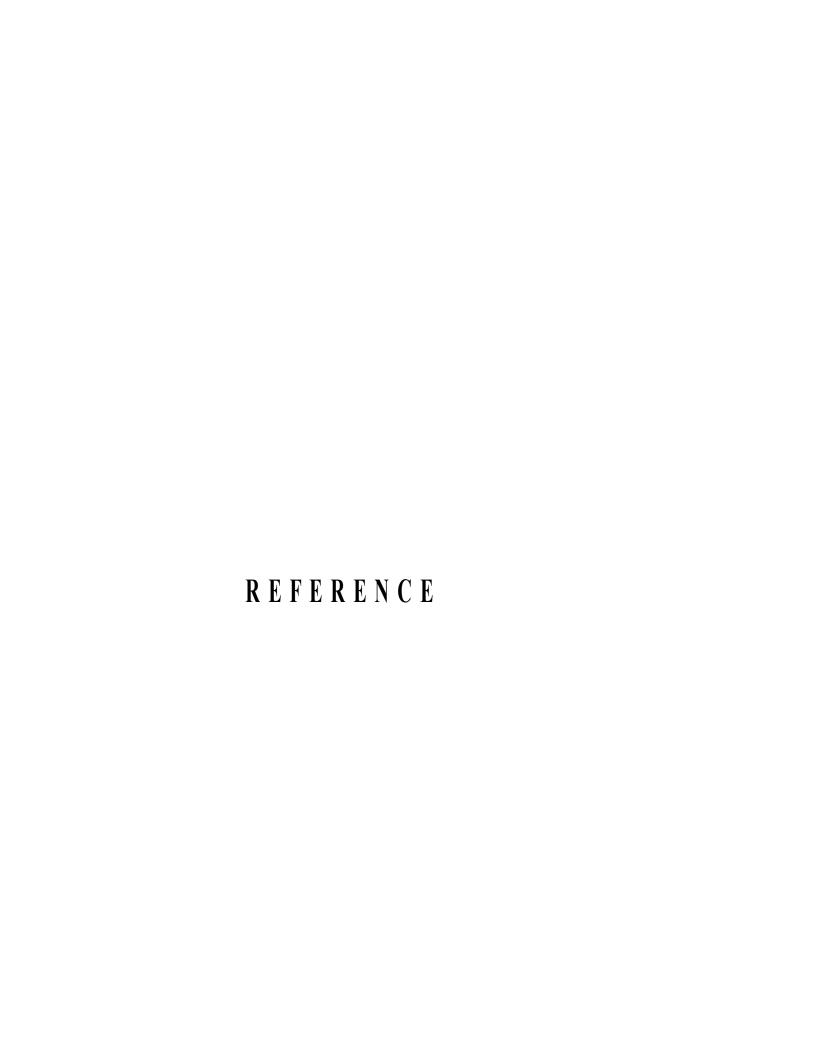


Protein factors and 5' flanking sequences involved in the expression of the mouse myelin basic protein gene.

FAIRCLOUGH, Andrew Charles.

Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/19637/


This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

FAIRCLOUGH, Andrew Charles. (2001). Protein factors and 5' flanking sequences involved in the expression of the mouse myelin basic protein gene. Doctoral, Sheffield Hallam University (United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

ProQuest Number: 10694518

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

uest

ProQuest 10694518

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106- 1346

Protein factors and 5' flanking sequences involved in the expression of the mouse myelin basic protein gene.

Andrew Charles Fairclough

A thesis submitted in partial fulfilment of the requirements of Sheffield Hallam University for the Degree of Doctor of Philosophy

JUNE 2001

Abstract

Myelin Basic Protein is a major structural protein of vertebrate myelin. The gene that codes for MBP is contained within the *golli-MBP* complex. This gene complex consists of two overlapping transcription units, *golli* and *MBP*, which are regulated by two distinct promoters.

The *golli* unit is expressed in cells of the oligodendrocyte lineage (Central Nervous System), neurons, B and T lymphocytes, testis and thymus. However, the *MBP* unit is expressed exclusively in oligodendrocytes and Schwann cells (Peripheral Nervous System).

The expression of the MBP unit is regulated mainly at the level of transcription by proteins that bind in a specific manner to DNA sequences located within its promoter region. The identification of these proteins and DNA sequences is essential to understanding the mechanisms that regulate the transcription of the MBP unit.

This project was initiated by the isolation of the putative promoter region of the mouse myelin basic protein (MBP) gene. To achieve this the $Hind\ III - Sac\ I$ fragment of pEX1 plasmid was subcloned in the vector pBluescript. The cloned insert, which corresponds to the region between nucleotides – 1319 and + 227 relative to the transcription start site of the mouse MBP gene, was subsequently sequenced manually using the chain termination method. Sequence analysis revealed a number of putative binding sites for transcription factors. The region – 609 to – 577 was selected for further studies because work published by other groups suggested that it contains a cell-type specific (for oligodendrocytes) transcription activator. The presence of protein factors specifically binding to the region – 609 to – 577 was demonstrated by electrophoretic mobility shift assay (EMSA).

For this purpose, nuclear extracts were prepared from rodent brain or established glial cell lines e.g. C_6 glioma cells. Extracts from tissues and cell lines, which do not express myelin basic protein e.g., HeLa cells served as a control. Nuclei were isolated by Dounce homogenisation of cultured cells or brain tissue. The proteins were then isolated by high salt extraction of the nuclei followed by ammonium sulphate fractionation.

Putative protein(s) binding to the region located between nucleotides - 609 to - 577 of the myelin basic protein gene promoter were identified using the yeast one-hybrid system. This assay is based on the interaction between a specific protein DNA binding domain and the target DNA sequence. Proteins are expressed as fusions to the GAL4 activation domain (AD) in the yeast reporter strain in which the target sequence has been inserted upstream of the HIS3 gene minimal promoter. Binding of AD fusions to the target sequence increases activity of the HIS3 promoter enabling growth on medium lacking histidine. In this work a yeast reporter strain containing four copies of the -609 to -577 region tandemly repeated upstream of the HIS3 gene minimal promoter was constructed. A library containing rat brain cDNAs fused to the activation domain of GAL4 was screened using this strain as a host. Seven clones were obtained on medium lacking histidine in the presence of 30 mM 3-aminotriazole. DNA from these clones was automatically sequenced and analysed for sequence homology with known transcription factors by comparing the nucleotide and protein sequences to EMBL/Genbank and Swissprot/Swall databases using the

FastA and Blast search tools. From the results of the homology searches the clones were identified as follows: the activating transcription factor 2 (ATF-2), the pituitary specific positive transcription factor 1 (Pit-1) or general transcription factor 2i, the E2F family transcription factor, the PASK protein and two of the clones were identified as *c-jun*. One clone, however, remains unidentified and this could be a novel transcription factor.

Acknowledgements

I would like to dedicate the work in this thesis to the memory of my Mother and Father who sadly passed away before seeing this work completed, and also to thank them for their constant support and encouragement throughout this project.

I am most grateful to Dr Maria Blair for her supervision of this project, and helpful criticism whilst writing this thesis. I would like to thank Dr Barry Davis for his support throughout the project and comments on the thesis. My thanks also go to Dr Aruna Asipu and Dr Karin Wiebauer for their advice on methods, and friends and colleagues for their support during this project.

Finally I would like to acknowledge the School of Science and Mathematics for allowing me the opportunity to study this topic.

Contents

		Page
Abstr	act	i
Ackno	owledgements	iii
Conte	ents	iv
List o	f Figures	x
List o	f Tables	xvi
List o	f Abbreviations	xvii
Cours	ses, Conferences and Relevant Experience	xix
Chap	ter 1 Introduction	1
1.1.	Myelin basic protein gene structure	5
1.2.	Myelin basic protein gene transcription	11
1.2.1.	Transcriptional control of gene expression	11
1.2.2.	Tissue specific expression of the MBP gene	19
1.3.	Developmental changes in Myelin Basic Protein expression	25
1.4.	Sites of myelin protein synthesis and transport to the	
	membrane	28
1.5.	Translational and post-translational events	30
1.5.1	Methylation	30
1.5.2	Phosphorylation	32
1.5.3	Deimination	34
1.6.	Myelin protein gene expression in cultured cells	35
1.7.	Gene expression in dysmyelinating mutants	37

1.7.1.	Shiverer (shi) and Myelin Deficient (shi ^{mld})	37
1.7.2.	Jimpy (jp) and Myelin Synthesis Deficient (jp ^{msd})	42
1.8.	Quaking (qk)	43
1.9.	TAIEP mutant rat	45
1.10.	Myelin basic protein is a zinc-binding protein in brain	46
1.11.	Aims of the project	49
Chapt	ter 2 Materials And Methods	51
2.1 M a	aterials And Suppliers	51
2.1.1.	Bacterial strains	51
2.1.2.	Cloning vectors	51
2.1.3.	Enzymes	51
2.1.4.	Oligonucleotides	52
2.1.5.	Kits	52
2.1.6.	Radiochemicals	52
2.2.	Large-scale isolation of plasmid DNA by a modified	
	Clewell and Helinski Technique	53
2.3.	Purification of plasmid DNA by centrifugation to equilibrium	
	in caesium chloride-ethidium bromide gradient	54
2.4.	Analytical agarose gel electrophoresis of DNA	55
2.5.	Analytical scale digestion of DNA with restriction	
	endonucleases	56
2.6.	Cloning of the <i>Hind III – Sac I</i> fragment of pEX1 in	
	pBluescript plasmid	56
2.6.1.	Preparation of the <i>Hind III</i> – <i>Sac I</i> fragment of pEX1	
	plasmid for cloning	56
2.6.1.	1.Large scale digestion of the plasmid pEX1	56
2.6.1.2	2.Electro-elution of the <i>Hind III – Sac I</i> fragment	57
2.6.1.3	3.Purification and concentration of the <i>Hind III – Sac I</i>	
	fragment	57
2.6.2.	Preparation of the plasmid pBluescript for cloning	58
2.6.2.	1.Digestion of pBluescript with restriction	
	endonucleases Hind III and Sac I	58
2.6.2.2	2.Phosphatase Treatment of pBluescript	59
	V	

2.6.3.	Ligation	60
2.6.4.	Introduction of plasmid DNA into E. coli cells	60
2.6.4.	1.Preparation of competent cells	60
2.6.4.	2.Transformation	61
2.6.4.	3.Plating-out of the transformants	62
2.6.5.	Analysis of the transformants	62
2.6.5.	1.Preparation of plasmid DNA on a small scale	
	(Holmes and Quigley Method)	62
2.6.5.	2. Confirmation of the presence of the <i>Hind III-Sac I</i>	
	fragment in the recombinant plasmids	64
3.0.	Isolation and preparation of plasmid DNA for	
	sequencing	64
3.1.1.	Alkaline lysis mini-preparation using the Pharmacia	
	kit	64
3.1.2.	Estimation of the concentration of DNA before the	
	preparation of single strands	65
3.1.3.	Preparation of single stranded DNA for sequencing	66
4.0.	Sequencing of DNA	67
4.1.	Preparation of oligonucleotide primers	67
4.2.	DNA sequencing using the sequenase kit	68
4.2.1.	Annealing the template and the primer	68
4.2.2.	The labelling reaction	69
4.2.3.	Termination reactions	69
4.3.	DNA sequencing using the T7 DNA polymerase kit.	70
4.3.1.	Annealing the template and the primer	70
4.3.2.	The labelling reaction	70
4.3.3.	Termination reactions	71
4.4.	Electrophoresis of the sequencing reactions	71
4.4.1.	Preparation of polyacrylamide sequencing gels	71
4.4.2.	Sequencing gels prepared with Hydro-Link DNA	
	sequencing system	72
4.5.	Autoradiography of sequencing gels	73
5.0.	Electrophoretic Mobility Shift Assay	74

5.1.	Preparation of oligonucleotides corresponding to the	
	putative binding site	74
5.1.1.	Annealing of synthetic oligonucleotides	75
5.1.2.	5'-End labelling of oligonucleotides with γ -32P ATP	
	and polynucleotide kinase	75
5.2.	Preparation of nuclear extracts	76
5.3.	Estimation of the concentration of protein in nuclear	
	Extracts	77
5.4.	Binding assay	78
5.5.	Competition binding assays	78
6.0.	Cloning of the putative binding site in vector pHISI-1 for use	
	in the yeast one-hybrid system	79
6.1.	Preparation of oligonucleotides corresponding to the	
	putative binding site for cloning in pHISi - 1.	79
6.2.	Ligation of the oligonucleotides containing the binding	
	site to the reporter vector	79
6.3.	Screening of transformed bacterial colonies by PCR	80
7.0.	Large scale preparation of yeast vector containing the	
	binding site (reporter vector)	82
8.0.	Preparation of the reporter strain for use in the yeast	
	one - hybrid system	83
8.1.	Linearisation of the target-reporter vector	89
8.2.	Preparation of competent yeast host cells	89
8.3.	Transformation of competent yeast cells	90
8.4.	Analysis of putative reporter strain constructs (the	
	rapid isolation of chromosomal DNA)	91
8.5.	Testing new reporter strains for background HIS3	
	expression	92
9.0.	The search for transcription factors	93
9.1.	Screening of a cDNA / AD fusion library.	93
9.2.	Analysis of putative clones carrying an AD fusion	
	library plasmid (Rapid isolation of yeast plasmid	
	DNA)	94

9.3.	Analysis of putative clones carrying a library plasmid	
	by PCR	95
9.4.	Identification of DNA – binding proteins by automated	
	sequencing and database searches	96
Chap	ter 3 Results	97
3.1.	Sub-cloning of the myelin basic protein gene promoter	
	in the plasmid pBluescript for the purposes of	
	sequencing and functional characterisation	97
3.2.	Sequencing of the <i>Hind III – Sac I</i> restriction fragment	
	containing the MBP promoter	110
3.3.	Analysis of DNA – protein complexes by electrophoretic	
	mobility shift assay EMSA) and competition binding assay	134
3.4.	Isolation of cDNA(s) encoding proteins binding to the	
	region located between nucleotides - 609 to - 577	
	of the mouse myelin basic protein gene promoter by	
	a yeast one – hybrid system	144
3.4.1.	Construction of the reporter vector	144
3.4.2.	Construction of the reporter strain	155
3.4.3.	Testing the new reporter strains for background HIS3	
	expression	168
3.5.	Analysis of the rat brain cDNA library clones for sequence	
	homology to other transcription factors	183
Chapt	ter 4 DISCUSSION	214
4.1.	Discussion and Conclusions	214
4.2.	Future work	230
Refer	ences	232
Appei	ndix I Equipment suppliers	255
Annei	ndix II Media and Ruffer Compositions	256

Appendix III	Preparation of Sephacryl S-400	
	columns	268
Appendix IV.	Oligonucleotide synthesis	269
Appendix V.	COP purification of 5' Trityl – ON	
	oligonucleotides	277
Appendix VI	Vector Maps and sequences	279
Appendix VII		294

LIST OF FIGURES

	Pa	age
FIGURE 1.	A diagrammatic representation of nerve conduction in a myelinated and unmyelinated axon	3
FIGURE 2.	A diagrammatic representation of the mouse MBP gene and its relationship to the golli-mbp gene	7
FIGURE 3.	MBP gene and transcript structures	10
FIGURE 4.	Schematic representation of a typical eukaryotic promoter showing distinctive transcriptional control elements	15
FIGURE 5.	Diagrammatic representation of <i>golli-mbp</i> gene structure in dysmyelinating mutant mice	41
FIGURE 6A.	The reporter plasmid pHISi-I, carrying four tandemly repeated copies of the putative binding site, was linearis with <i>Xho I</i> restriction endonuclease at a unique site loca within the <i>HIS3</i> gene before integration by homologous recombination into the mutated <i>HIS3</i> gene locus of yeast strain YM4271 (used as the host)	
FIGURE 6B.	A diagrammatic representation of the integration of the reporter plasmid into the yeast genome to produce a reporter strain carrying a normal copy of the <i>HIS3</i> gene	86
FIGURE 6C.	A diagrammatic representation of the yeast AD cloning vector	87
FIGURE 6D.	A Diagrammatic representation of the activation of transcription following transformation of a cDNA/AD fusion library in the yeast reporter strain	88
FIGURE 7.	Diagrammatic representation of the recombinant plasmid pEX1 containing the promoter region and segment (including exon 1) of the mouse myelin basic protein gene	98
FIGURE 8.	Analysis by agarose gel (1%) electrophoresis of the restriction endonuclease digestion products of the plasmid pEX1 with <i>Hind III and Sac I</i>	100

FIGURE 9.	Analysis by agarose gel (1%) electrophoresis of the 1.4 kb fragment containing the promoter region and segment of the mouse myelin basic protein gene after isolation and purification from the plasmid pEX1	102
FIGURE 10.	Selection of putative recombinant clones carrying the promoter region and segment (including exon 1) of the <i>MBP</i> gene using a selective medium containing the <i>E. coli lac</i> operon inducer IPTG and the chromogenic substrate X-gal	105
FIGURE 11.	Analysis by agarose gel (1%) electrophoresis of plasmid DNA isolated from putative recombinant clones carrying the promoter region of the mouse myelin basic protein gene	107
FIGURE 12.	Analysis of the putative clones carrying the <i>MBP</i> gene promoter following digestion with a combination of <i>Hind III</i> and <i>Sac I</i> restriction endonucleases by agarose gel (1%) electrophoresis	109
FIGURE 13.	An autoradiogram showing the sequence of the <i>MBP</i> gene promoter located between nucleotides –832 and –740	113
FIGURE 14.	An autoradiogram showing the DNA sequence of the <i>MBP</i> gene promoter located between nucleotides –1319 and –1244	114
FIGURE 15.	An autoradiogram showing the DNA sequence of the <i>MBP</i> gene promoter located between nucleotides –712 and –666	115
FIGURE 16.	Analysis by non-denaturing polyacrylamide gel (15%) electrophoresis of the products of annealing of the strands containing a putative transcription factor binding site	136
	Gel retardation and competition binding assay analysis of protein binding to region located between nucleotides -609 to -577 of the mouse <i>MBP</i> gene promoter	139
FIGURE 18.	Analysis of proteins binding to the <i>MBP</i> gene promoter (between nucleotides –609 to –577) by EMSA and competition binding assay followed by non-denaturing polyacrylamide gel (7%) electrophoresis	140

FIGURE IS	binding assay analysis of proteins binding to the region of the <i>MBP</i> gene promoter located between nucleotides –609 to –577	141
FIGURE 20	 Analysis of proteins binding to the –609 to –577 region of the MBP gene promoter by binding and competition binding assay followed by non-denaturing polyacrylamid gel (7%) electrophoresis 	le 142
FIGURE 21	. Gel retardation and competition binding assay analysis of protein complexes binding to the region –609 to –577 of the <i>MBP</i> gene promoter after non-denaturing polyacrylamide gel (7%) electrophoresis	7 143
FIGURE 22	2. Screening of bacterial colonies by PCR and agarose gel (2%) electrophoresis following transformation into <i>E.coli</i> strain DH5α of the ligation product pHISi-1 containing the putative binding site	146
FIGURE 23	 Analysis by agarose gel (1%) electrophoresis of the reporter plasmid carrying four repeat copies of the putative binding site after large-scale plasmid DNA isolation 	149
FIGURE 24	Confirmation that the reporter plasmid carries the putative binding site	150
FIGURE 25	 An autoradiogram of the manual sequencing results confirming the presence of the putative binding site in the reporter plasmid 	152
FIGURE 26	The automated sequencing results corresponding to the 'sense' strand of the reporter plasmid confirming the presence of the putative protein binding site in the reporter plasmid	153
FIGURE 27	. Automated sequencing results of the complementary strand of the reporter plasmid confirming the presence of the putative binding site	154
FIGURE 28	Analysis by agarose gel (1%) electrophoresis of the linearised reporter plasmid and positive control DNA before transformation into Saccharomyces cerevisiae YM4271 host cells	156
FIGURE 29	A. Putative clones growing on selective medium following transformation of yeast strain YM4271 with the (5.76 kb) replicating plasmid YEpmyc 181	158

	. Putative recombinant clones growing on selective medium after transformation of yeast strain YM4271 with Xho 1 linearised and circular p53HIS DNA	158
FIGURE 30.	Analysis by agarose gel electrophoresis of genomic and PCR amplified DNA from the putative clones carrying the integrated consensus p53 binding site	161
	Putative clones growing on SD/-HIS medium following the transformation of yeast host strain YM4271 with the Xho 1 linearised 5.4 kb plasmid pHISi-1 (carrying four repeat copies of the putative binding site). Undigested reporter plasmid served as a negative control	165
FIGURE 32A	 Analysis by agarose gel electrophoresis of chromosome DNA isolated from the reporter strain clones carrying the putative binding site 	
	. Analysis by PCR followed by agarose gel (2%) electrophoresis of the reporter strain clones carrying the putative binding site	166
FIGURE 33A	Testing of reporter strain clones for background expression of the <i>HIS3</i> gene by growth on SD/-HIS medium containing 5mM 3 – AT.	169
FIGURE 33B	Testing of reporter strain clones for background expression of the <i>HIS3</i> gene by growth on SD/-HIS medium containing 10mM 3 – AT.	169
FIGURE 33C	. Testing of reporter strain clones for background expression of the <i>HIS3</i> gene by growth on SD/-HIS medium containing 15mM 3 – AT.	170
FIGURE 33D	Testing of reporter strain clones for background expression of the <i>HIS3</i> gene by growth on SD/-HIS medium containing 30mM 3 – AT.	170
FIGURE 33E.	Testing of reporter strain clones for background expression of the <i>HIS3</i> gene by growth on SD/-HIS medium containing 45mM 3 – AT.	171
FIGURE 33F.	Testing of reporter strain clones for background expression of the <i>HIS3</i> gene by growth on SD/-HIS medium containing 60mM 3 – AT.	171

FIGURE 34. Putative clones resulting from the transformation of the reporter strain with a cDNA/AD library plasmid growing on SD/-HIS/-LEU agar containing 30 mM 3-aminotriazole	174
FIGURE 35. Analysis of the plasmid DNA isolation from the putative positive clones transformed with an cDNA/AD fusion library from rat brain by agarose gel (1%) electrophoresis	175
electiophoresis	175
FIGURE 36. Analysis by agarose gel (2%) electrophoresis of the library clones following amplification by PCR	177
FIGURE 37A. Sequencing results of the plasmid DNA from the position cDNA/AD fusion library clone 1	tive 178
FIGURE 37B. Sequencing results of the plasmid DNA from the position cDNA/AD fusion library clone 2	tive 179
FIGURE 37C. Sequencing results of the plasmid DNA from the posicDNA/AD fusion library clone 3	tive 179
FIGURE 37D. Sequencing results of the plasmid DNA from the posicDNA/AD fusion library clone 4	tive 180
FIGURE 37E. Sequencing results of the plasmid DNA from the position cDNA/AD fusion library clone 5	tive 181
FIGURE 37F. Sequencing results of the plasmid DNA from the posit cDNA/AD fusion library clone 6	ive 181
FIGURE 37G. Sequencing results of the plasmid DNA from the posi cDNA/AD fusion library clone 7	tive 182
FIGURE 38. Characteristics of an enhancer element activating a promoter	222
FIGURE 39. The structure of a fully protected amidite	271
FIGURE 40. The complete synthesis cycle	272
FIGURE 41. The detritylation reaction	274
FIGURE 42. Map and multiple cloning site of the plasmid pBluescript	279
FIGURE 43. MAP of pHISi-I and multiple cloning site.	280
FIGURE 44. Sequence of plasmid pHISi-I	288

FIGURE 45.	Map of autonomously replicating plasmid YEpmyc181	289
FIGURE 46.	Sequence of the cDNA/AD fusion library plasmid pGAD10	293
FIGURE 47.	Standard curve to determine the concentration of protein ($\mu g/\mu l$) in nuclear extracts	296

LIST OF TABLES

	F	Page
TABLE 1:	Components of the PCR master mix	80
TABLE 2:	The sequences of the oligonucleotide primers synthesised for determining the sequence of the <i>Hind III – Sac I</i> fragment of the mouse myelin basic protein gene promoter	112
TABLE 3:	The most important features identified in the sequence of the 1.4 kb <i>Hind III – Sac I</i> Fragment of the mouse MBP promoter region and 5' segment (including exon 1)	125
TABLE 4.	Gtx binding sites located within the MBP and PLP Promoter regions	226
TABLE 5.	Data obtained for the preparation of a standard curve to determine the protein concentration ($\mu g/\mu l$) of the nuclear extracts used in the EMSA and competition binding assays	295
TABLE 6.	The concentration ($\mu g/ml$) of protein in the nuclear extracts determined from the graph shown in figure 47	297

LIST OF ABBREVIATIONS

AIX plates Ampicillin / IPTG / X-gal plates

3 – AT 3 – aminotriazole

ATP Adenosine triphosphate

cDNA Complementary DNA

CNP 2',3'-Cyclic nucleotide 3'-phosphodiesterase

Et-Br Ethidium Bromide

EMSA Electrophoretic mobility shift assay

GC Galactosyl cerebroside

IPTG isopropyl - β - D - thiogalactoside

kb Kilobase

kDa KiloDaltons

MEBA Myelinating glia-enriched DNA binding activity

MRF-1 Myelin regulation factor-1

η Refractive index

ND-GE Non-denaturing gel electrophoresis

NFI Nuclear factor-1

nt Nucleotide(s)

PAGE Polyacrylamide Gel Electrophoresis

PCR Polymerase chain reaction

PLP Proteolipid protein

SD Synthetic Dropout

SDS Sodium Dodecyl Sulphate

TBE Tris Borate EDTA

TEMED N,N,N',N' - Tetramethylethylenediamine

TRE Thyroid hormone response element

U Units (enzyme activity)

X-Gal $5 - bromo - 4 - chloro - 3 - indolyl - \beta - D - galactoside$

COURSES, CONFERENCES AND RELEVANT EXPERIENCE

Teaching Experience and Responsibilities:

Undergraduate Teaching:

Lecturing on DNA sequencing to final year students.

Practical demonstrations on PCR, oligonucleotide synthesis and DNA sequencing to 2nd and final year students.

Co-supervision of HND and final year B.Sc students undertaking projects in the field of Molecular Biology.

Postgraduate Teaching:

An annual lecture on DNA sequencing to students on the M.Sc Pathological Sciences Course.

Co-supervision of MSc students undertaking research projects in the field of Molecular Biotechnology.

Short Courses:

Lecturing and practical demonstrations on DNA sequencing, oligonucleotide synthesis and PCR on short courses on DNA technology / PCR techniques, run by the Division of Biomedical Sciences for senior employees of L.E.P. Scientific, Knoll Pharmaceuticals and members of other academic and industrial institutions.

Research presentations:

Presentation of a research seminar on "Myelin Basic Proteins and their importance in Multiple Sclerosis and Alzheimer's Disease", to the academic and research staff at Sheffield Hallam University.

Presentation of a research seminar on my PhD work, "Protein factors and 5' flanking sequences involved in the expression of the mouse myelin basic protein gene", to the academic and research staff at Sheffield Hallam University.

Consultancy Work:

The successful running of an oligonucleotide synthesis service – the customer base includes, Sheffield Hallam University, Leeds University, Sheffield University and the Northern General Hospital, Sheffield

Courses and Conferences attended:

626th Meeting of the Biochemical Society (in particular the Education Group Workshop relating to Teaching Materials for Molecular Biology.)

Pharmacia DNA Sequencing Workshop (a one day workshop covering all the aspects of DNA sequencing).

Recombinant DNA Technology a refresher course.

Seminar on RT-PCR presented by Scientific Director Clontech Laboratories Inc.

Seminar on New Developments in DNA Sequencing presented by Associate Director United States Biochemical Corporation.

Seminar on expression systems with relevance to *Pichia pastoris* presented by R and D Systems.

Course on the Theory, Optimisation and Application of PCR presented by Perkin-Elmer/Applied Biosytems.

In-situ PCR one day workshop and practical session presented by Fraser Lewis and Perkin-Elmer/Applied Biosytems.

Chapter 1

Introduction

The principal role of the myelin sheath is to allow the faster transmission of the nerve impulse along the axons, which it surrounds, by acting as an insulator. The membrane of the myelinated axon expresses several physiologically active molecules that intervene directly in the transmission of the nervous impulse e.g. the voltage-sensitive sodium channels are responsible for the propagation of the action potential along the axon and are concentrated at the non-insulated axonal segments known as the nodes of Ranvier (Figure 1), and the fast and slow potassium channels responsible for various secondary electrophysiological activities involved in the recovery to resting-state conditions following the passage of the action potential (nerve impulse) (Waxman and Ritchie, 1993; Salzer, 1997). The myelin sheath, through its electrical resistance and low capacitance, allows the depolarisation of the internodal axonal membrane with a minimal consumption of energy (Sutcliffe, 1987). Due to the segmental nature of the electrically insulating myelin membrane, the action potential appears to jump from one node of Ranvier to the next: hence the term 'saltatory conduction'. By imposing a saltatory conduction on the nerve impulse, myelin not only allows an increased speed of conduction, it also saves energy and space, e.g. in order to achieve an equal conduction velocity, an unmyelinated axon would need to have a 40 times greater diameter than a myelinated one and would consume 5000 times more

energy (Garbay et al., 2000). The myelin sheath is produced in the central nervous system (CNS) by oligodendrocytes and in the peripheral nervous system (PNS) by Schwann cells. At the outset it consists of loosely spirally wrapped extensions of the oligodendrocyte or Schwann cell plasma membrane. During maturation of myelin, compaction at both the apposed cytoplasmic and extracellular membrane surfaces occurs to form the tight multilamellar structure characteristic of myelin (Lemke, 1986). This compacted, spirally wrapped multilayer membrane system consists of approximately 80% complex lipids and cholesterol, and 20 % protein (Streicher and Stoffel, 1989). The decision to myelinate is critical both for the functioning of the nervous system and for the physiology of the sheath cell. For the cell, the formation of myelin entails a radical reorganisation of both morphology and metabolism, the most obvious being the massive increase in plasma membrane biosynthesis and surface area, and in the induction and high-level expression of a set of genes and proteins unique to the myelinating glia (Lees and Brostoff, 1984).

Myelination is a major event in the development of the nervous system of higher animals. In the central nervous system of rats and mice it occurs postnatally and follows a period of rapid proliferation of oligodendroglial cells. Myelination generally proceeds from the top of the spinal column and the base of the brain towards the frontal areas of the brain.

Myelinated Axon

mm (20 nsac)

110004im

Unmyelinated Axon

Density of voltage-sensitive Na+ "s*. channels

Figure 1. A diagrammatic representation of nerve conduction in a myelinated and unmyelinated axon.

KEY:

- 1. The arrival of an action potential in the form of a wave sodium ions.
- 2 and 4. Entry of sodium ions by the activation of sodium channels.
- 3. The passive diffusion of the wave of sodium ions along the axon following the concentration gradient.

(After Garbay et al., 2000)

In the myelin of the central nervous system the major proteins are the basic proteins and the proteolipid protein (representing 70 - 80% of the protein content of the membrane). The proteolipid protein plays both a structural role in the association of apposed extracellular myelin membrane surfaces, and functions as an ionophore. Both the myelin basic protein and the proteolipid protein consist of multiple polypeptide chains derived through alternative splicing of single genes (deFerra *et al.* 1985). Less abundant CNS proteins include myelin – associated glycoprotein (MAG) and 2', 3' – cyclicnucleotide 3'-phosphodiesterase (CNP). Schwann cells form the myelin of the peripheral nervous system; with the major proteins being P₀ glycoprotein and myelin – associated glycoprotein (MAG) (Campagnoni, 1988).

P_o is an integral membrane glycoprotein serving as a bi-functional structural element linking adjacent lamellae and therefore stabilising the myelin assembly. The myelin-associated glycoprotein has been localised to the periaxonal regions and is involved in the association of the myelin membrane with the axon, with its structure related to a cell adhesion molecule (Salzer *et al.*, 1987).

The myelin basic proteins (MBPs) represent a family of structurally related proteins, varying in molecular mass from 14 to 21.5 kDa (deFerra et al., 1985, Newman et al., 1987a; 1987b). The mouse myelin basic protein isoforms are referred to by their apparent molecular weights on SDS polyacrylamide gels or by their masses obtained through cDNA or protein sequencing studies. There are four isoforms in humans (Kamholz et al., 1986, Roth et al., 1986, Roth et al., 1987).

The myelin basic proteins are hydrophilic extrinsic membrane proteins with isoelectric points greater than 10.6 (more basic than the histones), which have been localised to the major dense line of myelin that is formed by apposition of the cytoplasmic surfaces of the extruded oligodendroglial plasma cell membrane during myelinogenesis (Morell *et al.*, 1994). Unlike the proteolipid proteins, which are believed to be transmembrane proteins traversing the unit bilayer, the myelin basic proteins appear to remain associated with the cytoplasmic side of the unit bilayer. The myelin basic proteins undergo a number of post-translational modifications, including *N*-terminal acetylation, phosphorylation and methylation. Evidence suggests that methylation of the myelin basic protein may be important for the compaction of the membrane during myelin maturation (Amur *et al.*, 1986, Kim *et al.*, 1997).

1.1. Myelin Basic Protein gene structure

Cell-free translation of rat and mouse brain mRNA indicated that the major isoforms of the myelin basic proteins were encoded by separate MBP mRNAs (Yu and Campagnoni, 1982 and Colman et al., 1982) and this understandably led to investigations into whether or not more than one gene codes for the multiple myelin basic protein isoforms. Southern blot analysis showed the presence of only a single gene in the mouse and the human, suggesting these isoforms, which are homologous over most of their sequences, are produced from a single primary MBP transcript through alternative patterns of RNA splicing (Takahashi et al., 1985 and deFerra et

al., 1985). In situ hybridisation and somatic cell hybridisation studies have mapped the gene to the distal end of chromosome 18 in both the mouse (Roach et al., 1985) and the human (Saxe et al., 1985 and Sparkes et al., 1987).

The mouse *MBP* gene is large and part of a complex genetic locus, termed the *golli-mbp* locus, (Figure 2). The term *golli-mbp* signifies the fact that most of the products of the gene are expressed in the o/igodendrocyte *lineage* in the brain as myelin *basic* proteins. Structural analysis has shown this locus to be conserved among most species (Pribyl *etal.*, 1993). The murine *golli-mbp* is distributed over a length of 215 kb and comprises 11 exons, with exons 5b - 11 encoding the myelin basic proteins. The human locus is smaller (179 kb) with 10 exons. The exons are interrupted by introns some of which are quite long (Takahashi *etal.*, 1985 and deFerra *etal.*, 1985).

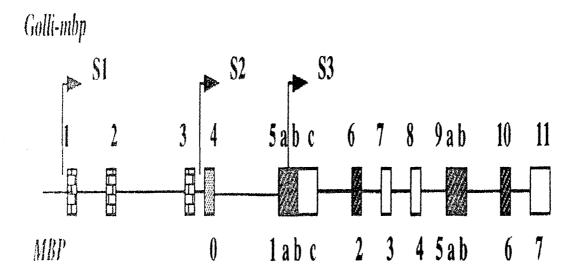


Figure 2. A diagrammatic representation of the mouse *MBP* gene and its relationship to the *golli-mbp* gene.

Exons 1 to 11 represent the *golli-mbp* gene (marked above the horizontal line representing the introns).

MBP represents the 'classical' *MBP* gene comprising exons 0 to 7 (marked below the horizontal line representing the introns).

Boxes indicating the exons are interrupted by introns indicated by the solid lines. Window-type boxes represent exons unique to *golli-mbp* transcripts. The stippled box represents an embryonic exon; transcripts containing this exon are initiated at the S2 site. Cross-striped boxes represent the exons shared by 'classical' MBP isoforms.

S1 represents the transcriptional start site of the *golli-mbp* gene transcripts. S2 corresponds to the transcriptional start site for embryonic *MBP* gene transcripts.

S3 represents the transcriptional initiation site of the 'classical' *MBP* gene transcripts.

Alternative splicing of the primary transcripts results in a diversity of gollimbp and MBP isoforms.

(After Asipu and Blair, 1997).

The MBP mRNA coding unit of the *golli-mbp* gene spans 32 kb. Exon 5a is a region of high transcriptional complexity, functioning as a promoter for the transcription of the MBP gene. Exon 5a is also the site for the alternative splicing of several of the *golli-mbp* transcripts. Not unexpectedly, this region is highly conserved among sharks, mice and humans (Fors *et al.*, 1993). Several laboratories have isolated cDNAs of mRNAs encoding a wider variety of MBP isoforms than had at first been anticipated, (deFerra et al., 1985, Kamholz *et al.*, 1986, Roth *et al.*, 1986, Roth *et al.*, 1987, Newman *et* al., 1987a, Kitamura et al., 1990, Aruga et al., 1991, Nakajima et al., 1993) for example, cDNAs of mRNAs encoding twelve forms of the mouse MBP have now been isolated. These cDNAs are derived from mRNAs that arise through the alternative splicing of the second, fifth and sixth exons of the 'classical' MBP gene primary transcript. The relationship between their molecular masses and exon usage is outlined as follows: the 14 kDa isoform contains exons 1b, 3, 4, 5b and 7, the 17 kDa – 1 isoform utilises exons 1b, 2, 3, 4, 5b and 7, the 17 kDa – 2 isoform utilises exons 1b, 3, 4, 6, and 7, the 18.5 kDa isoform contains exons 1b, 3, 4, 5b 6 and 7, and the 21.5 kDa isoform contains all 7 exons (Figure 3). Immunoblot studies have indicated the existence of additional minor myelin basic proteins such as a 13 kDa form (containing exons 1b, 3, 4 and 7), a 15 kDa form (utilising exons 1b, 2, 3, 4, and 7) and a 20 kDa form (containing exons 1b, 2, 3, 4, 6 and 7) in the mouse CNS, although it has been suggested that these two isoforms are predominantly embryonic (Nakajima et al., 1993). It is also possible that the minor MBPs are posttranslationally modified molecules or degradation products. Other data suggest that there may be even more alternatively

spliced forms of MBP mRNAs than have been reported. For example in a study carried out by Aruga *et al.* (1991) two myelin basic protein mRNAs were identified that had a novel internal exon (5a) that could putatively encode a 19.7 kDa and a 21 kDa myelin basic protein utilising exons 1b, 2, 3, 4, 5a, 5b and7 and exons 1b, 3, 4, 5a, 5b, 6 and 7 respectively. Exon 5a encodes 22 amino acid residues, which contain six valines, and forms a hydrophobic domain; therefore, the 21 kDa myelin basic protein (including exon 5a) might form a similar structure to that of the 18.5 kDa MBP. Kitamura et al., (1990) also identified an isoform utilising exons 0, 1a, 1b, 3, 4, 5, and 7, which encodes a 14 kDa myelin basic protein.

Complementary DNAs have been isolated that encode two different 17 kDa MBP isoforms that are so close in molecular mass that the corresponding proteins would be indistinguishable by SDS polyacrylamide gel electrophoresis. However, from the abundance of the two 17 kDa MBP cDNA clones in a cDNA library, it appears that one of the isoforms is present in greater abundance than the other at 18 days of postnatal development. Of five cDNA clones encoding a 17 kDa mouse MBP isolated in one study one was missing exons 2 and 5 and four were missing exon 6 (Newman *et al.*, 1987a).

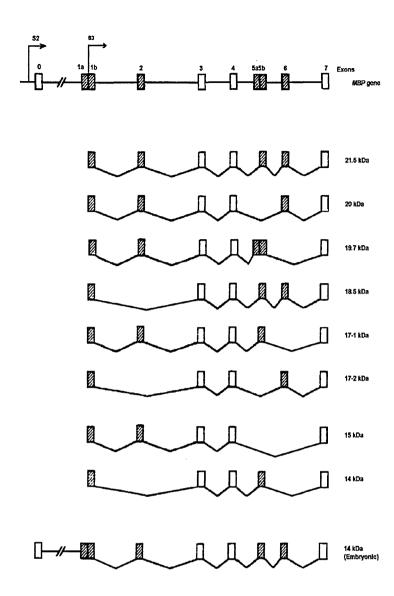


Figure 3. MBP gene and transcript structures.

The alternatively excised exons are shaded.

S2 corresponds to the transcriptional start site for embryonic *MBP* gene transcripts.

S3 represents the transcriptional initiation site of the 'classical' *MBP* gene transcripts.

(After Zelenika et al., 1993).

The sizes of the exons are exaggerated and are not necessarily proportional.

All the MBP mRNA structures published to date contain a relatively short 5' untranslated region (<48 nucleotides) and a very long 3' untranslated region (>1 kb). On Northern blots, the 'classical' MBP mRNAs migrate as a broad band of approximately 2.0 to 2.4 kb, presumably reflecting the heterogeneity of the MBP mRNA population. There are two polyadenylation signals near the 3' end of both mouse and human MBP mRNAs. In addition, there is a second AUG codon in the 5' untranslated region 5 bases upstream of the initiator codon, which is immediately followed by a termination codon. This structural feature has been postulated to explain the poorer translation initiation efficiencies exhibited by MBP mRNAs relative to brain mRNAs as a whole (Campagnoni *et al.*, 1987).

1.2. Myelin Basic Protein gene transcription

1.2.1.**Transcriptional control of gene expression**

The first step in gene expression is RNA synthesis (which takes place in the nucleus). RNA polymerase II catalyses transcription of mRNA from the 5' to the 3' direction and uses the non-coding (antiparallel) strand of DNA as a template. Transcription can be divided into three stages, initiation, elongation and termination. In order for a gene to be expressed it must be placed under the control of a promoter. Promoters are relatively short sequence elements usually located in the immediate upstream region of the gene, relative to the transcription start site, and serve to initiate transcription

i.e. the site at which RNA polymerase initially binds to the DNA. Initiation of transcription requires the binding of protein factors (*trans*-acting transcription factors) to *cis*-acting regulatory nucleic acid sequences.

The structure of a typical eukaryotic promoter comprising up to four distinct transcriptional control regions, the core promoter, upstream promoter elements, regulatory elements and enhancer elements is shown schematically in Figure 4.

RNA polymerase II is responsible for transcribing the genes encoding polypeptides and certain species of snRNA genes (important for splicing). RNA polymerase II is dependent on general transcription factors such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. In promoters containing a TATA box TFIID binds to this element and protects a region from -35 to -19 bases upstream of the transcription start site. The binding of TFIID to the TATA box is the earliest step in the formation of a stable transcriptional complex, such binding being facilitated by TIIFA. TFIIA may also play a role in the response to transcriptional activators, acting as a co-activator molecule linking DNA-bound activators and the basal transcriptional complex. TFIIB joins the complex by binding to TFIID. This binding of TFIIB is an essential step in initiation complex formation since TFIIB can also bind to RNA polymerase II; hence, it acts as a bridging factor allowing the recruitment of RNA polymerase to the complex in association with TFIIF. Following the binding of RNA polymerase II, three other transcription factors (TFIIE, TFIIH and TFIIJ) associate with the complex. At this point TFIIH, which has DNA helicase activity, unwinds the double-stranded DNA allowing it to be copied into RNA. Subsequently, the kinase activity of TFIIH

it to the phosphorylated form, which is capable of transcriptional elongation to produce the RNA product. This complex of polymerase and general transcription factors is known as the basal transcriptional complex, therefore, TFIIH via its helicase and kinase activities plays a crucial role in allowing the basal transcriptional complex to initiate transcription. Genes are constitutively expressed at a minimum rate determined by the core promoter, unless altered by additional positive or negative regulatory elements. Core promoter elements are usually located close to the transcription initiation site, from nucleotide positions -40 to +40, and include elements such as the TATA box (consensus sequence <u>TATA(A/T)</u>A(A/T) located at approximately position –25). If a promoter does not contain a TATA box (e.g. housekeeping genes) an order of bases in the region covering the start site is recognised by the transcriptional machinery as the transcription initiator region. Upstream promoter elements are typically located from nucleotide positions -50 to -200 relative to the transcription start site, and include multiple recognition sites for some sequence-specific ubiquitous transcription factors e.g. GC or Sp1 boxes (consensus sequence GGGCGG) and CCAAT boxes (consensus sequence GGCCAATCT typically located at nucleotide position -75 and recognised by the protein factor CTF or NF-1). GC and CCAAT boxes serve to up-regulate basal transcription of the core promoter. Regulatory elements function to modulate transcription in response to

phosphorylates the C-terminal domain of RNA polymerase II, which converts

Regulatory elements function to modulate transcription in response to specific external stimuli (inducible gene expression) and are located upstream of the promoter usually within 1 kb of the transcription start site e.g. glucocorticoid response elements (GRE) or cyclic-AMP response

elements (CRE). Small hydrophobic hormones e.g. the steroid hormones diffuse through the plasma membrane of the target cell and bind to intracellular receptors in the cytoplasm or the nucleus. These receptors are inducible transcription factors. Following binding of the ligand, the receptor protein associates with a specific DNA response element e.g. the glucocorticoid response element (GRE) located in the promoter of the target gene and activates transcription. In the absence of the ligand, the receptor is inactivated by direct repression of the DNA-binding domain by the ligand-binding domain or by binding to an inhibitory protein as in the case of the glucocorticoid receptor.

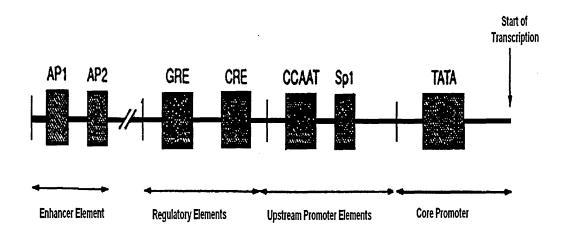


Figure 4. Schematic representation of a typical eukaryotic promoter showing distinctive transcriptional control elements.

(After Latchman, 1998)

The second messenger cyclic-AMP is synthesised from ATP by adenylate cyclase (a membrane bound enzyme). Binding of a hormone e.g. epinephrine to the cell surface receptor promotes the interaction of the receptor with a G protein. This results in the activation of the α subunit of the G protein causing it to dissociate and activate adenylate cyclase. The increase in intracellular cAMP activates the transcription of specific target sequences containing the cAMP response element (CRE). This function of cAMP is mediated by protein kinase A. Cyclic AMP binds to protein kinase A and activates it by releasing two catalytically active subunits which enter the nucleus and phosphorylate a specific transcription factor CREB (CREbinding protein). Activated CREB activates the transcription of genes with the cAMP response element.

Enhancers are positive regulatory elements serving to increase the basal level of transcription that is initiated through the core promoter irrespective of their position and orientation.

Some genes encoding polypeptides are housekeeping genes, however, a large percentage of genes transcribed by RNA polymerase II show tissue-specific expression patterns. Since the DNA in different nucleated cells of an individual is essentially identical, the identity of a cell is defined by the proteins made by the cell. Therefore, tissue-specific transcription factors regulate the expression of many genes that encode polypeptides by recognising and binding specific *cis*-acting sequence elements. Tissue-specificity and developmental-stage specificity of gene expression are frequently conferred by enhancer and silencer sequences

and a variety of *cis*-acting sequences have been identified which are specifically recognised by tissue-specific transcription factors. In addition to actively promoting tissue-specific transcription, some *cis*-acting silencer elements confer tissue or developmental stage specificity by blocking expression in all but the desired tissue e.g. the neural restrictive silencer element (NRSE) represses the expression of several genes in all tissues other then neural tissue (Schoenherr *et al.*, 1996). A transcription factor binding to NRSE and called the neural restrictive silencer factor (NRSF) or RE-1 silencing transcription factor (REST) is ubiquitously expressed in nonneural tissue and neuronal precursors during early development but specifically not expressed in postmitotic neurons.

Transcription factors recognise and bind to short nucleotide sequences generally as a result of very specific molecular recognition between the surface of the protein and surface features of the DNA double helix. In eukaryotic transcription factors two functional domains have been identified, one for DNA-binding and one for transcriptional activation, that retain their function when removed from their natural context. The DNA-binding domains of transcription factors fall into several conserved structural motifs e.g. helix-turn-helix, helix-loop-helix, zinc finger and basic DNA binding domain. Each of the motifs use α -helices (or occasionally β -sheets) to bind to the major groove of DNA. Transcription factors bind to DNA as either homodimers or heterodimers, with the DNA-binding region of the protein distinct from the region responsible for forming dimers. The activation domain functions in activating transcription of the target gene once the transcription factor has bound to the promoter.

Zinc finger proteins are so called because of their structure, in which an atom of zinc tetrahedrally coordinates the repeated cysteine and histidine (or four cysteine) residues that form the base of a loop of twelve amino acids containing conserved leucine and phenylalanine residues, as well as several basic amino acids. The zinc finger motifs have been shown to constitute the DNA-binding domain of the protein, with DNA-binding being dependent on their activity. Most notable among the zinc finger proteins are *Sp1* and the steroid receptor family.

The helix-turn-helix motif is a common motif found in homeoboxes and a number of other transcription factors. It consists of two short α -helices separated by a short amino acid sequence that induces the turn. It is thought that while the HTH motif in general mediates DNA binding, the more C-terminal helix acts as a specific recognition element fitting into the major groove of the DNA and controlling the precise DNA sequence that is recognised.

Leucine zipper proteins derive their name from a helical stretch of amino acids rich in leucine residues precisely seven amino acids apart. However, unlike the zinc finger or helix-turn-helix motifs the zipper itself is not the DNA-binding domain of the molecule and does not directly contact the DNA. Rather it facilitates DNA binding by an adjacent region of the molecule, which is rich in basic amino acids and can therefore interact directly with the DNA. The leucine zipper is believed to serve an indirect structural role in DNA binding, facilitating dimerisation, which in turn results in the correct positioning of the two basic DNA-binding domains in the dimeric molecule for DNA binding to occur. Hence the DNA-binding

specificity of the leucine zipper-containing transcription factors is determined by the sequence of their basic domain with the leucine zipper allowing dimerisation to occur. As expected with this notion, the basic DNA binding domain can interact with DNA in a sequence-specific manner in the absence of the leucine zipper, if it is first dimerised via an inter-molecular disulphide bridge. The helix-loop-helix (HLH) motif plays a similar role to the leucine zipper family allowing dimerisation of the transcription factor molecule (as either homodimers or heterodimers), and thereby facilitating DNA binding by the basic domain.

1.2.2. Tissue specific expression of the MBP gene

Non-typical TATA and CAAT boxes are present in the MBP promoter, located at positions –34 and –85 bp respectively and a non-typical GC box sequence has been identified at position –92 bp from the transcriptional initiation site at +1. The TATA box-like sequence is indispensable for the promoter function. Tamura *et al.*, (1988) suggested that the GC box functions co-operatively with upstream sequences including the myelin basic protein transcription element (MBTE) a *cis*-acting element located between nucleotide positions –130 to –106 relative to the transcription initiation site. The MBTE was crucial to direct maximal transcription, and also functioned with a heterologous promoter in a direction-dependent manner. Tamura *et al.*, (1988) identified a ubiquitous binding factor, which interacted specifically with the MBTE and activated transcription. Intensive footprinting studies (Tamura *et al.*, 1988) demonstrated that the MBTE had an NFI-binding

sequence. The MBTE was considered to be one of the strongest NFI-binding motifs among known cellular genes. Interestingly, similar strong NFI-binding motifs are present in the enhancer of JC virus whose genes are expressed, like the MBP gene in the nervous system.

