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ABSTRACT

Recent advances in liquid crystal research have 
included the synthesis of polymeric materials which 
contain liquid crystalline moieties. The work presented 
here concerns the study of the structure-property 
relationships of a particular group of liquid 
crystalline polymers in which the polymer backbone is 
cyclic, with the mesogenic moieties attached as 
side-chains.

We have observed mesogenic phases above room 
temperature for materials comprising cyclic 
poly(dimethylsiloxane) backbones with mesogenic moieties 
attached by alkyl spacer units. Dielectric relaxations 
have been observed in the mesophases of these materials 
and the activation energies and extent of broadening of 
the relaxations have been related to the physical
structure of the molecules

Theoretical studies have been undertaken by the use 
of the Metropolis Monte Carlo technique and a mean field 
calculation. Two models have been studied by the Monte 
Carlo technique in the NVT ensemble. In the first, each 
complete molecule was represented by a disc-like 
interactions potential and a tendency for the molecules 
to align in columns was revealed at low temperature and 
high density. In the second model, each mesogenic unit 
was represented separately, with the cyclic polymer
represented as a constraint on the relative motions of 
the attached mesogens. A variety of liquid crystalline 
phases, from discotic nematic to calamitic nematic, were 
observed at low temperature as the coupling between the 
side-chains and the backbones was adjusted. In the mean 
field model energy terms were included for ring-ring 
interactions, mesogen-mesogen interactions and the 
coupling between the mesogenic moieties and the 
backbones. The uniaxial solution of this model also 
showed a shift from calamitic nematic to discotic
nematic phases as the strength of the coupling was 
increased.

Comparisons of the results of the models and the 
physical measurements are presented and suggestions for 
future work are proposed.
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CHAPTER 1 INTRODUCTION

The scientific study of liquid crystalline 
behaviour started in the middle of the last century [1]. 
As early as 1837, the author Edgar Allen Poe remarked on 
a liquid with anisotropic properties [2], while in 1888 
Reinitzer [3] and Lehmann [4] were the first to observe 
liquid crystalline behaviour in a pure substance. The 
study and classification of liquid crystalline materials 
continued through the twentieth century, often with just 
a handful of devoted workers in the field. However, in 
the 1960s and 1970s, there was a large expansion in 
interest in these materials resulting in the development 
of liquid crystal display devices, such as those which 
are commonly used in digital watches and electronic 
calculators. More recently, there has been much interest 
in the synthesis of polymers which contain liquid 
crystalline moieties, with particular interest in the 
development of high tensile strength polymers and optical 
data storage materials. The move towards polymerisation 
has resulted in a wide variety of molecular structures 
being synthesised and studied [5],

This thesis concerns the study of novel liquid 
crystal systems based on cyclic poly(dimethylsiloxane) 
backbones with mesogenic units attached as side chains 
via alkyl spacers. The relationships between molecular 
structure and physical properties have been investigated 
by means of various experimental and theoretical 
techniques.
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LIQUID CRYSTAL PHASES

Liquid crystalline phases may be observed for 
certain substances between the crystalline solid and 
isotropic liquid phases on a phase diagram [6,7]. These 
phases are characterised by a strong anisotropy in some 
of the properties of the liquid, which remains fluid. It 
is because the liquid crystalline phase occupies a 
position intermediate between solid and liquid phases 
that it has acquired the name ’mesophase’, and a material 
which can exhibit such a phase is known as a ’mesogen’ . 
A typical mesogen would have elongate rod-like molecules 
or flattened disc-like molecules [8], and it is the 
strongly anisotropic nature of the interaction between 
these molecules which gives rise to the macroscopic 
anisotropy of the fluid. A mesophase may be obtained by 
the melting of a pure solid mesogen, which produces a 
thermotropic mesophase, or by solution in a suitable 
solvent which produces a lyotropic mesophase. The
materials studied in this project form thermotropic
mesophases.

