere with each other and
should not be able to deadlock, there is no facility to recover should a
transaction fail. The decomposition of database actions (transactions) into a
number of smaller "atomic" actions (each one represented by a BCU
message) allows optimizations to be performed in a sequence of transactions,
thus reducing the amount of data communicated between the P-DB4GL
objects. Appendix F provides an example of optimizing the BCU messages
in a sequence of transactions. Execution times for individual BCU messages,
transactions, and complete test runs, are recorded by the User Harness.
These timings are used to compare the performance of different test
applications.

The reason for performing the many different test runs is to determine the
effect of two things:

• concurrent vs sequential algorithms - how does the performance
of concurrent data access algorithms compare with sequential
algorithms, for a test application running entirely on a single
transputer;

• multi-processor configurations - what is the difference in
performance when the data access processes (concurrent
algorithms) are run on more than one transputer.

A number of functionally equivalent versions of the data access processes
have been implemented. These versions differ in the degree of concurrency
of their algorithms. Four versions of entity and schema handlers are briefly
described below, full descriptions are given in Appendix C.

1 "original" sequential versions (vl) - the data access processes
repeatedly: receive a BCU Request message; process that request;
and return a Reply message. Processes are idle in the intervals
between BCU messages.

2 "modified" sequential versions (v2) - as v l handlers, but processes
can return a BCU Reply message and then be kept busy with

-52-

nap ter d

processing activity during the interval before the arrival of the
next BCU Request message.

3 concurrent handler versions (v3) - as (v2), but the processing
performing in the intervals between BCU messages includes
concurrent algorithms (ie the use of Occam PAR constructs).

4 concurrent handler versions (v4) - as (v3), but with improved
concurrent algorithms, for example, parallel coupling entity
update by prime entity handlers.

5.6 Results

Results obtained from the many test runs performed on the P-DB4GL test
applications are presented in detail in Appendix H. The version 2 data
access handlers typically produce a 5%-20% reduction in execution time over
the version 1 handlers for a variety of test data. The maximum
improvement factor (or speed-up) available is 1.30. The exact improvement
for any given application depends both on the test data used, and the run
time behaviour of the application, that is, the frequency and duration of
inter-BCU and inter-transaction processing delays. The version 3 handlers
are typically 15% to 30% faster than version 1 handlers, with a maximum
improvement factor of 1.53.

Results for version 4 handlers show the most significant improvements (see
Figures 5.9, 5.10, 5.11). On test schema SCHM0004 with three coupling
entities, version 4 entity handlers are typically 5%-40% faster than version 3,
and show a maximum improvement factor of 1.72. As the number of
coupling entities updated is increased, the improvement factor for version 4
handlers over version 3 handlers increases proportionately; so that, for
SCHM0004 with 18 coupling entities an improvement factor in test run time
of 6.29 is attained. When the time taken for coupling entity update is taken
alone, the improvements are even greater. The improvement factor for
coupling update only ranges from 2.38 (for three coupling entities) to 9.14
(for 18 coupling entities). For a version 3 entity handler, the time taken to
update N couples is nearly N times greater than to update one couple; but,
for a v4 entity handler, the time taken to update N couples is almost the
same as the time to update one couple.

These dramatic improvements in execution time for the concurrent
coupling entity update (v4 entity handlers) have been obtained with all the

-53-

Chapter 5

data access processes executing entirely on a single processor. Tests have also
been conducted with identical programs running on multi-transputer
configurations, but the execution times of the test runs are practically the
same as the single processor configuration. The additional available
processing power of the multi-processor configurations has not effected the
performance of either the concurrent or sequential version of the data access
processes.

The reasons for these effects lie in the proportions of processing, idle, and
communication times present in the test runs. The disc access time is orders
of magnitude greater than processing and communication time. During disc
access, a processor running the sequential handler algorithm is idle, thus,
the total test run time is largely composed of a sequence of disc access delays.
For a processor running the concurrent handler algorithm, the disc access
delays occur concurrently, thereby reducing the total test run time (see
Figure 5.13). However, as the number of coupling entities updated is
increased, the ratio of processing time to idle time increases, and the
improvement factor of the concurrent algorithm over the sequential
algorithm declines (see Figure 5.12). In the test runs conducted so far, tens of
coupling entities have been concurrently updated, resulting in small
processing loads for a single processor. In large applications, with hundreds
of concurrently executing data access processes, a single processor would
become significantly loaded, and benefits of multi-processor configurations
will become evident (see Figure 5.14).

5.7 Evaluation

The prototype Parallel-DB4GL (P-DB4GL) system has shown that a
transputer-based implementation can provide significant performance
improvements for the unchanged DB4GL data model. The dramatic
improvements in test application performance, the coupling entity update
(version 4 handlers) in particular, demonstrate the advantages of a target
programming language (Occam) that supports the implementation of
concurrent data access algorithms. However, the prototype P-DB4GL system
falls far short of a fully functional P-DB4GL system; the applications have
used simulations and test harnesses which would not form part of such a
fully functional system. The P-DB4GL test applications have mostly been
test run with small applications and all of the application code (filing
simulation included) executing on a lightly loaded single processor. If the

-54-

c napter o

prototype P-DB4GL system is to be developed into a fully functional
multiprocessor P-DB4GL system, there are some important issues to be
addressed and several key areas requiring further development work, these
are described below.

It is not possible to directly compare the absolute performance of the
sequential COBOL implementation of DB4GL on a PC, with the performance
figures obtained from the prototype P-DB4GL test applications. Unlike the
full sequential implementation of DB4GL on the PC, the P-DB4GL test
applications only partially implement the functionality of a DB4GL database
application; the data access processes are properly implemented, but user
processes have only been simulated. The P-DB4GL test applications use a
simulation of a parallel filestore, which does not directly model the
behaviour of any genuine filing system. The performance of the sequential
DB4GL applications are to a large extent determined by the performance of
the PCs disc drives and the run-time COBOL environment's filing software,
and these cannot be directly compared to the test applications' filing
simulation.

The purpose of the P-DB4GL filestore simulation is to allow comparisons of
the relative performance of the different versions of the data access processes
(with differing degrees of concurrency in their algorithms). In a fully
functional multiprocessor P-DB4GL system the filestore simulation will be
replaced by genuine discs and filing processors, and for this reason,
inferences about the absolute performance of such a fully functional P-
DB4GL cannot be made on the basis of figures obtained from the test
applications. The sequential DB4GL implementation had not been
developed with performance in mind; consequently, there are no
benchmark performance figures with which to compare the performance of
a fully functional P-DB4GL. When a fully functional P-DB4GL is
implemented, it should be benchmark tested along with the original DB4GL
for the purpose of speed-up, scale-up, and price/performance comparison.

The P-DB4GL test applications (as described in Appendix G) are very small
and unrepresentative of genuine (P-)DB4GL database applications. The
largest test schema used was SCHM0004 with one prime and 18 coupling
entity handlers - this limit was fixed by the 2 Mbyte memory size of the B004
transputer boards used for the test runs. The size and number of the
attributes in the Test Entities (Appendix Figure Gl) was untypically small,

-55-

L-napter o

generally about 10 bytes per record with only a few tens of records per file.
The user processes were only simulated, and the User Harness simulation
did not generate a processing load comparable to genuine user processes. A
genuine P-DB4GL application in a fully functional system would be
significantly larger in terms of: data sizes; numbers of constituent processes;
and numbers of files and discs. The effect of these changes would be, to
increase the total processing load produced by an application, and make the
connection of discs to data access code somewhat difficult. It is not
altogether obvious how the many (possible hundreds) of discs, assumed in
the filestore simulation, could easily be connected to an application
executing entirely on a single processor.

Distributing a large application across several processors would make the
task of disc connection easier. Also, when a large processing load is shared
amongst a number of processors, the benefits of multiprocessor speed-up
are likely to appear (Figure 5.14). But, distributing an application across a
multiprocessor network makes software configuration, particularly channel
connection and placing, more difficult; and in Chapter 6 (Designs for a Fully
Functional P-DB4GL) the attendant problems of channel multiplexing and
message routing are examined. Another aspect to distributing an
application is the increased opportunity for performance optimization using
various well documented [Atkin89] hardware and software modifications.
Some attempt at this performance optimization was made with the P-
DB4GL test applications and is described in Appendix I; but with such small
programs and single processor configurations, the opportunities were
limited and the results were somewhat disappointing.

An important feature missing from the prototype P-DB4GL system is the
DB4GL data dictionary. One of the tasks involved in designing a fully
functional P-DB4GL system will be the construction of an enhanced P-
DB4GL data dictionary. The data dictionary schema (DDS) will be similar to
the DDS of the original DB4GL [Ewin85a], but will contain additional
information such as:

the hardware configuration available to P-DB4GL;
the mapping of entities to discs;
the typical processing requirements and distribution of code to
hardware for each application.

This information is needed for the generation of P-DB4GL database
applications. When P-DB4GL is used as a database application prototype

- 5 6 -

cnapter b

tool, this information will be updated by the system designer as new
applications are defined and existing applications are improved and
regenerated.

In conclusion, DB4GL database applications, in common with many other
database applications, tend to be disc input-ouput (I/O) bound. The main
benefit of the transputer-based implementation lies in the ability to perform
multiple concurrent disc I/O, thus increasing disc I/O throughput, and
hence reducing overall application execution time. An important feature of
DB4GL is the reliance on indexes (coupling entities) to support pre-compiled
queries with fixed access paths through the database. The maintenance of
these coupling entities following an update to the prime entity to which
they are coupled, produced processing delays significantly impairing the
performance of the original sequential DB4GL. In P-DB4GL, the coupling
entities are processed in parallel, the delays associated with maintaining
these coupling entities are eliminated, thus improving application
execution time. Other database systems dependent on heavily indexed
relations, might also benefit from a similar parallel implementation, in
which index maintenance can be performed concurrently.

umiprer o

Application User/
System Designer

0

C 3 i
PC

t

PC expansion boards
- internally and

exernally mounted

□ □ □ □
O

S n)
Winchester Discs
and controllers

transputer-PC bus interface
'x________________________________>

All P-DB4GL (system and generated
applications) executes on
parallel transputer hardware

Figure 5.1 - System Configuration for P-DB4GL

Generated DB
Applicat ion

□Sequential DB4GL
Implementation

o
K)

Direct Concurrent
Implement at ion

- data flow inversion
- parameter passing
- hierarchical control

Parallel-DB4GL:
- Occam processes
- control/data messages

on channels
- map onto parallel

transputer hardware

Figure 5.2 - Concurrent Message Passing Processes

unapter b

many discs • one/few files per disc

link to host computer

User
Int erf ace
Node

seperately compiled
Occam code modules
running in parallel
on a network of
transputer
microprocessors

Processing
Node

Filing
Nodes

I____

disc
controller
transputers

discs for
applicat ion
data i Q i Q 1O1

Figure 5.3 - Typical P-DB4GL Database Application

Modulel
REQUEST

call J f Modulel^^^ Modulê)

Module2

DB4GL message passing
by parameters at
code module calls

REPLY

Parallel-DB4-GL message
passing using BCU
Request-Reply protocol

Figure 5.4 - DB4GL and P-DB4GL Message Passing

-59-

s ^ f t u y i r C i <j

a schema of four prime entities
and two coupling entities

E4

User Processes "driving1
the data access modules
with data requests ».

P-DB4GL implementation of this
schema as concurrent separately
compiled (SC> Occam processes

concurrent entity processing

E4 E5

ii. concurrent coupling update
transputer based parallel

filing system

O (O (Oi iii. Increased disc throughput

Figure 5.5 - Concurrent Execution of Data Access Processes

u napter

implement "cut-down" P-DB4GL applications

concentrate on data access code modules
simulations and test harnesses

simulated s i m u l a t e d

User
Process
Test
Harness
"drives" DA
processes
with message
stream

implemented

Parallel
Filestore
Simulat ion

Data Access <DA>
Processes

Figure 5.6 - Developing the Prototype P-DB4GL System

1) Mapping one entity to one disc —- — — *
/ \

Entity
Handler

Filer
Harness

Disc
process

Schema
Handler

Entity
Handler

Filer
Harness

Disc
process

Disc ̂
process

Filer >
Harness

EntityN
Handler

ii) Mapping more than one entity to one disc

Entity
Handler,

Filer
Harness

Schema
Handler

Entity
Handler

Filer
Harness

Disc
process

Filer
Harness

Entity ̂
Handler

Figure 5.7 - Mapping Entity Handlers to Discs

Chapter 5

1) Test application schema SCHM0003

El

E2

Keyl Data

Key1 Key2 Data
S

E4. Data Keyl Key2

Keyl Key2 Key3 Data

E5
S
Data Keyl Key 2 Key 3

ii> SCHM0003 - DBMS Code (Filer Harness not shown)

^ /'Entity
^ ””\Handler E2yHT- >

Schema
Handler

Entity
Handler

Entity
Handler ES

''Coupling^
Entity
Handler E4

Coupling
Entity
Handler E5

ii> Configuration - placing code on hardware
T414b-20 T414b-20

lOMbit/s link
DBMS

Both processors are T414 parts running at 20 MHz and connected with 10 Mbit
per second links. The first processor runs the User Process Harness, as an
EXE under TDS, and communicates with the second processor through link 1.
The second processor runs the Data Access modules and Filer Harnesses, as a
PROGRAM loaded by the TDS, and communicates with the first processor by
Link 0. The BCU protocol is supported by two unidirectional unbuffered
occam channels (BCU. Request and BCU. Reply) mapped onto the bidirectional
serial link between the two processors.

Figure 5.8 - Typical Test Application Configuration

u napter

Test Run Time against Number of
Coupling Entities Updated30 n

✓—V
C/573
C O O (L>
C/5 v—✓ 20 -

100 20

SCHM0004
Test data Set 4

(Table 13)

•o- Version 3
■*- Version 4

Number of Coupling Entities Updated

Figure 5.9 - Version 4 Handlers Test Run Times

Normalized Coupline Entitv Update Time aeainst

ali
zed

Up

da
te

Ti
m

e
-*•

ro
0

o
1

.
1 Number of Coupling Entities Updated

SCHM0004
/ Test data Set 4
^ (Table 13)

£ -Q* Version 3
Version 4

n mU *1
c

• i »
1 0

Number of Coupling Entities

... t

20

Figure 5.10 - Normalized Coupling Entity Update

Chapter

Processor Loading against Number of
Coupling Entities Updated

30

201 o
Number of Coupling Entities

o

SCHM0004
Test data Set 4
(Table 15)

•o- Version 3
Version4

Figure 5.11 - Version 4 Handlers Improvement Factor

Improvement Factor against Number of

u0 r«J b +-*
C <u
1
I
S

Coupling Entities Updated
10

8

6

4

2

0
0 10

Number of Coupling Entities Updated
20

SCHM0004
Test data Set 4
(Table 13)

■Q- Test Run Time
Couple Update

Figure 5.12 - Test Rim Processor Loading

L.napter

Sequential Coupling Update
■̂ 4 to ta l ap p lica tion
 execution time

processing
time

d isc delay
(processor id le)

Concurrent Coupling Update
to ta l application
execution time

concurrent
d isc delays
(processor id le)

processing
time

Figure 5.13 - Processing/Disc Access Ratio

Single Processor Configuration
t o t a l a p p lica tio n
execution time

processing
time

N couples d isc delays
(processor id le)

Two Processsor Configuration
to t a l a p p lica tio n
execution time

processor 1

processing
time shared
between the
two processors

N/2 couples

processor 2

N/2 couples

Figure 5.14 - Processor Loading and Parallel Configuration

Chapter 6

Designs for a Fully Functional P-DB4GL

6.1 A Multiprocessor Fully Functional P-DB4GL

The significant performance improvements identified in the prototype P-
DB4GL implementation are based on a simulation of a parallel filestore. In
the small P-DB4GL test applications, the data access code and filing
simulation execute on the same processor; therefore, the task of connecting
entity handlers to their Filer processes in the filing simulation is quite
simple. However, if in a fully functional P-DB4GL the filing simulation is to
be replaced by genuine filing software and multiple discs and controllers,
then connecting entity handlers to Filer processes becomes a problem. In a
realistically sized P-DB4GL database application (with perhaps ten to a
hundred concurrent entity handlers), if all the data access processes execute
on a single processor, then it becomes very difficult to connect the many
separate filing processors to the data access code processor (Figure 6.1). The
transputer microprocessors have only four serial links, and each link can
support two Occam channels. With only one data access code processor and
many filing processors, there simply would not be sufficient links to support
the channels connecting the entity handlers to their filing processes.

A solution to the entity handler/Filer connection problem is to distribute
the data access code across several processors. Each data access code processor
can then be directly connected to four filing processors. However, the
distributed data access code processes are connected both to each other, and
to P-DB4GL code such as the User processes, by more Occam channels that
also require transputer links to support them. Consequently, not all of the
data access code processors' links are available for connection to filing
processors, some links must be used to interconnect the data access
processors themselves (Figure 6.2). Because the exact pattern of channel
connections between code processes varies from one application to another,
a hardware configuration (the link connections in particular) suitable for
one application is unlikely to be suitable for others. It is therefore necessary
to either: reconfigure the hardware in between application runs; or use a
fixed hardware configuration, but alter the application code to execute on the
chosen fixed configuration. In the initial designs for a fully functional P-
DB4GL the second approach was taken. The hardware is configured in a ring
topology, and the application code is modified by the addition of a Kernel

- 6 7 -

i^napter o

process placed at each processor in the transputer network (Figure 6.3). The
Kernel process is responsible for invoking and initializing the component
processes of the distributed application allocated to its node in the network.
The Kernel process is also responsible for routing messages between the
connected processes of the distributed application.

In the remaining sections of this chapter, this initial design is examined in
more detail and some alternative designs are proposed. The message
routing function of the Kernel has received the most attention as far as
development work goes: a P-DB4GL Router process has been implemented
and tested in order to assess the communication overheads involved in
message routing. The mechanism of code generation, and the factoring of
the application code, are also examined and alternative solutions suggested.

6.2 Channel Multiplexors and Message Routers

6.2.1 Channel Multiplexing

A problem which often arises when concurrent Occam programs are
executed on transputer networks is the mismatch between the number of
channels in a program and the number of physical links in the network.
Before an Occam program can be executed on a transputer network, software
configuration information is added to the program - placing processes on
processors, and mapping channels between processes on separate processors
onto connecting physical inter-processor links. A major constraint on the
software configuration is the restriction of a maximum of only two uni
directional channels (one in each direction) placed on each bidirectional
physical link. For Occam programs with a large number of highly
interconnected processes it can sometimes be difficult, or even impossible, to
find a software configuration that matches the available hardware (Figure
6.4). Even when such a match exists, it is often found that the matching
software configuration results in a poorly balanced processing load on the
network with consequent lack of multiprocessor performance speed-up.

A solution to this channel placement problem is the addition of channel
multiplexor processes to the Occam program (Figure 6.5). When the
software configuration is altered in order to experiment with alternative
load balancing, the multiplexor processes can be added or deleted as
appropriate. However, the implementation of such multiplexor processes

-68-

L,napter b

and the incorporation of them into Occam programs is an additional burden
on the programmer. The multiplexors may in certain circumstances alter
the behaviour of the program by inadvertently buffering communication
and thereby interfere with process synchronization. The execution of
multiplexor processes is an additional processing load on the processor, the
time taken to multiplex and decode channel messages can cause delays
affecting program performance. Also, the amount of data communicated on
several multiplexed channels could exceed the data transfer rate of a single
physical link.

6.2.2 P-DB4GL Channel Multiplexors

In the prototype P-DB4GL test applications the number of Occam processes is
relatively small (generally tens, rather than hundreds of processes), and the
size of transputer networks upon which they have been executed are small
too (typically two to four processors). Nevertheless, even with such small
programs and networks, the constraint of two unidirectional channels per
physical link has restricted the variety of test configurations used. In a fully
functional P-DB4GL with hundreds or even thousands of processes and
significantly larger transputer networks it is envisaged that software
configuration, in particular the mapping of channels to links, will be an
even more difficult task. To aid the development and testing of fully
functional P-DB4GL application code, and facilitate simple software
reconfiguration, channel multiplexor processes have been implemented for
the P-DB4GL data access processes.

The P-DB4GL channel multiplexing involves two stages. At the first stage,
the many BCU channel pairs connecting each data access process to other
application code processes are multiplexed into a single pair of channels
conforming to the BCU-extended (BCUX) protocol defined in Appendix B.
The BCUX protocol extends the BCU message format with additional fields
indicating the identity and object type of the source and destination
processes of each BCU message. Figure 6.6 illustrates this stage of channel
multiplexing for a modified prime entity handler, and shows how the
schema handler request-reply channel pair and the coupling entity handler
request-reply channel arrays are multiplexed together and converted to the
extended protocol. The BCUX multiplexor process inside each modified data
access process uses the information contained in these additional fields to

- 69 -

i^napter o

decode incoming BCUX messages and direct them to the appropriate ingoing
BCU channel.

At the second stage of channel multiplexing, all the BCUX channel pairs
belonging to the data access processes intended for execution on the same
processor are connected to a single Decoder process (Figure 6.7). The Decoder
process possesses a look-up table containing the object identity of each data
access process connected to it. In addition to the pair of BCUX channel arrays
connecting the Decoder to its data access processes, there is another pair of
BCUX channels. This additional pair of channels is used to receive and send
external BCUX messages to Decoder processes on different processors.
When the Decoder receives a message from one of its own processes, it will
attempt to redirect the message to the intended destination process; if the
destination cannot be found in the look-up table, the message is forwarded
on the outgoing external BCUX channel. Similarly, with messages received
on the incoming external BCUX channel, the Decoder uses the look up table
to redirect the message to one of its own processes. Incoming external
messages which cannot be decoded are ignored. The Decoder and
Multiplexor processes have no facility to correct or report errors found in
BCU messages, it is assumed that messages sent by data access processes will
always be properly received; if a message becomes corrupted or is incorrectly
decoded, there is as no recovery action to such a failure.

The P-DB4GL Decoder and Multiplexor processes introduce buffering into
the communication of BCU messages. For some Occam programs, buffering
is an undesirable side effect, because synchronization between processes at
points of communication can be lost. However, it is not a problem for P-
DB4GL applications; because the higher level request-reply protocol of BCU
message pairs, implemented on top of the Occam communication
primitives, is used to synchronize P-DB4GL processes, and this is unaffected
by buffering of either the request or reply component of the message pair.

6.2.3 P-DB4GL Message Routing

The P-DB4GL channel Decoder process has been implemented and tested
with small applications. Although it provides adequate channel
multiplexing and facilitates simple software reconfiguration for a small
network of two processors, it is not suitable for larger networks in which
messages have to traverse intermediate nodes. For larger networks an

-70-

^.napter o

additional Router process is required (Figure 6.8). Considerable amounts of
research on message routing for transputer networks already exists, and
many different algorithms for a variety of network topologies can be found
in the literature, for example [Roscoe87] [Qiang88] [Briat89] [Knowles89]
[Roebbers89] [Gallizi90]. The prototype P-DB4GL test applications were not
constructed for any particular network topology, and in designing a fully
functional P-DB4GL several different network topologies, both regular and
irregular, have been considered. One of the regular network topologies
considered for a fully functional P-DB4GL is a ring topology, and a Router
process for a bidirectional ring has been implemented and tested.