By fusing segments from different regions of the 1.3 kb 5' flanking region to the chloramphenicol acetyltransferase (CAT) reporter gene it has been observed that the proximal regulatory sequence from -50 to -14 bp (which includes the TATA box-like sequence) constitutes the basal transcription element (Asipu and Blair, 1994; Devine-Beach et al., 1992, and Tamura et al., 1990). The myelin basic protein promoter also contains a number of DNA specific cis-acting elements, which interact with specific trans-acting factors (DNA binding proteins) present in both oligodendrocytes (OL) and Schwann cells (SC). The interactions of these factors, with each other and with the RNA polymerase II initiation complex, directly regulate the tissue-specific and developmental expression of MBP mRNA. Proof that specific DNA sequences within the MBP gene can support tissue-specific, developmentally regulated MBP gene expression has been demonstrated in vivo by the construction of transgenic mice carrying an MBP transgene. Kimura et al. (1989) used an MBP transgene consisting of 1.3 kb of the MBP 5' flanking sequence fused to an MBP cDNA encoding the 14 kDa MBP isoform to demonstrate that the transgene was expressed predominantly in the brain in a tissue-specific manner. Tamura et al. (1989) reported specific transcription from the MBP promoter in brain nuclear extracts. They also observed that there are no differences between mouse and rat brain nuclear extracts in specific transcription of the MBP gene. Tamura et al. (1989)

divided the MBP promoter into two domains referred to as the distal promoter from -253 to -54, and the proximal promoter from -53 to +60. The distal region was able to direct tissue-specific transcription when linked to the heterologous adenovirus type 2 major late core promoter, suggesting that the distal region contains some tissue-specific cis-acting elements and that the brain is rich in the cognate trans-acting factors. The MBP distal promoter region appears to function in a direction-dependent manner. Only a native orientation of the distal region linked to the major late core promoter or the MBP proximal promoter can enhance transcription in brain-derived nuclear extracts. Cooperative interaction of transcription factors in the distal and proximal regions may be required for tissue specific transcription. Alternatively, inhibitory sequences in an upper part of the distal region may contribute to the different profiles of transcription activation. Transcriptional inhibitory sequences associated with the distal region may be dominant in non-expressing tissues. Wrabetz et al. (1993) transfected primary cultures of both oligodendrocytes and Schwann cells, as well as a number of cell lines not expressing MBP, with a series of human MBP promoter-CAT reporter gene constructs and monitored CAT activity as a measure of MBP promoter activity. They demonstrated in both OL and SC that the 150 bp region upstream of the MBP cap site is enough to promote CAT expression in a cell type-specific manner, and that this expression is mediated by multiple positive and negative acting modules. Wrabetz et al. (1993) also confirms the results of Tamura et al. (1989) that the MBP distal promoter region functions in an orientation-dependent manner. These transfection studies suggested that there are cell type-specific trans-acting factors present in

both OL and SC that interact with specific DNA sequences within the first 150 bp of the MBP promoter region to increase MBP transcription thereby contributing to the tissue-specific developmentally regulated expression of MBP. Work carried out by Asipu and Blair (1994 and 1998) showed that celltype specific transcription of the MBP gene in primary oligodendrocytes (OL) and Schwann cells (SC) is regulated by cis-acting regulatory elements both upstream and downstream of the TATA-like box region of the MBP promoter. The cell-type specific regulatory elements were defined using constructs containing varying lengths of the 5' flanking region and exon 1 of the MBP gene linked to the CAT reporter gene followed by transfection into several cell types e.g. primary cultures of differentiated OL, SC, and neuronal and non-neuronal cell lines. Several upstream cis-acting regulatory elements were identified, with sequences located between nt -655 to -397 (including the region between nt -609 to -577 studied in this project) and nt -394 to -54 showing enhancer and repressor effects respectively in oligodendrocytes. Whereas, in Schwann cells the sequence located between nt –394 to –253 showed a positive regulatory effect whilst those between nt -655 to -397 and -253 to -54 showed negative regulatory effects. Downstream cis-acting regulatory elements were identified between nt positions +20 to +70 and +70 to +200 showing strong silencer and enhancer activities respectively, specifically in oligodendrocytes (Asipu and Blair 1994). The expression of MBP is therefore controlled by basal positive regulatory elements which function in different cell types, but both positive and negative regulatory elements located on either side of the basal promoter play an essential role in regulating the transcription of MBP in

myelin-forming oligodendrocytes (Asipu and Blair 1994). To identify the celltype specific factors binding to the downstream (relative to the transcription initiation site) regulatory elements in more detail Asipu and Blair used DNase I footprinting analysis and gel retardation assays (EMSA). Two regions from nt -17 to +17 and +47 to +58 were protected specifically in oligodendrocytes whereas three regions nt +17 to +22, +43 to +49 and +58 to +64 were protected only with C6 nuclear extracts. Analysis of the protected regions for homology with known transcription factor binding sites showed the sequence between +47 to +58 and +56 to +68 had extensive homology to the negative regulatory element of the mouse rennin gene and to the interferon (IFN) consensus sequence of the MHC class I genes respectively. Several other trans-acting factors have been identified binding to the cis-acting regulatory elements (both upstream and downstream of the TATA-like box region of the MBP promoter) and these include: the thyroid hormone α -receptor (TR α) at nt –209 to –169 (Farsetti et al. 1992 and Asipu and Blair 1997), the M1 factor from mouse brain and rat liver extracts at nt -110 to -97 (Aoyama et. al. 1990), the Ets-consensus sequence at nt +31 to +39 (Farsetti et al. 1992), the viral (adenovirus, polyoma) enhancer sequences and the human β-interferon regulatory element between nt +41 to +48 (Goodbourn et al. 1986). Other regulatory sequences have been identified which show homology to previously identified prokaryotic and eukaryotic transcription factor binding sites e.g. the PEA3-consensus site (AGGAGG) at nt position –283, the *E coli* MalT binding site and the PER3 site of the mouse peripherin promoter at nt -216 (Desmaris et al. 1992) and the AP1 transcription factor binding site at nt -93.

The *golli-mbp* gene has multiple promoters; as a result the developing brain appears to make use of these multiple promoters to control the transcriptional initiation site, to confer tissue-specific and developmentally regulated expression of the MBP gene. Expression initiated by one promoter also appears to regulate the expression from a different promoter (Schibler and Sierra, 1987). The promoter controlling the transcriptional initiation site S3 (Figure 2) located between *golli-mbp* exons 5a and 5b is active in the brain during myelination. Evidence currently available from studies in mice suggest the *golli-mbp* gene is transcribed into at least three primary transcripts (Campagnoni et al., 1993), with each primary transcript undergoing alternative splicing resulting in three sets of mRNA transcripts. Each transcript is of a different length and also differs in spatial and temporal expression. For example, the G₁ primary transcript undergoes alternative splicing of *golli-mbp* exons G5a, 5b, 6, 9 and 10 with the resulting transcripts covering the size range 2.3 to 5.1 kb. These mRNA transcripts are generally expressed from the embryonic to the neonatal period. The 5.1 kb mRNA transcript is expressed from the embryonic state to the early post-natal period. The 2.3 to 2.6 kb mRNA isoforms are expressed post-natally and then follow the developmental profile of the 5.1 kb mRNA. Expression of these mRNA transcripts is not solely confined to the brain but they are also expressed in several other tissues including the bone marrow, thymus, spleen, heart, kidney and lung. It is thought that in the case of myelin basic protein gene transcription, inhibition may be relieved at the onset of myelination when a specific trans-acting factor(s) is activated from the S3 initiation site.

1.3. Developmental changes in Myelin Basic Protein expression

With development, myelin isolated from the brains of mice and rats is increasingly enriched in the major myelin proteins relative to the higher molecular weight polypeptides. In addition it has been consistently noted that the 14: 18.5 kDa ratio of MBP isoforms increased considerably with age (Campagnoni and Macklin, 1988). No clear consensus has emerged with respect to changes in the ratio of proteolipid proteins to basic proteins with development (Campagnoni and Macklin, 1988).

Developmental studies on the expression of myelin proteins in whole brain have largely fallen into two categories:

- (a) those measuring changes in the myelin proteins either through biochemical isolation of the protein or immunoblot analysis;
- (b) those measuring synthesis of the myelin proteins in vivo or in vitro (i.e. cell-free synthesis) or by titering the mRNAs with cDNA probes.

 Clearly all these techniques reveal important information generally related to the expression of the myelin genes, but individual techniques measure different aspects of expression.

Investigators have used different criteria to define the order of expression of the myelin proteins. Some workers have attempted to rely on the earliest age at which a protein could be detected to determine its order of expression, however, differences in the sensitivities of the antibodies, or the specific activities of cDNA probes could lead to misleading results. Another complication is the finding that alternative splicing mechanisms may generate related but not identical mRNAs containing common sequences but

encoding different proteins. Therefore, early detection of mRNAs hybridising to myelin protein cDNAs may be detecting structurally related but not identical mRNAs. The same problems exist with antibodies that might react with related but separate proteins.

The extent of the multiplicity of the MBP isoforms was not fully appreciated until immunochemical and recombinant DNA approaches were used to study the problem. In the late 1970s, immunochemical techniques revealed the presence of four major mouse MBPs with apparent molecular masses of 14, 17, 18.5 and 21.5 kDa (Barbarese *et al.*, 1977). Subsequent work using immunoblots of the whole brain to measure the different MBP isoforms, and cell-free synthesis of brain mRNA to measure the levels of individual MBP mRNAs indicated that each isoform exhibited its own developmental pattern of expression and accumulation (Carson *et al.*, 1983).

Sequence analysis has proved that the rat 14 kDa MBP was structurally similar to the 18.5 kDa bovine and human MBPs except for the deletion of a 40- amino acid sequence within the interior of the molecule. In retrospect, there was evidence for the presence of other MBP variants (Agrawal *et al.*, 1986, and Sorg *et al.*, 1986) but it was difficult to rule out the possibility that these were degradation products of genuine MBPs.

From studies carried out during the late 1980s other MBP isoforms have been identified for example, a second mouse 17 kDa MBP has been identified (Newman *et al.*, 1987a). This second 17 kDa MBP is apparently the only form present in humans (Kamholz *et al.*, 1986; Roth *et al.*, 1986; Roth *et al.*, 1986; Roth *et al.*, 1987 and Deibler *et al.*, 1986). A 20 kDa MBP has been identified in foetal human spinal cord, and immunoblots suggest it exists in

other species as well (Kerlero de Rosbo *et al.*, 1984) although it may be more prevalent in some regions of the CNS than others (Newman *et al.*, 1987b, Nakajima *et al.*, 1993). In rat brain, Agrawal *et al* (1986) have identified a 23 kDa phosphorylated protein that is immunologically related to MBP. Immunoblots of whole brain homogenate with both polyclonal (Carson *et al.*, 1983) and monoclonal (Bansal *et al.*, 1987) anti-myelin basic protein antibodies indicate the presence of higher molecular weight immunoreactive proteins. The structural relationship among all these proteins and the better-characterised MBP isoforms is not clear at the present time.

In the course of studying promoter activity in primary cultures of brain cells Nakajima *et al.* (1993) found that the myelin basic protein gene was expressed in brain cells obtained from embryonic mice at a very early stage of neural development, i.e., as early as embryonic day 12 (E12). The predominant myelin basic protein isoforms in the embryonic stage were identified as exon 5-deleted forms, and peaked during the late embryonic stage (days E15 to E18) and decreased to very low levels at postnatal day 18 (P18). The cell type producing the early embryonic myelin basic proteins (days E12 to E14) remains to be clarified. If, however, the myelin basic proteins are produced in cells of the same cell lineage as those producing in the later stage, there may be a group of cells that are committed to generate oligodendrocytes later and produce the MBPs. The existence of this type of committed cell at this early stage of development has been suggested by Luskin *et al.* (1988).

1.4. Sites of myelin protein synthesis and transport to the membrane

The majority of evidence favours the view that the myelin basic proteins are synthesised on free polysomes, (Campagnoni *et al.*, 1980, Campagnoni, 1985, Brophy *et al.*, 1993) and that the proteolipid proteins are synthesised on membrane bound ribosomes (Benjamins and Morell, 1987, Colman *et al.*, 1982). Neither the MBP nor the PLP are synthesised with "signal" (or "leader") sequences.

The subcellular trafficking pathway for MBP mRNA in the oligodendrocyte has been defined using micro-injection experiments (Ainger et al., 1993) and involves three discrete steps: (a) assembly of the RNA into granules in the perikaryon, (b) transport along cellular processes and (c) localisation to the myelin compartment. Ainger et al., (1997) have identified specific regions in the 3' untranslated region (UTR) of myelin basic protein mRNA that are required for the latter two steps. The first region is the RNA transport signal (RTS), which is a 21-nucleotide sequence that is required for transport of mRNA along oligodendrocyte processes. The second region is the RNA localisation regions (RLR) and is necessary for localisation of MBP mRNA to myelin. This region may be implicated in stabilising or anchoring MBP mRNA in the myelin compartment of the oligodendrocyte (Ainger et al., 1997). The presence of the RTS in oligodendrocyte process localised isoforms of myelin oligodendrocyte basic protein (MOBP) 18A RNA suggests the RTS functions to target the expression of other proteins, in addition to MBP, in oligodendrocytes (Holz et al., 1996). If the RTS

represents a cis-acting transport signal, which is conserved in different RNAs, it most probably interacts with a cognate trans-acting factor that is expressed in different cell types. In vitro binding experiments indicate that the RTS sequence specifically interacts with hnRNP A2, a member of a family of heterogeneous nuclear ribonucleoprotein (hnRNP) proteins that shuttle between the nucleus and cytoplasm (Hoek et al., 1998, Kwon et al., 1999, Shan et al., 2000). This suggests that hnRNP A2 binding to the RTS is required for the transport of RTS containing RNA in oligodendrocytes (Ainger et al., 1997). Localisation involves translocation from the oligodendrocyte processes to the myelin; this apparently involves dissociation from the transport apparatus in the processes and in the case of coding mRNAs association with the translational machinery in the myelin compartment. Translocation across the boundary between these two compartments is RLR dependent for coding RNA and RLR independent for non-coding RNA. A possible explanation for this could be that coding RNA associates with ribosomes, making translocation RLR dependent, while translocation of ribosome-free non-coding RNA is RLR independent (Bacher et al., 1996). The RNA localisation regions contain a predicted stable secondary structure at a conserved position in rat, mouse and human MBP mRNA (Ainger et al., 1997). Endogenous MBP RNA-containing granules in oligodendrocytes contain many components of the translational machinery, suggesting they also represent the unit of RNA translation. Therefore, the granule represents a common unit for transport, localisation and translation of RNA (Barbarese et al., 1995).

1.5. Translational and Post-Translational Events

Cell-free synthesis studies have shown that the myelin basic protein mRNAs are poorly initiated during translation relative to the other brain mRNAs as a whole, and this appears to be related to the presence of an additional translational initiation signal within the 5' untranslated region of the MBP mRNAs which is immediately followed by a termination signal (Campagnoni *et al.*, 1987a). The role of post-translational modification such as acylation, phosphorylation, methylation, glycosylation, acetylation, deamidation, and attachment of fatty acids has been shown to play a significant role in directing the function of various proteins. In CNS myelin basic protein, these post-translational modifications include: the methylation of a specific arginine residue, the phosphorylation of specific serine and threonine residues, the acylation of the N-terminal amino acid, the deamidation of a glutamine residue and the conversion of arginine residues to citrulline by the enzyme peptidyl arginine deiminase.

1.5.1. Methylation

Myelin basic protein has an unusual amino acid at residue-107, a mixture of N^G-monomethylarginine and N^G, N'^G-dimethylarginine. The formation of these methylarginine derivatives is catalysed by one of the protein methyltransferases, utilising S-adenosyl-L-methionine as the methyl donor. It is now apparent that each protein methyltransferase with a specificity towards any given amino acid residue can be further subclassified

according to the specific methyl acceptor protein (Kim et al., 1997). Protein methylase I is one such enzyme, however, it is only recently that unequivocal molecular evidence for the presence of subclasses of the enzyme e.g. MBP-specific and nuclear protein/histone-specific has been obtained (Ghosh et al., 1988, Rajpurohit et al., 1994). The N^Gmethylarginines occur in nature in a limited number of highly specialised proteins such as MBP, nuclear and contractile proteins. The reaction is very specific for the amino acid sequence around the methylation site, e.g. among 18 arginine residues in MBP, only the arginine at residue-107 (in the sequence Lys-Gly-Arg-Gly-Leu) is present as a mixture of MMeArg and Di(sym)MeArg. Park et al., (1986) demonstrated that the histone specific protein methylase I was incapable of methylating MBP and was inhibited by MBP. The activity of the MBP-specific methylase has been observed to be abnormal in both the *jimpy* and *shiverer* mouse mutants (Kim *et al.*, 1984, and Kim et al., 1986).

Multiple sclerosis is one of the demyelinating diseases in humans and as a result of this myelin basic protein is dissociated from the membrane.

MBP fragments formed by intracellular proteolysis and free amino acids find their way into the body fluids (Park *et al.*, 1986). Since methylarginines are not reutilised for *in vivo* protein synthesis, it would appear practicable to assess myelin abnormalities by analysing urinary concentrations of these methylarginines and MBP-like material in multiple sclerosis patients (Whitaker et al., 1993, 1994).

The specific location of methylarginine in MBP (residue-107), together with the chemical nature of hydrophobicity enhanced by methylation, has

been implicated in helping to stabilise the myelin structure (Park *et al.*, 1986). Cells treated with a methylation inhibitor e.g. sinefungin produced a membrane structure lacking compactness which resembled vitamin B₁₂-deficient myelin with a concomitant reduction in MBP-protein methylase I activity (Kim *et al.*, 1997).

It is of interest that the only methylated amino acid residue (residue107) in MBP identified to date lies within the region of the protein encoded
by exon 5. Therefore, presumably the 20 and the 17 kDa MBP (missing
exons 2 and 5) and present in the very early stages in the developing human
spinal cord, are incapable of being methylated.

1.5.2. Phosphorylation

Phosphorylation is a ubiquitous post-translational modification of proteins, which is particularly prominent in nervous tissue. Myelin has traditionally been regarded as metabolically inert with a wholly structural role. However, recent findings indicate it possesses biochemical components associated with signal transduction in which protein phosphorylation plays a significant part (Eichberg and Iyer, 1996). The myelin basic proteins possess multiple consensus sequences for phosphorylation by cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC). In fact MBP has been shown to be a substrate for Ca^{2+} -calmodulin-dependent protein kinase, glycogen synthase kinase-3 (known as protein kinase F_{Λ}) and mitogen associated protein (MAP) kinase (Yung, 1986, Yu and Yang, 1994, Hickson

et al., 1990). Variable phosphorylation is responsible in part for the charge microheterogeneity of myelin basic protein e.g. the phosphorylation of thr⁹⁷ in bovine MBP has been shown to increase conformational order for the protein in aqueous solution which is consistent with the stabilisation of the β-pleated sheet structure (Deibler et al., 1990). The dynamic state of the phosphate groups suggests that phosphorylated MBP would be concentrated in non-compacted areas of myelin with close proximity to the cytoplasm (Des Jardins and Morell, 1983).

The introduction of negative charges by phosphorylation of the major myelin proteins during deposition may create electrostatic repulsion between adjacent proteins or between proteins and neighbouring acidic lipids.

Phosphorylation of MBP may in part serve this purpose, a notion supported by the finding that protein phosphorylation activity is inversely proportional to the degree of myelin compaction (Deibler et al., 1990).

In mature myelin, it would be expected that the protein kinases would be concentrated in the regions of myelin closest to a supply of cytosolic ATP, i.e. the outer, inner and lateral loops in CNS myelin and the paranodal loops and Schmidt-Lanterman clefts in PNS myelin. This would suggest that the fraction of myelin protein molecules undergoing phosphorylation would be confined to a population resident in these regions, and that in the case of MBP and P₀, this proportion would be small. However, evidence suggests the turnover of phosphate groups in both these proteins occurs in compact myelin, suggesting that the myelin structure may be less rigid than generally assumed so that cytoplasmic components may gain at least limited access

throughout (Lowery et al., 1989, Ledeen, 1992). In fact, in mature myelin, the extent of protein phosphorylation may modulate the penetration of cytosolic constituents between myelin lamellae. An indication of a possible functional relationship between cell signalling mechanisms and myelin protein phosphorylation is provided by the finding that cultured oligodendrocytes subjected to hypoxic conditions show evidence of an 80% decrease in MBP and CNPase phosphorylation, as well as a failure of agonist stimulated PLC-mediated phosphinositide breakdown (Qi and Dawson, 1993). Nevertheless, the remaining phosphorylating ability retains its sensitivity to stimulation by phorbol esters, suggestive of PKC activity. Eichberg and Iyer (1996) therefore conclude that diminished MBP and CNPase phosphorylation may result from impaired signal transduction via heterotrimeric GTP binding proteins and as a result such a mechanism may contribute to the vulnerability of myelination to hypoxia.

1.5.3. **Deimination**

Deimination of myelin basic protein has been implicated in the chemical pathogenesis of multiple sclerosis. Degradation of bovine myelin basic protein by cathepsin D, a myelin-associated protease, was increased when 6 arginyl residues were deiminated and became even more rapid when all 18 arginyl residues were deiminated (Pritzker *et al.*, 2000). Myelin basic protein containing methylated arginine has been shown to increase the association of lipid vesicles into dimers, signifying that methylated arginine

may increase the interaction between MBP and the myelin lipids (Young et al., 1987). In subacute combined degeneration (SCD) of the spinal cord in humans, demyelination results from a deficiency in vitamin B₁₂, which decreases the amount of *S*-adenosyl-L-methionine (the major methyl donor) with a subsequent decrease in the methylation of MBP (Surtees, 1993). The conversion of arginine to citrulline by the enzyme peptidylarginine deiminase has been implicated in demyelination in multiple sclerosis (Moscarello *et al.*, 1994). In addition, the severity of MS has been correlated with the number of arginine residues converted to citrulline in MBP (Wood *et al.*, 1996). Pritzker *et al.*, (2000) show that human MBP isolated from normal and MS white matter contained greater amounts of citrulline in MBP in which the proportion of unmethylated arginine-107 was increased.

1.6. Myelin Protein Gene Expression in Cultured Cells

Myelin protein gene expression has been studied in a variety of cultured cell systems. Primary cultured oligodendrocytes differentiate to produce galactosyl ceramide (GC), CNP, MBP, PLP, and other myelin markers in the apparent absence of any neural signals, their differentiation process *in vitro* is somewhat more "plastic" than *in vivo*, and differences among studies may result from this plasticity. An important early element of this plasticity is whether the oligodendrocyte will differentiate from its progenitor cell. Raff *et al.*, (1983) reported the existence of a cell type in rat optic nerve primary cultures, which can differentiate into a type 2 astrocyte in

the presence of foetal calf serum or into an oligodendrocyte in defined media with no foetal calf serum. This oligodendrocyte progenitor cell appears to stop dividing and begin to differentiate into oligodendrocytes or type 2 astrocytes within 2 to 3 days in culture whereas *in vivo*, these progenitor cells continue to divide (Raff *et al.*, 1983 Temple and Raff, 1985).

From studies on mixed glial cultures, it has been possible to determine that the rat oligodendrocyte progenitor cells (by the late foetal period) are committed to express myelin markers two or three weeks later in culture. Neurons are not required to induce the synthesis of MBP, PLP, CNP, GC, or cerebroside sulphotransferase (M^cCarthy and deVellis, 1980; Pfeiffer et al., 1981b, Dubois-Delacq et al., 1986). During the early stages of myelination in vivo studies have shown that the 14 kDa MBP is expressed at lower levels than the 18.5 kDa MBP. With development, the ratio of the 14: 18.5 kDa MBP increases significantly until the 14 kDa isoform predominates. In contrast in culture the 14 kDa MBP is expressed first, and it remains the predominant isoform up to 39 days in culture. However, the other isoforms accumulate from 27 - 39 days in culture (Barbarese and Pfeiffer, 1981). Conflicting results have been reported on the timing of MBP expression in cultured rat oligodendrocytes (Pfeiffer et al., 1981b, Dubois-Delacq et al., 1986); however, a possible explanation for the differences may provide insight into the regulation of MBP expression.

Rat oligodendrocytes in mixed glial cultures express approximately

20-fold more MBP and CNP per oligodendrocyte than do isolated

oligodendrocytes purified away from astrocytes and other cells in the mixed

culture (Bhat *et al.*, 1981). When the isolated oligodendrocytes are added back to the astrocyte-containing cultures, they express the higher levels of MBP and CNP. This suggests that the presence of cell(s) and / or factor(s) in mixed primary glial cultures plays some role in regulating the expression of these two myelin components. Bhat and Pfeiffer (1986) established that a soluble astrocyte factor(s), which is non-dialyzable, heat-labile, and trypsin-sensitive, enhances MBP and CNP expression in purified oligodendrocytes.

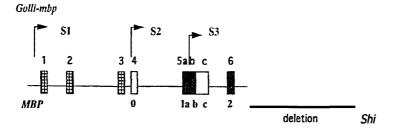
1.7. Gene Expression in Dysmyelinating Mutants

For two of the mutants, *shiverer* and *jimpy*, the mutation has been localised to the structural genes for the myelin basic protein and the myelin proteolipid protein, respectively (Roach *et al.*, 1985, and Sidman *et al.*, 1985).

1.7.1. Shiverer (shi) and Myelin Deficient (shi^{mld})

The *shiverer* mutation (*shi*) and its allele myelin deficient (*shi*^{mid}) (Doolittle and Schweikart, 1977 and Doolittle *et al.*, 1981) are autosomal recessive, and map to the mouse chromosome 18 (Roach *et al.*, 1985 and Sidman *et al.*, 1985). These mice exhibit tremors beginning approximately at day 12 (postnatally), which become progressively worse. Convulsions appear in older animals and these animals do not survive past 90 days

(Chernoff, 1981). Morphological analyses indicate that many axons have no myelin, and those that are myelinated have only low amounts of myelin. A striking feature of shiverer CNS myelin is the absence of the major dense line but the presence of the intraperiod line (Inoue et al., 1981). This suggests there is a greater loss of myelin basic protein in these animals than of proteolipid protein or of other proteins expressed on the extracellular surface of myelin. Biochemical analysis of shiverer tissue indicates essentially the total absence of myelin basic protein in shiverer brain (Bourre et al., 1980 and Barbarese et al., 1983). As with shiverer animals, shi^{mld} mice appear to have a major deficit in MBP. Myelin is poorly compacted, and the major dense line of myelin is essentially absent (Matthieu et al., 1980). However, more MBP (between 3% and 10% of normal levels) was observed in shi^{mld} brains than in shiverer brains. The level of MBP mRNA in shi^{mld} mice was quite low, approximately 2 - 5% of normal in young animals, (Ginalski-Winkelman et al., 1983; Campagnoni et al., 1984; Roch et al., 1986 and Popko et al., 1987) but the size of the shifmld MBP mRNA was normal, 2.2 -2.4 kb (Roch et al., 1986 and Popko et al., 1987).


It has been established that the *shiverer* and *shi^{mid}* mutations are within the structural gene for the myelin basic protein. The alleles map to the distal end of mouse chromosome 18, which contains the *MBP* gene (Doolittle and Schweikart, 1977; Roach *et al.*, 1985 and Sidman *et al.*, 1985). When the myelin basic protein gene in these mutants was analysed, clear alterations in the gene were identified. The *shiverer* mutation (Figure 5) results in a deletion of exons 3 to 7 of the *MBP* gene (Roach *et al.*, 1983;

Roach *et al.*, 1985; Kimura *et al.*, 1985 and Molineaux *et al.*, 1986), and the production of low levels of MBP-related RNA. This MBP-related mRNA is aberrantly spliced and poorly polyadenylated. In contrast, in *shi*^{mid} mice, there appears to be a tandem duplication of exons 3 to 7 with the more upstream set of exons inverted (Figure 5). There is one complete *MBP* gene, and at least one extra-partial or complete gene that is closely juxtaposed to the complete *MBP* gene (Popko *et al.*, 1987, Popko *et al.*, 1988). Thus, it would appear that the partial or complete duplication of the *MBP* gene near a normal gene can reduce the expression of the normal gene to 2% of normal and alter the normal developmental expression of the gene.

Readhead *et al.*, (1987) produced transgenic *shiverer* mice carrying one or two copies of the MBP transgene. The transgene is expressed in a tissue-specific manner with the correct developmental pattern. *Shiverer* mice carrying the MBP transgene produce more MBP mRNA and protein than the original *shiverer* mice, and they live longer, with a less severe disorder. However, *shiverer* mice carrying a single transgene produced approximately 12.5% of normal MBP mRNA and 8.5% of normal protein, whereas mice homozygous for the transgene produced roughly twice as much mRNA as protein. The heterozygous transgenic mice survived longer than the original *shiverer* mice but they still had convulsions and died at approximately 6 months. Homozygous transgenic mice appeared to be phenotypically closer to normal, for example, they had no tremors or convulsions, but some subtle behavioural abnormalities were observed. Despite the presence of only 25% of normal levels of MBP mRNA in the homozygous transgenic mice, the

myelination of the optic nerve, spinal cord and cerebellar white matter was significantly increased relative to the heterozygous transgenic mice.

These studies with transgenic mice suggest that insertion of a normal MBP gene into the genome of mice carrying either a deletion or a duplication of the normal gene can produce a tissue-specific and developmentally accurate expression of the transgene. However, the level of expression was not normal, since even with two copies of the transgene, only 25% of normal MBP mRNA was observed. The fact that the transgene was expressed at comparable levels in *shiverer* and *shi^{mid}* mice suggests that the deleterious effect of the MBP gene duplication on MBP gene expression in *shi^{mid}* mice is *cis*-acting, not *trans*-acting. Clearly the production of these transgenic mice, and the future use of these mice will provide new insight into myelin gene expression.

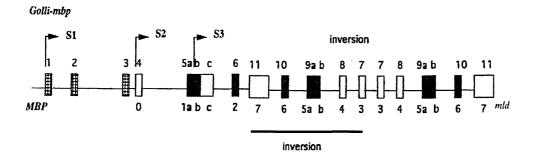


Figure 5. Diagrammatic representation of *golli-mbp* gene structure in dysmyelinating mutant mice.

Shi, shiverer mouse where there is a deletion of MBP exons 3 to 7 and *mld*, myelin deficient mouse, where MBP exons 3 to 7 are repeated with an inversion in the upstream gene, shown as exons 7 to 3.

(After Asipu and Blair (1997) Regulation of transcription and translation in the central nervous system – from Molecular Biology of Multiple Sclerosis.)

1.7.2. Jimpy (jp) and Myelin Synthesis Deficient (jp^{msd})

The Jimpy mutation (ip) and its allele Myelin Synthesis Deficient (ip^{msd}) are recessive X-linked mutations. This is exclusively a central nervous system disorder with no PNS involvement. These mice exhibit tremors, which become progressively worse, beginning at postnatal day 11. Convulsions appear in older animals and these animals do not survive past 25 – 30 days. The MBP proteins are significantly reduced in *jimpy* mice, relative to normal animals (Delassale et al., 1981, Kerner and Carson, 1984). Delassale et al. (1981), found that the deficit in MBP in jimpy mice ranged from 94 - 98% in different regions of the *jimpy* brain at 25 days of age. When the distribution of the four major MBPs was studied, it appeared that in young jimpy mice, the deficit of the 21.5 kDa MBP was less than the deficit in the other three MBPs. The overall deficit in MBP accumulation in animals in this study was 92% at all ages (Kerner and Carson, 1984). When MBP accumulation was compared in jimpy optic nerve and sciatic nerve, a significant reduction in MBP content was observed throughout development in the optic nerve. whereas no reduction was apparent in sciatic nerve (Jacque et al., 1983). Thus, there are differences in the regulation of the MBP gene in *jimpy* oligodendrocytes and Schwann cells. The level of MBP mRNAs was also measured in *jimpy* mice but with contradictory results Carnow et al., 1984).

In vitro translation studies by Campagnoni et al. (1984) indicated a reduction in the level of all MBP mRNAs. The mRNAs for the 17, 18.5, and 21.5 kDa proteins were approximately 43 to 48 % of normal, and the 14 kDa MBP mRNA was approximately 7% of normal. When the level of total MBP

mRNA was analysed by dot blots, it ranged from 19 to 42 % of normal agematched controls during development (Roth *et al.*, 1985), and these reductions were observed for both polysomal and nuclear RNA (Sorg *et al.*, 1987). Despite differences in MBP mRNA levels measured in these studies, the level of detectable protein was significantly below the level of detectable mRNA, suggesting that whereas the MBPs may be synthesised to some extent, the amount that accumulates is quite low. This would suggest that the MBP that is not inserted into an appropriate membrane is "turned over". This would be consistent with the conclusions drawn from experiments on the quaking mutant where the synthesis of MBP is significantly above the level of accumulation.

1.8. **Quaking (qk)**

Quaking viable (*qk*) is an autosomal recessive mutation resulting in dysmyelination in the CNS and PNS (Hardy et al., 1998). The quaking viable mutant mouse (*qk*) has a deletion on chromosome 17 (Ebersole *et al.*, 1992). A candidate gene, *qkl*, has recently been identified and evidence suggesting abnormalities leading to diminished expression of the selective RNA-binding protein QKI in myelin producing cells are involved in the quaking phenotype (Ebersole *et al.*, 1996, Hardy *et al.*, 1996). QKI contains amino acid domains characteristic of RNA-binding and interaction with Src homology 3 (SH3)-containing signalling molecules, and therefore belong to a fast growing family denoted as signal transduction activators of RNA (STAR) (Vernet and

Artzt, 1997). Isoforms of the QKI proteins are expressed in myelin-forming cells, in other CNS glia, as well as in non-nervous tissue; it is therefore suggested that they are involved in RNA splicing or metabolism (Ebersole et al., 1996, Kondo et al., 1999, Wolf et al., 1999). The proteins might play roles not only in myelination but also in embryonic development (Ebersole et al., 1996). These mice exhibit tremors, which continue throughout their lifetime beginning at approximately P12. Tonic seizures occur in these animals, although they have a normal lifespan. The morphologic phenotype includes thin myelin which often fails to compact, and is thrown into exuberant loops and whorls. Studies on the accumulation of MBP in different regions of the *quaking* nervous system showed that the developmental curve was different between *quaking* and normal mice and that there was a delay in the appearance of MBP in every CNS region tested. Furthermore, the level of MBP was severely depressed, ranging from 5 – 20 % of normal (Delassale et al., 1981 and Jacque et al., 1983). Interestingly the accumulation of MBP in spinal cord myelin did not stop at any particular time during development, as it normally does (Delassale et al., 1981). Therefore at day 80 MBP content in the spinal cord was approximately 25 % of normal, whereas at 1 year it had risen to 35 % of normal. An early study on MBP biosynthesis in quaking mice suggested the synthesis of the MBPs occurred at the normal rate, but it was the incorporation of the myelin into the membrane that was deficient (Brostoff et al., 1977). Both the stability and localisation of MBP mRNA are potentially coupled with its translation status (Ueno et al., 1994a, 1994b, Ainger et al., 1997) and QKI has recently been reported to act as a translation suppressor (Saccomanno et al., 1999),

therefore, interactions of MBP mRNAs with QKI may influence MBP expression at multiple posttranscriptional levels, including mRNA turnover, translation and subcellular localisation (Li et al., 2000).

1.9. TAIEP mutant rat

The name of this mutant is derived from the clinical signs observed in affected animals, e.g. at 3 weeks old taiep rats show a tremor (t), especially in the hind quarters, ataxia (a) is seen at 3 to 4 months of age, followed by immobility (i), epilepsy (e) and a gradually worsening hind limb paralysis (p) in animals over 6 months of age. Studies have confirmed an autosomal recessive mode of inheritance (Duncan et al., 1992). All the myelin proteins including MBP, PLP, MAG, and CNP are present in the mutant CNS albeit in reduced levels. This agrees with the finding that taiep myelin sheaths show positive immunostaining for both MBP and PLP (Duncan et al., 1992). The microtubule accumulations in the taiep oligodendrocytes are a striking and unique finding focussing attention on the role of the oligodendrocyte cytoskeleton in the functioning of this cell. The cytoskeleton of the oligodendrocyte is likely to influence the transport of both myelin proteins and their message (Ainger et al., 1993). A close association between MBP and CNP and the cytoskeleton has been observed in the oligodendrocyte, and it would appear that MBP colocalises with tubilin, whereas CNP associates with microfilaments (Wilson and Brophy, 1989). It has also been known for some time that the myelin protein mRNAs are spatially segregated within the oligodendrocyte (Trapp, 1990). The messages for PLP and MAG are found in the perinuclear region, whereas the MBP message is more diffusely distributed throughout the cytoplasm. The role of the cytoskeleton in the transport of MBP mRNA was demonstrated by Ainger et al., (1993) using digoxigenin-labelled MBP mRNA microinjected into cultured oligodendrocytes. The mRNA formed granules that were transported from the cell body along the oligodendrocyte processes. It would not be unreasonable to suggest this transport would be disrupted by the massive accumulations of microtubules in the taiep oligodendrocytes. As a result this could lead to the inefficient incorporation of myelin components into the myelin sheath with the resulting inadequate myelination of the developing CNS, and failure of myelin maintenance in the longer term (Lunn et al.,

1.10. Myelin basic protein is a zinc-binding protein in brain

Zinc is an abundant transition element in the brain that has been implicated in a variety of metabolic processes. In humans, zinc deficiency has been known to cause many neurological and neuropsychiatric disorders (Frederickson, 1989). In the brain zinc, like calcium, is another important divalent cation in the CNS, is unevenly distributed with the highest level in the hippocampus. As zinc in nervous tissue rarely exists as a free ion but usually associated with proteins, it is not known whether this uneven

distribution in different regions of the brain is related to different concentrations of zinc-binding proteins present (Tsang *et al.*, 1997).

Tsang et al., (1997) showed that three major zinc-binding proteins (ZnBPs) of molecular weight 53, 42 and 21 kDa were present in porcine brain. The 53 and 42 kDa zinc-binding proteins were present in all subcellular fractions whereas the 21 kDa protein was mainly found in the particulate fractions. It was suggested that of the three major zinc-binding proteins in the brain only the 21 kDa protein appears to be brain-specific and was later identified as myelin basic protein (Tsang et al., 1997). Since no cysteine residues are present in mammalian MBPs the probable zinc binding sites in myelin basic protein may consist of imidazole or carboxylate groups (Riccio et al., 1995). These groups are fairly abundant in MBP, about 6% each of aspartic acid, glutamic acid and histidine. Although the structural motif responsible for zinc-binding in MBP is still unknown, studies on other ZnBPs have revealed a common structural motif of His-X_{2,-3}-His (Berg, 1986). From the amino acid sequence of porcine MBP, a structural motif of His-Ala-Arg-His has been found between amino acid residues 23-26, which may be responsible for zinc binding in MBP (Tsang et al., 1997). The association of zinc with myelin and the fact that myelin basic protein is a zinc binding protein show that zinc plays a structural and/or functional role in myelin. Myelin basic protein is located on the cytoplasmic side of the multilamellar membrane at the major dense line and is responsible for the compaction of the two opposing membrane bilayers. The fact that MBP can bind zinc implies that zinc may be involved in myelin compaction by

interacting with MBP. There are developmental studies that showed that maternal zinc deficiency caused poor myelination in foetuses and decreased amounts of MBP associated with foetal myelin membranes (Liu *et al.*, 1992). Furthermore, recent fluorescence studies have confirmed the role of zinc ions in the formation of myelin basic protein aggregates (Cavatorta *et al.*, 1994). In myelin compaction, bimolecular interactions, MBP-membrane, as well as MBP-MBP interactions are involved in multilamellar myelin formation. Therefore, the effect of zinc on myelin compaction is probably by promoting or stabilising the MBP-membrane and/or MBP-MBP interaction (Berlet *et al.*, 1994). As zinc has been shown to stabilise the binding of macromolecules to plasma membranes in peripheral tissues, and that zinc has been shown to prevent the dissociation of MBP from membrane, it is not surprising that zinc is involved in the stabilisation of MBP in myelin sheath formation (Berlet *et al.*, 1994).

1.11. Aims of the project

The MBP unit is expressed in oligodendrocytes (Central Nervous System) and Schwann cells (Peripheral Nervous System) and is regulated at the level of transcription by proteins binding in a specific manner to DNA sequences located within its promoter region. The identification of these proteins and DNA sequences is essential for understanding the mechanism(s) that regulate the transcription of the MBP gene.

The major aims of this project were to clone and sequence the promoter region of the mouse myelin basic protein (*MBP*) gene and to identify a transcriptional activator(s) (transcription factor(s)) which interact with an oligodendrocyte-specific element(s) in the myelin basic protein gene promoter. To achieve this the following steps had to be taken:

- cloning and sequencing of the Hind III Sac I fragment (from the plasmid pEX1). This fragment is located between nucleotides 1319 and + 227 relative to the transcription start site and comprises the promoter region and exon 1 of the mouse myelin basic protein gene.
- analysis of the interaction of oligodendrocyte specific protein factor(s) with the region of the MBP promoter between nucleotides 609 to 577. This region was selected for further study because work published by other groups suggested that it contains an oligodendrocyte specific transcription activator (Asipu and Blair 1994). To achieve this electrophoretic mobility shift assay (EMSA) and competition binding with oligonucleotides corresponding to this region were performed.

- identification using the yeast one hybrid system cDNAs encoding proteins, which bind to the -609 to -577 region of the mouse myelin basic protein promoter. The one-hybrid system is a functional in vivo genetic assay used for isolating and studying novel genes encoding proteins which bind to target DNA. In this system a reporter construct containing at least three tandemly repeated copies of a putative binding sequence are inserted upstream of a HIS3 gene minimal promoter in a specially designed plasmid. This reporter construct is integrated by homologous recombination into a mutated HIS3 gene in the yeast host genome to create a yeast reporter strain carrying a normal copy of the HIS3 gene. A library of cDNAs encoding GAL4 AD fusions is expressed in the reporter strain. If an AD/library protein interacts with the target DNA sequence, HIS3 promoter activity is increased resulting in increased amounts of histidine produced. Therefore, clones expressing histidine at a level higher than the reporter strain are selected by growth on medium lacking histidine in the presence of 3-aminotriazole (3-AT) for further study.
- sequencing of cDNAs encoding proteins, which bind to the –609 to
 –577 region of the myelin basic protein promoter.
- search of nucleotide databases (e.g. EMBL and Genbank) and protein databases like Swissprot or Swall for homology with other transcription factors using the FastA and Blast sequence alignment programs.

Chapter 2

MATERIALS AND METHODS

2.1. MATERIALS AND SUPPLIERS

2.1.1. **BACTERIAL STRAINS**

Escherichia coli strain HB101 (containing plasmid pEX1)

Donated by Arthur Roach, Division of Biology, California

Institute of Technology, Pasadena, California.

Escherichia coli strain (DH5α).

2.1.2. **CLONING VECTORS**

Bluescript SK ⁺	Promega
pHISi – 1	Clontech

2.1.3. **ENZYMES**

Hind III	20 U/μl	NEB (104 S)
Sac I	20 U/μl	NEB (156 S)
EcoR 1	20 U/μl	NEB (101 XL)
Mlu 1	10 U/μΙ	NEB (198 S)
Xho 1	20 U/μl	NEB (146 S)

T4-DNA Ligase (E.C.6.5.1.1.) 400 U/μl NEB (202 S)

Alkaline. phosphatase (E.C.3.1.3.1.) 10 U/µl NEB (290 S)

Polynucleotide kinase 10 U/μl NEB (201 S)

Lysozyme (E.C.3.2.1.17.) SIGMA (L 6876)

2.1.4. OLIGONUCLEOTIDES

The oligonucleotides used for chain termination sequencing,
electrophoretic mobility shift assays, PCR amplification were synthesised on
a Pharmacia Gene Assembler Plus using the phosphoramidite chemistry.

2.1.5. **KITS**

Mini-Prep Kit Plus Pharmacia Ltd.

T7 Sequencing Kit Pharmacia Ltd.

HYDRO-LINK™ DNA Sequencing System A.T. Biochem.

Sequenase ™ DNA Sequencing Kit United States Biochemical

Corporation.

2.1.6. RADIOCHEMICALS

Deoxyadenosine triphosphate α -thiol (35 S) 500 Ci mmol⁻¹ (10 mCi ml⁻¹)

NEN (DUPONT) Hertfordshire.

Adenosine 5' triphosphate, tetra (triethylammonium salt) (γ - 32 P)

>4000 Ci mmol⁻¹ (10 mCi ml⁻¹) ICN Biomedicals Ltd Buckinghamshire.

2.2. LARGE SCALE ISOLATION OF PLASMID DNA BY A MODIFIED CLEWELL AND HELINSKI TECHNIQUE

An overnight culture (4 ml) of *Escherichia coli* harbouring the pEX1 plasmid was inoculated into 400 ml of Luria broth (see Appendix II), and incubated at 37° C with vigorous shaking until the absorbance at 600 nm reached 1.00. Chloramphenicol (4ml of stock solution at a concentration of 10 mg/ml in 50% ethanol) was added and the incubation continued for a further 18 h.

Cells were harvested by centrifugation at 4 krpm for 20 min at 4° C using the Sorvall GS3 rotor, and the cell pellet was resuspended by gentle agitation in 3.0 ml of ice-cold Buffer I (see Appendix II). After transferring the bacterial suspension to a suitable centrifuge tube 500 μ l of a freshly prepared ice-cold lysozyme solution (at a concentration of 10 mg/ml in buffer I) were added. Following incubation at 0° C for 4-5 min (for chloramphenicol amplified cultures) 1 ml of ice-cold 0.25 M EDTA pH 8.0 was added and the 4-5 min incubation at 0° C repeated.

Finally 4.0 ml of Triton X-100 lysis solution (see Appendix II) were added and the lysis of the cells was monitored by observing the viscosity of the mixture. Separation of the chromosomal DNA and cell debris from the plasmid DNA was achieved by centrifugation at 18 krpm for 1 h at 4° C using the SL50T rotor.

The plasmid DNA was stored at 4° C before purification by centrifugation to equilibrium on caesium-chloride density gradients.

2.3. PURIFICATION OF PLASMID DNA BY CENTRIFUGATION TO EQUILIBRIUM IN CAESIUM CHLORIDE-ETHIDIUM BROMIDE GRADIENT

The volume of cleared lysate prepared as described in section 2.2. was accurately measured.

For every 10 ml of lysate, exactly 9.62 g of solid caesium chloride and 625 μ l of a solution of ethidium-bromide (stock concentration 10 mg/ml in water) were added, and mixed gently by inversion until all the caesium chloride had dissolved, (the final density of the solution being 1.55 g η = 1.3680 and the final concentration of ethidium bromide approximately 600 μ g/ml). It should be noted that in this procedure the furry purple aggregates that float to the top of the solution are complexes formed between the ethidium-bromide and bacterial proteins.

Centrifugation was carried out at 40 krpm for 40 h at $18^{\circ} \pm 1^{\circ}$ C using a Sorvall T865 rotor. Two bands of DNA were evident in both visible light and UV light, the upper band consisting of chromosomal DNA and the lower band of plasmid DNA. The lower band of DNA was collected with a hypodermic needle, and transferred into a fresh tube.

Ethidium bromide was removed by extraction with caesium chloride saturated isopropanol (discarding the top layer each time and re-extracting until the bottom layer was colourless, usually six times).

Following dialysis against three changes of TE buffer pH 8.0 (see Appendix II), the solution of DNA was extracted three times with phenol (transferring the top layer to a fresh tube each time).

The DNA was precipitated with 0.1 volume 3 M sodium acetate, 2.5 volumes of ethanol at -70 $^{\circ}$ C for 15 min and pelleted by centrifugation using a Sorvall ST-micro rotor. The pellet was dried *in vacuo* and resuspended in 400 μ l of sterile water. The concentration of the DNA was determined by measuring the absorbance at 260 nm (1 A₂₆₀ unit of double stranded DNA = 50 μ g/ml).

2.4. ANALYTICAL AGAROSE GEL ELECTROPHORESIS OF DNA

Gels were prepared by adding 300 mg of agarose to 30 ml of 1X Trisacetate buffer (1% w/v) (see Appendix II) and heating in a microwave oven until all the agarose had dissolved. After cooling to 50° C in a water-bath, 3 μ l of ethidium bromide were added to give a final concentration of 0.5 μ g/ml ethidium bromide (stock Et-Br 10 mg/ml stored at 4° C). The agarose slurry was then poured into a pre-levelled gel former and allowed to set at room temperature for 30 minutes.

Tris-acetate buffer (1X) (see Appendix II) was added to the electrophoresis chamber so that the gel was covered to a depth of 1 mm.

Samples (5 μ l in loading buffer – see Appendix II) were loaded below the surface of the running buffer into the pre-formed sample wells. The gel was electrophoresed at a constant voltage (100 V), until the bromophenol blue in the loading buffer was 1 cm from the anode end of the gel.

After electrophoresis the gel was analysed on a UV transilluminator.

2.5. ANALYTICAL SCALE DIGESTION OF DNA WITH RESTRICTION ENDONUCLEASES

Plasmid DNA (2 μ g in 5 μ l) was mixed in a sterile Eppendorf tube with 1 μ l of the appropriate 10X restriction buffer (supplied with each enzyme), and 3 μ l of sterile deionised water.

For single restriction enzyme digests, 1 μ I of enzyme (20 U/ μ I) was added and the digest incubated at 37° C for 1 h after mixing by gentle flicking.

For double endonuclease digestions (where the buffer conditions are identical), only 5 μ l of sterile water were added followed by 1 μ l (20 U/ μ l) of the second enzyme, the contents mixed and incubated as above.

The digestion was terminated by the addition of 2 μ l of loading buffer (see Appendix II) and the products analysed by agarose gel electrophoresis.

2.6. CLONING OF THE *Hind III* – Sac / FRAGMENT OF pEX1 IN pBLUESCRIPT PLASMID

2.6.1. PREPARATION OF THE Hind III - Sac / FRAGMENT OF pEX1 PLASMID FOR CLONING

2.6.1.1. LARGE-SCALE DIGESTION OF THE PLASMID pEX1

Digestion with restriction endonucleases was performed essentially as described in 2.5, with the minor modifications indicated below.

Plasmid pEX1 (37.5 μ g in 95 μ l) was mixed with 35 μ l of the appropriate 10X restriction buffer, 180 μ l of sterile distilled water and 20 μ l (20 U/ μ l) of *Hind III* and 20 μ l (20 U/ μ l) of *Sac I*. After an incubation for 2h at 37° C the progress of the digestion was monitored by analytical scale agarose gel electrophoresis.

Preparative gel electrophoresis was performed after 3h 45 min of digestion.