There are several distinct thermotropic mesophases, 
characterised by different types of anisotropic property, 
and it is possible for a single substance to exhibit more 
than one of these phases [9]. The commonly accepted 
classification of thermotropic liquid crystals was first 
proposed by Friedel [10] in 1922. Three classes of 
mesophase were defined according to their symmetry 
properties. These have been named the ’nematic’, 
’cholesteric’ and ’smectic’ phases. However, recent
studies of liquid crystal structures have led to the
observation of other types of mesophase not included in 
this classification [11].
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The nematic mesophase is characterised by a high 
degree of long range orientational order of the molecules 
combined with the absence of long range translational 
order, as shown schematically in figure 1.1. The 
molecules of a nematic mesogen are often approximately 
rod-shaped and contain a rigid core section, and although 
the molecules may be polar the resulting macroscopic 
phase does not exhibit any polarity, unlike a 
ferro-magnetic structure, for example [7]. In the 
nematic phase there is spontaneous ordering of the 
molecules into approximate parallelism and the mean 
orientational direction is described by a unit vector,A*
the director (n). This director often varies within the
material, but a uniformly aligned sample may be produced 
by the application of an electric or magnetic field, or 
by surface treatment of the container walls. For a 
material with low viscosity, uniform alignment may occur 
without the application of an external influence if the 
material is left for a time at a suitable temperature 
above the melting point and below the clearing point, T , 
above which the material is isotropic. It is
conventional to reserve the use of the word ’homogeneous’ 
to refer to a uniformly aligned sample, the director of 
which is parallel to the plane of the microscope slide or 
cell in which it is held for observation. The word 
’homeotropic* is used when the alignment is such that the 
director is normal to the plane of the slide or cell.

A homogeneously aligned sample would be optically 
uniaxial and strongly birefringent. The birefringence 
gives rise to a colourful image when the sample is viewed 
under crossed polarisers with a crystallographic 
microscope. In the case where the sample is not 
uniformly aligned, defects in the surface of the slide or 
cover slip cause localised ordering which results in an 
overall pattern, or texture, related to the manner in
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n the
director

Figure 1.1 A schematic representation of a nematic phase 
of rod-like molecules.

p-azoxyanisole, P.A.A.

CH3°\£^-N=N-^£^-°Ch3 K 118 N 135,5 I

N-(p-methoxybenzylidene)-p-butylaniline, M .B .B .A

K 22 N 47 I

p-heptyl-p *-cyanobiphenyl

C7H15 CN K 28.5 N 42 I

Figure 1.2 Some nematic mesogens. Transition
temperatures in Celsius. *K’ - crystalline,
nematic, ’I ’ - isotropic. From de Jeu [7].
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which the director varies within the material. Some 
textures are characteristic of a specific mesophase and 
so optical observations may be used as a first stage in 
the classification of a mesogenic material [9,12].

The rigid core of a nematic molecule is often 
provided by a closely coupled pair of benzene rings, as 
can be seen in the structures of the molecules of typical 
nematogens as shown in figure 1.2.

To enable a comparison between the extent of 
alignment in different mesogenic systems, a quantitative 
measure is needed to describe the degree of ordering. In 
the nematic phase, it is usual to take the average of the 
second order Legendre Polynomial function as such an 
order parameter [13,14]:

S = <Po(cos0.)> = < - (3cos^0.- 1)> 1.12 l 2 l

where, 0^ is the angle between the axis of the i-th
molecule and the system director, and the angled 
brackets, *<..>*, represent the thermal average over all 
molecules. In the nematic phase, the molecules are as 
likely to align anti-parallel as parallel to the
director, and so the order parameter needs to reflect 
this by the choice of a function which has the following 
symmetry:

f(0.) = f(jr-e.) 1.2

2Hence, cos 0. is used in preference to cos0. or 0..
1 2 1 1  Rather than simply using <cos the order parameter is

constructed to take the value unity for full parallel
alignment and zero for complete disorder. It also takes
the value -0.5 in the event that all the molecules lie in
the plane perpendicular to the director.
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The order parameter may often be estimated from the 
measured anisotropy of some physical property of the 
liquid crystalline material [15-17]. The calculations 
often require further measurements of the same physical 
property in the isotropic liquid or single crystal
states, and some assumption about the symmetry of the
molecules is usual.

