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ABSTRACT

The work presented in this thesis is a theoretical investigation of the interaction 

of terahertz (THz) radiation with intersubband excitations in micro cavities lead­

ing to THz polaritons and antipolaritons. The approach is based on the dielectric 

function formalism. The dielectric constant is derived from an optical susceptibility 

evaluated with Non Equilibrium Many Body Green’s Functions (NEGF), which is 

then adjusted to a Lorentzian fit. Finally, the resulting expression is included in the 

wave equation describing the propagating electric field in the medium. This model is 

applied to GaAs/Alo_sGao^As multiple quantum wells embedded in a micro-cavity. 

The energy dispersion relations leading to THz polaritons and antipolaritons are 

obtained and investigated for different carrier densities and cavity configurations.

Recently, intersubband based THz polariton emitters and THz quantum cas­

cade lasers are attracting major research interest due to their great importance in 

applications such as THz imaging, spectroscopy as well as in security control for de­

tection of biological and hazardous materials and medical diagnosis. The coupling 

of THz radiation with intersubband transitions in semiconductor microcavities can 

lead to further tunability and improved quantum efficiency for THz devices. Here we 

propose a simple geometry and used a simplified modelling technique to investigate 

the interactions of transverse electric (TE-Mode) polarized THz cavity modes with 

intervalence band excitations. The model is applied to single and multiple transi­

tion problems and combinations of many body effects and scattering mechanism are 

included in the input dielectric constant.
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CHAPTER 1 
GENERAL INTRODUCTION AND MOTIVATION

1.1 Introduction

The interaction of light with material excitations has been extensively investigated 

for many years and continues to attract strong research interest. This study began in 

atomic physics [1] and molecules, and then later in semiconductor systems and lead 

to successful applications in photonics, optoelectronics and allows many physical 

phenomena to be investigated.

Depending on the system under consideration, photonic modes and the ma­

terial excitations can resonantly interact and new eigenstates called polaritons are 

formed. Thus polaritons are the result of light-mater interaction having a dual char­

acter characterized by an anticrossing behaviour [2]. Example of polaritons include: 

exciton-polaritons(due to coupling of light and excitons), Phonon-polaritons (due to 

interaction of optics phonon and photons), surface plasmon polariton (due to cou­

pling of surface plasmons and photons) and intersubband cavity polaritons (due to 

coupling of confined photonic modes and intersubband transitions in a microcavity).

The findings presented in this thesis, are based on an application of micro­

scopic theories of the interaction of electromagnetic radiation, specifically the tera­

hertz (THz) region, and intersubband excitations in semiconductor quantum wells 

embedded in a microcavity. Its well known that a microcavity can potentially alter 

the optical properties of a semiconductor structure such as; spontaneous emissions 

and/or absorptions of electrons, atoms, holes or related quasi-particles. This is be­

cause the increased confinement of the electromagnetic field drastically affects its 

density of states [3,4]. Furthermore, the concept of antipolaritons describes the cou­

pling of radiation and intersubband transitions in an inverted (gain) medium [5,6].

Intersubband transitions have delivered remarkable applications. Photonic

1
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devices such as quantum cascade Lasers (QCLs) [4,7,8], quantum well infrared 

detectors (QWIP) [9,10] and terahertz polariton emitters [11,12] are among the 

successful applications.

1.2 A review on relevance of studying intersubband transi­

tions

Progress in the study of intersubband transitions in quantum confined structures 

such as: quantum wells, wires and dots has significantly changed the field of opto­

electronics, where devices operating in the mid and far infrared regions have been 

demonstrated. Among the recent achievements is the implementation of THz quan­

tum cascade lasers (THz QCLs), THz photodetectors and THz Polariton emitters. 

All these devices are based of quantum engineering of intersubband transitions. Be­

low we review relevant previous works based on intersubband transition in the THz 

domain.

1.2.1 THz quantum cascade lasers

The THz QCls is a unipolar semiconductor laser which emits radiation in the THz 

region due to intersubband transitions. Thus, unlike the conventional interband 

lasers, which are bipolar and photon emission is achieved due to electron-hole pair 

recombinations, QCLs utilise electrons in the conduction band or holes in the valence 

band to achieve laser emission. The first mid-infrared QCls was demonstrated in 

1994 by Jerome Faist [13] at Bell laboratories. Since then, interest in the field 

increases, and advance in its technology lead to the advent of THz semiconductor 

quantum cascade lasers [14-16]. Its an open controversy that THz QCLs is the only 

solid-state THz sources that can deliver average optical power output level far above 

a milliwatt which is essential for THz imaging, and deliver continuous wave (CW) 

operation for frequency stability desired in high resolution THz spectroscopic [14]. 

The first THz QCL has been demonstrated by Kohler et al in a cooperation between 

Scuola Normale, Pisa and Cambridge university [15].
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A typical QCL has three regions of interest: the injector, the active and the 

collector regions. Of particular interest is the ability to control the wavelength of the 

em itted radiation by varying the quantum  well width making up the superlattices. 

This is because the confined electronic or hole states in the conduction or valence 

bands depend on the dimension of the quantum  wells. Figure 1.1 below shows a 

typical structure of conduction band THz quantum  cascade laser [21]. Note however 

tha t, different design approaches have been reported [6-21] in the design of the active 

region in order to achieve population inversion, which is the key to laser emission.

Injector barrier

C ollectpr barrier

q h b t o n ennssic

Injector region

E lectron s tun nelling

A ctive region

O ne period

Injector region'

F igure 1.1: Schematic view of the conduction band diagram of four-level THz QCLs 
showing three regions of interest: the injector, the active and the collector regions based 
on the design described in REf. [21]

1.2.2 T H z p o la rito n  e m itte rs  and  q u a n tu m  well p h o to  d e te c to rs

Terahertz spectroscopy is based on the detection of THz radiation generated by a 

given source after it interacts with samples to be analysed. Recently new sources 

and detectors based on intersubband transitions have been developed, such as po­

lariton em itters [11] and quantum  well photodetectors. These device have strong 

potential for applications in spectroscopy, imaging and improved data  transm ission
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in communications. Ultra-strong coupling of THz radiation with intersubband tran­

sitions which can further improve the applicability of polaritonic devices in an L-C 

resonator has been reported [24].

Furthermore, reflectivity experiments have demonstrated that THz intersub­

band polariton tuning is possible by electrical gating, in which the carrier density is 

modulated [12]. This increases the frequency range under which these devices can 

operate. Furthermore, different approaches have been considered to improve the 

efficiency and geometric designs for polaritonics, e.g. the use of optical couplers: 

surface-plasmon-polariton, micro-cavity coupler and ID grating couplers [25]. This 

technique can increase the coupling strength as well as allowing coupling to normal 

incident THz radiation. In addition, beyond the usual GaAs structures, THz electro­

luminescence has been reported from THz QCL structures based on InAs/AlSb with 

a sharp spectral feature at 4.0 THz [26], widening the range of materials suitable 

for intersbubband THz applications.

1.3 The Electromagnetic spectrum and the Terahertz gap

The Terahertz (THz) gap refers to the range of the electromagnetic spectrum be­

tween microwave and infrared regions from 0.3 to 10 THz (1  THz =  1012 Hz . 

THz spectroscopy takes advantage of the fact that many substances undergo ro­

tational and vibrational transitions in the terahertz to mid-infrared (TERA-MIR) 

frequencies. Therefore, THz can offer robust methods for controlling these individ­

ual transitions in a range of molecules, which are relevant for a large number of 

applications [27-31].

Several materials such as: plastics, papers and textiles show a reasonable 

optical transparency to the THz range of the electromagnetic spectrum. This is 

because they are non or less conducting and perhaps moist free thereby limiting 

the absorption of the radiation. Owing to this interesting quality, a number of 

industrial, medical and military applications can be offered. Chemical, biological, 

radiological or nuclear (CBRN) agents, explosives, and illegal drug substances, and
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can be readily detected by merely sampling their characteristic absorption spectra 

at THz frequencies. In fact this is of particular interest in materials studies for 

enhanced quality assurance/m aterial integrity and also in customs inspections and 

security in general. THz photons are not energetic enough to ionise molecules, and 

therefore can be harmless to living biological tissues. This characteristic advantage 

can be employed in medical diagnostics in humans, such as in the precise detection 

of tum ours on the surface of human skin through THz imaging [32-35]. This is in 

contrast to conventional X-rays which are known to have long term  harmful effects 

on humans upon exposure. Consequently THz radiation has a large potential for 

the diagnostics of diseases by breath analysis. It is also very interesting for satellite 

and spacecraft communication, since there is no absorption in space in contrast to 

the high absorption in the atmosphere due to water vapour. Figure 1.2 show the 

THz range in the electromagnetic spectrum.

Frequencies 1GHz 10GHz
a I l I

0.1 THz lOTHz lOOTHz
I I I I I I

lPH z 10PHZ 
I i

Electronics
THz-Gap

letre 'microwaves Infra-red le U V

Source Transistorsmicrowaves oven Thermal radiation, solar, light bulb

Wave lengths 300mm
—I<------ >1

3mm 30qm BOOnm

Figure 1.2: Schematic diagram indicating the THz gap filling the frequency range between 
Photonics and Electronics areas of application in the electromagnetic spectrum. Note: Not 
to scale

THz radiation is em itted from almost every object with tem pereture around 

10 Kelvin. However, THz emission at this tem perature is very week [36]. There are 

many commercial and non-commercial sources of the THz radiation which include: 

optically pumped THz lasers, frequency mixers, semiconductor THz em itter and 

THz quantum  cascade lasers (QCLs) [37,38]. Further details on terahertz and its 

applications can be found in literature [39,41,43-45].
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1.3.1 Applications of Terahertz waves

We look below briefly on some fields where THz radiation is applicable:

1. THz Spectroscopy and Imaging

Terahertz time domain spectroscopy (THz-TDs) has application in Chem­

istry and Biochemistry, security, imaging in medicine, communications as 

well as manufacturing processes [39-41]. The system involves directing sub­

picoseconds THz-pulses using an ultrashort near infrared pulsed laser at the 

surface of a sample to be analysed, and therefore becomes transmitted, re­

flected or absorbed after they interact. W ith the used of a second femtosec­

ond laser pulse, the emitted radiation is then detected and analysed. THz 

radiation generates images of samples that are opaque in both visible and 

infra red regions. However, its application (in THz-TDs) is limited to very 

thin samples or samples with low absorbance. This is due to difficulty to dis­

tinguish the coherently generated THz pulses resulting from the samples and 

tha t caused by the driven lasers. The spectroscopic or imaging techniques 

of THz-radiation have the potential to improve the quality and uniformity of 

pharmaceutical products such as: 3D-chemical mapping [42], tablet coating 

and chemical fingerprint.

The fact that THz-radiation can penetrate greatly into many materials such 

as polymers, clothing , fabrics, paper, cardboard, wood and so forth, makes 

THz-imaging to be more advantageous.

2 . Security and safety

Another fascinating application of terahertz technology is in advancing secu­

rity and safety [46]. This is because THz penetrates through fabrics, wood and 

plastics materials. Thus, it is useful for surveillance, including security screen­

ing, to uncover concealed weapons on a person. These applications combined 

with THz Imaging Technology can potentially be used for societal safety such 

as in airport for passengers screening. Moreover, because THz radiation is non 

ionising, its low energy impacts has no harmful effects on human tissues and
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organs, hence making it suitable to replace X-rays in medical imaging.

3. Telecommunications

Because THz radiation has limited transmission in water, and the atmosphere 

contains a huge amount of water vapour, its uses in telecommunication for 

distance transmission is limited. However it can potentially be used in high 

altitude telecommunications i. e. above the altitude where large absorption 

of the radiation is less due to little concentration of moisture( e.g.in satellite 

communication). However, in recent research, wireless data transmission rate 

as fast as 3 Gigabits per second (twenty five times faster than the current 

standard Wi-Fi) is reportedly recorded using resonant tunnelling diode [47] to 

generate THz-waves, a proposal to be used as bandwidth for data transmission 

to enhance future telecommunication.

1.3.2 M axwell’s equations

The input to our model equations for the polariton and antipolariton problems is 

based on the dielectric formalism. To get insight into physical information contained 

in the optical responses of the system, e(u), a review of propagation of electromag­

netic wave in a non-conducting dielectric medium is in order. The basics to it is the 

wave equation which is derived from Maxwell’s Equations. In the absence of free 

charges and current densities Maxwell’s equations in free space have the form;

V - D  = 0  

V -B  =  0

V x E(r, f) =

V x H (r, i) =  ( l .l )

where D and B(r, t) are the electric and magnetic displacement fields vectors re­

spectively. The electric displacement vector D is related to macroscopic optical 

polarization P  according to D =  £0E(r, t) -f- P (r, t). At optical frequencies and for 

a semiconductor material, the magnetic displacement, B, become B =  /i0H (r, t).



Here e0 and fiQ represent respectively the permittivity and permeability of free space.

1.4 Theories of polaritons and antipolaritons

Modern epitaxial growth techniques such as molecular beam epitaxy (MBE) used 

in the growth of a semiconductor crystal allow the confinement of electrons and

holes in the crystal. In this process, quantum wells, wires and dots are created. 

Next, we briefly discuss polaritons in bulk and quantum wells, highlighting the 

main differences. This short discussion is meant to frame our work in the context 

of the large polariton field.

1.4.1 Exciton polaritons in bulk semiconductors

The valence and and conduction bands of a semiconductor are separated by an 

energy gap, E g. At absolute zero temperature, the valence band in a semiconduc­

tor is completely full with electrons and the conduction band is empty. However, 

through optical pumping, electrons can be excited from ground state (zero level) in 

the valence band to excited states in the conduction band, thereby leaving behind 

a hole forming a bound state due to coulomb interaction. This electron-hole pair is 

called an exciton. In a bulk semiconductor, excitons can be strongly coupled with 

EM-radiation forming exciton-polaritons.

On the basics of semiclassical theory, the energy dispersion relation for the 

bulk polariton state can be derived from the combination of the wave equation and 

a classical Lorentzian optical dielectric function based on damped simple Harmonic 

oscillator model

where / j j ,  is the oscillator strength due to the dipole interaction of interband tran­

sitions, 7 i j  is a phenomenological damping constant, is the transition frequency 

between states i and j and ljp = N e 2 /m 0£ 0 is the plasma frequency (i.e. frequency 

at which the collective excitations respond rapidly with respect to a small change

(1.2)
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in electric field). The letter N  represents the number of free carriers (electrons or 

holes) per unit volume occupying a certain subband. The constants e, m 0, and eQ 

stand for the charge, mass of electrons and vacuum dielectric constant respectively.

The dispersion relations for the exciton polariton can be derived as;

c2k2 = uj2e(cj) (1.3)

for transverse eigenmodes and correspondingly;

e(tj) = 0 (1.4)

for the longitudinal eigenmodes, where e(u;) is the optical dielectric function of 

bulk excitons without ionization continuum. For the transverse eigenmodes, using 

Equation 1.2 in Equation 1.3 and taking 7  =  0 we obtain

7 2 2 2 ( w  —  UJ12  —  A l t \  -k c = u ze0 -------------------  , (1.5)V UJ-UJ12 )

where A l t  = ^ p f  12 is called the longitudinal-transverse splitting. Equation 1.5 gives 

polariton without spatial dispersion and damping. However if the exciton energy is 

included by replacing the transition frequency 0 7 2  =  UJ\2  +  UK2 /2M*  in Equation

1.5 and the effect of damping is considered as well, we obtain polariton with spatial 

dispersion and damping. Where M* is the exciton effective mass. For details see for 

example [48]. In Figure 1.3 a schematic diagram for exciton polariton is depicted. 