The P-DB4GL ring Router process uses a "slotted ring" algorithm with
variable size slots and each node on the ring "owning" a slot, or data packet,
on the ring. It is based on the deadlock-free ring routing algorithm given in
[Welch89]; but the P-DB4GL Router process differs from Welch's processes
in some respects, particularly in the buffering of messages entering and
leaving the ring. The P-DB4GL Router process and the BCUX-ring (BCUXR)
protocol defined for it, along with details of the testing procedures and
performance figures for the Router process, are described in Appendix J.

Results obtained from testing the P-DB4GL Router and Decoder processes
under simulated application loads, indicate that the communication
overheads incurred by multiplexing, decoding and routing BCU messages
could impair the performance of P-DB4GL applications when executed on
ring topologies of small size (four to eight node rings). An average
communication time for a BCU request-reply message pair sent between two
data access processes on separate processors in an 8 node ring is
approximately 2 to 5 milliseconds. Because of the attribute-oriented nature
of BCU messages, a significant database action such as the update of a
coupling entity handler by a prime entity handler may require the
communication of tens of BCU message pairs. Thus, the communication
overheads of such an operation are approaching the same size as the disc
access times.

The significant improvements in execution times for concurrent data access
processes obtained from the prototype P-DB4GL test applications, rely on the
assumption that communication times (of BCU messages) and processing
loads are small compared to disc access times. Alterations to the relative
sizes of communication, processing, and disc access may negate the benefits

-71-

Chapter 6

of the concurrent data access processes. It is necessary to identify the points
of high communication levels within the concurrent P-DB4GL applications,
so that high communication processes can be placed physically close together
(preferably on the same processor). The ring topology is not suitable for
larger networks because message distance increases proportionately to the
number of nodes. Further investigation is required in the areas of
communication balancing and choice of network topology for a fully
functional network version of P-DB4GL.

6.3 Communication Loads and Protocol Overheads

The types of messages communicated between the different constituent
processes of a P-DB4GL application varies greatly. There are significant
differences in terms of size, frequency, and protocol overhead of the
messages sent between different types of P-DB4GL process (Figure 6.9). These
differences affect the communication loads on the channels interconnecting
the application processes; and are therefore an important constraint when
applications are configured for execution on multi-processor networks. The
messages communicated between entity handlers and their Filer processes,
on channels defined by the FILER protocols, are generally record-based (ie
each message contains a whole record or a record key). The Filer processes
are themselves connected by further channels to low level disc driver
processes executing on disc controller transputers, where each message
transfers a whole block of records. The BCU messages communicated
between the P-DB4GL data access and user processes are generally attribute-
based; and the transfer of a complete record from one process to another
requires the communication of several separate BCU request-reply message
pairs.

The number and frequency of messages communicated on the many
different channels during an application run, varies considerably. For
example, in test runs on SCHM0003 using test data Set 3 (see Appendix G),
177 BCU request-reply message pairs are transferred on the channel
connecting the User Harness and the schema handler process. However,
during this same test run, the schema handler communicates 297 BCU
message pairs with the ENTY0001 entity handler. The other entity handlers
in this test schema, ENTY0002 and ENTY0003, receive a similar number of
BCU messages from the schema handler; so the channels connecting the
schema handler to the entity handlers carry large numbers of messages

-72-

Chapter 6

during an application run. Of all the BCU messages received by an entity
handler during a test run, only a fraction of them will invoke message
communications on the FILER channels. For example, with test schema
SCHM0004 and test data Set 4 (Appendix G), the prime entity handler
ENTY0004 receives 87 BCU messages of which only 21 invoke Filer
operations. There are also BCU messages communicated between prime
and coupling entity handlers; in SCHM0004 test runs, prime entity handler
ENTY0004 sends 59 BCU messages to each of its coupling entity handlers.
The number of disc accesses, and the number of Filer/disc-controller record
block messages, required during an application run, is more difficult to
determine. The P-DB4GL test applications have used a crude filing
simulation, and the number of such messages in a fully functional P-DB4GL
application depends on the type of filing algorithms and size and number of
record buffers used; but it is likely to be of the same order as the number of
entity to Filer messages.

The data transfer rates required from the transputer links, needed to support
the communication loads produced by the P-DB4GL messages, depends not
just on the number and frequency of the messages, but also on the size of the
messages. The size of the messages is determined by two things: the
amount of data (or control) information contained in the message; and the
size of the additional protocol information attached to each message (ie
protocol overhead). For a BCU message the protocol information is used to
indicate various properties of a message, such as:

its type (Attribute or Entity action, Request or Reply);
the source and destination processes;
the message length.

Appendix B provides detailed descriptions of the message formats and
Occam protocols defined for the message channels.

The different types of P-DB4GL messages vary with respect to their
proportions of data and protocol overhead content. Each BCU message has a
protocol overhead of 12 bytes; for a Request-Reply message pair this doubles
to 24 bytes. The data/control information contained in BCU messages used
in the P-DB4GL test application is small, typically one to ten bytes. For test
data Set 4, the sum of all BCU messages communicated between the User
Harness and test schema SCHM0004 amounts to 2286 bytes, of which 2160
bytes is protocol overhead. This gives an overhead:data ratio of
approximately 17:1. Therefore, of the data transfer rate needed to support

-73-

Chapter b

this communication load, only 5.5% of it is being used to transport database
data, the remainder is being used to support the BCU message overheads.

The protocol overhead for attribute-based BCU message is quite
considerable, and an aspect requiring further investigation in the fully
functional P-DB4GL designs. A possible improvement to the BCU
communication overheads is the adoption of a record-based message format.
For test data Set 4 on SCHM0004, this would reduce the total
communication size to 378 bytes and an overhead:data ratio of 2:1. This
would bring BCU communication in line with other types, such as the
record-based entity /Filer message channels. To some extent, the BCU
protocol:data ratio of the test applications is not representative of genuine P-
DB4GL applications. The data content is too small - more realistic values for
data sizes are ten times larger, giving a ratio of approximately 2.2:1.
However, increasing the data content may improve the ratio, but it also
increases the total size of message communication.

Test data Set 4 on SCHM0004 with three coupling entities gives a total
message communication for all channels of 6711 bytes (264 BCU request-
reply message pairs). The benefit of the concurrent data access algorithms
for this test application were obtained with increasingly larger test schemas
(ie more coupling entities) executed entirely on one processor - the largest
test application had 18 coupling entities. For 18 coupling entities, the total
BCU message communication is 28836 bytes. Of this total, only 2286 bytes are
communicated on an external link, the remainder is communicated on
channels placed in memory. If this application code was distributed across a
network of processors and realistic data sizes were used, then the total
communication size from all the BCU message channels would be
approximately 50 Kbytes. Most of this would have to be transfered over
external channels placed on links, and when combined with the additional
BCUX and BCUXR protocol overheads of the multiplexing and routing
processes, it represents a significant load on the interconnecting links.

Because of the high communication loads, arising from the large numbers
of BCU messages with large protocol overheads, and the message latency
caused by multiplexing channels and routing messages through a network,
the issue of communications balancing is crucial to any designs for a fully
functional multiprocessor P-DB4GL implementation. Identification of
communication "hot-spots", and the clustering together of processes with

-74-

cnapter b

high communication levels, is essential if the performance benefits of the
concurrent P-DB4GL processes are to be realised. The particular processes
and channels of high communication levels will vary from one application
to another, but some general observations can be made. Applications with
very few schema links in the data access schema will tend to lower levels of
communication between schema and entity handlers. Similarly,
applications will smaller numbers of coupling entities, or with coupling
entities that are not subject to prime entity updates, will tend to lower levels
of communication on the prime to coupling entity handler channels. It is
envisaged that significant amounts of experimentation with different
software configurations would have to be performed by the system designer,
in order to find the best communication balance for each P-DB4GL
application. To allow balanced configurations for all of the different P-
DB4GL applications that are likely to be executed on a given system, it would
also be desirable to have a transputer network that permitted some
hardware reconfiguration in between application executions (ie inter
application reconfiguration).

6.4 Designs for P-DB4GL Hardware Configurations

Following the prototype P-DB4GL implementation, and the subsequent
investigation of message routing in a multiprocessor version of a fully
functional P-DB4GL system, an important design consideration has
emerged. The combination of light processing loads and high
communication requirements of the P-DB4GL data access processes, indicate
that these processes should be distributed across as few processors as possible
with communication "hot spot" processes clustered together.
Unfortunately, the many filing processors, needed to support a realistically
sized fully functional P-DB4GL application, create problems when there are
not sufficient data access processors' links to connect them to.

However, the analysis of the communication loads on the various channels
connecting different process types shows significant differences in size,
frequency, and protocol overhead for the different types of messages.
Channels defined for BCU messages have the highest communication loads,
whereas channels defined for the communication of record-oriented Filer
messages have lower communication loads. This allows the possibility of
multiplexing together some of the Filer channels, so that several Filers can
be connected to each data access code processor. Figure 6.10 illustrates such a

-75-

Chapter 6

configuration. Three Filer processes, executing on T400 or T425 processors,
are connected to a multiplexor process on a T212 or T222 processor. The
multiplexor processor is connected to a data access processor, where the
multiplexed Filer channels are then demultiplexed. Each data access code
processor can have three Filer multiplexors attached to it; thereby allowing
up to nine Filers to be connected to a single data access processor. Typical
Filer message sizes are 10 to 1000 bytes. Using a counted array Occam
channel of INT16::[]BYTE, and with the overlapped-acknowledge (see
Appendix I) on 20 Mbit/s links, an effective data transfer rate at the Filer
multiplexor to data access process channels approaching the maximum
possible (of approximately 2 Mbyte/s bidirectional) could be attained.

Concerning the network topology of the multiprocessor implementation of
P-DB4GL; the ring originally proposed has been found to be unsuitable for
larger networks. The ring initially seemed attractive because it required only
two of each processors' links for its construction. The remaining two links
were available for connection to disc controllers and terminal drivers. If
each data access processor is altered for connection to three Filer multiplexor
processors (as in Figure 6.10), only one link remains for connection to other
P-DB4GL code processors. Therefore, a separate network constructed from
simple 16 bit T222 transputers with suitable router processes is used to
interconnect the P-DB4GL code processors (Figure 6.11). Network topologies
with shorter message distances than rings, such as trees, arrays, and
hypercubes, can be composed using the T222 interconnection transputers.
Although more complex topologies may reduce message distance, the
routing algorithms are generally more complicated, and the additional
processing involved may slow down the routing of messages, as in for
example [Stringer89] where ring and hypercube topologies are used for
routing messages in a database application.

A fully functional P-DB4GL system can be expected, under normal operating
conditions, to be used to run several different P-DB4GL applications. Given
that each application is likely to have different resource requirements, in
terms of numbers of files, discs, and processors, and will probably provide
optimum performance only on a particular network topology. Greater
flexibility can be obtained by using a reconfigurable crossbar switch for
processor interconnection. Figure 6.12 illustrates such a design: the crossbar
switch is provided by one, or more (depending on the size of the network),
C004 devices [Inmos89b]. P-DB4GL code processors, for data access, user

- 7 6 -

Chapter t>

processes, and host interface code; along with Filer multiplexor and Router
processors, are all connected to the link crossbar switch. Before an
application is loaded and executed on the transputers, the crossbar switch is
programmed to connect the transputer links to the desired network
topology. This inter-application network reconfiguration not only provides
greater flexibility for executing many different applications, but also
facilitates simpler experimental reconfiguration during application
development when optimum configurations are sought. It is not envisaged
that this reconfigurable design be used for network reconfiguration during
application execution (ie intra-application reconfiguration), as this would
require considerable redesign of the P-DB4GL application code.

6.5 Code Factoring

In the prototype P-DB4GL system it is the data access processes (schema and
entity handlers) that have received the most attention. The data access
processes have been fully implemented; whereas the user processes (screen
and window processes), needed to complete a database application, have
been simulated by the User Harness. However, one of the design
considerations relevant to the construction of a fully functional P-DB4GL is
an examination of this code factoring used in the prototype P-DB4GL system.
The classification into data access and user processes, and the apportioning
of functionality amongst the different processes, has been taken directly
from the earlier implementations of DB4GL [Ewin85b] [Poole87].

One of the main findings arising from the construction and testing of the
prototype P-DB4GL test application is the performance advantage of
concurrent data access algorithms over sequential algorithms. These
concurrent data access algorithms (and concurrent algorithms for User
processes too) might better be represented by decomposing the existing
processes into many smaller processes. Reducing the size, and hence
increasing the number, of concurrent processes in a program (ie reducing
the granularity of concurrency) permits more refined load balancing.
Another reason for examining the application code factoring is to see if a
closer match between the objects in the application model specification and
the processes in the concurrent Occam implementation is possible (or
desirable).

-77-

Chapter 6

The schema handler process in particular merits further investigation with
respect to the code factoring of the P-DB4GL applications. Currently, the
schema handler process is used in the implementation of an application
task's data access schema. The main function performed by the schema
handler is prefetching from the filestore of related records (ie realisation of
schema links). An alternative means of providing this function is to
refactor the schema handler into separate Information Unit Group (IUG)
processes (Figure 6.13). The schema handler process currently represents a
point of high communication load - all messages from user processes to
entity handlers must pass through it. The creation of separate IUG processes
would eliminate this potential communication bottleneck.

A more radical refactoring of application code worth investigating is the
creation of Presentation Object (PO) processes (Figure 6.14). Each PO process
would be decomposed into separate processes representing both: the data
access functions (IUG processes); and the functions currently provided by
user processes (Presentation Unit and Process Task processes). This
represents a very direct translation from application task specification to
concurrent Occam process implementation. Factors likely to affect the
feasibility of this direct translation are: re-usability of the constituent
processes for application building; granularity of concurrency for efficient
load balancing; and patterns of inter-process communication affecting the
communication loads (ie frequency of messages, size of protocol overheads,
number of channels needed and complexity of interconnection).

6.6 Code Generation

The methods of code generation and application loading and initialisation
for P-DB4GL applications have changed from those used in the original
DB4GL. In DB4GL, code generation tools take skeleton COBOL programs, for
code modules such an entity and schema handlers, and by the addition of
extra lines to this source code produce completed programs ready for
compilation. Following compilation, the loading and initialisation of the
generated application on the single-tasking single processor PC is quite
straightforward and handled by the operating system and COBOL
environment. In the prototype P-DB4GL system the method of code
generation is similar, except that it is done by hand, not automatically by a
generater tool. Skeleton Occam procedures for the data access processes are
completed by the addition of lines of value declarations; following

-78-

\~riupier o

compilation, the completed procedures are used to construct test
applications, which are then configured and loaded onto the transputer
networks by tools in the development environment.

In the course of designing a fully functional multiprocessor version of P-
DB4GL, and implementing and testing some of its features, the method of
code generation has been modified. The data access processes have been
parameterised; so that, a generic compiled entity handler (or schema
handler) Occam procedure can be instantiated to a specific data access process
(Figure 6.15). This obviates the need for additional compilations each time a
new data access process is required. However, a large number of parameter
values is needed to instantiate a data access process, and it would probably be
better to replace the parameters with an initialisation channel (Figure 6.15).

These changes to the method of code generation affect the role of the P-
DB4GL data dictionary in respect of application loading and initialisation. If,
as in the prototype P-DB4GL system, additional compilations are needed for
each instantiation of new application code processes; then the data
dictionary node must load applications by downloading compiled code into
the network. But when new code processes can be instantiated without
further compilations, it becomes possible for the data dictionary node to load
and initialise an application by simply downloading a description of the
required application to the Kernel processes at each node in the network.
The Kernel processes can then invoke instances of appropriate component
processes of the required application at their nodes. This permits a more
interpreted role for the data dictionary, and enhances the rapid application
generation and prototyping features of the P-DB4GL system.

L,napter

single data access
code processor with
only four links

filing processors
connected to discs
and controllers

link
to/f rom Data >

Access
Code J

too many
filing links
for direct
connection

User
Processes

Figure 6.1 - Insufficient Links for Filer Connection

DA

data access
code distributed
across many
processors

filing
processors
directly
connected

DA

Figure 6.2 - Distributing the Data Access Code

unapter

multiplex channels
P-DB4.GL
processes

Kernel Kernel

routes
messages

■<— to host User Interface
Nodes

>"to host

Filer Nodes

disc
Process
Nodes

Data
Diet ionary
has Master
Kerneldownloads

f O tdisc
actually
more
Filer
nodes
than Process
nodes

O■ disc

M212

M212

M212

application into
network

Figure 6.3 - Designs for a Fully Functional Multiprocessor P-DB4GL

Chapter

in. sig. 1 P2

P3 P4-

P5 ■>— out. sig. 1P6

in. sig. 2 P7 P8

P9 out. sig. 2P10

P12

Concurrent Occam program with highly interconnected
processes - when distributed across the two processor
configuration below, a mismatch between links and
channels arises.

in. sig. 1 PI P2

Process BProcess A P3 P4

P5 P6

in. sig. 2 P7 P8

out. sig. 2P9 P10

P12

link1 link2 linkO ink2

link link3 linkl link3
Processor 0 Processor 1

Figure 6.4 - Configuration Mismatch Between Channels and Links

l .napier o

Process A Process B

P2

P3 P4

P5 P6

DemuxMux P8

P9 P10

P12

Figttre 6.5 - Addition of Multiplexor Processes

ENTY. handler
debugging
channel BCU

c. req
Prime
Ent ity

C. BCUX. Convert
c.reply

Filer
channels

BCU
s. req
s. reply

BCUX hand, in
S. BCUX. Convert BCUX. Mux BCUX

BCUX hand, out

denotes array of channels

Figure 6.6 - Modified Prime Entity Handler

-83-

simpler

data access processes

Decoder 1

BCUX
channels

Decoder 2

external
BCUX channels

Processor 1 Processor 2

Figure 6.7 - P-DB4GL Decoder Process

Decoder 1 Decoder 2

Rout er Router

Processor 2Processor 1

Decoder N

Router#

I

Figure 6.8 - Routing Messages Through a P-DB4GL Network

\^riujJizr

P-DB4GL
k code)

EntityFilerDisc

attributes
<BCU messages)

single
records

blocks
of records

messages on channels between processes
of different types vary in size and content

Figure 6.9 - Different Types of P-DB4GL Messages

T400 or T425
filing processors

links to
disc and
contollers ̂

- 0

T222 filing
mult iplexor
processor

- < 7 > _ “WMux̂

“ © ■

T425 or T800
data access code
processor

Figure 6.10 - Multiplexing Filer Channels

Chapter 6

data access
code <32 bit)
processors
connected to
Filers

interconnect ion
network <16 bit)
T222 processors
- configured to
some topology

user and
host interface
processes
<32 bit)
processors

DA

DA

DA

Figure 6.11 - A Separate Interconnection Network

Chapter 6

Crossbar
Switch

to/from host

Figure 6.12 - A Reconfigurable Network

L,napter b

' User '
Process

f User >
Process

(IUG 1 f IUG 2 "\
Process J Process J

'Schema \
Handler,

Enty Ent yEntyEnty EntyEntyEntyEnty

Figure 6.13 - Replacement of Schema Handler by IUG Process

User \
I InterfaceJ

P01 P02
PU1 PU2

PT PT

PT
IUG1 IUG2

[Ent y nt y2] Int y Inty nt y5J

Figure 6.14 - An Alternative Presentation Object Implementation

- 8 8 -

simpler

i> Insertion of constant declarations into
a procedure skeleton

PROC SchmXXXX <. . . > VAL C 3 BYTE schm. id IS..
VAL INT no. of. entites IS..
VAL C 3 C]BYTE schm. links IS.

— main body
SEQ

schema handler code

ii) Parameterisation of generic handler modules
PROC Schma. handler<VAL C3 BYTE schm. id IS..

VAL INT no. of. entites IS..
VAL C 3 C 3 BYTE schm. links IS. .
. . . channels parameters
>

■— main body
SEQ

. . . generic schema handler code

iii) Initialisation message
PROC Schm. handler(CHAN OF INIT. MESS init. chan,

. . . other channel parameters
>

— main body
SEQ

... initialisation routine

. . . generic schema handler code

Figure 6.15 - Methods of Code Generation

Chapter 7

P-DB4GL Project Evaluation

7.1 Summary

The DB4GL application model, in which database applications are defined as
a set of concurrently executable message passing Presentation Objects, was
found to be highly suitable for application specification and generation.
However, the implementation of the generated applications as sequential
program structures on a single-tasking single processor microcomputer,
involved design transformations (mentioned in chapter 2 section 2.5, and
chapter 5 sections 5.2,5.4) that obscured the potential for parallel execution
inherent in the application model.

In the Parallel-DB4GL (P-DB4GL) project, an attempt has been made to retain
the parallelism, inherent in the specification of DB4GL database applications,
by using a concurrent programming language to implement the
applications. The CSP [Hoare78] derived Occam language has been used for
the implementation, rather than an object-oriented programming language.
The constituent message passing Presentation Objects of a DB4GL database
application are realised as communicating processes in a concurrent Occam
program. This direct translation, from objects to processes, was relatively
straightforward, involving very little in the way of design transformations,
and the resultant Occam programs have been mapped onto transputer
networks for parallel execution.

The development of a prototype P-DB4GL system has tested the feasibility of
this approach, and led to the design of a fully functional P-DB4GL. The
design, and partial implementation, of the fully functional P-DB4GL has
indicated many opportunities for further research, both within the P-DB4GL
project and for parallel implementations of object-oriented systems. These
research opportunities are described in the following sections of this chapter.

7.2 Communication Loads and Object Clustering

The processing loads of P-DB4GL processes are very light, but the
communications overheads are substantial. This results in a high
communication/processing ratio which is not matched by the transputer
based parallel hardware. Load balancing was not a major concern, because

-90-

i^napter 7

the P-DB4GL applications do not significantly load the processors, but
communications balancing was a serious problem. The communication
patterns within the P-DB4GL applications are uneven; "hot-spots" of intense
message passing and their consequent high inter-process communication
loads are present. It is important to identify these communication "hot
spots" and place the participating processes physically close together on the
same processor to prevent applications from becoming communications
bound. This "clustering" together of objects with high levels of inter-object
message passing (and the resultant high communication load on the
message channels), is something that should be considered by any designer
implementing object-oriented systems on distributed memory hardware
such as transputer networks.

7.3 Object Inheritance

An object-oriented feature missing both from the DB4GL application model
and from the P-DB4GL implementation is inheritance. The application
model contains little in the way of a generalization/specialization hierarchy
of classes, although some work has been done to support the concept of
subclasses of data type domains [Hird89]. Within the P-DB4GL system there
is no support for late binding and inheritance of methods at run-time.
However, in the context of the DB4GL prototyping application generation
cycle, there is the possibility of extending the data dictionary data model to
support classes of object types, for example, the classes of prime and coupling
entity handlers as subclasses of the entity handler object type. At application
generation time, when instances of the object types are created, some form of
method inheritance from superclass to subclass object type might be
provided, such as, the inclusion of generic entity handler integrity rule
processing methods inside an instance of a generated coupling entity
handler object.