A schematic representation of the cholesteric phase 
is given in figure 1.3. The phase is similar to the
nematic, but with a twist axis perpendicular to the 
director. The molecules are optically active and the 
pitch of the twist is temperature dependent, which has 
led to the use of cholesteric mesogens in digital
thermometers. The name of the phase comes from the fact 
that many derivatives of cholesterol exhibit this phase. 
The chemical structures of two cholesteric mesogens are 
given in figure 1.4.

It is found that a nematic phase may result from a 
mixture of two cholesteric mesogens with opposite twist, 
and it is also found that a nematic material may exhibit 
a cholesteric phase on the addition of a little optically 
active material. Hence, some workers prefer to think of 
the cholesteric phase as simply a twisted form of the 
nematic phase, referring to it as ’chiral nematic’. In
this case, the true nematic phase is considered to be a
chiral nematic phase with infinite pitch.

The name ’smectic’ is used to identify a range of 
mesophases which are characterised by some positional 
ordering of the molecules into layers, as well as
orientational ordering of the elongated molecules. A 
variety of smectic phases have been identified and
classified according to the relationships between layers
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Figure 1.3 Schematic diagram of a cholesteric phase. 
The mesogens in a real cholesteric are not confined to 
specific planes.

N-(p-ethoxybenzylidene)-p’-(£-methylbutyl)aniline

C2H5o < o >
N< 0

cholesteryl chloride Cl

Figure 1.4 The chemical structure of two cholesteric 
compounds. From de Jeu [7].
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and the orientational ordering. Two examples are the 
smectic A phase, in which the molecules align with the 
director normal to the planes, and the smectic C phase, 
in which there is a tilt angle between the director and 
the normal to the planes. These are shown schematically 
in figure 1.5.

Using geometrical arguments, Herrmann [18] concluded 
that there should be 18 distinct mesomorphic groups. 
However, until the recent discovery of discotic and other 
exotic phases, the limited classification according to 
Friedel had been considered satisfactory.

The hexagonal stacking of disc-like mesogens was 
first observed by Chandrasekhar et al. [19]. Disc­
shaped mesogens have since been observed to pack in a 
variety of hexagonal columnar phases, known as discotic 
phases, as well as adopting nematic ordering [8,20,21]. 
Examples of these phases are given in figure 1.6. In the 
hexagonal discotic phase there is positional ordering in 
the plane perpendicular to the columns, but within the 
columns the discs are irregularly spaced.

Other liquid crystal phases have been suggested, 
including the possibility of cubic symmetry [11].

More recently, mesogenic units have been 
incorporated in polymers to give a range of liquid 
crystal polymer structures [5,22-25], Liquid crystal 
polymers are generally divided into two structural types, 
the main-chain and side-chain structures, as shown in 
figure 1.7. However, many alternative structures are 
possible and some workers have even gone to the extreme 
of synthesising molecules which resemble the heraldic 
figure of their home town [26].
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Figure 1.5 A schematic diagram of two smectic phases,
a) Smectic A phase; b) Smectic C phase
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c .

Figure 1.6 Two columnar discotic phases: a) upright;
b) tilted. c) Chemical structure of a typical discotic 
mesogen, ’ R ’ represents an alkyl chain radical. From 
Chandrasekhar [8].
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backbone

spacer unit

b.
mesogenic moiety

c .

d.

Figure 1.7 Some liquid crystal polymer structures 
a) main chain; b) side chain; c) and d) other variations
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The effect of including mesogenic units in the main 
chain of a polymer is to force the alignment of the 
polymer chains and so produce extremely strong polymers 
[27-29].

In the side-chain polymer system there is a conflict 
between the aligning tendency of the mesogenic units and 
the random coiling of the backbone polymer [22,30,31]. 
The mesogenic units are connected to the backbone by a 
spacer unit which, if sufficiently flexible, may decouple 
the ordering of the mesogens from the backbone polymer 
conformations. In general, the conflict of properties 
leads to the mesogenic units in a side-chain polymer 
liquid crystal exhibiting a lower order parameter than 
their monomeric counterparts. However, the high
viscosity of these materials leads to the mesogenic 
phases of the polymer being more stable than those of the 
monomer. Not only does the polymer exhibit mesogenic 
behaviour over a wider range of temperatures, but also a 
field induced alignment will persist after the field is 
removed, and this property has led to the investigation 
into the suitability of side-chain liquid crystal 
polymers as long-term optical data storage materials 
[32,33].