The effect of damping will be discuss in details in the next chapters for the case of 

intesubband polariton and antipolariton. It will be shown that, significant damping 

make the polariton character to disappear, only photon’s dispersion remained.
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F igure 1.3: Schematic diagram of exciton polaritons in bulk material, indicating the long 
wavelength limit (dispersion approaches zero, as ft—>• 0).

1.4.2 M icrocav ity  q u an tu m  well p o la rito n s

In a quasi-two dimension structures such as quantum  wells, the translational move­

ment of both electrons and holes are restricted to two spatial directions. The effect 

of quantum  confinement results in the formation of subband levels for either the 

conduction band or valence band as the quantum  well thickness becomes compara­

ble to the de Broglie wavelength. In a semiconductor, quantum  wells are formed 

by sandwiching a semiconductor m aterial with lower band gap between two layers 

of higher band gap semiconductor material. Figure 1.4 represents a schematic of 

GaAs quam tum well with AlGaAs as barrier.

The coupling strength of light-m atter interaction can be enhanced if the pho­

tonic environment is modified. This can be achieved if the electromagnetic field is 

confined, analogous to quantum confinement of electrons in a quantum  well struc­

ture. A semiconductor microcavity is an optical resonator through which light- 

m atter interaction can be controlled. Reflectivity from microcavity resonators can 

also be achieved using a stack of photonic crystals with repeated alternate layers of
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F igure 1-4-' Schematic (a) of GaAs/AlGaAs quantum well structure (b) band gap- 
diagram

two semiconductor materials having different refractive index, forming what is called 

a distributed Bragg reflector or simply between semiconductor-air interface due to 

to tal internal reflection. The cavity, typically a few microns in width, is designed 

to ensure th a t photonic modes in the crystal form a standing wave with their nodes 

at the center of the cavity. In order to achieve tha t, the cavity length should be an 

integral multiple of half the wavelength of the incident, L c = n X / 2 , where n is an 

integer.

For a quantum  well embedded in a microcavity, the polariton dispersion Eq.

1.3 for the transverse eigenmodes becomes modified due to the confined electric 

fields in the cavity and now reads:

c2 , 2  * 2 ' 

f c l l  +  £ 2 = uj2e{oj)1 (1 .6 )

where k\\ is the wave number parallel to layer’s growth direction and L stand for cav­

ity length. Thus, in contrast to bulk polaritons, the dispersions for the microcavity 

have finite frequency in the long wavelength range (i.e as kii — > 0 ).
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1.4.3 Intersubband cavity polaritons and antipolaritons

The coupling of cavity modes with intersubband excitations generates a new type 

of hybrid light-matter Hamiltonian. The experimental observation of intersubband 

polaritons was reported for the first time with reflection measurement [77] after 

the theoretical prediction by Asheng Liu in his paper titled ’Rabi splitting of the 

optical intersubband absorption line of multiple quantum wells inside a Fabry-Prot 

microcavity’ [52]. The resultant energy dispersions in both two papers presented by 

the authors are based on the interaction of confined cavity modes and intersubband 

excitations in an absorbing media. Intersubband antipolaritons however, introduce 

new features due to amplified gain media (inverted media) [5,6]. Contrary to the case 

of polaritons, the two antipolaritons branches repelled each other. In the following 

chapter, analytical expressions for cavity intersubband polariton and antipolariton 

are derived and simple numerical calculations are also presented.

1.5 Aims and objectives

Most work on intersubband polaritons focuses on inter-conduction band transitions, 

with TM polarization. In this work we summarize our contributions to the field 

extending the study to polariton and antipolariton based on inter-valence band 

transitions with TE-polarization. The aims and objectives of the research include:

• To apply a dielectric model based on nonequilibrium Green Function (NEGF) 

to investigate the coupling of transverse electric (TE) modes polarized THz ra­

diation and intervalence band transitions in GaAs/Alo.sGao.yAs multiple quan­

tum wells embedded in microcavity.

• To explore simple geometrical designs for the cavity that allows coupling of 

inplane polarized cavity modes with the valence band excitations.

•  Compare and contrast the relevance of valence band based design tha t allows 

the coupling with both TE and TM cavity modes.
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1.6 Thesis outline

This thesis has the following structure. The first two chapters position the work 

in respect to the current state of the art of the field and introduce basics concepts 

required to understand the original work presented next, making this a self con­

tained manuscript. Beside that, analytical expressions for the cavity polaritons and 

antipolaritons are derived and preliminary results from numerical approximations 

are presented.

In chapters 3 and 4, polariton and antipolariton dispersion relations for single 

and multiple resonances are derived. Numerical results are given for cavities con­

taining GaAs/Al0.3Gao.7As multiple quantum wells . The influences of dephasing, 

changing cavity parameter and scattering mechanisms are all considered in these 

two chapters. Furthermore a comparison of results for TE and TM modes polari­

tons and antipolaritons closes the chapters. A general conclusion and future work 

are presented in chapter 5.



CHAPTER 2
BASICS OF INTERSUBBAND POLARITONS AND

ANTIPOLARITONS

2.1 Introduction

The results shown in this manuscript are based on the dielectric approach. An 

analytical expression for the dielectric is obtained from a fit to the optical suscepti­

bility obtained using nonequilibrium many body Green’s function techniques. The 

energy dispersion relations for the polaritons/antipolaritons are derived analytically 

from the resulting expression for the dielectric constant and secular equation for the 

cavity modes. Full approaches are given in the later chapters.

In this chapter, analytical expressions of intersubband cavity polaritons and antipo­

laritons are derived and a simple numerical approach is also presented. However 

before that it is important to review some relevant optical processes related to in­

tersubband transitions in quantum wells.

2.2 Optical transitions

In semiconductors and or quantum wells in particular, two different optical transi­

tions occurs: Interband and intersubband optical transitions processes. The former 

can be direct or indirect process involving contribution of optical phonon, while the 

later is always a direct process. Both processes involves photons emission or absorp­

tion depending on which band or subband is excited. In the case of direct interband 

transition, both energy and crystal momentum are conserved (k„ =  kc). In other 

words, the transition occurs between valence and conduction bands states if both 

the momentum of the electrons and holes are the same in the Energy-momentum 

(E-K) diagram. For the case of indirect transition, the phonon wave number q has 

been included in conservation of the crystal momentum ( k^ =  kc ±  q).

14
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2.2.1 In te rb a n d  tra n s itio n s  in  q u a n tu m  wells

In semiconductor quantum  wells, optical transitions occur between valence and con­

duction bands due to photon emission or absorption. This are called interband or 

band to band transitions. Interband transitions can be direct transitions as shown 

in Figure 2.1 for direct band gap materials and in some cases it is an indirect 

transition involving contribution from optical phonon as it occurs in indirect band 

gap materials like silicon and germanium. Due to optical confinement of the elec­

tron and hole states in quantum  well growth direction, restriction due to selection 

rule apply. Thus interband transition selection rules [54,55] allow only transition 

between valence and conduction subbands with same parity.

F igure 2.1: Schematic band diagram structure for a GaAs quantum well with AlAs as 
barrier material. The arrows indicate possible interband transitions between quantum well 
states due to interband selection rules.

At this point its im portant to define one more useful param eter which describes 

the strength of any optical transition known as oscillator strength. For interband 

transitions it has the form;

f  =  2m ^ > l  = ^ L m . r ^ t ( 21 )
m 0riuj ri

where m 0 is the free electron mass, i and /  are the initial and final states w ith 

energies Ei and E f  respectively, fiuj — E f  — E{ and r) is the polarization vector and
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r  is the dipole m atrix element.

2.2.2 In te rsu b b a n d  tran s itio n s  in  q u a n tu m  wells

In a quantum  confined structure such as a quantum  well, optical transitions are 

observed between confined states within the same band (either conduction or va­

lence band) and are referred as intersubband transitions. Progress in Physics of 

intersubband transitions in two dimensional structures and device applications such 

as quantum  cascade lasers and infrared photodetectors has been recorded and con­

tinued to  be explored especially with recent applications in intersubband THz QCls 

and THz em itters [56]. Figure 2.2 describes schematically intersubband transitions 

in GaAs (AlGaAs) quantum  well (barrier) between first two subbands of a conduc­

tion band labelled n =  1 and n =  2  accomplished with photon (a) absorption and 

(b) emission.

n= i

1 1 = 3

o / t w *
n = :  

mtted photons

11= 1

(a) Absorption process (b) Emission process

Figure 2.2: Schematic diagram showing the process of intersubband transitions between 
confined quantum states in QWs (a) Absorption process and (b) emission process.

Intersubband transitions selection rule applied to quantum  well conduction 

band requires tha t only polarized electric field perpendicular to the incident layer 

(TM-mode) can be coupled with the m aterial excitations. This has an implica­

tion on device fabrication and system implementation which necessitate the use of 

complex geometry to experimentally perform optical absorption measurement [2,9].
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However band mixing between heavy holes and light holes within valence band, al­

lows coupling to both in-plane (TE) and out-plane polarized (TM) polarized electric 

fields. Thus, devices based on intervalence subband transitions [59,60] have been 

demonstrated.

Within the frame work of a single particle approach and using the effective 

mass approximation, the wave function in a quantum well cam be written as the 

product of Bloch wave uu and envelope wave function ;

Vv*(r) = uu(r)fVi{r), (2.2)

where v  is the band index (either conduction or valence band) and i is a quantum 

number (i = 1,2,...), representing quantum states within the same band. The 

envelope wave function f v. reduced to plane wave approximation into a form

fv A ^ z )  = -J=elik\\-r)ipvi{z ): (2.3)

where A  is the sample area, k\\ = kx,ky is the in-plane wave vector, r = x ,y  is 

the position component for the in-plane wave and ipVi is the slowly varying envelop 

functions. The envelope wave function appearing in Eq. 2.3 and the corresponding 

energy eigenvalue E Vi for a given subband i can be obtained by solving well known 

one-dimensional Schrodinger equation in the form [61];

2^ ¥ V i(z )  + V(z)<p„i (z) = EVi^ Vi(z), (2.4)

where m* is spatial dependent effective mass, V(z)  is the potential energy in the 

QW, and z is considered as the growth direction of the QW. To allow for continuity 

of the envelop wave function at the boundary between the well and barrier layers, 

an additional boundary condition has to be imposed together with solution of Eq.

2.4 which implies that at the interfaces where z = ± d / 2, d being the well’s width,
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then:

ipVi(z = - d / 2 ) = <pVi(z = + d /2)

and

(2.5)

For a symmetric QW, the envelope wave function is found to vary accordingly as;

and articles [57,62] which treat intersubband transitions in QW structures in more 

details form.

2.2.2.1 Oscillator strength of intersubband transitions

For intersubband transition, the dimensionless oscillator strength for transition be­

tween different subbbands i and j  of a conduction band is define as;

where z is the dipole matrix element considering the QW growth direction. This 

oscillator strength obeys sum rule as it involves transition between initial states i 

to all final physical states j , according to;

<pvi(z) has even parity for all odd states (i = 1,3,5....) and <pt,i(z) having odd parity 

for even states (i = 2,4,6....). Further details can be found in relevant text books [61]

(2 .6)

7 ~'.fy ~  1
3

(2.7)
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2.2.2.2 Intersubband dipole matrix elements

The dipole matrix element e • z  of intersubband transitions can be evaluated using 

Eqs.( 2.3) and ( 2.4) as;

\e-zl = (u „ (r)K (r))  J  f Vj{r)fv.{r)dr

=  t y u  J  v t j W e  ' z < P » i ( z ) d *  (2-8)

for transition between state i and j .  Here k\\ is the in-plane wavevector(/cx, ky).

2.3 Analytical expression: cavity polariton/antipolariton

The basis to our nonequilibrium many body problem is generating the optical con­

stants. In this approach a fully microscopic theory that gives rise to analytical 

expression for the dielectric constant leading to the polaritons and antipolaritons 

dispersion is presented. We then used the Maxwell’s equations presented in the last 

chapter to derive the required wave equation that gives rise to a secular equation 

connecting cavity modes and the dielectric constant. The optical susceptibility and 

the optical polarization [63] are related by the equation,

P{u) = E(u), t)x(w), (2.9)

where E (u , t) is a propagating electric field and %(o;) is the optical constant (optical 

susceptibility).

Consider the geometry shown in Figure 2.3 as it appeared in [77]. The prop­

agating electric field is assumed to be in z-direction and has the form for simplicity;

I? • Z  = E  cos(7r/2 — $2 ) = E  sin 62 (2.10)

and using Snell’s law, n sin# =  m  sin#i =  712 sin02, the angle in the cavity and the
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Substrate/ 6 n s .sm 0  =  iij sm  6 , =  n 2 s in

x -a x is

F igure 2.3: Cartoon of a microcavity leading to confinement of incident radiation in the 
cavity core due to total internal reflection between the low refractive index AlAs and air 
boundary as proposed in Ref. [77]

incident angle in the substrate 9 are related. Using wave equation a secular equation 

for the propagating electric field in the cavity core is formulated as;

ofl ofl ofl
fcjj =  — esinO  =  — Si sin#i =  —  e2 sin#2, (2 -1 1 )

where n ’n i ancl n 2 are respectively the refractive indices

for the substrate, cladding and cavity core. Because the cavity core consists of 

multiple quantum  wells, the effective dielectric constant of the cavity core, £ef f  =  e2 

is evaluated as;
N

£ef f  =  L c L j c j  (2 .1 2 )
3= 1

is the background dielectric constant due to well and barrier in the cavity core.

L c — Y liL i L j is the cavity width summing over j  =  1 to  N  layers w ithin the cavity

core. The full dielectric constant with the contribution of effective dielectric constant
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of the medium are connected with the optical susceptibility by the equation;

e(u) =  Seff +  4ttx(o;). (2.13)

The analytical expression for the optical susceptibility is derived through a 

many body Keldysh Green’s function Refs. [35,83] which reads:

[hw -  e xx:{k)  +  irAy] X \ \ ' { k , u )  -  U x ( k )  -  / v (fc)] E  V ^ k, x XX’ ( k ' , u )

k '

=  Vxx ' [ / * ( * ) - / * ( * ) ] ,  (2 .14)

where exx>(k) is the transition energy between subbands A, A , renormalized by the 

intersubband shift [105-108] written as,

^AA'W=  ^AÂ  +  • (2.15)
transition energy ^ >

intersubband shift

The transition energy, is the energy difference between the coupled subbands, and 

S aa' M  (intersubband shift) is due to many body interaction.

e xx'(k ) =  e \ ( k ) ~  ex ( k )  (2 .16)

E w  = E a ( ^ ( ^ ) - E / v ( ^ ( ^ ' )
XX' k ' k '

-  E t A ( fc) - A ' ( f c ) ] ^ Q A_Â ) ,  (2 .17)

where is the Coulomb’s contribution which is due to electron-electron,

electron-hole and hole-hole interactions.