7.4 Occam 2 as an Implementation Language

The Occam language provides encapsulation and information hiding within
processes. It supports synchronous message passing using well defined
protocols on point-to-point inter-process channels. However, the language
is rather minimal: it lacks some dynamic properties such as recursion;
process creation and resource allocation is static; complex (and time
consuming) user defined processes need to be written in order to support

-91-

L-napter /

communication patterns other than synchronous point-to-point. As a
consequence of these language properties, the design, implementation and
testing of Occam programmed systems can be tedious and lengthy. The
development of good software tools and the inclusion of some language
extensions to Occam are needed.

The field of object-oriented design is becoming more established [Wirfs-
Brock90] [Henderson-Sellers90]; and increasingly examples of object-
oriented design applied to concurrent and real time application areas are
appearing [Plessman88] [Heever89] [Agha90]. In the development of Parallel-
DB4GL, concurrent and real-time concerns have been important issues.
Furthermore, the principles of object-oriented design have influenced the
implementation of the prototype P-DB4GL system. An area of further
research, likely to prove beneficial to projects similar to P-DB4GL, is an
investigation of closer integration of concurrent programming languages,
such as Occam, into established object-oriented design and structured design
methodologies, for example Occam and Mascot3 [Knowles90].

7.5 Improvements in Secondary Storage Technology

The designs for a fully functional P-DB4GL system presented in Chapter 6
are not tied to any particular secondary storage (disk) technology. Although
the initial P-DB4GL design (Chapter 5) included M212 disc controller
transputers, and the presence of these devices has been assumed in the fully
functional P-DB4GL designs, they are not essential to the P-DB4GL
multiprocessor architecture. The M212 device is no longer manufactured by
Inmos, and has been replaced by a T222 based SCSI interface board
[Inmos89c]. This new SCSI (Small Computer System Interface) disc interface
board can be substituted directly for the disc processes and controllers in the
P-DB4GL design (although with appropriate changes to the software
interface at the Filer channels).

In order that disc access times and data transfer rates can keep up with the
increasing speeds of CPUs and main memory, a disc technology known as
RAID (Redundant Arrays of Inexpensive Disks) has recently been developed
[Patterson88] [Patterson89] [Ng89]. The principle behind RAID is the
replacement of a single large expensive disc with many smaller less
expensive discs. The goals are improved reliability, through redundancy,
and improved transfer rate, via techniques such as disk striping [Salem86].

-92-

L-tmpter /

In the P-DB4GL designs, only a single disc and controller has been assumed
at each Filer node. However, this is not fundamental to the P-DB4GL
architecture, and some Filer nodes could be modified with the addition of a
RAID subsystem to provide either increased transfer rate, or improved
reliability, if needed. Similarly, with other storage technologies such as
optical and opto-magnetic storage [Bate89] [Williams89], some Filer nodes
could be altered to store their data on these devices, rather than the small
Winchester disc drives proposed in the original P-DB4GL designs. Some
Filer nodes might even use semiconducter-based secondary store; but for
reasons of size, cost, volatility, and security, it is likely that most of the data
in typical P-DB4GL systems would be stored on magnetic (disk) secondary
store.

7.6 The Next Generation of Transputer Products

The next generation of transputer products announced by Inmos, which
includes the HI microprocessor [Inmos90] and Cl 04 router device [May90],
opens up new possibilities for a transputer based Parallel-DB4GL. The HI
processor has claimed peak performance in excess of 150 MIPS and 20
MFLOPS, and a total communications bandwidth of 80 Mbyte/s. The HI
uses a new link technology with packet based communication, and provides
a "virtual channels" facility for inter-process channel communication when
programmed in Occam. When combined with the Cl 04 router device,
which provides hardware routing of the communication packets, the
potential performance for message passing distributed architectures is greatly
improved.

A problem with the implementation of P-DB4GL on the current T-range of
transputer products is the very high levels of communication, combined
with light processing loads, encountered in P-DB4GL applications.
Although the T-range microprocessors provide approximately 2 Mbyte/s
maximum bidirectional data transfer rate on each link (8 Mbyte/s total
bandwidth for a four link device), designing P-DB4GL code that can
effectively use this communications bandwidth is very difficult. When
combined with the software channel multiplexors and message routing
processes, needed in the distributed versions of P-DB4GL application, the
effective usable communications bandwidth was severely reduced to
perhaps 10% of the theoretical maximum (see Appendix J). This reduced
communications bandwidth, and the message delays associated with routing

-93-

Chapter 7

through a network, impaired the attainable performance of distributed P-
DB4GL applications.

However, the greatly improved communication bandwidth of the HI, and
the hardware support for virtual channels and message routing, should
provide sufficient message passing capacity for high communication
programs such as P-DB4GL database applications. In fact, the massive
processing power (in terms of MIPS) of a single HI processor may be
sufficient to support an entire P-DB4GL application. A possible design for an
HI based P-DB4GL architecture is shown in Figure 7.1: a few, perhaps only
one, HI processors are connected to a Cl04 router, this is connected via link
adapters to T-range microprocessors such as T400, T425, or T800 used as
filing processors, and these are connected to discs and controllers. This is
only an outline of a possible HI based design. As full technical disclosures
are made available, and actual devices are manufactured, more detailed
designs can be considered.

To accompany the new range of transputer products, a new version of
Occam is planned [Barrett90]. This new version extends the language with
many features found in other high languages, such as, records, user defined
data types, and modules. New shared object types, such as buses of channels,
with synchronization mechanisms additional to the basic Occam
communication primitives (? and !) are also planned. The new version of
Occam has an improved configuration language that separates hardware
description from software configuration; in particular, the current
requirement for the programmer to place channels at specific links in
removed.

In the course of implementing P-DB4GL, the Occam 2 language has been
found to be rather minimal in respect of data structure manipulation, and
the incorporation of record structures into Occam is welcomed. The changes
to the configuration language should make application development much
easier, especially during experimental phases when many different
configurations are tested for processing and communications load balancing.
This experimental configuration phase might possibly be automated by an
appropriate P-DB4GL tool. Furthermore, the HI processor contains some
instruction level support for implementing operating system kernel
functions. It is therefore likely that many more operating systems will be
either developed for, or ported to, the new H-range of processors. When

-94-

^napter /

such operating systems arrive, a useful direction for further research is an
investigation of possible support for P-DB4GL applications from these
operating systems.

7.7 Advantages of a Prototyping Development Cycle

There are many problems associated with performance improvements in
database systems using parallel processing hardware. Problems such as, load
balancing, communications balancing, data partition and data skew, choice
of network topology, distribution versus replication, message passing
mechanisms, buffering, etc.. These problems are most acute in enquiry
processing systems supporting ad hoc queries, in which, data sizes,
communication patterns, and processing requirements of individual queries
are not known in advance, and must be determined at run-time in order to
achieve efficient parallel resource utilization.

However, P-DB4GL database applications do not suffer from these problems
to the same degree for the following reasons. P-DB4GL applications are
transaction oriented, and the access paths through the database are known in
advance. Also, in the course of the application development cycle, the
processing loads and communication patterns of particular applications can
be gauged. It is therefore possible to experiment with the system
configuration, adjusting the topology and data partitioning at each iteration
in the application development cycle; thus, efficient solutions for each
application can be found. This parallel resource experimentation would be
an additional task performed by the system designer during the
development cycle, although the use of high level P-DB4GL tools (similar to
the existing tools used in the functional/interface specification of DB4GL
applications) would relieve the system designer of the burden of low level
parallel implementation details.

L^napter

HI • •

C104

HI

LA LA

Mux

LA

[Mux

T-range microprocessors for the filing nodes
and Filer channel multiplexors

Figure 7.1 - An HI Based P-DB4GL Design

Chapter 8

Conclusions

The development of the Parallel-DB4GL (P-DB4GL) system has
demonstrated the benefits of using a concurrent language to implement the
DB4GL database applications. The sequential COBOL implementation of
DB4GL, on a single-tasking single processor PC, suffered from disc I/O
bottlenecks that seriously impaired the performance of both the application
generation tools and the generated applications. The concurrent P-DB4GL
implementation was able to take advantage of the parallel processing
benefits provided by a transputer-based multiprocessor architecture. The
transputer’s micro-coded low level scheduler provides efficient support for
concurrency on a single processor. The transputer's special communication
facilities permit easy connection of multiple processors, including multiple
disc I/O subsystems. The high disc I/O bandwidth of the multiple disc
subsystems in the parallel architecture was used to alleviate the disc I/O
bottleneck that had impaired the performance of the original sequential
DB4GL implementation. Additionally, the specification of DB4GL database
applications as sets of concurrent message passing Presentation Objects,
facilitated a relatively simple translation to an implementation in Occam of
concurrent communicating processes.

The P-DB4GL project has demonstrated the suitability of distributed memory
message passing architectures for database, and data intensive, application
areas. Given the many disc and other peripheral I/O processors needed to
support the high levels of data throughout typically found in such
applications; it is not clear that parallel architectures based on shared
memory or shared buses could cope with the high data throughput
demands, particularly as applications are scaled-up to greater sizes. The P-
DB4GL applications generate large numbers of inter-process messages, which
cause a high communication demand on the transputers interconnecting
links. The effective data transfer rates available for the transputers’ links in
the T-range of microprocessors was found to be barely sufficient for such
high message passing loads. However, the introduction of the new H-range
of transputers promises vastly improved communication bandwidths
needed by these applications with very high message passing loads.

The P-DB4GL database applications have been designed for direct execution
on transputer networks without an intervening operating system.

-97-

Chapter 8

Operating systems for transputer networks are now becoming available; but
it is difficult to assess the effects, in terms of overheads and transparency,
that such operating systems might have on P-DB4GL applications. The
operating systems on conventional single processor machines are often
bypassed in a database application by the DBMS, sometimes the hardware
itself is supplemented with a special database machine. It is likely to be the
case with database applications executing on parallel architectures too. The
parallel operating system may be bypassed and the underlying hardware
made visible to the database application, in order that maximum
performance be extracted from the secondary storage (disc) subsystems.

Bibliography

[Agha90]

[Appleton83]

[Askew88]

[Atkin89]

[Babb79]

[Bakkers89]

[Bal85]

[Baroody81]

[Barrett90]

[Bate89]

[Beazley84]

G Agha
'Concurrent Object-Oriented Programming' Comms. of
the ACM Vol 33 No 9 September (1990) 125-141

D S Appleton
'Data Driven Prototyping' Datamation November
(1983) 259-268

C Askew (ed)
Occam and the Transputer - Research and Applications
Proc. of the 9th occam User Group Technical Meeting
(OUG-9) 19-21 September 1988, Southampton, UK, IOS
Press (1988)

P Atkin
'Performance maximisation' Inmos Technical Note 17
(72 TCH 017) reprinted in [Inmos89a] 228-246

EBabb
'Implementing a relational database by means of special
hardware' ACM Trans, on Database Systems Vol 4 No
1 March (1979) 1-29

A Bakkers (ed)
Applying Transputer Based Parallel Machines Proc. of
10th Occam User Group Technical Meeting (OUG-10) 3-5
April 1989, Enschede, Netherlands, IOS, Amsterdam
(1989)

HSBal
'Report Program Generator' BSc Project Report, Dept of
Computer Studies, Sheffield City Polytechnic (1985)

A J Baroody and D J DeWitt
'An Object-Oriented Approach to Database System
Implementation' ACM Trans, on Database Systems Vol
6 No 4 December (1981) 576-601

G Barrett
'The Development of occam: types, sharing and
modules' in Proc. of the 13th Occam Users Group
Technical Meeting 18-20 September (1990) York, UK.

G Bate
'Alternative Storage Technologies' in [Compcon89]
151-157

R C Beazley

-99-

[Bell86]

[Boehm76]

[Booch86]

[Briat89]

[Britten80]

[BSI88]

[Cameron86]

[Chen76]

[Cobb85]

[Compcon89]

[Cook86]

[Cooper83]

Dioiiograpny

'A Data Dictionary Interrogation System' BSc Project
Report, Dept of Computer Studies, Sheffield City
Polytechnic (1984)

C G Bell
'RISC: Back to the Future?' Datamation June 1 (1986)
96-107

B W Boehm
'Software Engineering' IEEE Trans, on Computers Vol
C-25 No 12 December (1976) 1226-1241

G Booch
'Object-Oriented Development' IEEE Trans, on Software
Engineering Vol SE-12 No 2 February (1986) 211-221

J Briat et al
'PARX: A Parallel Operating System for Transputer
Based Machines' in Proc. of QUG-10 [Bakkers89] 114-142

J N G Britten
'Design for a changing environment' The Computer
Tournal Vol 23 No 1 February (1980) 13-19

British Standards Institute
BS 6964:1988 Database Language SOL B.S.I. (1988)

J R Cameron
'An overview of ISP' IEEE Trans, on S o ftw a re
Engineering Vol SE-12 No 2 February (1986) 222-240

P P-S Chen
'The Entity-Relationship Model - Toward a Unified
View of Data' ACM Trans, on Database Systems Vol 1
No 1 March (1976) 9-36

R H Cobb
'In praise of 4GLs' Datamation Vol 31 No 14 July (1985)
90-96

COMPCON Spring 89 34th IEEE Computer Society
International Conference 27 February - 3 March 1989
San Fransisco, USA, IEEE Computer Society Press (1989)

S Cook
'Languages and object-oriented programming' Software
Engineering Tournal Vol 1 No 2 March (1986) 73-80

D C Cooper

-100-

[Cox84]

[Deamley83]

[DeWitt79]

[Ewin84]

[Ewin85a]

[Ewin85b]

[Fishman87]

[Flynn72]

[Forage85]

[Gallizi90]

Diunugrupny

'A Data Dictionary System' BSc Project Report, Dept, of
Computer Studies, Sheffield City Polytechnic (1983)

B J Cox
'Message/Object Programming: An Evolutionary
Change in Programming Technology' IEEE Software
Vol 1 No 1 January (1984) 50-61

P A Deamley and P J Mayhew
'In favour of system prototypes and their integration
into the systems development cycle' The Computer
Tournal Vol 26 No 1 (1983) 36-42

D J DeWitt
'DIRECT - A Multiprocessor Organization for
Supporting Relational Database Management Systems'
IEEE Trans, on Computers Vol C-28 No 6 June (1979)
395-406

N A Ewin
'Computer Estimating for a Speculative House Builder
Using 4th Generation Software Tools' Internal Research
Paper R /D /84/3 , Dept of Building, Sheffield City
Polytechnic (1984)

N A Ewin
'Advanced Application Software for Speculative
Housing Companies' MPhil Thesis (CNAA), Sheffield
City Polytechnic (1985)

N A Ewin, F Poole, R Oxley
'DB4GL: A Fourth Generation System Prototyping Tool'
Sheffield City Polytechnic Report, Dept, of Building
Internal Research Paper R /D /85/2 (1985)

D H Fishman et al
'Iris: An object-oriented database management system'
ACM Trans, on Office Automation Systems Vol 5 No 1
January (1987) 48-69

M J Flynn
'Some computer organizations and their effectiveness'
IEEE Transactions Vol C21 (1972) 948-960

G Forage
'Fourth-generation languages and advanced software
development aids' Data Processing Vol 27 No 9
November (1985) 6-8

E Gallizi, M Cannataro, G Spezzano, D Talia

- 101 -

'A Deadlock-Free Communication System for a
Transputer Network' in Proc of OUG-12 [Turner90]
11-21

[Gardarin83]

[Gimarc87]

[Gray90a]

G Gardarin et al
'SABRE: A relational database system for a
multiprocessor machine' in [Hsiao83] 19-35

C E Gimarc and V M Milutinovic
'A survey of RISC processors and computers of the mid-
1980s' IEEE Computer September (1987) 59-69

J P Gray and F Poole
'Parallel-DB4GL: An Implementation of a Self-
Describing Object-Oriented Database Application
Generator on Transputer Hardware' in Proc. of OUG12
[Tumer90] 34-49

[Gray90b] J P Gray and F Poole
'A Transputer Based Implementation of a Parallel
Database System' in A Brown and P Hitchcock (eds)
BNCOD-8 Proc. of 8th British National Conference on
Databases 9-11 July 1990, York, UK, Pitman Publishing
(1990) 32-63

[Gjessing88]

[Grimsdale89]

S Gjessing and K Nygaard (eds)
Proc. of ECOOP'88 European Conference on Object-
Oriented Programming Oslo, Norway, August 15-17
1988, Springer-Verlag (1988)

C H R Grimsdale
'Distributed operating system for transputers'
Microprocessors and Microsystems Vol 13 No 2 March
(1989) 79-87

[Heever89] R J van den Heever and D G Kourie
'Design of Distributed Systems: Object-Oriented Event
Driven Approach' in [Neishlos89] 113-122

[Henderson-Sellers90]
B Henderson-Sellers and J M Edwards
'The Object-Oriented Systems Life Cycle' Comm s. of the
ACM Vol 33 No 9 September (1990) 142-159

[Hird89] BTHird
'Process Logic for an Expert Database System' PhD
Thesis (CNAA), Sheffield City Polytechnic (1989)

[Hoare78] C A R Hoare

[Horowitz85]

[Howe83]

[Hsiao83]

[Hudson89]

[Hull89]

[Inmos88a]

[Inmos88b]

[Inmos88c]

[Inmos88d]

[Inmos89a]

[Inmos89b]

[Inmos89c]

m on ograpn y

'Communicating sequential processes' Comms. of the
ACM Vol 21 No 8 August (1978) 666-677

Horowitz and Ellis et al
'A Survey of Application Generators' IEEE Software Vol
2 No 1 January (1985) 40-54

D R Howe
Data Analysis for Date Base Design Edward Arnold
Publishers Ltd (1983)

DK Hsiao (ed)
Advanced Database Machine Architectures Prentice-
Hall (1983)

S E Hudson and R King
'Cactis: A Self-Adaptive, Concurrent Implementation of
an Object-Oriented Database Management System'
ACM Trans, on Database Systems Vol 14 No 3
September (1989) 291-321

M E C Hull, A Zarea-Aliabadi, and D A Guthrie
'Object-oriented design, Jackson system development
(JSD) specifications and concurrency' S o ftw a re
Engineering Tournal March (1989) 79-86

Inmos Ltd
Transputer Reference Manual Prentice Hall (1988)

Inmos Ltd
occam 2 Reference Manual Prentice Hall (1988)

Inmos Ltd
Transputer Development System Prentice Hall (1988)

Inmos Ltd
Transputer Instruction Set: A Compiler Writer’s Guide
Prentice Hall (1988)

Inmos Ltd
Transputer Technical Notes Prentice Hall (1989)

Inmos Ltd
The Transputer Databook 2nd edition (1989) Inmos Ltd,
Inmos Document No 72 TRN 203 01

Inmos Ltd
The Transputer Development and iq systems Databook
First edition (1989) Inmos Document No 72 TRN 219 00

-103-

[Inmos89d]

[Inmos90]

[Jackson83]

[Jardin e77]

[Johnson83]

[Kerridge87]

[Kerridge89]

[Kilo86]

[Knowles89]

[Knowles90]

[Korson90]

[Laenens88]

tsw n ograpn y

Inmos Ltd
Occam 2 Toolset User Manual Inmos Document No 72
TDS 184 00 (1989)

Inmos Ltd
HI Transputer: Product preview September (1990)
Inmos Document No 42 1473 00

M A Jackson
System Development Prentice-Hall (1983)

D A Jardine (ed)
The ANSI/SPARC DBMS Model Proc. of the 2nd
SHARE Working Conference on Data Base
Management Systems, Montreal, Canada, 26-30 April
1976, North-Holland (1977)

J R Johnson
'A prototyping success story' Datamation November
(1983) 251-256

J M Kerridge
'DRAT - A Proposal for a Dynamically Reconfigurable
Array of Transputers to support database applications'
in Proc. of OUG-7 [Muntean87]

J M Kerridge, S Wright, and R Oates
'Design, Abstract Data Types and occam' in Proc. of
QUG-10 [Bakkers89] 29-45

G Kilo
'Screen Painter' BSc Project Report, Dept of Computer
Studies, Sheffield City Polytechnic (1986)

A Knowles and T Kantchev
'Message passing in a transputer system '
Microprocessors and Microsystems Vol 13 No 2 March
(1989) 113-123

D Knowles
'Mapping a Mascot 3 design into Occam' Softw are
Engineering Tournal Vol 5 No 4 July (1990) 207-213

T Korson and J D McGregor
'Understanding Object-Oriented: A Unifying Paradigm'
Comms. of the ACM Vol 33 No 9 September (1990) 40-
60

E Laenens and D Vermeir

-104-

DiouogTwpny

[090]

[Lindsjorn88]

[Luker86]

[Mark85]

[Mark86]

[May90]

[McCraken82]

[Micro85]

[Missikof83]

[Muntean87]

'An Overview of OOPS+, An Object-Oriented Database
Programming Language' in [Gjessing88] Proc. of
ECOOP88 350-373

Q Li,N Rishe, D Tal
'RISC processors in a massively parallel database
machine' Microprocessors and Microsystems Vol 14
No 6 July/August (1990) 351-356

Y Lindsjorn and D Sjoberg
'Database Concepts Discussed in an Object Oriented
Perspective' in [Gjessing88] Proc. of ECOOP88 300-318

P A Luker and A Bums
'Program generators and generation software' The
Computer Tournal Vol 29 No 4 (1986) 315-321

L Mark and N Roussopoulos
'The New Database Architecture Framework - A
Progress Report' in Information Systems: Theoretical
and Formal Concepts Proc. IFIP WG8.1 Working
Conference on Theoretical and Formal Aspects of
Information Systems, Sitges, Barcelona, Spain, 16-18
April 1985, North-Holland (1985) 3-18

L Mark and N Roussopolous
'Metadata Management' IEEE Computer Vol 19 No 12
December (1986) 26-36

D May and P Thompson
'Transputers and Routers: Components for Concurrent
Machines' in Proc. of the Occam Users Group 13th
Technical Meeting 18-20 September (1990) York, UK

D D McCraken and M A Jackson
'Life Cycle Concept Considered Harmful' A C M
SIGSOFT Software Engineering Notes Vol 7 No 2 April
(1982) 29-32

MicroFocus Ltd
Professional COBOL Language Reference Manual
MicroFocus Ltd (1985)

M Missikof and M Terranova
'The architecture of a relational database computer
known as DBMAC' in [Hsiao83] 87-108

T Muntean (ed)
Proc. 7th occam User Group Meeting Grenoble, France,
14-16 September (1987)

-105-

Bib l iography

[Neishlos89]

[Nelson85]

[Neuhold86]

[Ng89]

[OUe78]

[Oakley89]

[Patterson88]

[Patterson89]

[Peel89]

[Perihelion89]

[Plessman88]