The general structure of the materials studied in 
this project is shown in figure 1.8. Some of these new 
materials were synthesised in the Chemistry Department of 
the polytechnic [34] and others were provided by a West 
German industrial consortium [35]. These materials 
comprise cyclic poly(dimethylsiloxane) backbones with 
side-chain mesogenic moieties attached via alkyl spacer 
units. Molecules were synthesised with a range of 
polymer ring sizes which may provide a variety of rigid 
and flexible backbone conformations. Molecules were also 
synthesised with different spacer lengths to alter the

12



mesogenic
moiety

 cyclic
polysiloxane

a .

alkyl spacer 
unit

Samples were available with the following 
combinations of repeat units:

X = 4, y = 4;
X = 4, y = 6;
X = 5, y - 4;
X = 6, y = 4;
X = 7, y - 4.

Figure 1.8 The cyclic oligomer compounds studied: 
a) general physical structure; b) chemical structure.
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degree of coupling between the backbone and the mesogenic 
moieties. Compounds have only been synthesised with a 
small number of repeat units in the backbone and so these 
low molecular weight polymers may be referred to as 
’oligomers *.

Two theoretical techniques, the mean field 
approximation [13,36] and a Monte Carlo method [37-42] 
have been used in addition to experimental measurements 
in order to explore features of these molecules 
significant in the generation of liquid crystalline 
structures. The behaviour of these materials would be 
expected to be strongly dependent upon the nature of the 
coupling between the mesogenic moieties and the polymer 
ring backbone. A weak coupling should result in the 
formation of a conventional, calamitic (rod-like) nematic 
ordering of the mesogenic units. However, if the 
coupling is strong, the ring backbone will dominate the 
behaviour of the material. For example, if the mesogens 
are rigidly attached to the rings in a radial splay 
conformation, a discotic phase may be expected.

MONTE CARLO SIMULATIONS

A Monte Carlo technique [37-39,41] may be used to 
calculate the thermal average, or expectation value, of 
some thermodynamic property, A. In the canonical 
ensemble, the expectation value would be:

<A>
f A expf-EW/k^T) dQB

1.3

Q
expC-EW/k^T) d d

14



where E (0) is the total system energy and Q represents 
the full system coordinates, chosen as appropriate for 
the system being modelled. For example, for a system of 
N mobile, non-spherical molecules, 0 would comprise three 
momentum coordinates, three positional coordinates, three 
orientational momentum coordinates and three 
orientational position coordinates for each molecule, 
making a 12N-fold phase space in total. For particles 
which interact via pair-wise potentials which are 
independent of velocity we may separate the kinetic and 
static contributions to the system energy and write:

N N

E,Q) = I  T i + I  V.. 1.4
i i i J (j<i)

where is the kinetic energy of the i-th particle and 
V. . is the pair interaction between the i-th and j-thJ- J
particles.

The kinetic terms will cancel in the integrals in
equation 1.3 if the thermodynamic property, A, is
independent of the momenta of the particles:

J A exp(-U(T)/kgT) d0
<A> = — ----------------------- 1.5

J exp(-U(T)/kfiT ) dfi

where

N
U(F) - I  vij i-6

i i j ( J < i )

and T represents the 6N positional and orientational
coordinates of the system.
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Owing to the large number of coordinates contained 
in T , it would be impossible to calculate the integrals 
for all but the simplest of systems. In a Monte Carlo 
method, this problem is overcome by the generation of 
configurations of the system of N particles. The 
expectation values of the configurational thermodynamic 
variables of the system may then be obtained by the 
weighted summation of the values of those same properties 
measured in the individual configurations.

A crude method of solution would be to generate
configurations completely at random and weight them 
according to the Boltzmann probability factor, 
exp(-E(Q)/kgT). However, the Boltzmann probability 
factor varies over many orders of magnitude and is
sharply peaked in the region of the equilibrium
configurations. Hence, most of the randomly generated 
configurations would possess an infinitesimally small 
weighting, making this summation method extremely 
inefficient.

The algorithm derived by Metropolis et al. [40] uses 
a technique known as ’importance sampling’, where
configurations are generated with a bias towards those 
near the maximum in the exponential terms in the 
integrals in equation 1.5.