The Coulombs term in Eq.( 2.14), V ^ fc/, contains the exchange correlation
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and the depolarization shift,

< 8 4 - K “ '2 ) - 2 < " * )  - <218) ̂ v   ̂ ^ ^
exchange correlation  depolarization shift

However, in many cases, there is a strong compensation between the intersubband

shift and the exchange correlation and the dominating term contributing to the

many body correction is the depolarization term. Thus if only the depolarization 

term is kept in Eq. 2.14, then we can rewite Eq. ( 2.14) as

/AA A A\
ln b J ~ e\ \ '  +*rAA']XAA'(fc.w) + 2W q ) l M k ) ~  , u )

'  '  k ’

=  PaY l M k) ~ f \ ’(k )] (2-19)

At this point, it is convenient to introduce simplified notations:

A^aa' =  hu — eAy — «TAy

5nAA' =  M k)~ f> .'(k ) v v '
occupation difference

'"AA'A'A
V0AAAA = ^ r " 0'"l, (2-20)

while the symbols pxx> and TAy represent the intersubband dipole moment and 

carrier scattering terms respectively. Furthermore, the following assumptions are 

considered here to further simplify the problem.

1. Same effective mass in each subband for all transitions.

2. The dipole moment does not depends on k-value, and

3. Scattering terms are independent of wave vector and frequency.

Thus, with the above assumptions and simplified notations, our equation for the 

susceptibility function can be reduced to;

^ A E \ \ ‘X \ \ '(k ,u )p k̂  +  ^ 0 X A AfcAA'PYA ^X A A '(fc’>w) =  ^  IPAA'|2|5nAY (2-21)
k '
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Here we have multiplied both sides by ^  and p y A. By summing over £;, Eq. 2.21 

can be written as

E ^ A-EAVXAV(fc.“ )P/A+ E § V0VA'A5™AA'PA'AExAA'(fc'^) = E  IPaa' I* ^AA'
k k k! k

(2 .22)

Due to spin degeneracy, the population difference 5nxx> has the form

<^aa' =  2 ^nxx' W  (2.23)
k

Introducing XAA'(a;) =  ^ E f c '  fP xt x X \ \ ' $ ,  w ) ,  where Q  is a sample volume as in the 

case of interband transitions, the above Eq.( 2.21) becomes,

A-^aa'Xaa'M +  SNXX, VqA a a X aa'M  — o  IPaa'I2 dN xx>/2. (2.24)

The analytical expression for the full optical susceptibility is then obtained from Eq. 

2.24, x(w) =  E a ^ a ' X a a ' M >

= - E T a e ^ I Z "  ’ ^^  du A E xy  +  6gxx>

where 6 rjxx> = —SnyX/ S  is the population density difference between subbands

(A, A’ =  1,2,3...). S  is the sample area and du represents the width of the well’s
aa' a' amaterial. In Eq. 2.25, Sgxx> substituted 5Nxx>Vq which appeared in Eq. 2.24.

Using the relation e(oj) = e& -f 47rx(o;), the optical dielectric function is ob­

tained.

£(w) = et- 4 * E ; r # 4 ^  (2-26)^  A E \ \ '  +

and with Eq. 2.26 and Eq. 1.3, substituting k2 with fcjj +  k \  we obtain the following 

dispersion relation.

<2 K )
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where fcjj +  k \  are wave vectors parallel and perpendicular to the growth direction 

of the quantum well due to electric field confinement in the microcavity.

2.4 Numerical calculations and approximations

For simplicity, we consider the energy levels of a heavy holes confined in an infinite 

potential well. The well and barrier materials are GaAs and AlGaAs respectively. 

The transition energy between the first two subbands, neglecting depolarization shift 

effect is

^  = ( ^ )m* a*

where m* is the effective mass, n is integer and du the well width. For a lOnm 

quantum well and using heavy holes effective mass (m*hh) = 0.45 [64,65]

8.3594meV 

s 33.4378meV

E h Hx
n 2 7r2

^m HHi

E h h 2
Jl2 27T2

2 m HH2 d 2
=>■ A #2,1 = 33.4378-1

(2.29)

This corresponds to a transition wavelength A =  1.24/AE  «  49.45 micron or equiv­

alently 6.06 THz.

The transition dipole moment is evaluated directly by considering the eigen­

functions for the two states; ipn(z) = Asin (kzz) and ^ n(z) =  Acos(kzz) for even 

and odd state respectively. These are obtained from general form of the eigenfunc­

tion, ipn(z) = Asin(kzz) +  Bcos(kzz), which satisfies Schrodinger equation for one 

dimensional for infinite barrier problem;

H -0 =  E'lp, (2.30)

where A  and B  are normalization constants. By applying boundary conditions 

[66,67], we found A = \ [ L ~Z, B  = 0 for even state and vice versa for odd state. To
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summarize, the equation for the transition dipole matrix element has the form

P2,i = (i;2 (z)\e.z\'ipi(z)). (2.31)

Evaluating the integral above, taking limits from —L z/ 2 to +LZ/ 2, then Eq. ( 2.31) 

reduces to;

16eLz
= ---- 97^   ̂ ^
=  2.5nm

for the 10 nm quantum well. Here e is electronic charge.

More accurate soulution including band coupling between conduction band 

electron, heavy and light holes using k.p theory (section 2.4). In the context of this 

numerical approximation, here we assumed a carrier density =  1.5 x 1011cm-2 

and calculated A' using Eq. 2.27 as;

 A'jr
A =  (2-33)c-oo

=  —^ x |2.5nm|2 x 1.5 x 10n cm-2.
10.89 1 1

Figures. 2.4a and 2.4b show the polariton and antipolariton dipersions ob­

tained with these approximation. The cavity length is approximately 18.4/zm con­

taining 165 quantum wells. In the next chapters, results using full analytical ex­

pressions for the energy dispersions of the polariton and antipolariton problems are 

presented for single and multiple transitions with full nonequilibrium many body 

problem. The influence of dephasing and other relevance parameters such as cavity 

length, quantum well width and barrier height are considered and analysed. The 

results presented here are based on simple numerical approximations.

The results present in Figure 2.6 (a) and (b) show the influence of changing the 

carriers density in the polariton and antipolariton dispersions respectively. In both 

cases the two branches are pulled far apart as the carrier density increases (details
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F igure 2.4: Microcavity polariton (a) and antipolariton (b) obtained using a numerical 
approximation with transitions between the first two valence subbands. The population 
difference between subbands are ±1.5 x 1 0 11 cm- 2  corresponding to absorption or gain 
leading to polariton or antipolariton respectively. The result is TE-mode polarized in the 
Infrared range.

is given in the Figure caption). The combined effects of changing the carrier density 

is shown in Figure 2.7.

In order have a quantitative idea on the optical absorption for this transition, the 

intersubband optical absorption ck(u;) is related to the optical susceptibility shown



27

35

30

25

20

15

55 60 65

6 (degrees)

F igure 2.5: Combination of microcavity polariton and antipolariton from numerical cal­
culation for a 10 nm G aAs/Alo^G aojAs multiple quantum wells.

in Eq. 2.25 by the relation [6 8 ];

a(w) =  — /m x  M ,  (2.34)
cnb

where n b is the background refractive index and c is the speed of light in the 

medium. We computed the intersubband optical absorption for the transition 

between the HH 1 to HH2 and as presented in Figure 2.7 with increasing de- 

phasing ( 7  =  0 .1 , 0 .2 , 0.4 and 0.6 meV ) respectively. Note th a t for the polari- 

tons/antipolaritons problem in this simple approach, the dephasing is completely 

neglected ( 7  =  O.OraeF). Figure 2.7 clearly showTs th a t absorption peak diminishes 

and more broadening is obtained with large dephasing (i. e. 7  =  0 .6m eV  in this 

case).
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F igure 2.6: Microcavity polaritons (a) showing the influence of changing population den­
sity. As the population density difference increases from 6n — 1 .0 ,1.5 to 2 .0 , xlO l l cm ~2 
(red to blue), the separation between the branches also increases leading to a large split­
ting between the two polaritons branches. In the case of antipolariton (b), the density 
increased to a more negative values Sn =  —1.0, —1.5 to —2.0, x lO ^ ra - 2  and this lead to 
less stability of the two branches.
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F igure 2.7: Combination of polaritons and antipolaritons for different population densi­
ties.

450000
7 =  0.1 
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F igure 2.8: Intersubband optical absorption for the transition between HH1 - HH2 in 
G aAs/AlGaAs QWs computed using Eq. ( 2.34) f or difference dephasing values as in­
dicated. It can be seen clearly that there is shrinkage in the absorption spectrum as the 
dephasing increases (from red to orange).
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2.5 Conclusion

In conclusion, this chapter served as a stepping stone for the studies that follow. A 

review of polaritons and antipolaritons is presented, an analytical expression for the 

cavity polaritons/antipolaritons is derived and a simple numerical approach is ap­

plied which lead to the energy dispersion relations for the polararitons/antipolaritons 

in the THz range. The result also indicates that the polaritons and antipolaritons 

character can be controlled by changing population density difference between the 

coupled subbands. To further gain insight into the understanding of the optical 

absorption process in the medium, we have evaluated the optical absorption at dif­

ferent dephasing conditions which shows that as the dephasing increases, the energy 

broadening increases while the absorption peak is reduced. This is very significant 

for controlling the population density occupancy in a given subband.



CHAPTER 3 
VALENCE BAND POLARITONS AND

ANTIPOLARITONS

3.1 Introduction

In this chapter we derive analytical expressions leading to the energy dispersion rela­

tions for valence band polaritons and antipolaritons. We consider the case of a single 

transition between the first two inter-valence subbands applied to GaAs/AlGaAs 

multiple quantum wells. We propose a simple geometry that allows the coupling 

at terahertz frequencies between TE-mode polarized microcavity modes with QWs 

inter-valence band excitations.

Starting from non-equilibrium many body solution to the optical response we 

investigate the influence of dephasing mechanism, and its consequences for polari­

tons and antipolaritons dispersion relations with varying quantum wells widths, 

populations density between the coupled subbands and increasing cavity length.

Intersubband polaritons have been studied in the context of inter-conduction 

band transitions with transverse electromagnetic (TM) mode polarization [59,73]. 

However inter-valence band based design allow photon emission or absorption nor­

mal to the surface [60].

In the next chapters we show results for intervalence band transitions that 

allow THz polaritons and antipolaritons in the TE and TM mode cases. However 

before that, a brief introduction of K.P theory is given below.

3.2 The k.p theory

The k.p theory has been widely used and found successful in calculating the 

band structure and optical properties of semiconductors. Using perturbation theory

31
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and in the frame work of Luttinger-Kohn and or Kane models, k.p can be used to 

extrapolate the band structure of a solid semiconductor in particular over the Brillion 

zone. This can easily be achieved if the eigenfunctions and energy eigenvalues of 

the material are known at the T—point (where the band extrema of the conduction 

band minima and valence band maxima coincide). In one band electron picture, 

the k.p method can be derived from Schrodinger equation. Neglecting spin orbit 

interaction, the Hamiltonian equation can be written as;

Ipnfc — E n,k'tpn,k'> (3-1)

where V(r) is the periodic crystal potential and m is the free electron mass. The 

Bloch wave function 'tp^k in Eq. 3.1 can be written according to Bloch theorem

ipn,k = -runtk(r), (3.2)

where un,fc(r) is Bloch lattice function with the periodicity of lattice. Substituting 

Eq. 3.2 into Eq. 3.1 gives the following equation,

[Ho T Un!k(r) — ■E'n,A:̂ n,fc(̂ )5 (3.3)

where H 0 =  ^  -f K(r) is the unperturbed Hamiltonian and H p = 4 ^  +  Ak • p is 

the perturbation Hamiltonian. At gamma (T) point i.e. k = kQ = 0, Eq. 3.3 reduces 

to the form in Eq. 3.1

V"n,o — -E’n,fc'Un,o(̂ ) ■ (3.4)

The above Eq. 3.4 can easily be solved compared to Eq. 3.1, because of the 

periodic nature of the Bloch lattice function, the solution of which form a complete 

and orthogonal set of basis function. Thus, once E n ,0 and un>0 are known, we can 

calculate the energies and waves functions at some other k-values at the vicinity of T- 

point. The analysis is called k.p due to the terms proportional to power of k-p. The 

result of which are energy eigenvalues (E ntk) and eigenfunctions un^  as expansion
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of E n ,0 and un ,0 at k = 0 respectively. Neglecting spin orbit interaction, the results 

obtained using non-degenerate perturbation theory for the energy eigenvalues and 

the eigenfunctions are [69];

^  { U n ,o \k  ' p\'U 'm ,o)

m  ^  E „ „ ~ E r Um'°

fi2 k2 Ti2
En,k =  E no +  —----- 1----   +  2 .)nm nmA ^

and
| {^n^k  ’ p\^m,o) |

2777- 777- E n o  E j j i qmjkn ’ ’

In a more general form, energy eigenvalues can be re-written as;

n2k 2
Eji .k —  E n o -t-

2 m*

where m* is the electrons(holes) effective mass given by

m* m
1 + E

m f c 2  E n ' °  E m < °

(3.5)

(3.6)

(3.7)

which can be used to calculate the effective mass of the non-degenerate band. Thus, 

the dispersion relation obtains using k.p is parabolic in k, as long as k is small 

or the term \En^  — E mi0\ is much smaller than the band edge gap with the band 

extrema at k = 0. More realistic results could be obtain by considering the case of 

degenerate band in a valence band which are treated in relevant articles [69-71] and 

textbooks [63,72]

3.3 Main equations and mathematical model

The polaritons and antipolaritons energy dispersion relations presented in the fol­

lowing section are based on the dielectric function formalism. The full optical 

susceptibility stems from a self consistent evaluation of many body Green func­

tion [84,85,87,89]. The incident angle 6  is used as reference angle for the THz 

polaritons and antipolaritons problem as shown in the proposed geometric structure 

of Figure 3.1, and can be obtained experimentally by turning the incident angle
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around the normal and comparing with the extrem a on the reflection or transmission 

spectra as in Ref. [77] .

\  S i Prism 
\ ' 1  (GaAs)

GaAs-dap layer

AlAs

Core cavity 

AlAs

GaAs (Substrate)
z-a\is 9 

4

  >
x-axis

F igure 3.1: Cartoon of the proposed geometric structure showing the directions of the 
propagating electric fields for TE-polarized THz radiation. The low refractive index AlAs 
below and above the active region confines the electric fields due to total internal reflection. 
6 and 65 are the incident and core cavity angles respectively.

The first step in the numerical method is the calculation of the nonequilibrium 

many body optical response of the quantum  wells in the cavity core. The formalism 

is the same as those found in Refs. [84,85] with the main difference th a t here the 

system is globally out of equilibrium but the electrons are assumed to be indepen­

dently thermalised within only one subband with occupation functions characterised 

by tem peratures. These can be extremely different from the lattice tem perature, 

similarly to the case of electrons in conduction-band based QCLs as found in micro­

probe photoluminescence experiments in quantum  cascade lasers [8 6 ]. The to tal 

number of electrons in each subband can be controlled in practice by optical pump-
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ing, selective doping or a combination of both methods. Significantly, this formalism 

can be applicable to both intersubband [78,79] and interband [80-82] cases.

The scheme used to obtain the full solution for the susceptibility can be sum­

marized as follows: The first step is the solution of the 8 band k • p Hamiltonian. 