H Neishlos (ed)
Parallel Processing: Technology and Applications Proc.
of the International Symposium 26-28 October 1988,
Johanasburg, SA, IOS Press (1989)

K Nelson
'Technical requirements of fourth-generation
languages' Data Processing Vol 27 No 9 November
(1985) 12-15

E J Neuhold
'Objects and Abstract Data Types in Information
Systems' in Database Semantics (DS-1) by T B Steel and
R Meersman (eds) North-Holland (1986) 1-12

SNg
'Some design issues of disk arrays' in [Compcon89] 137-
142

T W Olle
The Codasvl Approach to Data Base Management John
Wiley & Sons (1978)

H Oakley
'Mercury: an operating system for medium-grained
parallelism' Microprocessors and Microsystems Vol 13
No 2 March (1989) 97-102

D A Patterson, G Gibson, R H Katz
'A case for Redundant Arrays of Inexpensive Disks
(RAID)' in [Sigmod88] 109-116

D A Patterson, P Chen, G Gibson, R A Katz
'Introduction to Redundant Arrays of Inexpensive
Disks (RAID)' in [Compcon89] 112-117

R M A Peel
'Issues Raised while Implementing a Layered Protocol
using Occam and the Transputer' in Proc. of OUG-10
[Bakkers89] 152-164

Perihelion Software Ltd
The Helios Operating System Prentice-Hall (1989)

K W Plessman and L Tassakos
'Concurrent, object-oriented program design in real
time systems' Microprocessing and Microprogramming
Vol 24 (1988) 257-266

-106-

m ou ograpn y

[Poole87]

[Priti86]

[Qiang88]

[Ratcliff87]

[Rishe89]

[Roebbers89]

[Roscoe87]

[Roussopoulos85]

[Salem86]

[Schneider89]

[Schweppes83]

[Senko73]

F Poole
'DB4GL - An Intelligent Database System' in Research
Papers of the Conference on Automating Systems
Development Leicester Polytechnic, UK, April (1987)

C Priti
'A Normalization Engine with a Report and Entity
Restructuring Facility' BSc Project Report, Dept of
Computer Studies, Sheffield City Polytechnic (1986)

X M Qiang and S Turner
'Randomized Routing : "Hot Potato" Simulations' in
Proc. of OUG-9 [Askew88] 81-90

B Ratcliff
Software Engineering: principles and methods
Blackwell Scientific Publications (1987)

N Rishe, D Tal, and Q Li
'Architecture for a Massively Parallel Database
Machine' Microprocessing and Microprogramming Vol
25 (1989) 33-38

H Roebbers and M Vlot
'A Communication Processor on the Transputer' in
Proc. of QUG-10 [Bakkers89] 143-151

A W Roscoe
'Routing messages through networks: an exercise in
deadlock avoidance' in Proc. of OUG-7 [Muntean87]

N Roussopoulos and L Mark
'Schema Manipulation in Self-Documenting Data
M odels' International Tournal of Computer and
Information Sciences Vol 14 No 1 (1985) 1-28

K Salem and H Garcia-Molina
'Disk Striping' in Proc. of the 2nd IEEE International
Conference on Data Engineering Los Angeles, USA,
February (1986) 336-342

D A Schneider, D J DeWitt, S Ghandeharizadeh
'An overview of the Gamma database machine' in
[Compcon89] 162-166

H Schweppes et al
'RDBM - a dedicated multiprocessor system for database
management' in [Hsiao83] 36-86

M E Senko, E B Altman, M M Astrahan and P L Fehder

-107-

o iou ograpn y

[Senko76]

[Semandas87]

[Sigmod88]

[Stefik84]

[Stonebraker86]

[Storer88]

[Stringer89]

[Stroustrup86]

[Turner 90]

[Tsichritzis78]

[Wasserman90]

'Data Structures and Accessing in Data-base Systems'
IBM Systems Tournal Vol 12 No 1 (1973) 64-93

M E Senko
'DIAM as a Detailed Example of the ANSI SPARC
Architecture' in G M Nijssen (ed) Modelling in Data
Base Management Systems North-Holland (1976) 73-94

A Sernandas, C Semandas, and H Ehrich
'Object-Oriented Specification of Databases: An
Algebraic Approach' Proc. of 13th VLDB Conference
Brighton, UK, (1987) 107-116

Proc. of the ACM SIGMOD International Conference on
the Management of Data Chicago, Illinois, USA, 1-3
June 1988, ACM Press (1988)

M Stefik and D G Bobrow
'Object-Oriented Programming: Themes and
Variations' The AI Magazine (1984) 40-62

M Stonebraker
'The Case for Shared Nothing' IEEE Database
Engineering Vol 9 No 1 (1986) 4-9

R Storer
'Data-driven software design using inversion'
Information and Software Technology Vol 30 No 2
March (1988) 99-107

R Stringer and L C Waring
'Transputer based database organization - an example
protein database implemented using pipeline and
hypercube configurations' in Proc. of QUG-10
[Bakkers89] 296-300

B Stroustrup
The C++ Programming Language Addison-Wesley
(1986)

S J Turner (ed)
Tools and Techniques for Transputer Applications Proc.
of OUG-12 2-4 April 1990, Exeter, UK, IOS Press (1990)

D Tsichritzis and A Klug (eds)
'The AN SI/X3/SPARC DBMS Framework' Information
Systems Vol 3 (1978) 173-191

A I Wasserman, P A Pircher, and R J Muller

-108-

o w u o g ra p n y

[Welch89]

[Wiederhold86]

[Williams89]

[Wirfs-Brock90]

[Xerox81]

[Zhao88]

'The Object-Oriented. Structured Design Notation for
Software Design Representation' IEEE Computer Vol 23
No 3 March (1990) 50-63

P H Welch
'TRANSNET - A Transputer-Based Communications
Service' in Proc. of QUG-10 [Bakkers89] 198-212

G Wiederhold
'Views, Objects and Databases' IEEE Computer Vol 19
No 12 December (1986) 37-44

R Williams and J Adkinson
'Increasing Diskette Capacity with Floptical Technology'
in [Compcon89] 148-150

R J Wirfs-Brock and R E Johnson
'Surveying current research in object-oriented design'
Comms. of the ACM Vol33 No 9 September (1990) 104-
124

Xerox Learning Research Group
'The Smalltalk 80 System' Byte August (1981)

L Zhao and S A Roberts
'An Object-Oriented Data Model for Database
Modelling, Implementation and Access' The Computer
Tournal Vol 31 No 2 (1988) 116-124

-109-

Appendix A

Algorithm Syntax Definition

The Occam-style syntax of the language used to describe the algorithms of P-
DB4GL processes, such as, entity and schema handlers, routers, and
multiplexors, is based on the definition of Occam 2 given in the Reference
Manual [Inmos88b]. The Occam-style syntax is extended by the
incorporation of fold lines used in the editor of the Transputer
Development System (TDS) [Inmos88c]. A fold line is marked by three dots
(...), and denotes a block of Occam text currently hidden from view. Fold
lines, should not be confused with comment lines, marked by two hyphens
(—), which are used to indicate comments ignored by a compiler. The
Occam-style syntax conforms to the rules defined for comment use given in
the Reference Manual. The only permitted departure, from the syntax
defined by the Reference Manual and the TDS editor, is the special use of
three dots (...) without a fold line name in procedure parameter lists, to
denote unspecified formal channel parameters.

The following examples of procedure definitions using the Occam-style
syntax demonstrate the use of fold lines, comment lines, and the special
unspecified channel denotation.

PROC Process.with.chans (CHAN OF BYTE in, out)
— a comment at the start of process
SEQ

... initialise fold
— main body now follows
... main body fold

PROC Process.not.specified (...)
— an example of special use of
— three dots to denote unspecified formal
— channel parameters
... some constant declarations
SEQ

... main body

Appendix B

Message Formats and Occam Channels

In the develoment of the prototype P-DB4GL system, and also in the designs
for a fully functional multiprocessor version of P-DB4GL, several different
inter-process message types are used. The different message types vary
considerably in respect of their typical sizes and message format. All of the
messages are communicated on Occam channels, for which Occam2 channel
protocols have been defined (Appendix L). Most P-DB4GL message
communications conform to a higher level request-reply protocol, and
require two unidirectional Occam channels to effect this communication.
Some request-reply communications have different message formats, with
different Occam channel protocols, for the separate request and reply
messages: for example, the Filer to entity handler messages communicated
on the request-reply channel pair defined by the FILER.REQ and
RILER.REPLY Occam protocols. Whereas, the Basic Communication Unit
(BCU) request-reply communications use the same message format (and
Occam channel protocol) for messages carried on both the request and reply
components of the BCU channel pair.

In the following section, the principal message types in the P-DB4GL systems
are described; namely, the BCU, BCUX, BCUXR, and Filer message types.
The formats of these message types are illustrated in Figure Bl. The Occam 2
channel protocols used for communication of these message types are given
in Appendix L. The protocol definitions use a number of system constant
values, which are provided in Appendix K.

Principal P-DB4GL Message Types

BCU

The Basic Communication Unit (BCU) message is the primary message type
for communication between the constituent code processes used to
implement P-DB4GL applications. Each P-DB4GL code process usually has
many BCU channels, and BCU channel arrays, for connection to other such
processes. A BCU message is composed of the following fields:

Eh.number, a four digit integer used to indicate the process
number of a code process;

-111-

n yy cr iu iA , u

Eh.mode, a single character used indicate the type of operation
action invoked by the message ('E' - entity action, 'A' - attribute
action),
Eh.operation, a four digit integer denoting either the entity-action
code invoked, or the attribute number of an attribute-action
message;
E.h.stat, a single character indicating the error status of a message;
Eh.io, indicating whether an action is for output or input;
Eh.val, the data component of a BCU message, including the
length of the data item.

Both the request and reply messages have the same message format. The
fields that are not data are considered as protocol overhead. In the current
representation, each BCU message has an overhead of 12 bytes.

BCUX

The BCU-extended (BCUX) message is used to communicate messages
between P-DB4GL code processes with multiplexed BCU channels. It extends
the BCU message format with two additional fields:

Source.object, an eight character field indicating the object type
and identifier of the process sending the message;
Destination.object, another eight character field indicating the
object type and identifier of the intended recipient of the message.

Both the request and reply messages have the same format, and the protocol
overhead is increased by 16 bytes to a total of 28 bytes per message.

BCUXR

The BCUX-ring message is used for inter-processor communication in the
ring topology of the multiprocessor P-DB4GL networks. It extends the BCUX
message format with three fields:

the Source.node identifier locating the originating process of the
message;
the Destination.node identifier locating the intended recipient
process of the message;
the length of the BCUXR message in bytes.

Both the request and reply messages have the same format, and the protocol
overhead is increased by 3 bytes to a total of 31 bytes per message.

-112 -

sippenuix d

Filer

The Filer messages are used in P-DB4GL applications for communication
between entity handler processes and Filer processes acting as Filer
Harnesses (see Appendix E) for the attached entity handlers. There are two
Occam channel protocols, FILER.REQ and FILER.REPLY, defined for the
request and reply messages. Both request and reply messages have variant
formats; that is, each message has a preceding tag field followed by optional
data fields containing key, record, or file description information. For the
request message, the tag indicates the invoked Filer operation. For the reply
message, the tag indicates the success or failure of the invoked operation.

In the prototype P-DB4GL test applications, Filer processes are directly
connected to entity handlers without any intermediate channel
multiplexing or message routing. There is no protocol overhead, only the
tag field. However, in the designs for a fully functional P-DB4GL presented
in Chapter 6, some Filer channels are multiplexed. This would require
extensions to the existing message formats and Occam channel protocols,
such as the addition of channel or process identifier fields.

-113 -

Appendix

BCU

E h.num ber Eh.mode Eh.operation Eh.stat Eh.io Eh.val

BCUX

Source.object Destination.object BCU message

BCUX

Message.length Source.node Destination.node BCUX message

HLER.REQ and FILER.REPLY

Tag Held optional data fields

Figure BX - P-DB4GL Message Formats

Appendix C

Entity and Schema Handler Algorithms

Entity Handlers and schema handlers are the data access processes used in
the implementation of the generated DB4GL database applications.

Each entity handler maintains a single indexed-sequential file of records
which is the physical realisation of the relation representing an Information
Unit’s (IU) extension. Each IU occurrence is realised as a single record in
this file. All operations on IU occurrences, for example insertion, deletion,
modification, are performed by the IU's entity handler. These operations are
invoked by other data access processes sending a BCU request message to the
entity handler. If the message is valid, the entity handler performs the
requested operation and returns a reply message containing status
information indicating the success or failure of the invoked operation and
IU data (if requested). Full descriptions of all the operations performed by
entity handlers can be found in [Ewin85a] and [Hird89]. The operations are
classified into two main types:

• entity actions, such as STORE/READ/DELETE records (IU
occurrences);

• attribute actions, MOVE-IN and MOVE-OUT, whereby attribute
values are written to and read from the entity handler's current
record (part of the entity handler's state vector, and used to hold
the attribute values of the last IU occurrence read from or written
to file).

A prime-view IU is supported by a prime entity handler and a non-prime
view IU by a coupling entity handler. Prime and coupling entity handlers
differ only slightly, both perform the same operations on IU occurrences.
The only exceptions are:

• coupling entity handlers do not themselves update other entity
handlers;.

• a coupling entity handler will only perform an update operation
when this is invoked by a message originating from its prime
entity handler.

Unless directed otherwise, all references to entity handlers in the following
algorithms include both prime and coupling entity handlers.

A schema handler is used to implement an application task's data access
schema. A schema handler controls access to an application task's entity

-115-

r\yycnuix

handlers. Within an application task, all data access messages intended for
entity handlers are first directed to, and processed by, the application task’s
schema handler, before being forwarded by the schema handler to the
intended entity handler. The only exception to this rule is the update of
coupling entity handlers by a prime entity handler. The BCU request/reply
messages from the prime entity handler, invoking the update operations at
the coupling entity handlers, are sent there directly, without being
forwarded by the schema handler. The main processing activity performed
by the schema handler is schema link realisations, that is, prefetching
records (IU occurrences) related by schema links. Schema links represent a
unidirectional mapping from a source attribute of one IU to a target attribute
of another IU. This target attribute forms part of the primary key of the
target IU. When a source attribute value is altered, which may be caused by
the update of an IU occurrence, the schema link is triggered. The new
attribute value is moved into the entity handler of the target attribute IU
and a READ operation is invoked at the target entity handler to fetch an IU
occurrence (record) with a new key value from the file.

In the sequential implementation of DB4GL, the message passing between
data access processes is achieved by passing parameters between COBOL code
modules at code module call and returns. For P-DB4GL, in which data access
processes are implemented as concurrent Occam processes, message passing
is performed using inter-process Occam channels and the Occam
communication primitives to send and receive messages on these channels.
In the algorithms presented below, the particular mechanisms used to effect
this message passing, for example formal channel parameters on Occam
procedure definitions, have been omitted for reasons of clarity.

Four different versions of the P-DB4GL data access processes (prime entity
handler, coupling entity handler, and schema handler) have been
implemented. Each of the four versions is functionally equivalent to, and
has the same interface as, the other three versions; but the algorithm
encapsulated inside each handler process is different. That is, all versions
are identical in what they do, but each version differs in how they do it.

These data access processes have been used to construct many different test
applications. In all of the test applications, each constituent data access
process executes concurrently and independently, interacting with other data
access processes solely by message passing. However, the presence of this

-116-

sippenaix c

inter-process concurrency does not in itself produce performance
improvements when the test applications are executed on parallel
transputer hardware. Alterations to the purely sequential algorithms
contained within the data access processes can affect the inter-process
concurrent behaviour and hence improve overall performance; but it is the
incorporation of intra-process concurrency to the data access processes that is
crucial to obtaining maximum performance improvement. The reason for
the different versions of the data access handlers is to examine the precise
effect of this intra-process concurrency on test application performance,
whilst maintaining the same functionality.

The algorithms for the "original" (version 1) P-DB4GL handlers are based on
the descriptions of the DB4GL entity and schema handlers given in
[Ewin85a]. These "original" sequential algorithms are reproduced here in
pseudocode, along with their equivalent version 1 P-DB4GL data access
processes described using the Occam-style syntax defined in Appendix A.
The "modified" sequential (version 2) and the concurrent version 3 and
version 4 data access processes are also described using this Occam-style
syntax.

The "original" (version 1) entity and schema handler algorithms are:

PROCEDURE Entity.handler
initialise
WHILE running

receive request message to entity
validate message
IF valid message for this entity THEN

perform the invoked operation
IF couple updates triggered THEN

perform coupling entity updates
ENDIF

ENDIF
send reply message from entity
check for entity handler termination

END WHILE
ENDPROC

-117-

/ iypenaix c.

PROCEDURE Schema.handler
initialise
WHILE running

receive request message to schema
validate message
IF valid message for a schema entity THEN

send request message to entity
receive reply message from entity
process reply message from entity

ENDIF
send reply message from schema
check for schema handler termination

END WHILE
ENDPROC

The equivalent P-DB4GL version 1 data access processes, described using the
Occam-style syntax are:

PROC Entity.handler.vl (...)
— "original" sequential algorithm
SEQ

... initialise
WHILE running

SEQ
... receive request message to entity
... validate message
IF
valid.message

SEQ
... perform the invoked operation
IF

couple.updates.triggered
... perform coupling entity updates

TRUE — else
SKIP

TRUE — else
SKIP

... send reply message from entity

... check for entity handler termination

-118-

njj fJcriuiA

PROC Schema.handler.vl (...)
— "original” sequential algorithm
SEQ

... initialise
WHILE running

SEQ
... receive request message to schema
... validate message
IF
valid.message

SEQ
... send request message to entity
... receive reply message from entity
... process reply message from entity

TRUE — else
SKIP

... send reply message from schema

... check for schema handler termination

In the sequential implementation of DB4GL, in which an application task is
constructed from a number of separately compiled COBOL code modules
linked together in a hierarchical control structure, only one code module
can be executing at any given time. The exact ordering of instructions
within a handler's algorithm is not always important, different sequences of
instructions can often perform the same function and the overall execution
time of the application task remains the same. In P-DB4GL, the ordering of
instructions within a handler's algorithm can have a marked effect on the
overall execution time of an application task, inefficient sequential
algorithms can leave concurrent processes idle and unable to do any useful
processing.

The constituent data access processes in a P-DB4GL application task execute
concurrently, but certain sequences of instructions introduce processing
delays that inhibit inter-process concurrent processing thus impairing
overall application performance. In the "original" sequential version of the
schema handler, the schema reply message is not returned from the schema
handler until the entity handler reply message has been processed and any
necessary schema link realisation have been performed. However, as the
schema reply message is uneffected by the schema link processing, an
unnecessary delay is introduced to the P-DB4GL version 1 data access process
when the sequence of instructions in the "original" algorithm is
maintained.

-119-

sippenaix u

In the "modified" sequential (version 2) schema handler process, the
schema reply message is sent prior to the schema link processing. This
increases the amount of effective inter-process concurrent processing and
improves overall performance because the schema handler and user
processes "driving" the schema handler can both be processing concurrently.
The schema link processing can be performed by the version 2 handler in
the time interval before the arrival of the next schema request message. The
version 1 algorithm caused the schema handler to remain idle during this
time interval. A similar alteration is made to the P-DB4GL version 2 entity
handlers, allowing the entity reply message to be sent to the schema handler
before any coupling entity updates are performed. Thus enabling schema,
prime entity, and coupling entity handlers to all perform useful processing
concurrently.

PROC Entity.handler.v2 (...)
— "modified" sequential algorithm
SEQ

... initialise
WHILE running

SEQ
... receive request message to entity
... validate message
IF
valid.message

SEQ
... perform the invoked operation
... send reply message from entity
IF

couple.updates.triggered
... perform couple entity updates

TRUE — else
SKIP

TRUE — else, invalid message
... send reply message from entity

... check for entity handler termination

-120-

nppenuix i_

PROC Schema.handler.v2 (...)
— "modified" sequential algorithm
SEQ

. . . initialise
WHILE running

SEQ
... receive request message to schema
... validate message
IF
valid.message

SEQ
... send request message to entity
... receive reply message from entity
... send reply message from schema
... process reply message from entity

TRUE — else, invalid message
... send reply message from schema

... check for schema handler termination

In the version 3 data access processes intra-process concurrency is
introduced. The entity handler process is modified to permit state vector
inspection to occur concurrently with coupling entity update. The state
vector inspection procedure allows the entity handler to continue to receive
and process BCU request/reply messages from the schema handler, so long
as the messages only request to read the entity handler's state variables. The
state variables contain the attribute values of the current IU occurrence, that
is, the last record read from or written to the entity handler’s file. When a
message is received invoking an operation which would update the entity
handler's state, this message is blocked, and the state vector procedure
terminates. When the coupling entities have been updated, the blocked
message is processed as usual. A similar state vector inspection procedure is
added to the version 3 schema handler process to permit read only access to
a restricted number of entity handler’s states during schema link realisation.

-121-

/ippetiaix

PROC Entity.handler.v3 (...)
— concurrent algorithm
SEQ

... initialise
WHILE running

SEQ
IF
NOT message.blocked

... receive request message to entity
message.blocked

SKIP — message already received by sv inspection
... validate message
IF
valid.message

SEQ
... perform the invoked operation
... send reply message from entity
IF
couple.updates.triggered

PAR
... perform couple entity updates
... entity state vector inspection

TRUE — else, updates not triggered
SKIP

TRUE — else, invalid message
... send reply message from entity

... check for entity handler termination

s x p f j z n u i x u

PROC Schema.handler.v3 (...)
— concurrent algorithm
SEQ

... initialise
WHILE running

SEQ
IF
NOT message.blocked

... receive request message to schema
message.blocked

SKIP — message already received by sv inspection
... validate message
IF
valid.message

SEQ
... send request message to entity
... receive reply message from entity
... send reply message from schema
... check for schema link activation
IF

schema.links.triggered
PAR

... schema link realisation

... state vector inspection
TRUE — else, links not triggered

SKIP
TRUE — else, invalid message

... send reply message from schema
... check for schema handler termination

In the version 4 data access processes there are separate procedures for prime
and coupling entity handlers. The prime entity handler is modified to
incorporate concurrent update of its coupling entity handlers - this is
indicated by the replicated PAR construct. The coupling entity handler
allows state vector inspection to occur concurrently with update by its prime
entity handler. The schema handler has a modified schema link realisation
procedure which allows some of the links to be realised concurrently.