The configurations are generated in the Metropolis 
method by creating a Markov chain of successive random 
alterations to the system of particles. The rules 
governing the alterations to successive configurations 
are chosen such that for an infinitely long Markov chain 
the asymptotic distribution of configurations is a 
canonical distribution at the specified temperature. The 
expectation value of a configurational property may then

16



be obtained as a simple average of the property over the 
configurations generated.

Several rules have been developed which generate 
configurations with the required distributions. We adopt 
the following method which is commonly used. A particle 
is chosen at random and its coordinates altered in some 
way. For example, it could be displaced by a small 
distance in some randomly chosen direction or rotated 
through a randomly determined angle. This attempted 
alteration (known as a ’move*) is either accepted or 
rejected according to the following criteria:

i) the move is accepted if the resulting change 
in the system energy, Au, is negative.

ii) if the change in energy is positive, then the 
probability of the move being accepted is given by 
the Boltzmann factor, exp(-AU/k^T), and aD
comparison with a random number on the interval 0,1 
determines whether the move is accepted.

The Metropolis Monte Carlo technique is usually very 
expensive in terms of computing time. Many thousands of 
attempted moves are required for the system to reach 
equilibrium at a given temperature and many thousands 
more are required to provide a valid canonical 
distribution of configurations from which the various 
properties may be measured. Care must be taken to ensure 
that the system does not lock itself into a 
non-equilibrium metastable state, from which it would be 
very difficult for the system to escape. In this case, 
the system may appear to have reached equilibrium and 
erroneous results might be obtained. However, to run the 
simulation on further to check whether true equilibrium 
has been reached may be prohibitively expensive in terms

17



of computing time.

The starting configuration for a run must be chosen 
carefully in order to minimise the likelihood of the 
system locking in such a non-equilibrium state. To 
ensure that the system reaches true thermal equilibrium, 
it is often necessary to allow the simulation to continue 
well after equilibrium appears to have been reached. 
Also, different starting configurations may be used in 
order to test whether the final equilibrium state is 
independent of the initial configuration.

The Monte Carlo technique is especially 
computationally intensive at very low temperatures, as 
few moves are accepted and consequently new 
configurations are generated inefficiently.

In many cases, including liquid crystal systems, the 
amount of change involved in a Monte Carlo move is an 
adjustable property and is often set so that the ratio of 
accepted to rejected moves is approximate unity as it is 
thought that this may allow the simulations to run most 
efficiently [38].

Monte Carlo simulations are invariably performed on
systems of small numbers of molecules from a few tens to
a few thousands. Hence comparison with macroscopic
systems is not necessarily straightforward as there are

23of the order of 10 molecules in a small sample real 
matter. Increasing the number of particles also
increases the computing time required for the simulation, 
often as the square of the increase in the number of
particles. For example, if the number of particles is
doubled, we may expect a doubling in the computing time 
required to calculate the change in system energy for 
each attempted move. We might also expect to have to

18



attempt twice as many moves in order to reach thermal 
equilibrium, giving a four-fold increase in computing 
time altogether.

The usual way of mimicking a macroscopic system is 
to perform the simulation on a box of molecules with 
periodic boundary conditions such that the box is 
surrounded by identical boxes of molecules on each side. 
Interactions are then considered between one particle, i, 
and the closest replica of particle j. This technique is 
suitable for short range forces, where interactions with 
the next closest j-th molecule would be negligible. For 
molecules with longer range interactions, some adjustment 
may need to be made to the simulation or to its results 
in order to account for the omission of interactions 
beyond the closest of a pair of molecules. Also, it 
should be noted that these periodic boundary conditions 
introduce an unrealistic repetitiveness into the system.

Provided thermal equilibrium has been reached, the 
accuracy of a given measurement of a configurational 
property may be estimated from its fluctuations over the 
distribution of configurations. In fact, the
fluctuations in some of the configurational properties 
may provide a means of calculating quantities such as the 
specific heat capacity, which cannot be measured directly 
from the configurations. However, such calculations are 
prone to large errors [38,41] owing to the loss of 
information about the partition function (the denominator 
in equation 1.3). One proposed solution to the problem 
has been to allow the volume of the box of particles to 
be one of the adjustable coordinates of the system and to 
perform the Monte Carlo simulation at constant pressure 
[42]. Such a simulation contains more information than 
the simulation in NVT canonical ensemble, allowing for 
the reliable calculation of the specific heat capacity

19



and the enthalpy etc.