The Green’s functions and self-energies are expanded using eigenstates and eigenval­

ues of this Hamiltonian. Next, by assuming thermalised electrons in each subband, 

the full Nonequilibrium Green’s functions scheme [88,89] is simplified and reduces 

to the self-consistent evaluation of chemical potentials and self-energy matrix ele­

ments [84]. Finally, the local optical susceptibility and thus the dielectric function 

given by matrix numerical inversion of the integro-differential equation are obtained 

from the carriers Green’s function in linear response. Thus, the green functions 

equations with contribution beyond the Hartree-Fock in the limit t\ =  =  t can be

written as [90];

h +  i (e„ — G ^ k ,  t) -1- (G^(/e, t ) — G<u(k, t)) x

Here the Hartree contribution is given on the left hand side of the above equation 

and correlation terms beyond Hartree Fock is included on the right hand side. V  

is the Coulomb potential and includes the depolarization terms while p  account for 

the the dipole matrix element. Furthermore, the correlation term on the right hand 

side of 3.8 has the form,

t

(3.9)

Detailed evaluations of the correlations terms can be found in [84] including self 

energy E </> and depolarizations shifts. Upon projecting the classical electric fields 

(E) along the dipole moment, the susceptibility function can be extracted from its
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Fourier transform component in the frequency domain, x { ^ iu ) — ~ ^ G ^ ( k ,u j ) / E  

and are given by,

x M  =  p(k )x(k ,u)-  (3.10)
',k

The full optical susceptibility is then numerically calculated and adjusted using the 

simple formula in Eq. 3.11.

x M  =  “ 7 " ----------------------------------------------- (3-n )47T CjJ  — U J \  ±  i d

The imaginary parts of the optical susceptibility is obtained from nonequi­

librium many body solutions (NEGF) and its adjusted Lorentzian fits (with and 

without Rotating wave approximation) are depicted in Figures 3.2a and 3.2b for

1-2 and 2-1 transitions corresponding to absorption and gain regime respectively. 

In Figure 3.2a, the population density difference between the coupled subbands is 

A N  = ±2.0 x 10n cm 2 corresponding to absorption/gain regime. In other words 

for for the 1-2 transition, the first (top) valence subband is assumed to be fully 

occupied and the second subband considered empty (unoccupied) and vice-versa for

2-1 transition. Similar results are given in Figures 3.3a and 3.3b with populations 

density difference A N  = ±1.0 x 1011 cm-2 . Finally, the parameters lj\ , A and 5 in 

Equation 3.11 are numerically computed and are used as the input to the optical 

dielectric function. In Appendix A .l, we show how the fitting parameters are ob­

tained by using the Lorentzian formula with rotating wave approximation (RWA) 

only (Equation 3.11). For comparison, in Appendix A.2, similar equation for A is 

presented, if the full Lorentzian formula is used. In both cases, the resultant optical 

susceptibilities obtained are compared(See Appendix A) with those from NEGF 

numerical data.

In order to justify our approximation (i.e. using Eq. 3.11), we compare in 

Table 3.1, the numerical values of the fitting parameters obtained using the RWA 

only and those obtained with full Lorentzian fit formula. One may notice that, 

the numerical values in Table 3.1 computed using the two formulas are almost the 

same. However a small discrepancy is shown for the numerical value of A which is
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due to the unsymmetrical nature of the optical susceptibilities from the numerical 

calculations and the small differences in dephasing as well. This has no significant 

effect in the expression used in our approximation.

Table 3.1: Comparison of Input parameters extracted using Lorentzian fit with ro­
tating wave approximation (RWA) part only compared with those obtained using full 
Lorentzian formula (i.e including the non rotating part) for different carrier density, 
A N (x lQ n cm~2), between the coupled subbands.

A N Parameter Lortz. fit RWA only Full Lortz. Fit
0.2 A 10.0624 9.8840

OJo 10.2628 10.2628
6 4.7559 4.2553

1.0 A 5.3710 4.8136
UJq 10.0125 10.2628
5 5.5068 5.5062

-0.2 A -12.7535 -11.5033
UJq 8.7609 8.7609
6 4.7559 4.0050

-0.1 A -6.4618 -5.4176
LOq 9.2615 9.2615
8 5.2565 4.5056

Furthermore, one may notice from both Figures 3.2 and 3.3 that, the two 

curves obtained with the Lorentzian fits (RWA fit (dot dot black) and full fit (dash 

blue) lines) all fit the curve resulting from the full NEGF-solution (dash green). 

However, on careful observation, a better fit is obtained using the Lorentzian fit with 

RWA only (compare dot dot black and the dash green lines). In Appendix A the 

imaginary parts of the optical susceptibilities obtained by fitting with RWA ( A .l) 

part only, and with full (RWA +  NRWA) parts are compared with those generated 

from the numerical (NEGF) solutions for different densities, further validating our 

approximation.
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F igure 3.2: Imaginary part of the optical susceptibility generated self-consistently using 
nonequilibrium many body Green’s functions (NEGF) (red and green) with a Lorentzian fit 
including both rotating and non rotating terms. The population density is assumed to be 
thermalized at T  = 300K , with (a) second subband population N  — 2.0 x 1 0 and 
first subband unoccupied and (b) first subband population N  = 2.0 x 1011 cm-1 .
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F igure 3.3: Imaginary part of the optical susceptibility generated self-consistently using 
nonequilibrium many body Green’s functions (NEGF)(red) compared with a Lorentzian fit 
including both rotating and non rotating terms. The population density is assumed to be 
thermalized at T  = 300K ,w ith  (a) second subband population N  =  1.0 x 1 0 n cm_1  and 
first subband unoccupied and (b) first subband population N  — 1.0 x 10n cm ~1.
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3.3.1 Modelling the optical dielectric function

The dielectric constant is obtained in an approach used upon its connection with 

the optical susceptibility as shown in Eq. 3.12 below.

e(w) =  eb -\- 47rA%(a;), (3.12)

where x (u ) — x i ^ )  +  i x ' i 00) • The Lorentzian fit to the optical susceptibility with 

both rotating and non-rotating terms for a transition between two valence subbands 

(// =  2 , v = 1 ) is given as;

x M  =
Ap , u h-H,v

UJ U J U J  T  U J ^ ^  ”b
(3.13)

where uj  , uj^ u are the photons and transition energy between the coupled subbands 

(/x 7  ̂ v) respectively. Lambda is related to the oscillator strength of the

transition, and 8^ v is the Lorentzian line shape or broadening (dephasing) term. 

Substituting the real and imaginary parts of Equation ( 3.13) in 3.12, the real part 

of the dielectric constant1 £ ( u j )  can be written as

e (u )  =  eb
AA^j, UJ —  UJ

£ b \ ( u j -  U J ^ V ) 2 -b 5 2 ( uj  -b 0J^V)2 -b S 2
(3.14)

and the imaginary part2 e "  ( u j )  as;

e " { u j )  = AAM)T
( uj  -  U J ^ ) 2 +  5 2 ( uj  -b U ^ v ) 2 _

(3.15)

Here £b is the background dielectric constant of the core cavity due well and barrier 

materials, A =  is an anisotropic medium parameter [83] tha t arises in the

cavity and finally Nu , and Lc are respectively: the number of quantum wells in 

the cavity, quantum well width and the cavity thickness.

lrThe real part lead to the energy dispersion
2 The imaginary part define the absorption peak
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3.3.2 Photon confinement

In order to enhance the coupling of the electromagnetic fields and induced inter­

subband excitations in the medium, we propose a simple geometric structure where 

photon confinement is achieved through total internal reflection at the interfaces 

between the cavity core and low refractive index AlAs-layers placed at the top and 

bottom of the structure. The core cavity has GaAs/AlGaAs multiple quantum 

wells (MQWs) layers forming the background refractive index (r ib) . The schematic 

geometry is presented in Figure 3.1.

For TE-mode coupling, the component of the electric fields is polarized along 

the Y-axis and is given by E y  =  E ay e ^ ky ^ e ^ kzZ  ̂ with propagating fields along the 

growth-direction (z-axis), so that the in-plane wave vector k\\ =  k y  =  ̂ nbsin9b

and the perpendicular wave vector k ±  =  k z  describe the propagating fields in the

medium. Furthermore, if we assume total reflection at the cavity and semiconductor 

mirrors interfaces, then the Z component of the propagating wave vector, k z  can be 

approximated as k z  =  j r - .

The microcavity modes are obtained from the wave Equation;

2 2 2 
U  9  . 9  / ,  71" UJ ,  x— nb sin 6 b +  —  =  — e(u), (3.16)
C L/c C

where nb is the background refractive index of the cavity core, 9b3 is the angle inside 

the core cavity, which is related to the incident angle (6 ) by Snell’s law .

3.3.3 Energy dispersion relations

The polaritons/antipolaritons energy dispersions are finally deduced by substituting 

the real part of Equation ( 3.16) into Equation ( 3.14). Considering a simple case 

for single transition, by suppressing the dephasing term, that is letting S = 0 .

3 due to total internal reflection inside the core cavity, 6b may be complex
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Equation ( 3.16) can be written as;

2 2 2 '
O T  £ s  . 9 7 T  O T  £  . „

■ ^ ■ r sm  0 +  7 T 2  =  ^ - - -  (3 -17)o Ebj-Jb C E-b

Using Equation 3.14, re-arranging and neglecting the contribution of imaginary

part as stated above, we finally obtained

ui2P2 + uj2c =  J 2 -j 1 -  AA ( 2 '*'l/ ) }■. (3.18)
2  L0i 

UJ2 —  0Jo

In Equation 3.17 and 3.18, we introduced new variables to simplify the ex­

pression which includes: (32 = J  sin2 6  where 6  is the incident angle and es is the 

dielectric constant of the substrate material which is used as prism to enable the 

incident beam reaches the cavity core. The term uoc = * represents the cavity
V £i>bc

resonance frequency, u 0 is a chosen resonance frequency equal to the intersubband 

transition frequency — ujii — {jJv at resonance and A =  is called the Longitu­

dinal transverse splitting. Furthermore, we have some normalization in the former 

equation and thus it becomes;

y2/? 2 +  fi2 =  y2 ( 1  -  2 AA' 1  1
y2 - 1

=  f  -  2 \ A  ' y
y 2 — 1

(y2 - l ) [ y 2/32 +  fi2] =  y2 (y2 -  1) -  2y2AA'

=  y4 - y 2 - 2 y 2 AA', (3.19)

where y =  oj/uj0, Qc = ujcIuj0 and A' =  A / u 0 are introduced. Furthermore Equations 

( 3.19), can be rearranged, substituting the parameter y =  huj and finally we obtain 

the following analytical expression for the THz polaritons/antipolaritons energy 

dispersion relations.

fiu =  hu0
1 -  /32 +  0 2 +  2 AA' ±  V(1 -  /S2 +  n 2 +  2AA') -  4 (1 -  P2) fi2

2 ( 1 -  P2)
(3.20)
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3.4 Numerical results and discussions

Before the numerical results are presented, we summarized in table 3.2 relevant pa­

rameters used as inputs. These are obtained numerically by adjusting our nonequi­

librium many body solution for the optical response and other input data extracted 

from previous literature for the chosen materials in the active region(GaAs/AlGaAs) 

and cladding (AlAs).

Table 3.2: Relevant parameters used as input to deliver simulations for the structure 
shown in Fig. 3.1 leading to the THz polaritons and antipolaritons depicted in Figs. 3.5 
and 3. 6  respectively.

Parameter Discription Numerical value
Medium Absorption Gain

u Barrier length (nm) 2 2 0 .0 2 2 0 .0

Quantum well width (nm) 1 0 .0 1 0 .0

A Cavity factor 0.0432 0.0432
L c Microcavity Length (fim) 38.1699 38.1699

Coupling coefficient (meV) 9.4696 -12.7535
Transition Energy (meV) 10. 3960 8.7609

£b Background Diel Constant 10.1066 10.1066
[91] GaAs High Freq. Diel. Const. 10.89 10.89

Ebr (AlxGai_xAs) Diel. Const. 10.0710 10.0710
Ldc Cavity Resonance Freq. (meV) 5.02 5.02

The simulation results presented below are for 165 GaAslAlo.3 Gao.7A s  MQWs 

embedded in the cavity core following our sample geometry. The well and the po­

tential barrier widths are respectively chosen to be lOnm and 220nm in order to 

ensure strong coupling with the confined cavity modes. The choice of the materials 

is due to its practical applications so far reported in quantum devices. For strong 

interaction, the cavity width plays an important role. It is clear that the resonance
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frequency of the core cavity, which determines the coupling strength, can be con­

trolled by adjusting the cavity length L c =  N u (L w + Lb) +  L 5 . N u is the number 

of quantum  wells in the cavity. Figure 3.4 clearly show tha t the cavity resonance 

Qc increases with decreasing the quantum  well thickness. For our lOnm quantum  

well, we found the resonance frequency to be approximately 5.02m e V  (shown with 

arrow ).

5.1

g

o
4.7

4.4

4 3

5 200 10 15 25 4030 35 45 50
well width (nm)

F igure 3 .4 ' Variation of the cavity resonance with quantum well width. The arrow 
indicates the chosen well width and the corresponding cavity resonance for a 165 quantum  
wells embedded in microcavity.

To complete our sample, the AlAs layers forming the upper and lower cladding 

are taken 985nm and the top GaAs-layer has thickness of 5nm. In each subband 

of the quantum  well structure, we assumed the carrier density to be independently 

thermalized at 300K, with population difference between initial and final subbands 

A N  =  2.0 x 1 0  11 cm 2 for the case of an absorption (leading to  a polariton) and 

A N  =  -2 .0  x 1 0  11 cm  2 for inverted media (giving rise to antipolaritons). A clear 

anticrossing with a cavity resonance frequency at approximately 5.02 meV which is 

a fraction of the transition frequency (10.0 meV) is obtained, defining clearly the 

mixed cavity modes and m aterial excitations. Furtherm ore A flM reads 0.9369 and 

— 1.2619 for the case of polaritons and antipolaritons respectively.
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The energy dispersion relation as a function of incident angle 9 in the case 

of absorption regime is depicted in Figure 3.5 . As can be seen clearly the two 

branches defining the upper and lower polaritons are separated by a significant 

amount of energy often called vacuum Rabi-splitting [77] («  2m ,eV  in this case). 

The anticrossing between the two branches is clearly defined when 6 =  6res =  57.9° 

(resonance angle).

3.5

3
NXH
^  _ _
g 2.5
0)3O'<D

1.5

F igure 3.5: THz intervalence band polaritons obtained for the microcavity shown in
Figure 3.1. In this case the first (top) valence subband is assumed to be occupied while 
the second (lower) subband is empty. The population density difference between the two 
subbands is A N  — 2.0 x 10n cra~2. 6 is the incident angle.

Similar result is shown in Figure 3.6 for TE-mode THz antipolariton disper­

sion for the case of an inverted (gain) medium. Unlike the case of polariton, the 

anticrossing appeared in this case below the intersubband resonance (10.3960 meV) 

for for 9 < 9res and above the resonance for 6 >  9res.