-123-

Appendix C

PROC Prime.Entity.handler.v4 (...)
— concurrent algorithm
SEQ

... initialise
WHILE running

SEQ
IF
NOT message.blocked

... receive request message to entity
message.blocked

SKIP — message already received by sv inspection
... validate message
IF
valid.message

SEQ
... perform the invoked operation
... send reply message from entity
IF

couple.updates.triggered
PAR

PAR i = 0 FOR no.of.couples
... update coupling entity i

... entity state vector inspection
TRUE — else, updates not triggered

SKIP
TRUE — else, invalid message

... send reply message from entity
... check for entity handler termination

PROC Coupling.Entity.handler.v4 (...)
— concurrent algorithm
SEQ

... initialise
WHILE running

SEQ
IF
NOT message.blocked

... receive request message to entity
message.blocked

SKIP — message already received by sv inspection
... validate message
IF
valid.message.from schema

SEQ
... perform the invoked operation
... send reply message from entity

valid.message. from.prime
PAR

... process prime messages until update completed

... state vector inspection by schema
TRUE — else, invalid message

... send reply message from entity
... check for entity handler termination

-124-

tiypcnuix

PROC Schema.handler.v4 (...)
— concurrent algorithm
SEQ

... initialise
WHILE running

SEQ
IF
NOT message.blocked

... receive request message to schema
message.blocked

SKIP — message already received by sv inspection
... validate message
IF
valid.message

SEQ
... send request message to entity
... receive reply message from entity
... send reply message from schema
... check for schema link activation
IF

schema.links.triggered
PAR

PAR i = 0 FOR no.of.links
... realise link i when ready

... state vector inspection
TRUE — else, links not triggered

SKIP
TRUE — else, invalid message

... send reply message from schema
... check for schema handler termination

Appendix D

Disc and Filer Algorithms

A Filer process is used to support the filing requirements of the entity
handlers in the P-DB4GL test applications. Each entity handler is connected
by a pair of Occam channels to a single Filer process which acts as a Filer
Harness for the attached entity handler. The behaviour of a Filer Harness
(FH) is defined in by the Filer Harness Specification (Appendix E). Each Filer
process is connected by another channel pair to a Disc process. A single Disc
process may be connected to many Filer processes. The set of all Filer and
Disc processes used within a particular P-DB4GL test application collectively
represent that test application's filing simulation. The algorithms for the
Filer and Disc processes are described below using the Occam-style syntax
defined in Appendix A.

There are two versions of the Filer process used in the P-DB4GL test
applications: Filer.vl and Filer.v2. Both versions function as an FH in an
identical manner and provide their attached entity handler with an Indexed-
Sequential (IS) file as defined by the Filer Harness Specification. However
the Filer process versions differ in their simulated disc access behaviour.
For Filer.vl it is assumed that all filing operations, invoked by the attached
entity handler on the FILER.REQ channel, have an equal probability of disc
access. Consequently, each invoked filing operation always results in a
communication on the Disc channel pair and causes an associated simulated
disc access delay.

PROC Filer.vl(CHAN OF FILER.REQ request.in,
CHAN OF FILER.REPLY reply.out,
CHAN OF BYTE disc.out,disc.in)

— "stores" records in an array in memory
SEQ

... initialise
WHILE running

SEQ
... receive filing request message
... perform invoked filing operation
— simulate disc access
SEQ

... output to Disc process

... input from Disc process
... send filing reply message
... check for process termination

-126-

I I f J f J C l l U l A . L J

Filer.v2 operates with slightly different assumptions about the likelihood of
disc access when filing operations are invoked. For Filer.v2, each filing
operation has a different probability of disc access. The Open and Close
operations both have a 100% probability of disc access. The Read operation
has a 90% probability. The Write, Rewrite, and Delete operations all have a
50% probability. The Read-Next operation has a 10% probability. All Start
operations have a 90% probability. The Terminate operation, because it is
not strictly a filing operation, communicates a special terminate message
with no associated disc access delay to the Disc process.

PROC Filer.v2(CHAN OF FILER.REQ request.in,
CHAN OF FILER.REPLY reply.out,
CHAN OF BYTE disc.out,disc.in)

— "stores" records in array an in memory
— with various probabilities of "disc access"
SEQ

. .. initialise
WHILE running

SEQ
... receive filing request message
... perform invoked filing operation
— simulate disc access
SEQ

... calculate disc access probability
IF
disc.access.indicated

SEQ — access disc
... output to Disc process
... input from Disc process

TRUE — else
SKIP — no disc access required

... send filing reply message

... check for process termination

The reason for assigning probabilities to the likelihood of disc access for each
filing operation is to more accurately simulate the behaviour of genuine
filing processes. It is assumed that in a fully functional P-DB4GL application,
operating with realistic database sizes, it is unlikely that an entire database
file could be held in the memory of a single processor. The number of data
and index records processed by a genuine filing process (comprising the
information unit extension belonging to a single entity handler) would be so
large as to be mostly stored on disc, with only a small fraction of the total
temporarily held in buffers in a processor's memory. As a consequence of
this buffering it is likely that for some invoked filing operations disc access
will not be necessary, because the required index and data records will
already be held in a buffer in memory. It is further assumed that because of

-127-

Appendix u

the index-sequential nature of the files, some file operations (such as a Read-
Next) have a greater probability of finding the required data in a buffer,
whereas other operations (such as a random Read) have a lower probability
and will more frequently need disc access.

It must be noted that the simulated disc access behaviour is not based the
measured performance of genuine filing software. Clearly the performance
of such software depends on so many factors such as: type and efficiency of
algorithms; number and size of buffers; memory size and interface; type of
disc and interface. Consequently, no inferences concerning the absolute
performance figures for fully functional P-DB4GL applications can be drawn
from the performance figures obtained from the prototype P-DB4GL test
applications using the simulated filestore. However, the simulated filestore
can be used to make valid conclusions about the relative performance of
different versions of the data access processes used in P-DB4GL test
applications.

PROC Disc([]CHAN OF BYTE disc.in,disc.out,
VAL INT no.of.filers,disc.delay)

SEQ
. .. initialise
WHILE running

— wait for "disc access" request from a Filer
ALT i = 0 FOR no.of.filers

disc.in[i] ? disc.request — accept disc access
SEQ — perform "disc access"

IF
(disc.request = disc.terminate)
... check for Disc process termination

TRUE — else
— perform timed delay
Delay(disc.delay)

disc.out[i] ! disc.reply — release disc

The Disc process represents a very crude simulation of disc access by Filer
processes in the P-DB4GL test applications. A key feature of the Disc process
is the facility to alter the Filer-Disc connections within a test application in
order to simulate the effect of different mappings of files to discs. Although
the Disc process has no provision for storing data, it does simulate
contention over the read/write mechanism of a genuine disc - only one of
the Filer processes connected to a Disc process can be accessing the disc at any
given time. A simple fixed size timed delay simulates the mechanical
properties of head movements and rotational delay. The size of this timed
delay is determined by a VAL parameter "disc.delay" in the Occam

-128-

n JJJJCTIUVJL u

procedure for the Disc process; this is an integer value in timer ticks (one
tick is 64 microseconds for processes executing at low priority). Typical
values used in the test applications are 0, 250, 500, and 1000 ticks (that is, 0,
16, 32, and 64 milliseconds). The Disc process terminates when all of its
connected Filer processes have sent it a non-disc access termination message.

-129-

Appendix E

Filer Harness Specification

The filer harness specification describes a persistent object, known as a Filer
Harness (FH) which provides filing functions for P-DB4GL database
applications. Specifically, one FH supports the filing requirements of a
single entity handler. In the prototype P-DB4GL system, a simulation of a
multiple disc filestore has been implemented using Filer and Disc processes.
The Filer process serves as an FH in the P-DB4GL test applications, and with
a few minor restrictions conforms to the filer harness specification. In a
fully functional P-DB4GL system, the filestore simulation will be replaced by
genuine discs and filing software which will provide an FH for each entity
handler. The filer harness specification only defines the function and
interface of the filing requirements for an entity handler, it does not specify
any physical or temporal characteristics.

An FH provides one unnamed Index-Sequential (IS) file. The IS file stores
fixed length records, each record identified by a single fixed length key. The
FH provides: operations to read, write, delete, and amend records;
operations to effect the current record pointer used in the control of
sequential reads; operations to open and close the IS file; and a terminate
operation to halt the execution of the FH. The behaviour of the FH IS file is
modelled on the IS file COBOL files [Micro85] used in the sequential
implementation of the DB4GL system [Ewin85a] [Hird89] from which the
Parallel-DB4GL system is derived. The COBOL IS file is more complicated
than the FH IS file which incorporates only a subset of the COBOL IS file
behaviour.

The FH operations can only be invoked by message passing. The
representation and implementation details of the FH are hidden from the
software objects that use it. When an entity handler interacts with an FH it
must conform to a strict request-reply message protocol. The entity handler
sends a request message to the FH indicating which operation it requires.
The FH responds to this request and returns a reply message which informs
the entity handler of the success or failure of the invoked operation and
contains data if requested.

The Filer process used as an FH in the P-DB4GL test applications is
implemented in Occam, and two Occam channels are used to support the

-130-

/ l y y c n u I X Lj

request-reply message interaction between the Filer process and entity
handler. These channels are defined by two Occam tagged protocols, the
FILER.REQ and FILER.REPLY protocols. Messages conforming to the
FILER.REQ protocol have a tag field indicating the FH operation requested
by the entity handler, followed by appropriate data fields. Reply messages
conforming to the FILER.REPLY protocol have a tag field indicating the
error status of the invoked FH operation followed by appropriate data fields
if the operation is successful. Successful operation messages have protocol
tags suffixed with ".ok". Failed operation messages have one of three error
tags: F.at.end, F.invalid.key, F.error. It is not essential for the Filer process,
or any other software object acting as an FH, to be implemented in Occam.
However, the FH must be capable of interfacing with the entity handler via
Occam channels conforming to the FILER.REQ and FILER.REPLY protocols.

In order to aid system development and testing, a number of variant forms
of FH are permitted (and variant Filer processes have been implemented).
In particular, some FH variants are capable of initialising themselves with
internally generated test data. When initialised, these test data FH's
generate a file of dummy records conforming to the appropriate file
description but with random field values.

When an FH is executed, it first initialises itself with test data (if required);
then, sets the current record pointer to undefined; and, in a closed state,
waits to receive a message from the filer request channel invoking an FH
operation. While it is in its closed state, only the open and terminate
operations can be successfully invoked in the FH, all other operations will
fail and return an error message. The FH will continue to receive operation
requests and send replies until a terminate message halts the FH execution.

The operations supported by the FH are listed below. Each operation has its
name and parameter list followed by the FILER.REQ protocol message that
invokes it, and a description of the operation.

open <i.o.status> <record.length> <key.length>

F .open; BYTE; INT; INT

If the FH is currently open, the open operation fails and an error
message (F.error) is returned.

-131-

Appenatx l

If the FH is currently closed, the record description and io status are
checked, an invalid record description or an invalid io status will result
in an error (F.error) being returned. If the record description and io
status are valid, the current record pointer is positioned to point to the
first existing record in key sequence, if no records exist, the current
record pointer points to the end of file. The FH is successfully opened
and an open ok (F.open.ok) message is returned.

A record description is invalid if:
(record.length <= 0) OR
(key.length <= 0) OR
(key.length > record.length) OR
(record.length > max.record.length) OR
(key.length > max.key.length)

otherwise it is valid. The maximum key length is 120, this is a limit
imposed in the COBOL implementation of DB4GL.

The io status is valid only if it has one of two permitted values: 'I' or
'O'. T is an abbreviation for input.mode, this opens the FH in a state
that permits read only access to its records. 'O' is an abbreviation for
input.output.mode, this opens the FH in a state that permits read and
write access to the records.

Note that, the FH open operation is similar to the COBOL OPEN a file
with DYNAMIC ACCESS MODE operation, i.e. both sequential and
random (Indexed) access is permitted. However, ALTERNATE
RECORD keys are not permitted.

dose

F .close

If the FH is currently closed, the close operation fails and an error
message is returned (F.error).
If the FH is currently opened, the FH is successfully closed and a
successful dose message (F.dose.ok) is returned.

read <key>

F .read; INT::[]BYTE

If the FH is currently closed, the read operation fails and an error
message is returned (F.error).
If the FH is currently opened, the stored record with a key value that is
equal to the supplied key value is located, the current record pointer is
updated to point to the located record and a successful read message
with the located record value (F.read.ok; INT::[]BYTE) is returned. If a
stored record cannot be located with the supplied key, the read
operation has failed, the current record pointer is undefined and an
error message (F.invalid.key) is returned.

-132-

n y y c n u i x c,

read next

F.read.next

If the FH is currently closed, the read next operation fails and an error
message is returned (F.error).
If the FH is currently opened, check the current record pointer, if it is
undefined then the read next operation has failed and an error message
(F.error) is returned. If the last operation to position the current record
pointer was either a read, read next or delete operation, then update the
current record pointer to point to the next stored record in key
sequence, if a record cannot be located the current record pointer is
updated to end of file. If the current record pointer is at end of file,
then the read next operation has failed, the current record pointer is
undefined and an error message (F.at.end) is returned. If the current
record pointer is not at end of file, the read next operation succeeds and
a successful message with the current stored record value
(F.read.next.ok; INT::[]BYTE) is returned.

write <record>

F .write; INT::[]BYTE

If the FH is currently closed or the FH is currently opened with io status
of T (read only access), the write operation fails and an error message
(F.error) is returned.
If the FH is currently open, check the validity of the supplied record. If
the supplied record is invalid or a stored record already exists with the
same key as the supplied record's key, then the write operation fails
and an error message (F.invalid.key) is returned. If the supplied record
is valid and no stored record already exists with the same key as the
supplied record, the write operation succeeds, the supplied record
becomes one of the stored records and a successful write message
(F.write.ok) is returned.

rewrite <record>

F .rewrite; INT::[]BYTE

If the FH is currently closed or the FH is currently opened with io status
of T (read only access), the rewrite operation fails and an error message
(F.error) is returned.
If the FH is currently open, check the validity of the supplied record. If
the supplied record is invalid or a stored record with the same key as
the supplied record’s key does not already exist, then the rewrite
operation fails and an error message (F.invalid.key) is returned. If the
supplied record is valid and a stored record already exists with the same
key as the supplied record, the rewrite operation succeeds, the supplied
record replaces the stored record of the same key and a successful
rewrite message (F.rewrite.ok) is returned.

-133-

Appendix t

delete <key>

F .delete; INT::[]BYTE

If the FH is currently closed or the FH is currently opened with io status
of T (read only access), the delete operation fails and an error message
(F.error) is returned.
If the FH is currently open, check the validity of the supplied key. If the
supplied key is invalid or a stored record with the same key as the
supplied key does not already exist, then the delete operation fails and
an error message (F.invalid.key) is returned. If the supplied key is valid
and a stored record already exists with the same key as the supplied key,
the delete operation succeeds, the stored record is removed from the
FH, the supplied key value is now available for subsequent writes to
the FH, and a successful delete message (F.delete.ok) is returned.

start equal <key>

F .start.equal; INT::[]BYTE

If the FH is currently closed, the start equal operation fails and an error
message (F.error) is returned.
If the FH is currently opened, check the validity of the supplied key. If
the supplied key is invalid, the operation has failed, the current record
pointer is undefined and an error message (F.invalid.key) is returned.
If the supplied key is valid, the current record pointer is positioned to
the stored record whose key is equal to the supplied key, and a
successful start message (F.start.ok) is returned: if no such stored record
exists, then the operation fails, the current record pointer is undefined
and an error message (F.invalid.key) is returned.

start greater <key>

F .start.greater; INT::[]BYTE

If the FH is currently closed, the start greater operation fails and an
error message (F.error) is returned.
If the FH is currently opened, check the validity of the supplied key. If
the supplied key is invalid, the operation has failed, the current record
pointer is undefined and an error message (F.invalid.key) is returned.
If the supplied key is valid, the current record pointer is positioned to
the first stored record whose key is greater than the supplied key, and a
successful start message (F.start.ok) is returned: if no such stored record
exists, then the operation fails, the current record pointer is undefined
and an error message (F.invalid.key) is returned.

-134-

Siy f /K T IU IX Ej

start not less <key>

F .start.not.less; INT::[]BYTE

If the FH is currently closed, the start not less operation fails and an
error message (F.error) is returned.
If the FH is currently opened, check the validity of the supplied key. If
the supplied key is invalid, the operation has failed, the current record
pointer is undefined and an error message (F.invalid.key) is returned.
If the supplied key is valid, the current record pointer is positioned to
the first stored record whose key is not less than the supplied key, and a
successful start message (F.start.ok) is returned: if no such stored record
exists, then the operation fails, the current record pointer is undefined
and an error message (F.invalid.key) is returned.

terminate

F.terminate

When the FH receives this message it checks to see if it is in a valid
state to allow termination - currently there are no states of the FH for
which termination is defined to be invalid. If the FH is in a valid state
for termination, then a successful termination message
(F.terminate.ok) is returned and execution of the FH is halted,
otherwise an error message (F.error) is returned.

-135-

/ ippenaix £

Representation of Records and Keys for the Filer Harness Channel Protocols

Records and keys are represented in the two FH protocols, FILER.REQ and
FILER.REPLY, as ASCII byte strings. Key strings are of length 1 to
max.key.length, record strings are of length 1 to max.record.length. Every
record has a key part, that is, for any given record, a substring of the record
from the zeroth byte (or character) for key .length number of characters is the
key part of that record. The remainder of the record is the data part. Records
may consist solely of key part (i.e. the data part is of length zero), but records
must be at least as long as their key part. All the stored records in an FH
must be of an equal and fixed length. This length is fixed when the FH is
first opened and is determined by the record length value of the record
description parameter. Only keys of equal length can be compared.

key part data part

Oth byte Mm-l)th byte (n-l)thbyte

a record of length n with key length m

Figure El - Filer Harness Record Representation

-136-

svppenaix t,

Occam 2 Protocol and Constant Declarations required for Filer Harness
Implementation

— ********************* Constants **********************
VAL INT max.attribute.value.length IS 80 :
VAL INT max.no.of.fields IS 20 :
VAL INT max.no.key.fields IS 19 :
VAL INT max.record.length IS (max.no.of.fields *

max.attribute.value.length) :
VAL INT max.key.length IS 120 :
VAL BYTE input.mode IS 'I1 :
VAL BYTE input.output.mode IS 'O' :
VAL BYTE null.char IS 0 (BYTE) :
VAL BYTE numeric IS '9 * :
VAL BYTE character IS 'X' :
— ***************** Filer Protocols ********************
— <file.description> = <i.o.status> <record.description>
— <i.o.status> = BYTE
— crecord.description> = <record.length> <key.length>
— Crecord.length> = INT
— ckey.length> = INT
— <key> = INT::[]BYTE
— <record> = INT::[]BYTE
PROTOCOL FILER.REQ

CASE
F .open; BYTE; INT; INT
F .close
F .read; INT::[]BYTE
F .read.next
F .write; INT::[]BYTE
F .rewrite; INT::[]BYTE
F .delete; INT::[]BYTE
F .start.equal; INT:: []
F .start.greater; INT::
F .start.not.less; INT:
F.terminate

PROTOCOL FILER.REPLY
CASE

F .open.ok
F .close.ok
F .read.ok; INT::[]BYTE
F .read.next.ok; INT::[
F.write.ok
F .rewrite.ok
F .delete.ok
F .start.ok
F .terminate.ok
F.at.end
F .invalid.key
F .error

<file.description>
<key>

— <record>
— <record>
— <key>

BYTE — <key>
[]BYTE — <key>
: [] BYTE — <key>

— <record>
] BYTE — <record>

-137-

Appendix F

User Process Test Harness

The User Process Test Harness (User Harness) has been used to supply P-
DB4GL test applications with test data. The test data is supplied in the form
of Basic Communication Unit (BCU) messages sent out and received on a
pair of Occam channels conforming to the BCU request-reply protocol. This
BCU channel interface is identical to that of a P-DB4GL User Process and the
User Harness has been used as a substitute for genuine User Processes in the
P-DB4GL test applications.

The User Harness exists in a number of variant forms. There are versions
for execution on different processor types and different transputer boards.
There are two modes of operation for the User Harness: interactive mode,
whereby single BCU messages are composed at a terminal then transmitted
to and received from the test application; and batch mode, in which a set of
test data already stored in the User Harness, and composed of many BCU
messages, is run through the test application. All versions of the User
Harness record the processing time for each BCU message (measured as the
time interval between sending a BCU-request message and receiving the
corresponding BCU-reply message).

The “stand-alone" versions of the User Harness are only capable of
interactive operation. However, they are small programs and can execute
on processors with very little external memory (ie less than 64K). They can
only measure the processing time of each individual BCU message
composed and sent to the test application, and have no facility to file a trace
of the messages sent.

The "EXE" versions of the User Harness can operate in either interactive or
batch mode, and can store a trace file of the BCU request-reply message
contents and processing times. When operated in batch mode they can also
record and file a trace of the transaction processing times. Each test data set
for batch mode operation is composed of several "transactions", or
significant database operations (such as Store a record). These "transactions"
are decomposed into several smaller "atomic" actions, each represented by a
BCU message (Figure FI).

-138-

n.yfjcnuix r

A sequence of transactions can be optimised to reduce the total number of
BCU messages communicated (Figure F2). The P-DB4GL User Processes
typically communicate highly optimised sequences of BCU messages in
which it would be difficult to discern the transaction boundaries from an
examination of the BCU message stream. It must be noted that the
"transaction" used in the testing of P-DB4GL applications is not an
indivisible collection of updates identified for the purposes of locking and
recovery, it is merely a convenient way of referring to a significant database
operation.

An additional feature of the User Harness, when operated in batch mode, is
the facility to introduce timed delays into the BCU message stream
transmitted during a test run. There are two sorts of delay: inter-BCU, and
inter-transaction. An inter-BCU delay is inserted between the receipt of a
BCU-reply message and the transmission of the next BCU-request message
in the test data set. Inter-transaction delays are inserted between transaction
boundaries marked in the test data sequence. The purpose of these inter-
BCU and inter-transaction delays is to simulate the delays associated with
processing load and user response occurring in genuine P-DB4GL User
Processes. The presence of these delays has a marked effect on the
performance of the data access processes. Figure F3 illustrates the processing
and idle times for a User Harness and versions 1 and 2 of a schema handler
during a sequence of BCU messages; and Figure F4 shows the combined
effect of inter-BCU and inter-transaction delays upon these times. However,
the User Harness does not fully simulate genuine User Processes; because
during a timed delay the User Harness is descheduled on a transputer and
does not load a processor in the same way as a genuine User Process would.