2.6.1.2. **ELECTRO-ELUTION OF THE Hind III - Sac I FRAGMENT**

The band containing the *Hind III-Sac I* fragment was excised from the preparative agarose gel and fastened securely in "pre-wetted" dialysis tubing for electro-elution at a constant voltage (100 V). The progress of the elution was monitored every 10 min on the UV transilluminator. When the ethidium bromide had migrated out of the gel slices the elution of DNA was ended and the samples stored at -20° C for subsequent purification and concentration.

2.6.1.3 **PURIFICATION AND CONCENTRATION OF THE** *Hind III - Sac I* **FRAGMENT**

An ion-exchange column was plugged with sterile siliconized glass wool and filled with approximately 2 ml of DE-52 cellulose matrix. The solution containing the *Hind III-Sac I* fragment (produced as described in

section 2.6.1.2.) was loaded onto the column, the flow-through collected, and passed through the column a second time.

After washing the column with "low salt" solution (0.3 M NaCl), the DNA fragment was eluted in a small volume (1000 µl) of "high salt" solution (1.0 M NaCl), and collected in a Corex tube. Nucleic acid precipitation was carried out by the addition of 0.1 volume of 3 M sodium acetate and 2 volumes of ice-cold ethanol followed by incubation at -20° C for 24h.

The DNA was pelleted by centrifugation at 10 krpm for 1h at 2° C using a Sorvall ST-micro rotor. After decanting the supernatant any remaining ethanol was evaporated under vacuum and the pellet dried.

Finally the pellet of DNA was resuspended in 170 μ l of sterile distilled water and stored at -20 $^{\circ}$ C.

2.6.2. PREPARATION OF THE PLASMID pBLUESCRIPT FOR CLONING

2.6.2.1. **DIGESTION OF pBLUESCRIPT WITH RESTRICTION ENDONUCLEASES** *Hind III and Sac I*

The vector DNA (pBluescript) was cleaved with *Sac I and Hind III* using a similar protocol to that outlined in section **2.5.**, and the restriction enzymes inactivated by heating at 60° C for 10 min. The completeness of the digestion was established by running a 2 μ I sample on an analytical scale agarose gel.

2.6.2.2. PHOSPHATASE TREATMENT OF pBLUESCRIPT

Digested plasmid pBluescript (20 μ g in 20 μ l) was treated with alkaline phosphatase to remove 5' phosphate groups. The reaction mixture consisted of 20 μ l of cleaved vector, 2.5 μ l of 1 M Tris pH 8.0 (to give a final concentration of 50 mM), 21.5 μ l of sterile distilled water and 6 μ l of alkaline phosphatase (10 U/ μ l). After mixing the tubes were incubated at 37° C for 45 min.

The alkaline phosphatase was inactivated by adding an equal volume $(50 \ \mu l)$ of water-saturated phenol, (discarding the lower layer and repeating usually twice). Water-saturated diethyl ether was added, and after removing the organic phase (upper layer) the procedure was repeated a further six times.

Following the removal of as much of the ether as possible 5 μ I of 3M sodium acetate and 150 μ I of ethanol were added. The DNA solution was then incubated at -20° C for 72 h (approx) to precipitate the DNA. The dephosphorylated *Hind III-Sac I* cleaved vector DNA was pelleted by microcentrifugation at 13 krpm for 20 min at 4° C, the supernatant removed and the pellet dried *in vacuo*.

Sterile deionised water (40 μ l) was added to reconstitute the pellet, and the recovery of the dephosphorylated vector was checked by agarose gel electrophoresis.

2.6.3. **LIGATION**

Ligation was performed as follows:

 $2 \mu l$ of dephosphorylated vector (0.5 $\mu g/\mu l$) and 5 μl (2 μg) of the *Hind III-Sac I* fragment isolated from pEX1 were mixed in a sterile Eppendorf tube. This was followed by the addition of 1 μl 10X ligation buffer, 1 μl ATP (10 mM) and 0.5 μl (200 U) T4-DNA ligase. After mixing the contents by gentle flicking an overnight incubation at 16° C was carried out.

2.6.4 INTRODUCTION OF PLASMID DNA INTO E. coli CELLS

2.6.4.1. PREPARATION OF COMPETENT CELLS

E.coli cells strain DH5 α (5 μ I) were spread over the surface of an M9 minimal medium plate (see Appendix II) and incubated overnight at 37 $^{\circ}$ C.

If 5 μ l proved too large an inoculum to give individual colonies the procedure was repeated with a 1 μ l inoculum. A single colony was then inoculated into a tube containing 15 ml of L-broth and the culture incubated overnight at 37° C with vigorous shaking.

Overnight starter culture (1 ml) was inoculated into L-broth (100 ml) and incubated at 37° C with vigorous shaking to an absorbance at 650 nm of 0.5. Then 50 ml of the culture was centrifuged at 3 krpm for 5 min at 4° C using the Sorvall SL50T rotor. Following aspiration of the supernatant the cells were carefully resuspended in 7.5 ml of ice-cold 0.1 M CaCl₂ (made from filter sterilized 2 M stock) and incubated on ice for 15 min before

centrifugation at 3 krpm for 5 min at 4° C using the Sorvall SL50T rotor. The cells were resuspended in 1.5 ml (0.1 volume) of ice-cold 0.1 M CaCl₂, and kept on ice until required.

2.6.4.2. TRANSFORMATION

Three transformation mixtures were prepared as follows:

TUBE 1 UNCUT VECTOR: 10 μ l of uncut vector (0.1 μ g/ μ l) was added to 20 μ l of 1X SSC. This was followed by 200 μ l of competent cells prepared as described in section 2.6.4.1. and the contents of the tube mixed well.

TUBE 2 VECTOR AND FRAGMENT: 10 μ l of ligation mixture (dephosphorylated vector + pEX1 fragment) were added to 20 μ l of 1X SSC. This was then followed by 200 μ l of competent cells and the contents mixed well.

TUBE 3 LINEAR VECTOR: 10 μ l of dephosphorylated vector (0.1 μ g/ μ l) and 20 μ l of 1X SSC were added to 200 μ l of competent cells and the contents of the tube mixed well.

After incubation of all three tubes on ice for 30 min, with occasional shaking, a heat-shock at 42° C for 2 min was performed. This was followed by incubation on ice for a further 15 min.

L-broth (2ml) was added to each sample and incubated at 37° C for

1 - 1.5 h with continuous shaking to allow gene expression. The cells were then pelleted by centrifugation at 3 krpm for 5 min at room temperature and each pellet was resuspended in a final volume of 100 μ l of L-broth.

2.6.4.3. PLATING-OUT OF THE TRANSFORMANTS

L-broth (80 μ l) was pipetted into the centre of pre-dried AIX plate (see Appendix II) followed by 20 μ l of transformed cells. The cells were spread over the whole surface of the plate using an "L-shaped" glass rod, kept on the bench for a few minutes to let the transformed cells absorb into the agar, and then incubated overnight at 37° C.

2.6.5. ANALYSIS OF THE TRANSFORMANTS

Transformants were analysed for the presence of the recombinant plasmid by the method of Holmes and Quigley (1981) followed by agarose gel electrophoresis. Restriction enzyme digestion (*Sac I – Hind III*) was used to excise the cloned insert.

2.6.5.1. PREPARATION OF PLASMID DNA ON A SMALL-SCALE (HOLMES AND QUIGLEY (1981) METHOD)

White colonies from the vector plus DNA fragment plate were resuspended in L-broth containing ampicillin at a final concentration of

50 μ g/ml and incubated at 37° C overnight with constant shaking. Aliquots of each culture (2 x 1.5 ml) were pipetted into sterile Eppendorf tubes and the cells pelleted by centrifugation in a microfuge for 30 sec. Each pellet was resuspended by vortex mixing in 75 μ l of STET buffer (see Appendix II) and the suspensions combined into one 150 μ l suspension in one tube. Freshly prepared lysozyme (12 μ l at a concentration of 20 mg/ml) was added to each tube and the contents mixed by vortexing.

Then the cell lysates were heated in a boiling water bath (40 sec) and immediately centrifuged in a microfuge for 15 min at room temperature. The supernatant (approximately 100 μ l) was carefully removed from the fluffy pellet containing chromosomal DNA, and transferred to a fresh sterile tube. An equal volume of isopropanol (100 μ l) was added to the supernatant and the nucleic acids precipitated in an alcohol dry-ice bath for 10 min.

The nucleic acids were pelleted by centrifugation in a microfuge at 12 to 14 krpm for 15 min in the cold-room. Following the careful removal of the supernatant with a sterile Pasteur pipette, the pellet was resuspended in 100 μ l of sterile distilled water and the nucleic acids precipitated with 10 μ l of 3M sodium acetate (pH 6.0) and 300 μ l of absolute ethanol (stored at -20° C) in an alcohol dry-ice bath for 10 min.

The nucleic acid was pelleted by centrifugation in a microfuge at full speed, the supernatant discarded and the pellet washed carefully with 100 μ l of 70 % ethanol (stored at -20° C). The nucleic acid pellets were dried under vacuum for 3 to 4 min, resuspended in 30 μ l of sterile distilled water and stored at -20° C.

2.6.5.2. CONFIRMATION OF THE PRESENCE OF THE Hind III-Sac / FRAGMENT IN THE RECOMBINANT PLASMIDS

Plasmid DNA prepared according to the protocol described in section 2.6.5.1. was digested with a combination of *Hind III and Sac I* restriction endonucleases as described in section 2.5.

Agarose gel electrophoresis was used to analyse the products of the endonuclease digestion as outlined in section 2.4.

3.0. ISOLATION AND PREPARATION OF PLASMID DNA FOR SEQUENCING

3.1.1. ALKALINE LYSIS MINI-PREPARATION USING THE PHARMACIA KIT

SB medium (1.4 ml) (see Appendix II) containing the appropriate antibiotic was inoculated with a single colony of the recombinant clone of interest and incubated overnight at 37° C with constant shaking. The cells were pelleted by centrifugation in a microfuge for 1 min at full speed, and the medium removed by aspiration to leave the cells as dry as possible.

Solution I (100 μ I) (see Appendix II) was added and the cells resuspended by vortex mixing. Following incubation on ice for 5 min, 200 μ I of Solution II (see Appendix II) were added and the incubation on ice repeated. After the further addition of 150 μ I of Solution III (see Appendix II) and incubation on ice for 5 min the cell lysates were microfuged (Sorvall T21 with ST Micro rotor) at full speed for 5 min at room temperature. The

supernatant was transferred to a fresh microfuge tube and 1 volume (450 μ l) of isopropanol was added, mixed by inversion and incubated at room temperature for 5-10 min.

The DNA was pelleted in a microfuge at full speed at room temperature for 5 min. Following the removal of the supernatant by aspiration the DNA pellet was gently washed in 250 μ l of isopropanol, and air-dried.

Since the DNA was to be used for sequencing by the dideoxy chain termination method the pellet was redissolved in 25 μ l of Column Buffer (see Appendix II).

3.1.2. ESTIMATION OF THE CONCENTRATION OF DNA BEFORE THE PREPARATION OF SINGLE STRANDS

The approximate concentration of plasmid DNA was determined by comparing the fluorescence of ethidium bromide-stained DNA with that of known amounts of caesium chloride purified DNA. An agarose gel (0.8%) was prepared in 1X Tris-acetate buffer (see Appendix II), containing ethidium bromide at a final concentration of 0.5 µg/ml.

Redissolved plasmid DNA (1 μ l) prepared as described in section 3.1.1. was combined with 4 μ l of sample buffer. Aliquots (2, 4 and 8 μ l) of the pBR322 DNA standard containing 2,4, and 8 μ g of DNA respectively were loaded into three wells of the agarose gel; duplicate samples of the plasmid DNA and a molecular size marker were loaded into adjacent wells.

The DNA samples were electrophoresed and the amount of DNA in the plasmid sample was estimated by comparing the intensity of its fluorescence under ultra-violet light with that of the three pBR322 DNA samples. The size of the plasmid was estimated from the molecular size marker.

3.1.3. PREPARATION OF SINGLE STRANDED DNA FOR SEQUENCING

Plasmid DNA (20 μ l at a concentration of 1.5 μ g/ μ l) prepared as described in section 3.1.1. was treated with 5 μ l of 2 M NaOH at room temperature for 5 min. The denatured DNA was purified immediately on Sephacryl S-400 columns (prepared as described in Appendix III).

The plasmid solution was slowly applied to the centre of the upper flat surface of the compacted bed of Sephacryl S-400. In this procedure careful application of the sample to the centre of the bed was essential for good separation of the DNA. The column was then centrifuged for 2 min at approximately 400 x g in a swing out bucket rotor. The effluent collected in a microfuge tube contained the purified single stranded plasmid DNA in approximately 25 μ l of column buffer.

4.0. **SEQUENCING OF DNA**

4.1. PREPARATION OF OLIGONUCLEOTIDE PRIMERS

Oligonucleotide primers were synthesised as described in Appendix IV using the phosphoramidite chemistry and prepared by the procedure described below. This procedure gives high yields of de-salted oligonucleotides which are 20 bases or longer.

The ammonia solution (1 ml) containing the oligonucleotides was divided into 3 X 330 μ l aliquots in flip-top Eppendorf tubes. The oligonucleotides were precipitated by adding 33 μ l of 3M sodium acetate solution pH 6.0, followed by 915 μ l of absolute ethanol (maintained at -20° C) to each tube. After overnight incubation at -20° C the tubes were microfuged at 13 krpm for 15 min at 4° C. The ethanol was removed by aspiration and the pellets resuspended in 500 μ l of 80% ethanol (stored at -20° C).

After pooling the contents of the three tubes into one conical Eppendorf tube and microfuging at 13 krpm for 5 mins at 4° C the ethanol was removed and the open tube covered with parafilm. The contents of the tube were lyophilised on a freeze-dryer once the parafilm had been perforated with a hypodermic needle.

The oligonucleotide primers could be stored indefinitely in this lyophilised form, or could be resuspended in 600 μ l of buffer (for example T.E. pH 7.5 see Appendix II).

4.2. DNA SEQUENCING USING THE SEQUENASE KIT TM

All sequencing reactions were carried out according to the manufacturers instructions in small plastic centrifuge tubes typically 1.5 ml Eppendorfs; these were kept capped between manipulations to minimize evaporation of the small volumes used.

4.2.1. ANNEALING THE TEMPLATE AND THE PRIMER

For each of four sequencing lanes, a single annealing and labelling reaction was used.

Primer (1 μ l at a concentration of 0.5 pmol/ μ l), reaction buffer (2 μ l) and 7 μ l (2.0 μ g) of template DNA were combined in a centrifuge tube. For the control, 5 μ l (0.2 μ g) of DNA supplied in the kit and 2 μ l of water were used, this was equivalent to a 1:1 (primer : template) molar stoichiometry.

The capped tubes were held at 65° C for 2 min and then allowed to cool slowly to room temperature over a period of about 30 min. Once the temperature was below 30° C annealing was complete and the tube kept on ice until required.

4.2.2. THE LABELLING REACTION

For reading sequences up to 500 bases from the primer the labelling mix (dGTP) was diluted 5-fold with sterile deionised water. The Sequenase Version 2.0 enzyme (13 U/ μ I) was diluted 1:8 in ice-cold enzyme dilution buffer and then stored on ice until required. To the annealed template-primer (10 μ I) the following additions were made on ice, 1 μ I DTT (0.1 M), 2 μ I diluted labelling mix, 0.5 μ I (10 μ Ci/ μ I) [α -35 S] dATP and 2 μ I (1.6 U/ μ I) of diluted Sequenase version 2.0. After mixing the contents thoroughly the tube was incubated at room temperature for 5 min.

4.2.3. **TERMINATION REACTIONS**

The ddNTP termination mixes (2.5 μ l) were pipetted into their corresponding centrifuge tube, capped and pre-warmed to 37° C for at least 1 min. When the labelling reaction was complete 3.5 μ l of the labelling mix were removed, added to each of the pre-warmed ddNTP tubes, mixed and then returned to the 37° C water-bath for a further 5 min. Stop solution (4 μ l) was added to each of the termination reactions, mixed thoroughly and stored on ice until required.

Just before loading the gel the samples were heated to 75° C for at least 2 min and immediately loaded onto the gel. Denaturing gel electrophoresis was carried out as outlined in section 4.4.

4.3 DNA SEQUENCING USING THE T7 DNA POLYMERASE KIT

Single-stranded template DNA was isolated as described in section 3.1.1.

4.3.1. ANNEALING THE TEMPLATE AND THE PRIMER

Template (or control) DNA (10 μ l containing 2.0 μ g of single strand DNA), 2 μ l primer (at a concentration of 0.5 pmol/ μ l) and 2 μ l annealing buffer were pipetted into a sterile Eppendorf tube mixed and incubated at 60° C for 10 min. Once the annealing reaction was complete the tube was kept at room temperature until needed.

4.3.2. THE LABELLING REACTION

Labelling mix (3 μ l diluted to a final concentration of 1.5 U/ μ l), 1 μ l (10 μ Ci/ μ l) of [α - 35 S] dATP and 2 μ l (1.5 U/ μ l) of diluted T7 DNA polymerase were added to the annealed template and primer. The components were mixed by gentle agitation and the contents incubated at room temperature for 5 min.

Whilst the incubation was in progress the "read-short" sequence mixes were pre-warmed to 37° C for at least 1 min.

4.3.3. TERMINATION REACTIONS

Once the labelling reaction was complete 4.5 μ l of this reaction mixture was transferred into each of the four pre-warmed sequencing mixes. The contents of each tube were incubated at 37° C for 5 min after mixing by gentle agitation. Stop solution (5 μ l) was added to each tube, mixed by gentle agitation and then briefly microfuged to collect the contents at the bottom of the tube. An aliquot (3 μ l) of each stopped reaction was transferred to a separate microfuge tube, heated to 75° C for at least 2 min, and 2 μ l of this solution was then loaded immediately into an appropriate well on a sequencing gel. Denaturing gel electrophoresis was carried out as outlined in section 4.4.

4.4. ELECTROPHORESIS OF THE SEQUENCING REACTIONS

4.4.1. PREPARATION OF POLYACRYLAMIDE SEQUENCING GELS

A 40% acrylamide solution was prepared in distilled water, and deionised with a small quantity of mixed bed resin (e.g. Amberlite MB1); the resin was removed by filtration and the solution stored at 4° C. The sequencing plates were prepared as described below.

The notched plate was treated with "Repel" silane solution whilst the other plate was treated with diluted "Bind" silane. After inserting the side spacers and clamping the two matched plates together the system was ready to receive the gel solution, which was prepared as follows:

To 70 ml of 1X TBE gel mix (see Appendix II), 140 μ l of 25 % ammonium persulphate and 90 μ l of TEMED were added. It should be noted that 25 % ammonium persulphate solutions were freshly prepared just before use. If necessary the gel could be stored overnight at room temperature.

The electrophoresis tank reservoirs were filled with the appropriate running buffers; the upper chamber contained 0.5 X TBE and the lower buffer chamber contained 1 X TBE. Following the pre-run and before loading the samples approximately 0.5 volume of 3 M sodium acetate was added to the lower chamber.

The sequencing gel was pre-run at 1200 to 1400 V for 2.5 h before loading any samples.

4.4.2. SEQUENCING GELS PREPARED WITH HYDRO-LINK ™ DNA SEQUENCING SYSTEM

Both the glass plates were silanized with "Repel" silane and then preassembled in the usual way. Hydro-link gel solution (75 ml) and Hydro-link denaturing gel buffer (25 ml) were poured directly into a beaker followed immediately by 220 μ l of TEMED and 500 μ l of freshly prepared 20 % ammonium persulphate. After gentle mixing the gel solution was poured into the pre-assembled glass plates laid on a flat surface, the sample comb was inserted and the gel left to polymerise.

Hydro-link SEQ running buffer (50 ml of 20 X concentrate) was made up to 1 litre and then both the anode and cathode reaction chambers were filled according to the manufacturers recommendations.

Normally for 30 to 300 base extensions the pre-run conditions were as follows: constant power (25 to 30 W) for 15 min.

Alternatively, if up to 300 base extensions and the bases close to the primer were to be read then the conditions outlined above could still be used but the pre-run was extended to 30 min.

The actual sequencing electrophoretic run was carried out at 25 to 30 W constant power for a period of 2 to 2.5 h. The temperature of the water jacket was thermostatically maintained at 45° C.

4.5. AUTORADIOGRAPHY OF SEQUENCING GELS

Upon completion of the electrophoretic run and following the separation of the glass plates the gel was fixed in 10 % acetic acid plus 12 % methanol, washed in water and then dried on a gel-dryer at 80° C.

X-ray film (Amersham Hyperfilm MP) was placed in direct contact with the gel and autoradiographed overnight at -70° C.

Standard X-ray developers (Kodak Industrex developer) and fixers (Ilford Hypam fixer) were used to develop the autoradiographs.

However, when using the hydro-link sequencing system the following adaptations were made. After separating the glass plates carefully the gel was allowed to air-dry for 5 min before transferring it to the support paper. The paper and gel were carefully peeled off the glass plate, and then the gel was covered with Saran wrap or ordinary cling film and the resulting "sandwich" dried on a gel-dryer at 60° C.

Once the gel was dry it was autoradiographed and developed as outlined above.

5.0. ELECTROPHORETIC MOBILITY SHIFT ASSAY

5.1. PREPARATION OF OLIGONUCLEOTIDES CORRESPONDING TO THE PUTATIVE BINDING SITE

Oligonucleotides corresponding to a putative DNA - protein interaction site were synthesised as described in Appendix IV.

Following cleavage and deprotection the oligonucleotides were ethanol precipitated, dried and annealed as described in the following section.

5.1.1. ANNEALING OF SYNTHETIC OLIGONUCLEOTIDES

The complementary oligonucleotides were diluted to give a final concentration of 200 μg per ml.

To 4 μ l (800 ng) of each oligonucleotide, 2 μ l of 5X annealing buffer were added, mixed thoroughly and incubated at 90 $^{\circ}$ C for 10 min. Then the water bath was adjusted to 37 $^{\circ}$ C and the oligonucleotide solution was allowed to cool, after 30 min incubation at 37 $^{\circ}$ C, the annealed mixture was then allowed to stand at room temperature for 90 min.

5.1.2 5'-END LABELLING OF OLIGONUCLEOTIDES WITH γ -32P ATP AND POLYNUCLEOTIDE KINASE

To 4 μ l of annealed oligonucleotide (section 5.1.1), 2 μ l of 10X kinase buffer, 10 μ l (100 μ Ci) of γ -³²P ATP, 2 μ l (10 U/ μ l) of Polynucleotide kinase and 2 μ l of water were added, mixed and incubated at 37° C for 30 min, before adding 40 μ l of water, 30 μ l of 7.5 M ammonium acetate, 1 μ l of 0.25% linear polyacrylamide as a carrier and 400 μ l of ethanol and incubating at -20° C for 30 min.

The resulting mixture was microfuged at 14 krpm for 20 min at 4° C, and the supernatant removed. The pellet was washed with 70 % ethanol, dried on a vacuum dessicator before being resuspended in 100 μ l of water

and frozen until required for the bandshift or electrophoretic mobility shift assay.

5.2. PREPARATION OF NUCLEAR EXTRACTS

The cells for the preparation of the nuclear extracts were grown on 90 mm plates, the medium was removed and the cells washed with cold phosphate buffered saline (PBS).

The cells were harvested in PBS by scraping with a cell scraper, followed by centrifugation in 50 ml Falcon tubes at 2 krpm for 5 min at 4 °C using the SL50T rotor, resuspension in 4 ml of cold buffer A (see Appendix II), and a 10 min incubation on ice.

Finally the cells were disrupted by 10 strokes with a tight-fitting

Dounce homogeniser and the nuclei pelleted by centrifugation at 16 krpm for

20 min at 4 °C using a Sorvall SL50T rotor. The pellet was resuspended in

4 ml of cold buffer C (see Appendix II) and the nuclei disrupted by 10 strokes

of a tight fitting Dounce homogeniser.

The nuclear extract was stirred gently on ice for 45 minutes before pelleting the chromatin and nuclear membranes by centrifugation at 4 °C for 20 min at 25 krpm using the Sorvall T865 rotor. Ammonium sulphate was then used to precipitate the proteins present in the supernatant. Solid ammonium sulphate (0.33 g/ml) was gently stirred into the supernatant followed by continual gentle stirring on ice for a further 30 min.

The nuclear proteins were pelleted by centrifugation at 4 °C for 20 min at 25 krpm as in the previous step. Finally the protein pellet was resuspended in 200 μ l of cold buffer D (see Appendix II) and dialysed against the same buffer overnight at 4 °C. The following day the nuclear extract was snap frozen in liquid nitrogen in aliquots (50 μ l) and stored at -70 °C.

5.3. **ESTIMATION OF THE CONCENTRATION OF PROTEIN IN**THE NUCLEAR EXTRACTS

A range of protein solutions from 0 to 10 μ g/ μ l were freshly prepared from a stock protein solution of 10 gl⁻¹, at the same time an aliquot (15 μ l) of the nuclear extract was also thawed and dispensed into a sterile Eppendorf tube and kept on ice until required. The working solution of Bicinchoninic acid (BCA) reagent was then prepared by mixing 200 μ l of a 4% copper sulphate solution with 9.8 ml of BCA reagent.

The working BCA reagent (200 μ l) was pipetted into an appropriate number of wells in a microtitre plate, followed by 5 μ l of the diluted protein or nuclear extract sample. The plate contents were gently mixed, incubated at room temperature for 30 min before being read on a microplate reader at 562 nm

The protein determination experiment was repeated with a standard and sample volume of 10 μ l because the calibration graph obtained from the 5 μ l sample was a curve and not linear as expected.

5.4. **BINDING ASSAY**

The annealed oligonucleotide duplex (32 P-labelled at the 5' end to a specific activity of approximately 10 x 10⁴ cpm / μ g of DNA) was added to binding buffer (see Appendix II) and poly[d(IC).d(IC)] (at a final concentration of 1 μ g per 10 μ g of protein) in a reaction volume of 20 μ l.

Nuclear extract (10 μ g in 10 μ l) was added, mixed and incubated at room temperature for 30 min. Following incubation, 5 μ l of 20 % FicoII was added to the reaction mixture and 5 μ l aliquots loaded onto a 7 % non-denaturing polyacrylamide gel.

Electrophoresis was carried out at 7 Vcm⁻¹ until the bromophenol blue marker loaded in an adjacent well had migrated about 5 cm. The gels were dried and autoradiographed as previously described in section 4.5.

5.5. **COMPETITION - BINDING ASSAYS**

The competition - binding experiments were carried out essentially as described in section 5.4, except that each reaction mixture contained a 100-fold excess of the unlabelled oligonucleotide duplex, in addition to the end-labelled duplex.

6.0. CLONING OF THE PUTATIVE BINDING SITE IN VECTOR pHISI-1 FOR USE IN THE YEAST ONE-HYBRID SYSTEM

6.1 PREPARATION OF OLIGONUCLEOTIDES CORRESPONDING TO THE PUTATIVE BINDING SITE FOR CLONING IN pHISi-1

Complementary strands of the oligonucleotide with four tandem copies of the putative binding site corresponding to nt sequence –609 to –577 (5'-CACCTTTTGTCAAACGACCGCTTCACATCTGGG-3') were synthesised as described in Appendix IV, except that the 5' terminal trityl group was left on the oligonucleotide to aid purification (see Appendix V). An *EcoR1* and an *Mlu1* overhang were also incorporated to facilitate cloning in the reporter vector.

Each oligonucleotide (75 μ l at a final concentration of 400 μ g/ml) were added to 50 μ l of 5X Reaction Buffer (from any sequencing kit, see Appendix II), mixed thoroughly and heated to 80° C for 10 min before slowly tempering down to room temperature before being used in the ligation reaction.

6.2. LIGATION OF THE OLIGONUCLEOTIDES CONTAINING THE BINDING SITE TO pHISI-I PLASMID

The plasmid pHISi-1 (10 μ g) was digested with *EcoR1* (20 U/ μ l) and *Mlu1* (10 U/ μ l) as previously described, however, following each digestion the restriction endonucleases were inactivated with TE- saturated phenol (2 extractions) followed by ether extraction (6 extractions) to remove any residual phenol, and subsequent ethanol precipitation and drying of the nucleic acid pellet.

The digested reporter vector (10 μ g in 10 μ l) and 10 μ l (4.0 μ g) of the annealed oligonucleotide with multiple copies of the binding site were added to 3 μ l 10X ligation buffer, 3 μ l of ATP (final concentration 2mM) and 4 μ l of T4 DNA Ligase (400 U/ μ l), and incubated overnight at room temperature.

Following incubation the ligation mixture was electrophoresed on a low melting temperature agarose gel; in order to separate the ligation product from unligated vector and excess annealed oligonucleotides. This gel slice containing the ligation product was melted in a water bath at 65°C, diluted one part to two parts in TE buffer (pH 8.0) (see Appendix II) before being used in the transformation protocol already outlined in Section 2.6.4.2.

6.3. SECREENING OF TRANSFORMED BACTERIAL COLONIES BY PCR

A master mixture for 15 X 50 μ l PCR reactions was prepared as described in Table 1:

HIS - RP Primer	15 μΙ	
HIS - 5372 Primer	15 µl	
10 X PCR Buffer	75 µl	
50 mM Magnesium Chloride	22 .5 μl	
2 mM dNTPs	75 μl	
Water	547.4 μl	

Table 1. Components of master mixture

After mixing the components of the master mixture thoroughly 48 pi aliquots were dispensed into labelled Eppendorf tubes and to each was added a bacterial colony, followed by 1 pi of Taq Polymerase (5 U/pl). Finally 50 pi of mineral oil was added to each tube prior to thermal cycling according to the following programme:

STEP 1	94 °C	for 7 min	
STEP 2	95 °C	for 1 min	
STEP 3	52 °C	for 1 min	Cycle Back to step 2 for 34 Cycles
STEP 4	72 °C	for 1 min	— ▶ t
STEP 5	72 °C	for 10 min	
STEP 6	4 °C	for ∞	

Any 'positive' clones (i.e. those indicating the presence of the binding site ligated to the reporter vector) were cultured in fresh L-broth, the plasmid DNA isolated by previously described small-scale procedures, followed by digestion with *EcoR1* and *Mlu1* according to the protocols outlined earlier. Further confirmation of the presence of the binding site in the vector was obtained from chain termination sequencing using the protocol outlined in section 4.2.

7.0. LARGE SCALE PREPARATION OF YEAST VECTOR CONTAINING THE BINDING SITE (REPORTER VECTOR)

Representative clones identified by PCR were inoculated into L broth (5 ml) containing 5μ l of ampicillin (50 mg/ml), and incubated at 37 °C for 18 h with constant shaking prior to the inoculation of 200 ml of Terrific broth (see Appendix II) containing 800 μ l of ampicillin (50 mg/ml) and incubation at 37 °C for a further 18 - 24 h.

The overnight cell suspension was transferred into 500 ml centrifuge bottles and centrifuged at 8 krpm for 15 min at 4 °C using a GS3 rotor, after decanting the supernatant the bottles were inverted and allowed to drain before resuspending the pellets in 10 ml of solution A (see Appendix II), this was followed by 20 ml of freshly prepared solution B (see Appendix II). The bottles were swirled for about 1 min until the solution became clear, and then incubated on ice for 10 min.

Chilled solution C (10 ml) (see Appendix II) was added and the bottles shaken vigorously to mix the contents, following a 5 min incubation on ice the bottles were centrifuged at 8 krpm for 15 min at 4 °C using a GS3 rotor.

After filtering the supernatant, 25 ml of isopropanol was added to each bottle followed immediately by centrifugation at 8 krpm for 10 min at 4 °C as above, the supernatant was discarded, the bottles inverted and the pellets air dried.

The pellets were resuspended in 2 ml of T.E. buffer (pH 8.0) (see Appendix II), 50 μ l of RNase A (10 mg/ml) was added to each sample before incubation at 37 °C for 30 min. The resulting mixture was then extracted with phenol-chloroform twice and chloroform- isoamyl alcohol twice. 500 μ l of

PEG 8000 (20 %) and $25\mu I$ magnesium chloride (1 M) were added followed by immediate centrifugation in a microfuge at room temperature for 10 min. The supernatant was discarded and the pellets washed twice in 70 % ethanol prior to air drying and resuspension in 500 μI of T.E. buffer (pH8.0).

Aliquots (10 μ l) were removed from each sample diluted to 1 ml with T.E buffer pH 8.0 and the concentration of DNA estimated using the Pharmacia Gene-Quant. An aliquot (1 μ l) was also analysed by agarose gel electrophoresis to check the purity and integrity of the DNA isolated.

8.0. PREPARATION OF THE REPORTER STRAIN FOR USE IN THE YEAST ONE-HYBRID SYSTEM

The one-hybrid system is an *in vivo* yeast genetic assay used for isolating cDNAs encoding proteins that bind to a short target DNA sequence e.g. *cis*-acting transcription regulatory elements. It is based on the interaction between a specific protein DNA-binding domain and the target DNA sequence. A cDNA that may encode a DNA-binding domain is expressed as a fusion protein with a target independent transcription activation domain e.g. GAL4 AD. To carryout a one-hybrid assay at least three copies of a putative binding sequence are inserted upstream of the *HIS3* gene minimal promoter in a specially designed plasmid e.g. pHISi-1, as in this case (thus giving a reporter construct). The reporter construct is integrated *in vivo* into a mutated *HIS3* gene in the yeast genome to create a yeast reporter strain with a normal copy of the *HIS3* gene. A library of cDNAs

encoding GAL4 AD fusions is expressed in the reporter strain. If an AD/library protein interacts with the target DNA sequence, *HIS3* promoter activity is increased resulting in increased amounts of histidine produced. Clones expressing histidine at a level higher than the reporter strain are selected by growth on medium lacking histidine in the presence of 3-aminotriazole (3-AT). In this thesis a rat brain cDNA-GAL4 library was screened for cDNA(s) encoding protein(s) binding to the –609nt to –577nt region in the mouse MBP promoter.

Diagrams illustrating the procedure are represented in figures 6a to 6d on the following pages.

Putative Binding Site

Amp

pHISi-1

FIGURE 6A. The reporter plasmid pHISi-I, carrying four tandemly repeated copies of the putative binding site, was linearised with *Xho I* restriction endonuclease at a unique site located within the *HIS3* gene before integration by homologous recombination into the mutated *HIS3* gene locus of yeast strain YM4271 (used as the host).

9 i-**V**KO**U-**

FIGURE 6B. A diagrammatic representation of the integration of the reporter plasmid into the yeast genome to produce a reporter strain carrying a normal copy of the *HIS3* gene.

fcoBI

GAL 4 AD

pGADIO 665 kb

T **m wmmimrt** mqmmn

A *SAL4 mtkm imtl&tiim SIfAtI

6AU AO

83/II MoI
fiamHI
CAS ATC TAT SAA TCGTAGATA CHAAA AAC
Bg/II stop slop

Rat brain cDNA sequences are cloned in the unique EcoRI restriction endonuclease site of the multiple cloning site of pGADIO.

FIGURE 6C. A diagrammatic representation of the yeast AD cloning vector.

(Adapted from the Clontech One-hybrid system protocol)

A sequence consisting of at least three copies of a putative protein-binding site (E) is inserted upstream of a reporter gene and integrated into the yeast genome (reporter strain). This reporter strain is transformed with a cDNA library that comprises a fusion of target specific binding proteins and the target-independent GAL4 activation domain. Binding of a cDNA/AD hybrid to one of the target elements results in the activation of reporter gene transcription.

FIGURE 6D. Diagrammatic representation of the activation of transcription following transformation of a cDNA/AD fusion library in the yeast reporter strain.

(Adapted from the Clontech One-hybrid system protocol)

8.1. LINEARISATION OF THE TARGET-REPORTER-VECTOR

Target-reporter plasmid containing the binding site was prepared as described in 7.0 and digested with *Xho1* enzyme. The reaction mixture consisted of 20 μ l DNA (20 μ g), 3 μ l of *Xho1* buffer (10X), 3 μ l (20 U/ μ l) of *Xho1* restriction enzyme, and 4 μ l of water. After digestion for 2.5 h at 37 °C the restriction endonuclease was inactivated with TE - saturated phenol (2 extractions). This was followed by ether extraction (6 times) to remove residual phenol. DNA was precipitated by a standard procedure (as described in 2.3).

The DNA pellet was resuspended in 25 μ I of sterile water and the completeness of the digestion was checked by agarose gel electrophoresis using undigested plasmid as a control.

8.2. PREPARATION OF COMPETENT YEAST CELLS

A single colony of *Saccharomyces cerevisiae* (strain YM4271) was inoculated into 1 ml of YPD medium (see Appendix II) and vortexed vigorously to disperse the cells. The cell suspension was transferred to 50 ml of YPD medium and incubated at 30 °C for 18 to 24 h with shaking until the culture was saturated.

An aliquot of this culture (10 – 15 ml) was transferred to 100 ml of fresh YPD medium to give an initial absorbance at 600 nm of between 0.2 - 0.3 and incubated at 30 °C with shaking for 3 - 4 h.

The cells were collected by centrifugation in 50 ml tubes at 2.2 krpm for 5 min at room temperature using the SL50T rotor, the pellet rinsed in 25 ml of TE buffer pH 7.5 (see Appendix II) and the centrifugation repeated. The cell pellet was resuspended in 1 ml of freshly prepared TE/lithium acetate solution.

8.3. TRANSFORMATION OF COMPETENT YEAST CELLS

Linearised reporter vector carrying four copies of the binding site (approximately $1\mu g$ in 20 μl of TE buffer) was mixed with carrier DNA (100 μg in 10 μl), and added to 100 μl of yeast competent cells.

As a negative control 100 μ g of carrier DNA (sheared and denatured) was added to 20 μ l (1 μ g) of undigested reporter vector carrying the binding site, mixed and added to 100 μ l of yeast competent cells. The positive control consisted of 100 μ g of carrier DNA (sheared and denatured) and 20 μ l (1 μ g) of Xho1digested p53HIS plasmid containing three tandem repeats of the consensus p53 binding site.

Freshly prepared PEG/LiAc solution (600 μ l) was added to each transformation mixture followed by incubation with shaking at 30 °C for 30 min to 1 h. 70 μ l of DMSO were added to each tube, and a heat shock at 42 °C for 15 min followed by an incubation on ice for 2 min was performed. The cells were spun down at 14 krpm for 5 – 10 sec in a microfuge, the supernatant removed and the pellet resuspended in 150 μ l of TE buffer.

The pHISi-1 and the p53HIS transformation mixtures were then plated onto SD/-HIS plates, incubated for 4 to 6 days at 30 °C to select for colonies with an integrated reporter gene. Colonies containing a functional integrated reporter gene were distinguishable by their larger size.

Master stock cultures of the strain containing the integrated target – reporter constructs were grown in SD/-HIS medium containing 25 % glycerol and kept at –70 °C until required.

8.4. ANALYSIS OF PUTATIVE REPORTER STRAIN CONSTRUCTS (THE RAPID ISOLATION OF YEAST CHROMOSOMAL DNA)

A culture (10 ml) of the yeast colony to be analysed was grown overnight to stationary phase in YPD medium at 30 °C, with shaking.

Following centrifugation at 3 krpm at room temperature the cell pellet was resuspended in 500 μ l water, and transferred to a sterile Eppendorf tube to be pelleted again. The cell pellet was disrupted in 200 μ l of breaking buffer (see Appendix II), and 200 μ l (approximately 0.3 g) of acid-washed glass beads and 200 μ l of phenol/chloroform/isoamyl alcohol were added and vortexed at high speed for 5 min. Following the addition of 200 μ l of TE buffer pH 7.5 (see Appendix II) and brief vortexing the mixture was microfuged at full speed for 5 min at room temperature before and the aqueous layer was transferred to a fresh Eppendorf tube.

Absolute ethanol (1 ml) was added to the aqueous phase, mixed by inversion before microfuging at full speed for 5 min at room temperature. The

pellet was resuspended in 400 μ l of TE buffer, RNase A (3 μ l of a 10 mg/ml stock) was added, mixed and incubated at 37 °C for 5 min.

The DNA was recovered by precipitation with 10 μ l of 4M ammonium acetate and 1 ml of ethanol and microcentrifugation at full speed for 5 min at room temperature. The DNA pellet was dried *in vacuo*, resuspended in 25 μ l of TE buffer and used in the PCR screening protocol as described previously.

8.5. TESTING NEW REPORTER STRAINS FOR BACKGROUND HIS3 EXPRESSION

The colonies identified as containing integrated target – pHISi-1 were screened for background *HIS3* expression.

A single colony was picked from the SD/-HIS plate and suspended in 1 ml of TE buffer in a sterile Eppendorf tube. The cell suspension (5 μ l) was pipetted onto the surface of an SD/-HIS plate containing either 0, 5, 10, 15, 30, 45, or 60 mM 3 – Aminotriazole (3 – AT). The plates were incubated for 4 to 6 days at 30 °C and the results analysed.

Yeast colonies growing on the SD/-His + >45 mM 3 - AT plates were considered to have high (very leaky) background *HIS3* expression. Similarly if the yeast colony growth was inhibited on the SD/-HIS + < 45 mM 3 – AT plates then the background *HIS3* expression was low.

Colonies of *HIS3* reporter strain with the lowest background level of HIS3 expression were selected for use in the one-hybrid library screening protocol.

Several SD/-HIS/-LEU plates containing the optimal concentration of 30 mM 3 – AT were prepared. The 3 – AT was present to maintain a positive selection pressure on the reporter clones. The plates were dried before spreading the cells as condensation could cause localised variations in the 3 – AT concentration, that could lead to false positive results

9.0. THE SEARCH FOR TRANSCRIPTION FACTORS

9.1. SCREENING OF A cDNA / AD FUSION LIBRARY

The preparation of competent reporter strain cells was carried out essentially as described in section 8.2, the only modification being the inoculation of reporter strain colonies into liquid SD/-His medium containing 30 mM 3 – AT, instead of YPD medium.

cDNA/AD fusion library (approximately 20 μ g in 5 μ l of water) was mixed with carrier DNA (2 mg in 200 μ l) and added to 1 ml of competent reporter strain cells. Freshly prepared LiAc/PEG solution (6 ml) was added to each transformation mix followed by incubation at 30 °C for 30 min to 1 h with constant shaking. Then 700 μ l of DMSO were added to each tube followed by a heat shock at 42 °C for 15 min and an incubation on ice for

2 min was performed. The cells were pelleted at 2.2 krpm for 5 min, and resuspended in 2 X 25 ml of SD/-His liquid medium in two separate 50 ml tubes.

After incubation at 30 °C for 1 h with constant shaking, the cells were pelleted at 2.2 krpm for 5 min at room temperature and resuspended in 7 ml of TE buffer and spread on the SD/-His/-Leu + 30 mM 3 – AT plates.

It should be noted that immediately after pipetting the cells onto the plate they were spread over the surface to prevent localised dilution of the 3 – AT concentration.

The plates were incubated at 30° C for 4 to 6 days. Large colonies resulting from His3 activation were subcultured into fresh SD/-His/-Leu/ + 30 mM 3 – AT medium and used to isolate plasmid DNA for further analysis.

9.2. ANALYSIS OF PUTATIVE CLONES CARRYING AN AD FUSION LIBRARY PLASMID (RAPID ISOLATION OF YEAST PLASMID DNA)

Representative clones carrying putative cDNA/AD fusion library plasmid were inoculated into 5ml of SD/-HIS/-Leu liquid medium containing 30 mM 3 – AT and incubated at 30° C for 48 h with constant shaking.

The cells were pelleted by centrifugation at 2.2 krpm for 5 min at room temperature; the pellets were washed with TE buffer and resuspended in 200 µl of breaking buffer. Acid-washed glass beads 200 µl (approximately 0.3 g) and 200 µl of phenol/chloroform/iso-amyl alcohol were added, before

vortexing at high speed for 2 min. After centrifugation at 14 krpm for 10 min at room temperature in a microfuge, the supernatant was transferred to a clean Eppendorf tube and the plasmid DNA precipitated with 0.1 volume sodium acetate (3 M pH 6.0), 1 μ l glycogen (at a concentration of 1 mg/ml), and 2.5 volumes of ethanol.

After incubation at –70° C for 30 min, the plasmid DNA was pelleted by microcentrifugation at 14 krpm for 10 min at room temperature, washed with 70 % ethanol, dried *in vacuo* and resuspended in 20 µl TE buffer.

9.3. ANALYSIS OF PUTATIVE CLONES CARRYING A LIBRARY PLASMID BY PCR

An aliquot (2.5 μ l) of the plasmid described in section 9.2 was analysed by PCR using the library primers,

AD10[S] 5'-CTATTCGATGATGAAGATACC-3' (located between nucleotides 788 to 808 on the plasmid sequence in Appendix VI), and

AD10[R] 5'-CACAGTTGAAGTGAACTTGCG-3' (located between nucleotides 903 to 883), essentially as described in section 6.3 except that the annealing temperature of the primers to template during thermal cycling was reduced to 50° C.

The products of the PCR were analysed by agarose gel electrophoresis. Plasmid DNA (10 μ l) from positive clones carrying a library plasmid identified by PCR was transformed into *E. coli* strain DH5 α using the procedure described in section 2.6.4.2.

It should be noted that plasmid DNA isolated by the technique described in section 9.2. is not of suitable quality for sequencing due to yeast genomic DNA contamination, therefore, transformation into *E. coli* cells is essential.

9.4. IDENTIFICATION OF DNA – BINDING PROTEINS BY AUTOMATED SEQUENCING AND DATABASE SEARCHES

Plasmid DNA was isolated and purified from the transformed *E. coli* cells using the Modified Clewell and Helinski technique and centrifugation to equilibrium in caesium chloride-ethidium bromide gradient as described in sections 2.2. and 2.3. respectively.

An aliquot of plasmid DNA (20 μ l at a concentration of 0.1 μ g/ μ l) was sequenced automatically.

From the sequence data obtained comparisons were made with those of known nucleotide and protein sequences for transcription factors on other databases (e.g. EMBL, Genbank and Swissprot) using the FastA and Blast search tool.

Chapter 3

Results

3.1. Sub – cloning of the myelin basic protein gene promoter in the plasmid pBluescript for the purposes of sequencing and functional characterisation

The 6.02 kb plasmid pEX1 (a gift from Arthur Roach Division of Biology, California Institute of Technology, Pasadena, California) shown schematically in Figure 7 contains the promoter region and a segment (including exon 1 which is shown cross-striped in blue) of the mouse myelin basic protein gene. On the basis of the restriction map of this plasmid a strategy was designed to obtain the fragment of DNA carrying the promoter region by excising it with *Hind III* and *Sac I* restriction endonucleases. This DNA fragment was subsequently used in cloning for further studies.

Analysis of the restriction endonuclease digestion products (Figure 8 lane 3) shows three distinct bands ranging in size from 1.40 to 2.68 kb. The smallest fragment (1.40 kb) represents the *Hind III – Sac I* digestion product containing the promoter region and segment including exon 1 of the myelin basic protein gene. The 2.68 kb digestion product represents the *Hind III – Hind III* fragment of the plasmid pUC13 (shown cross-striped in red in Figure 7), which was used as the cloning vector, and the third band (1.94 kb) represents the *Sac I – Hind III* fragment of the myelin basic protein gene.

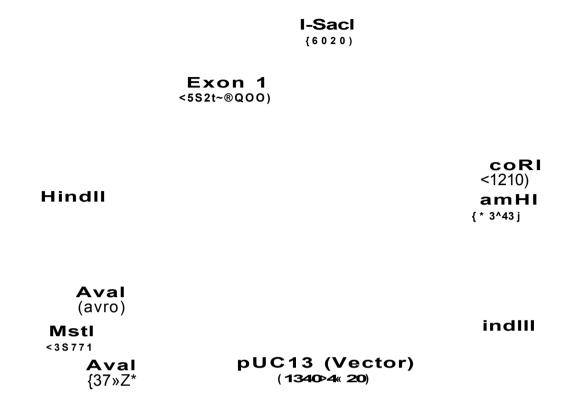


Figure 7. Diagrammatic representation of the recombinant plasmid pEX1 containing the promoter region and segment (including exon 1) of the mouse myelin basic protein gene.

The products of the digestion of pEX1 with *Hind III* form two bands (Lane 1); the slower band corresponds to the larger 3.34 kb fragment, which contains the promoter region and segment (including exon 1) of the mouse myelin basic protein gene, and the smaller fragment (faster band) containing the 2.68 kb part of vector pUC13.

Only a single band corresponding to the linearised 6.02 kb plasmid pEX1 after digestion with *Sac I* can be seen in lane 2.

Uncut pEX1 DNA (0.8 μ g) used as a control shows more than one band, these represent the supercoiled form (lower band) and the open circular form (upper band) of the plasmid (figure 8, Lane 4).

Molecular Size (bp) 21226 5148 4268 3530 2027 1 1584 1375

Figure 8. Analysis by agarose gel (1%) electrophoresis of the restriction endonuclease digestion products of the plasmid pEX1 with *Hind III and Sac I.*

Lane M. A X DNA molecular size marker (*EcoR1 - Hind III* double digest of X phage DNA).

The figures in red represent the molecular size in base pairs.

- Lane 1. Digestion of the plasmid pEX1 with *Hind III* restriction endonuclease.
- Lane 2. Plasmid pEX1 following digestion with *Sac I* restriction endonuclease.
- Lane 3. Digestion of the plasmid pEX1 with a combination of *Hind III* and *Sac I*.
- Lane 4. Undigested plasmid pEX1 (0.8 \ig).

The fragment containing the MBP promoter region was excised from the gel, the DNA electro-eluted, and purified by ion exchange chromatography on DE-52 cellulose. Following ethanol precipitation the DNA was resuspended in sterile deionised water and analysed by agarose gel electrophoresis (Figure 9, Lane 2).

The purified 1.40 kb DNA fragment containing the promoter region of the mouse myelin basic protein gene was then cloned into the plasmid vector pBluescript (a map of this plasmid is given in Appendix VI).

For this purpose, pBluescript was digested with *Sac I* and *Hind III* restriction endonucleases (data not shown). Two different restriction endonucleases were used to prevent religation of the pBluescript vector. The restriction endonucleases were inactivated by treating the digestion mixture with phenol. Water-saturated ether was then added to remove any residual phenol, and the plasmid DNA ethanol precipitated. Following resuspension of the plasmid pBluescript in deionised water the purified 1.40 kb fragment was added and ligation performed as described in 2.6.3.

Figure 9. Analysis by agarose gel (1%) electrophoresis of the 1.4 kb fragment containing the promoter region and segment of the mouse myelin basic protein gene after isolation and purification from the plasmid pEX1.

- Lane 1. A X DNA molecular size marker (*EcoR1 Hind III* double digest of X phage DNA).
- Lane 2. Purified *Hind III Sac I* fragment containing the promoter region of the mouse myelin basic protein gene.

Competent cells were prepared by growing $E \, coli$ (strain DH5 α) to an absorbance of 0.5 (at 650 nm) followed by treatment with ice-cold calcium chloride as described in 2.6.4.1. The ligation product consisting of pBluescript, with the promoter region and segment of the mouse myelin basic protein gene, was mixed with the competent cells. A heat shock at 42° C followed by an incubation on ice was performed. After incubation at 37° C for 1 h, to allow for the expression of the β -lactamase gene carried by the plasmid pBluescript, the bacteria were spread over the surface of predried AIX plates (Figure 10).