6= 0.0

45 50 55 60 65
0 (degrees)
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Figure 3.6: THz intervalence band antipolaritons obtained fo r  the microcavity shown 
in Figure 3.1. In  this case the second (lower) subband is assumed to be occupied while 
the first (top) subband is empty. The population difference between the two subbandds is 
A N  =  — 2 . 0  x  1 0 n c r a ~ 2 .  9 is the incident angle.

3.5 Influence of dephasing on a single resonance

The analytical expression for the quasi-particles dispersion can be modelled to in­

clude the dephasing term  5. The effects of dephasing has been previously investi­

gated [93] for polaritons/antipolaritons problem in the case of electronic transitions 

in conduction bands for the mid infrared region. Here we applied similar tech­

niques for holes in the valence bands extended to THz-region th a t allows TE-modes 

couplings with the intervalence band transitions.

The microcavity modes originated from the wave equation (Eq. 3.21) th a t is 

obtained from Maxwell’s equation

(3.21)

For TE mode polarization, the electric field lies on the plane of incidence and an 

ansatz solution to Equation 3.21 can be taken as E ( r ,u )  — E + (r, oj)eL<<k'r~ut'> +
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E~(r, uS)e~l<<k'r~bJt\  Upon substituting the electric field into the wave equation and 

doing some arithmetic, we arrived at the following secular equation for the coupled 

oscillators,

UJ2
k v +  K  =  - j e i y j )

e\ui) + e"(uj) , (3 .2 2 )

where ky and kz are the in-plane and perpendicular waves vectors, c is the speed of 

light in vacuum e ' { u j )  and e " ( c j )  are the real and imaginary parts of the dielectric 

function given by Equations 3.14 and 3.15 respectively. Using Equations ( 3.14) 

and 3.15 in Equation 3.22 and taking all the parameters to retain their usual 

meaning, Eq. ( 3.22) becomes;

-  d s .

y2/32 + Et2 = y2 | l  — AA . (3.23)

On comparison, the contributions of imaginary to the real components of the di­

electric function is usually small and therefore can be neglected in Equation 3.23. 

Finally, the polariton and antipolariton dispersion, in terms of incident angle 0, 

taking account the dephasing term is obtained to be;

1/2 1 El l
sm 6 = ( — S\ (3.24)

\ £ s j  V y2

with

P =
1 y +  1

_ (y — l ) 2 +  T2 (y -1- 1 ) 2 +  r 2

where we introduce T = Qc, y and A ' as defined in the previous sections.

Figure 3.7 depicts the energy dispersion relations of polaritons for differ­

ent dephasing as a function of incident angle 9. The dephasing considered is 

8  = 0.0,0.2,0.4,0.6 and 0.8 meV, which small fraction of the actual 8 (tt 4.5m eV) 

obtained with the Lorentzian fit. The increasing dephasing tends to shrink the po-
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lariton and antipolariton dispersions, as can be seen clearly with the blue color lines 

through the centres of both Figures 3.7 and 3.8. This effect can be reduced through 

the control of cavity length and carrier densities in the subbands of interest.

N
X

os<D
3cr
p
£

5=0.0
5=0.2
5=0.4
5=0.6
5=0.8

3.5

3

2.5

2

1.5

5045 55 60 65
0 (degrees)

Figure 3.7: TE-mode THz Valence band polariton dispersion showing the influence of 
dephasing for the cavity in Fig. 3.1. As indicated, the dephasing is increased from  
the outer curves (pair of red lines) towards the center (single blue at the center) for  
6 — 0.0,0.2,0.4,0.6 and 0.8 m eV  respectively. All curves are generated with population 
difference between the coupled subbands A N  =  2.0 x 10u cm2.

From Figures 3.7 and 3.8, we may notice tha t, when the dephasing increases, 

the polariton splitting and the non-zero detuning angle (A#) decrease. Hence, the 

branches are narrowed toward zero detuning (i.e resonance angle). Thus, analo­

gously to the interband (exciton polariton) case [92], there is a critical value of 

the dephasing, after which the intersubband transition resonance disappears only 

the photon dispersion remains [93,95]. Further evidence of this effect is also re­

ported theoretically in Ref. [96] and its experimental verification can be found in 

Refs. [97, 100] based on transmission, reflectivity or photoluminescence intensity 

measurements, where the emission intensity only appears at the cavity resonance 

with a single peak at large dephasing tuning.
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Figure 3.8: TE-mode THz Valence band antipolariton dispersion showing the influence 
of dephasing in the coupling of THz TE-polarized cavity modes with intervalence band 
excitation for the cavity described in Fig. 3.1. As indicated, the dephasing is increased 
from the outer curves (pair of red lines) towards the center (single blue at the center) for  
S =  0 .0 , 0 .2 ,0 .4 ,0 .6  and 0 .8  m eV  respectively. All curves are generated with population 
difference between the coupled subbands A N  = 2.0 x 1011 cm2.

3.6 Interplay betw een dephasing, well w idth and carrier 

density

Further application of our model Equation 3.24 derived for the polaritons and an­

tipolaritons was achieved by considering two different samples: one containing 1 0 0 A 

QWs and the other 50A QWs. For each sample we investigated the interplay of the 

carrier density in the fundamental subband and dephasing mechanism on both  ab­

sorption and gain regimes.

In Figure 3.9 and 3.10, the dispersion relations of THz polaritons and antipo­

laritons with increasing population density are presented. In both cases, we consider 

an active region with 180 G aA s /  Alo^Gao ,7 A s  multiple quantum  wells . The well and 

the barrier widths are lOnm and 220nm respectively, giving a to tal cavity length of
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41.65/im including 250nm as the last barrier width. A comparison of the relevant 

parameters that characterize the cavities in the case of absorption regime that leads 

to THz valence band polaritons and inverted (gain) regime leading to THz antipo­

laritons are given in Tables 3.3 and 3.4 respectively for different population density 

( AN ), between the coupled subbands (/i, v =  2 , 1 ).

Table 3.3: Comparison of numerical values for the input/generated parameters leading 
to the THz polariton dispersions shown in Fig. 3.9 with increasing population density A N  
as indicated.

Density AN (xlO n cm-2) 1 .0 2 .0 1 0 .0 2 0 .0

Cavity factor A 0.0432 0.0432 0.0432 0.0432
Background diec. constant £5 9.9591 9.9591 9.9591 9.9591
Cavity resonance ujc (meV) 4.7116 4.7116 4.7116 4.7116
Resonance angle 6 res (°) 57.58 58.35 61.56 64.30
L-T Splitting A (meV) 0.5393 1.0103 3.7035 6.6238
ISBT-Energy (meV) 10.0125 10.2628 11.7647 13.5168
AptU (meV) 5.3710 10.0624 36.8837 65.5168

The increase in carrier density compensates the effects of the dephasing as can 

be seen in Figures 3.10(d) and 3.11(d) for both polaritons and antipolaritons cases. 

In other words, the tendency to recover the polaritons and antipolaritons features 

is more pronounced if the dephasing is kept minimal for a given carrier density. 

Moreover, the polariton and antipolariton splitting increases with the increasing the 

carrier density as in Figure 3.9 (a) to (d) for constant value of dephasing, which 

implied that dephasing can be reduced by injecting more carriers. However we may 

notice from Figure 3.9 (d) that the polariton character can only be maintained for 

a reasonable doping concentration.

To move further, we studied the effect of changing the quantum well thickness 

in the polaritons and antipolaritons dispersion relations. We performed simulations 

with two different samples in the core cavity of the proposed geometry shown in the 

previous sections: First we consider the sample to have 1 0 0 A QWs width and the
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Figure 3.9: THz valence band polariton dispersions for a lOOAQW as a function of 
incident angle 9 for different population densities A N  as indicated from (a) to (d). The 
effect of dephasing on the polariton dispersions is compensated by increasing the occupation 
of the subbands. The polariton character is maintained even at high value of dephasing 
with high doping concentrations as can be seen in (d).

second having 50A QWs. In same manner as presented above, we summarized the 

numerical values of the input and other relevant param eters th a t are obtained from 

the simulation results in tables 3.5 for the case of absorption and 3.6 for the case 

of gain regime. In the case of polaritons, the decrease in the quantum  well thickness 

increases the cavity resonance and likewise the coupling strength becomes stronger 

which leads to large polaritons splitting (A T h i s  is expected due to  quantum  

confinement as the barrier widths are kept constant for the two different samples.

For the case of antipolaritons (gain medium), A ^ M becomes more negative for 

Lu =  50A and continues to increase negatively with increasing the density (see table 

3.6). The polariton and antipolariton dispersions resulting from the simulations of 

these cavities are presented in Figures 3.11 and 3.12 respectively, showing the
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Table 3.4-' Comparison of numerical values for the input/generated parameters leading to 
the THz antipolariton dispersions shown in Figure 3.10 with increasing population density 
A N  as indicated.

Density AN (x l On cm ~2) - 1 .0 -2 .0 -4.0 -6 .0

Cavity factor A 0.0432 0.0432 0.0432 0.0432
Background diec. constant 9.9591 9.9591 9.9591 9.9591
Cavity resonance ojc (meV) 4.7116 4.7116 4.7116 4.7116
Resonance angle 0res (°) 55.25 53.45 49.14 42.42
L-T Splitting A (meV) -0.6585 -1.2730 -2.5699 -3.7308
ISBT-Energy c j (meV) 9.2615 8.7609 7.7596 6.7584
N ^ v (meV) -6.5583 -12.6784 -25.5945 -37.1557

6 =  0.0 ----------
8 = 0 . 4 --------3

2.5

1.5

40 50 60 70

(a)

6 =  0.0 ----------
6 = 0.4 --------
6  =  0 . 8 ----------

AN = -4.0x10 cm

20 30 40 50 60 70
0 (degrees)

6 = 0.4

2.5

1.5

40 50 60 70
0 (degrees)

(c)

8 =  0.0 ----------
6 = 0.4 --------
5  =  0 . 8 ----------

AN = -6.0x10 cm

20 30 40 50 60 70
) (degrees )

(d>

F igure 3 .1 0 : THz valence band antipolariton dispersions for a 100A QWs as a function  
of incident angle 0 for different carrier density A N  as indicated from (a) to (d). The 
effect of dephasing on the polariton dispersion is compensated by increasing the occupation 
of the subbands.
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Table 3.5: Parameters used in the simulations delivered in Fig. 3.11 for two different 
well widths (Lw =  100̂ 4 and Lw =  50A )  at different occupancy A N  for the case of an 
absorption.

Quantum well width(A) 1 0 0 50
Density AN (x lO u cm~2) 1 .0 2 .0 1 .0 2 .0

Cavity factor A 0.0432 0.0432 0 .0 2 2 0 0 .0 2 2 0

Background diec. constant eb 9.9591 9.9591 9.9384 9.9384
Cavity resonance u c (meV) 4.7116 4.7116 4.8206 4.8206
Resonance angle 6res (°) 57.58 58.23 68.63 6 8 .6 8

L-T Splitting A (meV) 0.5393 1.0103 0.6439 1.2532
ISBT-Energy uĵ v (meV) 10.0125 10.2628 21.5269 21.7722
k ^ v (meV) 5.3710 10.0624 6.3998 12.4554

Table 3.6: Parameters used in the simulations delivered in Fig. 3.12 for two different 
well widths (Lu = 100A and Lw =  50A) at different occupancy A N  for the case of gain

Quantum well width(A) 1 0 0 50
Density AN (x l0 i:Lcm_2) - 1 .0 -2 .0 -1 .0 -2 .0

Cavity factor A 0.0432 0.0432 0 .0 2 2 0 0 .0 2 2 0

Background diec. constant £& 9.9591 9.9591 9.9384 9.9384
Cavity resonance ujc (meV) 4.7116 4.7116 4.8206 4.8206
Resonance angle 6 res (°) 55.25 53.45 68.04 67.68
L-T Splitting A (meV) -0.6585 -1.2730 -0.8515 -1.6303
ISBT-Energy uĵ v (meV) 9.2615 8.7609 20.2753 19.5244
k w  (meV) -6.5583 -12.6784 -8.4634 -16.20394

variations of frequency in THz with the incidents angle 9. Nevertheless, it was 

noticed that, the resonance angle 9res (corresponding angle of incidence at which the 

cavity resonance and material’s excitations interact) is shifted to a higher value as 

the quantum well thickness is reduced. However, increasing the population density 

reduces the resonance angle (see Tables 3.5 and 3.6). This is true for both polaritons 

and antipolaritons.

As can be seen from left to right of Figure 3.11, at constant dephasing and
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F igure 3.11: THz intervalence band polaritons due to coupling of TE polarized cavity 
modes and intervalence band excitations for 100A MQWs ((a) and (c)) compared with 
50A MQWs ( (b) and (d) )showing the interplay between dephasing fo r a given a quantum 
well width and population difference for the case of single transition (fi, v = 1,2).

population density, the polaritons features are more pronounced when the quantum  

well width is small(i. e. with =  50A in this case). The same effect can be notice 

for the case of antipolaritons presented in Figure 3.12.
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Figure 3.12: THz intervalence band antipolaritons due to coupling of TE polarized cavity 
modes and intervalence band excitations for 100A MQWs ((a) and (c)) compared with 50A 
MQWs ( (b) and (d) ) showing the interplay between dephasing for a given a quantum well 
width and population difference between coupled subbands for the case of single transition 
(li,v  = 1,2).

3.7 R elevance of controlling the cavity length

The results presented in this section indicate the significance of controlling the cavity 

for achieving better defined inter-valence band THz polariton and antipolariton fea­

tures. In this approach, we consider a cavity with 50A MQws having the population 

density difference between the coupled subbands A N = ±1.0 x 1 0 n cm - 2  (in case of 

absorption or gain regimes). We play with the cavity length by varying the number 

of quantum  wells in the core region and kept dephasing constant and compared it 

influences. For the numerical values of the input param eters see Tables 3.7 and 

3.8 which leads to delivering of the THz polaritons and antipolaritons dispersion 

presented in figures 3.13 and 3.14 respectively.
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Table 3.7: Parameters for cavities with 50A QWs in the core cavity and fixed carrier 
density AN= 1 .0  x 1 0 n cm~2 for various cavity length due to the variation in number of 
quantum wells in the cavity for the case of polaritons.

Number of quantum wells 90 130 170
Cavity length (//m) 14.2 20.4 26.6
Cavity factor A 0.0316 0.0318 0.0319
Background diec. constant 10.09 10.09 10.09
Cavity resonance ujc (meV) 13.72 9.55 7.30
Resonance angle 0res (°) 47.90 59.60 64.80
L-T Splitting A (meV) 0.64554 0.64554 0.63417
ISBT-Energy uĵ u (meV) 21.5269 21.5269 21.5269

(meV) 6.3998 6.3998 6.3998

From both Figures. 3.13 and 3.14, we can see that increasing the cavity width 

(from (a) to (c) ) shifts the resonance angle to higher values (see tables 3.7 and 3.8). 

The polariton splitting also increases with increasing cavity length. Furthermore, 

more quantum wells increase the effective total oscillator strength and thus increase 

the polariton splitting.

Table 3.8: Parameters for cavities with 50A QWs in the core and fixed carrier density 
A N — 1.0 x 1 0 11 cm 2 for various cavity length due to the variation in number of quantum 
wells in the cavity for the case of antipolaritons.