-139-

A ppen dix t

Handl
BCU

protocol /Schema
->4Handlen

Data Access Modules
CUSTOMER
Cust# CName CAddr

User Harness Stores a Customer Record
Sequence of BCU messages:

1. Open Customer Entity Handler
2. Move in Cust# Attribute
3. Move in CName Attribute
4. Move in CAddr Attribute
5. Write Customer Entity Handler
6. Close Customer Entity Handler

Total of 6 BCU messages

Figure FI - A Single Transaction

-140-

appendix

User Harness Stores, Updates, and Deletes
a Customer Record

Non-ODtimised Seauence of Transactions:
Transact ion No of BCU messages
T1 Store Record 6

1. Open Customer
2. Move in Cust#
3. Move in CName
4. Move in CAddr >
5. Write Customer
6. Close Customer

T2 Update Record 7
1. Open Customer
2. Move in Cust#
3. Read Customer
4. Move out CAddr
5. Move in (updated) CAddr
6. Rewrite Customer
7. Close Customer

T3 Delete Record 4
1. Open Customer
2. Move in Cust#
3. Delete Customer
4. Close Customer

Total of 17 BCU messages

ODtimised Seauence of Transactions:
Transact ion No of BCU messages
T1 Store Record 5

1. Open Customer
2. Move in Cust#
3. Move in CName
4. Move in CAddr
5. Write Customer

T2 Update Record 4
1. Read Customer
2. Move out CAddr
3. Move in (updated) CAddr
4. Rewrite Customer

T3 Delete Record 2
1. Delete Customer
2. Close Customer

Total of 11 BCU messages

Figure F2 - Optimised Sequence of Transactions

fijrpenuix r

A sequence of BCU messages sent from a User Harness
to version 1 and 2 Schema Handlers, showing the
proportions of processing and idle time

Time vl schema
handler

v2 schema
handler

(User N / Schema A f User \ S c h e m a A
Harness) y Handler) y Harness J y Handlery
rstart transaction

r ! Request— ^ ?
BCU 7

•?

BCU
Reply <■
Request

processing
_ , 1

processing

BCU
Reply <-

-! Request-

L? Reply<-
Lend transaction

processing

•start
B C u t?

transaction
Request--
Reply<-

' Iprocessing

BCU C?
Request-
Reply<-

proces ng

t?
Request-
Reply-^—BCU

*-end transaction
processing

improvement
in transaction
response time

Figure F3 - A Sequence of BCU Messages

-142 -

j. x y f j o n u

Effect of inter— BCU and inter— transaction delays
in the User Harness simulation on the processing
time of a sequence of transactions for the vl and
v2 schema handlers

Time vl schema
handler

v2 schema
handler

CUser f Schema r User N Schema "N
Harnessy V Handlery y Harness J y Handler J

r start transaction
>?

BCUfC
delay

BCU
■>?

delay
BCU

idle

idlerL?<"

■ > ?

Lend transaction
delay idle

i-start transaction
>?

BCU I

BCU

rstart transaction
p!-------------->?

BCUl?<----------- !
delay
idle

BCU
->? — i

delay
idle

BCU
end transaction

delay
rstart transaction

r!----------- >?
BCUL?

idle

idle

c;BCU1-?^

Lend transaction

Lend transaction

improvement in
response time

Figure F4 - Effect of User Harness Delays

Appendix G

Test Data and Test Configurations

This appendix lists the test data access schemas, the sets of test data run on
these schemas, and the transputer network configurations used in the
construction of the P-DB4GL test applications.

A data access schema is composed of prime view and non-prime view
Information Units (IU's) and the schema links connecting related IU's. The
test schemas are shown in Figure G2, and Figure G1 describes the IU's (or
Test Entities) used in their composition. Each test entity has a name
(ENTY.... for a prime-view IU, CPLE.... for a non-prime view IU) and a list of
attributes. Attributes are identified by four digit numbers (0000-0019 Key,
0020-9999 non-key) and defined over domains. The type and length of the
domain is indicated below the attribute number; 9 denotes numeric, and X
denotes character, the length is in parantheses following the type.

Each test schema is implemented by a collection of data access processes, that
is, a schema handler and a number of entity handlers; although SCHM0004
is slightly different, in that, it does not contain a schema handler, only prime
and coupling entity handlers. Figure G3 illustrates the Data Access (DA)
code used to implement the test schemas. The schema handlers and entity
handler are connected by BCU channel pairs. The Filer and Disc processes
are connected by channels conforming to the FILER protocols.

For each test schema there is a corresponding set of test data. A test data set
consists of a sequence of transactions performed on the test schema; typically
this involves Opening entity handlers, Storing records (IU occurrences),
Reading and Deleting the stores records, followed by Closing and
Terminating entity handlers. Each transaction is decomposed into a
sequence of BCU request-reply messages. The User Process Test Harness
(User Harness), operating in batch mode, supplies the test data as a sequence
of BCU messages to the Data Access (DA) code. For those test schemas with
schema links defined in them, some transactions will invoke schema link
realisations; similarly, for test schemas with coupling entities (non-prime
view IU’s), some transactions will invoke coupling entity updates by prime
entity handlers. Each test data set lists the number of transactions and BCU
messages it contains and the number of schema link realisations and
coupling entity updates invoked.

-144-

siypenuix Lx

The test applications have been executed on several different transputer
network configurations; these are illustrated in Figure G4. The most
frequently used configurations are the single and two processor
configurations. In the single processor configuration, both the User Harness
and the Data Access (DA) code are executed as a TDS EXE process on the
same processor. In the two processor configuration, the User Harness
executes as a TDS EXE process, and the DA code (including the Filer and Disc
processes) executes on a separate processor as a TDS PROG process. In order
to obtain run time statistics of the DA code behaviour, Test Probe processes
have normally been included in the test configurations. A Test Probe
process, capable of interfacing to a terminal screen, executes on a separate
processor (usually a T212-17 on a B006 board). Each Test Probe is connected
via an Occam channel to one of the DA processes, and receives and displays
run time diagnostic statistics generated internally by the DA process (for
example, number of BCU's received, number of schema link realisations
invoked, number of coupling entities updated). Also shown in Figure G4 is
a four processor configuration (without test probes); this is the largest
configuration used for the test applications.

Test Data Sets

Set 1

Run on test schema SCHM0001. Stores and reads 18 records in 3 prime
entities. (6 for each entity). Consists of 39 transactions and 141 BCU request-
reply message pairs. 54 schema link realisations are invoked. Sequence is:

Open entities
Store 18 records
Read 18 records
Close entities
Terminate entities

(1 transaction)
(18 transactions)
(18 transactions)
(1 transaction)
(1 transaction)

-145-

appendix Lr

Set 2

Run on test schema SCHM0002. Stores and reads 12 records in 2 prime
entities. (6 for each entity). Consists of 27 transactions and 90 BCU request-
reply message pairs. 18 schema link realisations are invoked. Sequence is:

Open entities
Store 12 records
Read 12 records
Close entities
Terminate entities

1 transaction)
12 transactions)
12 transactions)
1 transaction)
1 transaction)

Set 3

Run on test schema SCHM0003. Stores, reads, and deletes 18 records in 3
prime entities. (6 for each entity). Consists of 57 transactions and 177 BCU
request-reply message pairs. 72 schema link realisations are invoked.
Sequence is:

- Open entities
- Store 18 records
- Read 18 records
- Delete 18 records
- Close entities
- Terminate entities

1 transaction)
18 transactions)
18 transactions)
18 transactions)
1 transaction)
1 transaction)

Set 4

Run on test schema SCHM0004. Stores, reads, and deletes 6 records in a
single prime entity. Consists of 21 transactions and 87 BCU request-reply
message pairs. No schema link realisations are invoked (test schema
SCHM0004 does not include a schema handler). The prime entity handler
sends 59 BCU messages to each entity handler in the test schema. Sequence
is:

- Open entity
- Store 6 records
- Read 6 records
- Delete 6 records
- Close entity
- Terminate entity

(1 transaction)
(6 transactions)
(6 transactions)
(6 transactions)
(1 transaction)
(1 transaction)

-146-

a y p e n u ix

ENTY0001
0001 0020
9(1) X(6)

ENTY0002
0001 0002 10020 0021
9(1) 9(1) X(6) 9(1)

ENTY0003
0001 0002 0003 0020 0021
9(1) 9(1) 9(1) X(6) 9(1)

ENTY0004
0001 0020 0021 0021 0022
9(1) X(6) 9(1) 9(1) 9(1)

CPLE0201
0001 0002 0003 |
9(1) 9(1) 9(1)

CPLE0301
0001 0002 0003 0004 1
9(1) 9(1) 9(1) 9(1)

CPLE0401
0001 0002
9(1) 9(1)

CPLE0402
0001 0002 |1
9(1) 9(1)

CPLE0403
0001 0002 |
9(1) 9(1)

Figure G1 - Test Entities (Information Units)

Appendix G

i > SCHM0001 ii) SCHM0002

ENTYOOOl

ENTY0002

ENTY0003

ENTYOOO1

ENTY0002

CPLE0201

iii> SCHM0003

ENTYOOOl

ENTY0002

ENTY0003

CPLE0201

CPLE0301

iv) SCHM0004

ENTYOOO4

CPLE0401 CPLE0402 CPLE0403

Figure G2 - Test Schemas

-148-

a p p e n d ix

SCHMOOOl DA Code
Ent ity
Handler

ile Disc

'Schema 1
[Handler]

Entity
Handler

lie Disc

Entity
Handler

i le Disc

SCHM0002 DA Code
Ent it y
Handler

ile: Disc

^Schema >
h a n d le r]

ile D isc

^Coupling
Entity
Handler

ile Disc

SCHM0003 - DA Code (Filer and Disc processes not shown)
Entity
Handler

r Entity X
y Handler J

f Coupling^
Entity
Handler

(Schema)
[Handler]

f Coupling
Entity

. Handler
Entity
Handler

SCHM0004 - DA Code (Filer and Disc processes not shown)

Prime Entity
Handler

Couplings
Entity
Handler ,

^ Coupling^
Entity
Handler

Coupling
Ent ity
Handler

Figure G3 - Test Data Access Code

sijrpenaix

Single Processor
T414-20

f User \
Uiarness) “ "H Code J

Two Processors
T414-20 T414-20

lOMbit/s link
linklink 1r User '

[Harness,
DA

Code

Two Processors with Test Probes
T212-17
<B006)

T414-20
(B004)

T414-20
<B004) Test

Probe
DA

Code
Test
Probe

User
Harnes

T212-17
<B006)

Four Processors <all T414-20)

Ent ity
Handle

Entity
LHandle

Ent it y
.Handle

Schema
LHandle

r User
Harnes

Figure G4 - Test Configurations

Appendix H

Test Results

This appendix contains the results obtained from test runs performed on the
Prototype P-DB4GL Test Applications defined in Appendix G. The test run
timings illustrate the differences in performance between the different
versions of the data access processes (entity handlers and schema handlers)
used in the construction of the test applications.

Tables 1-5 compare version 1 with version 2 data access processes. Test
schemas SCHM0001, SCHM0002, and SCHM0003 are used, with varying User
Harness delays and Filer Harness disc delays (Filer.vl process).

Tables 6-11 compare version 1 with version 3 data access processes in
SCHM0003. A variety of different disc delays and mappings of files to discs
are used (Filer.vl and Filer.v2 processes).

Tables 12-15 compare version 3 with version 4 data access processes using
SCHM0004 and Filer.v2. The results show the effects on test run time and
processor loading of the concurrent coupling entity update by version 4
prime entity handler. In particular, the significant improvement shown by
increasingly larger test schemas (ie more coupling entities to update).

-151-

Table 1 Version 2 Schema Handler

n .y fjc n u ix n

A test run of version 1 entity and schema handlers, compared with a test
run of version 1 entity handlers and version 2 schema handler.

Test data Set 1 run on test schema SCHM0001.
Two processor configuration, both T414-20.
Filestore simulation: Filer.vl with one disc per file and 64 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays (ticks) 0 50 200 500 1000 2000

Version 1 schema

test run time

8.86 927 10.5 13.0 17.1 25.4

Version 2 schema

test run time

8.85 9.14 10.0 11.8 14.8 21.1

% reduction in

test run time

0 1.40 4.76 923 135 16.9

Improvement factor 1.00 1.01 1.05 1.10 1.16 120

-152-

Table 2 Version 2 Entity Handler

s ij jp c n u ix n

A test run of version 1 entity and schema handlers, compared with a test
run of version 2 entity handlers and version 1 schema handler.

Test data Set 2 run on test schema SCHM0002.
Two processor configuration: User Harness, T414-20; DA processes, T414-15.
Filestore simulation: Filer .vl with one disc per file and 64 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 entity

test run time

4.88 6.61 8.33 6.03 7.76 10.64

Version 2 entity

test run time

4.88 6.09 7.42 5.90 7.46 10.11

% reduction in

test run time

0 7S7 10.92 2.16 3.87 4.98

Improvement factor 1.00 1J09 1.12 1.02 1.04 1.05

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 entity

test run time

7.76 9.49 12 37 11.21 14.09 19.86

Version 2 entity

test run time

7.15 8.76 11.45 10.28 13.16 18.92

% reduction in

test run time

7.86 7.69 7.44 8.30 6.60 4.73

Improvement factor 1.09 1.08 1.08 1.09 1.07 1.05

-153-

Table 3 Version 2 Entity and Schema Handlers

appendix t i

A test run of version 1 entity and schema handlers, compared with a test
run of version 2 entity and schema handlers.

Test data Set 2 run on test schema SCHM0002.
Two processor configuration, both T414-20.
Filestore simulation: Filer.vl with one disc per file and 64 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

4.81 654 826 5.73 7.11 9.41

Version 2 handlers

test run time

4.81 6.02 7.35 5.61 6.82 8.90

% reduction in

test run time

0 7.95 11.0 2.09 4.08 5.42

Improvement factor 1.00 159 1.12 1.02 1.04 1.06

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

7.46 854 11.14 10.60 12.87 17.83

Version 2 handlers

test run time

6.85 8.12 10.23 9.64 11.95 16.91

% reduction in

test run time

8.18 8.14 8.17 9.06 7.15 5.16

Improvement factor 1.09 159 1.09 1.10 1.08 1.05

-154-

Table 4 Version 2 Handlers on a Larger Test Schema

nyycriuix n

A test run of version 1 entity and schema handlers, compared with a test
run of version 2 entity and schema handlers.

Test data Set 3 run on test schema SCHM0003.
Two processor configuration, both T414-20.
Filestore simulation: Filer.vl with one disc per file and 64 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

16.10 19.75 23.39 18.36 21.76 27.43

Version 2 handlers

test run time

13.91 17.09 20.66 1533 17.67 21.69

% reduction in

test run time

13.6 135 11.7 16.5 18.8 20.9

Improvement factor 1.16 1.16 1.13 120 123 126

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

22.01 25.41 31.07 29.06 34.72 46.05

Version 2 handlers

test run time

16.94 21.16 25.27 24.76 28.90 37.46

% reduction in

test run time

23.0 16.7 18.7 14.8 16.8 18.7

Improvement factor 130 120 123 1.17 120 123

-155-

Table 5 Version 2 Handlers with a Shorter Disc Delay

Ajrpenaix n

A test run of version 1 entity and schema handlers, compared with a test
run of version 2 entity and schema handlers.

Test data Set 3 run on test schema SCHM0003.
Two processor configuration, both T414-20.
Filestore simulation: Filer.vl with one disc per file and 32 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

8.48 12.13 15.78 10.75 14.15 19.81

Version 2 handlers

test run time

7.35 10.71 14.31 8.81 1122 15.44

% reduction in

test run time

133 11.7 9.32 18.0 20.7 22.1

Improvement factor 1.15 1.13 1.10 122 126 128

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

14.40 17.79 23.46 21.44 27.11 38.43

Version 2 handlers

test run time

12.38 14.81 19.03 18.43 22.68 32.64

% reduction in

test run time

14.0 16.8 18.9 14.0 16.3 15.1

Improvement factor 1.16 120 123 1.16 120 1.18

-156-

Table 6 Version 3 Entity and Schema Handlers

A ppen d ix t i

A test run of version 1 entity and schema handlers, compared with a test
run of version 3 entity and schema handlers.

Test data Set 3 run on test schema SCHM0003.
Two processor configuration, both T414-20.
Filestore simulation: Filer.vl with one disc per file and 32 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

8.48 12.13 15.78 10.75 14.15 19.81

Version 3 handlers

test run time

6.02 7.92 10.86 7.08 9.41 14.22

% reduction in

test run time

29.0 34.7 31.2 34.1 33.5 28.2

Improvement factor 1.41 153 1.45 1.52 1.50 139

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

14.40 17.79 23.46 21.44 27.11 38.43

Version 3 handlers

test run time

9.54 12.37 17.49 15.75 21.13 32.64

% reduction in

test run time

333 305 25.4 265 22.1 15.1

Improvement factor 1.51 1.43 154 156 128 1.18

-157-

Table 7 Version 3 Handlers on a Single Processor

A ppen d ix t i

A test run of version 1 entity and schema handlers, compared with a test
run of version 3 entity and schema handlers.

Test data Set 3 rim on test schema SCHM0003.
Single processor configuration, T414-20.
Filestore simulation: Filer.vl with one disc per file and 32 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

8.52 12.17 15.82 10.79 14.19 19.85

Version 3 handlers

test run time

6.06 7.97 10.92 7.13 9.45 14.26

% reduction in

test run time

28.9 34.5 31.0 33.9 33.4 28.2

Improvement factor 1.41 153 1.45 1.51 1.50 139

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

14.43 17.83 23.50 21.48 27.15 38.47

Version 3 handlers

test run time

9.58 12.41 17.54 15.79 21.18 32.51

% reduction in

test run time

33.6 30.4 25.4 26.5 22.0 15.5

Improvement factor 1.51 1.44 154 136 128 1.18

-158-

Appendix ti

Table 8 Version 3 Handlers with Improved Filer Process

A test run of version 1 entity and schema handlers, compared with a test
run of version 3 entity and schema handlers.

Test data Set 3 run on test schema SCHM0003.
Two processor configuration, both T414-20.
Filestore simulation: Filer.v2 with one disc per file and 32 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

6.00 9.65 1330 8.27 11.67 17.33

Version 3 handlers

test run time

4.27 6.49 9.96 5.30 8.00 13.45

% reduction in

test run time

288 32.7 25.1 35.9 31.4 22.4

Improvement factor 1.41 1.49 134 1.56 1.46 129

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

11.92 15.31 20.98 18.96 24.63 35.95

Version 3 handlers

test run time

8.33 11.46 17.05 15.08 20.69 32.02

% reduction in

test run time

30.1 25.1 18.7 205 16.0 10.9

Improvement factor 1.43 134 123 126 1.19 1.12

-159-

Table 9 Version 3 Handlers with Zero Disc Delay

A ppendix H

A test run of version 1 entity and schema handlers, compared with a test
run of version 3 entity and schema handlers.

Test data Set 3 run on test schema SCHM0003.
Two processor configuration, both T414-20.
Filestore simulation: Filer.v2 with one disc per file and 0 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

0.883 453 8.18 3.15 6.55 12.21

Version 3 handlers

test run time

0.913 4.13 7.76 2.58 5.93 11.56

% reduction in

test run time

(3.4) 8.8 5.1 18.1 95 53

Improvement factor 0.97 1.10 1.05 122 1.10 1.06

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

6.80 10.19 15.86 13.84 1951 30.83

Version 3 handlers

test run time

6.16 953 15.19 13.17 18.84 30.16

% reduction in

test run time

9.4 65 4.2 48 3.4 22

Improvement factor 1.10 187 1.04 1.05 1.04 1.02

-160-

r tp jte n u ix n

Table 10 Single Processor and Two Processor Configurations

Test runs of version 1 entity and schema handlers, compared with test runs
of version 3 entity and schema handlers.

Test data Set 3 run on test schema SCHM0003.
Single processor configurations, T414-20.
Two processor configurations, both T414-20.
Filestore simulation: Filer.v2 with one disc per file - 0, 16, and 32
millisecond disc delays.
No User Harness delays.
Test run time in seconds.

Test run time for two processor configuration with Echo process replacing
the test schema code is 0.042 880 seconds (approximately 5% of test schema •
run time).

Disc process delay (ms) 0 16 32

Number of processors One Two One Two One Two

Version 1 handlers

test run time

0.976 0.883 3.54 3.44 6.10 6.00

Version 3 handlers

test run time

1.03 0.913 2.64 2.54 4.37 4.27

% reduction in

test run time

(5.50) (3.4) 25.4 26.2 28.4 28.8

Improvement factor 0.95 0.97 134 135 1.40 1.41

-161-

Table 11 Version 3 Handlers with a Single Disc

A ppen d ix t t

A test run of version 1 entity and schema handlers, compared with a test
run of version 3 entity and schema handlers.

Test data Set 3 run on test schema SCHM0003.
Single processor configuration, T414-20.
Filestore simulation: Filer.v2 with all files stored on one disc, and 32
millisecond disc delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 1 handlers

test run time

6.06 9.71 13.35 8.82 11.72 17.39

Version 3 handlers

test run time

5.77 7.18 10.54 6.32 8.29 13.59

% reduction in

test run time

4.8 26.1 21.0 21.3 29.3 21.9

Improvement factor 1.05 135 127 1.40 1.41 128

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 1 handlers

test run time

11.97 15.37 21.03 19.02 24.68 36.01

Version 3 handlers

test run time

8.92 11.68 17.18 15.30 20.83 32.07

% reduction in

test run time

255 24.0 18.3 17.7 15.6 10.9

Improvement factor 134 132 122 124 1.18 1.12

-162-

Table 12 Version 4 Entity Handlers

Appen d ix n

A test run of version 3 entity handlers, compared with a test run of version
4 prime and coupling entity handlers.

Test data Set 4 run on test schema SCHM0004 (three coupling entities, no
schema handler).
Two processor configuration, both T414-20.
Filestore simulation: Filer.v2 with one disc per file and 32 millisecond disc
delay.
User Harness delays in timer ticks (one tick = 64 microseconds).
Test run time in seconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Version 3 handlers

test run time

2.42 2.93 3.68 3.36 4.78 7.15

Version 4 handlers

test run time

1.41 2.14 3.45 2.35 3.77 6.37

% reduction in

test run time

41.7 27.0 6.3 30.1 21.1 10.9

Improvement factor 1.72 137 1.07 1.43 127 1.12

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Version 3 handlers

test run time

3.87 529 7.90 6.37 9.06 14.59

Version 4 handlers

test run time

3.22 4.89 7.68 6.24 9.02 14.59

% reduction in

test run time

202 7.6 28 2.0 0.4 0

Improvement factor 120 188 1.03 1.02 1.004 1.00

-163-

Appenatx M

Table 13 Version 4 Handlers with Varying Numbers of Coupling Entities

Test runs of version 3 entity handlers, compared with test runs of version 4
prime and coupling entity handlers.

Test data Set 4 run on test schema SCHM0004 (with between 0 and 18
coupling entities, no schema handler).
Two processor configuration, both T414-20.
Filestore simulation: Filer.v2 with one disc per file and 64 millisecond disc
delay.
No User Harness delays.
Test run time in seconds.

Number of coupling

entities updated

0 1 3 6 9 12 15 18

Version 3 handlers

test run time

1.13 2.53 4.66 7.85 11.03 14.21 17.40 20.58

Version 4 handlers

test run time

1.14 2.55 2.63 2.74 2.86 2.99 3.13 3.27

Test run time

improvement factor

0.99 0.99 1.77 236 3.86 4.75 5.56 629

Version 3 handlers

coupling update time

- 1.40 3.53 6.72 9.90 13.08 16.27 19.45

Version 4 handlers

coupling update time

- 1.41 1.49 1.60 1.72 185 1.99 2.13

Version 3 normalised

coupling update time

- 1.00 2.52 4.80 7.07 934 11.62 13.89

Version 4 normalised

coupling update time

- 1.01 1.06 1.14 1.23 132 1.42 1.52

Coupling update

improvement factor

- 0.99 238 421 5.75 788 8.18 9.14

-164-

Table 14 Version 4 Handlers with Zero Disc Delay

nppenaix n

Test runs of version 3 entity handlers, compared with test runs of version 4
prime and coupling entity handlers.