Many vectors including pBluescript contain the regulatory sequences and coding region for the first 146 amino acids (called the α -peptide) of the β -galactosidase gene (IacZ). Embedded in this coding region is a multicloning site. Vectors of this type are used in host cells that are able to synthesise the remainder of the β -galactosidase gene. Neither the plasmid nor the host-encoded fragments are active, but they can associate to form an enzymatically active protein. This process is called α -complementation. The Lac^+ bacteria that result from α -complementation are easily recognised because they form blue colonies in the presence of the chromogenic substrate X-gal. Insertion of a fragment of DNA into the multicloning site of the plasmid usually results in the production of an NH $_2$ – terminal fragment incapable of α -complementation (insertional inactivation), so bacteria carrying recombinant plasmids will form white colonies.

The chemical analogue of lactose (IPTG), which cannot be cleaved by the enzyme β -galactosidase, is used as an inducer of the *E.coli lac* operon. It

binds to and inactivates the *lac* repressor; therefore, incubation with IPTG results in the maximum expression of genes cloned into suitable vectors.

When used in combination with X-GAL, as in this project, it can be used as a selection system for recombinant plasmids.

Selection by ampicillin resistance was also used to prevent the growth of untransformed host cells.

White colonies were considered putative recombinant clones carrying the promoter region of the myelin basic protein gene and analysed further.

Blue colonies resulting from inefficient digestion were considered negative since they only contained the plasmid vector.

Figure 10. Selection of putative recombinant clones carrying the promoter region and segment (including exon 1) of the *MBP* gene using a selective medium containing the *E. coli lac* operon inducer IPTG and the chromogenic substrate X-gal.

Several (five) white colonies were grown in L-broth containing ampicillin (50 μ g/ml) with vigorous shaking. The plasmid DNA was isolated using a small-scale procedure based on the alkaline lysis method of Birnboim and Doly (1979).

Analysis of the plasmid DNA by agarose gel electrophoresis (Figure 11) showed one band, this represents the supercoiled form of a plasmid of approximately 4.4 Kb which corresponds to pBluescript (3.0 Kb) containing the 1.4 Kb myelin basic protein gene promoter insert, (Figure 10, Lanes 1 - 5). pBluescript without the myelin basic protein gene insert was run as a control sample and is shown in Figure 11, Lane 6 as a 3.0 Kb band. An EcoR1 - Hind III double digest of λ phage DNA was used as a molecular size marker (lane M) to determine the size of the plasmid DNA band isolated.

Moleculai Size (bp) 21226-----3

Figure 11 Analysis by agarose gel (1%) electrophoresis of plasmid DNA isolated from putative recombinant clones carrying the promoter region of the mouse myelin basic protein gene.

Lane M. A X DNA molecular size marker (*EcoR1 - Hind III* double digest of X phage DNA).

Lanes 1 - 5. Plasmid DNA isolated from the putative clones carrying the myelin basic protein gene insert.

Lane 6. pBluescript (without the *MBP* gene insert) run as control.

To confirm the presence of the 1.4 Kb fragment containing the myelin basic protein gene promoter the plasmid DNA was digested with a combination of *Hind III* and *Sac I* restriction endonucleases, and the products analysed by agarose gel electrophoresis (Figure 12).

Two distinct bands can be seen:

- i.) a 1.4 kb band putatively corresponding to the *HindIII SacI* fragment of the promoter region and segment including the first exon of the mouse myelin basic protein gene.
- ii.) a 3.0 kb band that corresponds to the vector pBluescript. The weak band at 4.4kb is the remainder of undigested plasmid product from the recombinant plasmid carrying the myelin basic protein gene insert. Figure 12, Lane 6 shows only a single band of linear pBluescript after digestion with Hind III and Sac I restriction endonucleases as expected. A λ DNA molecular size marker (*EcoR1 Hind III* double digest of λ phage DNA) was used to determine the size of the digestion products (Lane M).

Plasmid DNA was isolated on a large scale from one of the positive clones and used for DNA sequencing studies.

Molecular Size (bp) 5148 42681 3530

- Figure 12. Analysis of the putative clones carrying the *MBP* gene promoter following digestion with a combination of *Hind III* and *Sac I* restriction endonucleases by agarose gel (1%) electrophoresis.
- Lane M. AX DNA molecular size marker (*EcoR1 Hind III* double digest of X phage DNA).
- Lanes 1 5. Restriction endonuclease digestion products of the plasmid DNA isolated from the putative positive clones carrying the myelin basic protein gene insert.
- Lane 6. Linear pBluescript following digestion with *Hind III* and *Sac I* restriction endonucleases.

3.2. Sequencing of the *Hind III – Sac I* restriction fragment containing the MBP promoter

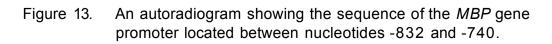
Single-stranded DNA from a positive clone was prepared using alkaline denaturation followed by chromatography on Sephacryl S-400 columns. DNA obtained by this method is of high enough purity to be used directly for sequencing.

Sequencing was done manually using the chain termination method of Sanger *et al.* (1977), involving the enzymatic synthesis of a new DNA strand complementary to the template using a DNA polymerase enzyme (e.g. Sequenase). Synthesis of the new DNA strand continues in the presence of the deoxynucleoside triphosphates until the incorporation of a dideoxynucleotide, at which point the growing chains are terminated, this occurs due to the lack of a free 3' hydroxyl group on the dideoxynucleoside triphosphate. The ratio of deoxynucleoside triphosphates (dNTPs) to dideoxynucleoside triphosphates (ddNTPs) in the labelling mix is 10 : 1. Incorporation of α -35S – dATP in the growing chains enabled visualisation of the sequencing products by autoradiography.

An oligonucleotide primer corresponding to the universal priming site (located within the multicloning site) of the plasmid pBluescript SK⁺ (see plasmid map in Appendix VI) was synthesised.

Universal primer sequence	5'- TAAAACGACGGCCAGT -3'				

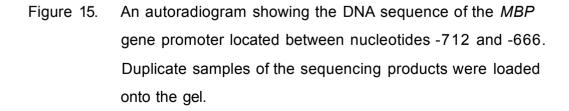
From the sequence determined using the universal primer another primer (corresponding to the sequence between nt -1168 to -1154 of the *MBP* gene) was prepared and further sequence data obtained. The procedure was repeated until the 1.4 kb *Hind III – Sac I* fragment carrying the promoter and segment (including exon 1) of the mouse *MBP* gene had been established. The sequences and locations of the primers are shown in Table 2.


Similarly sequence data for the reverse (complementary) strand was determined using the T3 promoter primer as the starting primer together with two other primers, which are represented in Table 2.

T3 promoter primer sequence	5'- AATTAACCCTCACTAAAGGG -3'				

An autoradiogram (Figure 13) shows part of the sequence obtained (approximately 170 bases) of the 1.4 kb fragment containing the promoter region and segment of the myelin basic protein gene. The 93 bases identified on the autoradiogram are located between nucleotide positions – 832 and – 740. Further autoradiogram showing sequencing data can be seen in figures 14 and 15 and represent the myelin basic protein promoter region sequence located between nucleotides –1319 and –1244 and –712 and –666. respectively.

	Sequencing Direction	Nucleotide Position	Oligonucleotide Primer : Sequences
H	"E o _J _	-1168 0-1154	5'-CATGGGTGCATAGAT-3'
	υ Θ	-939 o - 923	S'-CTAAGGTCAGTAATAGA-S'
	73 	-824 o - 806	5'-TGTGCTTGGTTGTGGAAGT-3'
	% 8 9	-590 o - 575	5'-GCTTCACATCTGGGGC-3'
	₽ 0 ©	-442 o - 425	5'-AGTGGTTCTTTTATTGAG-3'
	e e e e e e e e e e e e e e e e e e e	-244 0-228	3'-CCGGGTGTAAGTATAG-5'
	©	-66 0-51	3'-GGGCTCTACGGGGCCC-5'


Table 2. The sequences of the oligonucleotide primers synthesised in the laboratory for determining the sequence of the *Hind III* - *Sac I* fragment of the mouse myelin basic protein gene promoter.

■138gi

Figure 14. An autoradiogram showing the DNA sequence of the *MBP* gene promoter located between nucleotides -1319 and -1240. Duplicate samples of the sequencing products were loaded onto the gel, with the exception of the sequencing product labelled universal primer.

The sequence of the *Hind III - Sac I* fragment (located between nucleotide positions -1319 and +227) containing the promoter region and segment (including exon 1) of the mouse myelin basic protein gene as determined from the sequencing gels is outlined as follows:

DNASIS ***** DNA SEQUENCE FILE LIST *****

*** INPUT INFORMATION ***

FILE: MBP PROMOTER.SEQ

*** SEQUENCE LIST *** (DOUBLE STRANDED)

- -1319 -1310 -1300 -1290

 AAGCTTTGA GAGAAAAGGG ACCAGATCTT ATTCCTCACC

 TTCGAAACT CTCTTTT CCCTGGTCTAGAA TAAGGAGTGG
- -1280 -1270 -1260 -1250
 GTGGCTTTAA CACTTAGAGA AAATGCATCC CCTCTAATCA
 CACCGAAATT GTGAATCTCT TTTACGTAGG GGAGATTAGT
- -1240 -1230 -1220 -1210

 ATAAGTCATC GACAGTGGGT AGATGGAGGA ACGGCAGTCG

 TATTCAGTAG CTGTCACCCA TCTACCTCCT TGCCGTCAGC
- -1200 -1190 -1180 -1170
 GTAGTAGGAT GCGTGCTAAC GATAGTCTCG T C fB H
 CATCATCCTA CGCACGATTG CTATCAGAGC ACGTACCCAC

-1160 -	1 1 5 0	-1140	-1130
fflg/M c C G	TGGGCAGGT	G GACAAGGTGG	GGGTGGATAA
GTATCTAGGC	ACCCGTCCAC	CTGTTCCACC	CCCACCTATT
-1120 -1	110	-1100 -	1090
AGAAGTGGGT	AGATGATTGA	A TGTTAGGTAA	ATATCACTGG
TCTTCACCCA	TCTACTAACT	ACAATCCATT	TATAGTGACC
-1080 -1	070	- 1 0 6 0 -	1 0 5 0
GTGGACAGAT	GGGTGGTAGG	G TGGATGGATG	GTTAGAATAG
CACCTGTCTA	CCCACCATCO	CACCTACCTAC	CAATCTTATC
-1040 -1	030	- 1 0 2 0 -	1010
TCAGAAGAGG	GATGGATTGA	A TAAGGTGAAC	AGATGATAAA
AGTCTTCTCC	СТАССТААСТ	ATTCCACTTG	TCTACTATTT
-1000 -9	9 0	- 9 8 0 -	9 7 0
TGGGTGATAG	ACTGGAAGGG	TTGTCAAAAG	AGGATAAGGG
ACCCACTATC	TGACCTTCCC	AACAGTTTTC	TCCTATTCCC
-960 -9	9 5 0	- 9 4 0 -	9 3 0
TTCACACTCG	ATCGGCATAA	AGATTCCAGT	CATTATCTCA
-920 -9	010	-900 -	8 9 0
TGGGAGAAGA	GGTTAAGTTA	CATCCATTTA	AACCTCACAC
ACCCTCTTCT	CCAATTCAAT	GTAGGTAAAT	TTGGAGTGTG

- {	3 8 0	-	8 7 0	-	8 6 0	-	8 5 0
	GAAGCTGAG	Т	GGGAATGGA	С	TTGCTGCCG	Т	TGGTGAGGAA
	CTTCGACTC	Α	CCCTTACCT	G	AACGACGGC	Α	ACCACTCCTT
- 8	8 4 0	- 8	3 0	- 8	2 0	- 8	1 0
	TCGCAACGT	Α	AAGGGCACA	С	GAACCAACA	С	CTTCACGAGT
- 8	8 0 0	- 7	9 0	- 7	8 0	- 7	7 0
	GGTCCCACA	Т	GAAGCAGTC	Α	GGTTACTGC	G	GCTTACAGAG
	CCAGGGTGT	Ά	CTTCGTCAG	Γ	CCAATGACG	0	CGAATGTCTC
-	7 6 0	- 7	5 0	- 7	4 0	- 7	3 0
	GAGCCAGAT	С	CAAATGCCC)	GAGTAAGCA	2	GTCCCCGAGC
	CTCGGTCTA	G	GTTTACGGG	3	CTCATTCGT	3	CAGGGGCTCG
-	7 2 0	- 7	1 0	- 7	0 0	- 6	9 0
	CAGAGGCCT	С	CAGCGGAAT)	CGGGAGAGG	3	ATTGCTCAGT
(GTCTCCGGA	G	GTCGCCTTAC	3	GCCCTCTCC	2	TAACGAGTCA
- (6 8 0	- 6	7 0	- 6	6 0	- 6	5 0
(GCCCTGCTT	С	CCTGGACTG	Γ	AAGCTGCAG	4	AAGATGTGGG
(CGGGACGAA	G	GGACCTGACA	4	TTCGACGTC	Γ	TTCTACACCC
- (6 4 0	- 6	3 0	- 6	2 0	- 6	1 0

AAGTCCTGTT CTCCACTGAG AACACTAAAA GCACCTTTTG

TTCAGGACAA GAGGTGACTC TTGTGATTTT CGTGGAAAAC

AGTTTGCTGG CGAAGTGTAG ACCCCGAACA CGTGACCACC

- 5 5 0 - 5 4 0 - 5 6 0 - 5 3 0 CCTTTTAAAC CAGAGACAAC CCACAAGATA CCTAACCTGC GGAAAATTTG GTCTCTGTTG GGTGTTCTAT GGATTGGACG

- 5 2 0 - 5 3 0 - 5 2 0 - 5 1 0 GGGGCTCTCT GGTACAGTGA GCAACTCAGG AAATGCTTTG CCCCGAGAGA CCATGTCACT CGTTGAGTCC TTTACGAAAC

-480 -470 -460 - 4 5 0 GCTTGATTGC TGTGGGCTCT CAGGCCATCG CCCTCTGGil CGAACTAACG ACACCCGAGA GTCCGGTAGC GGGAGACCTC

-440 -430 - 4 2 0 - 4 1 0 TGAAGATTGG CCCCTGAGCC ACCAAGAAA TTACTCTTGG ACTTCTAACC GGGGACTCGG

-400 - 3 9 0 - 3 8 0 - 3 7 0 ATGTATACCA AGCAAGCTCA ATCCAGGTTA GCTCCCTCTG TACATATGGT TCGTTCGAGT TAGGTCCAAT CGAGGGAGAC

- 3 6 0 - 3 5 0 - 3 4 0 - 3 3 0 GTTGGGGCAA GCTAACGTGC TCCTTGGGCC CCGCGCGTAA CAACCCCGTT CGATTGCACG AGGAACCCGG GGCGCGCATT

	- 3 1 0		
CTGTGCGTTT	TATAGGAGAC	AGCTAGTTCA	AGACCCCAGG
GACACGCAAA	ATATCCTCTG	TCGATCAAGT	TCTGGGGTCC
- 2 8 0	- 2 7 0	- 2 6 0	- 2 5 0
AAGAAAGCGG	CTTTGTCCCC	CTCTAGGCCT	CGTACAGGCC
TTCTTTCGCC	GAAACAGGGG	GAGATCCGGA	GCATGTI
- 2 4 0 -	2 3 0	2 2 0 -	2 1 0
CACATTCATA	TCTCATTGTT	GTTGCAGGGG	AGGCAGATGC
-200 -	190 -	180 -	1 7 0
GATCCAGAAC	AATGGGACCT	CGGCTGAGGA	CACGGCGGTG
CTAGGTCTTG	TTACCCTGGA	GCCGACTCCT	GTGCCGCCAC
-160 -	150 -	1 4 0 -	1 3 0
ACAGACTCCA	AGCACACAGC	AGACCCAAAG	AATAACTGGC
TGTCTGAGGT	TCGTGTGTCG	TCTGGGTTTC	TTATTGACCG
-120 -	110 -	100 -	9 0
AAGGCGCCCA	CCCAGCTGAC	CCAGGGAACC	GCCCCACTT
TTCCGCGGGT	GGGTCGACTG	GGTCCCTTGG	CGGGGGTGAA
■ 80 -	7 0 -	6 0 -	5 0
GATCCGCCTC	TTTTCCCGAG	ATGCCCCGGG	AAGGGAGGAC

CTAGGCGGAG A A A A ||H j^A B H H H r^{\sim} TTCCCTCCTG

KEY:

Red

Hind III (nt -1319 t0 -1314) and Sac I (nt +221 to +226)

restriction endonuclease sites respectively.

Green

Restriction endonuclease sites.

Acc I	GT/ATAC	-398 to -393
Alw44 I	G/TGCAC	-572 to -567
Bgl II	A/GATCT	-1297 to -1292
Dra I	TTT/AAA	-894 to -889
Hae III	GG/CCA	+89 to +93
Hsp II	CATG/	+102 to +108
Sma I	CCC/GGG	-56 to -51
Stu I	AGG/CCT	-717 to -712
Xma I	C/CCGGG	-56 to -51

Blue

Primer sequences as shown in table 2.

Yellow

Identified protein binding sites as shown in table 3.

The data obtained from the sequencing gels representing the promoter region of the mouse myelin basic protein gene, located between nucleotides –1319 and +227, was used as a query or probe sequence to carry out a FastA sequence alignment search against the EMBL rodent database. A significant alignment was found with a sequence published by Miura et al., (1989 and updated March 2000), which showed that the two sequences were essentially identical (99.6%).

However, there are three minor discrepancies with the published database sequence. These discrepancies are located within the 5' untranslated region at nucleotide positions –1202 to –1201, –1181 to –1180 and –1152 to –1151 respectively relative to the transcriptional start site. Miura *et al.*, (1989) shows the sequence at these positions to be GC yet the manual sequencing gels indicate the sequence to be CG. It is possible that these differences could be dinucleotide polymorphisms, whereby the definition of a polymorphism is applied in its loosest sense i.e. any non-pathogenic sequence variant.

Transcription of many genes begins by the binding of RNA polymerase II, mediated by the TFII group of ubiquitous transcription factors, to the 'TATA' sequence located at a position upstream of the transcriptional initiation site. The MBP promoter, however, does not contain typical TATA (consensus <u>TATA(A/T)A(A/T))</u>, CAAT (consensus <u>GGCCAATCT)</u> and GC (consensus GGGCGG) boxes, but contains TATA (TTCAAA) and CAAT (CACTT) box-like sequences located at positions –34 and –85 respectively. It is thought that the myelin basic protein promoter may utilise specific TATA and CAAT box factors (Tamura *et al.* 1989). A GC box-like sequence (CCGCCC) has also been identified at position –92 to which a specific Sp1-like transcription factor binds (Tamura *et al.* 1989).

From database searches, published papers by Miura *et al.* (1989) and Tamura *et al.* (1990) and experimental approaches a number of important DNA-binding sites for transcription factors have been identified in the mouse myelin basic protein gene promoter (a summary of the positions of these binding sites is shown in Table 3).

It has been suggested (Aoyama *et al.* 1990) that the mouse myelin basic protein gene promoter from nucleotide positions –253 to +62 is responsible for efficient and tissue-specific transcription, and that this region can be further divided into the proximal element (–53 to +62 containing the TATA box-like element at –34) which is required for basal transcription and the distal element (–253 to –54) which is responsible for brain specificity.

Nucleotide	Nucleotide Sequence	Comments	Reference	
Position -34 to -28	5-TTCAAA-3'	TATA-like sequence	Miura <i>et al.</i> (1989)	
-85 to -81	5-CACTT-3'	CAAT box like	Miura et al.	
-65 (0 -61	5-CAC11-3	sequence	(1989)	
-92 to -87	5-CCGCCC-3'	GC box	Miura <i>et al.</i> (1989)	
	5'-	Myelin regulation	Haque <i>et al.</i>	
-130 to -93	AATAACTGGCAAGGCGCCCAC	factor-1 (MRF-1)	(1994)	
	C CAGCTGACCCAGGGAA-3'	lactor-1 (IVIIXI -1)	(1994)	
-125 to	5'-CTGGCAAGGCGCCCA-3'	NFI-like binding site	Miura et al.	
I -111	5-CTGGCAAGGCGCCCA-3	NFI-like billuling site	(1989)	j
-132 to	5'-CAAAGAATAAC-3'	MEBA	Taveggia <i>et</i>	
-125	5-CAAAGAATAAC-3	IVIEDA	al. (1998)	
-160 to	5-ACAGACTCCAAGCACACA	Box I and Box II	Torron et al.	
-127	GCAGACCCAAAGAATA-3'	motif	(1997)	
-183 to	5'-ACCTCGGCTGAGGACACG-	Thyroid hormone	Farsetti et al.	
-168	3'	response element	(1992)	
-648 to	5-GATGTGGGAAGTCC-3'	SV40-like enhancer	Miura et al.	
-635	5-GATGTGGGAAGTCC-3	core	(1989)	
-675 to	5' GCTTCCCTGGACTGTAA	Fyn response	Umemori et	
-647	GCTGCAGAAAGA -3'	element	al. (1999)	

Table 3: Important protein-binding sites identified in the sequence of the Hind III - Sac I fragment of the mouse myelin basic protein promoter region and segment (including exon 1).

Myelin gene expression factor-2 (MyEF-2) is a protein of 436 amino acids isolated from mouse brain that binds specifically to the noncoding strand of the proximal regulatory sequence known as MB1 (located between nt –50 to –14 relative to the transcription initiation site) and represses transcription of the MBP gene in transient transfection assay (Haas et al. 1995). MyEF-2 contains the RNA recognition motif (RRM)-type nucleic acid binding motif common to a growing family of proteins that bind singlestranded DNA and RNA in a sequence-specific manner (Kenan et al. 1991). MyEF-2 mRNA is developmentally regulated in mouse brain with peak expression occurring at post-natal day 7, before the onset of myelin basic protein expression. MyEF-2 mRNA expression follows that described for SCIP (also called Oct-6 or Tst-1), a POU domain transcription factor that represses several myelin – specific genes notably myelin basic protein and P_o glycoprotein expression. The MyEF-2 gene maps to mouse chromosome 2 (Haas et al., 1995). Muralidharan et al. (1997) using a bandshift assay with purified MEF-1/Purα and MyEF-2 demonstrated that the binding of MyEF-2 to its target sequence is inhibited by MEF-1/Purα. Under similar conditions, MyEF-2 enhances the association of MEF-1/Purα with MB1 DNA. MEF-1/Purα binds to MB1 in mono- and dimeric forms, and inclusion of MyEF-2 in the binding reaction increases the dimeric association of MEF-1/Purα with the MB1 sequence. The use of MEF-1/Purα variants in the bandshift assay suggested that two distinct regions of this protein may be involved in its binding to the MB1 regulatory sequence, and its ability to block MyEF-2 interaction with the MB1 sequence.

Steplewski *et al.* (1998) reported the isolation of a recombinant cDNA clone, termed myelin expression factor-3 (MyEF-3) from a mouse brain expression library encoding a novel protein interacting with the MBP regulatory domain (MB1) located between nt –50 to –14 relative to the transcription initiation site. The MyEF-3 sequence revealed several interesting features including four sites for phosphorylation by casein kinase II, a transmembrane domain at the N-terminus, a nuclear localisation signal and a zinc finger domain at the carboxyl terminus (Steplewski *et al.* 1998). The group also showed that MyEF-3 binds as efficiently to the double-stranded regulatory region as it does to the single-stranded non-coding strand. Northern blot analysis studies demonstrate that expression of MyEF-3 is restricted to brain and is developmentally regulated during brain maturation.

Functional dissection of the regulatory sequence has led to the identification of a regulatory motif spanning nucleotides –14 to –50 (named MB1) with respect to the transcription start site (Tretiakova *et al.* 1998). Analysis of nuclear proteins derived from mouse brain identified a 39 kDa protein that forms a nucleoprotein complex with a DNA fragment containing the same sequence. Subsequent studies (Tretiakova *et al.*, 1998) showed the 39 kDa protein, named Purα, recognised the GGC/GGA – rich sequences within the MB1 DNA in a single-stranded configuration and has the ability both *in vitro* and *in vivo* to increase transcription of the myelin basic protein promoter. Purα binding activity to the MB1 regulatory sequence occurs in a developmental stage-specific manner coinciding with the pattern of MBP transcription. At the early stage of brain development (days P3 to

P7) Purα levels associated with MB1 are extremely low, however, during the phase of myelination (days P18 to P20) and in adults (day 30) Pur α binding activity to MB1 dramatically rises. Because a significant amount of Pur α is detected at an early stage and the association with the MB1 DNA sequence is low, then the implication(s) of a cofactor(s) may determine $Pur\alpha$ binding activity to the DNA molecule. The ability of $Pur\alpha$ to interact with a GGN repeat in a single-stranded form prompted the examination of its binding ability to RNA molecules. Tretiakova et al. (1998) demonstrated that Pura obtained from brain extract is associated with RNA molecules that have the ability to inhibit its binding activity to the MB1 DNA. This RNA named PU-RNA, has significant homology to the 7SL RNA, is expressed during various stages of brain development, and is found in association with Purα in 5 dayold mouse brain. Therefore, PU-RNA functions as a cofactor by determining the binding activity of Pur α to the MBP promoter sequence and indirectly participate in the developmental activation of the MBP promoter in mouse brain.

From the earlier study outlined above, Tretiakova *et al.* (1999) have now found evidence for the binding of the ubiquitous transcription factor (Sp1) to the MB1 DNA motif (spanning nucleotides –14 to –50) that partially overlaps the Puralpha binding site. They demonstrated that the binding of Puralpha to its target sequence is enhanced by the inclusion of Sp1 in the binding reaction. Under this condition binding of Sp1 to the MB1 regulatory sequence remained unchanged and there was no evidence for the formation of a Puralpha:MB1:Sp1 complex. This observation suggested that transient

interaction of Puralpha and Sp1 might result in the stable association of Pur α and the MB1 element. Results from immunoprecipitation/Western blot studies have established an association of Pur α and Sp1 in nuclear extracts from mouse brain. Pur α appears to bind to the phosphorylated form of Sp1, which is developmentally regulated and coincides with the periods when MBP gene expression is at its maximum level. Results from cotransfection studies revealed that ectopic expression of Pur α and Sp1 synergistically stimulates MBP promoter activity in CNS cells (Tretiakova *et al.* 1999).

Haque *et al.* (1994) have reported the isolation of a recombinant clone, which they named myelin regulatory factor-1 (MRF-1), from a mouse brain expression library that encodes a novel protein interacting with the distal regulatory domain (MB3) located between nucleotide positions –130 to –93. Analysis of MRF-1 by Haque *et al.* revealed substantial sequence homology in the central and the COOH-terminal regions of the protein with the splicing factor SC35. Cotransfection studies carried out by the group indicated that MRF-1 increases transcription of the MBP promoter in glial cells and that the activation requires an intact MRF-1-binding site. The gene encoding MRF-1 is located on the distal half of mouse chromosome 11 in a region where the human homologue would be predicted to reside on human chromosome 17.

Taveggia et al., (1998) describe a DNA sequence flanking and partially overlapping the NF1 site, which activates the MBP promoter in oligodendrocytes. This sequence is bound by a unique set of nuclear proteins enriched in the brain, oligodendrocytes, and Schwann cells, designated MEBA (myelinating glia-enriched binding activity). The

appearance of MEBA parallels both myelination in the developing brain and myelin basic protein mRNA expression in differentiating oligodendrocytes. Mutations within the region of MEBA and NF1 binding distinguish MEBA from NF1 and suggest that MEBA consists of at least two proteins. Because these binding sites with opposing functions overlap, Taveggia *et al.*, (1998) suggested that MEBA might either compete with or alter the NF1 binding of the proximal MBP promoter and derepress the MBP promoter in oligodendrocytes.

The box 1 and box 2 motif (Torron et al. 1997) of the myelin basic protein promoter is composed of two DNA sequences 13 and 12 bp long respectively, separated from each other by nine poorly conserved base pairs, and are located at -160 to -127 bp from the transcription initiation site in mouse. The box 1 and 2 motif is flanked at its 5'-end by a thyroid hormone receptor element (at nucleotides -183 to -168, Farsetti et al. 1992) and at its 3'-end by a nuclear factor 1 (NF1) related site (at nucleotides –130 to –111, Aoyama et al. 1990 and Zhang and Miskimins, 1993). The evolutionary conservation, physical location, and structural features of the box 1 and 2 motif suggest that this is a regulatory sequence of the MBP transcription unit (Fors et al. 1993). The primary structure of box 1 appears to be related to that of box 2, since both begin with the sequence GAC and contain the sequence AA near their 3'-ends. The nine non-conserved base pairs separating box 1 and 2 comprise almost one full-turn of the double helix in the B-DNA conformation, and could therefore orientate the last base pair of box 1 and the first base pair of box 2 towards the same face of the molecule. This molecular configuration may serve as a specific recognition site for the

binding of transcription regulatory proteins. Torron *et al.* (1997) used a DNA fragment containing the sequence of the motif to identify DNA binding proteins. Two proteins MBP32 and MBP38 (of minimum M_r ~ 32 and ~ 38 kDa) that are found in nuclear extracts from mouse brain and oligodendrocyte-like glioma cells bind to the box 1 and box 2 motif. MBP32 and MBP38 are also found in other cell types and tissues expressing the *golli* transcription unit. Therefore, Torron *et al.*, (1997) propose that these proteins may participate in the modulation of the MBP transcription unit in the context of an active *golli* unit since exon 5a of the *golli*-MBP complex also contains several other regulatory sequences of the MBP promoter, including the TRE, the NF1-related, M1 and MB1 sites, and the GC, CAAT, and TATA-like boxes.

Umemori *et al.*, (1999) have shown that Fyn protein tyrosine kinase signalling is involved in the initial events of myelination. Fyn, which is present in myelin-forming cells, is a member of the Src-family nonreceptor protein tyrosine kinases (PTKs) and is activated by signal transduction through the stimulation of cell surface receptors such as the large myelin-associated glycoprotein (L-MAG) to Fyn protein tyrosine kinase (Fyn PTK). Fyn protein tyrosine kinase then phosphorylates its substrates, which in turn stimulates transcription factors, resulting in the stimulation of *MBP* gene transcription necessary for myelination. The group showed that the sequence between nucleotides –675 and –647 relative to the transcription start site included the Fyn response element to which transcription factors stimulated by Fyn interact. Proteins binding to the region between nucleotides –675 and –647 were found by EMSA, and the binding activity

correlated with Fyn activity during myelination thereby suggesting the stage-specific regulation of transcription. In a study using 4-week-old Fyn-deficient mice Umemori *et al.*, (1999) found that the amount of MBP was significantly reduced (by at least 55%), and subsequent electron microscopic analysis showed that the myelin was approximately 70% thinner and more irregular than in wild-type mice. Umemori *et al.* (1999) also searched for previously known consensus transcription factor response elements and showed that the Fyn response region contains the interferon-γ response element core sequence (consensus C(A/T)(G/T)(G/T)ANN(C/T)) and the NF-IL6 core sequence (consensus T(G/T)NNGNAA).

The differentiation of oligodendrocyte and Schwann cell progenitors into mature myelin producing cells is affected by different growth factors and hormones. To date not all these factors have been defined, however, it is evident that increased cyclic AMP levels accelerate the expression of a differentiated phenotype including the increased expression of myelin components such as MBP (Mirsky et al. 1980 and Raible et al. 1989). It still remains to be elucidated what the endogenous factor is that increases cyclic AMP during differentiation and what signalling pathway(s) lead to differentiation (Clark et al. 1998). Using the D6P2T cell line the group investigated the involvement of mitogen-activated protein kinase (MAP kinase) in the signal transduction cascade initiated by cyclic AMP, which led to the increased expression of the MBP gene. MAP kinases can be grouped into three families, which include the extracellular signal-regulated kinases, Jun N-terminal kinase/stress-activated protein kinases and p38. Activation of MAP kinases is a rapid cellular response to differentiation and growth factors (Marais *et al.* 1996 and Moriguchi *et al.* 1996). Phosphorylation of threonine and tyrosine residues by dual specificity enzymes like MAP kinase kinase (MEK) is the means by which MAP kinases are activated and function within the kinase cascade. The D6P2T cell line can be induced to display a differentiated phenotype characterised by *MBP* gene expression in response to increased cyclic AMP, similar to the response of oligodendrocytes and Schwann cells. Clark *et al.* (1998) have demonstrated that blocking MAP kinase activity with inhibitors of the activating kinase (MEK) blocked the activation of the MBP promoter in D6P2T cells. In addition, the group showed that blocking MAP kinase activation during differentiation of an oligodendrocyte-like cell line (CG4) also led to the inhibition of *MBP* gene expression. Clark *et al.* (1998) suggest that these findings imply a role for MAP kinase in the signal transduction cascade initiated by cyclic AMP and leading to the expression of the *MBP* gene during differentiation.

3.3. Analysis of DNA – protein complexes by electrophoretic mobility shift assay (EMSA) and competition binding assay

Nuclear extracts from rat brains (RBX), glial cell lines (C_6 glioma and 33B oligodendrocytoma) and nonglial cell line (HeLa) were prepared by Dounce homogenisation as described in section 5.2. The protein concentration in the nuclear extracts was determined before their application in the electrophoretic mobility shift assay and competition binding assay.

A microtitre plate method utilising BCA reagent was used and albumin served as the protein standard. Data relating to the determination of the protein concentration in each of the nuclear extracts can be found in Appendix VII.

From a culture typically containing 1.0 x 10^6 cells, 200 μ l of nuclear extract was prepared. This produced a protein yield, from the C_6 glioma, HeLa and 33B oligodendrocytoma cell nuclear extracts, ranging from 200 to 260 μ g (1.0 to 1.3 μ g/ μ l), whereas, the rat brain nuclear extract (RBX) gave a much higher protein yield of 600 μ g (3.0 μ g/ μ l) as expected.

For both the binding assay and the competition binding assay 10 μg of nuclear extract per reaction was used.

Two oligonucleotides corresponding to the putative protein-binding site located between nucleotide positions –609 to –577 were synthesised, the first corresponding to the sense strand of the binding site,

5'-CACCTTTTGTCAAACGACCGCTTCACATCTGGG-3' and the second, to the complementary strand

3'-GTGGAAAACAGTTTGCTGGCGAAGTGTAGACCC-5'.

This region (located between nucleotides –609 and –577) was chosen for further investigation because work published by other groups (Asipu and Blair 1994) suggested that it contains a cell-type specific transcription activation site for oligodendrocytes.

The oligonucleotides were annealed as described in section 5.1.1, and an aliquot (10 μ l containing approximately 1.5 μ g of annealed oligonucleotide) analysed by non-denaturing polyacrylamide gel electrophoresis. The difference in the mobility between the annealed (Figure 16 lane 1) and single stranded oligonucleotide (lane 2) can clearly be seen, the annealed species being double-stranded does not migrate as far as the control sample in lane 2.

The double stranded oligonucleotide was 5' end-labelled with $(100\mu\text{Ci})$ of γ - ^{32}P ATP to produce a probe with a specific activity of 10 X 10^4 counts per minute (cpm) / μg of DNA for use in the electrophoretic mobility shift assay and competition binding assay.

For the competition binding assay a 100 - fold excess of unlabelled annealed oligonucleotide was used as a specific competitor.

Molecular Size (bp)

- Figure 16. Analysis by non-denaturing polyacrylamide gel (15%) electrophoresis of the products of annealing of the strands containing a putative transcription factor binding site.
- Lane M. A X DNA molecular size marker (BstE II digest of X phage DNA).
- Lane 1. Annealed oligonucleotide (1.5 pg) corresponding to the putative protein-binding site.
- Lane 2. Single stranded (unannealed) oligonucleotide used as a control sample (5'-CACCTTTTGTCAAACGACCGCTTCACATCTGGG-3').

The competition binding assay was carried out essentially as the binding assay except that unlabelled oligonucleotide probe (100 - fold molar excess) was used as a specific competitor. In both cases the binding assay and competition binding assay used 1 μ g of poly[d(IC).d(IC)] as a non-specific competitor.

The resulting DNA-protein complexes were separated on 7% native polyacrylamide gels. The positions of the complexes are denoted from C1 to C4. The fastest migrating bands at the bottom of the gel correspond to the free probe (labelled oligonucleotide). Behind the free probe is a group of non-specific complexes.

The C $_6$ glioma cell nuclear extract (Figures 17 to 19 lanes 1a and 1b) show three DNA-protein complexes. C1 the slowest, C2 the intermediate and C4 with the fastest mobility. The complex represented by C2 shows high sequence-specificity since it is sensitive to competition by unlabelled oligonucleotide probe and is not present in the competition binding assay (lanes 1b).

Only two DNA-protein complexes C1and C3 were detected in the HeLa cell nuclear extract (Figure 17, lanes 2a and 2b and Figures 18 and 19 lanes 3a and 3b). Neither of these complexes was specific for the putative binding site.

RBX nuclear extract (Figure 17, lanes 3a and 3b and Figures 18 and 19 lanes 2a and 2b) revealed three complexes (C1, C2 and C3). Complex C2 appears to be the same mobility and possibly the same protein as that of complex C2 in the C₆ glioma cell line nuclear extract. The competition binding assay results show this complex to be a sequence specific binding

protein to the mouse myelin basic protein gene promoter. C3 appears to be of the same mobility as the corresponding C3 band in the HeLa cell nuclear extract and its binding is not sequence specific.

Two complexes C1 and C3 were detected in the nuclear extract of the 33B oligodendrocytoma cells (Figure 17, 18 and 19 lanes 4a and 4b). Both complexes were of comparable mobility to the C1 and C3 complexes seen in the HeLa and RBX nuclear extracts and neither was a sequence specific binding protein to the mouse myelin basic protein gene promoter.

The binding assay and competition binding assay were repeated using a binding buffer containing magnesium sulphate (at a final concentration of 10 μ M) instead of zinc sulphate (at a final concentration of 10 μ M). Four DNA-protein complexes were formed between the proteins of the nuclear extracts and the putative DNA binding site, these complexes were denoted as C1 to C4 on the autoradiograms shown in Figures 20 and 21.

Only complex C2 appears to be a sequence-specific binding protein to the mouse myelin basic protein gene promoter since this protein is readily competed out by a 100 fold molar excess of the unlabelled putative binding site in both the C₆ glioma cell line and rat brain nuclear extracts (Figure 20 lanes 1a, 1b and 3a, 3b and Figure 21 lanes 1a, 1b and 2a, 2b respectively). Since complex C2 has the same mobility in both nuclear extracts it would appear to suggest that the identity of protein in C2 is the same. Protein complexes C1, C3 and C4 were not sequence specific binding proteins to the mouse *MBP* gene promoter.

Figure 17. Gel retardation and competition binding assay analysis of protein binding to region located between nucleotides -609 to -577 of the mouse *MBP* gene promoter.

Lanes 1a and 1b. C6glioma cell nuclear extract.

Lanes 2a and 2b. HeLa cell nuclear extract.

Lanes 3a and 3b. Rat brain extract (RBX) nuclear extract.

Lanes 4a and 4b. 33B oligodendrocytoma cell nuclear extract.

The band labelled free probe represents the labelled oligonucleotide probe corresponding to the putative binding site.

Figure 18. Analysis of proteins binding to the *MBP* gene promoter (between nucleotides -609 to -577) by EMSA and competition binding assay followed by non-denaturing polyacrylamide gel (7%) electrophoresis.

Lanes 1a and 1b. C6glioma cell nuclear extract.

Lanes 2a and 2b. Rat brain extract (RBX) nuclear extract.

Lane Probe. Labelled oligonucleotide probe.

Lanes 3a and 3b. HeLa cell nuclear extract.

Lanes 4a and 4b. 33B oligodendrocytoma cell nuclear extract.

zf&oW ■MMZi

Figure 19. Electrophoretic mobility shift assay and competition binding assay analysis of proteins binding to the region of the *MBP* gene promoter located between nucleotides -609 to -577.

Lanes 1a and 1b. C6glioma cell nuclear extract.

Lanes 2a and 2b. Rat brain extract (RBX) nuclear extract.

Lane Probe. Labelled oligonucleotide probe.

Lanes 3a and 3b. HeLa cell nuclear extract.

Lanes 4a and 4b. 33B oligodendrocytoma cell nuclear extract.

Probe

Figure 20. Analysis of proteins binding to the -609 to -577 region of the *MBP* gene promoter by binding and competition binding assay followed by non-denaturing polyacrylamide gel (7%) electrophoresis.

Lanes 1a and 1b. C6glioma cell nuclear extract.

Lanes 2a and 2b. HeLa cell nuclear extract.

Lanes 3a and 3b. Rat brain extract (RBX) nuclear extract.

Lanes 4a and 4b. 33B oligodendrocytoma cell nuclear extract.

Lane Probe. Labelled oligonucleotide probe.

Figure 21. Gel retardation and competition binding assay analysis of protein complexes binding to the region -609 to -577 of the *MBP* gene promoter after non-denaturing polyacrylamide gel (7%) electrophoresis.

Lane Probe. Labelled oligonucleotide probe.

Lanes 1a and 1b. C6glioma cell nuclear extract.

Lanes 2a and 2b. Rat brain extract (RBX) nuclear extract.

Lanes 3a and 3b. HeLa cell nuclear extract.

Lanes 4a and 4b. 33B oligodendrocytoma cell nuclear extract.

3.4. Isolation of cDNA(s) encoding proteins binding to the region located between nucleotides - 609 to - 577 of the mouse myelin basic protein gene promoter by a yeast one - hybrid system

3.4.1. Creation of the reporter vector

Complementary oligonucleotides carrying four repeat sequences of the putative binding site (-609nt to -577nt) were synthesised and annealed as described previously. The 'sense' oligonucleotide was synthesised with an *EcoR1* overhang at the 5' end, whereas the complementary oligonucleotide had an *Mlu1* overhang at its 5' end. These restriction endonuclease sites were used to directionally clone the binding site into the multicloning site of the pHISi-1 plasmid (see Appendix VI).

5'-a a ttc c a c c ttttg tc a a a c g a c c g c ttc a c a tc tg g g c a c c ttttg
3'-GTGGAAAACAGTTTGCTGGCGAAGTGTAGACCCGTGGAAAAC

TCAAACGACCGCTTCACATCTGGGCACCTTTTGTCAAACGACCGCTTC
AGTTTGCTGGCGAAGTGTAGACCCGTGGAAAACAGTTTGCTGGCGAAG

ACATCTGGGCACCTTTTGTCAAACGACCGCTTCACATCTGGG -3'

TGTAGACCCGTGGAAAACAGTTTGCTGGCGAAGTGTAGACCCACGCG -5'

For this purpose pHISi-1 was digested with *EcoR1* and *Mlu1* restriction endonucleases. After the enzymes were inactivated by treatment with phenol followed by ethanol precipitation, the digested vector and the double stranded oligonucleotide were ligated as described in section 2.6.3. Competent cells of *E.coli* strain DH5a were prepared by treating cells, grown to mid-log phase, with ice cold calcium chloride. The ligation mixture was precipitated with ethanol and used in the transformation of competent cells. A heat shock at 42° C followed by an incubation on ice was performed and the bacterial cells were spread over the surface of L-amp plates. After

overnight incubation at 37° C samples of the bacterial colonies were removed from the plates and analysed by PCR (using the HIS-RP and HIS-5372 primers) to confirm the presence of the binding site in the reporter plasmid.

Three types of PCR product were obtained as the electrophoretogram (figure 22) shows. Some of the bacterial colonies chosen for screening show two PCR products (lanes 6 and 19), this suggests that these colonies are probably mixtures of cells containing the reporter plasmid and the vector pHISi-I. The smaller band corresponds to a size of 117 bp (lanes 2, 3, 5, 7, 9, 11, 14,and 17) and is probably the amplification product corresponding to the particular region in the original pHISi-I. The putative positive clones identified in lanes 1,4,8,10,12, 13,15, 16, 18 and 20 show an amplification product corresponding to a size of 255 bp which represents the size of the region with the binding site (138 bp) and the flanking region in the original pHISi-I plasmid (117 bp). Two representative clones (lanes 4 and 16) were selected for large-scale isolation of the reporter plasmid containing the four tandem copies of the putative binding site for use in the One-hybrid assay system.

A PCR control (negative control) was also run (lane 22); this contains all the components of the reaction mixture except a DNA template and is used to check for reagent contamination.

A size marker was also included on the gel so that the sizes of the PCR products could be determined and compared to the expected products determined from the plasmid sequence data (the sequence of plasmid pHISi-I can be found in Appendix VI).

Figure 22. Screening of bacterial colonies by PCR and agarose gel (2%) electrophoresis following transformation into *E.coli* strain DH5a of the ligation product pHISi-1 containing the putative binding site.

Lane M. A DNA molecular size marker (1 kb PCR ladder).

Lanes 1,4,8,10,12,13,15,16,18 & 20. show the 255 bp PCR product corresponding to the four repeat copies of the putative protein binding site and flanking region of plasmid pHISi-I.

Lane 21 was used to run the PCR control (NEGATIVE CONTROL).

Lanes 2,3,5,7,9,11,14,and 17 show the PCR product (117 bp) corresponding to the religation of the vector without the binding site insert.

Lanes 6 and 19 show two PCR products.

Reporter plasmid DNA was isolated on a large scale from one of the putative positive clones (clone 4) using the method outlined in section 7.0.

An aliquot (1 µg of plasmid DNA) was analysed by agarose gel electrophoresis (Figure 23). In both, the reporter plasmid DNA containing the protein binding site which was isolated from clone 4 (Lane 1), and the plasmid vector pHISi-1 DNA used as a control sample (lane 2) there are two bands, these represent the supercoiled (lower band) and the open circular forms of the plasmid (upper band). The difference in size between the two plasmid DNA samples resulting from the cloning of four copies of the protein binding site (138 bp) into the *EcoR1* and *Mlu I* restriction endonuclease sites located in the multiple cloning site (see Appendix VI), upstream of the *HIS3* gene of the vector pHISi-1 were reproducibly seen.

The plasmid pHISi-1 (5.4 kb) is a yeast integrative plasmid, containing the yeast *HIS3* gene downstream of a multiple cloning site (the map of this plasmid is shown in Appendix VI). $P_{min \, HIS}$ is the minimal promoter of the *HIS3* gene. pHISi-1 contains a ColE1 origin of replication (*ori*) and the ampicillin resistance gene (Amp^R) for propagation and selection in *E. coli*. The plasmid pHISi-1 cannot replicate autonomously in yeast, however, the presence of the *HIS3* gene allows its integration into the mutated *HIS3* gene of the YM4271 yeast strain, which was used as the host.

The presence of the binding site in the reporter plasmid was further confirmed by digestion of the reporter plasmid with *EcoR1* and *Mlu I* restriction endonucleases and analysis of the products by agarose gel electrophoresis (Figure 24). Two distinct bands present in the digest

represent the *EcoR1 – Mlu1* fragment containing the four repeat copies of the putative binding site (138 bp) and the linearised vector pHISi-1 (5.4 kb) respectively.

Lane 4 shows only a single band corresponding to the digested vector pHISi-1, after digestion with *EcoR1* and *Mlu I*, since the second digestion product (23 bp) was too small to detect (see the multiple cloning site of the vector pHISi-I in appendix VI).

It should be noted that the gel had to be overloaded and over exposed to be able to visualise the small 138 bp digestion product (indicated in lane 2) corresponding to the putative binding site, and visible towards the bottom of the gel. The other diffuse and faint band visible in lanes one to four corresponds to a small amount of RNA not removed during the isolation procedure. A size marker was also included on the gel so that the sizes of the digestion products could be determined (Lane M).

Molecular Size (bp)

8454 7242 6369/5686

2323 1929 1371

1264

Figure 23. Analysis by agarose gel (1%) electrophoresis of the reporter plasmid carrying four repeat copies of the putative binding site after large-scale plasmid DNA isolation.

Lane M. A X DNA molecular size marker (BstE II digest of X phage DNA).

Lane 1. Reporter plasmid DNA isolated from clone 4.

Lane 2. Vector DNA (pHISi-1) used as a control sample.

Molecular Sfee (bp)

- Figure 24. Confirmation that the reporter plasmid carries the putative binding site.
- Lane M. A X DNA molecular size marker (BstE II digest of X phage DNA).
- Lane 1. Undigested reporter plasmid DNA.
- Lane 2.Double restriction endonuclease digestion of the reporter plasmid with *EcoR1* and *Mlu I*.
- Lane 3. Undigested vector DNA (pHISi-I).
- Lane 4.Double restriction endonuclease digestion of the plasmid vector (pHISi-I) with *EcoR1* and *Mlu I*.

The identity of the putative binding site inserted into the pHISi-I plasmid was further confirmed by manual (Figure 25) and automated sequencing (Figures 26 and 27).

The primer used for manual and automated sequencing in the forward direction was HIS – 5372 (which corresponds to the primer located between nucleotide positions 5372 and 5392 on the pHISi-I plasmid sequence shown in Appendix VI):

5'- TATTATCATGACATTAACCTA -3'
5372 5392
and the primer used for sequencing the complementary strand (automated sequencing only) was HIS – RP (where RP means reverse primer located between nucleotides 99 – 79 on the plasmid sequence):

5'- ATCACATTACTTTATATATG -3'
99
99
Single stranded template DNA for sequencing was prepared by denaturing
the reporter plasmid DNA with sodium hydroxide (at a final concentration of
0.2 M). Following ethanol precipitation and resuspension in TE buffer the
single stranded DNA was manually sequenced using the method described
in section 4.0. An autoradiogram of the sequencing gel is shown in Figure
25. The sequence GAATTC (highlighted) represents the *EcoR1* restriction
endonuclease site synthesised at the 5' end of the putative binding site and
used for cloning. The binding site sequence is shown in italics.

ittsfl

Figure 25. An autoradiogram of the manual sequencing results confirming the presence of the putative binding site in the reporter plasmid.

1 AACCTATAAA AATAGGCGTA TCACGAGGCC CTTTCGTCTT CAAGAATTCC
51 ACCTTTTGTC AAACGACCGC TTCACATCTG GGCACCTTTT GTCAAACGAC
101 UUUTTUACAT CTUGGCACCT TTTGTCAAAC GACGGCTTCA CATCTGGGCA
151 CCTTTTGTCA AACGACCGCT TCACATCTGG GACGCGTTCG CGAATCGATC
201 CGCGGTCTAG AAATTCCTGG CATTATCACA TAATGAATTA TACATTATAT
251 AAAGTAATGT GATTTCTTCG AAGAYTATAC TAAAAAAATGA GCAGGSAAGA
301 TAAA

Figure 26. The automated sequencing results corresponding to the 'sense' strand of the reporter plasmid confirming the presence of the putative protein binding site in the reporter plasmid.

The above data show two I.U.B. base-ambiguity symbols represented by the letters V and S at positions 275 and 296 respectively. The symbol V represents the bases G, A, or C, and comparison of the above sequence with that of the vector pHISi-1 (shown in Appendix VI) indicates that the base represented by V should be an A, and that the letter S representing bases G or C should be a C base.