Number of quantum wells 90 130 170
Cavity length (/im) 14.20 20.40 26.60
Cavity factor A 0.0316 0.0318 0.0319
Background diec. constant 10.09 10.09 10.09
Cavity resonance ujc (meV) 13.72 9.55 7.30
Resonance angle 0res (°) 45.09 58.04 64.95
L-T Splitting A (meV) -0.8386 -0.8386 -0.8386
ISBT-Energy (meV) 20.2753 20.2753 20.2753

(meV) -8.4634 -8.4634 -8.4634
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Figure 3.13: THz intervalence band polariton dispersion relations for 50A QWs and fixed 
carrier population difference A N — 1.0 x 10n cm ~2 with changing cavity width and dephas- 
ing in each case. As can be seen the larger cavity with more quantum wells accommodates 
more dephasing.
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Figure 3.14: THz intervalence bands antipolariton dispersion relations for 50A QWs 
and and fixed carrier population difference A N — —1 .0  x 10n cm ~2 with changing cavity 
width and dephasing in each case. As can be seen the larger cavity with more quantum  
wells accommodates more dephasing.
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3.8 Conclusion

To conclude this chapter, analytical expressions for the energy dispersion relations 

of polaritons and antipolaritons have been derived. For a given geometric structure 

and using a simple formula based on the dielectric function formalism, the interac­

tion of valence bands excitations with TE THz cavity modes was investigated. The 

relevance of valence band based designed to study light-matter interactions and 

possibilities of THz emission to be realized is shown. By considering single transi­

tions due to absorption and inverted medium polaritons and antipolaritons can be 

measured by controlling the dephasing to certain limits. On further increase, the 

materials excitations are no longer visible, Only the photons branch remain. This 

is analogous to the case of interband excitons polaritons.

The effects of dephasing and increasing carrier densities as well as the in­

terplay between quantum well width and the cavity length were also investigated. 

The resulting TE-mode THz polariton and antipolariton dispersions shows that, 

the contrast of the polaritons and antipolaritons can be controlled even at high de­

phasing by increasing the density of populated subbands, or reducing the quantum 

well width or increasing the number of quantum wells in the core cavity, thereby 

increasing the coupling strength.

The approach presented also has the potential to to deliver THz polaritons and 

antipolaritons using simple design based on coupling TE-modes THz radiation and 

valence band excitations, unlike the conduction band case which require complex 

geometric and TM-mode cavity resonances. A nonequilibrium optical many body 

approach of the optical response beyond the Hartree Fock approximation is used as 

input to the effective dielectric formalism.



CHAPTER 4 
POLARITONS AND ANTIPOLARITONS DUE TO 

MULTIPLE RESONANCE

4.1 Introduction

In the previous chapter, we investigated the coupling of intervalence band excitations 

and TE-mode polarized cavity modes, by considering only one possible transition 

among the valence-subbands. In the present chapter the formalism is extended 

to cover multiple transitions where optical gain and cross-absorptions to higher 

subbands are possible due to hole transitions to higher subbands. Our proposed 

geometric structure described in the previous chapter is also maintained in this 

case.

4.2 Input parameters/optical constants

We have computed the relevant parameters used as input, similar to the single 

transition case presented in the previous chapter. The full optical susceptibility 

given by Equation ( 4.1) is approximated to a Lorentzian fit each for N  number of 

individual optical transitions, where N  =  3 in this case. Table 4.1 below summarizes 

the input parameters extracted in this method for each individual transition,

x M  =  2  ^ 2  (4-1)
qy£q',k

where dqjqr is the intersubband transition dipole moment between subbands q = 2  

and q' = 1,3,4. Thus for q = 2,q' = 1, we have one single transition named (2 - 1 ) 

transition. Likewise we have (2-3) and (2-4) transitions.

The susceptibility function on the right side of Equation 4.1 is numerically evaluated 

through Keldysh nonequilibrium many body Green’s function as for the case of a

60
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Table J^.li Parameters used as input to deliver simulations leading to THz polari- 
ton/antipolaritons due to multiple transitions.

Parameter Transition Type
2-1 (Gain) 2-3 ( Abs) 2-4 (Abs)

Well width (nm) 10.0
Barrier width 1/2 (nm) 200/250.0
No. of quantum well 150.0
Top-layer (nm) 5.0
AlAs-Cladding (nm) 2300.0
ISBT-Energy ujq̂  (meV) 8.7609 25.2816 41.8022
Coupling factor A (meV) -12.7535 8.0303 3.6546

single transition with the only difference here being that three different transitions 

are considered between the chosen four valence subbands.

4.2.1 The optical susceptibility

The full numerical solution of the nonequilibrium optical susceptibility for each 

transition is adjusted to the Lorentzian fit approximation for all transitions given 

by [94] ;

x (a,) =  _ _ L W  h i ____________ h i ____ \  (4 .2 )
^  I w — wq,q' d" &q,<f ^  ^q,q' +  &q,q' J

where can be positive or negative depending on whether absorption or gain 

regime is being considered, q = 2,q' = 1,3,4 are the chosen subbands while oj and 

ujqrf are the photons and adjusted transitions energy between q, q' respectively. In 

Fig. 4.1 the the combined optical susceptibility for all relevant transition and for 

each individual contribution are compared.
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Figure 4-1•' Combined optical susceptibility for all relevant transitions (solid, red) and 
each individual contribution: 2-1 (dotted blue line) gain, 2-3 (green dot-dashed) absorption 
and 2-4 (black double-dotted-dash) absorption in which the second subband is occupied with 
N  =  2.0 x 1011 cm2 and all other subbands are empty, (a) NGF-Calculation, (b) Lorentzian 
Fit approximation and (c) Full Lorentzian including both rotating and non rotating terms.
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4.2.2 Energy dispersion relations and mathematical models

W ithin the dielectric medium approach, the dispersion relations are derived from 

the wave equation which resulted from Maxwell’s equation as in the previous chap- 

ter(chapter 3). The dielectric constant of the medium e(u) and the susceptibility 

function described above are connected through the equation ;

e(u) = sb +  4ttA xM  (4-3)

with and A being the background dielectric function and cavity anisotropic factor 

defined in the previous chapter. Following the same approach as with single tran­

sition, the polaritons and antipolaritons dispersions is given by microcavity mode 

equation;

*y +  (4-4)

with equation 4.3 and is given by;

sin2 6  =  (£b/ea) ( l  -  47rAi?e {x(w)/e&} -  u l / J 1) , (4.5)

where u c is the cavity resonance frequency and 0 is the incident angle. Note that 

Re in 4.5 referred to real part.

4.3 Numerical results and discussion

We start by presenting the result without dephasing ( 6  = 0.0 meV). Simulation 

are performed with 150 GaAsZAlo.3Gao.7As quantum wells in the cavity region of 

our proposed structure. As shown in Table 4.1, the cavity length used is 31.74/zm 

and the cavity resonance is u c «  6.17 meV (0.98 THz) for a chosen resonance 

frequency uj0 of 10.05 meV («  1.6THz). The background dielectric constant E\, and 

the anisotropic constant A are found to be 9.9631 and 0.0472 respectively. The upper 

and lower polariton splitting described by the absorptions regimes are characterized 

with L-T splitting A «  0.8060 and 0.3668 MeV (0.128 and 0.0584 THz) and it 

equivalent reads -1.2751 meV (0.2029 THz) for inverted medium.
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Figure 4.2 dipicts the Energy dispersion relations for the TE-mode valence 

band THz polaritons and antipolaritons as function of incident angle due to multiple 

transition (3 in this case). The polariton/antipolaritons dispersion in the this case 

is totally different from the sum of individual transition (a) to (c), owing to the 

strong interaction and repulsion of the branches leading to an exciting scenario (d).
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Figure J .̂2: THz valence band polaritons/antipolaritons based on TE-mode coupling of 
THz radiation and intervalence band excitations corresponding to the transitions: 2-1 (a), 
2-3 (b), 2-4 (c) and combination of all (d) using multiple transitions Equation 4-3. In all 
cases the carriers densities are independently thermalized at 300 K  in the second subband 
with density N  = 2.0 x 10n cm~ 2 and all other subbands are empty. The dephasing is 
neglected. S =  0.0 m eV
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4.4 Effects o f dephasing and scattering m echanism  on m ul­

tip les transitions

In order to see the influence of the intersubbands broadening term  (dephasing) on 

the polariton/antipolariton dispersions for the multiple transition case, we have 

performed simulations for different values of 5, ranging from 0.0 to 1.2 meV. The 

energy dispersions are clearly visible on tuning the broadening until eventually it 

reaches a significant value, where the antipolaritons feature completely disappear 

[99] analogously to the case of single resonance and exciton polaritons [100] case.

Figure 4.3 shows the the coexisting and interacting polariton and antipolariton 

dispersions (a) - (f) for a lOnm MQWs with the same barriers width and inputs 

param eters listed in table 4.1 (in the previous section) above with dephasing 5 =  

0.0, 0.2, 0.4, 0.6, 0.8 and 1.2 meV respectively. The chosen values of dephasing are 

quite small compared to the actual value obtained ~  4.7, 4,8 and 8.7 meV, for 2-1, 

2-3 and 2-4 transition respectively. Clearly the dephasing can be seen to  effect the 

dispersions with lower resonance transition due to inverted (active) gain medium, 

as it seem to disappeared even with small dephasing (£ =  0.2 meV). This implies 

th a t scattering and dephasing mechanism are more likely to  easily switch off the 

process if the medium is inverted. Thus, its experimentally more difficult to achieve 

strong population inversion in the THz range as in the case of quantum  cascade 

lasers (QCLs) [101-103].
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Figure 4-3: Interacting THz polaritons and antipolaritons resulting from coexisting gain 
and absortions to higher subbands, in a structure containing 10 nm G aA s /A lo^G aojA s  
quantum wells in the cavity core with increasing dephasing 5 (from (a) to (f))as indicated. 
The effect of dephasing can be clearly seen in (f) where large dephasing 5 = 1.2 m eV  
strongly reduces the polariton and antipolariton dispersions.
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In figure 4.5 and 4.5, we show the THz polariton and antipolaton dispersions 

of the lOnm MQWs with multiple transitions for different cavity lengths due to 

changing barrier width and number of quantum wells N in the cavity. To clearly see 

the effects of cavity, we have presented in both cases the energy dispersion relations 

verses the incident angle 9 for 5 = 0.0 and 0.2 meV. Table 4.2, 4.3 and 4.4 below 

compare the input and relevant parameters computed in simulating the structure 

with 150, 170 and 200 MQWs in the core cavity and varying barrier thickness.

Table J .̂2: Parameters for the multiple transition problem with increasing cavity using 
150 MQWs and varying barrier width

Parameter Numerical Value

Barrier width L& (nm) 175 200 225
Cavity length (fim) 27.99 31.74 35.49
Cavity Res. u c (meV) 7.0048 6.11794 5.5280
Cavity factor A 0.05357 0.04724 0.04225
Background Die. const, eb 9.9694 9.9631 9.9582

-1.2792 -1.2800 -1.2807
L-T splitting (meV) 0.8056 0.8060 0.8064

0.3665 0.3668 0.3670

We notice from Figure 4.4a that, increasing the cavity by increasing the 

number of quantum well and barrier width constant, there is shift in resonance 

angle 9res to higher values and slightly increases the polaritons and antipolaritons 

splitting, which can be verified in Table 4.2 . A similar effect is obtained by changing 

the barrier width, since in both cases, the total effective cavity length is changed 

(compare A v a l u e s  for the same colons in Table 4.2 - 4.4 . Next a comparison 

between TE and TM modes valence band polariton and antipolariton is considered.



Table J .̂3: Parameters for the multiple transition problem with increasing cavity using 
170 MQ Ws and varying barrier width

Parameter Numerical Value

Barrier width Lb (nm) 175 200 225
Cavity length (//m) 31.69 35.94 40.19
Cavity Res. ujc (meV) 6.1872 5.4575 4.8817
Cavity factor A 0.05367 0.04728 0.04228
Background Die. const. £b 9.9694 9.9631 9.9582

-1.2792 -1.2800 -1.2807
L-T splitting A ^ v (meV) 0.8056 0.8060 0.8064

0.3665 0.3668 0.3670

Table 4 - 4 : Parameters for the multiple transition problem with increasing cavity using 
200 MQWs and varying barrier width

Parameter Numerical Value

Barrier width Lb (nm) 175 200 225
Cavity length (//m) 37.24 42.24 47.24
Cavity Res. ujc (meV) 5.2654 4.637 4.1533
Cavity factor A 0.05369 0.04733 0.04232
Background Die. const. Sb 9.9694 9.9631 9.9582

-1.2792 -1.2800 -1.2807
L-T splitting A ^ v (meV) 0.8056 0.8060 0.8064

0.3665 0.3668 0.3670
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Figure 4 '4 : Valence band polaritons/antipolaritons due to multiple transitions with in­
creasing cavity due to the constant barriers and varying number of quantum wells. Figures 
on the left hand side are obtained with zero dephasingS =  0.0m eV  while those on the right 
hand side with small dephasing 5 — 0.2 m eV for comparison.
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Figure 4-&: Valence band polaritons/ antipolaritons due to multiple transitions with in­
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varying the barrier width. Figures on left hand side are obtained with zero dephasingd  =  
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4.5 Comparison of TE and TM modes for valence band THz 

polaritons and antipolaritons

The fact that valence subband transitions can be coupled with both TE and TM 

modes polarized cavity modes, stimulates to extend our studies by comparing results 

obtained for THz polaritons and antipolaritons for the two possible modes. The 

energy dispersions are obtained as described in the the previous sections of this 

chapter. However due to dipole dependent on k vector, the dipole moment matrix 

element for the cases are not the same. Note also that, the projection of the electric 

field also changes from TE to TM. To make it clear, we recall Eq. 3.10 for the TE 

case which read

x M  =  - j  A .<• (4.6)
4 77  LJ —  LVi +  1 0

and for TM case we have A replace by A sin 2Of,. Therefore

1 A sin 2 6 b
X(w) = —A------------- —t t ,  (4.7

477 U — LJi +  10

where 0 1 is propagation angle inside the cavity.

We compare below, the optical susceptibilities obtained with full Lorentzian 

formula, by adjusting the NEGF-solution using the Lorentzian approximation (RWA- 

only) for the TE and TM modes. In Figure 4.7a the population density differ­

ence is, A N  =  1.0 x 1011 cm-2 corresponding to absorption and in Figure 4.7b 

A N  = -1 .0  x 1011 cm 2 corresponding to gain respectively. Similar results are 

displaced in Figure 4.7a with A =  2.0 x 10n cm-2 and in Figure 4.7a with 

A =  —2.0 x 10n cm-2. It is clear from both figures that there is shift in reso­

nance position (corresponding frequency at maximum peak) in the TM case. This 

is due to the strong k-dependence on the dipole moment, which samples different 

region of k-space for TE and TM [85,98].