Test data Set 4 run on test schema SCHM0004 (with between 0 and 18
coupling entities, no schema handler).
Two processor configuration, both T414-20.
Filestore simulation: Filer.v2 with one disc per file and 0 millisecond disc
delay.
No User Harness delays.
Test run time in milliseconds.

Number of coupling

entities updated

0 1 3 6 9 12 15 18

Version 3 handlers

test run time

45.6 102.8 180.4 294.8 407.8 518.8 628.9 741.8

Version 4 handlers

test run time

54.6 116.5 207.5 348.1 495.4 647.9 808.0 975.8

Version 3 handlers

coupling update time

- 57.2 134.8 249.2 362.5 473.2 583.3 696.2

Version 4 handlers

coupling update time

- 61.9 152.9 2933 440.8 593.3 753.4 921.2

Version 3 normalised

coupling update time

- 1.00 2.36 4.36 6.34 827 10.20 12.17

Version 4 normalised

coupling update time

- 1.08 2.67 5.13 7.71 10.37 13.17 16.10

-165-

a p p e n d ix t i

Table 15 Test Application Processor Loading

Test runs of version 3 entity handlers, compared with test runs of version 4
prime and coupling entity handlers. Showing the percentage of total test
rim time during which the processor is busy (see Tables 13 and 14).
Processor Loading = test run time (0 disc delay) * 100%

test run time (64 ms disc delay)

Test data Set 4 run on test schema SCHM0004 (with between 0 and 18
coupling entities, no schema handler).
Two processor configuration, both T414-20.
Filestore simulation: Filer.v2 with one disc per file.
No User Harness delays.

Number of coupling

entities updated

0 1 3 6 9 12 15 18

Version 3 handlers

processor loading %

4.04 4.06 3.87 3.76 3.70 3.65 3.61 3.60

Version 4 handlers

processor loading %
4.79 437 7.89 12.70 17.32 21.67 25.80 29.80

-166-

Appendix I

Test Application Performance Optimization

There are many ways of optimizing the performance of Occam programs
executing on transputer networks. Small alterations to both the software
and hardware, which do not affect the logical behaviour of the program, can
have a marked effect on the execution times of many programs [Atkin89].
These optimizations cannot be relied upon to improve execution times of
all programs, in fact, for some programs an "optimization" may actually
impair performance. It is therefore necessary to experiment with these
optimizations to determine their effect on any given program. A list of such
optimizations applied to the P-DB4GL applications, along with comments
concerning the possible (and sometimes measured) effect on test application
performance, is given below.

Processor Type and Speed

The transputer range of microprocessors includes both 16-bit and 32-bit
processors with different features and performance characteristics. The T800
32 bit processor has an on-chip floating point unit (FPU) which allows a T800
to perform floating point calculations up to fifty times faster than a 32-bit
T414. However, not all operations are faster on a 32-bit processor than a 16-
bit processor, the T212 performs 16-bit (INT16) integer arithmetic faster than
a 32-bit T414.

Any performance improvement that might be obtained by substituting one
transputer processor with another of a different type, depends on the nature
and number of the machine operations performed in a program. In the P-
DB4GL test applications there is almost no floating point arithmetic, but
substantial amount of INTI6 arithmetic. Most of the P-DB4GL test runs
have been on T414 processors, the few that have been on T800 processors
exhibit very little difference in execution times.

The transputer microprocessors are available in various speeds, ranging
from 15 to 30 MHz. Replacing a processor with another, but faster, processor
of the same type will give an improvement in execution times. But the
exact improvement depends on the proportion of processing and
communication performed in the program. Programs that are

-167-

Appendix l

communication bound will not be improved simply by the substitution of
faster processors.

Memory Speed and Interface

For the 32-bit processors there are two types of external memory interface
with different memory bandwidths: a multiplexed address/data bus used on
the T414 and T800 (40 Mbyte/s bandwidth); and a non-multiplexed interface
with separate data and address lines used on the T801 (60 Mbyte/s
bandwidth). The faster external memory bandwidth of the T801 can
improve the performance of programs which require fast external memory
access. However, the T801 is not pin compatible with either the T414 or T800
and a straightforward processor swap is not possible, it requires a different
board.

For similar reasons the type and speed of external RAM can also affect the
speed of program execution. But for any given program the precise benefit
of either improved memory speed or memory bandwidth depends on the
patterns of external memory usage during program execution and the
overall proportions of processing and communication loads. P-DB4GL test
applications tend to have high communication loads and the potential
benefit of improved memory access is not great.

Link Speed and Protocol

Transputer links can be set to operate at either 5, 10 or 20 Mbit per second
transfer rates. Increasing the link speeds in a network from say 10 to 20 Mbit
per second will reduce the communication time for each message sent over
these links; but the overall effect of this reduction in communication time
depends on the amount and type of communication in the program
executing on the network. Two problems in particular can be remedied by
improved link speed:

• a program suffering from overall high levels of inter-processor
communication (that is, communication bound) can be improved;

• a program with overall low levels of communication, but
suffering from a "bottleneck" in communication at a particular
inter-processor channel in the program, can be improved if the
link speed at the "bottleneck" channel is increased.

-168-

Appendix 1

There are two compatible versions of the handshaking protocol used on the
transputer serial links [Inmos89a]. In the original protocol, a two bit
acknowledge message is sent from the receiving end of a link when a
complete data message has been received. In the modified protocol the
acknowledge is overlapped with the data message. The modified protocol is
used in the T800, T222, and T425 and gives an effective data transfer rate
approximately twice as great as the original protocol used on the T414 and
T212.

The P-DB4GL test applications have been executed on transputer networks
constructed mostly from T414 processors with 10 Mbit/sec links, and the
boards on which the processors are mounted have not permitted the link
speeds to be altered. Because the P-DB4GL test applications perform large
amounts of communication, it is anticipated that increasing link speeds to
20 Mbit/sec and replacing the T414 processors with T425 or T800 processors
would improve execution times of the test applications. Such changes to the
networks would increase maximum unidirectional data transfer rates from
400 Kbyte/sec to 1740 Kbyte/sec.

Program Configuration

Load balancing, that is, allocating processes to processors to achieve an even
distribution of processing load across a network, can have a marked effect on
program performance. Each concurrent process in an Occam program will
have its own processing and communication load, and it is often necessary
to experiment with alternative configurations, or mappings of code to
processors, in order to find one with optimum balance and performance.
Processes connected by channels with high communication loads are often
best placed on the same processor, so that the channel communication is
performed in memory rather than across links.

The P-DB4GL test applications have been executed on small transputer
networks (one to four processors). Because of the I/O delays associated with
retrieving records from disks, the processing loads of the test applications are
relatively light in proportion to the total test run times. Consequently,
altering the configuration of test applications for effective load balancing is
not necessary. However, some channels do carry very large amounts of
communication, and considerations of channel placement (in memory or
on links) is important in the designs for a fully functional P-DB4GL.

-169-

Appendix 1

Channel Protocols and Process Priority

The type of Occam protocol defined for channel communication can affect
the data transfer rate when a channel is placed on a serial link (rather than
in memory). Increasing a channel’s data transfer rate will reduce the
communication time for each message sent on that channel. The
maximum effective data transfer rate across transputer links, as stated in the
databooks [Inmos89b], can only be achieved when large messages are
communicated over links. For example, the data transfer rate when four
bytes of data are transmitted as a single message using a [4]BYTE array
protocol is greater than if the same data is transmitted as a single message of
four separate bytes using a protocol such as BYTE; BYTE; BYTE; BYTE.

Figure II shows the effect of altering message size (by using different Occam
channel protocols) on the data transfer rate through an Occam channel
placed on a tranputer serial link. The data for this graph was obtained by
running a small test program on a T800-20 connected to a C011 link adapter.
The T800 test program executed entirely in the on-chip memory and
consisted of a simple WHILE loop sending fixed size messages on the link
adapter channel as fast as the link would take them. The transfer rates were
measured for messages of different sizes, including single byte messages
(BYTE protocol) and byte array messages of various sizes ([size]BYTE
protocols). These results are for a link speed of 20 Mbit/s. The C011 link
adapter uses the old (non-overlapped acknowledge) 2-bit handshake
protocol. It can be seen that with large messages, that is byte arrays of size 64
and greater, the data transfer rate approaches its maximum value. This type
of graph is typical for channel communication over links for the T-range of
transputers.

The improved transfer rate, and consequent shorter communication times,
of more efficient Occam channel protocols can be employed to improve the
performance of many programs. However, it is necessary to experiment
with different protocols to determine how much, if any, improvement can
be obtained for any given program. For some programs such changes to the
channel protocols may require substantial alterations to the source code.
The time and cost of altering the source code, and the possibility of
introducing new errors, may not justify any potential performance gains.

-170-

Appendix l

One way to alter the Occam protocol used on a link, without altering a
program's source code, is to introduce protocol converter processes to
execute concurrently with the existing program (Figure 12). This approach
was tried for some of the P-DB4GL test applications. Figure 13 shows the
configuration used: an Echo process executing on a T414 processor returns
BCU-reply messages to a User Harness supplying a Test Data Set of BCU-
request messages. Each BCU message is composed of several data and
control components represented by BYTE and []BYTE array values. A
protocol converter process translates this representation into a counted array
protocol, BYTE::[]BYTE. The counted array protocol can attain higher data
transfer rates across the connecting transputer serial link. Table A shows the
effect on communication times of the protocol converter processes. It can be
seen from these results that the protocol converters do not reduce the total
test rim times, in fact, they are slightly worse. Although the counted array
protocol reduces the communication time for each BCU message, the
additional processing overhead of the converter process combined with the
Request-Reply nature of the BCU messages, which inhibits potential benefits
of buffering and processing-communication decoupling, causes the total test
run time to be increased.

The Occam language [Inmos88b] contains a PRI PAR construct which can be
used to specify preferential, or priority, status to selected processes in a
parallel PAR construct. There is also a PRI ALT construct which can be
similarly used to allow preferential input of data on selected channels. The
effect of using these two constructs in a program to enhance performance is
not predictable. By experimenting with different process and channel
priorities a program's execution time may be improved. In programs with
high levels of inter-processor communication, giving priority status to
processes communication over links can often reduce communication
delays and hence reduce overall program execution times. To measure the
effect of process priority upon communication times in the P-DB4GL test
applications, the test configuration described above (Figure 3) was altered to
give priority status to the protocol converter processes. The results of this
alteration are shown in Table A: where it can be seen that this prioritization
has a slightly detrimental effect on test run time.

-171-

Appendix i

Data Placement and Compiler Code Allocation

The Occam2 language includes a PLACE statement to allocate particular
objects (variables, channels, timers, arrays) to specific memory locations.
This can be used to place frequently accessed vectors or code fragments in a
processor’s internal memory thereby permitting faster execution. Again the
precise effect of such changes is not predictable and can only be determined
by experimentation.

The Occam2 compiler performs many optimizations on the generated
machine code [Inmos88d], and knowing how the compiler works allows one
to assist the compiler in this optimization. In particular, a knowledge of
how the compiler allocates code and data to memory can be very useful.
This allocation is in part determined by the position of statements in the
Occam source code. By repositioning process definitions and variable
declarations within the text of the source code (and taking care not to alter
the semantics of the program) improvements in execution times can
sometimes be obtained.

The effects of the PLACE statement and repositioning objects in the source
code have not been tested on the P-DB4GL test applications. Although slight
improvements may be gained, the experimentation entailed can be very
time consuming.

-172-

nypenuiJL i

Table A Optimizations to Test Application Communication Times

Test data Set 4 with Echo process replacing test schema code.
Two processor configuration, both T414-20.
User Harness delays in timer ticks (1 tick = 64 microseconds).
Test run time in milliseconds.

Inter-BCU delays

Inter-transaction delays

0 0 0 200 500 1000

0 1000 2000 0 0 0

Test run time 20.22 1364 2 708 1134 2804 5588

Test run time with

protocol conversion

27.14 1371 2 715 1140 2811 5595

Test run time with protocol

conversion at high priority

31.23 1375 2719 1145 2815 5599

Inter-BCU delays

Inter-transaction delays

200 500 1000 500 1000 2000

1000 1000 1000 2000 2000 2000

Test run time 2478 4148 6932 5492 6932 13844

Test run time with

protocol conversion

2484 4155 6939 5499 8283 13851

Test run time with protocol

conversion at high priority

2 489 4159 6943 5503 8287 13855

-173-

rLyjjcnuvx i

Data Transfer Rate against Message Size
1000 -

900 -

800 -

600
500
400 -

-a

T800-20 and C011
20 Mbit/s link speed
(Unidirectional data
transfer only)

20 40 60
Message Size (Bytes)

80

Figure II - Effect of Message Size on Transfer Rate

Chnl channel protocol is
BYTE; BYTE; BYTE

^Process 1^---------------- ► ^Process 2 ^
Chnl ! ' a' ; ' b' ; ' c' Chnl ? bytel; byte2; byte3

Process 1

Q

^ ^Process 2^

Conv channel protocol is
C 3]BYTE

?)------------------->-----------------(^ T T)Convert 1
Conv ! t'a','b' , ' c' 3 Conv ? byteArray

Figure 12 - Channel Protocol Converter Processes

-174-

siyptmuix i

BCU protocol
BCU
Echo

link2 linkO

10 Mbit/sec link speed

BCU
Echo

BCU
protocol

BCU
protocol

Convert Convert
counted array protocol

BYTE: : C]BYTE
on channels over link

(User \
Harness

fUser \
.Harness,

T414-20T414-20

T414-20 T414-20

Figure 13 - Protocol Conversion Test Configuration

-175-

Appendix J

Routers and Multiplexors

Algorithms for the P-DB4GL code used to multiplex Occam channels and
route messages around the transputer networks are described below using
the Occam-style syntax defined in Appendix A. The data access processes
used in the prototype P-DB4GL test applications have been modified with
the addition of channel conversion and multiplexing processes. Two of
these modified data access processes are: the "ENTY.handler" process, a
modified prime entity handler; and the "CPLE.handler", a modified
coupling entity handler.

-176-

sippenaix j

PROC ENTY.handler(CHAN OF BCUX handler.in, handler.out,
CHAN OF FILER.REQ filer.req,
CHAN OF FILER.REPLY filer.reply,
CHAN OF ANY debug.out,
CHAN OF BYTE Stopper.out,
... VALue parameters
)

... eh.local.val.decs

... include libraries of procedures
— local channels declared
CHAN OF BCUX couple.req, schm.req :
CHAN OF BCUX couple.reply, schm.reply :
CHAN OF BCU enty.schm.req, enty.schm.reply :
[max.no.of.couples]CHAN OF BCU enty.couple.req, enty.couple.reply :
CHAN OF BYTE stop.schm, stop.couple, stop.mux :
PAR

— prime entity handler with many BCU channels
VAL BYTE stop IS 00(BYTE) :
SEQ

PrimeXZ (enty.schm.req,enty.schm.reply,
enty.couple.reply,enty.couple.req,
filer.req,
filer.reply,
debug.out,
object.id,
... value parameters to initialise entity handler
)

— terminate channel converters and multiplexor
stop.schm ! stop
stop.couple ! stop
stop.mux ! stop
— inform decoder of handler termination
stopper.out ! stop

couple channel converter
Couple.BCUX.convert(couple.reply, couple.req,

enty.couple.req, enty.couple.reply,
object.id,
couple.list,
no.of.couple.entities,
stop.couple)

schema channel converter
Schema.BCUX.convert(schm.req, schm.reply,

enty.schm.reply, enty.schm.req,
object.id,
stop.schm)

— channel mux
BCUX.mux(handler.in, handler.out,

couple.req, couple.reply,
schm.reply, schm.req,
stop.mux)

-177-

njj-penaix j

PROC CPLE.handler(CHAN OF BCUX handler.in, handler.out,
CHAN OF FILER.REQ filer.req,
CHAN OF FILER.REPLY filer.reply,
CHAN OF ANY debug.out,
CHAN OF BYTE stopper.out,
... VALue parameters
)

... eh.local.val.decs

... include libraries of procedures
— local channels declared
CHAN OF BCUX prime.req, schm.req :
CHAN OF BCUX prime.reply, schm.reply :
CHAN OF BCU cple.prime.req, cple.schm.req :
CHAN OF BCU cple.prime.reply, cple.schm.reply :
CHAN OF BYTE stop.schm, stop.prime, stop.mux :
PAR

— coupling entity handler with many BCU channels
VAL BYTE stop IS 00(BYTE) :
SEQ

CoupleXZ(cple.prime.req, cple.prime.reply,
cple.schm.req, cple.schm.reply,
filer.req,
filer.reply,
debug.out,
object.id,
... value parameters to initialise entity handler
)

— terminate channel converters and multiplexor
stop.schm ! stop
stop.prime ! stop
stop.mux ! stop
— inform decoder of handler termination
stopper.out ! stop

— prime channel converter
Prime.BCUX.convert(prime.req, prime.reply,

cple.prime.reply, cple.prime.req,
object.id,
prime.id,
stop.prime)

schema channel converter
Schema.BCUX.convert(schm.req, schm.reply,

cple.schm.reply, cple.schm.req,
object.id,
stop.schm)

— channel mux
BCUX.mux(handler.in, handler.out,

prime.reply, prime.req,
schm.reply, schm.req,
object.id,
stop.mux)

-178-

n p p c n u ix J

The P-DB4GL Router process is decomposed into two concurrent
components: a BCUXR Converter process; and a Network process (Figure
Jl). The Converter process includes a look-up table containing the node
identifiers of all the P-DB4GL objects in a particular P-DB4GL application,
and uses this table to encode incoming BCUX messages with the node
identifier of the destination object identified in the message. The encoded
BCUX message is forwarded as a BCUXR message to the Network process,
which then routes the BCUXR message around the ring to the destination
node. The BCUXR protocol is a BYTE::[]BYTE counted array protocol, where
the first BYTE value is the length of the message contained in the following
array. The zeroth element of the array contains the source node identifier,
and the first element contains the destination node identifier.

The Network8 (Figure J2) and Network9 (Figure J3) ring routing processes
are based on the ring routing processes described in [Welch89]. Essentially,
these processes implement a slotted-ring composed of N packets, where N is
the number of nodes in the ring. The ring of packets continually circulates
around the ring of processors. Each node has its "own" packet in which it
may place messages of varying size. When a message arrives at its
destination node, it is taken off the ring and the packet marked as empty.
The Network8 router process includes a Buffer process, which is used to
ensure that the ring of packets will continue to circulate, even when a
destination node is blocked and unable to accept further messages from the
ring.

The Network8 process implements a unidirectional ring. The Network9
process uses two Network8 processes, along with Sender and Collect
processes, to implement a bidirectional ring. The Sender process routes
BCUXR messages either clockwise or anticlockwise, depending on which
direction provides the shortest path to the destination node.

-179-

stppenaix j

PROC Network8(CHAN OF BCUXR c.net.in, c.net.out,
c.from.app, c.to.app,

VAL BYTE this.node, no.of.nodes)
— "own packet” ring algorithm
— with N size message buffer
— ring must continue to circulate even with a blocked node
VAL INT max.buffer.size IS 8 :
PROC Bcuxr.Buffer(CHAN OF BCUXR data.in, data.out)

... buffer body

PROC Tail.Buffer(CHAN OF BCUXR data.in, data.out,
CHAN OF INT dec.counter)

— decrease counter by 1 as messages leave the buffer
... tail body

PROC Head.Buffer(CHAN OF BCUXR data.in, data.out,
CHAN OF BOOL free.out,
CHAN OF INT dec.counter,
VAL INT no.of.nodes)

— when buffer has filled, flush out no.of.nodes messages
— before accepting any more messages into buffer.
— if no.of.nodes > max.buffer.size,
— then flush out max.buffer.size messages
... head body

PROC N.Size.Buffer(CHAN OF BCUXR data.in, data.out,
CHAN OF BOOL free.out,
VAL BYTE no.of.nodes)

VAL INT node.count IS (INT no.of.nodes) :
CHAN OF INT dec.counter :
[max.buffer.size]CHAN OF BCUXR data.thru :
PAR

Head.Buffer(data.in, data.thru[0],
free.out, dec.counter, node.count)

PAR i = 1 FOR (max.buffer.size - 1)
Bcuxr.Buffer(data.thru[i-1], data.thru[i])

Tail.Buffer(data.thru[(max.buffer.size -1)],
data.out,dec.counter)

PROC Transmit(CHAN OF BCUXR app.in, thru.in, net.out,
VAL BYTE this.node, no.of.nodes)

— accept messages from app and deposit in "own” packet
... transmit body

PROC Receive(CHAN OF BCUXR net.in, thru.out, app.out,
CHAN OF BOOL free.in,
VAL BYTE this.node)

— if buffer not free to accept message for this node,
— then force message to circulate around the ring again
... receive body

CHAN OF BCUXR clock.thru, rec.to.buff :
CHAN OF BOOL free.buffer :
PAR

N.Size.Buffer(rec.to.buff, c.to.app, free.buffer, no.of.nodes)
Receive(c.net.in, clock.thru, rec.to.buff, free.buffer, this.node)
Transmit(c.from.app, clock.thru, c.net.out,

this.node, no.of.nodes)

-180-

A ppen d ix }

PROC Network9(CHAN OF BCUXR from.app, to.app,
c.net.in, c.net.out,
a.net.in, a.net.out,

VAL BYTE this.node, no.of.nodes)
— bidirectional ring router process
— "own packet" ring algorithm
— with N size message buffer in Network8 process
— ring must continue to circulate even with a blocked node
... include local procedures
CHAN OF BCUXR c.out, c.in, a.in, a.out :
PAR

Sender(from.app, c.in, a.in, this.node, no.of.nodes)
Collect(c.out, a.out, to.app)
Network8(c.net.in, c.net.out, c.in, c.out, this.node, no.of.nodes)
Network8(a.net.in, a.net.out, a.in, a.out, this.node, no.of.nodes)

The P-DB4GL ring router differs in some respects from the TRANSNET
router described in [Welch89]. The TRANSNET router is used to provide
deadlock-free networking for a channel multiplexing service already
demonstrated to be deadlock-free. Free flow routing algorithms in cyclic
topologies, such as rings, are prone to deadlock. The controlled flow "own
packet" algorithm provided in [Welch89] is demonstrated to provide
deadlock-free routing, assuming the channel multiplexing service it
supports is also deadlock-free. The behaviour of the Transmit and Route
processes in TRANSNET (corresponding to the Transmit and Receive
processes in the P-DB4GL Network8 router), is defined so that the ring of
packets would stop circulating if the application process at one of the nodes
was unable to receive a message destined for it, hence blocking that node.
Because of the "handshaking" protocol of the deadlock-free TRANSNET
channel multiplexing, a node could not be blocked indefinitely, and the ring
of packets would be allowed to continue circulating.