These I.U.B. base-ambiguity symbols lie within the reporter vector sequence and not within the putative binding site sequence identifiable between the restriction endonuclease sites *EcoR1* and *Mlu I*.

CGAAGAANTC ACATTACTIT ATATAATGTA TAATTCATTA TGTGATAATG

CCAGGNATTT CTAGACCGCG GATCGATTCG CGAACGCGTC CCAGATGTGA

LUL ACCUNTONIT TGACAAAAGG TCCCCAGATG TGAAGCGGTC GTTTGACAAA

LS1 AGGTGCCCAG ATGTGAAGCG GTCGTTTGAC AAAAGGTGCC CAGATGTGAA

201 GCGGTCGTTT GACAAAAGGT GGAATTCTTG AAGACGAAAG ECCCTCGTGA

251 TACGCCTATT TTTATAGGTT AATTTCATGA TAATAATGGT TT

Figure 27. Automated sequencing results of the complementary strand of the reporter plasmid confirming the presence of the putative binding site.

The sequencing data above contains two I.U.B. base-ambiguity symbols, the first represented by an N at position 56 corresponding to a G, A, T or C base, and the second a B at position 241 corresponding to either a C, G or T base. Comparison of the above sequence to the vector (pHISi-1) should show an A and a G at the respective positions.

At position 274 a base misincorporation has occurred during sequencing and the T should actually be a G.

3.4.2. Construction of the reporter strain

To prepare the reporter strain, the reporter plasmid DNA had to be linearised. This was achieved by digesting the DNA with *Xho I* restriction endonuclease, which cuts the plasmid DNA uniquely within the *HIS3* gene downstream from the multiple cloning site.

The completeness of the digestion was confirmed by analysis of the digestion mixture on a 1 % agarose gel (Data not shown). Isolation of the digestion products was achieved by excising the linearised fragment from the gel, and recovering the DNA by microcentrifugation through siliconised glass wool into a sterile Eppendorf tube. The ethidium bromide was then removed and the DNA precipitated with ethanol, dried *in vacuo* and resuspended in TE buffer for application in the yeast transformation. An aliquot of the DNA sample was analysed by agarose gel electrophoresis (Figure 28).

The undigested DNA samples of the plasmid pHISi-I used as a positive control (lane 3) and the reporter plasmid (lane 1) both show more than one band, these represent the different mobilities of the different forms of the plasmid. The digested plasmid DNA samples (lanes 2 and 4) show only single bands due to the unique *Xho 1* restriction site located within the *HIS3* gene locus.

A BstE II digest of λ phage DNA was used as a molecular size marker to determine the size of the digestion products.

Molecular Size (bp)

8454/7242 6369/5686 4822/4324 3673------2323 1929

1371

- Figure 28. Analysis by agarose gel (1%) electrophoresis of the linearised reporter plasmid and positive control DNA before transformation into *Saccharomyces cerevisiae* YM4271 host cells.
- Lane M. X DNA molecular size marker (BstE II digest of X phage DNA).
- Lane 1. Undigested sample of reporter plasmid DNA.
- Lane 2. Linearised reporter plasmid following restriction endonuclease digestion and purification.
- Lane 3. Undigested sample of the positive control DNA (pHISi-1).
- Lane 4. Positive control DNA (pHISi-I) following linearisation with Xho 1.

Positive control experiments for various stages of the transformation and integration processes were also carried out. The replicating plasmid YEpmyc 181 was applied in an experiment, which acted as a control for the transformation process. YEpmyc 181 is able to replicate autonomously because it contains the origin of replication from a naturally occurring yeast plasmid termed a $2\mu m$ circle.

The integrating plasmid p53HIS, which carries three tandem copies of the consensus p53 binding site, was used in a control experiment for the integration process. This plasmid was linearised with *Xho 1* restriction endonuclease and introduced into competent YM4271 yeast cells in the same way as YE*pmyc* 181.

In order to perform the transformations, competent cells were prepared. Saccharomyces cerevisiae strain YM4271 cells were grown to mid-log phase represented by an OD600 of between 0.5 and 0.7, collected by centrifugation, washed in TE buffer and treated with fresh TE/LiAc. The plasmid DNA was then mixed with the competent cells and after a heat shock at 42°C for 15 min followed by an incubation on ice the transformation mixtures were spread on appropriate plates (SD/+HIS/-LEU for cells carrying YEpmyc 181 and SD/-HIS for cells with p53HIS) and incubated for 4 to 6 days at 30°C (Figure 29 A and B).

Figure 29A. Putative clones growing on selective medium following transformation of yeast strain YM4271 with the (5.76 kb) replicating plasmid YEpmyc 181.

Figure 29B. Putative recombinant clones growing on selective medium after transformation of yeast strain YM4271 with *Xho 1* linearised p53HIS DNA.

Several of the larger colonies carrying the putatively integrated p53HIS DNA were isolated and grown in fresh SD/-HIS at 30° C for 4 to 6 days with shaking until the cultures were saturated. Chromosomal DNA was isolated from each clone using the technique described in section 8.4, and an aliquot (1 μl) used to confirm the presence of the consensus p53 binding site by PCR. The PCR was carried out essentially as described in section 6.3 using the HIS-RP primer, (5'-ATCACATTACTTTATATAATG-3', which is located between nucleotide positions 79 – 99 of the plasmid pHISi-I sequence shown in Appendix VI), and the HIS-5372 primer, (5'-TATTAT CATGACATTA ACCTA-3' located between nucleotides 5372 – 5392). The results were analysed by agarose (2%) gel electrophoresis.

Genomic DNA isolated from the wild type yeast strain YM4271 (Figure 30A Lane 2) shows a single high molecular weight band. The faint diffused band at the bottom of this lane is RNA, which was not removed during the isolation. Amplification of the wild type chromosomal DNA did not yield a PCR product, as expected (Figure 30A Lane 1).

The PCR negative control (Figure 30A Lane 3), containing all the PCR components, except a DNA template, and used to check for reagent contamination, shows no PCR product(s) as expected.

Genomic DNA isolated from the putative clones carrying the integrated p53 consensus binding site (Figure 30A Lanes 4 and 6 and Figure 30B Lanes 1 and 3) show high molecular weight DNA bands near the sample wells.

Amplification of the genomic DNA from the putative clones described above Lanes 5 and 7 (Figure 30A) and 2 and 4 (Figure 30B) yielded a major PCR product of approximately 1000 bp, this corresponds exactly with the size of the product obtained in the positive control, (and a minor product of approximately 700 bp).

A positive PCR control corresponding to the amplification product of the p53HIS plasmid DNA (120 ng) Lane 8 (Figure 30A) and Lane 5 (Figure 30B) show one amplification product at approximately 1000 bp.

Lambda phage DNA digested with the restriction endonuclease *BstE II* (Lane M) was also run as a size marker for the identification of the amplification products resulting from the PCR.

Molecular Size (bp) 8454.----3675 2323 1929 1371 1264

Figure 30. Analysis by agarose gel electrophoresis of genomic and PCR amplified DNA from the putative clones carrying the integrated consensus p53-binding site.

Lane M. A λ DNA molecular size marker (*BstE II* digest of λ phage DNA).

Figure 30A Lane 1. PCR product from the genomic DNA isolated from the wild type strain YM4271.

Figure 30A Lane 2. Genomic DNA from wild type strain YM4271.

Figure 30A Lane 3. Negative PCR control.

Figure 30A Lane 4 and 6 Genomic DNA isolated from recombinant yeast clones.

Figure 30A Lane 5 and 7. PCR product from the genomic DNA isolated from the putative yeast clones.

Figure 30A Lane 8. Positive PCR control (amplified p53HIS template).

Figure 30B Lane 1 and 3. Genomic DNA isolated from recombinant yeast clones.

Figure 30B Lane 2 and 4. PCR product from the genomic DNA isolated from the putative yeast clones

Figure 30B Lane 5. Positive PCR control (amplified p53HIS template).

The reporter plasmid, which carries four tandem copies of the putative binding site, was linearised with *Xho1* restriction endonuclease and introduced into competent YM4271 yeast cells in the same way as the p53HIS DNA. Cells transformed with the reporter plasmid were spread on SD/-HIS plates and incubated at 30° C for 4 to 6 days (Figure 31).

Genomic DNA was isolated from nine of the larger putative reporter strain colonies as well as from the wild type yeast host and its integrity examined by agarose gel electrophoresis, (Figure 32A). Lanes 1 to 9 respectively show the DNA isolated from these putative clones and Lane 10 from the wild type yeast host cells.

An aliquot (1 μ I) of this DNA was used to confirm by PCR the presence of the putative binding site in the reporter strain (Figure 32B). The PCR was carried out essentially as described in section 6.4 using HIS-RP and HIS-5372 primers. The location of the two primers used are shown highlighted on the pHISi-I plasmid sequence in Appendix VI

The results of the PCR were analysed by agarose (2%) gel electrophoresis. A PCR negative control containing all the components necessary for PCR except the DNA template was also run (Figure 32B Lane 1), and was used to monitor any contamination in the reagents.

Chromosomal DNA from the wild type yeast host (YM4271) was amplified by PCR (Figure 32B Lane 2), as expected no PCR product was obtained.

A molecular size marker (*BstEll* digest of lambda phage DNA) and a positive PCR control (the reporter plasmid containing the four repeat copies of the

putative binding site) were used to determine the size of any amplification product obtained from the putative reporter strain clones (Figure 32B, Lanes M and 12 respectively). Clones were considered positive if a PCR product corresponding to a size of 255 bp was obtained as can be seen in Lanes 3 to 11.

Figure 31. Putative clones growing on SD/-HIS medium following the transformation of yeast host strain YM4271 with the *Xho 1* linearised 5.4 kb plasmid pHISi-1 (carrying four repeat copies of the putative binding site). Undigested reporter plasmid served as a negative control.

3675

Figure 32A. Analysis by agarose gel electrophoresis of chromosomal DNA isolated from the reporter strain clones carrying the putative binding site.

Molecular Size (bp)

Figure 32B. Analysis by PCR followed by agarose gel (2%) electrophoresis of the reporter strain clones carrying the putative binding site.

Figure 32A.

Lane M. DNA molecular size marker (BstE II digest of λ phage

DNA).

Lane 1-9. Genomic DNA isolated from putative reporter strain clones.

Lane 10. Genomic DNA from wild type strain YM4271.

Figure 32B.

Lane M. DNA molecular size marker (BstEII digest of λ phage

DNA).

Lane 1. PCR negative control.

Lane 2. PCR product from the genomic DNA isolated from the wild

type strain YM4271.

Lane 3 – 11. PCR products from the genomic DNA isolated from the

yeast clones

Lane 12. Positive PCR control (amplified putative binding site using

reporter vector DNA).

3.4.3. Testing the reporter strain clones for background *HIS3* expression

A small sample of each of the yeast colonies analysed by PCR was suspended in TE buffer, and an aliquot (5 μ l) pipetted onto the surface of pre-dried SD/-HIS plates containing 3 – AT at the following concentrations, 0, 5, 10, 15, 30, 45, and 60 mM.

It should be noted that the plates were pre-dried to prevent condensation causing localised dilution of the 3 – AT concentration, leading to false positive results. The plates were incubated at 30° C for 4 to 6 days, and the growth analysed (Figure 33).

All the putative recombinant clones grew on the SD/-His plates in the presence of 15 mM 3 – AT which shows that the background *HIS3* expression is low, and these clones were used for transformation with the cDNA/AD Fusion library and further study. However, the only exception to this was clone 1 (Figure 33E), which grew in the presence of 45 mM 3 - AT indicating that the background *HIS3* expression is high, as a result this clone was not used for further experimentation.

Figure 33A. Testing of reporter strain clones for background expression of the *HIS3* gene by growth on SD/-HIS medium containing 5mM 3 -AT.

Figure 33B. Testing of reporter strain clones for background expression of the *HIS3* gene by growth on SD/-HIS medium containing 10mM 3 -AT.

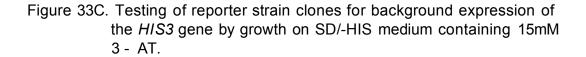


Figure 33D. Testing of reporter strain clones for background expression of the *HIS3* gene by growth on SD/-HIS medium containing 30mM 3 - AT.

Figure 33E. Testing of reporter strain clones for background expression of the *HIS3* gene by growth on SD/-HIS medium containing 45mM 3 -AT.

9 [™]

Figure 33F. Testing of reporter strain clones for background expression of the *HIS3* gene by growth on SD/-HIS medium containing 60mM 3 - AT.

The search for putative transcription factors was carried out by the transformation of yeast reporter strain clones with a rat brain cDNA/AD fusion library. To achieve this a culture of the reporter strain (clone 3) was grown to mid-log phase in SD/-HIS + 30 mM 3 – AT and competent cells prepared. cDNA/AD fusion library and carrier DNA were mixed with competent reporter strain cells, freshly prepared PEG/LiAc solution and incubated for 1 h with shaking. A heat shock for 15 min, followed by an incubation on ice was performed. After pelleting the cells and resuspension in TE buffer (pH 7.5) an aliquot of the transformation mixture (50 μl) was spread over the surface of pre-dried SD/-HIS/-LEU plates containing 30 mM 3 – AT and incubated for 4 to 6 days at 30° C. Colonies resulting from HIS3 activation were larger than the colonies resulting from background HIS3 expression (Figure 34). These larger colonies were cultured in fresh SD/-HIS/-LEU medium containing 30 mM 3 – AT for 4 to 6 days and the plasmid DNA isolated as described in section 9.2 (Figure 35).

DNA was isolated from both the wild type host and reporter strain clone 3 (Lanes 1 and 2 respectively). No plasmid DNA was isolated from these strains of yeast as expected, however, the high molecular weight DNA visible in both lanes is chromosomal DNA, a common and unavoidable contaminant when isolating plasmid DNA from yeast cells by this method. Plasmid DNA was isolated from 7 recombinant yeast clones and varied in size from approximately 7.1 to 8.8 kb.

The yield from the clones shown in lanes 7 and 9 was slightly lower than from the other clones. Chromosomal DNA contamination is visible in all lanes near the sample wells.

A λ DNA molecular size marker (Lane M) was used to determine the size of the plasmid DNA isolated.

Figure 34. Putative clones resulting from the transformation of the reporter strain with a cDNA/AD library plasmid growing on selective SD/-HIS/-LEU medium containing 30 mM 3-aminotriazole.

Molecularj Size (bp)] 4822 4324

1929 1371 1264

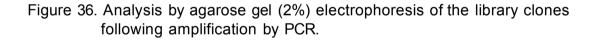
2323

Figure 35. Analysis of the plasmid DNA isolation from the putative positive clones transformed with an cDNA/AD fusion library from rat brain by agarose gel (1%) electrophoresis.

Lane M. Molecular size marker.

Lane 1. DNA isolated from wild type host.

Lane 2. Reporter strain DNA isolated from the reporter strain clone.


Lanes 3 to 9. Isolates of plasmid DNA from the putative clones following transformation with cDNA/AD fusion library.

An aliquot (5 μ l containing 0.5 μ g of plasmid DNA) isolated from each putative recombinant clone was digested with *EcoR1* restriction endonuclease and the products analysed by agarose (1 %) gel electrophoresis (Data not shown).

The plasmid DNA isolated from the seven recombinant clones was further analysed by PCR using the library specific primers AD10[S] 5'-CTAT TCGATGATGAAGATACC-3' and AD10[R] 5'-CACAGTTGAAGTGAACTTGCG-3' (located between nucleotide positions 788 to 807, and 903 to 893 respectively on the pGAD10 sequence shown in Appendix VI).

Clones 1,5 and 6 (Figure 36 lanes 1,5 and 6 respectively) show a PCR amplification product of approximately 0.75 kb. Clone 2 (lane 2) showed the smallest PCR product with a molecular size of approximately 0.4 kb. Clones 3 and 7 (lanes 3 and 7) show an intermediate sized PCR product estimated to be 0.6 kb, whereas, recombinant clone 4 showed the largest cDNA insert following amplification by PCR of about 1.2 kb.

Plasmid DNA from the positive cDNA/AD fusion library clones was purified by agarose gel (1%) electrophoresis and recovered by centrifugation through glass wool. Following ethanol precipitation and resuspension in deionised water the plasmid DNA was automatically sequenced using the AD10[S] primer (Figures 37A to G).

Lane M. Molecular size marker (Lambda phage DNA digested with BstE II).

Lanes 1 to 7. PCR amplification products obtained from the plasmid DNA isolated from the recombinant library clones.

accaaaccca	aaaaaagaga	tctctcgagg cggcggtggg
atccgaattc	atggcgcgac	cgggctggcc tttccatcgc
agccccagca	gcagcagcag	ccgcctcagc cgccgcacca
cttgccccaa	cagatcccgg	tgcagcaccc gcggctgcag
gcgctgaagg	aagagccgca	gacggtgccg gagatgccgg
gagagacgcc	gcccttgtcc	cccatcgaca tggagtctca
ggagcggatc	aaggcggaga	ggaagcgcat gagaaaccgc
atcgctgcct	ccaagtgccg	gaaaaggaag ctggagcgga
tcgcccggct	agaggaaaaa	gtgaaaacct tgaaagcgca
aaactccgag	ctggcgtcca	cggccaacat gctcagggaa
caggtggcac	agcttaaaca	gaaagtcatg aaccacgtta
acagtgggtg	ccaactcatg	ctaacgcagc agttgcaaac
gttttgagga	cagactgtca	gggctgaggg gcagtggaag
aaaaaataa	cagagataaa	cttgagaact tgactggttg
cgacagagaa	aaaaagtgt	ccgagtactg aagccaaggg
tacacaagat	ggactgggtt	gcgacctgac ggcgccccca
atgtgctgga	gtgggaagga	cgtggcgcgc ctggctttgg
cgaggagcca	gagagcagcg	gcctgttcgc gacgctttgc
gaacgggctg	tgccgcgacc	agaacgatgg acttttcgtt
aacattgacc	aagaactgca	tggacctaac attagaattc
cagatctatg	aatcgtagat	actgaaaaac
	atccgaattc agccccagca cttgccccaa gcgctgaagg gagagacgcc ggagcggatc atcgctgcct tcgcccggct aaactccgag caggtggcac acagtgggtg gttttgagga aaaaaaataa cgacagagaa tacacaagat atgtgctgga cgaggagcca gaacgggctg aacattgacc	atccgaattc atggcgcgac agccccagca gcagcagcag cttgcccaa cagatcccgg gcgctgaagg aagagccgca gagagcggatc aaggcggatc aaggcggatc agagtggcg ctggcgcca caggtggcac agcttaaaca acagtgggtg ccaactcatg gtttgaga cagactgtca aaaaaataa cagacagagaa cagagagca gtgggagca gaggagcca gagagcagcg gaacggctg tgccgaccaacattgaccaacattgaccaacattgaccaacacacac

Figure 37 A. Sequencing results of the plasmid DNA from the positive cDNA/AD fusion library clone 1.

1	accaaaccca	aaaaaagaga	tctctcgagg ttttttttt
41	atccgaattc	gcgaacagaa	ggcgcacctg gaagactact
81	actggatgac	cggctacccg	cagcagetea acceggagge
121	gctgggcttc	agcccggagg	acgcagtcga ggcgcncatc
161	agcaatagcc	accagctcca	gggtggctnc gvtggctatg
201	cgcggggcgc	gcagcagctg	gccgcggcag cgggggccgg
241	cgccggcgcc	tccctgggcg	gcagcggcga ggagatgggc
281	cccgccgccg	ccgtggtgtc	cgccgtgatc gccgcggcsg
321	ccgcgcagag	cggcggggca	cctcactacc atcaccacca
361	ccaccacgcc	acggggcacc	accaccaccc gacggccggc
401	gccccgggag	ccgcgggtag	cgcgtccgcc tctgcgagcg
441	gcgcgggtgg	cgcgggcggc	ggtggaattc cagatctatg
481	actgaaaaac		

Figure 37 B. Sequencing results of the plasmid DNA from the positive cDNA/AD fusion library clone 2.

1	accaaaccca	aaaaaagaga	tctctcgagg gtgcctcaaa
41	atccgaattc	cggagccgag	cggctcgccc gtgcacgtcc
81	agcttcccca	gcaggcggcc	ccggtgacag ccgcggcggc
121	ggctccggcg	gccgcgacat	cagcaccggc cccggccccg
161	gccccggcgg	cgcccgcagc	cccggccccg gctccagctg
201	cggctccagc	cccggccccg	gcagctcagg cggtcggctg
241	gcccatctgc	agggacgcgt	acgageteca ggaggttate
281	ggcagtggag	cgaccgccgt	ggttcaggca gccctgtgca
321	aacccaggca	agaacgcgta	gccataaagc ggatcaactt
361	ggaaaagtgc	cagacgagta	tggatgaact cttaaaagaa
401	attcaagcca	tgagccagtg	cagccatccc aacgtagtga
441	cttattatac	ttcctttgtg	gtcaaagatg aactttggct
481	ggtcatgaaa	ttactaagtg	gaggttccat gttggatatc
521	atcaaataca	tcgtcaatcg	gggagaaatt cagatctatg
561	aatcgtagat		

Figure 37 C. Sequencing results of the plasmid DNA from the positive cDNA/AD fusion library clone 3.

accaaaccca	aaaaaagaga	tctctcgagg gacgactggt
atccgaattc		tgtcgctggg gctggtccgc
	gaaccgctgc	ttcctgagag cgctccgtga
	cttttcaaag	ctccggatcg cgcgggacca
accaacgtga	gtgcaagcgg	tgtcttaacc ctgcgctccc
tggagcgaac	tggggaggag	ggcgcagggg ggagcactgc
ggtctggagc	gcacgctcct	aaacaaactt tgttactgaa
gcggggacgc	gcgggtatcc	cccgcttccc ggcgcgctgt
tgcggccccg	aaacttctgc	gcacagccca ggctaacccc
gcgtgaagtg	accgactgtt	ctatgactgc aaagatggaa
acgaccttct	acgacgatgc	cctcaacgcc tcgttcctcc
agtccgagag	tggcgcctac	ggctacagta accctaagat
tctgaagcag	agcatgacct	tgaacctggc cgacccggtg
ggcaatctga	agccgcacct	ccgagccaag aactcggacc
ttctcacgtc	gcccgacgtc	gggctgctca agctggcgtc
gccggagctg	gagcgcctga	tcatccagtc cagcaatggg
cacatcacca	ctacaccgac	ccccactcag ttcttgtgcc
ccaagaacgt	gaccgacgag	caggagggct tcgccgaagg
cttcgtgcgc	gccctagctg	aactgcatag ccagaatacg
ctgcccagtg	tcacctccgc	ggcacaacct gtcagtgggg
cgggcatggt	cgctcccgct	gtggcctcag tagctggcgc
tggcggcggc	ggcggctaca	gcgccagcct gcacagtgag
cctccggtct	acgccaacct	cagcaacttc aacccgggtg
cgctgagcag	cggcggtggg	gcgccctcct atggcgcgac
cgggctggcc	tttccatcgc	agccccagca gcagcagcag
ccgcctcagc	cgccgcacca	cttgccccaa cagatcccgg
tgcagcaccc	gcggctgcag	gcgctgaagg aagagccgca
gacggtgccg	gagatgccgg	gagagacgcc gcccttgtcc
cccatcgaca	tggagtctca	ggagcggatc aaggcggaga
ggaagcgcat	gagaaaccgc	atcgctgcct ccaagtgccg
gaaaaggaag	ctggagcgga	tcgcccggct agaggaaaaa
gtgaaaacct	tgaaagcgca	attagaattc cagatctatg
aatcgtagat	actgaaaaac	
	atccgaattc gggctccgag gtgaccgcga accaacgtga tggagcgaac ggtctggagc gcggggacgc tgcggccccg gcgtgaagtg acgaccttct agtccgagag tctgaagcag ggcaatctga ttctcacgtc gccggagctg cacatcacca ccaagaacgt cttcgtgcgc ctgccagtg cgggcatggt tggcggcgc cctccggtct cgctgagcag cggctgacc cgctcagc tgcagcacc gacggtgcc tgcagcacc gacggtgcc tgcagcacc gacggtgcc tgcagcacc gacggtgcc tgcagcacc gacggtgcc tgcagcacc gacggtgcc	atccgaattc ggagaacctc gggctccgag gaaccgctgc ctttcaaag accaacgtga gtgcaagcgg tggagcgcacct gggggacgc gcgggacgc gcgggaagtg accgactct acgacctct acgacgatg agcagctga accaacgag tggcacct acgacgatg agcagactg agcagagag tggcaatcta acgacgatg agcagagag tggcaatctg agcagagag tggcacct actaaacgac agcagagctg gacgagctg gacgaacgt gacgaacgt tcacacaca ctacacca ccaagaacgt gaccgacgt accaagaacgt gaccaacgt accacacac caggaagg cggcatga acgaggag cggcacca accacacac accacaca ccacacac accacacac accacacacacacacacacacacacacacacacacacaca

Figure 37 D. Sequencing results of the plasmid DNA from the positive cDNA/AD fusion library clone 4.

1	accaaaccca	aaaaaagaga	tctctcgagg	tgggagagca
41	atccgaattc	ttctgctgcc	ctgcctctga	gaatgcacca
81	cagtgccgct	gagggtctcc	cagcctccaa	ccacgccacc
121	aacgtgatgt	ccacagcgac	aggacttcat	tattctgtgc
161	cttcctgtca	ttatggaaac	cagccatcca	cctacggagt
201	gatggcaggc	actttaaccc	cttgtcttta	caagtttcca
241	gaccacaccc	tgagtcatgg	gtttcctccc	ctgcaccaac
281	ctctgctggc	ggaggaccca	acagcctctg	aatttaagca
321	ggaactcagg	cggaaaagta	aattggtgga	agagccaata
361	gacatggact	ccccggaaat	ccgagaactg	gagcagtttg
401	ccaacgaatt	taaagtgaga	agaattaagt	taggatacac
441	ccagacaaac	gtgggcgaag	ctctggccgc	tgtccacggc
481	tccgaattca	gtcaaacaac	catctgccga	tttgaaaact
521	tgcagctcag	tttcaaaaat	gcttgcaaac	tgaaagcaat
561	tttatccaag	tggctggagg	aagctgagca	ggtcggagct
601	ttgtacaatg	aaaaagtggg	agcaaacgaa	aggaagagga
641	aacggaggac	aactatcagt	atcgccgcta	aggatgcttt
681	ggagagacac	tttggagagc	acagcaaacc	ttcttcgcag
721	gagateatgc	ggatggctga	agaattgaat	ctcgagaaag
761	aagtagtaag	agtgtggttt	tgcaagaatt	cagatctatg
801	aategtagat	actgaaaaac		

Figure 37 E. Sequencing results of the plasmid DNA from the positive cDNA/AD fusion library clone 5.

1	accaaaccca	aaaaaagaga	tctctcgagg	tegttattgt
41	atccgaattc	tgctgcagga	ggcgcaggac	ggcgtcctgg
81	atctcaaagc	ggctgcagat	actttggctg	tgaggcaaaa
121	gegaagaatt	tatgatatca	ccaacgtctt	agaaggaatt
161	gatctaattg	aaaaaaatc	aaagaacagt	atccagtgga
201	agggtgtagg	tgctggctgt	aatactaaag	aagttataga
241	tagattaaga	tgtcttaaag	ctgaaattga	agatctagaa
281	ttgaaggaaa	gagaacttga	ccagcagaag	ttgtggctac
321	agcaaagcat	caaaaacgtg	atggaagact	ccattaataa
361	cagattttct	tatgtaactc	acgaagacat	ctgcagttgc
401	tttaatggtg	atacactgtt	ggccattcag	gcaccctctg
441	gtacacagct	ggaagtacct	attccagaaa	tgggacagaa
481	tggacaaaag	aaataccaga	taaatctgaa	gagtcactca
521	ggaccaatcc	atgtgctact	tataaataaa	gagtccaact
561	catctaagcc	ggtggttttt	cctgtccccc	cacctgatga
601	cctcacacaa	ccttcctccc	agtcctcaac	ttcagtgact
641	ccaccgaaat	ccaccatggc	tgctcaaaac	ctgcccgagc
681	agcatgtttc	tgaaagaagc	cagaatttcc	agcagacacc
721	agctacagaa	atatcttcag	gatctattag	tggagacatc
761	attgatgaac	tgatgtcttc	tgacgaaatt	cagatctatg
801	aategtagat	actgaaaaac		

Figure 37 F. Sequencing results of the plasmid DNA from the positive cDNA/AD fusion library clone 6.

1	accaaaccca	aaaaaagaga	tctctcgagg gtccagacct
41	atccgaattc	aaatgcctct	agatctgtcc cctcttgcaa
81	cacccatcat	aagaagcaaa	attgaggaac cttctgttgt
121	agaaacaact	caccaggata	gcccgttacc tcaccccgag
161	tctactacca	atgatgaaaa	ggaaatacca ttggcacaaa
201	ctgcacagcc	cacatcagct	atcgttcgtc cagcatcatt
241	acaggttccc	aatgtgctgc	tcacaagttc tgactsaagt
281	gtaattattc	aacaagcagt	accttcacca acctcavgta
321	ctgtaatcac	ccaggcacca	tcctctaaca ggccaattgt
361	tcctgtacca	ggcccatntc	ctcttctatt acatcttcct
401	aatggacaaa	ccatgcccgt	tgctattcct gcatcaatta
441	caagttctaa	tgtgcatgtt	ccagctgcag tcccacttgt
481	tcggccagtc	accatggtgc	ctagtgttcc aggaatccca
521	ggccnttcct	ctcctgaatt	cagatctatg aategtagat
561	actgaaaaac		

Figure 37 G. Sequencing results of the plasmid DNA from the positive cDNA/AD fusion library clone 7.

3.5. Analysis of the rat brain cDNA library clones for sequence homology to other transcription factors

To establish whether the cDNA sequences obtained from the recombinant AD/fusion library show homology with known transcription factors, sequence alignment searches were performed. To achieve this the cDNA sequence was first translated (in all reading frames) into an amino acid sequence using the EBI translate programme. The next step was to determine the correct open reading frame (ORF), this was deemed to be the longest frame uninterrupted by a stop codon (TGA, TAA, or TAG). Usually the initiation codon in the coding sequence is that for methionine (ATG), but methionine is also a common residue within the coding sequence so its presence is not an absolute indicator of an ORF. Therefore, recognition of the flanking Kozak sequence (e.g. CCGCCAUGG) may also be helpful in pinpointing the beginning of the coding sequence. Once the open reading frame was established, the amino acid sequence was used as a query (or probe) sequence to search the Swissprot and Swall databases for sequence alignments to other known transcription factors using the BLAST sequence alignment program. The BLAST (Basic Local Alignment Search Tool) algorithm was described by Altschul et al. in 1990. The algorithm itself is straightforward, with the important concept being the segment pair. Given two sequences, a segment pair is defined as a pair of sub-sequences of the same length that form an ungapped alignment. BLAST calculates all the segment pairs between the query and the database sequences above a scoring threshold. The resulting high scoring pairs form the basis of the

ungapped alignments that characterise BLAST outputs as shown for each of the clones below. Sequences clustered at greater than or equal to 62% identity are used to generate the BLOSUM 62 matrix (BLOck SUbstitution Matrix). For each of the searches the 'identities' keyword indicates the number of identical residue matches in relation to the match length, whereas the 'positives' keyword considers both identities and similarities.

The following alignments indicate high levels of sequence similarity and correspondingly low Expected frequency or E-values (e.g. Clone 1 shows an E value of 3e –79) indicating that the probability of this match having occurred by chance is virtually zero.

After the search summary, the output shows the complete pairwise alignment of the high scoring pairs (HSPs) of the query sequence (line 1) with that of the database or subject (line 3). The identities for each aligned high scoring pairs are indicated with the corresponding amino acid symbol shown in line 2.

The translation of clone 1 in all six reading frames:

Reading frame 1.

GATGLAFPSQPQQQQPPQPPHHLPQQIPVQHPRLQALKE EPQTVPEMPGETPPLSPIDME SQERIKAERKRMRNRIAAS KCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQ LKQKVMNHVNSGCQLMLTQQLQTF*GQTVRAEGQWKKKIT EINLRT*LVATEKKKCPSTEAKGTQDGLGCDLTAPPMCWS GKDVARLALARSQRAAACSRRFANGLCRDQNDGLFVNIDQ ELHGPNIX

Reading frame 2.

MARPGWPFHRSPSSSSSRLSRRTTCPNRSRCSTRGCRR*R KSRRRCRRCRERRRPCPPSTWSLRSGSRRRGSA*ETASLP PSAGKGSWSGSPG* RKK*KP* KRKT PSWRPRPTCSGNRWH SLNRKS*TTLTVGANSC*RSSCKRFEDRLSGLRGSGRKK* QR* T* ELDWLRQRKKSVRVLKPRVHKMDWVAT* RRPQCAG VGRTWRAWLWRGAREQRPVRDALRTGCAATRTMDFSLTLT KNCMDLTLX

Reading frame 3.

WRDRAGLSIAAPAAAAAASAAAPLAPTDPGAAPAAAGAEG RAADGAGDAGRDAALVPHRHGVSGADQGGEEAHEKPHRCL QVPEKEAGADRPARGKSEN*ESAKLRAGVHGQHAQGTGGT A*TESHEPR*QWPTHANAAVANVLRTDCQG*GAVEEKNN RDKLENLTGCDREKKVSEY*SQGYTRWTGLRPDGAPNVLE WEGRGAPGFGEEPESSGLFATLCERAVPRPERWTFR*H*P RTAWT*H*

Reading frame 4.

LMLGPCSSWSMLTKSPSFWSRHSPFAKRREQAAALWLLAK ARRA*SFPLQHIGGAVRSQPSPSCVPLASVLGHFFFSVAT SQVLKFISVIFFFHCPSALTVCPQNVCNCCVSMSWHPLLT WFMTFCLSCATCSLSMLAVDASSEFCAFKVFTFSSSRAIR SSFLFRHLEAAMRFLMRFLSALIRS*DSMSMGDKGGVSPG ISGTVCGSSFSACSRGCCTGICWGKWCGG*GGCCCCWGCD GKASPVAPX

Reading frame 5.

*C*VHAVLGQC*RKVHRSGRGTARSQSVANRPLLSGSSPK PGAPRPSHSSTLGAPSGRNPVHLVYPWLQYSDTFFSLSQP VKFSSLSLLFFSSTAPQP*QSVLKTFATAALA*VGTHC*R GS* LSV^AVPPVP -ACWPWTPARSFALSRFSLFPLAGRSA PASFSGTWRQRCGFSCASSPP*SAPETPCRWGTRAASLPA SPAPSAAL PSAPAAAGAAPGSVGAS GAAAEAAAAAAGAAM ERPARSRH Reading frame 6.

OTRSMQFLVNVNEKSIV*VAAQPVRKASRTGRCSLAPRQS QARHVLPTPAHWGRRQVATQSILCTLGFSTRTLFFLCRNQ SSSQVYLCYFFLPLPLSPDSLSSKRLQLLR*HELAPTVNV VHDFLFKLCHLFPEHVGRGRQLGVLRFQGFHFFL*PGDPL QLPFPALGGSDAVSHALPLRLDPLLRLHVDGGQGRRLSRH LRHRLFLQRLQPRVLHRDLLGQWRRLRRLLLLLGLRW KGQPGRAX

Reading frame one is deemed to be the open reading frame.

Program: NCBI-blastp Database: Swissprot Title: CLONE-1 SeqLen: 184 Matrix: -M blosum62

Filter: -F f

Sequences producing significant alignments:

(bits) Value

SW:AP1 RAT P17325 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE) . 293 3e-79

SW:AP1 MOUSE P05627 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE). 291 1e-78

SW:AP1 HUMAN P05412 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE). 275 5e-74

>SW:AP1 RAT P17325 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE C-JUN). Length = 334

Score = 293 bits (741), Expect = 3e-79 Identities = 145/145 (100%), Positives = 145/145 (100%)

Query:3	GATGLAFPSQPQQQQQPPQPPHHLPQQIPVQHPRLQALK GATGLAFPSQPQQQQQPPQPPHHLPQQIPVQHPRLQALK	41
Sbj c t:190	YGATGLAFPSQPQQQQQPPQPPHHLPQQIPVQHPRLQALK	229
Q u e ry:42	EEPQTVPEMPGETPPLSPIDMESQERIKAERKRMRNRIAA	82
Sbj c t:230	EEPQTVPEMPGETPPLSPIDMESQERIKAERKRMRNRIAA EEPQTVPEMPGETPPLSPIDMESQERIKAERKRMRNRIAA	270
05,01.200	LEI GIVI EMI OLITI EOI IDMLOGERIRALIRARMININAA	210
Q u e ry :83	SKCRKRKLERIARLEEKVKTLKAQNSE LAS TANMLREQVA	123
	SKCRKRKLERIARLEEKVKT LKAQNSE LAS TANMLREQVA	
Sbj c t:271	SKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVA	310
Query: 124	QLKQKVMNHVNSGCQLMLTQQLQTF 147	

186

334

QLKQKVMNHVNSGCQLMLTQQLQTF

S b jc t: 311 QLKQKVMNHVNSGCQLMLTQQLQTF

The translation of clone 2 in all six reading frames is shown below.

Reading frame 1.

EQKAHLEDYYWMTGYPQQLNPEALGFSPEDAVEAXISNSH QLQGGXXGYARGAQQLAAAAGAGAGASLGGSGEEMGPAAA VVSAVIAAXAAQSGGAPGQLFLYQAATGKGNTPTAGAPGA AGSASASASGAGGAGGG

Reading frame 2.

ANRRRTWKTTTG*PATRSSSTRRRWASARRTQSRRXSAIA
TSSRVAXXAMRGARSSWPRQRGPAPAPPWAAAARRWAPPP
PWCPP*SPRXPRRAAGHLTTITTTTTTTRRPAPRE
PRVARPPLRAARVARAAV

Reading frame 3.

RTEGAPGRLLLDDRLPAAAQPGGAGLQPGGRSRGXHQQ*P
PAPGWXXWLCAGRAAAGRGSGGRRRRLPGRQRRGDGPRRR
RGVRRDRRGXRAERRGTSLPSPPPPRHGAPPPPDGRRPGS
RG*RVRLCERRGWRGRRW

Reading frame 4.

PPPPAPPAPLAEADALPAAPGAPAVGWWWCPVAWWWW*W*

*GAPPLCAXAAAITADTTAAAGPISSPLPPREAPAPAA

AASCCAPRA*PXXPPWSWWLLLMXASTASSGLKPSASGLS

CCG*PVIQ**SSRCAFCS

Reading frame 5.

HRRPRHPRRSQRRTRYPRLPGRRPSGGGGAPWRGGGGDGS EVPRRSARXPRRSRRTPRRRRGPSPRRCRPGRRRRRPPLP RPAAARPAHSXXSHPGAGGYC*XAPRLRPPG*SPAPPG*A AAGSRSSSSSLPGAPSVR

Reading frame 6.

TAARATRAARRGGRATRGSRGAGRR*VVVPRGVVVVMVV RCPAALRGXRGDHGGHHGGGGAHLLAAAAQGGAGAGPRCR GQLLRAPRIAXXATLELVAIADXRLDCVLRAEAQRLRVEL LRVAGHPVVVFQVRLLFX

Reading frame 1 (underlined) represents the open reading frame and was used as the query sequence to search the database(s) for homology to other known transcription factors.

Title: CLONE-2

The results of the database search show that at present Clone 2 has not been identified and could possibly be a novel transcription factor.

EQKAHLEDYYWMTGYPQQLNPEALGFSPEDAVEAXISNSH
QLQGGXXGYARGAQQLAAAAGAGAGASLGGSGEEMGPAAA
VVSAVIAAXAAQSGGAPGQLFLYQAATGKGNTPTAGAPGA
AGSASASASGAGGAGGG

The translation of clone 3 in all six reading frames:

Reading frame 1.

EPSGSPVHVQLPQQAAPVTAAAAAPAAATSAPAPAPAPAA
PAAPAPAPAAAAPAPAPAAQAVGWPICRDAYELQEVIGSGA
TAVVQAALCKPRQERVAIKRINLEKCQTSMDELLKEIQAM
SQCSHPNVVTYYTSFVVKDELWLVMKLLSGGSMLDIIKYI
VNRGX

Reading frame 2.

RSRAARPCTSSFPSRRPR*QPRRRLRRPRHQHRPRPRPRR RPQPRPRLQLRLQPRPRQLRRSAGPSAGTRTSSRRLSAVE RPPWFRQPCANPGKNA*P*SGSTWKSARRVWMNS*KKFKP *ASAAIPT**LIILPLWSKMNFGWS*NY*VEVPCWISSNT SSIGEX

Reading frame 3.

GAERLARARPASPAGGPGDSRGGGSGGRDISTGPGPGPGG ARSPGPGSSCGSSPGPGSSGGRLAHLQGRVRAPGGYRQWS DRRGSGSPVQTQARTRSHKADQLGKVPDEYG*TLKRNSSH EPVQPSQRSDLLYFLCGQR*TLAGHEITKWRFHVGYHQIH RQSGR

Reading frame 4.

SPRLTMYLMISNMEPPLSNFMTSQSSSLTTKEV**VTTLG
WLHWLMA*ISFKSSSILVWHFSKLIRFMATRSCLGLHRAA
*TTAVAPLPITSWSSYASLQMGQPTA*AAGAGAGAAAAGAG
AGAAGAAGAGAGAGADVAAAGAAAAAVTGAACWGSWTCTG
EPLGSX

Reading frame 5.

LPD*RCI** YPTWNLHLVIS*PAKVHL* PQRKYNKSLRWD GGTGSWLEFLLRVHPYSSGTFPS*SALWLRVLAWVCTGLP EPRRSLHCR* PPGARTRPCRWASRPPELPGPGLEPQLEPG PGLRAPPGPGPVLMSRPPEPPPRLSPGPPAGEAGRARA SRSAP

Reading frame 6.

SPIDDVFDDIQHGTST** FHDQPKFIFDHKGSIISHYVGM
AALAHGLNFF*EFIHTRLALFQVDPLYGYAFLPGFAQGCL
NHGGRSTADNLLELVRVPADGPADRLSCRGRGWSRSWSRG
RGCGRRRGRGRGRC*CRGRRSRRRGCHRGRLLGKLDVHGR
AARLX

Reading frame 1 represents the open reading frame (underlined).

Program: NCBI-blastp Database: Swissprot Title: CLONE-3 SeqLen: 184 Matrix: -M blosum62

Filter: -F f

Sequences producing significant alignments:	(bits) Value
SW:SPAK RAT 088506 STE20/SPS1-RELATED PROLINE-ALA	9.9e-50
SW:SPAK MOUSE Q9Z1W9 STE20/SPS1-RELATED PROLINE-A	6.1e-47
SW:SPAK HUMAN Q9UEW8 STE20/SPS1-RELATED PROLINE-A	1,2e-43
SW:PAK4 HUMAN 096013 SERINE/THREONINE-PROTEIN KIN	9.4e-06

» S W : SPAK RAT 088506 STE20/SPS1-RELATED PROLINE-ALANINE Length =553

Smith-Waterman score: 837; 100.000% identity (100.000% ungapped) in 164 aa overlap (1-164:3-166)

Query:	6	EPSGSPVHVQLPQQAAPVTAAAAAPAAATSAPAPA	35
		EPSGSPVHVQLPQQAAPVTAAAAAPAAATSAPAPA	
Sbjct:	1	SPAMAEPSGSPVHVQLPQQAAPVTAAAAAPAAATSAPAPA	40
Query:	36	PAPAAPAAPAPAAAAPAPAAQAVGWPICRDAYELQEV	75
		PAPAAPAAPAPAAAPAPAPAAQAVGWPICRDAYELQEV	
Sbjct:	41	PAPAAPAAPAPAAAPAPAPAAQAVGWPICRDAYELQEV	80
Query:	76	IGSGATAVVQAALCKPRQERVAIKRINLEKCQTSMDELLK	115
		IGSGATAVVQAALCKPRQERVAIKRINLEKCQTSMDELLK	
Sbjct:	81	IGSGATAVVQAALCKPRQERVAIKRINLEKCQTSMDELLK	120
Query:	116	EIQAMSQCSHPNVVTYYTSFVVKDELWLVMKLLSGGSMLD	155
Query.	110	EIQAMSQCSHPNVVTYYTSFVVKDELWLVMKLLSGGSMLD	133
Sbjct:	121	EIQAMSQCSHPNVVTYYTSFVVKDELWLVMKLLSGGSMLD	160
Query:	156	IIKYIVNRGX	165
		IIKYIVNRGX	
Sbjct:	161	IIKYIVNRGXEHKNGVLEEAIIATILKEVLEGLDYLHRNG	200

The translation of clone 4 in all six reading frames:

Reading frame 1.

TAKMETTFYDDALNASFLQSESGAYGYSNPKILKQSMTLN LADPVGNLKPHLRAKNSDLLTSPDVGLLKLASPELERLII QSSNGHITTTPTTQFLCPKNVTDEQEGFAEGFVRALAEL HSQNTL PSVT SAAQPVS GAGMVAPAVASVAGAGGGGGYSA SLHSEPPVYANLSNFNPGALSSGGGAPSYGATGLAFPSQP QQQQPPQPPHHLPQQIPVQHPRLQALKEEPQTVPEMPGE TPPL SPIDMES QERIKAE RKRMRNRIAASKCRKRKLERIA RLEEKVKTLKAQLXNSELASTANMLREQVAQLKQKVMN †PRLFKAPDRAGPTNVSASGVLTLRSLERTGEEGAGGSTAVW SARS*TNFVTEAGTRGYPPLPGALLRPRNFCAQPRLTPRE VTDCSM

Reading frame 2.

GEPLSLGLVRGLRGTAAS*ERSVSDRDFSKLRIARDQPT*
VQAVS* PCAPWSELGRRAQGGALRSGAHAPKQTLLLKRGR
AGIPRFPARCCGPETSAHSPG* PRVK* PTVL*LQRWKRPS
TTMPSTPRSSSPRVAPTATVTLRF*SRA*P*TWPTRWAI*
SRTSEPRTRTFSRRPTSGCSSWRRRSWSA*SSSPAMGTSP
LHRPPLSSCAPRT* PTSRRASPRASCAP*LNCIARIRCPV
SPPRHNLSVGRAWSLPLWPQ*LALAAAAATAPACTVSLRS
TPTSATSTRVR*AAAVGRPPMARPGWPFHRSPSSSSSRLS
RRTTCPNRSRCSTRGCRR*RKSRRRCRRCRERRRPCPPST
WSLRSGSRRRGSA*ETASLPPSAGKGSWSGSPG*RKK*KP
KRN

Reading frame 3.

ENLCRWGWSAGSEEPLLPESAP*VTATFQSSGSRGTNQRE CKRCLNPALPGANWGGGRRGEHCGLERTLLNKLCY*SGDA RVSPASRRAVAAPKLLRTAQANPA*SDRLFYDCKDGNDLL RRCPQRLVPPVREWRLRLQ* P*DSEAEHDLEPGRPGGQSE AAPPSQELGPSHVARRRAAQAGVAGAGAPDHPVQQWAHHH YTDPHSVLVPQERDRRAGGLRRRLRARPS* TA* PEYAAQC HLRGTTCQWGGHGRSRCGLSSWRWRRRRLQRQPAQ*ASGL RQPQQLQPGCAEQRRWGALLWRDRAGLSIAAPAAAAAASA AAPLAPTDPGAAPAAAGAEGRAADGAGDAGRDAALVPHRH GVSGADQGGEEAHEKPHRCLQVPEKEAGADRPARGKSENL ESAIX

Reading frame 4.

LIALSRFSLFPLAGRSAPASFSGTWRQRCGFSCASSPP*S
APETPCRWGTRAASLPASPAPSAALPSAPAAAGAAPGSVG
ASGAAAEAAAAAGAAMERPARSRHRRAPHRRCSAHPG*S
C*GWRRPEAHCAGWRCSRRRRQRQLLRPQRERPCPPH*QV
VPRR* HWAAYSGYAVQLGRARSLRRS PPARRSRSWGTRTE
WGSV*W* CAHCWTG* SGAPAPATPA*AARRRAT*EGPSSW
LGGAASDCPPGRPGSRSCSASES*GYCSRRRHSRTGGTRR
*GHRRRSFPSLQS*NSRSLHAGLAWAVRRSFGAATARRE
AGDTRASPLQ*QSLFRSVRSRPQCSPLRPPPQFAPGSAGL
RHRLHSRWLVPRDPEIAKVAVTHGALSGSSGSSEPADQPQ
RQRFS

Reading frame 5.

LRFQGFHFFL PGDPLQLPFPALGGSDAVSHALPLRLDP LLRLHVDGGQGRRLSRHLRHRLRLFLQRLQPRVLHRDLLG QWRRLRRLLLLLGLRWKGQPGRAIGGRPTAAAQRTRVEV AEVGVDRRLTVQAGAVAAAAASASY^ GHSGSDHARPTDRL CRGGDTGQRILAMQFS*GAHEAFGEALLLVGHVLGAQELS GGRCSGDVPIAGLDDQALQLRRRQLEQPDVGRREKVRVLG SEVRLQIAHRVGQVQGHALLQNLRVTVAVGATLGLEERGV EGIWEGRFHLCSHRTVGHFTRG*PGLCAEVSGPQQRAGK RGIPARPRFSNKVCLGACAPDRSAPPCALLPSSLQGAQG* DTACTHVGWSRAIRSFEKSRSLTERSQEAAVPRSPRTSPS DRGSX

Reading frame 6.