Next we compare and contrast the corresponding polariton and antipolariton 

dispersions.
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Figure 4-6: Full Lorentzian Fit including rotating and counter-rotating wave terms for  
a 100A GaAs/AlGaAs quatum well. The population difference between the subbads in (a) 
is A N  =  1.0 x  10n cm~2 and (b) is A N  = —1.0 x  10n cm~2
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Figure 4-8: Comparison of TE and TM  THz valence band polaritons/antipolaritons due 
to absortion and gain for transition between the first two subbands. The population density 
differences between the subbands are (a) A N  = 1.0x10n cm ~2 (b) A N  — —1.0x10l l cm ~2. 
The dephasing is neglected, 7  =  0.0 meV.
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Figure ^.9: Comparison of TE and TM  THz valence band polaritons/antipolaritons due 
to absortion and gain for transition between the first two subband. The population density 
differences between the subbands are (a) A N  — 2.0x10n cm~ 2 (b) A N  — —2.0x10l l cm~2. 
The dephasing is neglected. 7  =  0.0 meV.
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We notice from Figures 4.1 to  4.11 tha t, since the effective resonance frequen­

cies (peak of the susceptibility function) are different, the resonance angle change 

correspondingly in TE and TM modes. Furthermore, due to the larger oscillator 

strength of the transition, the polariton and antipolariton splitting are larger in the 

TM  case.
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Figure 4-10: Comparison of TE and TM  THz valence band polaritons and antipolaritons 
due to gain and absorption computed with A N  =  1.0 x 1011 cm- 2  and A N  =  —1 .0  x 
10n cm~2. The dephasing, 7  «  0.008 THz.
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Figure 11: Comparison of TE and TM  THz valence band polaritons/ antipolaritons due 
to gain and absorption computed with A N  =  2.0 x 10l l cm ~2 and A N  =  —2.0 x 10n cm ~2. 
The dephasing, 7  «  0.008 THz.

4.6 C onclusion

In summary, this chapter described the coupling between TE-mode THz radiation 

and intervalence band transitions with multiple resonance where transitions are 

assumed to involve many valence subbands. The energy dispersions relations are 

derived and plotted. As in the case of a single transition presented in the previous 

chapter, the effects of dephasing are investigated and furthermore, the influences of
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other parameters such as cavity length, barriers width and quantum wells thickness 

on the polariton dispersions are studied. The combination of non-parabolicity and 

many body effects were included in the input dielectric constant through the optical 

susceptibility which resulted from a nonequilibrium Green Function (NEGF).

The interaction of THz cavity modes with intervalence transitions can lead 

to further improved quantum efficiency of THz-polaritonics devices, even with sim­

plified geometric designs. Moreover, polariton and antipolariton can be obtained 

for the case of multiple resonance and TE polarization of THz cavity mode which 

can eventually lead to THz emission normal to the surface. Finally a comparison 

of TE and TM modes THz polaritons and antipolaritons was presented. Thus, for 

an easy measurement of polariton and antipolariton based inter-valence band tran­

sition, TE-mode polarized cavity is recommeded because the system can be tune to 

resonance at low frequency compared to TM mode case.



CHAPTER 5 
GENERAL CONCLUSION AND FUTURE WORKS

5.1 General conclusion

As a general conclusion, we have investigated the interaction of THz cavity modes 

with intervalence band excitations. The approach presented was based on the dielec­

tric function formalism where the optical responses used as input was obtained from 

numerical solutions of many body nonequilibrium Green functions. The resulting 

optical susceptibility was adjusted using a Lorentzian fit. The dielectric constant 

and the cavity modes were combined together in a secular equation derived from the 

wave equation for propagating electric fields in a dielectric medium. The Energy dis­

persions for the polaritons and antipolaritons were obtained with our equations and 

applied to a simple geometric structure with GaAs /  AIq̂ Gclq.iA s quantum wells in 

the cavity core, shielded with AlAs on top and bottom to serve as dielectric mirrors.

GaAs/Al0.3Gao.7As was chosen because, it is a mature material which has been 

used in most optoelectronic devices operating in mid and far infrared regions. Thus 

we applied our theoretical model to this material and considered the THz gap for 

its potential in device applications. Terahertz devices such as THz emitters and 

detectors, and THz-quantum cascade lasers are among the successful applications. 

These devices show great prospects for application in THz imaging, spectroscopic 

and security screening among others.

In summary, the work presented shows the relevance of valence band based 

designs for studying the interaction of TE-mode polarized THz radiation and in­

tervalence band transitions in a microcavity resonator based on a simple sample 

geometry. It paves way for further investigations in quantum electrodynamics and 

many other physical phenomena. The multiple transition problem leads to inter­

esting scenarios showing repulsion between the different polariton and antipolariton 

branches leading to improved quantum efficiency of future THz polaritonic and an-

79
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tipolaritons devices where lasing and THz emission may be possible. Moreover the 

approach allows us to combine predictive microscopic response calculations with a 

simple dielectric model presented in this thesis for the cavity, leading to a powerful 

design tool for THz polaritonic/antipolaritonic investigation.

5.2 Future works

We have shown the relevance of valence band based design to the study of the op­

tical interactions of TE-mode THz radiation and intervalence band excitation in a 

microcavity. It is our hope that future studies on THz polaritonics using intersub­

band transitions can lead to the successful realization of more efficient, affordable 

and coherence THz sources.

Further studies will also include calculation of reflection and transmission co­

efficient for TE and TM modes, for direct comparison with experiment as well as 

polaritons/antipolaritons in emerging materials such as dilute nitrates, bismides and 

antimonides. Furthermore, as it was reported in a recent experimental study based 

on reflectivity measurement, electrical modulation of carrier density can tuned on 

polaritons states at THz frequency which lead to THz emission [12]. Thus, using a 

quantum mechanical approach and our simplified model, a simple analytical equa­

tion will be derive in the future, to investigate the possibility of THz emission based 

on intervalence band transition. These can be applied to both single and multiple 

resonance cases. Finally, electroluminescence experiments with applied bias on the 

structure will result in the carrier density modulation and controllable electrolumi­

nescence spectra can be obtained.



APPENDIX A 
ADJUSTING THE M ANY BODY NONEQUILIBRIUM  

SOLUTION INTO A LORENTZIAN FIT

In this appendix we derive a simple formula for adjusting the numerical data of the 

optical susceptibility obtained using a many body nonequilibrium green’s function 

(NEGF) into a Lorentzian fit. The fitting parameters obtained and the Lorentzian 

fit with rotating wave approximation (RWA) only and with full (rotating plus non­

rotating parts) are compared with the fulll numerical data.

A .l Using the formula with rotating wave approximation 

only

The optical susceptibility with the rotating wave part only is given by;

X M  =   A • <-? (A.l)A.TT uj — UJ0 T 10

where A is a dipole coupling term defined in chapter 2, uo0 is the transition frequency

and 8  is half width at half wave maximum (dephasing term). Separating the optical

susceptibility into real and imaginary parts, we have for the imaginary part,

n / \ 1 A 8  .. .
A M  =  7 - 7 -x2 , c2 • (A.2 )47T (cj — u oy  +  8 1

Using the schematic diagram for the optical susceptibility shown in Figure A .l, at 

maximum peak, x  =  Xm  and u  = u o- Therefore,

Hr 1 A /■ 1x  (CO = UJ0) = (A.3)
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Figure A .l :  Schematic diagram showing how the fit parameters are obtained.

At half of maximum peak, x  {u) — Xm/2, then uo = u 0 =F 5). Here 2 x S is

the full width at half wave maximum (FHWM). Thus, at (co =  co — <5), and using

Equation A.2 we have

* >  =  " . - * )  =  ~  (A.4)

= Xm /^

with Equation A.3 in Equation A.4, then A can be evaluated as;

A =  ^ x m 8 (A.5)

and the dephasing

S = uj0 — uj

The values of u j  and u j q  can be read from the data.

(A-6)
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A .2 Using full Lorentzin formula

Here we use the full Lorentzian formula for the optical susceptibility (i.e with rotat­

ing and counter rotating waves parts) which is given by;

xM  =  t - ( ------ -— -=--------- - — - } .  (A.7)
47r ( u  — uj0 + i5 u  +  uj0 +18  J

Following the same procedure as in appendix A .l above, we find the expression

for A

a = 4^ { ^ h ^ } >  (a -8 )

, where uj0 and S have their usual configuration as above.

Next, in Figures A.2 and A.3, the imaginary parts of the optical susceptibil­

ities obtained by fitting with RWA ( A .l) part only and with full (RWA +  NRWA) 

parts are compared with those generated from the numerical (NEGF) solutions for 

different densities.

In both Figure A.2 and A.3, (a) and (c) are obtained by Lorentzian fit with 

RWA part only while (b) and (d) with full Lorentzian (i.e including non rotating 

part). In both cases, the maximum peak from the optical susceptibility generated 

with full Lorentzian formula coincide with that obtained with full non-equilibrium 

green’s function (NEGF) calculation. Once more, the full numerical data is not 

symmetric and the Lorentzian is symmetric, so there is no way to fit at the same 

time: height, FWHM and the peak position exactly.
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Figure A .2: Imaginary parts of optical susceptibilities from many body nonequilibrium 
solution (NEGF) compared with Lorentzian fit. (a) and (c) with RWA only, (b) and (d) 
full (RWA + NRW A) for absorption media with densities as indicated. This shows that, 
extracting the fitting parameters using the NEGF solution with only the RWA term leads 
to a better fit to the full NEGF solution, as both figures looked almost the same.
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Figure A .3: Imaginary parts of optical susceptibilities from many body nonequilibrium 
solution (NEGF) compared with Lorentzian fit. (a) and (c) with RWA only, (b) and (d) 
with full (RWA + NRWA) for gain media with densities as indicated. This shows that, 
extracting the fitting parameters using the NEGF solution with only the RWA term leads 
to a better fit to the full NEGF solution, as both figure looked almost the same.



REFERENCES

[1] S Haroche and D. Kleppner, Cavity quantum electrodynamics, Phys. Today 
42, No. 1 24 (1989).

[2] D Dini, R Kohler, A TYedicucci, G Biasiol and L Sorber, Microcavity polaritons 
splitting of intersubband transitions, Phys. Rev. Lett. 90, 116401 (2003).

[3] S Zanotto, G Biasol, R Degl’Innocenti L Sorber and A Tredicuccci, Intersub­
band polaritons in one dimensional plasmon photonic crystal, App. Phys. Lett. 
97, 231123 (2010).

[4] R Colombelli, C Ciuti, Y Chassagneux and C Sirtonic, Quantum cascade in­
tersubband polariton light emitters, IOP-Publishing, semiconductor sci. Tech­
nology 20, pp. 985-990 (2005).

[5] M F Pereira Jr, Intersubband antipolaritons: Microscopic approach, Phys. Rev. 
B 75, 195301 (2007).

[6] M F Pereira, Intersubband vs interband light coupling in semiconductors, Opt. 
Quant. Electron., springer Vol. 40, pp. 325-329 (2008).

[7] F Capassor. et al, Quantum cascade lasers: ultrahigh-speed operations, optical 
wireless communication, narrow linewidth, and far-infrared emission, IEEE J. 
Quantum Electron. 38, 511 (2002).

[8] M I Amanti, A Bismuto, M Beck, L Isa, K. Kumar, E. Reimhult and J. Faist, 
Electrically driven nanopillars for THz quantum cascade lasers, Optics Express 
10917, Vol. 21, No. 9 (2013). DOL10.1364/OE.21.010917.

[9] H C Liu, Quantum well infrared photodetectors, Intersubband transitions 
in Quantum Wells: Physics and Device applications 1 (semiconductor and 
semimetals vol 62) ed H C Liu and F Capasso (San Diego: Academic), P 126 
(2000).

[10] S D Gunapala, S V Bandara, J K Liu, J M Mumolo, S B Rafol and D Z Ting, 
Quantum Well Infrared Photodetector Technology and Applications, IEEE J. 
of Selected Topics in Quant. Electron., Vol. 20, NO. 6, 3802312, Nov./Dec. 
2014 .

[11] M Geiser, G Scalari, F Castellano, M Beck and J Faist, Room temperature 
THz polariton emitter, Appl. Phys. Lett. 101, 141118 (2012).

86



87

12] M Geiser, M Beck, and J Faist, Terahertz intersubband polariton tuning 
by electrical gating, Optics Express, 2126, Vol. 22, No. 2 Jan. 27, (2014). 
DOL10.1364/OE.22.002126 .

13] J Faist, F Capasso, D L Sivco, C Sirtori, A L Hutchinson, and A Y Cho ” 
Quantum Cascade Laser” , Science 264 (5158), 553-556, (1994).

14] S Kumar, Recent Progress in Terahertz Quantum Cascade Lasers, IEEE J. of 
Selected Topics in Quant. Electro., Vol 17, NO. 1, (2011).

15] Kohler, R. et al. Terahertz semiconductor-heterostructure laser, Nature 417, 
156-159, (2002).

16] B S Williams, Terahertz quantum cascade lasers, Nature photonics Vol. 1, sept. 
2007.

17] V Bergert, Three level laser based on intersubband transitions in asymmetric 
quantum wells: a theoretical study, Sem. Sci. Tech., 9, 1493-1499 (1994).

18] C Sirtori, P Kruck, S Barbeiri, P Collot, J Nagle, M Beck, J Faist, and U 
Oesterle, GaAs/AlxGai_xAs quantum cascade lasers, Appl. Phys. Lett. Vol. 
73, No. 24 (1998).

19] G Scalari, M I Amanti, M Fischer, R Terazzi, C Walther, M Beck, and J Faist, 
Step well quantum cascade laser emitting at 3 THz, Appl. Phys. Lett., 94, pp. 
041114-1 - 041114-3, 2009.

20] S Kumar, C W I Chan, Q Hu, and J L Reno, Two-well terahertz quantum- 
cascade laser with direct intrawell-phonon depopulation, Appl. Phys. Lett., 95, 
pp. 141110-1 - 141110-3, 2009.

21] T Liu, K E Lee, and Q J Wang, Microscopic density matrix model for optical 
gain of terahertz quantum cascade lasers: Many-body, nonparabolicity, and 
resonant tunneling effects, Phys. Rev. B 86, 235306 (2012).

22] H C Liu, C Y Song, A J SpringThorpe, et. al., Terahertz quantum-well pho­
todetector, Appl. Phys. Lett., 84, 4068 (2004).

23] H C Liu, H Luo, C Y Song, et. al.,Terahertz Quantum Well Photodetectors, 
IEEE J. Select. Topics in Quant. Electron., 14, 374 (2008).

24] M Geiser, C Walther, G Scalari M Beck, M Fischer, L Nevou and J Faist, 
Strong light-matter coupling at terahertz frequencies at room temperature in 
electronic LC resonators, Appl. Phys. Lett. 97, 191107 (2010).

25] R Zhang, X G Guo, and J C Cao, Optical couplers for terahertz quantum well 
photodetectors, Terahertz Science and Technology, ISSN 1941-7411, Vol. 7, No. 
1 March 2014.



[26] K Ohtani, M Fischer, G Scalari, M Beck, and J Faist, Terahertz intersub­
band electroluminescence from In As quantum cascade light emitting structures, 
Appl. Phys. Lett. 102, 141113 (2013).

[27] F Sizov and A Rogalski, THz Detectors, Prog, in Quantum Electronics, 34, 
(2010) 278-347.

[28] S Foteinopoulou, M Kafesaki, E N Economou and C M Soukoulis, Two dimen­
sional polaritonic photonic crystals at terahertz uniaxial metamaterials, Phys. 
Rev. B 84, 035128 (2011).

[29] M F Pereira Jr, Microscopic approach for intersubband-based thermovoltaic 
structures in the THz and Mid Infrared, JOSA B Vol. 28, Iss. 8 2014 (2011).