For the purposes of P-DB4GL network routing, no assumptions are made
about the behaviour of applications connected to the router processes. In the
event of an application process at some node becoming unable to receive a
message from the router process, it was thought undesirable that such a
blocked node should prevent the ring of packets from circulating. The node
might be blocked for a number of reasons; an application process may have
deadlocked, or else it might simply be suspended because of a large I/O delay.
To provide continuous packet circulation, the Network8 router process was
provided with a Buffer process, and small modifications were made to the
Receive and Transmit processes. When the Receive process received a
message destined for its node, it would first read a token on the Buffer's free

-181-

A ppen d ix j

channel indicating the status (free or blocked) of the node. If blocked, the
message would then be forwarded to Transmit and forced to circulate
around the ring again. However, a side effect of this modification is the
possibility that some messages may never be taken off the ring, but forced to
continuously circulate. Therefore, the Buffer process was further modified,
so that N messages (where N is the ring size) could be held in the Buffer
before a node became blocked. When full, the N-size Buffer would flush out
N messages to the waiting application process before accepting any more
messages from the ring of packets.

PROC Transmit(CHAN OF BCUXR app.in, thru.in, net.out,
VAL BYTE this.node, no.of.nodes)

VAL INT nodes.less.one IS ((INT no.of.nodes) - 1) :
BYTE empty.length, message.length :
[max.BCUXR.length]BYTE message :
[1]BYTE empty.message :
BOOL running :
SEQ

— transmit "own" empty message
net.out ! zero::empty.message
running := TRUE
WHILE running

SEQ
— copy through (n - 1) messages
SEQ m = 0 FOR nodes.less.one

SEQ
thru.in ? message.length:rmessage
net.out ! message.length:rmessage

— "own" packet has now returned
thru.in ? message.length:rmessage
IF

message.length *= 0 (BYTE) — "own" packet is free
PRI ALT — check if app message is waiting

app.in ? message.length:rmessage
— app message ready to go
SKIP — "own" packet used, app message is sent

TRUE & SKIP — app not ready to send
SKIP — "own" packet not needed, empty message sent

TRUE — "own" packet is still in use
— message not yet delivered
SKIP

— send out (used or not used) "own" packet
net.out ! message.length:rmessage

-182-

sipptnuix j

PROC Receive(CHAN OF BCUXR net.in, thru.out, app.out,
CHAN OF BOOL free.in,
VAL BYTE this.node)

— if buffer not free to accept message,
— then, send message round the ring
BYTE message.length :
[max.BCUXR.length]BYTE message :
[1]BYTE empty.message :
BOOL running :
BOOL ready :
SEQ

ready FALSE
running := TRUE
WHILE running

PRI ALT
— accept buffer status
free.in ? ready — True or False

SKIP
— accept message at this node
net.in ? message.length:rmessage

VAL BYTE destination.node IS message[1] :
IF
message.length = zero

— empty message, forward through
thru.out ! zero::empty.message

NOT ready — this node is blocked
— circulate message
thru.out ! message.length:rmessage

— test for this node
(ready AND (destination.node = this.node))
PAR

— pass message up to application
SEQ

app.out ! message.length:rmessage
free.in ? ready — check new buffer status

— replace with empty message
thru.out ! zero::empty.message

— else
TRUE

— forward message through
thru.out ! message.length:rmessage

To test the performance of the P-DB4GL routing code a number of test
configuration were constructed: composed of rings of 16-bit T212 processors
in sizes of two, four, and eight nodes. To test the performance of the
Network component of the Router process, the test configuration Netl6 was
used (Figure J4). Netl6 has a Network process on each node. Node 0 has a
test harness process, NetestlO, that constructs and sends BCUXR messages;
these are all addressed to node 0, and NetestlO measures the time it takes
each message to travel the full distance around the ring. NetestlO records
the total number of its own messages sent and received during a test run,
and calculates the minimum, maximum, and average message

-183-

A ppen d ix J

communication times. Node 1 has a test harness process, Netest9, that
maintains and displays a count of all BCUXR messages received at its node
during a test run. At the remaining nodes in the ring, the test harness
process Rtest4 generates and sends random varying size (0..256 bytes) BCUXR
messages, and acts as a sink for all messages delivered to its node.

Tables I and II show the performance figures obtained from Netl6 with
heavily loaded rings. Table I shows the results from harness NetestlO when
BCUXR messages of sizes 3, 51 and 256 are sent around an eight node ring
loaded with messages by Rtest4 harnesses. It can be seen that the average
time taken to deliver a BCUXR message a distance of eight nodes does not
vary much with different message sizes. The 51 byte message size is typical
of messages in P-DB4GL applications, and gives an average time of
approximately 4.8 milliseconds. This is equivalent to 0.6 milliseconds per
node and represents a unidirectional data transfer rate at each link of about
83 Kbyte/s. With 256 byte messages, an average time of approximately 6.4
milliseconds represents about 312 Kbyte/s at each link. In the worst possible
case, with the ring fully saturated with the largest size messages, the average
communication times would increase slightly, but the data transfer rate
would increase too. Table II shows the number of messages received at
harness Netest9 during one minute test runs. In the Table II test runs, the
NetestlO process did not send any messages into the ring, and the figures
show the capacity of the ring when loaded by two and six busy nodes (for
four and eight node rings respectively).

Test configuration Netl8 (Figure J5) was used to measure the performance of
the BCUX Converter component of the Router process. Both nodes in this
configuration have a Converter process that converts the BCUX messages to
BCUXR protocol messages for transmission over the connecting 20 Mbit/s
link. Node 0 has User Harness (see Appendix F) DbhmslO operating in
interactive mode to supply BCUX messages. Node 1 has: an Echo process,
that returns an identical BCUX message with the source and destination
object identifiers reversed; and a BCUX Display process, that drives a
terminal connected to the B006 board upon which the node 1 T212 processor
is mounted. Table III shows typical conversion and communication times
for different sizes of BCUX request-reply message pairs. Also shown are
equivalent times for: communication of BCUX messages without
conversion to the BCUXR protocol (ie no BCUX Converter process); and
communication with neither conversion nor display of echoed messages (ie

-184-

A ppen dix J

no BCUX Display process either). Although Echo and Display occur
concurrently, the improvement in communication time without display of
echoed messages probably results from reduced processing load on Node 1
caused by the removal of the Display process.

Test configuration Netl9 (Figure J6) was used to measure the performance of
the full Router process, with both Network and BCUX Converter processes.
Table IV shows typical communication times for different size BCUX
request-reply message pairs sent a distance of one node. These times are for
non-loaded rings with empty packets circulating at full speed. When used
in P-DB4GL applications, it is likely that the Router ring would be heavily
loaded with varying size messages, and the average communication times
for request-reply message pairs would be slightly, though not much, worse
that the times shown in Table IV.

In the course of testing the P-DB4GL Network8 router process, it was found
that nodes often became blocked, and messages frequently had to be
recirculated. The test harnesses used in the ring router testing could be used
to both: simulate the behaviour of P-DB4GL applications; and load and
saturate the ring. The maximum performance obtained from the ring
router, in terms of messages carried per minute, was approximately similar
to the number of messages communicated during test runs conducted on
the prototype P-DB4GL test applications. No proof that the P-DB4GL routing
is deadlock-free has been attempted. However, no further development
work on this or similar message routing software is envisaged or
recommended. Message routing on ring topologies with the current T-range
of transputers introduces unacceptable delays for P-DB4GL applications.
Alternative topologies using the T-range may be suitable, but the new
generation of transputer products (H-range) provide support for message
passing, therefore additional P-DB4GL routing software is not required.

-185-

Table I Ring Router Message Delivery Times

Appendix J

Test configuration Netl6 - bidirectional (Network9 process) ring composed
of eight T212 processors at 20 Mbit/s link speed.
Figures show the delivery time for a BCUXR message sent a distance of eight
nodes.
Timings are in timer ticks (one tick = 64 microseconds).

Message size in Bytes

(data size in parentheses)

3(0) 51(48) 256 (253)

Minimum delivery time 25 28 69

Maximum delivery time 151 183 186

Average delivery time 73.43 75.2 100.06

Total number of messages

delivered per minute

11563 11029 8432

Table II Ring Router Message Capacities

Test configuration Netl6 - unidirectional (Network8 process) rings and
bidirectional (Network9 process) rings composed of four and eight T212
processors, tested at link speeds of 10 and 20 Mbit/s.
Test runs of one minute duration, with random varying size (0..256 Bytes)
messages used to load the ring router.
Figures show the total number of BCUXR messages received at test harness
Netest9 during a one minute test run.

Ring size and

Link Speed (Mbit/s)

4 nodes 8 nodes

10 20 10 20

Unidirectional ring router

messages received per minute

19232 23 967 14 952 19192

Bidirectional ring router

messages received per minute

24 811 28 017 20 591 22 611

-186-

sippenaix j

Table III Performance of the BCUXR Converter

Test configuration Netl8 - two T212-20 processors at 20 Mbit/s link speed.
Typical times for conversion of a BCUX message to BCUXR protocol
followed by transmission and echo of the request-reply message pair over a
link.
Time in microseconds.

Message s iz e : BCU data only

(Bytes) BCUX total size

BCUXR total size

0 48 145

(28) (76) (173)

31 79 176

Message conversion and

communication time

832 1088 1408

No BCUX conversion

- communication time only

(384) (576) (832)

No conversion and no display of

echo - communication time only

(256) (448) (704)

Table IV Ring Router Performance

Test configuration Netl9 - four node and eight node T212 bidirectional rings
with full Router (BCUXR Converter and Network9 processes) at 20 Mbit/s
link speed.
Typical conversion and communication times for message distance of one
node for request-reply message pair (total distance, two nodes).
Time in microseconds.

Ring size: 4 node 8 node

Message s iz e : BCU data only

(Bytes) BCUX total size

BCUXR total size

0 48 145 0 48 145

28 76 173 28 76 173

31 79 176 31 79 176

Message conversion and

communication time

3392 4 032 4 864 3 648 4 032 5248

Conversion and communication

time - with no echo display

2752 3264 4096 3328 3 648 4 224

-187-

/ vppenatx j

BCUXR

/ BCUX
' channels'' f

$BCUXR. Converter

C
^ BCUXR ^

channels

■>

Network
BCUXR

;lock. in - clock, out
anti, out — — anti, in

Figure J1 - P-DB4GL Router Process

f rom. appto. app

Buffer

rec. to. buff A \/ free. buf f

TransmitReceive
thru

net. outnet,in

- all channels except free.buff are BCUXR protocol

Figure J2 - Network8 Ring Router Process

-188-

/\jrp^nuix j

to. app from. app

Collect Sender
c. in a. in

a. outc. out
Network8 Network8

c. net. in — — a, net. in

a. net. out c. net. out

- all channels are BCUXR protocol

Figure J3 - Network9 Ring Router Process

-189-

A ppendix J

Node 0 Node 1

^Netest 1(^
A V

^ N e t w o r k ^

^Netest9^
V

J^N et w ork^ [

\V Node (N-1)

(^ T)
yf, f

^ N e t w o r k ^ ■>

• # •

Node 2

^Rtest4 ^
A V

GNetwork>r
_y-

AV

all 16-bit T212 processors:
- four T212-20 processors for size four ring
- four T212-20 + four T212-17 for size eight ring

Figure J4 - Netl6 Ring Routing Test Configuration

Node 0 Node 1

BCUX. Display
BCUX

Dbhrns10
Echo

BCUX BCUX

BCUXR. Converter BCUXR. Converter
BCUXR

— both T212-20 processors

Figure J5 - Netl8 Ring Routing Test Configuration

-190-

nyjjcnuix j

Node 0 Node 1

DbhrnslO BCUX. Display
A BCUX
Echo ^

A VBCUX

Router

BCUX

Router

BCUXR BCUXR

Node <N-1) Node 2

Router ^Router

- all T212 processors at 20 Mbit/s link speed

Figure J6 - Netl9 Ring Routing Test Configuration

-191-

Appendix K

System Constants

SYSTCONSJNC

— {{{ LIB dbms.system.constants
— {{{ systemconstants
VAL INT object.id.length IS 8 :
VAL INT object.type.length IS 4 :
VAL INT object.number.length IS (object.id.length -

object.type.length) :
VAL INT entity.id.length IS object.number.length :
VAL INT attribute.id.length IS object.number.length :
VAL INT bcuXX.messege.limit IS 255 :
VAL INT bcuXX.node.id.length IS 1 :
VAL INT bcuXX.protocol.overhead IS (bcuXX.node.id.length * 2) :
VAL INT bcuX.protocol.overhead IS (object.id.length * 2) :
VAL INT bcu.message.details IS 4 : — mode + status + io + val.size
VAL INT bcu.protocol.overhead IS ((entity.id.length +

attribute.id.length) +
bcu.message.details) :

VAL INT total.message.overhead IS ((bcuXX.protocol.overhead +
bcuX.protocol.overhead) +

bcu.protocol.overhead) :
VAL INT bcu.max.value IS (bcuXX.messege.limit -

total.message.overhead) :
VAL INT max.attribute.value.length IS 80 :
VAL INT max.no.of.fields IS 20 :
VAL INT max.no.key.fields IS 19 :
VAL INT max.record.length IS (max.no.of.fields *

max.attribute.value.length) :
VAL INT max.key.length IS 120 : — Micro Focus COBOL limit
VAL INT max.no.schema.links IS 100 :
VAL INT max.no.entities IS 100 :
VAL BYTE disc.terminate IS 1 (BYTE) :
VAL BYTE disc.request IS 0 (BYTE) :
VAL BYTE disc.reply IS 0 (BYTE) :
VAL BYTE null.char IS 0 (BYTE) :
VAL BYTE numeric IS '9' (BYTE) :
VAL BYTE character IS 'X' (BYTE) :
--}}}
--}}}

CODEVALSJNC

— {{{ LIB dbms.system.codes
— {{{ dbms.system.codes
— {{{ system.codes
VAL BYTE entity.action IS * E' :
VAL BYTE attribute.action IS ’A ’ :
VAL BYTE closed IS *C' :
VAL BYTE opened IS 'O' :
VAL BYTE input.output.mode IS 'O' :
VAL BYTE input.mode IS 'I* :
VAL BYTE output.mode IS 'O' :
VAL BYTE not.available IS 'N' :

-192-

siyf/cfiuiA, i v

VAL BYTE true.stat IS *T' :
VAL BYTE false.Stat IS 'F'
VAL BYTE locked.rec IS 'D'
VAL BYTE locked.file IS 'A'
VAL BYTE terminate IS 'X' :
—}}
— {{{ object.id.codes
— object identity codes

BYTE kernal IS "KRNL" :
BYTE prime IS "ENTY" :
BYTE couple IS "CPLE" :
BYTE schema IS "SCHM" :
BYTE filer.h IS "FLRH" :
BYTE user.h IS "USRH" :

entity.action.codes
BYTE null.action IS "0000" :
BYTE open.entity IS "0001" :
BYTE close.entity IS "0002" :
BYTE get.entity IS "0003" :
BYTE get.next.entity IS "0004"
BYTE locate.entity IS "0005" :
BYTE store.entity IS "0006" :
BYTE delete.entity IS "0007" :
BYTE clear.entity IS "0008" :
BYTE clear.data IS "0009" :
BYTE save.entity IS "0010" :
BYTE restore.entity IS "0011" :
BYTE get.eq.entity IS "0012"
BYTE get.gt.entity IS "0013"
BYTE save.key.entity IS "0014’
BYTE restore.key.entity IS "0015" :
BYTE clear.partial.entity IS "0016"
BYTE push.key.entity IS "0017" :
BYTE pop.key.entity IS "0018" :
BYTE init.queue IS "0019" :
BYTE clear.attribute IS "0020" :

VAL
VAL
VAL
VAL
VAL
VAL
—}}
— {{
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
“ }}
— {{{ error.codes
VAL BYTE no.error IS 0 (BYTE) :
VAL BYTE err.get IS 50 (BYTE) :
VAL BYTE err.get.next IS 51 (BYTE) :
VAL BYTE err.locate IS 52 (BYTE) :
VAL BYTE err.store IS 53 (BYTE) :
VAL BYTE err.delete IS 54 (BYTE) :
VAL BYTE err.write IS 55 (BYTE) :
VAL BYTE err.rewrite IS 56 (BYTE) :
VAL BYTE err.entity.closed IS 57 (BYTE) :
VAL BYTE err.illegal.action IS 58 (BYTE) :
VAL BYTE err.open IS 59 (BYTE) :
VAL BYTE err.invalid.attribute IS 61 (BYTE)
VAL BYTE err.locate.eq IS 62(BYTE) :
VAL BYTE err.locate.gt IS 63(BYTE) :
VAL BYTE err.dec IS 64(BYTE) :
VAL BYTE err.filespec IS 65(BYTE) :
VAL BYTE rec.lock IS 71(BYTE) :
VAL BYTE file.lock IS 72 (BYTE) :
VAL BYTE err.entity.identifier IS 80 (BYTE)
— {{{ schema values

-193-

VAL BYTE illegal.entity IS 91(BYTE) :
VAL BYTE illegal.attribute.op IS 92(BYTE) :
VAL BYTE illegal.entity.op IS 93(BYTE) :
VAL BYTE locked.mode IS 94(BYTE) :
VAL BYTE err.realise.fail IS 95(BYTE) :
—}}}
— {{{ message failures
VAL BYTE err.source.object.type IS 251 (BYTE)
VAL BYTE err.object.identifier IS 252 (BYTE)
VAL BYTE err.node.identifier IS 253 (BYTE) :
VAL BYTE err.message.fail IS 254 (BYTE) :
—}}}
VAL BYTE err.terminate.fail IS 255 (BYTE) :
—}}}
—}}}
—}}}

SYSTVALS.INC

#INCLUDE "c:\dbms\systcons.inc"
#INCLUDE "c:\dbms\codevals.inc"

NETVALS.INC

— constant values for network code
VAL INT max.no.of.nodes IS 256 :
VAL INT max.objects.per.node IS 20 :
VAL INT max.BCUXR.length IS 256 :

Appendix L

Channel Protocols

DBPCOLSJNC

— {{{ LIB protocol.decs
— {{{
#INCLUDE "c:\dbms\systcons.inc"
— {{{ tds channels
PROTOCOL SCREEN IS BYTE :
PROTOCOL KEYBOARD IS INT :
— }}}
— {{{ basic.comm.unit.protocol
PROTOCOL Eh.number IS [entity.id.length]BYTE :
PROTOCOL Eh.mode IS BYTE :
PROTOCOL Eh.operation IS [attribute.id.length]BYTE :
PROTOCOL Eh.stat IS BYTE :
PROTOCOL Eh.io IS BYTE :
PROTOCOL Eh.val IS BYTE::[]BYTE :
— BCU is a sequential protocol composed of...
■— BCU IS Eh.number; Eh.mode; Eh.operation; Eh.stat; Eh.io; Eh.val :
PROTOCOL BCU IS [entity.id.length]BYTE;

BYTE;
[attribute.id.length]BYTE;
BYTE; BYTE; BYTE::[]BYTE :

—}}}
— {{{ basic.comm.unit.extended.protocol
— BCUX is a sequential protocol composed of...
— BCUX IS Source.object; Destination.object;
— Eh.number; Eh.mode;

Eh.operation; Eh.stat; Eh.io; Eh.val :
PROTOCOL BCUX IS [object.id.length]BYTE;

[object.id.length]BYTE;
[entity.id.length]BYTE;
BYTE;
[attribute.id.length]BYTE;
BYTE; BYTE; BYTE::[]BYTE :

—}}}
— {{{ tuple.object.protocols

<field.specification> = <field.id> <field.value>
— <field.id> = INT
— <field.value> = INT::[]BYTE
— <dump.string> = INT::[]BYTE
PROTOCOL TUPLE.REQ

CASE
T .get; INT
T .put; INT; INT::[]BYTE
T .fill; INT::[]BYTE
T.dump
T.terminate

PROTOCOL TUPLE.REPLY
CASE

T .return.field; INT::[]BYTE
T.put.ok
T.fill.ok
T .return.dump; INT::[]BYTE

— <field.id>
— <field.specification>
— <dump.string>

<field.value>

<dump.string>

-195-

n y ycn u ix r.

T .terminate.ok
T .error.field.id
T .error.field.empty
T .error.value.underflow
T .error.value.overflow
T.error.dump; INT::[]BYTE — <dump.string>
T .error.terminate

— } } }
— {{{ filer.object.protocols

<file.description> = <i.o.status> <record.description>
<i.0 .status> = BYTE
<record.description> = <record.length> <key.length>
<record.length> = INT

— <key.length> = INT
— <key> = INT::[]BYTE
— <record> = INT::[]BYTE
PROTOCOL FILER.REQ

CASE
F .open; BYTE; INT; INT
F .close
F .read; INT::[]BYTE
F .read.next
F.write; INT::[]BYTE
F .rewrite; INT::[]BYTE
F.delete; INT::[]BYTE
F.start.equal; INT::[]BYTE
F.start.greater; INT::[]BYTE
F .start.not.less; INT::[]BYTE
F.terminate

PROTOCOL FILER.REPLY
CASE

F .open.ok
F. close.ok
F.read.ok; INT::[]BYTE
F.read.next.ok; INT::[]BYTE
F.write.ok
F .rewrite.ok
F.delete.ok
F .start.ok
F .terminate.ok
F.at.end
F .invalid.key
F.error

--}}}
— } } }
— } } }

HRNSPCOLS.INC

— {{{ timing protocols
PROTOCOL TIME.CONTROL

CASE
TC.reset — reset all timers, switch all transmissions off
TC.bcu.on — toggle on bcu timing

<file.description>

<key>

<record>
<record>
<key>
<key>
<key>
<key>

<record>
<record>

-196-

/\ppetiaix

TC.bcu.off — toggle off bcu timing
TC.start.trans — time start of transaction
TC.end.trans — time end of transaction, transmit trans time
TC.transmit.on — toggle on timings transmission
TC.transmit.off — toggle off timings transmission
TC.current.time — transmit current time

PROTOCOL TIME.RESULT
CASE

TR.bcu; INT — <time>
TR.trans; INT — <time>
TR.current; INT — <time>

—}}}
— {{{ batch control protocol
— BC.bcu.mess; <eh.number> <eh.mode> <eh.operation>
— <eh.stat> <eh.io> <eh.val>
PROTOCOL BATCH.CONTROL

CASE
BC.start.app — start of application
BC.start.trans — start of transaction
BC.end.trans — end of transaction
BC.end.app — end of application
BC.bcu.mess; [entity.id.length]BYTE; BYTE;

[attribute.id.length]BYTE;
BYTE; BYTE; BYTE::[]BYTE

—}}}

NETPCOLSJNC

— network protocols
— BCUXR is a counted array protocol for ring topology
— first BYTE is the length of the following array containing message
— [0]BYTE of the array is the source node
— [1]BYTE of the array is the destination node
— ring nodes are identified as 0..(N-1), where N is the
— size of the ring
PROTOCOL BCUXR IS BYTE::[]BYTE :