NCAFKVFTFSSSRAIRSSFLFRHLEAAMRFLMRFLSALIR S*DSMSMGDKGGVSPGISGTVCGSSFSACSRGCCTGICWG KWCGG* GGCCCCWGCDGKASPVAP* EGAPPPLLSAPGLKL LRLA*TGGSLCRLAL* PPPPPAPATEATAGATMPAPLTGC AAEVTLGSVFWLCSSARARTKPSAKPSCSSVTFLGHKN*V GVGVWMCPLLDWMIRRSSSGDASLSSPTSGDVRRSEFLA RRCGFRLPTGSARFKVMLCFRILGLL* P*APLSDWRNEAL RASS*KWSIFAVIEQSVTSRGVSLGCAQKFRGRNSAPGS GGYPRVPASVTKFV*ERALQTAVLPPAPSSPVRSRERRVK TPLALTLVGPARSGALKSRGHSRSALRKQRFLGARGPAPA TEVLX Program: NCBI-blastp Database: Swissprot Title: CLONE-4 SeqLen:430 Matrix: -M blosum62

Filter: -F f

Sequences producing significant alignments: (bits) Value

SW:AP1 RAT P17325 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE) 591 e-169

SW:AP1 MOUSE P05627 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE)... 587 e-167

SW:APINHUMAN P05412 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE)... 559 e-159

>SW:AP1 RAT P17325 TRANSCRIPTION FACTOR AP-1 (PROTO-ONCOGENE C-JUN). Length =334

Score = 591 bits (1507), Expect = e-169 Identities = 293/293 (100%), Positives = 293/293 (100%)

Query:	129	TAKMETTFYDDALNASFLQSESGAYGYSNPKILKQSMTL TAKMETTFYDDALNASFLQSESGAYGYSNPKILKQSMTL	167
Sbjct:	1	MTAKMETTFYDDALNASFLQSESGAYGYSNPKILKQSMTL	40
Query:	168	NLADPVGNLKPHLRAKNSDLLTSPDVGLLKLASPELERLI NLADPVGNLKPHLRAKNSDLLTSPDVGLLKLASPELERLI	207
Sbjct:	41	NLADPVGNLKPHLRAKNSDLLTSPDVGLLKLASPELERLI	80
Query:	208	IQSSNGHITTTPTPTQFLCPKNVTDEQEGFAEGFVRALAE IQSSNGHITTTPTPTQFLCPKNVTDEQEGFAEGFVRALAE	247
Sbjct:	81	IQSSNGHITTTPTPTQFLCPKNVTDEQEGFAEGFVRALAE	120
Query:	248	LH SQNTL PSVT SAAQ PVS GAGMVAPAVAS VAGAGGGGGYS LHSQNTLPSVT SAAQ PVS GAGMVAPAVAS VAGAGGGGGYS	287
Sbjct:	121		160
Query:	288	ASLHSEPPVYANLSNFNPGALSSGGGAPSYGATGLAFPSQ ASLHSEPPVYANLSNFNPGALSSGGGAPSYGATGLAFPSQ	327
Sbj c t:	161	ASLHSEPPVYANLSNFNPGALSSGGGAPSYGATGLAFPSQ	200

Query:	328		PQQIPVQHPRLQALKEEPQTVPEMPG PQQIPVQHPRLQALKEEPQTVPEMPG	367
Sbjct:	201		PQQIPVQHPRLQALKEEPQTVPEMPG	240
Query:	368		RIKAERKRMRNRIAASKCRKRKLERI	407
		ETPPLSPIDMESQE	RIKAERKRMRNRIAASKCRKRKLERI	
Sbjct:	241	ETPPLSPIDMESQE:	RIKAERKRMRNRIAASKCRKRKLERI	280
Ouerv:	408	ARLEEKVKTLKAQ	420	
2		ARLEEKVKTLKAO		
Shict.	281	ARLEEKVKTLKAQ	293	
יייין עניי	201	WITTH MAINTINA &	233	

The translation of clone 5:

Reading frame 1.

SAALPLRMHHSAAEGLPASNHATNVMSTATGLHYSVPSCH YGNQPSTYGVMAGTLTPCLYKFPDHTLSHGFPPLHQPLIA EDPTASEFKQELRRKSKLVEEPIDMDSPEIRELEQFANEF KVRRIKLGYTQTNVGEALAAVHGSEFSQTTICRFENLQLS FKNACKLKAILSKWLEEAEQVGALYNEKVGANERKRKRRT TISIAAKDALERHFGEHSKPSSQEIMRMAEELNLEKEWR VWFC

Reading frame 2.

FCCPASENAPQCR*GSPSLQPRHQRDVHSDRTSLFCAFLS LWKPAIHLRSDGRHFNPLSLQVSRPHPESWSSPAPTSAG GGPNSL*I*AGTQAEK*IGGRANRHGLPGNPRTGAVCQRI *SEKN*VRIHPDKRGRSSGRCPRLRIQSNNHLPI*KLAAQ FQKCLQTESNFIQVAGGS*AGRSFVQ*KSGSKRKEEETED NYQYRR*GCFGETLWRAQQTFFAGDHADG*RIESRERSSK SWLQX

Reading frame 3.

LLPCL*ECTTVPLRVSQPPTTPPT*CPQRQDFIILCLPVI METSHPPTE*WQAL*PLVFTSFQTTP*VMGFLPCTNLCWR RTQQPLNLSRNSGGKVNWWKSQ*TWTPRKSENWSSLPTNL K*EELS*DTPRQTWAKLWPLSTAPNSVKQPSADLKTCSSV SKMLAN*KQFYPSGWRKLSRSELCTMKKWEQTKGRGNGGQ LSVSPLRMLWRDTLESTANLLRRRSCGWLKN*ISRKK**E CGFAX

Reading frame 4.

LAKPHSYYFFLEIQFFSHPHDLLRRRFAVLSKVSLQSILS GDTDSCPPFPLPFVCSHFFIVQSSDLLSFLQPLG*NCFQF ASIFETELQVFKSADGCLTEFGAVDSGQSFAHVCLGVS*L NSSHFKFVGKLLQFSDFRGVHVYWLFHQFTFPPEFLLKFR GCWLRQQRLVQGRKPMTQGWWKLVKTRG*SACHHSVGG WLVSIMTGRHRIMKSCRCGHHVGGWGGWETLSGTWHSQ RQGSRX

Reading frame 5.

LQNHTLTTSFSRFNSSAIRMISCEEGLLCSPKCLSKASLA
AILIWLRFLFLSFAPTFSLYKAPTCSASSSHLDKIAFSL
QAFLKLSCKFSNRQMW*LNSEPWTAARASPTFVWVYPNL
ILLTLNSIANCSSSRISGESMSIGSSTNLLFRLSSCLNSE
AVGSSASRGWCRGGNP*LRVWSGNL*RQGVKVPAITP*VD
GWFP**QEGTE**SPVAVDITLVAWLEAGRPSAALWCILR
GRAAE

Reading frame 6. CKTTLLLLSRDSILQPSA*SPAKKVCCALQSVSPKHP*R RY**LSSVSSSFRLLPLFHCTKLRPAQLPPATWIKLLSVC KHF*N*AASFQIGRWLFD*IRSRGQRPELRPRLSGCILT* FFSL*IRWQTAPVLGFPGSPCLLALPPIYFSA*VPA*IQR LLGPPPAEVGAGEETHDSGCGLETCKDKGLKCLPSLRRWM AGFHNDRKAQNNEVLSLWTSRWWRGWRLGDPQRHCGAFSE **AGQQX**

Reading frame 1 (underlined) is deemed to be the open reading frame.

Program: NCBI-blastp Database: Swissprot Title: CLONE-5 SegLen:249 Matrix: -M blosum62 Filter: -F f

Sequences producing significant alignments: (bits) Value

SW:HMP1 MOUSE Q00286 PITUITARY-SPECIFIC POSITIVE TRANSCRIPTION 494 e-139

SW:HMP1 RAT P10037 PITUITARY-SPECIFIC POSITIVE TRANSCRIPTION 487 e-137

SW:HMP1 HUMAN P28069 PITUITARY-SPECIFIC POSITIVE TRANSCRIPTION 481 e-136

SW:HMP1 BOVIN P10036 PITUITARY-SPECIFIC POSITIVE TRANSCRIPTION 470 e-132

>SW:HMP1 RAT P10037 PITUITARY-SPECIFIC POSITIVE TRANSCRIPTION FACTOR 1 (PIT-1) (GROWTH HORMONE FACTOR 1) (GHF-1).

Score = 487 bits (1239), Expect = e-137Identities = 244/272 (89%), Positives = 246/272 (89%), Gaps = 26/272 (9%)

Query:	1	SSAALPLRMHHSAAEGLPASNHATNVMSTSAAL PLRMHHSAAE GL PASNHATNVMS T	30
Sbjct:	18	DASAALPLRMHHSAAEGLPASNHATNVMSTVPSILSLIQT	57
Query:	31	ATGLHYSVPSCHYGNQPSTYGVMA	54
Quo.y.	٠.	ATGLHYSVPSCHYGNQPSTYGVMA	٠.
Sbjct:	58	PKCLHTYFSMTTMGNTATGLHYSVPSCHYGNQPSTYGVMA	97

Query:	55	GTLTPCLYKFPDHTLSHGFPPLHQPLLAEDPTASEFKQEL GTLTPCLYKFPDHTLSHGFPPLHOPLLAEDPTASEFKOEL	94
Sbjct:	98	GTLTPCLYKFPDHTLSHGFPPLHQPLLAEDPTASEFKQEL	137
Query:	95	RRKSKLVEEPIDMDSPEIRELEQFANEFKVRRIKLGYTQT RRKSKLVEEPIDMDSPEIRELEOFANEFKVRRIKLGYTOT	134
Sbjct:	138	RRKSKLVEEPIDMDSPEIRELEQFANEFKVRRIKLGYTQT	177
Query:	135	NVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILS NVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILS	154
Sbjct:	178	NVGEALAAVHGSEFSQTTICRFENLQLSFKNACKLKAILS	217
Query:	155	KWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALER KWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALER	194
Sbjct:	218	KWLEEAEQVGALYNEKVGANERKRKRRTTISIAAKDALER	257
Query:	195	HFGEHSKPSSQEIMRMAEELNLEKEVVRVWFC 246 HFGEHSKPSSQEIMRMAEELNLEKEVVRVWFC	
Sbjct:	258	HFGEHSKPSSQEIMRMAEELNLEKEVVRVWFC 289	

The translation of clone 6:

Reading frame 1.

LQEAQDGVLDLKAAADTLAVRQKRRIYDITNVLEGIDLIE KKSKNSIQWKGVGAGCNTKEVIDRLRCLKAEIEDLELKER ELDQQKLWLQQSIKNVMEDSINNRFSYVTHEDICSCFNGD TLLAIQAPSGTQLEVPIPEMGQNGQKKYQINLKSHSGPIH VLLINKESNSSKPWFPVPPPDDLTQPSSQSSTSVTPPKS TMAAQNLPEQHVSERSQNFQQTPATEISSGSISGDIIDEL MSSDX

Reading frame 2.

CCRRRRTASWISKRLQILWL*GKSEEFMISPTS*KELI*L KKNQRTVSSGRV*VLAVILKKL* ID*DVLKLKLKI*N*RK ENLTSRSCGYSKASKT*WKTPLITDFLM*LTKTSAVALMV IHCWPFRHPLVHSWKYLFQKWDRMDKRNTR*I*RVTQDQS MCYL*IKSPTHLSRWFFLSPHLMTSHNLPPSPQLQ*LHRN PPWLLKTCPSSMFLKEARISSRHQLQKYLQDLLVETSLMN *CLLTX

Reading frame 3.

AAGGAGRRPGSQSGCRYFGCEAKAKNL*YHQRLRRN*SN*
KKIKEQYPVEGCRCWL*Y*RSYR*IKMS*S*N*RSRIEGK
RT*PAEWATAKHQKRDGRLH**QIFLCNSRRHLQLL*W*
YTVGHSGTLWYTAGSTYSRNGTEWTKEIPDKSEESLRTNP
CATYK*RVQLI+AGGFSCPPT^'PHTTFLPVLNFSDSTEI
HHGCSKPARAACF*KKPEFPADTSYRNIFRIY*WRHH**T
DVF*R

Reading frame 4.

SSEDISSSMMSPLIDPEDISVAGVCWKFWLLSETCCSGRF
*AAMVDFGGVTEVEDWEEGCVRSSGGGTGKTTGLDELDSL
FISSTWIGPE*LFRFIWYFFCPFCPISGIGTSSCVPEGA*
MANSVSPLKQLQMSS*VT*ENLLLMESSITFLMLCCSHNF
CWSSSLSFNSRSSISALRHLNLSITSLVLQPAPTPFHWIL
FFDFFSIRSIPSKTLVIS*ILRFCLTAKVSAAALRSRTPS
CASCSX

Reading frame 5.

RQKTSVHQ* CLH* * IL K IF L * LVSAGNSGFFQKHAARAGF EQPWWISVESLKLRTGRKW*GHQVGGQEKPPA*MSWTLY L*VAHGLVLSDSSDLSGISFVHSVPFLE*VLPAVYQRVPE WPTVYHH*SNCRCLRELHKKICY*WSLPSRF*CFAVATTS AGQVLFPSILDLQFQL*DILIYL*LL*YYSQHLHPSTGYC SLIFFQLDQFLLRRW*YHKFFAFASQPKYLQPL*DPGRRP APPAA

Reading frame 6.

VRRHQFINDVSTNRS*RY FCSWCLLEILAS FRNMLLGQVL SSHGGFRWSH*S*GLGGRLCEVIRWGDRKNHRLR*VGLFI YK*HMDWS*VTLQIYLVFLLSILSHFWNRYFQLCTRGCLN GQQCITIKATADVFVSYIRKSVINGVFHHVFDALL*PQLL LVKFSFLQF*IFNFSFKTS*SIYNFFSITASTYTLPLDTV L*FFFN*INSF*DVGDIINSSLLPHSQSICSRFEIQDAVL **RLLQX**

Reading frame 1 (underlined) was deemed to be the open reading frame.

Program: NCBI-blastp

Database: Swissprot Title: CLONE-6 SeqLen:245 Matrix: -M blosum62 Filter: -F f					
Sequen	ces p	producing significant alignments:	(bits)	Value	Э
SW:E2F5 1.2e-111	RAT	Q62814 TRANSCRIPTION FACTOR E2F5 Œ2F	(300)	1246	401
SW:E2F5 1.8e-108	MOL	JSE Q61502 TRANSCRIPTION FACTOR E2F5 (E	(335)	1213	391
SW:E2F5 4.5e-103	HUM	1AN Q15329 TRANSCRIPTION FACTOR E2F5 fE	(346)	1156	373
» S W :E2F5 RAT Q62814 TRANSCRIPTION FACTOR E2F5 (E2F-5) Length=300 Smith-Waterman score: 1246; 100.000% identity (100.000% ungapped) in 244 aa overlap (1-244:21-264)					
Query:	21	LQEAQDGVLDLI			40
Sbjct:	1	LQEAQDGVLDLK GGSSRHEKSLGLLTTKFVSLLQEAQDGVLDLK			40
Query:	41	RQKRRIYDITNVLEGIDLIEKKSKNSIQWKGVG			80
Sbjct:	41	RQKRRIYDITNVLEGIDLIEKKSKNSIQWKGVG RQKRRIYDITNVLEGIDLIEKKSKNSIQWKGVG			80
Query:	81	VIDRLRCLKAEIEDLELKERELDQQKLWLQQSI			12 0
Sbjct:	81	VIDRLRCLKAEIEDLELKERELDQQKLWLQQSI VIDRLRCLKAEIEDLELKERELDQQKLWLQQSI		_	12 0

Query:	121	INNRFSYVTHEDICSCFNGDTLLAIQAPSGTQLEVPIPEM INNRFSYVTHEDICSCFNGDTLLAIQAPSGTOLEVPIPEM	160
Sbjct:	121	INNRFSYVTHEDICSCFNGDTLLAIQAPSGTQLEVPIPEM	160
Query:	161	GQNGQKKYQINLKSHSGPIHVLLINKESNSSKPVVFPVPP GQNGQKKYQINLKSHSGPIHVLLINKESNSSKPVVFPVPP	200
Sbjct:	161	GQNGQKKYQINLKSHSGPIHVLLINKESNSSKPVVFPVPP	200
Query:	201	PDDLTQPSSQSSTSVTPPKSTMAAQNLPEQHVSERSQNFQ PDDLTQPSSQSSTSVTPPKSTMAAQNLPEOHVSERSONFO	241
Sbjct:	201	PDDLTQPSSQSSTSVTPPKSTMAAQNLPEQHVSERSQNFQ	241
	0.44		
Query:	241	QTPATEISSGSISGDIIDELMSSD QTPATEISSGSISGDIIDELMSSD	264
Sbjct:	241	QTPATEISSGSISGDIIDELMSSDVFPLLRLSPTPADDYN	280

The translation of clone 7:

Reading frame 1.

QMPLDLSPLATPIIRSKIEEPSWETTHQDSPLPHPESTT NDEKEIPLAQTAQPTSAIVRPASLQVPNVLLTSSDXSVII QQAVPSPTSXTVITQAPSSNRPIVPVPGPXPLLLHLPNGQ TMPVAIPASITSSNVHVPAAVPLVRPVTMVPSVPGIPGXS SP

Reading frame 2:

KCL*ICPLLQHPS*EAKLRNLLL*KQLTRIARYLTPSLLP MMKRKYHWHKLHSPHQLSFVQHHYRFPMCCSQVLTXV"LF NKQYLHQPXVL*SPRHHPLTGQLFLYQAHXLFYYIFLMDK PCPLLFLHQLQVLMCMFQLQSHLFGQSPWCLVFQESQAXP LL

Reading frame 3.

NASRSVPSCNTHHKKQN*GTFCCRNNSPG* PVTSPRVYYQ
**KGNTIGTNCTAHISYRSSSIITGSQCAAHKF*XKCNYS
TSSTFTNLXYCNHPGTIL*QANCSCTRPXSSSITSS*WTN
HARCYSCINYKF*CACSSCSPTCSASHHGA*CSRNPRXFL
SX

Reading frame 4:

QERXGLGFLEH*APW*IA.EQVGLQLEHAH*NL*LMQE*QR AWFVH*EDVIEEXMGLVQEQLAC*RMVPG*LQYXRLVKVL LVE*LHXSQNL*AAHWEPVMMLDER*LMWAVQFVPMVFPF HHW** TRGEVTGYPGELFLQQKVPQFCFL*WVLQEGTDLE AF

Reading frame 5:

RRGXAWDSWNTRHHGDWPNKWDCSWNMHIRTCN*CRNSNG HGLSIRKM* * KRXWAWYRNNWPVRGWCLGDYSX*GW* RYC LLNNYTXVRTCEQHIGNL**CWTNDS*CGLCSLCQWYFLF IIGSRLGVR*RAILVSCFYNRRFLNFASYDGCCKRGQI* R HX

Reading frame 6:

GEEXPGIPGTLGTMVTGRTSGTAAGTCTLELVIDAGIATG MVCPLGRCNRRGXGPGTGTIGLLEDGAWITVXEVGEGTA C*IITLXSELVSSTLGTCNDAGRTIADVGCAVCANGIS FS SLWDSG*GNGLSW*WSTTEGSSILLLMMGVARGDRSRG IX

Reading frame 1 (underlined) was deemed to be the open reading frame.

Program: NCBI-blastp Database: Swissprot Title: CLONE-7

SeqLen:162 Matrix: -M blosum62

Filter: -F f

Sequences producing significant alignments: (bits) Value

SW:ATF2 RAT Q00969 CYCLIC-AMP-DEPENDENT TRANSCRIPTION FACTOR 312 2e-85

SW:ATF2 MOUSE P16951 CYCLIC-AMP-DEPENDENT TRANSCRIPTION FACTOR 310 1e-84

SW:ATF2 HUMAN P15336 CYCLIC-AMP-DEPENDENT TRANSCRIPTION FACTOR 308 5e-84

SW:ATF2 CHICK 093602 CYCLIC-AMP-DEPENDENT TRANSCRIPTION FACTOR 302 3e-82

>SW:ATF2 RAT Q00969 CYCLIC-AMP-DEPENDENT TRANSCRIPTION FACTOR ATF-2 (ACTIVATING TRANSCRIPTION FACTOR 2) (CAMP RESPONSE ELEMENT BINDING PROTEIN CRE- BP1). Length = 487

Score = 312 bits (791), Expect = 2e-85 Identities = 157/161 (97%), Positives = 157/161 (97%)

Query:	1	MPLDLSPLATPIIRSKIEEPSWETTHQDSPLPHPESTTN 40 MPLDLSPLATPIIRSKIEEPSWETTHQDSPLPHPESTTN
Sbjct:	89	MPLDLSPLATPIIRSKIEEPSWETTHQDSPLPHPESTTN 128
Query:	41	DEKEIPLAQTAQPTSAIVRPASLQVPNVLLTSSDXSVIIQ 80 DEKEIPLAQTAQPTSAIVRPASLQVPNVLLTSSD SVIIQ
Sbjct:	129	DEKEIPLAQTAQPTSAIVRPASLQVPNVLLTSSDSSVIIQ 168
Query:	81	QAVPSPTSXTVITQAPSSNRPIVPVPGPXPLLLHLPNGQT 120 QAVPSPTS TVITQAPSSNRPIVPVPGP PLLLHLPNGQT
Sbjct:	169	QAVPSPTSSTVITQAPSSNRPIVPVPGPFPLLLHLPNGQT 208
Query:	121	MPVAIPASITSSNVHVPAAVPLVRPVTMVPSVPGIPGXSSP 161 MPVAIPASITSSNVHVPAAVPLVRPVTMVPSVPGIPG SSP
Sbjct:	209	MPVAIPASITSSNVHVPAAVPLVRPVTMVPSVPGIPGPSSP 249

From the results of the database searches clones 1 and 4 both show sequence homology to the transcription factor AP-1 (proto-oncogene c-jun), therefore, the next step was to search for an overlapping sequence between the two clones. To achieve this it was necessary to use the BLAST2 multiple sequence alignment tool. This tool produces the alignment of two given sequences using the BLAST2 search engine for local alignment (Tatusova T.A. and Madden T.L. 1999).

Interestingly the DNA sequence of the *MBP* promoter region located between nucleotides -609 to -577 resembles the AP-1 binding site.

-609 -577

5' CACCTTTTGTCAAACGACCGCTTCACATCTGGG 3'

5 TGAGTCAG 3 AP-1 binding site

BLAST 2 SEQUENCES: RESULTS [VERSION BLASTP 2.1.2]

Sequence 1 lcl|seq 1 Length 252 (1 .. 252)

Sequence 2 lcl|seq_2 Length 433 (1 .. 433)

Sequence 1

Sequence 2

Score = 139 bits (351), Expect = 2e-32 Identities = 104/104 (100%), Positives = 104/104 (100%)

```
42
Query: 2
             GATGLAFXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXLOALK
             GATGLAF
                                                RLOALK
Sbjct: 317 YGATGLAFPSQPQQQQPPQPPHHLPQQIPVQHPRLQALK
                                                          356
                                                           81
Ouerv: 42
            EEPQTVPEMPGETPPLSPIDMESQERIKAERKRMRNRIAA
            EEPQTVPEMPGETPPLSPIDMESQERIKAERKRMRNRIAA
Sbjct: 357 EEPQTVPEMPGETPPLSPIDMESQERIKAERKRMRNRIAA
                                                          396
Query: 82
            SKCRKRKLERIARLEEKVKTLKAO
                                          105
            SKCRKRKLERIARLEEKVKTLKAQ
                                          420
Sbjct: 397 SKCRKRKLERIARLEEKVKTLKAO
Gapped
Lambda
            K
0.318
            0.133
                     0.389
Gapped
Lambda
           K
                      Η
            0.0410
                      0.140
0.267
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 711
Number of Sequences: 0
Number of extensions: 47
Number of successful extensions: 1
Number of sequences better than 10.0: 1
Number of HSP's better than 10.0 without gapping: 1
Number of HSP's successfully gapped in prelim test: 0
Number of HSP's that attempted gapping in prelim test: 0
Number of HSP's gapped (non-prelim): 1
length of query: 252
length of database: 187,523,045
effective HSP length: 56
effective length of query: 196
effective length of database: 145,851,261
effective search space: 28586847156
effective search space used: 28586847156
```

The results of the BLAST2 search above show that clones 1 and 4 contain an overlapping sequence, and since the alignment indicates a high level of sequence similarity and a correspondingly low E-value (Expect = 2e-32) this would imply that the alignment is unlikely to be a random match. In

the data shown above the program SEG has been implemented as part of the BLAST routine. The purpose of the SEG program is to mask out low complexity regions (i.e. regions within a sequence which have high densities of particular residues, e.g. PSQPQQQQPPQPPHHLPQQIPVQHP), which would otherwise result in large numbers of spurious high-scoring matches swamping the 'hitlist'. Regions masked by SEG are denoted by strings of Xs in the query sequence.

Clones 1 and 4 have been identified as the transcription factor *c-jun*, which is capable of stimulating transcription via an AP-1 site. The AP-1/jun family of transcription factors bind to the consensus nucleotide sequence TGAGTCAG found in the enhancers of many cellular and viral genes. c-jun is a proto-oncogene which when mutated becomes an oncogene. Implicit in the growth functions of all oncogenes is the potential to induce abnormal cell growth and cancer as a result of deregulated gene expression (Vogt and Bos, 1990). As well as Jun, purified preparations of AP-1 contain several different proteins e.g. Jun-related proteins, c-fos and Fos-related proteins known as fras (fos-related antigens) (Karin et al., 1997). Unlike Jun, which can form a DNA-binding homodimer, Fos cannot bind to the AP-1 site as a homodimer. However, Fos can bind (with approximately 30 fold greater affinity than the Jun homodimer alone) to AP-1 sites in the presence of another nuclear protein, p39, which has been identified as Jun (Rauscher et al., 1988). The p39 protein is also identical to yeast protein GCN4 (Hattori et al., 1988). The strong homology of the Jun and GCN4 proteins suggests they recognise very similar DNA-binding sequences (e.g. GCN4 binds to the

consensus sequence 5'-TGA(C/G)TCA-3' and Jun binds to the consensus sequence 5'-TGAGTCAG-3' respectively). It has been proposed by Vogt and Bos (1990) that the C-terminus of the Jun protein (located between amino acid residues 260 to 311) is the DNA-binding domain. Within this region two features stand out: the basic domain located between amino acid residues 260 to 279) and the leucine zipper (located between amino acid residues 283 to 311). The zipper itself consists of a periodic repetition of leucine residues at every seventh position, and regions containing them appear to span 8 turns of alpha-helix. The leucine side chains that extend from one helix interact with those from a similar helix, thus facilitating dimerisation, which in turn results in the correct positioning of the two basic DNA-binding domains in the dimeric molecule for DNA binding to occur. Leucine zippers are present in many gene regulatory proteins, including the CREB proteins, Jun, Fos oncogene and Fos-related proteins (Fras), C-myc, L-myc and Nmyc oncogenes. Promoters containing the AP-1 binding site sequence are inducible by treatment with phorbol esters which appear to increase DNA binding of Jun by activating protein kinase C. However, it has been shown that increased DNA-binding of Jun is mediated by a dephosphorylation at three specific sites (one threonine and two serine) following phorbol ester treatment (Boyle et al., 1991). This indicates protein kinase C acts by stimulating a phosphatase enzyme, which in turn dephosphorylates Jun. Such an inhibitory effect of phosphorylation on the activity of a transcription factor is not unique to Jun. Interestingly, there are two amino acid residues (both serine) located at amino acid positions 63 and 73 respectively which

can be modified by phosphorylation by JNK1 which inhibits transcriptional activity (Boyle *et al.*, 1991).

Clone 3 has been identified as the PASK protein (proline-alanine rich STE20-related kinase). It is thought that this protein may act as a mediator of stress-activated signals (Ushiro et al., 1998). The PAPA box (proline-alanine repeats) may target the kinase to a specific subcellular location by facilitating the interaction with intracellular proteins such as actin or actin-like proteins. Sequence homology puts the PASK protein into the serine / threonine family of protein kinases (STE20 subfamily). According to the Ushiro group PASK is preferentially expressed in cells rich in Na⁺, K⁺-ATPase and active in ion transport (i.e. those cells maintaining an electrochemical sodium and potassium gradient across the plasma membrane). Sodium-coupled active transport relies on these gradients within the cell (e.g. in neurons, Na⁺, K⁺-ATPase is active to maintain their resting membrane potential (Albers et al., 1994).

Clone 5 has been identified as the pituitary specific positive transcription factor 1 (Pit-1), growth hormone factor-1 (GHF-1) or general transcription factor 2i. The transcription factor Pit-1 plays a crucial role in pituitary-specific gene expression, and belongs to the homeobox / POU family of transcription factors. The POU-domain located between amino acid residues 154 to 224 is a 70 to 75 amino acid region found upstream of a homeobox domain in some transcription factors. Such proteins bind to specific DNA sequences to cause spatial and temporal regulation of the expression of genes, many of which are involved in the regulation of neuronal development in the central nervous system of mammals (Johnson

and Hirsh, 1990). Other genes are also regulated by the POU-domain, including those for the immunoglobulin light and heavy chains (Oct-2) (Petryniak *et al.*, 1990), and trophic hormone genes, such as those for prolactin and growth hormone (Pit-1). The POU-domain may also be involved in protein-protein interactions (Mathis *et al.*, 1992). The 3-dimensional structure of the POU-domain has been determined by multidimensional nuclear magnetic resonance (Assa-Munt *et al.*, 1993) and X-ray crystallography (Klemm *et al.*, 1994).

The homeobox (DNA-binding domain) located between residues 240 to 299 is a 60 amino acid region, first identified in a number of Drosophila segmentation and homeotic proteins, is known to be well conserved in many other species (Gehring, 1992). Proteins containing homeobox domains are likely to play a vital role in development and most are known to be sequence-specific DNA-binding transcription factors. The homeobox domain binds DNA through a helix-turn-helix (HTH) structure. The HTH motif is characterised by two α -helices, which make intimate contacts with the DNA and are joined by a short turn. The first helix helps to stabilise the structure. The second helix binds to the DNA via a number of hydrogen bonds and hydrophobic interactions, which occur between specific side chains and the exposed bases and thymine methyl groups within the major groove of the DNA (Schofield, 1987). Interestingly there is also an alternative splicing site located between amino acid residues 48 to 73 which gives rise to two functionally distinct homeodomain proteins (Theill *et al.*, 1992). This transcription factor is implicated in the specification of the lactotrope, somatotrope and tyrotrope phenotypes in the developing anterior

pituitary. It activates the growth hormone and prolactin genes by specifically binding to the consensus sequence TAAAT (Ingraham et al., 1988).

Clone 6 was identified as the transcription factor E2F5. The EF transcription factor family are transcriptional activators that bind to E2F sites, these sites are present in the promoters of many genes whose products are involved in cell proliferation and therefore play an important role in regulating the expression of genes that are required for passage through the cell cycle. It is also thought they may mediate growth factor-initiated signal transduction, and may participate in differentiation processes (Itoh *et al.*, 1995). Multiple E2F family members have been identified that bind to DNA as heterodimers, interacting with proteins known as dimerisation partners (DP).

Clone 7 has been identified as the cyclic-AMP-dependent transcription factor atf-2 (activating transcription factor 2). This protein factor belongs to the basic DNA-binding/leucine zipper and zinc finger families of transcription factors. The zinc finger motif is located between residues 7 to 31 and is of the two cysteine-two histidine type. The motif is referred to as a zinc finger because of its proposed structure i.e. a loop of twelve amino acids project from the surface of the molecule which is anchored at its base by the cysteine and histidine residues which tetrahedrally co-ordinate a zinc atom (Kadonaga *et al.*, 1987). The zinc finger motif has been shown to constitute the DNA-binding domain of the protein. The basic DNA-binding domain is located between amino acid residues 333 and 356, and the leucine zipper between residues 362 to 390 respectively. Interestingly there are two tyrosine residues at positions 51 and 53 that are susceptible to

modification (phosphorylation) by MAP kinase. This protein factor is thought to function as a constitutive transcriptional activator binding to the cyclic AMP response element (CRE) a sequence that is present in many cellular and viral promoters (Kageyama *et al.*, 1991).

Comparison of the basic DNA binding and leucine zipper motifs of the clones have revealed some interesting similarities, e.g. comparison of the basic DNA binding domain of the clones encoding the AP-1 transcription factor (clones 1 and 4) with that of the ATF-2 transcription factor clone (clone 7) showed a 10% amino acid sequence similarity.

However, comparison of the leucine zipper motifs of the respective clones showed an amino acid sequence similarity of 45%.

The identification of c-jun is very interesting as there is a site in the –609 and –577 region of the MBP promoter which resembles an AP-1 binding site. However further investigations including EMSA with recombinant c-Jun and labelled ds oligonucletide corresponding to this site are required. Cross-linking studies using nuclear extracts from oligodendrocyte cell lines and this oligonucleotide followed by protein microsequencing would be also useful. Work on the unidentified clone, possibly

representing a novel transcription factor, should be extended by screening a brain cDNA library in order to isolate a full-length copy of the corresponding cDNA. Expression of this protein in heterologous systems combined with established approaches applied in studies of transcription factors would permit the determination of a role, if any, of this protein in transcription of MBPs. Possible investigations which could be based on this thesis are also described in the section entitled Future Work (p 230). Surprisingly, several known transcription factors have been also detected in the one-hybrid system. Their cognate DNA sequences are not present in the studied region therefore they might represent false positives.

It should be noted that one of the limitations of the yeast one-hybrid system is the frequent occurrence of false positive results (e.g. clone 3) which reflect non-specific interactions between the cDNA (encoding the protein) and the target DNA-binding sequence. However, to reduce the frequency of such spurious results, most one-hybrid systems make use of dual reporters, typically HIS3 and LacZ. Since the minimal promoter of the HIS3 gene ($P_{minHiS3}$) is different from that of the LacZ gene (P_{CYC7}), non-specific interactions fail to activate the expression of both reporter genes. Therefore, the first genetic selection can be achieved using the HIS3 reporter gene, and the second selection can be performed by measuring LacZ expression with a β -galactosidase assay. From published data (Chen and Zack, 2000) it has been shown that up to half the HIS3 positives from a library screen are LacZ negative, suggesting these represent false positive results. False positive results can also be due to condensation caused whilst

the SD medium solidifies resulting in localised dilution of the 3 – aminotriazole thus enabling colony growth due to the background expression of the *HIS3* gene.

Chapter 4

DISCUSSION

4.1. Discussion and Conclusions

A study has been undertaken to identify new protein factor(s) that could be involved in the expression of the mouse myelin basic protein gene. To achieve this the promoter region of the mouse myelin basic protein gene was cloned in the vector pBluescript and manually sequenced by the chain termination method of Sanger et al. (1977). The Hind III – Sac I fragment which corresponds to the region between nucleotides -1319 and +227 relative to the transcriptional start site of the MBP gene was used for this purpose (Roach et al., 1985). The data obtained from the sequencing gels was used to carry out a FastA sequence alignment search against the EMBL rodent database. A significant alignment was found with a sequence published by Miura et al., (1989 and updated March 2000) which showed that the two sequences were essentially identical (99.6%). The analysis of the sequence allowed the identification of putative binding sites for many known transcription factors e.g. MyEF2 (Haas et al., 1995), MEBA (Taveggia et al., 1998), Purα (Tretiakova et al., 1998), MRF-1 (Haque et al., 1994) and others. The region – 609 to – 577 was selected for further studies because work published by other groups suggested that it contains cell-type specific transcription activator for oligodendrocytes (Asipu and Blair 1994). To establish if specific protein factor(s) bind to this region, the electrophoretic mobility shift assay was performed using nuclear extracts from several cell lines and rat brain extracts. A protein complex (C2) has been identified in the C_6 glioma cell and rat brain nuclear extracts (Figures 17 to 21) which was absent in HeLa cells and 33B oligodendrocytoma cells. The binding of the protein factor(s) to this region of the promoter is highly specific, as the competition binding assay results show. When a 100 - fold molar excess of unlabelled oligonucleotide corresponding to the binding site is added to the reaction mixture, protein complex 2 is competed out in both the C_6 glioma cell and rat brain nuclear extracts. Once the specificity of the binding had been established the next step was to identify the protein factor(s), this was achieved using the yeast one-hybrid assay (Clontech Laboratories). The one-hybrid system is an *in vivo* genetic assay used for the isolation of novel genes encoding proteins that bind to a target, *cis*-acting regulatory element (or any other short DNA biding site).

The one-hybrid assay is based on the notion that many eukaryotic transcriptional activators are composed of physically and functionally independent DNA-binding domains and transcription activation domains.

This allows the creation of various gene fusions carrying a cDNA that encodes the protein of interest, when expressed in yeast the fusion protein can simultaneously bind to a target sequence and activate transcription. The one-hybrid system is centred on this interaction between a target — independent activation domain and a target — specific DNA binding domain.

To create the yeast reporter strain it was first necessary to construct a reporter plasmid by cloning the putative binding site in the multiple cloning site (MCS) of a yeast vector (pHISi-I). The vector pHISi-1 (5.4 kb) is a yeast integrative plasmid, containing the yeast HIS3 gene downstream of a multiple cloning site (see the map of this vector in Appendix VI). pHISi-1

cannot replicate autonomously in yeast (as it does not have the yeast 2 μm origin of replication or an autonomously replicating sequence (ARS) which allows its propagation in those yeast cells), however, the presence of the HIS3 gene allows its integration into the mutated HIS3 gene of the YM4271 veast host strain. Integration was achieved by digesting the reporter plasmid with the restriction endonuclease *XhoI*, which cuts uniquely within the *HIS3* gene, since DNA ends are the favoured substrate for the recombination enzymes (Guthrie and Fink, 1991). To carry out the integration linear reporter plasmid carrying the putative binding site was introduced into competent yeast sphaeroplasts (a diagrammatic representation of the integration process can be seen in the materials and methods chapter). Integration of the plasmid DNA resulted in a stable duplication of the target gene into the yeast genome. This yeast reporter strain was then used as a host for the screening of a rat brain cDNA/AD fusion library to isolate the protein factor(s).

The cDNA/AD fusion library (Clontech Laboratories) is centred on RT-PCR products (from mRNA isolated from whole rat brains), to which *EcoR1* adapters were ligated, before being cloned via the *EcoR1* restriction endonuclease site located in the MCS of the plasmid pGAD10 which comprises of the target – independent GAL 4 activation domain and the target – specific cDNA binding domain (a diagrammatic representation of the cDNA/AD fusion library is shown in Figure 6c). The cDNA/AD fusion hybrid then interacts with the target element (binding site) resulting in the expression of the HIS3 reporter gene, which allows colony growth on minimal medium lacking histidine. Also incorporated into the growth medium

was 3-Aminotriazole (3-AT), which is a competitive inhibitor of the yeast *HIS3* protein (*HIS3*p), and was used to inhibit low levels of *HIS3*p expressed in a background (or leaky) manner in the reporter strain.

The plasmid DNA encoding the protein factor(s) was sequenced automatically, and following conversion of the nucleotide sequence to a protein sequence the results were compared to other protein factor(s) by FastA and BLAST searches in the Swissprot database. The protein factor(s) have been identified as follows:

Clones 1 and 4 both contain protein sequence homology to the rat *c-jun* transcription factor which belongs to the basic DNA-binding domain / leucine zipper family of transcription factors. Using the BLAST2 sequence alignment tool a significant sequence overlap between the two clones was also found. From the expected probability value (E) it is highly unlikely these alignments had occurred by chance. The reason the AP-1/c-jun transcription factor is binding to the region – 609 to – 577 may be explained by the fact that this region contains a partial homology to the AP-1 binding site (consensus sequence TGAGTCAG). This may also explain the quite high background expression of the HIS3 gene in the reporter strain since yeast also have a transcriptional activator GCN4 which binds to the consensus sequence TGA(C/G)TCAG (Hattori et al., 1988). Such similarities imply that the c-jun product acts in the nucleus as a transcription factor, and that the high structural identity with GCN4 suggests that the two proteins may recognise similar DNA sequences (Latchman, 1998).

Clone 2 carries a sequence that at present has not yet been identified and could possibly be a novel transcription factor.

Clone 3 carries a sequence identified as the PASK protein. The PASK protein is a <u>proline-alanine</u> rich <u>STE20-related</u> <u>kinase</u>.

Clone 5 belongs to the homeobox / POU family of transcription factors and has been identified as the pituitary specific positive transcription factor 1 (Pit-1), growth hormone factor-1 (GHF-1) or general transcription factor (GTF2.i). The homeobox is a highly conserved 180 nucleotide segment of DNA encoding a 60 amino acid homeodomain, which was first identified in several *Drosophila* genes important for controlling early development (M°Ginnis et al., 1984). The observed homology of the homeodomain with the helix-turn-helix DNA-binding motif found in prokaryotic repressors led to the notion that homeodomain-containing proteins are sequence-specific DNA-binding proteins (Mihara and Kaiser, 1988). POU proteins, like the homeobox proteins, occur in a wide variety of organisms and play an extremely important role in the regulation of gene expression during development. These proteins may also be of particular importance in the development of the central nervous system (Latchman, 1998). Clone 6 has been identified from BLAST sequence alignment searches as belonging to the EF transcription factor family, which are transcriptional

BLAST alignment searches have identified clone 7 as the protein factor known as ATF-2 (the activating transcription factor 2), and like clones 1 and 4, ATF-2 belongs to the basic DNA-binding/leucine zipper family of transcription factors. Both of these protein factors mediate their effects by binding to the basic DNA-binding domain as either a homodimer or as a heterodimer.

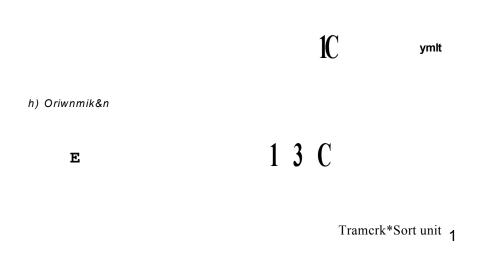
activators binding to E2F sites.

In order to confirm the DNA-binding activity of the protein isolated from the clones it would be necessary to carry out an electrophoretic mobility shift assay (EMSA) using the purified protein (transcription factor) and the labelled binding site as probe.

Since the region (between nucleotides – 609 to – 577) lies outside the distal promoter region (which is located between nucleotides – 254 to – 53 as described by Tamura *et al.*, 1989 and Aoyama *et al.*, 1990) of the mouse myelin basic protein gene it may have some other function, for example, acting as an enhancer.

A characteristic feature of eukaryotic gene expression is the existence of sequence elements located some distance away from the transcriptional start site, which also influence the level of gene expression. These elements can be located upstream, downstream or within the transcription unit itself, and function irrespective of orientation relative to the transcription start site (Figure 38). Enhancers act by increasing the activity of the promoter, although they lack promoter activity (Hatzopoulos et al., 1988 and Muller et al., 1988). Some enhancers are active in all tissues increasing the activity of the promoter in all cell types, however, others function as tissue-specific enhancers which activate a particular promoter only in a specific cell type as it has been proposed for the region located between nucleotides -609 to -577 of the myelin basic protein promoter. The tissue-specific activity of such enhancer elements plays a fundamental role in mediating the observed tissue-specific pattern of expression of the corresponding gene. As with the promoter elements, enhancer elements also contain multiple binding sites for transcription factors which interact together (Carey 1998). In many cases

these elements are identical to those immediately upstream of gene promoters, for example the immunoglobulin heavy-chain enhancer contains a copy of the octamer sequence found in the immunoglobulin promoters. Enhancers, therefore, are made up of sequence elements that are present in similarly regulated promoters and may also be found within the enhancers associated with other control elements. Mutation of conserved sequences within the tissue-specific enhancers abolish the tissue-specific pattern of expression of those genes.


Models involving the binding of protein factors to the enhancer followed by direct interaction with proteins of the transcriptional apparatus are more difficult to resolve with the action at some distance, characteristic of most enhancers. Models hypothesising this suggest that the enhancer serves as a site of entry for a regulatory factor, this factor would then make contact with the promoter – bound transcriptional apparatus by one of three ways:

- (a) sliding along the DNA
- (b) via a continuous scaffold of other proteins, or
- (c) by 'looping' out of the intervening DNA.

Of these possibilities, both the continuous scaffold and sliding models are difficult to square with the large distances over which enhancers act. It has also been shown that an enhancer can act on promoters located on two different DNA molecules linked only by a protein bridge. This would totally disrupt the scaffold or sliding molecules model (Muller *et al.* 1989). A more explicable model is one in which the proteins bound at the promoter and enhancer have an affinity for one another and make contact by looping out

of the intervening DNA, and such a model can also explain the critical importance that DNA structure has on enhancer action, for example, using the SV40 enhancer it has been shown that removing multiples of 10 bases (one helical turn) has no effect on enhancer activity. However, deletion of five DNA bases (corresponding to half a helical turn) does severely disrupt enhancer activity (Takahashi *et al.* 1989).

Enhancers have been considered to act in a positive manner, however, some enhancers produce specific patterns of gene expression by relieving a negative effect. In these cases it appears the enhancer binds a protein factor, which inhibits the promoter, following induction, or in the case of a specific tissue, this negative factor is inactivated and falls off the enhancer allowing a positive-acting factor to bind and activate gene expression. This positive acting factor may be present in all cell types, but cannot normally bind to the DNA because of the presence of the negative repressor factor (Goodbourn et al., 1986). The most extreme example of an enhancer-like sequence acting in a totally negative way is a silencer. Silencers can act in either orientation to inhibit the activity of distant promoters without binding a regulatory protein, hence appearing to have a negative effect. To sum up, whether acting positively or negatively, enhancers play a key role in regulating eukaryotic gene expression, and often act together with related regulatory elements located adjacent to the promoter itself.

c) FV**#km

*-

.£ 5 =

Trm m csftpcism

Figure 38. Characteristics of an enhancer element activating a promoter at:

- a) a distance from the promoter
- b) in either orientation relative to the promoter
- c) or when positioned upstream, downstream or within a transcription element.

KEY E = Enhancer. P = Promoter

(Adapted from Latchman D.S. 1990)

Awatramani et al. (1997) have investigated the patterns of postnatal brain expression and DNA binding of Gtx (a homeodomain transcription factor). The accumulation of Gtx mRNA parallels that of the RNAs encoding the major structural proteins of myelin, for example, the myelin basic protein and the proteolipid protein during postnatal brain development. Gtx mRNA decreases in parallel with MBP and PLP in the brains of myelin deficient rats. Gtx mRNA is expressed in differentiated, post-mitotic oligodendrocytes but not in oligodendrocyte precursors, astrocytes or other glia. Using a maltose-binding protein-Gtx fusion protein produced in E.coli Awatramani et al. (1997) have established that Gtx is a sequence-specific DNA-binding protein, which binds DNA sequences containing a core AT-rich homeodomain. Immunoprecipitation of labelled DNA fragments encoding the myelin basic protein or proteolipid protein promoter regions with the fusion protein have identified several Gtx-binding fragments, which have been confirmed by electrophoretic mobility shift assay. In this way four Gtx binding sites have been identified within the first 750 bp of the myelin basic protein promoter, three sites are located between nucleotides – 598 and – 656, and the fourth site is located between nucleotides – 304 and – 331. The site between nucleotides – 598 and – 621 binds Gtx with the highest affinity of the four MBP sites. Four Gtx binding sites in the first - 1.3 kb of the proteolipid protein promoter, the site located between nucleotides – 644 and – 671 binds Gtx with the highest affinity. The sites located between – 409 and – 434, and – 1128 and –1214 bind with a lesser affinity and the site located between – 259 and –286 binds with the least affinity. The locations

and DNA sequences of the Gtx binding sites located in the MBP and PLP promoters are shown in Table 4. Further analysis of the first kilobase of the PLP promoter sequence has since revealed the presence of an additional six putative Gtx binding sites. These data suggest that Gtx is important for the function of differentiated oligodendrocytes and may be involved in the regulation of myelin-specific gene expression.

Although Gtx is a regulator of oligodendrocyte development and myelin-specific gene expression it is not expressed in Schwann cells, which are the myelinating cells of the peripheral nervous system (PNS), whereas, both the major CNS proteins, MBP and PLP, are also expressed in myelinating Schwann cells. Comparison of the known mechanisms of development and regulation of myelin-specific gene expression in both oligodendrocytes and Schwann cells demonstrate several differences. Firstly the transcription factors necessary for normal Schwann cell maturation and PNS myelination, SCIP and Krox-20, are not required for normal oligodendrocyte maturation or myelination, and the developmental expression profile of these proteins is different in the two cell types e.g. SCIP is expressed in promyelinating Schwann cells committed to myelination, but it is also found in oligodendrocyte precursors and undifferentiated myelinating cells. Krox-20 is not expressed in oligodendrocytes. Secondly, different regions within the myelin basic protein promoter region have been shown to be required for oligodendrocyte and Schwann cell gene expression, e.g. myelin basic protein promoter sequences up to 3.2 kb are sufficient to drive developmentally regulated, oligodendrocyte-specific transgene expression but do not support transgene expression in Schwann

cells. (Gow et al., 1992). Thirdly, comparison of the oligodendrocyte and Schwann cell nuclear proteins that bind to the proximal MBP promoter (Wrabetz et al., 1993) demonstrates a number of significant differences, suggesting there is a unique set of transcriptional activators present in the two cell types. The data suggests that the molecular mechanism underlying the regulation of Schwann cell and oligodendrocyte development are different, and as a result the presence of Gtx in oligodendrocytes but not in Schwann cells is further proof of this suggestion.

Туре	Location of site	Sequence
MBP	-327 to -320	CA TATT CT
MBP	-606 to -613	GT TAAA TA
MBP	-630 to -623	AA TAAA TG
MBP	-650 to -643	AC TAAA AA
PLP	-262 to -269	TG TAAT TG
PLP	-284 to -277	CTTAATTT
PLP	-428 to -421	GG TAAT AT
PLP	-662 to -669	AT TAAT GA
PLP	-1194 to -1201	AA TAA TTC
PLP [*]	-10 to -17	TG TAAT CT
PLP*	-245 to -252	TA TAAA TG
PLP	-296 to -303	CTTAAATC
PLP*	-331 to -324	TT TAAA TG
PLP	-559 to -566	AA TAAT TT
PLP*	-1020 to -1013	GATAATCC

^{*} A putative Gtx binding site identified by homology to a known binding site.

Table 4. Gtx binding sites located within the MBP and PLP Promoter regions.

In many respects the myelin basic protein gene is unique, it is among a relatively small group of genes > 100 kb in length and represent an example of both a gene within a gene as well as two overlapping genes, and in that respect it bears some resemblance to the neurofibromatosis gene in that both genes are large transcription units encompassing smaller genes. However, they are different in that the smaller myelin basic protein gene portions are not simply included within an intron of the larger gene but share alternatively spliced exons in common.

Another unusual feature of the myelin basic protein gene is its regulation. The MBP transcription start site (S3), shown in Figure 2, is under very tight developmental control and is only expressed in myelin-forming cells. Most of this regulation resides within the exon 5a region upstream of transcription start site S3. The *golli-mbp* transcription start site S1 is under less specific regulation, therefore, there appears to be a gradient of cell and tissue specificity amongst the three promoters of the gene, with the most downstream promoter being the most specific to myelin forming cells and the most upstream promoter exhibiting the least cell and tissue specificity. This combination of structure and expression significantly changes the notion of the myelin basic protein gene, which has generally been thought to be specific for myelin-forming cells. The genomic region encompassing exon 5A has been used by many workers to target transgenes specifically to oligodendrocytes. It is now suggested that this "myelin" gene is expressed in many neuronal cell populations, some of which are important in establishing the structure of the cerebral cortex. In addition, it has been suggested that increased expression of this gene within the immune system may be

responsible for the relapsing disease phase of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MacKenzie-Graham *et al.*, 1997). Therefore, it has become clear that the myelin basic protein gene is important to neurons and immune cells as well as oligodendrocytes and must therefore perform a function that is not solely associated with myelination.

The work of Landry *et al.*, (1998) has also contributed to the evolving notion that the myelin basic protein gene is one with broader functions in neurons and in myelin-forming cells in the nervous system than was first thought. They have identified a region upstream of the first transcription start site (S1), shown in Figure 2, that can target transgenes to a very limited number of neurons, including the very earliest-forming (pioneer) neurons in the cortex, the Cajal-Retzius cells and preplate neurons.