[30] H Tao, E A Kadlee, A C Strikwerda, K Fan, W J Padilla, R D Averitt, E A 
Shaner and X Zhang, Microwave and terahertz wave sensing with metamateri­
als. Opt. Express Vol. 19 No. 22, 2162021626 (2011).

[31] W Kuehn et al. Two-color two-dimensional terahertz spectroscopy on intersub­
band transitions of coupled quantum wells. Optics Express, Quantum electron­
ics and laser science conference paper. QFG3, 2010.

[32] Y Todorov et al., Polaritonic spectroscopy of intersubband transitions. Phys. 
Rev. B 86, 125314 (2012).

[33] D Dragoman and M Dragoman, Terahertz fields and applications, Prog, in 
Quantum Electronics,28, (2004) 1-66.

[34] I A Faragai and M F Pereira, interactions of valence band excitations and 
terahertz TE-polarized cavity modes, Opt.and Quantum Electron. Vol. 46, No. 
4 527-531 (2014).

[35] M F Pereira Jr and I A Faragai, Coupling of THz radiation with intervalence 
band transitions in microcavities, Optics Express 3439 Vol. 22, No. 3 (2014).

[36] http://www.britannica.com/EBchecked/topic/183228/electromagnetic- 
radiation/59190/The-electromagnetic-spectrum?anchor=ref273240.

[37] B S Williams, Terahertz quantum cascade lasers, Nature photonics Vol. 1, sept. 
2007.

[38] Q Y Lu, N Bandyopadhyay, S Slivken, Y Bai, and M Razeghi, Room tem­
perature terahertz quantum cascade laser sources with 215 //W output power 
through epilayer-down mounting, Appl. Phys. Lett. 103, 011101 (2013).

[39] P H Siegel, Terahertz technology, IEEE Trans. Microwave Theory and Tech., 
50, 910928 (2002).

http://www.britannica.com/EBchecked/topic/183228/electromagnetic-


89

[40] A Rogalski and F Sizov, Terahertz detectors and focal plane arrays, Opto- 
Electron. Rev., 19, no. 3 (2011).

[41] M Tonouchi, Cutting-edge terahertz technology, Nature Photon 1, 97105 
(2007).

[42] Y-C Shen, P F Taday, D A Newnham, M C Kemp, and M Pepper, 3D chemical 
mapping using terahertz pulsed imaging, Terahertz and gigahertz electr. and 
photonics IV, Proceeding of SPIE, Vol. 5727 (2005).

[43] B Ferguson, and X-C Zhang, Materials for terahertz science and technology, 
Nature Mater, 1 2633 (2002).

[44] D Mittleman, Sensing wit Terahertz Radiation, Springer, Berlin (2003).

[45] E R Mueller, Terahertz Radiation Source for Imaging and Sensing applications 
(Source: www.coherent.com) .

[46] http :/ /www.homelandsecuritynewswire.com/njit-physicist-terahertz-imaging- 
ultimate-defense-against-terrorism.

[47] K Ishigaki, M Shiraishi, S Suzuki, M Asada, N Nishiyama and S Arai, Direct 
intensity modulation and wireless data transmission characteristics of terahertz- 
oscillating resonant tunnelling diodes, IEEE, Elect. Lett. Vol. 48, No. 10 (2012).

[48] G Pavlovic, Exciton-polaritons in low dimensional structures, PhD thesis 
(2010).

[49] T Katsuyama, T Sato, Y Yammamoto and N Sagawa, Superlattices and Mi­
crostructures, Vol. 20, No. 1 (1996).

[50] H Deng, H Haug and Y Yamamoto, Exciton-polariton Bose-Einstein conden­
sation, Rev. Mod. Phys., Vol. 82, No. 2 April/June (2010).

[51] D Bajoni, Corrigendum: Polariton lasers. Hybrid lightmatter lasers without 
inversion, J. Phys. D: Appl. Phys. 45, 409501 (2012).

[52] A Liu, Rabi splitting of the optical intersubband absorption line of multiple 
quantum wells inside a Fabry-Perot microcavity, Phys. Rev. B 55, No. 11 pp. 
7101-7109, (1997).

[53] M F Pereira, Influence of dephasing in the coupling of light with intersubband 
transitions, Microelectronic Journal 40, 841-843 (2009).

[54] M O Manasreh, Introduction to Nanomaterials and Devices 1st edition, J Wiley 
and Sons Inc., pp-202 (2012).

[55] C Weisbuch and B Vinter, Quantum semiconductor structures: Fundamental 
and Applications, Academic Press, (1991).

http://www.coherent.com
http://www.homelandsecuritynewswire.com/njit-physicist-terahertz-imaging-


90

[56] M O Manasreh, Optoelectronic properties of semiconductors and superlattices, 
Vol. 6: Long wavelength infrared emitters based on quantum wells and super­
lattices, Gordon and Breach Science Publishers (2000).

[57] R Q Yang, Optical Intersubband transitions in conduction-band quantum wells, 
Phys. Rev. B Vol. 52, No. 16, p 11958 - 11968, (1995).

[58] H C Liu, M Buchahan and R Z Wasilewski, How good is the polarization 
selection rule for intersubband transitions, Appl. Phys. Lett., Vol. 72, No. 14, 
p 1682 - 1684, (1998).

[59] M F Pereira, Many body theory of THz intervalence gain in quantum wells, 
Opt. and Quant Electron, Vol. 40, No. 14-15, pp. 10911095 (2008).

[60] M I Hossain, Z Ikonic, J Watson, J Shao, P Harrison, M J Manfra and O 
Malis, Strong heavy-to-light hole intersubband absortions in the valence band 
of carbon-doped GaAs/AlAs superlattices, J. Appl. Phys. 113, 053103 (2013).

[61] H C Liu and F capasso, Intersubband transition in quantum wells, Physics and 
Device Application I and II, Vol. 62 and 86, Academic Press (2000).

[62] A Harwit, Effect of electric fields on quantum well intersubband transition, 
PhD thesis, Stanford University, (1987.)

[63] H Haug and S W Koch, Quantum Theory of the Optical and Electronic Prop­
erties of semiconductors, Fourth Ed., World Scientific (2004).

[64] J Singh, Physics of semiconductors and their Heterostructures (McGraw-Hill, 
New York, (1993).

[65] U Rossler, Band-Offset and Effective-Mass Parameters in Quantum wells, Solid 
State communication, Vol. 65, No.11, pp. 1279-1280 (1988).

[66] M Fox and R Ispasoiu, Quantum wells, Superlattices and Band Gap Engineer­
ing, Springer Handbook of Electronic and Photonic Materials, pp. 1021-1040 
(2007).

[67] M Shen and W Cao, Electronic band-structure engineering of 
G aAs/AlxG a\-xAs quantum well superlattices with substructures, Else­
vier; Materials and Engineering B 103, pp. 122-127 (2003).

[68] M F Pereira, Jr., S C Lee and A wacker, Controlling many body effect in the 
midinfrared gain and terahertz absorption of quantum cascade lasers, Phys. 
Rev. B 69, 205310 (2004).

[69] D Jena, k.p theory of semiconductors, EE 698D, Advanced Semiconductor 
Physics. (2004).



91

[70] R Eppenga, M F H Schuurmans, and S Colak, New k.p theory for 
G aA s /G ai-xAlxAs-type  quantum wells, Phys. Rev. B 36 1554 (1987).

[71] T E Ostramek, Evaluation of matrix elements of the 8 x 8  k-p Hamiltonian with 
k-dependant spin-orbit contribution for zinc-blended structure og GaAs, Phys. 
Rev. B 54, pp. 467-479 (1996).

[72] L C Lew yan Voon and M Willatzen, The k.p method: Electronic properties of 
semiconductors, ISBN 978-3-540-92871-3, Springer (2009).

[73] L Sirigu, R Terazzi, Maria. I. Amanti, Marcella Giovannini and J Faist, Ter­
ahertz Quantum Cascade Lasers based on two-dimensional photonic crystal 
resonators, Optics Express 5206, Vol. 16, No. 8, April (2008).

[74] Y.-F Lao and A G Unil Perera, dielectric function model for p-type semicon­
ductor intervalence band transitions, J. Appl. Phys. 109, 103528 (2011).

[75] T Schmielau and M F Pereira, A dielectric theory for the coupling of light with 
multiples intersubband transitions, Journal of OPt-Electronics and advance 
materials Vol. 10, NO. 1, pp. 55-57 Jan. (2008).

[76] I A Faragai and M F Pereira, Interaction of valence band excitations and ter- 
aherz TE-polarized cavity modes, Opt. and Quant. Electron. 46 pp. 527-531 
(2014).

[77] D Dini, R Kohler, A Tredicucci, G Biasiol and L Sorber, Microcavity polaritons 
splitting of intersubband transitions, Phys. Rev. Lett. 90 116401 (2003).

[78] S Zanotto, G Biasol, R Degl’Innocenti L Sorber and A Tredicuccci, Intersub­
band polaritons in one dimensional plasmon photonic crystal, App. Phys. Lett. 
97 231123 (2010).

[79] M F Pereira and S Tomic, Intersubband gain without global inversion through 
dilute nitride band engineering, Appl. Phys. Lett. 98, 061101 (2011).

[80] M F Pereira, Intersubband vs interband light coupling in semiconductors, Optt. 
Quant. Electron, springer Vol. 40, pp. 325-329 (2008).

[81] W W Chow, M.F. Pereira Jr., and S W Koch, Many-Body Treatment on 
the Modulation Response in a Strained Quantum Well Semiconductor Laser 
Medium, Appl. Phys. Lett. 61, 758 (1992).

[82] M F Pereira Jr., Analytical solutions for the optical absorption of superlattices. 
Phys. Rev. B 52, pp. 19781983 (1995).

[83] M F Pereira Jr, Intersubband antipolaritons: Microscopic approach, Phys. Rev. 
B 75, 195301 (2007).



92

[84] M F Pereira, Jr. and H. Wenzel, Interplay of Coulomb and nonparabolicity 
effects in the intersubband absorption of electrons and holes in quantum wells, 
Phys. Rev. B TO, 205331 (2004).

[85] M F Pereira, Jr., Intervalence transverse-electric mode terahertz lasing without 
population inversion, Phys. Rev. B 78, 245305 (2008).

[86] M S Vitiello, R C Iotti, F Rossi, L Mahler, A Tredicucci, H E Beere, D A 
Ritchie, Q Hu, and G Scamarcio, Non-equilibrium longitudinal and transverse 
optical phonons in terahertz quantum cascade lasers, Appl. Phys. Lett. 100, 
091101 (2012).

[87] A Wacker, Semiconductor Superlattices: A model system for nonlinear trans­
port, Phys. Rept. Vol. 357, No. 1 pp. 1 - 111 (2002).

[88] T Schmielau and M F Pereira, Jr., Nonequilibrium many body theory for 
quantum transport in terahertz quantum cascade lasers, Appl. Phys. Lett. 95, 
231111 (2009).

[89] T Schmielau and M.F. Pereira Jr, Impact of momentum dependent matrix 
elements on scattering effects in quantum cascade lasers, Phys. Status Solidi B 
246, 329 (2009).

[90] M F Pereira and I A Faragai, Coupling of THz radiation with intervalence band 
transitions in micro cavities, Opt. Express, Vol.22, No. 3 pp. 3439-3446 (2014).

[91] S Adachi, GaAs, AlAs, and Al^Ga^^As: material parameters for use in research 
and device applications, Journal of App. Phys., 58 (3), 1 August (1985).

[92] A Quattropani and W Czaja, Quantum theory of exciton-polariton with spatial 
dispersion, Physica Scripta. Vol. T29 162-166, (1989).

[93] M F Pereira, the influence of dephasing in the coupling of light with intersub­
band transitions, Microelectronics Journal 40 pp. 841843 (2009).

[94] M F Pereira Jr and I A Faragai, Coupling of THz radiations with intervalence 
band transitions in microcavities, Optics Express Vol.22, No. 3 pp. 3439-3446 
(2014).

[95] A Naesby, T Suhr, P T Kristensen, and J Mork, Influence of pure dephasing on 
emmision spectra from single photon sources, Phys. Rev. A 78, 045802 (2008).

[96] R Colombelli, C Ciuti, Y Chassagneux and C Sirtori, quantum cascade inter­
subband polariton light emmiters, IOP-publishing, J. of semicond. Sci. Technol. 
20, 985-990 (2005).

[97] A Laucht, N Hauke, J M Villas-Boas, F Hofbauer, G Bohm, M Kaniber, and J 
J Finley, dephasing of excion polaritons in photoexcited InGaAs quantum dots 
in GaAs nanocavities, Phys. Rev. Lett. 103 087405 (2009).



93

98] M F Pereira Jr. and H Wenzel, Interplay of Coulomb and nonparabolicity effects 
in the intersubband absorption of electrons and holes in quantum wells, Phys. 
Rev. B 70 205331 (2004).

99] M F Pereira, The influence of dephasing in the coupling of light with intersub­
band transitions, Microelectronics journal 40 841-843 (2009).

100] C Weisbuch, M Nishioka, A Ishikawa and Y Arakawa, Observation of the cou­
pled Exciton-Photon Mode splitting in a Semiconductor Quantum Microcavity, 
Phys. Rev. 69 No. 23 (1992).

101] R Kohler, Rita C lotti, A Treddicucci and F Rossi, Design and simulation of 
terahertz quantum cascade lasers, App. Phys. Letts. Vol. 79 No. 24 (2001).

102] S De Liberato, C ciuti and Chris C Phillips, Terahertz lasing from intersub­
band polariton-polariton scattering in asymmetric quantum wells, Phys. Rev. 
87 241304 (R) (2013).

103] H Luo, S R Laframboise, Z R Wasilewski, G C Aers,H C Liu and J C Cao, 
Terahertz quantum cascade lasers based on a three-well active module, Appl. 
Phys. Lett. 90, 041112 (2007).

104] J Faist, Intersubband optoelectronics, ETH Zurich, Zurich, Sept. 17, (2009).

105] M F Pereira Jr, R Nelander, A Wacker, D G Revin, M R Soulby, L R Wilson, 
J W Cockburn, A B Krysa, J S Roberts, and R J Airey, Characterization of 
Intersubband Devices Combining a Nonequilibrium Many Body Theory with 
Transmission Spectroscopy Experiments, Journal of Materials Science: Materi­
als in Electronics 18, 689 (2007).

106] M F Pereira, The influence of dephasing in the coupling of light with inter­
subband transitions, Microelectronics Journal 40, 841 (2009) .

107] M F Pereira, Jr., S C Lee and A Wacker, Controlling many body effect in the 
midinfrared gain and terahertz absorption of quantum cascade laser structures, 
Phys. Rev. B 69, 205310 (2004) .

108] M F Pereira, Jr., S C Lee and A Wacker, Effects of coulom corrections and 
mean field on gain and absorption in quantum cascade lasers, Phys. Stat. sol. 
(c) 2, 3027 (2005) .

109] H C Liu, Intersubband transitions in quantum wells: Physics and device ap­
plications I, semeconductor and semimetal. Vol. 62, Academic Press, (2000).

110] V B Verma, V C Elarde and J J Coleman, Physics and Applications of In­
tersubband Transitions in Patterned Inverse Quantum Dot Arrays, IEE Lasers 
and Electro-Optics society, LEOS 21st annual meeting proceeding, (2008).