Since the early nineties there has been a shift away from the traditional notion that the *MBP* and *PLP* genes were expressed solely in myelin-forming cells, and their products were thought to be structural components of myelin. It has now been shown that the products of these genes have been identified in nonmyelinating cell types including the immune system and nervous system (Givogri *et al.*, 2000). In the nervous system golli is produced in oligodendrocytes and specific subsets of neurons, however there is no evidence of golli expression in astrocytes or microglia (Landry *et al.*, 1996). Neuronal expression of golli is prominent in the following regions: the spinal cord (interneurons of the anterior and posterior grey horns), the developing cortex (embryonic cortical neurons, presubplate and subplate neurons, Cajal-Retzius cells), the hippocampus

(pyramidal cells, granule cells of dentate gyrus), the cerebellum (Purkinje and granular cells), the olfactory system and the dorsal root ganglia (Landry et al., 1996). Golli products of the MBP gene are expressed in the immune system (Campagnoni et al., 1993). In the mouse thymus, golli appears to be expressed in the thymic epithelial cells and macrophages and to a lesser extent in the thymocytes (Campagnoni et al., 1993). Expression of the MBP gene in the thymus might have an important role in influencing tolerance development (by influencing the positive and negative selection of the T-cell repertoire) which could lead to the opening of new research to understanding autoimmune diseases like experimental autoimmune encephalomyelitis (EAE) (Voskhul, 1998).

4.2. Future Work

Future work would involve further studies on the role of the putative transcription factors, which were identified in this project, in the expression of the myelin basic protein gene in oligodendrocytes. To achieve this the activity of the promoter in HeLa cells (control) and oligodendrocytes in the presence and absence of the cDNA clone expressing the studied transcription factor would be compared. For this purpose it would be necessary to obtain the mouse myelin basic protein gene promoter in a vector containing a reporter gene e.g. chloramphenicol acetyl transferase (pBLCAT) or luciferase (pGL2-Basic vector), both vectors lack eukaryotic promoter and enhancer sequences (the reporter plasmid). A full length copy of the cDNA for a putative transcription factor in a plasmid vector containing a ubiquitously active promoter e.g. CMV promoter (pcDNA 3.1) would be also required. Experiments involving the co-transfection of the reporter plasmid and the plasmid containing the transcription factor cDNA into HeLa cells (control) and glial (oligodendrocyte) cells would be performed. If the CAT assay were used to assess activity of the promoter, it would be performed as follows: cell lysates would be incubated with ¹⁴C-labelled chloramphenicol and acetyl-CoA. In this reaction the acetyl group from the acetyl-CoA is transferred by the CAT enzyme to the 2- or 3- position on the chloramphenicol. The products of this reaction are detected by thin layer chromatography (TLC) followed by autoradiography. The TLC separates the acetylated chloramphenicol from the unreacted substrates, as a result the 2and 3- acetylated chloramphenicol migrate at slightly different rates producing two spots if the promoter were active. The presence and intensity

of the spots reflects the activity of the promoter as the CAT enzyme is present only when active promoter is upstream of the reporter gene in the reporter plasmid.

Studies of how mutations in the region –609 to –577 affect the expression of the reporter gene in the presence of putative transcription factors could also be undertaken. To achieve this it would initially be necessary to transfect a plasmid with the wild type binding site (enhancer) linked to a promoter and a reporter gene (e.g. pBLCAT2 vector which has the *tk* HSV promoter upstream of the CAT gene or pGL2-promoter vector which has SV40 promoter upstream of the luciferase gene) into HeLa and glial (oligodendrocyte) cell lines to investigate further the biological function and the cell type-specificity of the binding site (enhancer). Similar experiments would be performed using co-transfection experiments with cDNA for the putative transcription factor. An increase in the expression of the reporter gene in the presence of a cDNA encoding a putative transcription factor is expected in an appropriate cell line.

Subsequently constructs with point mutations in the –609 to –577 nt region linked to a reporter gene would be prepared. These constructs would be transfected with and without the transcription factor cDNA into oligodendrocytes (and HeLa cells as control). In this case no increase in reporter gene transcription as determined by the CAT enzyme activity would be expected.

REFERENCES.

- Ainger K., Avossa D., Morgan F., Hill S. J., Barry C., Barbarese E. and Carson J. H. (1993)

 Transport and localisation of exogenous myelin basic protein mRNA microinjected into oligodendrocytes.

 J. Cell Biol. 123, 431 441.
- Ainger K., Avossa D., Diana A. S., Barry C. and Barbarese E. (1997)

 Transport and localisation elements in myelin basic protein mRNA. *J. Cell Biol.* **138**, (5) 1077 1087.
- Albers R. W., Siegel G. J. and Stahl W. L. (1994)
 In Basic neurochemistry (Siegel G. J. Agranoff B. W., Albers R. W. and Molinoff P. B., Eds) 5thed., 49 73. Raven Press.
- Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. (1990)
 Basic local alignment search tool.

 J. Mol. Biol. 215, 403 410.
- Amur S.G., Shanker G., Cochran J.M., Ved H.S., and Pieringer R.A. (1986)

 Correlation between inhibition of myelin basic protein (arginine) methyltransferase by sinefungin and lack of compact myelin formation in cultures of cerebral cells from embryonic mice.

 J. Neurosci. Res. 16, 367 376.
- Aoyama A., Tamura T., and Mikoshiba K. (1990)

 Regulation of brain-specific transcription of the mouse myelin basic protein gene: function of the NF1-binding site in the distal promoter. *Biochem. Biophys. Res. Comm.* **167**, 648 653.
- Aruga J., Okano H., and Mikoshiba K. (1991)
 Identification of the new isoforms of mouse myelin basic protein: the existence of exon 5a.

 J. Neurochem. **56**, 1222 1226.
- Asipu A., and Blair G.E, (1994)

 Regulation of myelin basic protein-encoding gene transcription in rat oligodendrocytes.

 Gene 150 227 234.

Asipu A., and Blair G.E, (1997)

Regulation of transcription and translation in the Central Nervous System.

Molecular Biology of Multiple Sclerosis (Russell W.C. editor) John Wiley and Sons pp 121 – 136.

Assa-Munt N., Mortishire-Smith R.J., Aurora R., Herr W. and Wright P.E. (1993)

The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain.

Cell 73, 193 – 205.

Awatramani R., Scherer S., Grinspan J., Collarini E., Skoff R., O'Hagan D., Garbern J., and Kamholz J. (1997)

Evidence that the homeodomain protein Gtx is involved in the regulation of oligodendrocyte myelination.

J. Neurosci. 17, (17) 6657 – 6668.

Bacher G, Lütcke H., Jungnickel B., Rapoport T. A. and Dobberstein B. (1996)

Regulation by the ribosome of the GTPase of the signal-recognition particle.

Nature (London) 381, 248 – 251.

- Bansal G., Martenson R.E., Leveille P., and Campagnoni A.T. (1987) Characterisation of a novel monoclonal anti-myelin basic protein antibody: use in immunoblotting and immunohistochemical studies. *J. Neuroimmunol.* **15**, 279 - 294.
- Barbarese E., Braun P.E. and Carson J.H. (1977)
 Identification of prelarge and presmall basic proteins in mouse myelin and their structural relationship to large and small basic proteins. *Proc. Natl. Acad. Sci. USA.* **74**, 3360 3364.
- Barbarese E., and Pfeiffer S.E. (1981)

Developmental regulation of myelin basic protein in dispersed cultures.

Proc. Natl. Acad. Sci. USA. 78, 1953 - 1957.

Barbarese E., Nielson M.L., and Carson J.H. (1983)

The effect of the *shiverer* mutation on myelin basic protein expression in homozygous and heterozygous mouse brain.

J. Neurochem. 40, 1680 - 1686.

Barbarese E., Koppel D. E., Deutscher M. P., Smith C. L., Ainger K., Morgan F., and Carson J. H. (1995)

Protein translation components are colocalised in granules in oligodendrocytes.

J. Cell Sci. 108, 2781 - 2790.

Benjamins J.A., and Morell P. (1987)

Proteins of myelin and their metabolism.

Neurochem. Res. 3, 137 - 174.

Berg J. M. (1986)

Potential metal binding domains in nucleic acid binding proteins. *Science* **232**, 485 – 492.

Berlet H. H., Bischoff H. and Weinhardt F. (1994)

Divalent metals of myelin and their differential binding by myelin basic protein of bovine central nervous system.

Neurosci. Lett. **179**, (1-2) 75 – 78.

Bhat S., Barbarese E., and Pfeiffer S.E. (1981)

Requirement for non-oligodendrocyte cell signals for optimal myelinogenic gene expression in long term cultures of purified rat oligodendrocytes.

Proc. Natl. Acad. Sci. USA. 78, 1283 - 1287.

Bhat S., and Pfeiffer S.E. (1986)

Stimulation of oligodendrocytes by extracts from astrocyte-enriched cultures.

J. Neurosci. Res. 15, 19 - 27.

Birnboim C., and Doly J. (1979)

Rapid alkaline extraction procedure for screening recombinant plasmid DNA.

Nucl. Acids Res. 7, 1513 – 1523.

Blank V. and Andrews N.C. (1997)

The Maf transcription factors: regulators of differentiation. Trends in Biochemical Sciences 22, 437 – 441.

Bourre J.M., Jacque C., Delassale A., Nguyen-Largros J., Dumont O., Lachapelle F., Raoul M., Alvarez C., and Baumann N. (1980)

Density profile and basic protein measurements in the myelin range of particulate material from normal developing mouse brain and from neurological mutants.

J. Neurochem. 35, 458 - 464.

Boyle W.J., Smeal T., Defize L.H.K., Angel P., Woodgett J.R., Karin M. and Hunter T. (1991)

Activation of protein kinase C decreases phosphorylation of c-jun at sites that negatively regulate its DNA binding activity.

Cell **64**, 573 – 584.

Breitbart R.E., Andreadis A., and Nadal-Ginard B. (1987)
Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes.

Ann. Rev. Biochem. **56**, 467 - 495.

Brophy P. J., Bocaccio G. L. and Colman D. R. (1993)

The distribution of myelin basic protein mRNA with myelinating oligodendrocyte. *Trends Neurosci.* **16**, 515 – 521.

Campagnoni A.T., Carey G.D., and Yu Y.-T. (1980)

In vitro synthesis of the myelin basic proteins: subcellular site of Synthesis.

J. Neurochem. 34, 677 - 686.

Campagnoni A.T., Campagnoni C.W., Bourre J.-M., Jacque C., and Baumann N. (1984)

Cell-free synthesis of myelin basic proteins in normal and dysmyelinating mutant mice. *J. Neurochem.* **42**, 733 - 739.

Campagnoni A.T., (1985)

Molecular Biology of myelination: gene expression of myelin basic protein.

Gene Expression in Brain, (Zomzely - Neurath C. and Walker W.A., eds), John Wiley, pp 205 - 233.

- Campagnoni A.T., Hunkeler M.J., and Moskaitis J.E. (1987)
 Translation regulation of myelin basic protein synthesis. *J. Neurosci. Res.* **17**, 102 110.
- Campagnoni A.T., (1988)

 Molecular biology of myelin proteins from the central nervous system. *J. Neurochem.* **51**, (1) 1 14.
- Campagnoni A.T., and Macklin W.B. (1988)

 Cellular and molecular aspects of myelin protein gene expression. *Mol. Neurobiol.* **2**, 41 89.

Campagnoni A.T., Pribyl T.M., Campagnoni C.W., Kampf K., Amar-Umarjee S., Landry C. F., Handley V.W., Newman S.L., Garbay B. and Kitamura K (1993)

Structure and developmental regulation of *Golli-mbp*, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. *J. Biol. Chem.* **268**, 4930 – 4938.

Carey M. (1998)

Enhanceosome and transcriptional synergy. *Cell* **92**, 5 – 8.

Carnegie P.R. (1971)

Properties, Structure, and possible neuroreceptor role of the encephalitogenic protein of the human brain. *Nature.* **229**, 25 - 28.

Carnow T.B., Carson J.H., Brostoff S.W., and Hogan E.L. (1984)

Myelin basic protein gene expression in *quaking*, *jimpy* and *myelin synthesis-deficient* mice. *Dev. Biol.* **106**, 38 - 44.

Carson J.H., Nielson M.L., and Barbarese E. (1983)

Developmental regulation of myelin basic protein expression in mouse brain.

Dev. Biol. 96, 485 - 492.

Cavatorta P., Giovanelli S., Bobba A., Riccio P., Scabo A. G. and Quagliariello E. (1994)

Myelin basic protein interaction with zinc and phosphate: Fluorescence studies on the water-soluble form of the protein. *Biophys. J.* **66**, 1174 – 1179.

Chen S. and Zack D. J. (2000)

Cloning and characterisation of retinal transcription factors, using target site-based methodology.

Methods in Enzymology 316, 590 – 610.

Chernoff G. (1981)

Shiverer. an autosomal recessive mutant mouse with myelin deficiency.

J. Hered. 72, 128.

Clark R., Stewart M., Miskimins K. and Miskimins R. (1998)
Involvement of MAP kinase in the cyclic AMP induction of myelin basic protein gene expression.

Int. J. Devl. Neuroscience 16, (5), 323 – 331.

- Clewell D.B., and Helinski D.R, (1969)
 - Supercoiled circular DNA-protein complex in *Escherichia coli*: Purification and induced conversion to an open circular DNA form. *Proc. Natl. Acad Sci U.S.A.* **62**, 1159 1166.
- Clewell D.B. (1972)

Nature of Col E₁ plasmid replication in *Escherichia coli* in the presence of chloramphenicol. *J. Bacteriol.* **110**, 667.

Clontech Laboratories (1995)

Matchmaker One-hybrid system protocol 1 - 29.

- Cohen S.N., Chang A.C.Y. and Hsu L. (1972)

 Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of *Escherichia coli* by R factor DNA. *Proc. Natl. Acad Sci U.S.A.* **69**, 2110
- Colman D.R., Kreibich G., Frey A.B., and Sabatini D.D. (1982)
 Synthesis and incorporation of myelin polypeptides into CNS myelin. *J. Cell Biol.* **95**, 598 608.
- Dawson S.J., Morris P.J. and Latchman D.S. (1996)

 A single amino acid change converts a repressor into an activator. *Journal of Biological Chemistry* **271**, 11631 11633.
- Deibler G.E., Krutzsch C.H., and Kies M.W. (1986)
 A new form of myelin basic protein found in human brain.

 J. Neurochem. 47, 1219 1225.
- Deibler G. E., Stoner A. I. And Kies M. W. (1990)

 Role in phosphorylation in conformational adaptability of bovine myelin basic protein.

 Proteins 7, 32 40.
- Delassale A., Zalc B., Lachapelle R., Raoul M., Collier P., and Jacque C. (1981)

 Regional distribution of myelin basic protein in the CNS *quaking*, *jimpy* and normal mice during development and aging.
 - J. Neurosci. Res. **6**,303 313.
- Desmarais D., Filon M., Lapointe L., and Royal A. (1992)

 Cell-specific transcription of the peripherin gene in neuronal cell lines involves cis-acting element surrounding the TATA box.

 EMBO J. 11, 2971 –2980.

DesJardins K.C., and Morell P. (1983)

Phosphate group modifying myelin basic proteins are metabolically labile; methyl groups are stable.

J. Cell Biol. 97,438 - 446.

Devine-Beach K.A., Haas S., and Khalili K. (1992)

Analysis of the proximal transcriptional element of the myelin basic protein gene.

Nucl. Acids Res. 20 545 - 550.

Diehl H.-J., Schaich M., Budzinski R.-M., and Stoffel W. (1986) Individual exons encode the integral membrane domains of human myelin proteolipid protein.

Proc. Natl. Acad. Sci. USA. 83, 9807 - 9811.

Doolittle D.P., and Schweikart K.M. (1977)

Myelin deficient, a new neurological mutant in the mouse.

J. Hered. 68, 331 - 332.

Doolittle D.P., Baumann N., and Chernoff G. (1981)

Allelism of two myelin deficient mutations in the mouse.

J. Hered. 72, 285.

Dubois-Delacq M., Behar T., Hudson L., and Lazzarini R.A. (1986)

Emergence of three myelin proteins in oligodendrocytes cultured without neurons.

J. Cell Biol. 102, 384 - 392.

Duncan I. D., Lunn K. F., Holmgren B., Urba-Holmgren R. and Brignolo-Holmes L. (1992)

The taiep rat: A myelin mutant with an associated oligodendrocyte microtubular defect.

J. Neurocytol. 21, 870 – 884.

Ebersole T. A., Rho O. and Artzt K. (1992)

The proximal end of chromosome 17: New molecular markers identify a deletion associated with quaking viable.

Genetics **131**, 183 – 190.

Ebersole T. A., Chen Q., Justice M. J. and Artzt K. (1996)

The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins.

Nat. Genet. 12, 260 - 265.

Eichberg J. and Iyer S. (1996)

Phosphorylation of myelin proteins: Recent advances.

Neurochem. Res. 21, (4) 527 - 535.

Eylar E.H., (1970)

Amino acid sequence of the basic protein of the myelin membrane. *Proc. Natl. Acad. Sci. USA.* **67**, 1425 - 1431.

Farsetti A., Desvergne B., Hallenbeck P., Robbins J., and Nikodem V.M. (1992)

Characterisation of myelin basic protein thyroid hormone response element and its function in the context of native and heterologous promoter.

J. Biol. Chem. **267**, 15784 – 15788.

deFerra F., Engh H., Kamholz J., Puckett C., Molineaux S., and Lazzarini R.A. (1985)

Alternative Splicing accounts for the four forms of Myelin Basic Protein.

Cell **43**, 721 – 727.

Fors L., Hood L., and Saavedra R.A. (1993)

Sequence similarities of myelin basic protein promoters from mouse and shark: Implications for the control of gene expression in myelinating cells.

J. Neurochem **60**, 513 – 521.

Frederickson C. J. (1989)

Neurobiology of zinc and zinc-containing neurons.

Int. Rev. Neurobiol. 31, 145 – 238.

Gandy G., Jacobson W., and Sidman R. (1973)

Inhibition of a transmethylation reaction in the central nervous system - an experimental model for subacute combined degeneration of the cord.

J. Physiol. (Lond). 233,1P - 3P.

Garbay B., Heape A. M., Sargueil F. and Cassagne C. (2000)

Myelin synthesis in the peripheral nervous system.

Prog. Neurobiol. **61**, 267 – 304.

Gehring W. J. (1992)

The homeobox in perspective.

Trends Biochem. Sci. **17**, 277 – 280.

Ghosh S. K., Paik W. K. and Kim S. (1988)

Purification and molecular identification of two protein methylase I from calf brain.

J. Biol. Chem. **263**, 19024 – 19033.

- Ginalski-Winkelman H., Guillermina A., and Matthieu J.-M. (1983)

 In vitro myelin basic protein synthesis in the PNS and CNS of myelin deficient (mld) mutant mice.

 Brain Res. 277, 386 388.
- Givogri M. I., Bongarzone E. R. and Campagnoni A. T. (2000)

 New insights on the biology of myelin basic protein gene: the neural-immune connection. *J. Neurosci. Res.* **59**, 153 159.
- Goodbourn S., Burnstein H., and Maniatis T. (1986)
 The human β-interferon gene is under negative control.

 Cell 45, 601 610.
- Gow A., Friedrich Jr. V.L., Lazzarini R.A. (1992)

 Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. *J. Cell Biol.* **119** 605 616.
- Guthrie C. and Fink G.R. (1991)

 Guide to yeast genetics and molecular biology.

 In Methods in Enzymology (Academic Press, San Diego) **194**, 1-932.
- Haas S., Steplewski A., Siracusa L.D., Amini S., and Khalili K. (1995) Identification of a sequence specific single-stranded DNA binding protein that suppresses transcription of the mouse myelin basic protein gene. J. Biol. Chem. 270, (21) 12503 – 12510.
- Hardy R. J. (1998)

 Molecular defects in the dysmyelinating mutant quaking. *J. Neurosci. Res.* **51**, 417 422.
- Hardy R. J., Loushin C. L., Friedrich Jr V. L., Chen Q., Ebersole T. A., Lazzarini R. A. and Artzt K. (1996)

 Neural cell type-specific expression of QKI proteins is altered in quakingviable mutant mice. *J. Neurosci.* **16**, 7941 7949.
- Hattori K., Angel P., Lebeau M.M. and Karin M. (1988)
 Structure and chromosomal localisation of the functional intronless human jun proto-oncogene. *Proc. Natl. Acad. Sci. USA* **85**, 9148 9152.
- Hatzopoulos A.K., Schlokat U. and Gruss P. (1988)
 Enhancers and other *cis*-acting sequences. In transcription and splicing, B. D. Hames and D. M. Glover (*eds*) 43 96 IRL press, Oxford

- Hickson A. K., Payne D. M., Martino P. A., Rossomando A. J., Shabapowitz J., Weber M. J., Hunt D. J. and Sturgall T. W. (1990)
 Identification by mass spectrometry of threonine 97 in bovine myelin basic protein as a specific phosphorylation site for mitogen-activated protein kinase.

 J. Biol. Chem. 265, 19728 19735.
- Hoek K. S., Kidd G. J., Carson J. H. and Smith R. (1998) hnRNP A2 selectively binds to cytoplasmic transport sequence of myelin basic protein mRNA. *Biochemistry* 37, 7021 – 7029.
- Holmes D.S. and Quigley M. (1981)

 A rapid boiling method for the preparation of bacterial plasmids.

 Anal. Biochem. 114 193.
- Holz A., Schaeren_Wiemers N., Schafer C., Pott U., Colello R. J. and Schwab M. E. (1996)
 Molecular and developmental characterisation of novel cDNAs of the myelin-associated/oligodendrocytic basic protein.
 J. Neurosci. 16, 467 477.
- Ingraham H.A., Chen R., Mangalam H.J., Elsholtz H.P., Flynn S.E., Lin C.R., Simmons D.M., Swanson L. and Rosenfeld M.G. (1988)

 A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype.

 Cell 55, 519 529.
- Inoue Y., Nakamura R., Mikoshiba K., and Tsukada Y. (1981)

 Fine structure of the central myelin sheath in the myelin deficient mutant *shiverer* mouse, with special reference to the pattern of myelin formation by oligodendroglia.

 Brain Res. 219, 85 94.
- Jacque C., Delassale A., Raoul M., and Baumann N. (1983)

 Myelin basic protein deposition in the optic and sciatic nerves of dysmyelinating mutants *quaking*, *jimpy*, *trembler*, MLD, *shiverer* during development.

 J. Neurochem. 41, 1335 1340.
- Jiricny J., Hughes M., Corman N., and Rudkin B.B. (1988)
 A human 200 kDa protein binds selectively to DNA fragments containing G.T mismatches.

 Proc. Natl. Acad Sci U.S.A. 85 8860-8864.
- Johnson W.A. and Hirsh J.(1990)

 Binding of Drosophila POU-domain protein to a sequence element regulating gene expression in specific dopaminergic neurons.

 Nature 343, 467 470.

- Kadonaga J.T., Carner K.R., Masiarz F.R. and Tjian R. (1987)
 Isolation of cDNA encoding the transcription factor Sp1 and functional analysis of the DNA binding domain.

 Cell 51, 1079 1090.
- Kageyama R., Sasai Y. and Nakanishi S. (1991)

 Molecular characterisation of transcription factors that bind to the cAMP responsive region of the substance P precursor gene. cDNA cloning of a novel C/EBP-related factor.

 J. Biol. Chem. 266, 15525 –15531.
- Kamholz J., deFerra F., Puckett C., and Lazzarini R. (1986)
 Identification of three forms of human myelin basic protein by cDNA cloning.

 Proc. Natl. Acad. Sci. USA 83, 4962 4966.
- Kenan D. J., Query C. C. and Keene J., D. (1991)
 RNA recognition: towards identifying determinants of specificity. *Trends Biochem. Sci.* **16**, (6), 214 220.
- Kerlero de Rosbo N., Carnegie P.R., Bernard C.C.A., and Linthicum D.S. (1984)

 Detection of various forms of myelin basic protein in vertebrates by electroimmunoblotting.

 Neurochem. Res. 9, 1359 1369.
- Kerner A.-L., and Carson J.H. (1984)
 Effect of the *jimpy* mutation on expression of myelin proteins in heterozygous and hemizygous mouse brain.
 J. Neurochem. 43, 1706 1715.
- Kim S., Tuck M., Campagnoni A.T., and Paik W. (1984)
 Studies of myelin basic protein-specific protein methylase I in various dysmyelinating mutant mice.

 Biochem. Biophys. Res. Comm. 123, 468 474.
- Kim S., Tuck M., Ho L., Campagnoni A.T., Barbarese E., Knobler R.L., Lublin F.D., Chanderkar L.P., and Paik W. (1986)

 Myelin Basic Protein-specific protein methylase I activity in *shiverer* mutant mouse brain. *J. Neurosci. Res.* **16**, 357 365.
- Kim S., Lim I. K., Park G-H. and Paik W. K. (1997)
 Biological methylation of myelin basic protein: Enzymology and biological significance.

 Int. J. Biochem. Cell Biol. 29, (5) 743 751.

- Kimbro K.S., Rosenberg P.A., and Saavedra R.A. (1994)

 Box I and II motif from myelin basic protein gene promoter binds to nuclear proteins from rodent brain.

 J. Mol. Neurosci. 5, (1) 27 37.
- Kimura M., Inoko H., Katsuki M., Ando A., Sato T., Hirose T., Takashima H., Inayama S., Okano H., Takamatsu K., Mikoshiba K., Tsukada Y., and Watanabe I. (1985)

 Molecular genetic analysis of myelin-deficient mice: *shiverer* mutant mice show deletion in gene(s) coding for myelin basic protein. *J. Neurochem.* 44, 692 696.
- Kimura M., Sato M., Akatsuka A., Nazawa-Kimura S., and Takahashi R., (1989)

 Restoration of myelin formation by a single type of myelin basic protein in transgenic *shiverer* mice. *Proc. Natl. Acad. Sci. U.S.A.* **86**, 5661 5665.
- Kitamura K., Newman S. L., Campagnoni C. W., Verdi J. M., Mohandas T., Handley V. W. and Campagnoni A. T. (1990)

 Expression of a novel transcript of the myelin basic protein gene. *J. Neurochem.* **54**, (6) 2032 2041.
- Klemm J.D., Rould M.A., Aurora R., Herr W. and Pabo C.O. (1994)
 Crystal structure of the Oct-1 POU domain bound to an octamer site:
 DNA recognition with tethered DNA-binding modules.
 Cell 77, 21 32.
- Kondo T., Furuta T., Mitsunaga K., Ebersole T. A., Schichiri M., Wu J., Artzt K., Yamamura K. and Abe K. (1999)
 Genomic organisation and expression analysis of the mouse QKI locus.

 Mamm. Genome 10, 662 669.
- Kwon S., Barbarese E. and Carson J.H. (1999)

 The cis-acting RNA trafficking signal from myelin basic protein mRNA and its cognate trans-acting ligand hnRNP A2 enhance capdependent translation.

 J. of Cell Biol. 147, (2) 247 256.
- Landry C.F., Ellison J.A., Pribyl T.M., Campagnoni C.W., Kampf K, and Campagnoni A.T. (1996)

 Myelin protein gene expression in neurons: developmental and regional changes in protein targeting within neuronal nuclei, cell bodies and processes.

 J. Neurosci. Res. 50, 265 271.

Landry C.F., Pribyl T.M., Ellison J.A., Givogri M.I., Kampf K, Campagnoni C.W., and Campagnoni A.T. (1998)

Embryonic expression of the myelin basic protein gene: Identification of a promoter region that targets transgene expression to pioneer neurons.

J. Neurosci. 18, (18) 7315 - 7327.

Latchman D.S. (1990)

Gene regulation: A eukaryotic perspective.

Pub: Unwin Hyman

Latchman D.S. (1998)

Eukaryotic transcription factors.

Pub: Academic Press (3rd Edition)

Ledeen R. W. (1992)

Enzymes and receptors of myelin.

In Myelin biology and chemistry (Martenson R. P., ed.) 531 – 570. CRC Press, Roca Raton. Fl.

Lees M. B. and Brostoff S. W. (1984)

In Myelin, 2nd edn. (Morell P., ed.) 174 – 244. Plenum Press

Lemke G. (1986)

Molecular biology of the major myelin genes.

TINS. (6) 266 - 270.

Liu H., Oteiza P. I., Gershwin M. E., Golub M. S. and Keen C. L. (1992)

Effects of maternal marginal zinc deficiency on myelin protein profiles in the suckling rat and infant rhesus monkey.

Biol. Trace Elem. Res. 34, (1) 55 - 66.

Lowery J. M., Berti-Martera L. N., Zhu X., Peterson R. G. and Eichberg J. (1989)

Relationship of ATP turnover, polyphosphoinositide metabolism and protein phosphorylation in sciatic nerve and derived myelin subfractions from normal and diabetic rats.

J. Neurochem. **52**, 921 – 932.

Luskin M.B., Pearlman A.M., and Sanes J.R. (1988)

Cell lineage in the cerebral cortex of the mouse studied *in vivo* and *in vitro* with a recombinant retrovirus.

Neuron. **1**, 635 – 647.

MacKenzie-Graham A.J., Pribyl T.M, Kim S., Porter V.R., Campagnoni A.T. and Voskuhl R.R. (1997)

Myelin protein expression is increased in lymph nodes of mice with relapsing experimental encephalomyelitis.

J. Immunol. 159, 4602 – 4610.

Macklin W.B., Campagnoni C.W., Deininger P.L., and Gardinier M.V., (1987)

Structure and expression of the mouse myelin proteolipid protein gene.

J. Neurosci. Res. 18, 383 - 394.

Marais R. and Marshall C.J., (1996)

Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surveys 27, 101 – 125.

Mathis J.M., Simmons D.M., He X., Swanson L.W. and Rosenfeld M.G. (1992)

Brain-4 – a novel mammalian POU-domain transcription factor exhibiting restricted brain-specific expression. *EMBO J.* **11**, 2551 – 2561.

- Matthieu J.-M., Ginalski H., Friede R.L., and Cohen S.R. (1980)
 Low myelin basic protein levels and normal myelin in peripheral nerves of myelin deficient mutant mice, *shiverer* and *mld*.

 Neurosci. **5**, 2315 2320.
- M°Carthy K.D., and deVellis (1980)

 Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissues.

 J. Cell Biol. 85, 890 902.
- M°Ginnis W, Levine M. S., Hafen E., Kuroiwa A. and Gehring W. J. (1984) A conserved DNA sequence in homeotic genes of the *Drosophila* antennapedia and bithorax complexes. Nature **308**, 428 – 433.
- Mihara H. and Kaiser E.T. (1988)

A chemically synthesised *antennapedia* homeodomain binds to a specific DNA sequence.

Science 242, 925 - 926.

Mirsky R., Winter J., Abney E. R., Pruss R. M., Gavrilovic J. and Raff M. C. (1980)

Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture.

J. Cell Biol. 84, 483 - 494.

Miura M., Tamura T., Aoyama A., and Mikoshiba K. (1989)

The promoter elements of the mouse myelin basic protein gene function efficiently in NG108-5 neuronal/glial cells.

Gene 75, 31-38.

Molineaux S.M., Engh H., deFerra F., Hudson L. and Lazzarini R.A. (1986)

Recombination within the myelin basic protein gene created the dysmyelinating *shiverer* mouse mutant.

Proc. Natl. Acad. Sci. USA. 83, 7542 - 7546.

- Morrel P., Quarles R. H. and Norton W. T. (1994)
 Myelin formation, structure and biochemistry.
 In Basic neurochemistry: Molecular, cellular and medical aspects.
 (Siegel G. J., Agranoff B. W., Albers R. W. and Molinoff P. B. eds.).
 Lippincott-Raven Press.
- Moriguchi T., Gotoh Y. and Nishida E. (1996)
 Roles of the MAP kinase cascade in vertebrates. *Adv. Pharm.* **36**, 121 137.
- Moscarello M. A., Wood D. D., Ackerley C. and Boulias C. (1994)
 Myelin in multiple sclerosis is developmentally immature. *J. Clin. Invest.* **94**, 146 154.
- Muller M. M., Gerster T. and Schaffner W. (1988)
 Enhancer sequences and the regulation of gene transcription.

 European Journal of Biochemistry 176, 485 495.
- Muller H.-P., Soga J.W. and Schaffner W. (1989)
 An enhancer stimulates transcription in *trans* when linked to the promoter via a protein bridge.

 Cell 58, 767 777.
- Nakajima K., Ikenaka K., Kagawa T., Aruga J., Nakao J., Nakahira K., Shiota C., Seung K.U., and Mikoshiba K. (1993)

 Novel isoforms of mouse myelin basic protein predominantly expressed in embryonic stage. *J. Neurochem.* **60**, 1554 1563.
- Newman S.L., Kitamura K., and Campagnoni A.T. (1987a)
 Identification of a cDNA coding for a fifth form of myelin basic protein in mouse.

 Proc. Natl Acad Sci USA 84, 886 890.
- Newman S.L., Kitamura K., Roth H.J., Kronquist K., Kelero de Rosbo N., Crandall B.F., and Campagnoni A.T. (1987b)

 Differential Expression of the Myelin Basic Protein Genes in mouse and human.

 J. Neurochem. 48, S27.

- Otting G., Qian Y., Müller M., Affolter M., Gehring W. and Wuthrich K. (1988) Secondary structure determination for the *antennapedia* homeodomain by nuclear magnetic resonance and evidence for a helix-turn-helix motif.

 EMBO J. 7, 4305 4310.
- Park G. -H., Chanderkar L.P., Paik W.K., and Kim S. (1986)
 Myelin basic protein inhibits histone-specific protein methylase I.

 Biochem. Biophys. Acta. 874, 30 36.
- Petryniak B., Staudt L.M., Postema C.E., M^cCormack W.T. and Thompson C. (1990)

 Characterisation of chicken octamer-binding proteins demonstrates that POU domain-containing homeobox transcription factors have been highly conserved during vertebrate evolution.

 Proc. Natl Acad Sci USA 87, 1099 1103.
- Pfeiffer S.E., Barbarese E., and Bhat S. (1981)

 Non-coordinate regulation of myelinogenic parameters in primary cultures of dissociated foetal rat brain. *J. Neurosci. Res.* **6**, 369 380.
- Popko B., Puckett C., Lai E., Shine H.D., Readhead C., Takahashi N., Hunt III S.W., Sidman R.L., and Hood L. (1987)

 Myelin deficient mice: expression of myelin basic protein and generation of mice with varying levels of myelin.

 Cell. 48, 713 721.
- Popko B., Puckett C. and Hood L. (1988)

 A novel mutation in myekin deficient mice results in unstable myelin basic protein gene transcripts.

 Neuron 1, 221 225.
- Pribyl T. M., Campagnoni C. W., Kampf K., Kashima T., Handley V. W., McMahon J. and Campagnoni A. T. (1993)

 The human myelin basic protein gene is included within a 179-kilobase transcription unit: Expression in the immune and central nervous systems.

 Proc. Natl. Acad. Sci. USA 90, 10695 10699.
- Pritzker L. B., Joshi S., Harauz G. and Moscarello M. A. (2000)

 Deimination of myelin basic protein. 2. Effect of methylation of MBP on its Deimination by peptidylarginine deiminase.

 Biochemistry 39, 5382 5388.
- Qi Y. and Dawson G. (1993)

 Effects of hypoxia on oligodendrocyte signal transduction. *J. Neurochem.* **61**, 1097 1104.

- Raff M.C., Miller R.H., and Noble M. (1983)

 A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium.

 Nature. 303, 390 396.
- Raible D.W. and M^cMorris F. A. (1989)

 Cyclic AMP regulates the rate of differentiation of oligodendrocytes without changing the lineage commitment of their progenitors.

 Dev. Biol. 133, 437 446.
- Rajpurohit R., Lee O-S., Park J-O., Paik W. K. and Kim S. (1994)
 Enzymatic methylation of recombinant Heterogeneous nuclear RNP
 A1. Dual substrate specificity for S-adenosylmethionine: histonearginine N-methyltransferase.

 J. Biol. Chem. 269, 1075 1082.
- Rauscher F.J., Cohen D. R., Curran T., Bos T. J., Bogt P. K., Bohmann D., Tjian R. and Franza B. R. (1988)

 Fos-associated protein p39 is the product of the c-jun oncogene.

 Science 240, 1010 1016.
- Readhead C., Popko B., Takahashi N., Shine H.D., Saavedra R.A., Sidman R.L., and Hood L. (1987)

 Expression of a myelin basic protein gene in transgenic *shiverer* mice: correction of the dysmyelinating phenotype.

 Cell. 48, 703 712.
- Riccio P., Giovannelli S., Bobba A., Romito E., Fasano A., Bleve-Zacheo T., Favilla R., Quagliariello E. and Cavatorta P. (1995)

 Specificity of zinc binding to myelin basic protein.

 Neurochem. Res. 20, (9) 1107 1113.
- Roach A., Boylan K., Horvath S., Prusiner S.B., and Hood L. (1983) Characterisation of cloned cDNA representing rat myelin basic protein: absence of expression in brain of *shiverer* mutant mice. *Cell.* **34**, 799 - 806.
- Roach A., Takahashi N., Pravtcheva D., Ruddle F., and Hood L. (1985) Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in *shiverer* mutant mice.

 Cell. 42, 149 155.
- Roch J.-M., Brown-Luedi M., Cooper B.J., and Matthieu J.-M. (1986)

 Mice heterozygous for the *mld* mutation have intermediate levels of myelin basic protein mRNA and its translation products. *Mol. Brain Res.* 1, 137 144.

- Roth H.J., Hunkeler M.J., and Campagnoni A.T. (1985)
 Expression of myelin basic protein genes in several dysmyelinating mouse mutants during early postnatal brain development.

 J. Neurochem. 45, 572 580.
- Roth H.J., Kronquist K., Pretorius P.J., Crandall P.J., Crandall B.F., and Campagnoni A.T. (1986)
 Isolation and characterisation of a cDNA coding for a novel human 17.3 k myelin basic protein (MBP) variant.

 J. Neurosci. Res. 16, 227 238.
- Roth H.J., Kronquist K., Kelero de Rosbo N., Crandall B.F., and Campagnoni A.T. (1987)

 Evidence for the expression of four myelin basic protein variants in the developing human spinal cord through cDNA cloning. *J. Neurosci. Res.* 17, 321 328.
- Ryder K., Lau L.F., and Nathans D. (1988)

 A gene activated by growth factors is related to the oncogene v-jun.

 Proc. Natl Acad Sci USA 85, 1487 1491.
- Saccomanno L., Loushin C., Jan E., Punkay E., Artzt K. and Goodwin E. B. (1999)

 The STAR protein QKI-6 is a translational repressor.

 Proc. Natl. Acad. Sci. USA 96, 12605 12610.
- Salzer J.L., Holmes W.P., and Colman D.R. (1987)
 The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily.

 J. Cell Biol. 104, 957 965.
- Sambrook J., Fritsch E.F., and Maniatis T., (1989)

 Molecular Cloning A Laboratory Manual (Second Edition) 2 11.31 11.32.
- Sanger F., Miklen S., and Coulson A.R. (1977)

 DNA sequencing with chain termination inhibitors.

 Proc. Natl. Acad Sci U.S.A. 74 5463 5467
- Saxe D.F., Takahashi N., Hood L., and Simon M.I. (1985)
 Localisation of the human myelin basic protein gene (MBP) to region 18q22->qter by in situ hybridisation.

 Cytogenet. Cell Genet. 39, 246 249.
- Schibler U., Sierra F. (1987)
 Alternative promoters in developmental gene expression.

 Annu. Rev. Genet. 21 237-257.

- Schoenherr C.J., Paquette A.J., and Anderson D.J. (1996) Proc Natl Acad Sci U.S.A. 93 9881 – 9886.
- Schofield P. N. (1987)

Patterns, puzzles and paradigms – The riddle of the homeobox. *Trends Neurosci.* **10**, 3 – 6.

Shan J., Moran-Jones K., Munro T. P., Kidd G. J., Winzor D. J., Hoek K. S. and Smith R. (2000)

Binding of an RNA trafficking response element to heterogeneous nuclear ribonucleoproteins A1 and A2.

J. Biol. Chem. 275, (49) 38286 – 38295.

Sidman R.L., Conover D.S., and Carson J.H. (1985)

Shiverer gene maps near the distal end of chromosome 18 in the house mouse.

Cytogenet. Cell Genet. 39, 241 - 245.

- Sorg B.J.A., Agrawal D., Agrawal H.C., and Campagnoni A.T. (1986) Expression of myelin proteolipid protein and basic protein in normal and dysmyelinating mutant micé. *J. Neurochem.* **46**, 379 387.
- Sorg B.J., Smith M.M., and Campagnoni A.T. (1987)

 Development expression of the myelin proteolipid protein and basic protein mRNAs in normal and dysmyelinating mutant mice. *J. Neurochem.* **49**, 1146 1154.
- Sparkes R.S., Mohandas T., Heinzmann C., Roth H.J., Klisak L., and Campagnoni A.T. (1987)
 Assignment of the myelin basic protein gene to human chromosome 18q22->qter.

 Hum. Genet. 75, 147 150.
- Streicher R. and Stoffel W. (1989)

The organisation of the human myelin basic protein gene. *Biol. Chem. Hoppe-Seyler* **370**, 503 – 510.

Surtees R. (1993)

Biochemical pathogenesis of sub acute combined degeneration of the spinal cord and brain.

J. Inherited Metab. Dis. 16, 762 - 770.

Sutcliffe J.G., (1987)

The genes for myelin.

Trends in Genetics. 3, (3) 73 - 76.

Tabor S. And Richardson C.C. (1987)

DNA sequence analysis with a modified bacteriophage T7 DNA Polymerase.

Proc. Natl. Acad Sci U.S.A. 84 4767

Takahashi N., Roach A., Teplow D.B., Prusiner S.B., and Hood L. (1985) Cloning and characterisation of the myelin basic protein gene from mouse: one gene can encode both 14 kd and 18.5 kd MBPs by alternate use of exons. *Cell.* **42**, 139 - 148.

Takahashi K., Vigneron M., Matthes H., Wildeman A., Zeake M. and Chambon P. (1986)

Requirement of stereospecific alignments for initiation from the simian virus 40 early promoter.

Nature 319, 121 - 126.

Tamura T., Miura M., Ikenaka K., and Mikoshiba K. (1988)
Analysis of transcription control elements of the mouse myelin basic protein gene in HeLa cell extracts: demonstration of a strong NF1-binding motif in the upstream region.

Nuc. Acids Res. 16, (24) 11441 – 11459.

Tamura T., Sumita K., Hirose S., and Mikoshiba K. (1990)

Core promoter of the mouse myelin basic protein gene governs brainspecific transcription *in vitro*. *EMBO J.* **9**, 3101 – 3108.

Tatusova T.A. and Madden T.L. (1999)

Blast 2 sequences - a new tool for comparing protein and nucleotide sequences.

FEMS Microbiol Lett. 174, 247 – 250.

Taveggia C., Pizzagalli A., Feltri M.L., Grinspan J.B., Kamholz J., and Wrabetz L. (1998)

MEBA depresses the proximal myelin basic protein promoter in oligodendrocytes.

J. Biol. Chem. 273, (42), 27741 – 27748.

Temple S., and Raff M.C. (1985)

Differentiation of a bipotential glial progenitor cell in single cell microculture.

Nature. 313, 223 - 225.

Theill L.E., Hattori K., Lazarro D., Castrillo J.-L. and Karin M. (1992)

Differential splicing of GHF-1 primary transcript gives rise to two functionally distinct homeoproteins.

EMBO J. 11, 2261 – 2269.

Torron J., Ljubetic C.I., Huang L., Kimbro K.S., Dyer C. and Saavedra. (1997)

Two proteins bind to a novel motif in the promoter of the myelin basic protein gene from mouse.

J Mol. Neurosci. 8, 181 – 191.

Townsend L.E., and Benjamins J.A. (1983)

Effects of monensin on posttranslational processing of myelin proteins.

J. Neurochem. 40, 1333 - 1339.

Trapp B. D. (1990)

Distribution of myelin protein gene products in actively-myelinating oligodendrocytes.

NATO ASI Series H 43, 59 - 79.

Tretiakova A., Gallia G.L., Shcherbik N., Jameson B., Johnson E.M., Amini S., and Khalili K. (1998)

Association of $Pur\alpha$ with RNAs homologous to 7SL determines its binding ability to the myelin basic protein promoter DNA sequence. *J. Biol. Chem.* **273**, (35), 22241 – 22247.

- Tretiakova A., Steplewski A., Johnson E.M., Amini S., and Khalili K.(1999) Regulation of myelin basic protein gene transcription by Sp1 and Purα: evidence for association of Sp1 and Purα in brain.

 J. Cell Physiol. 181, (1), 160 168.
- Tsang D., Tsang Y. S., Ho W. K. K. and Wong R. N. S. (1997)

 Myelin basic protein is a zinc-binding protein in brain: Possible role in myelin compaction.

 Neurochem. Res. 22, (7) 811 819.
- Ueno S., Handley V. W., Byravan S. and Campagnoni A. T. (1994a) Structural features of myelin basic protein mRNAs influence their translational efficiencies.

J. Neurochem. **62**, 1254 – 1259.

Ueno S., Kotani Y., Kondoh K., Sano A., Kakimoto Y. and Campagnoni A. T. (1994b)

The 3'-untranslated region of mouse myelin basic protein gene increases the amount of mRNA in immortalised mouse oligodendrocytes.

Biochem. Biophys. Res. Commun. **204**, 1352 – 1357.

Umemeori H., Kadowaki Y., Hirosawa K., Yoshida Y., Hironaka K., Okano H and Yamamoto T. (1999)

Stimulation of myelin basic protein gene transcription by fyn tyrosine kinase for myelination.

J. Neuroscience 19, (4) 1393 – 1397.

Ushiro H., Tsutsumi T., Suzuki K., Kayahara T. and Nakano K. (1998)
Molecular cloning and characterisation of a novel Ste20-related protein kinase enriched in neurons and transporting epithelia.

Arch. Biochem. Biophys. **355**, 233 – 240.

Vernet C. and Artzt K. (1997)

STAR, a gene family involved in signal transduction and activation of RNA.

Trends Genet. 13, 479 – 484.

Vogt P. K. and Bos T.J. (1990)

iun: oncogene and transcription factor.

Adv. Cancer Res. **55**, 1 – 35.

Voskhul R. R. (1998)

Myelin protein expression in lymphoid tissues: implications for peripheral tolerance.

Immunol. Rev. 164, 81 - 92.

Waxman, S.G. and Ritchie, J.M. (1993)

Molecular dissection of the myelinated axon.

Ann. Neurol. **33**, 121 – 136.

Whitaker J. N., Layton B. A., Herman P. K., Kachelhofer R. D., Burgard S. and Bartolucci A. A. (1993)

Correlation of myelin basic protein-like material in cerebrospinal fluid of multiple sclerosis patients with their response to glucocorticoid treatment.

Ann. Neurol. **33**, 10 – 17.

Whitaker J. N., Williams P. H., Layton B. A., M°Farland H. F., Stone L. A., Smith E. M., Kachelhofer R. D., Bradley E. L., Burgard S., Zhao G. and Paty D. W. (1994)

Correlation of clinical features and findings on cranial magnetic resonance imaging with urinary myelin basic protein-like material in patients with multiple sclerosis.

Ann. Neurol. 35, 577 - 585.

Wilson R. and Brophy P. J. (1989)

Role for the oligodendrocyte cytoskeleton in myelination.

J. Neurosci. Res. 22, 439 - 448.

Wolf M. K., Nunnari J. N. and Billings-Gagliardi S. (1999)

Quaking*Shiverer double mutant mice survive for at least 100 days with no CNS myelin.

Dev. Neurosci. 21, 483 – 490.

- Wood D. D., Bilbao J., O'Connor P. and Moscarello M. A. (1996)
 Acute multiple sclerosis (Marburg Type) is associated with
 developmentally immature myelin basic protein. *Ann. Neurol.* **40**, 18 24.
- Wrabetz L., Shumas S., Grinspan J., Feltri M.L., Bozyczko D., McMorris F.A., Pleasure D., and Kamholz J. (1993)

 Analysis of the human MBP promoter in primary cultures of oligodendrocytes: positive and negative cis-acting elements in the proximal MBP promoter mediate oligodendrocyte-specific expression of MBP.

J. Neurosci. Res. **36**, 455 – 471.

Young P. R., Vacante D. A. and Waickus C. M. (1987)

Mechanism of the interaction between myelin basic protein and the myelin membrane: The role of arginine methylation. Biochem. Biophys. Res. Commun. **145**, 1112 – 1118.

Yu Y.-T., and Campagnoni A.T. (1982)

In vitro synthesis of the four mouse myelin basic proteins: evidence for the lack of a metabolic relationship.

J. Neurochem. 39, 1559 - 1568.

Yu J-S. and Yang S. D. (1994)

Protein kinase F_x/glycogen synthase kinase 3 predominantly phosphorylates the *in vivo* site Thr97-Pro in myelin basic protein: evidence for the Thr-Pro and Ser-Arg-X-X-Ser as consensus sequence motifs.

J. Neurochem. **62**, 1596 – 1603.

Yung S. D. (1986)

Identification of the ATP-Mg dependent protein phosphatase activator (F_{\wedge}) as a myelin basic protein kinase in the brain. J. Biol. Chem. **261**, 11786 – 11791.

Zelenika D., Grima B. and Pessac B. (1993)

A new family of transcripts of the myelin basic protein gene: Expression in brain and in immune system.

J. Neurochem. **60**, 1574 – 1577.

Zhang X., and Miskimins R. (1993)

Binding at an NF1 site is modulated by cyclic AMP-dependent activation of myelin basic protein gene expression.

J. Neurochem. **60**, 2010 – 2017.

APPENDIX I.

EQUIPMENT SUPPLIERS.

Mini-Gel Submarine Electrophoresis Units.

Biometra Ltd, P.O. Box 42, Sale, Manchester.

Gallenkamp Ltd. (Fisons Plc Scientific Equipment Division), Bishop Meadow, Loughborough, Leicester.

DNA Sequencing Gel Apparatus.

Biometra Ltd, P.O. Box 42, Sale, Manchester.

Mini-Gel Submarine Electrophoresis Units.

Gallenkamp Ltd. (Fisons Plc Scientific Equipment Division), Bishop Meadow, Loughborough, Leicester.

Mini-Gel Electrophoresis Power Supply.

Biometra Ltd, P.O. Box 42, Sale, Manchester.

Gallenkamp Ltd. (Fisons Plc Scientific Equipment Division), Bishop Meadow, Loughborough, Leicester.

Sequencing Power Supply.

Pharmacia Ltd, 351 Midsummer Boulevard, Milton Keynes, Buckinghamshire.

PCR Machines.

Biometra Ltd, P.O. Box 42, Sale, Manchester.

MWG Biotech Ltd,

APPENDIX II.

MEDIA AND BUFFER COMPOSITION.

2.2. Large scale isolation of plasmid DNA by a modified Clewell and Helinski technique.

Luria Broth:

10 g
5 g
5 g
2 g

Water

make up to 1 litre.

Buffer I:

Glucose 50 mmol I⁻¹ Tris-HCl (pH 8.0) 25 mmol I⁻¹ EDTA (pH8.0) 10 mmol I⁻¹

SOLUTION I can be prepared in batches of 100 ml, autoclaved for 15 min at 10 lb/in² and stored at 4^O C.

3X Triton X-100 Lysis Solution:

2.3. Purification of plasmid DNA by centrifugation to equilibrium in caesium chloride-ethidium bromide gradient.

T.E. Buffer (pH8.0):

Tris-HCl (pH 8.0) 10 m mol l⁻¹ EDTA (0.5M) 1 m mol l⁻¹

2.4. Analytical agarose gel electrophoresis of DNA.

10X Tris acetate buffer:

Tris (SIGMA 7-9) 32.3 g EDTA 2.48 g Glacial Acetic Acid 11.7 ml

WATER make up to 1 litre.

Loading Buffer:

Glycerol 25 % Xylene Cyanol FF 0.02 % Bromophenol Blue 0.05 %

2.6.3. Ligation.

10X Ligation Buffer:

Tris-HCl 200 mmol I^{-1} Magnesium Chloride 100 mmol I^{-1} Dithiothreitol 100 mmol I^{-1} WATER (Sterile) 600 μI

Dispense into 200 μ l aliquots and store frozen until required. Fresh A.T.P. is added (from a 10 mmol l⁻¹ stock) just before use.

Incubation Buffer:

Tris-HCl 20 mmol I⁻¹
Magnesium Chloride 10 mmol I⁻¹
Dithioerythritol 10 mmol I⁻¹
A.T.P. 0.6 mmol I⁻¹
Adjust the pH TO 7.6

2.6.4. Introduction of plasmid DNA into E. coli cells.

M9 Minimal Medium:

5X M9 Salts:

Disodium hydrogen orthophosphate (7H₂O) 64 gl⁻¹
Potassium dihydrogen orthophosphate 15 gl⁻¹
Sodium chloride 2.5 gl⁻¹
Ammonium chloride 5.0 gl⁻¹

The salt solution is divided into 200 ml aliquots prior to sterilisation by autoclaving at 15 psi for 15 min.

To 750 ml of sterile deionised water cooled to 50° C the following was added aseptically:

200 ml of 5X M9 salts

20 ml of 20 % Glucose (filter sterilised)

Make up to 1 litre with sterile deionised water added aseptically.

20X SSC Buffer:

Sodium Chloride 175 g Tri-sodium Citrate 88.2 g

Dissolve in 800 ml of water, adjust the pH to 7.0 with 10 normal sodium hydroxide and then make up to volume (1 litre). Sterilize by autoclaving.

AIX Medium:

Allow L-B agar to cool to 50 °C before adding:

for each 100 ml OF L-B agar.

L-B Agar:

Tryptone 10 g
Yeast Extract 5 g
Sodium Chloride 10 g
Agar 10 g

Add 900 ml of water, adjust the pH TO 7.5 with sodium hydroxide and then make up to volume (1 litre).

Stock I.P.T.G. (1 M):

Dissolve 1 g I.P.T.G. in 4.2 ml of sterile distilled water and store frozen until required.

Stock X-GAL (10%):

Dissolve 100 mg X-GAL in 1000 µl of Dimethylformamide.

2.6.5.1. Preparation of plasmid DNA on a small-scale.

STET Buffer:

Sodium Chloride	100	mmol I ⁻¹
Tris-HCI (pH 8.0)	10	mmol I ⁻¹
EDTA (pH 8.0)	1	mmol I ⁻¹
Triton X-100	5	%

3.1.1. Alkaline lysis mini-preparation using the Pharmacia kit.

SB Medium:

Tryptone	12	g
Yeast Extract	24	g

Dissolved in 900 ml of distilled water.

Prepare 0.9 mol I^{-1} Potassium Phosphate buffer (pH 7.3) by dissolving 2.3 g of KH₂PO₄ and 12.5 g of K₂HPO₄ in 100 ml of water, sterilize both solutions separately by autoclaving and mix them aseptically together and add 4 ml of sterile glycerol.

Add ampicillin to a final concentration of 50 $\mu g/ml$ for selection of the plasmid of interest.

Solution I:

Tris-HCI (pH 8.0)	50	mmol I ⁻¹
Glucose	50	mmol I ⁻¹
EDTA	10	mmol i ⁻¹
KATHON® CG/ICP	0.15	5 %

Solution II:

Sodium Hydroxide 0.8 mol I^{-1} Triton X-100 4 % (v/v)

It should be noted that before using solution II for the first time, 75 ml of sterile distilled water should be added, this will bring the final concentration to 0.2 mol I⁻¹ NaOH and 1% TRITON X-100.

Solution III:

Sodium Acetate (pH 4.8)

3 mol I-1

Column Buffer:

Tris-HCI (pH 8.0) 10 mmol i⁻¹ EDTA 1 mmol i⁻¹

4.0. Sequencing of DNA.

T.E. Buffer pH 7.5 (for reconstitution of oligonucleotides only).

Tris-HCl pH7.5 10 m mol l⁻¹ EDTA 1 m mol l⁻¹

4.2. DNA sequencing using the Sequenase kit.

Sequenase Buffer (5X concentrate).

Tris-HCl pH7.5 200 mM Magnesium chloride 100 mM Sodium chloride 250 mM

Dithiothreitol 0.1 M

Enzyme Dilution Buffer.

Tris-HCl pH7.5 10 mM DTT 5 mM 8SA 0.5 mg/ml

Stop Solution.

Formamide	95	%
EDTA	20	m M
Bromophenol Blue	0.05	%
Xylene Cyanol FF	0.05	%

4.4.1. Preparation of polyacrylamide gels.

40 % Acrylamide Solution:

Acrylamide 114 g Bis-acrylamide 6 g

Make up to 300 ml with deionised water.

When dissolved stir gently with 6 g of amberlite MB-1 mixed bed resin. Filter through glass wool to remove resin and store solution at 40 C until required.

10X TBE Buffer:

Tris 54 g
Boric Acid 27.5 g
EDTA (0.5 mol I⁻¹ STOCK) 20 ml

Make up to 500 ml with sterile distilled water.

1X TBE Gel Mix:

10X TBE20.8 mlAcrylamide (40%)31.2 mlUrea (Ultrapure Grade)100 g

Make up to 208 ml with sterile distilled water.

6% Acrylamide Sequencing Gel:

1X TBE GEL MIX 70 ml Ammonium Persulphate (25%) 140 μ l TEMED 90 μ l

The gel should set within 15 min otherwise the whole procedure must be repeated.

5.0. Electrophoretic mobility shift assay.

5X Annealing Buffer:

100 mM Sodium chloride 10 mM Tris.CI (pH 7.8)

1 mM EDTA

100 mM Magnesium chloride

5 mM DTT

Binding Buffer:

25 mM Hepes.KOH (pH 8.0) 0.5 mM EDTA 10 % (v/v) Glycerol 0.01 mM zinc chloride 0.5 mM dithiothreitol

5.2. Preparation of nuclear extracts.

Buffer A:

10 mM Hepes (pH 7.9) 1.5 mM magnesium chloride

10 mM potassium chloride

0.5 mM PMSF

0.5 mM dithiothreitol

Buffer C:

20 mM Hepes (pH 7.9)

0.42 mM sodium chloride

1.5 mM magnesium chloride

0.2 mM EDTA

0.5 mM dithiothreitol

25 % v/v Glycerol

Buffer D:

20 mM Hepes (pH 7.9)

100 mM potassium chloride

0.2 mM EDTA

0.5 mM PMSF

0.5 mM dithiothreitol

20 % v/v Glycerol

It should be noted that DTT and PMSF were added fresh at the time of use.

7.0. Large scale preparation of yeast vector containing the binding site.

Terrific broth:

Tryptone 12 g
Yeast extract 24 g
Glycerol 4.0 ml
Water 900 ml

Autoclave to sterilise, when cooled to room temperature aseptically add 100 ml of phosphate salt solution.

Phosphate salt solution:

Potassium dihydrogen orthophosphate 2.31 g Dipotassium hydrogen orthophosphate 12.54 g Water 100 ml

Autoclave to sterilise

Solution A:

Glucose 9.0 g 1M Tris (pH 8.0) 12.5 ml 0.5 M EDTA 10.0 ml Water 475 ml

Autoclave to sterilise.

Solution B: (Prepared fresh just prior to use)

10M Sodium hydroxide 1.6 ml 10% SDS 8.0 ml Water 70.4 ml

Solution C:

Potassium acetate 147 g Acetic acid 58 ml

Make up to a final volume of 500 ml Autoclave to sterilise, and store at 4° C

PEG 8000

Dissolve 5 g of Polyethylene glycol 8000 in 15 ml of water then make up to a final volume of 25 ml.

8.2. Preparation of yeast competent cells.

YPD Medium (For Liquid Cultures):

20 gl⁻¹ Difco Peptone 10 gl⁻¹ Difco Yeast Extract

Adjust the pH to 5.8 and make up to a final volume of 950 ml. Autoclave to sterilise.

Cool to 55 °C prior to aseptically adding 50 ml of filter sterilised 40% glucose

YPD Medium (For Plates):

20 gl⁻¹ Difco Peptone

10 gl⁻¹ Difco Yeast Extract

20 gl⁻¹ Difco Agar

Adjust the pH to 5.8 and make up to a final volume of 950 ml.

Autoclave to sterilise.

Cool to 55 °C prior to aseptically adding 50 ml of filter sterilised 40% glucose

10 X TE Buffer:

0.1 M Tris.Cl 10 mM EDTA

Adjust the pH to 7.5 and make up to 100 ml with distilled water. Autoclave to sterilise.

10 X LiAc:

Lithium Acetate 10.2 g

Adjust the pH to 7.5 with dilute acetic acid and make up to 100 ml with distilled water.

Autoclave to sterilise.

1 X TE/LiAc Solution (prepare fresh just before use):

Water

8 ml of Sterile Water

TE Buffer

1 ml of 10 X TE

LiAc

1 ml of 10 X LiAc

50 % PEG 4000:

Polyethylene glycol (avg. mol. wt. = 3,350)

50 g

Make up to 100 ml with distilled water.

Autoclave to sterilise.

1 X PEG/LiAc Solution (prepare fresh just before use):

PEG 4000

8 ml of 50 % PEG

TE Buffer

1 ml of 10 X TE

LiAc

1 ml of 10 X LiAc

TE Buffer:

1M

Tris.Cl (pH 8.0)

1000 μΙ

500 mM

EDTA (pH 8.0)

200 μl

Make up to 100 ml with sterile distilled water.

SD Medium (For Liquid Medium):

6.7 gl⁻¹ Difco yeast nitrogen base without amino acids

Adjust the pH to 5.8 and make up to a final volume of 850 ml.

Autoclave to sterilise.

Cool to 55 °C prior to aseptically adding:

100 ml of 10X dropout medium

50 ml of filter sterilised 40% glucose

SD Medium (For Plates):

6.7 gl⁻¹ Difco yeast nitrogen base without amino acids

20 gl⁻¹ Difco agar

Adjust the pH to 5.8 and make up to a final volume of 850 ml.

Autoclave to sterilise.

Cool to 55 °C prior to aseptically adding:

100 ml of 10X dropout medium

50 ml of filter sterilised 40% glucose

For medium containing 3 - AT, powdered 3 - Aminotriazole was added to the appropriate concentration after the medium had cooled and before the plates were poured.

10X Dropout Medium:

L-Isoleucine	300 mg l ⁻¹
L-Valine	1500 mg l ⁻¹
L-Adenine hemisulphate salt	200 mg l ⁻¹
L-Arginine HCI	200 mg l ⁻¹
L-Leucine	1000 mg l ⁻¹
L-Lysine HCI	300 mg l ⁻¹
L-Methionine	200 mg l ⁻¹
L-Phenylalanine	500 mg l ⁻¹
L-Threonine	2000 mg l ⁻¹
L-Tryptophan	200 mg l ⁻¹
L-Tyrosine	300 mg l ⁻¹
L-Uracil	200 mg l ⁻¹

Make up to a final volume of 1000 ml. Autoclave to sterilise. Keep refrigerated until required.

3 - AT Concentrations:

For each 100ml of SD medium add:

Concentration (mM)	Amount 3 - AT (g/100 ml of medium)
5 mM	0.043 g
10 m M	0.086 g
15 mM	0.13 g
30 mM	0.25 g
45 mM	0.38 g
60 mM	0.5 g

8.4. Screening of putative reporter strain constructs (rapid isolation of chromosomal DNA).

Breaking Buffer:

2% (v/v) Triton X-100 1% (v/v) Sodium Dodecyl Sulphate (SDS) 100 mM NaCl 10 mM Tris.Cl (pH 8.0) 1 mM EDTA (pH 8.0)

Can be stored at room temperature for up to 1 yr.

APPENDIX III.

PREPARATION OF SEPHACRYL S-400 COLUMNS.

Each spun column was prepared as follows:

The column was inverted several times to resuspend the Sephacryl S-400 gel and then set upright in a rack to allow the gel to settle to form a continuous bed.

The Column was allowed to drain prior to the addition of 2 ml of Column Buffer.

The column was placed in a 15 ml Corex tube and centrifuged for 2 min at approximately 400 x g in a swinging bucket rotor and the eluted buffer discarded from the tube.

An uncapped 1.5 ml Eppendorf tube was placed in the bottom of the Corex tube, the column was replaced inside the Corex tube with the tip inside the Eppendorf tube.

The column was then used for DNA purification.

APPENDIX IV.

OLIGONUCLEOTIDE SYNTHESIS.

The procedure used for the synthesis of oligonucleotides was the phosphoramidite version of the phosphite triester method carried out on a solid phase support. The support material was inert towards all the reagents and solvents used in the synthesis cycle.

Four fully protected nucleotides corresponding to the bases A, C, G and T, (the basic building blocks in the synthesis), and referred to as amidites, were required,. An example of the structure of a fully protected amidite is shown in Figure 39. The complete reaction cycle itself consisted of four main steps, each separated by column washing as shown in Figure 40:

a. DEPROTECTION.

This is the removal of the dimethoxytrityl (DMTr) group to expose the hydroxyl group at position 5 of the 2-deoxyribose unit, and the subsequent activation of the phosphoramidite by tetrazole.

b. COUPLING.

The formation of an internucleotide bond between the 5' hydroxyl group and the phosphorous containing group at the 3' position on the incoming protected nucleotide.

c. CAPPING.

The termination of any unreacted 5' hydroxyl groups.

d. OXIDATION.

The phosphite linkage is oxidised to phosphate by iodine.

Each time this procedure is repeated one nucleotide is added to the growing chain, until an oligonucleotide of the required sequence and length has been synthesised.

FIGURE 39: The structure of a fully protected amidite.

FIGURE 40: The complete synthesis cycle.

COUPLING

The phosphite triester method makes use of the great reactivity of the trivalent phosphorous, in this state it will be electron deficient and therefore readily accepts electrons from an electron donating group such as the 5'-hydroxyl group of the deoxyribose unit. Unfortunately any other similarly donating group(s) would interfere with the efficiency of this reaction.

However, the group of most concern is the hydroxyl group found in water and as a consequence all coupling reactions were carried out under totally anhydrous conditions. All reagents and solvents used in this reaction were also stored under anhydrous conditions.

The first step was the removal of the dimethoxytrityl (DMTr) protecting group from the 5' hydroxyl of the initial nucleoside (as illustrated in Figure 41). The absorbance value of the orange DMTr ion produced was monitored at 436 nm and used to calculate the efficiency of coupling in the previous cycle. Obviously, no such calculation could be performed for the first detritylation.

The acidic conditions used in detritylation can also cause depurination, (this is the cleavage of the purine base from its deoxyribose at the glycosidic bond). Such a detrimental reaction would not be picked up by the DMTr assay since normal release of the DMTr cation would have taken place at the same time.

FIGURE 41: The detritylation reaction.

POST-SYNTHETIC PROCEDURES

Three further steps were needed before the final oligonucleotide was ready for use:

- (a.) Deprotection.
- (b.) Cleavage of the oligonucleotide from its support.
- (c.) Purification.

It was at this stage that the advantage of the β -cyanoethyl group became apparent for it allowed both deprotection and cleavage to be carried out at the same time.

Deprotection is the removal of the protecting amide groups from the bases and the β -cyanoethyl group from the phosphorous, this process would normally take 16 h at 50° C, however, the use of PAC amidites and supports allows total deprotection and cleavage in 1 h at 70° C.

Ammonia cleaves the oligonucleotide from its support by breaking the ester linkage between the spacer arm and the 3' hydroxyl group of the initial nucleoside, thus leaving the cleaved DNA with a free 3' hydroxyl group.

During the synthesis cycle all 5' hydroxyls, which did not undergo successful coupling, were capped as acetates. These were now removed by the ammonia to leave a free hydroxyl group. The full length molecule, which of course was not acetylated, has its 5' hydroxyl protected by a DMTr group. Usually this DMTr is cleaved automatically as the final step in the synthesis

cycle but it may have been left uncleaved if reverse phase HPLC or other purification methods requiring its presence were to be employed.

This deprotected and detritylated synthetic oligonucleotide DNA has free 5' and 3' hydroxyls and is biologically active. Ion-exchange FPLC, reverse phase HPLC or PAGE electrophoresis are the usual methods of purification, but as the majority of oligonucleotides produced are less than 30 bases in length then nothing more complicated than desalting is usually required. This can be accomplished by size exclusion chromatography on a Sephadex column (for example NAP-10) or by ethanol precipitation.

APPENDIX V.

COP PURIFICATION OF 5' TRITYL-ON OLIGONUCLEOTIDES

The COP purification cartridges separate molecules using the same principle as reverse phase chromatography, that is the less hydrophobic the molecule the quicker it will elute from the column.

Since the desired oligonucleotide product possesses the hydrophobic dimethoxytrityl (DMTr) protecting group on the 5' hydroxyl group, and the truncated sequences did not, it gives the desired product more hydrophobicity and therefore enabled purification on the COP cartridge.

Following synthesis the trityl-ON oligonucleotide was deprotected as previously described in section 2.13.3.

After removing the plunger from a 5 ml disposable syringe the main body of the syringe was then connected to the COP cartridge and using the graduations 2 ml of acetonitrile was passed through the column at a rate of 1 to 2 drops per second using the plunger.

The cartridge was then flushed with 2 ml of 2.0 M triethylamine acetate (pH 7.0). Prior to loading the oligonucleotide onto the column 3 ml of water was added to the ammonium hydroxide solution containing the deprotected trityl-ON oligonucleotide.

The oligonucleotide solution was passed through the column, the eluate collected and then repassed through the column a second time.

Dilute ammonium hydroxide (3 ml) was flushed through the column followed by 2 ml of deionised water, 2 ml of 2 % trifluoroacetic acid to detritylate the support-bound oligonucleotide and a further 2 ml of water.

Recovery of the oligonucleotide was achieved by flushing the column with 2 ml of 20 % (v/v) acetonitrile/water.

The absorbance units recovered was determined at 260 nm from a dry sample resuspended in water.

APPENDIX VI

Vector Maps and Sequences.

Nae {134

Xmn! 2645 Sea 12526

7 17*

T 3 f

Afl ill 1153

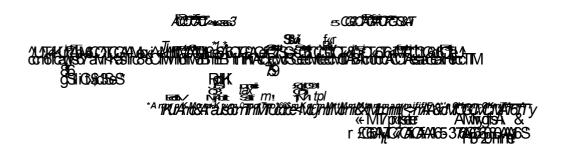
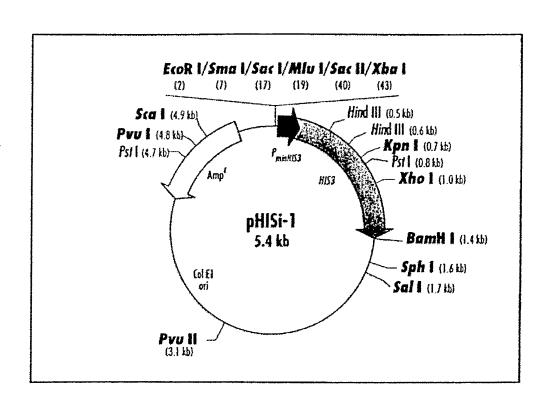



FIGURE 42.Map and multiple cloning site of plasmid pBluescript.

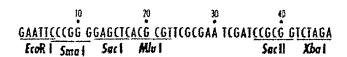
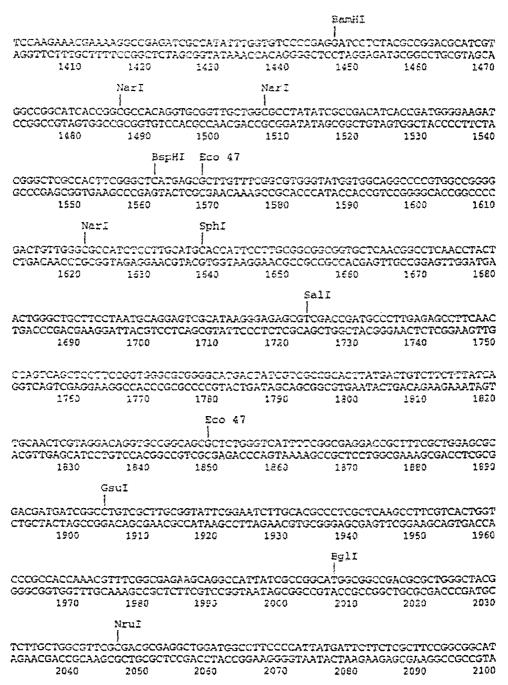


FIGURE 43. Map of pHISi-I and multiple cloning site.



FeoRI SmaX SacI Hrul ClaX 40 30 50 1 N r CYTTATIKCATTATAAAGTAATGTCATXTCTTCCXYAATATACTAAAAAATCACCACGCACGCACGCATAAAACTTCACTAXAAATATATATCTCCGTCCGTrcmTTT """ "*55 ~"Tm? 110 120 130 CMPN80CAAACATGACAG*\N8CAgAAA(KXXTAGTANBOGTATTACANITX3AAACCAAgATTCAGATTGC GCTTCCtrri^CTACTGTC,TCG^ftrcGGGATCAlvrrCGCATAATGTTTACTTTGGTTCTAAGTCTAACG 150 Oral CATCTCTTTAAAGGGTGGTCCCCTACCGAYAGUMCACTCGATCTTCCCYAAAAAGGGCAGAAGCAGTA CTAGAGAYATTTCCCACCAY3<ATCCCTATC?CGTaAGGTAGAAGGGCTTTI/CTCCGTCTTCGTCAT 240 220 230 ISO 260 270 280 KriteX YCAYCAGCOYCACA\TCCCAASTICATTAYCGTCXCXCXGGTATAGGGTTTC XTrTGTCCCXSTGTGTYAGCGMCTMTTTCCJySGTGYGCATATCCCAAAC 290 200 320 318 330 340 **3SS** AT3CTCTOSCCAASGATGCCGGCTGGTCGCTAATCGTT'GAGXSCATTGGT^ACTTACACATnGACGACCA TACGAGACC^TTCGTAAC^CCGACCmCGArfl^mCTCACOTAACGAC^AAXGTGTATCTGCTG^r 380 373 390 390 400 DraX SglX HindiXI 2^.CACCACTOAACACTGQGGGATTGCTCTQGGTCAAAKiTTTAAACAGGGGCCTACTQGGGGGGACTA AC^TGGTGACTrCTCACGCCCTA^GAGAGCCAGrrCaAAAATTTCTCOSGGAPGACGGCGCACCI^AT 430 440 450 460 470 480 BgIIX AAA^YTTTCCATCAQGAJTIY9030CJTTQGATGAYCZhCTTTOCAQAGOGQTQGTAYGATCTTTOGAACA INTITCCAAACCTAGTCCTAAACGCG3AAACCTACTCCGXGAAAGGTCniCGCCACCATCTAGAAAa7TTGT S00 5X0 520 §30 540 §50 B s i W I BgIXI G^XGTAGGCAG'rTGTCGAACTTGGTTTGCAAAGGGAGAAAGTAGGAGATCTCTCTTCCGAGAX'GA'fCCC Q^QATQQGTCAACAGCTTGAACCAAAASTTTCCCTCTTTCATCCTCTAGAGAAAACGCTCTACTACE 590 600 610 620 H in d i X X GCATTTTCTTGAAAGCTTTGCAGAQGCTAGCAGAA'TTACCCTCCACGTTGATTGTCTGCGAGGCAAGAAT CGTA>J\AG/mC11TCGAAACG?C^:CGATCGTCrrAATGQ3A®7I^CAiirT/^GAGACGCrcCGTTCTTA

680

653

BclI I							
		GTGAGAGTGCG CACTCTCACGC					
	710	720	750	740	750	760	770
	[pnI					EraI	PstI
GTACC	I CAACGATGT	TCCCTCCACCA	A AGGTYGTTYCT	ፈ ርንሞር) ልጥርንጥ ልጥ'	CACCGATTAT	TTTAABGCTG	CAGCATA
		AGGGAGGTGGT					
	720	790	800	810	820	830	840
		TGTGTATATAT					
GCTAT		acacatatata					
	850	660	870	880	890	900	910
		Nsi	I				
		gtaatgcatca					
ACTTO		CATTACGTAGT					
	920	930	940	950	963	970	980
			XhoI				
		TTTTTTCTCTT					
AACGA	лаласала.	aaaaaagagaa	CTTGAGCTÇI	atattttt.	TTTTCTCTAC	CTCCTTGCC	
	990	1000	1010	1020	1030	1040	1050
<u> ም</u> ልርብ	PTGTGGTGL	TAGGTGGCAAG	TGGTATTCCG	TABEATAAC	angaaaager	ማግባር አ ጥልባጥ	ATGGCTG
		ATCCACCGTTC					
	1060	1070	1080	1090	1100	1110	1120
		agtgcaaaatt					
TTGAC		TCACGTTTTAA					
	1130	1140	1150	1160	1170	1180	1190
		agaagtgccag.					
TICIC		TCTTCACGGTC				NGCCGCCGAT 1250	1260
	1200	1210	1220	1230	1240	1230	1200
		GCAGCTTCTTT.					
CCGGC	ACCGCCAC	CGTCGAAGAAA	icgiigtigg	CAGCACCACC	AATGCCGTTC	PCCACCAAAG	
	1270	1280	1290	1300	1310	1320	1330
		BglII			ClaI		
		Cagcagateta					
		STCGTCTAGAT		ACCACCATCT	ACCTAGCTAC		agggtcg
	1340	1353	1360	1370	1380	1390	1400

ATGTTCCGGATCTGCATCGCAGGATGCTGCTGTGCCTGTGGAACACCTACATCTGTATTAACGAAGG TACAAGGCCTAGACGTAGCGTCCTACGACGACCGATGGGACACCTTGTGGATGTAGACATAATTGCTTCG

2730

2800

2720

2790

2670 2680 2590 2700 2710

2750 2760 2770 2780

2740

Eco 47	,						
	STAACTGGGAC	TCACTAAAA	GAGACCAGGG	GCCGCATCCA CGGCGTAGGT	ATGGCGGTCA	ACAAATGGGA	GTST
	2810	2620	2830	2840	2650	3860	2870
				CCGTATCGTG GGCATAGCAC			
	2880	2890	2900	2910	2920	2930	2940
				GAGGCATCAG CTCCGTAGTC			
	2950	2960	2970	2980	2590	3000	3010
mma a ma	, , , , , , , , , , , , , , , , , , , 	YES TO O O O S O CO	·CECSCECTES	.CGCTTCTGGA		Gsi 	
				GCGAAGACCT			
	3620	3030	3040	3050	3060	3070	3080
		1	unI			PVuII	
				CGCTGATGAC GCGACTACTC			
N. 1 1.	3090	3100	3110	3120	3130	3140	3150
				CTCCCGGAGA GAGGGCCTCT			
	3160	3170	3160	3132	3200	3210	3220
				CGGGTGTTGG			
A FSWAFGE	3230	3240	3250	3260	3270	3260	3290
				AACTATGCGG			
COSTURA	3300	3310	3320	TTGATACGCC 3330	3340	3350	3360
	NdeI 						
	TATACGCCAC	ACTITATESC	GTGTCTACGC	TAAGGAGAAA ATTCCTCTTT	TATGGCGTAG	TCCGCGAGA	<i>l</i> egee
	3370	3380	3390	3400	3410	3420	3430
TTCCTC	GCTCACTGAC	TCGCTGCGCT	CGGTCGTTCGC CAGCAGCAGC	GCTGCGGCGA CGACGCCGCT	GCGGTATCAG	CTCACTCAA GAGTGAGTT	iggeg reege
	3440	3450	3469	3470	3480	3490	3500
				GGAAAGAACA CCTTTCTTGT			
OCTA ACTA	3510	3520	3530	3540	3550	3550	3570

		OCCCCCTTC CAACQCQCQCCAAC					
	3580	3590	3600	3610	3620	3630	3640
		Cagaggigge					
I I I Falst		GTCTCCACCG					
	3650	3660	3670	3680	3690	3700	3710
		CTCCTGTTCC					
TUGAGO		GAGGACAAGG					
	3720	3730	3740	3750	3760	3770	3780
		TCATAGCTCA					
CTTCGC		agtatcgagt					
	3790	3600	3810	3820	3930	3940	3850
		.cccecc <mark>err</mark> e					
CCCGAC	ACACGTGCTI	GGGGGGCAAG	TCGGGCTGGC	GACGCGGAAI		itagcagaact	
	3860	3870	3890	3890	3900	3910	3920
		ACTTATCGCC					
TTGGGC	CATTCIGIGC	TGAATAGCGG	TGACCGTCGT	CGGTGACCAT	TGTCCTAATC	GTCTCGCTCC	
	3930	3940	3950	2960	3970	3980	3990
		gttottgaag					
ATCCGC	CACGATGTCT	Cargaacttc	ACCACCGGAT	TGATGCCGAT	GIGAICTICC		
	4000	4013	4020	4030	4040	4050	4060
		CCAGTTACCT					
GACGCG	AGACGACTTC	ggtcaatgga	AGCCTTTTTC	TCAACCATCG			
	4070	4060	4090	4100	6110	4120	4130
		TTTTTGTTTG					
CGACCA	TCGCCACCAA 4140	AAAAACAAAC 4150	GTTCGTCGTC 4160	TAATGCGCGT 4170	CTTTTTTTCC 4160	TAGAGTTCTT 4190	CTAG 4200
	34.40	320	9200	7,479	**************************************		IHq
COTOTO	TOTAL	GGGGTCTGAC	CCTC 5 CTCC 5	ክ <i>ር</i> ርር እ. ድ. ስ. ስ. ርርርር	A COTTA A COO	 	בו בבירוו
		CCCCAGACTG					
cerue:	4210	4220	4230	4240	4250	4260	4270
			Dra	I	Dral	•	
יים לימיות ה	****	TTCACCTAGA	white was a second	mmen e e e e e e	* Cutabilities s su	א מי מי מיישוו מי מייע	മനുളനു
		PICACCIMOA AAGTGGATCT					
Uninni	4280	4290	4300	4310	4320	4330	4340

TATGAGTAAACTTC ATACTCATTTGAAC						
4350	4360	4379	4380	4390	4490	4410
TTCGTTCATCCATA AAGCAAGTAGGTAT						
4420	4430	4440	4450	4460	4470	4480
		GsuI 				
CCCCAGTGCTGCAP GGGGTCACGACGTT						
4490	4500	4510	4520	4530	4540	4550
BglI 1						
GCCGGAAGGGCCGA						
CGGCCTTCCCGGCT	CGCGTCTTC7 4870	CCAGGACG1" 4580	TGAAATAGGCU 4590	TEENTENALK 1003	UAGATAATTA 4510	4620
74.50	*5.*	45.54				stI
			FspI		Ī	5 L.L
GGGAAGCTAGAGTA						
CCCTTCGATCTCAT	CATCAAGCC 4640	AGEO 4650	CARACGCGT10 4660	4670	4680	4690
		,,,,,	- ()			
GGTGTCACGCTCGT CCACAGTGCGAGCA						
4700	4713	4720	4730	4740	4750	4760
				PvuI		
TCCCCCATGTTGTG						
AGGGGGTACAACAC 4770	4780	.Charconol. 6790	4800 4800	4810	4820	4830
CAGTGTTATCACTC GTCACAATAGTGAG						
4840	4850	4860	4870	4880	4890	4900
	Scal					
TTCTGTGACTGGTG						
AAGACACTGACCAC 4910	4920	4930	GACTOTTATO 4940	4950	4960	4970
				DraI		Xmn I
CCGGCGTCAACACG						
GGCCGCAGTTGTGC 4980	CCTATTATGG 4990	FCGCGGTGTA 5000	TCGTCTTGAAA 5010	ATTITCACGA 5020	GTAGTAACCT 5030	1115CAA 5040

5430

PHISM .TXT: 5429 bases (linear)

Page a

FIGURE 44. Sequence of plasmid pHISi-I.

5400

\$410

5420

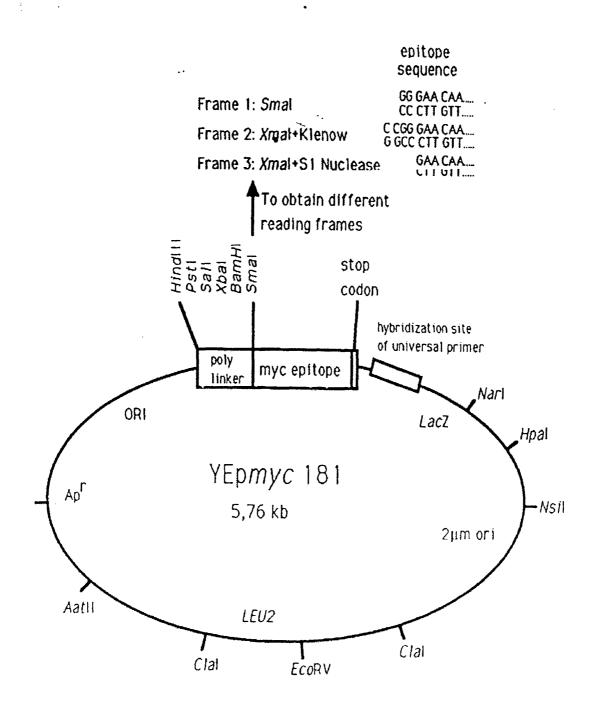


FIGURE 45. Map of autonomously replicating plasmid YEpmyc181.

1 gcttgcatgc aacttctttt cttttttttt cttttctctc 41 tccccqttq ttqtctcacc atatccqcaa tqacaaaaaa 81 aatgatggaa gacactaaag gaaaaaatta acgacaaaga 121 cagcaccaac agatgtcgtt gttccagagc tgatgagggg 161 tatcttcgaa cacacgaaac tttttccttc cttcattcac 201 gcacactact ctctaatgag caacggtata cggccttcct 241 tccaqttact tqaatttqaa ataaaaaaag tttqccqctt 281 tgctatcaag tataaataga cctgcaatta ttaatctttt 321 gtttcctcgt cattgttctc gttccctttc ttccttgttt 361 ctttttctgc acaatatttc aagctatacc aagcatacaa 401 tcaactccaa gctttgcaaa gatggataaa gcggaattaa 441 ttcccqaqcc tccaaaaaaq aaqaqaaaqq tcqaattqqq 481 taccgccgcc aattttaatc aaagtgggaa tattgctgat 521 agctcattgt ccttcacttt cactaacagt agcaacggtc 561 cgaacctcat aacaactcaa acaaattctc aagcgctttc 601 acaaccaatt gcctcctcta acgttcatga taacttcatg 641 aataatgaaa tcacggctag taaaattgat gatggtaata 681 attcaaaacc actgtcacct ggttggacgg accaaactgc 721 gtataacgcg tttggaatca ctacagggat gtttaatacc 761 actacaatgg atgatgtata taactatcta ttcgatgatg 801 aaqatacccc accaaaccca aaaaaaqaqa tctctcqagg 841 atccqaattc cagatctatg aatcgtagat actgaaaaac 881 cccccaagtt cacttcaact gtgcatcgtg caccatctca 921 atttctttca tttatacatc gttttgcctt cttttatgta 961 actatactcc tctaaqtttc aatcttggcc atgtaacctc 1001 tgatctatag aattttttaa atgactagaa ttaatgccca 1041 tcttttttt ggacctaaat tcttcatgaa aatatattac 1081 gagggcttat tcagaagctt tggacttctt cgccagaggt 1121 ttggtcaagt ctccaatcaa ggttgtcggc ttgtctacct 1161 tgccagaaat ttacgaaaag atggaaaagg gtcaaatcgt 1201 tggtagatac gttgttgaca cttctaaata agcgaatttc 1241 ttatgattta tgatttttat tattaaataa gttataaaaa 1281 aaataagtgt atacaaattt taaagtgact cttaggtttt 1321 aaaacgaaaa ttcttgttct tgagtaactc tttcctgtag 1361 qtcaqqttqc tttctcaqqt ataqcatqaq qtcqctctta 1401 ttgaccacac ctctaccggc atgcccgaaa ttcccctacc 1441 ctatgaacat attccatttt gtaatttcgt gtcgtttcta 1481 ttatgaattt catttataaa gtttatgtac aaatatcata 1521 aaaaaagaga atctttttaa gcaaggattt tcttaacttc 1561 ttcggcgaca gcatcaccga cttcggtggt actgttggaa 1601 ccacctaaat caccaqttct qatacctqca tccaaaacct 1641 ttttaactgc atcttcaatg gccttacctt cttcaggcaa 1681 gttcaatgac aatttcaaca tcattgcagc agacaagata 1721 gtggcgatag ggtcaacctt attctttggc aaatctggag 1761 cagaaccqtq qcatqqttcq tacaaaccaa atqcqqtqtt 1801 cttqtctqqc aaaqaqqcca aqqacqcaqa tqqcaacaaa

1841 cccaaggaac ctgggataac ggaggcttca tcggagatga 1881 tatcaccaaa catgttgctg gtgattataa taccatttag 1921 qtqqqttqqq ttcttaacta qqatcatqqc qqcaqaatca atcaattgat gttgaacctt caatgtagga aattcgttct 1961 2001 tgatggtttc ctccacagtt tttctccata atcttgaaga 2041 ggccaaaaca ttagctttat ccaaggacca aataggcaat 2081 ggtggctcat gttgtagggc catgaaagcg gccattcttg 2121 tgattctttg cacttctgga acggtgtatt qttcactatc 2161 ccaagcgaca ccatcaccat cgtcttcctt tctcttacca 2201 aagtaaatac ctcccactaa ttctctgaca acaacgaagt 2241 cagtaccttt agcaaattgt ggcttgattg gagataagtc taaaagagag tcggatgcaa agttacatgg tcttaagttg 2281 2321 gcgtacaatt gaagttcttt acggattttt agtaaacctt 2361 gttcaggtct aacactacct gtaccccatt taggaccacc 2401 cacagcacct aacaaaacgg catcaacctt cttggaggct 2441 tccagcgcct catctggaag tgggacacct gtagcatcga 2481 tagcagcacc accaattaaa tgattttcga aatcgaactt 2521 gacattggaa cgaacatcag aaatagcttt aagaacctta 2561 atggcttcgg ctgtgatttc ttgaccaacg tggtcacctg 2601 qcaaaacgac qatcttctta ggggcagaca ttagaatggt 2641 atatccttga aatatatata tatattgctg aaatgtaaaa 2681 ggtaagaaaa gttagaaagt aagacgattg ctaaccacct 2721 attggaaaaa acaataggtc cttaaataat attgtcaact 2761 tcaagtattg tgatgcaagc atttagtcat gaacgcttct 2801 ctattctata tgaaaagccg gttccggcct ctcacctttc 2841 ctttttctcc caatttttca gttgaaaaag gtatatgcgt 2881 caggcgacct ctgaaattaa caaaaaattt ccagtcatcg 2921 aatttgattc tgtgcgatag cgcccctgtg tgttctcgtt 2861 atgttgagga aaaaaataat ggttgctaag agattcgaac 3001 tcttgcatct tacgatacct gagtattccc acagttgggg 3041 atctcgactc tagctagagg atcaattcgt aatcatggtc 3081 atagctgttt cctgtgtgaa attgttatcc gctcacaatt 3121 ccacacaaca tacgagccgg aagcataaag tgtaaagcct 3161 ggggtgccta atgagtgagg taactcacat taattgcgtt 3201 gcgctcactg cccgctttcc agtcgggaaa cctgtcgtgc 3241 caqctggatt aatgaatcgg ccaacgcgcg gggagaggcg 3281 gtttgcgtat tgggcgctct tccgcttcct cgctcactga 3321 ctcqctqcqc tcggtcgttc ggctgcggcg agcggtatca 3361 gctcactcaa aggcggtaat acggttatcc acagaatcag 3401 gggataacgc aggaaagaac atgtgagcaa aaggccagca 3441 aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt 3481 ttccataggc tccgccccc tgacgagcat cacaaaaatc 3521 qacqctcaaq tcagaggtgg cgaaacccga caggactata 3561 aagataccag gcgtttcccc ctggaagctc cctcgtgcgc 3601 tctcctqttc cqaccctqcc gcttaccgga tacctgtccg 3641 cctttctccc ttcqqqaaqc qtqqcqcttt ctcataqctc 3681 acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc 3721 aagctgggct gtgtgcacga acccccgtt cagcccgacc 3761 gctgcgcctt atccggtaac tatcgtcttg agtccaaccc

ggtaagacac gacttatcgc cactggcagc agccactggt 3801 aacaggatta gcaqagcgag gtatqtagqc ggtqctacag 3841 agttcttgaa gtggtggcct aactacggct acactagaag 3881 qacagtattt ggtatctgcg ctctgctgaa gccagttacc 3921 ttcqqaaaaa qaqttqqtaq ctcttqatcc qqcaaacaaa 3961 ccaccqctgg tagcggtggt ttttttgttt gcaagcagca 4001 gattacgcgc agaaaaaaag gatctcaaga agatcctttg 4041 atctttcta cggggtctga cgctcagtgg aacgaaaact 4081 cacqttaagg qattttggtc atgagattat caaaaaggat 4121 cttcacctag atccttttaa attaaaaatg aagttttaaa 4161 tcaatctaaa gtatatatga gtaaacttgg tctgacagtt 4201 accaatgctt aatcagtgag gcacctatct cagcgatctg 4241 tctatttcgt tcatccatag ttgcctgact ccccgtcgtg 4281 tagataacta cgatacggga gggcttacca tctggcccca 4321 qtqctqcaat qataccqcqa qacccacqct caccqqctcc 4361 agatttatca gcaataaacc agccagccqq aaqqqccqaq 4401 cgcagaagtg qtcctgcaac tttatccgcc tccatccagt 4441 ctattaattq ttqccqqqaa gctagagtaa gtagttcgcc 4481 agttaatagt ttgcgcaacg ttgttgccat tgctacaggc 4521 atcqtqqtgt cacqctcqtc gtttqgtatg gcttcattca 4561 qctccqqttc ccaacqatca aqqcqaqtta catqatcccc 4601 catqttqtgc aaaaaagcgg ttaqctcctt cggtcctccg 4641 atcqttqtca qaagtaaqtt ggccgcagtg ttatcactca 4681 tggttatggc agcactgcat aattctctta ctgtcatgcc 4721 atccqtaaqa tqcttttctq tgactggtga gtactcaacc 4761 aagtcattct gagaatagtg tatgcggcga ccgagttgct 4801 cttgcccggc gtcaatacgg gataataccg cgccacatag 4841 cagaacttta aaagtgctca tcattggaaa acgttcttcg 4881 qqqcqaaaac tctcaaggat cttaccgctg ttgagatcca 4921 gttcgatgta acccactcgt gcacccaact gatcttcagc 4961 atcttttact ttcaccagcg tttctgggtg agcaaaaaca 5001 qqaaqqcaaa atqccgcaaa aaaqqgaata agggcgacac 5041 ggaaatgttg aatactcata ctcttccttt ttcaatatta 5081 ttgaagcatt tatcagggtt attgtctcat gagcggatac 5121 atatttgaat gtatttagaa aaataaacaa ataggggttc 5161 cgcqcacatt tccccgaaaa gtgccacctg acgtctaaga 5201 aaccattatt atcatgacat taacctataa aaataggcgt 5241 atcacgaggc cctttcgtct cgcgcgtttc ggtgatgacg 5281 qtgaaaacct ctgacacatg cagctcccgg agacggtcac 5321 agcttgtctg taagcggatg ccgggagcag acaagcccgt 5361 caqqqcqcqt caqcqqqtqt tggcqgqtqt cqgqgctqqc 5401 ttaactatgc qqcatcaqaq cagattgtac tgagagtgca 5441 ccataacgca tttaagcata aacacgcact atgccgttct 5481 tctcatgtat atatatac aggcaacacg cagatatagg 5521 tgcgacgtga acagtgagct gtatgtgcgc agctcgcgtt 5561 gcattttcgg aagcgctcgt tttcggaaac gctttgaagt 5601 tcctattccg aagttcctat tctctagcta gaaagtatag 5641 gaacttcaga gcgcttttga aaaccaaaag cgctctgaag 5681 acgcactttc aaaaaaccaa aaacgcaccg gactgtaacg 5721

5761	agctactaaa	atattgcgaa	taccgcttcc	acaaacattg
5801	ctcaaaagta	tctctttgct	atatatctct	gtgctatatc
5841	cctatataac	ctacccatcc	acctttcgct	ccttgaactt
5881	gcatctaaac	tcgacctcta	cattttttat	gtttatctct
5921	agtattactc	tttagacaaa	aaaattgtag	taagaactat
5961	tcatagagtg	aatcgaaaac	aatacgaaaa	tgtaaacatt
6001	tcctatacgt	agtatataga	gacaaaatag	aagaaaccgt
6041	tcataatttt	ctgaccaatg	aagaatcatc	aacgctatca
6081	ctttctgttc	acaaagtatg	cgcaatccac	atcggtatag
6121	aatataatcg	gggatgcctt	tatcttgaaa	aaatgcaccc
6161	gcagcttcgc	tagtaatcag	taaacgcggg	aagtggagtc
6201	aggctttttt	tatggaagag	aaaatagaca	ccaaagtagc
6241	cttcttctaa	ccttaacgga	cctacagtgc	aaaaagttat
6281	caagagactg	cattatagag	cgcacaaagg	agaaaaaaag
6321	taatctaaga	tgctttgtta	gaaaaatagc	gctctcggga
6361	tgcatttttg	tagaacaaaa	aagaagtata	gattctttgt
6401	tggtaaaata	gcgctctcgc	gttgcatttc	tgttctgtaa
6441	aaatgcagct	cagattcttt	gtttgaaaaa	ttagcgctct
6481	cgcgttgcat	ttttgtttta	caaaaatgaa	gcacagattc
6521	ttcgttggta	aaatagcgct	ttcgcgttgc	atttctgttc
6561	tgtaaaaatg	cagctcagat	tctttgtttg	aaaaattagc
6601	gctctcgcgt	tgcatttttg	ttctacaaaa	tgaagcacag
6641	atgcttcgtt			

KEY:

Blue Locations of the AD10[S] and complement of AD10[R] PCR and sequencing primers.

Red EcoR1 restriction endonuclease site used for subcloning the rat brain library cDNAs.

FIGURE 46. Sequence of the cDNA/AD fusion library plasmid pGAD10.

APPENDIX VII.

In order to determine the volume of nuclear extract used in the electrophoretic mobility shift assay and competition binding assay, to give a protein concentration of 10 μ g per reaction, it was first necessary to determine the concentration of protein in the nuclear extracts. To achieve this a microtitre plate method utilising bicinchoninic acid was used and bovine serum albumin (0 to 10 μ g/ μ l) served as the protein standard. The BCA reagent was mixed with the protein dilution or nuclear extract sample, incubated at room temperature and read on a microplate reader at 562 nm. The data for the preparation of a standard curve to determine the protein concentration (μ g/ μ l) of the nuclear extracts is shown in table 5 and the standard curve is shown in Figure 47.

From cultures containing approximately 1 x 10^6 cells, 200 μ l of nuclear extract were prepared producing a protein yield of between 1.0 and 3.0 μ g/ μ l depending on the source of the nuclear extract (as shown in table 6)

	Absorbance at 562 nm							
Concentration (μg/μl)	Data set 1	Data set 2	Data set 3	Data set 4	Mean Absorbance	Corrected Absorbance		
Reagent Blank	0.05	0.06	0.05	0.06	0.05			
0 μg/μl	0.05	0.06	0.05	0.06	0.05	0.00		
1 μg/μl	0.29	0.28	0.27	0.27	0.28	0.23		
2 μg/μl	0.50	0.48	0.46	0.47	0.48	0.43		
3 μg/μΙ	0.65	0.64	0.57	0.61	0.62	0.57		
4 μg/μl	0.81	0.81	0.80	0.78	0.80	0.75		
5 μg/μl	0.98	0.99	1.00	0.97	0.99	0.94		
6 μg/μl	1.15	1.20	1.16	1.19	1.17	1.12		
7 μ g /μl	1.36	1.33	1.39	1.39	1.36	1.31		
8 μg/μl	1.53	1.50	1.51	1.50	1.51	1.46		
9 μg/μl	1.80	1.79	1.70	1.68	1.74	1.69		
10 μg/μl	2.03	1.93	1.81	1.81	1.90	1.85		

Table 5. Data obtained for the preparation of a standard curve to determine the protein concentration ($\mu g/\mu l$) of the nuclear extracts used in the EMSA and competition binding assays.

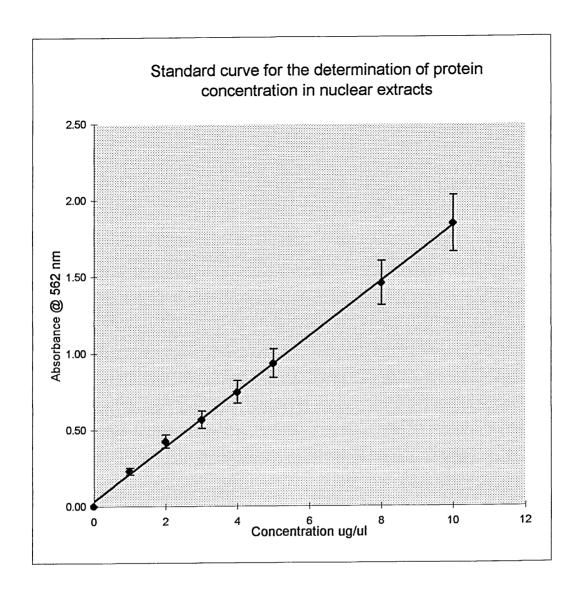


Figure 47. Standard curve to determine the concentration of protein ($\mu g/\mu l$) in nuclear extracts.

		Abs			
Sample	Data set 1	Data set 2	Mean Absorbance	Corrected Absorbance	Calculated Concentration (μg/μl)
Reagent Blank	0.05	0.06	0.06		
C ₆ glioma	0.25	0.26	0.26	0.20	1.1 μg/μl
HeLa	0.24	0.23	0.24	0.18	1.0 μg/μl
RBX	0.61	0.64	0.62	0.56	3.0 μg/μl
33B oligodendrocyto ma	0.32	0.29	0.31	0.24	1.3 μg/μl

Table 6. The concentration ($\mu g/\mu l$) of protein in the nuclear extracts as determined from the graph shown in figure 47.