The Metropolis Monte Carlo technique has been used 
to simulate a variety of physical systems [38,39], 
including classical fluids, many-body quantum systems and 
magnetic systems, as well as some simulations of 
simplified liquid crystal systems.

Various workers have undertaken Monte Carlo 
simulations of liquid crystalline systems in which the 
centres of mass of the molecules are constrained to a 
lattice [43,44,48-64]. This restriction results in a 
substantial saving in computing time for several reasons: 
moves involving the translation of a molecule are 
avoided; repulsive interactions, which would be necessary 
to prevent a translationally mobile system from 
collapsing, are no longer required; interactions can 
easily be limited to nearest neighbours only, simplifying 
the calculation of the change in energy involved in a 
move. Also, further savings in computing time may be 
made by restricting the orientations of the molecules to 
a limited number of discrete orientations. Of course, 
the restriction of the molecules to a lattice does place 
substantial limitations on the interpretation of the 
results. In particular, the fluid nature of any possible 
phases has been removed, prohibiting the formation of 
genuinely l i q u i d  phases. However, lattice models still 
retain orientational information and a useful comparison 
can be made between the results of these models and the 
true nematic to isotropic transition which involves only 
a change in the orientational ordering of the molecules. 
In fact, the simplifications involved in the construction 
of a lattice model may be used to advantage where the 
Monte Carlo technique is used to explore some specific 
restricted feature of liquid crystalline behaviour. For 
example, a lattice simulation may be used to assess the
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validity of an analytic theory, such as a mean field 
approximation, in which no information is given 
concerning the spatial packing of the molecules.

The early uses of lattice Monte Carlo simulations of 
liquid crystalline systems were concerned with the 
comparison of an exact Monte Carlo model with the mean 
field approximation of Maier and Saupe. Lasher [43] and 
Lebwohl and Lasher[44], 1972, located a nematic to 
isotropic transition as a function of temperature in a 
lattice system of particles interacting via a potential 
which had the same orientational dependence as that used 
by Maier and Saupe in their mean field treatment [45-47]. 
The molecules were confined to a simple cubic lattice and 
energy calculations were restricted to nearest neighbour 
interactions. In the earlier model, the molecules were
restricted to 12 discrete, evenly distributed,
orientations, but were allowed to adopt any angle in the
later model. In both cases a transition from the 
isotropic phase to the nematic was observed as the 
temperature was reduced (the terms ’isotropic* and 
’nematic* used here somewhat loosely to define only the 
orientational ordering of the necessarily spatially 
ordered phases). Differences between the results of the 
two models were observed in the values of the transition 
temperature, the latent heat, and the change in the order 
parameter at the transition. In particular, the earlier, 
discrete, model grossly over-predicted the change in the 
order parameter at the transition. Quantitative
agreement with the Maier-Saupe theory was also poor, 
although the change in the order parameter at transition 
was in better agreement for the simulation which had full 
orientational freedom. Further comparisons were made by 
Jansen et. al. [48] who investigated the Lebwohl-Lasher
model more closely and confirmed that the observed 
nematic to isotropic transition was first order, as
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predicted by the Maier-Saupe theory.

Luckhurst and co-workers have employed lattice Monte 
Carlo techniques in the systematic investigation of many 
liquid crystalline properties [49-61]. They have made 
comparisons with mean field calculations and extended the 
Lebwohl-Lasher model to include longer range interactions 
[49,50]. Other investigations include the simulation of 
systems of non-cylindrically symmetric molecules 
molecules [51], mixtures of rod-like and plate-like 
molecules [52], the effect of an external field on the 
alignment of phases [53], and pretransitional effects 
[54] (ie. the short-ranged ordering of nematogens in the 
isotropic phase just above the transition temperature). 
The transition from one smectic phase to another has also 
been modelled [55]. In this case the fixed spatial 
ordering of the lattice was an essential feature of the 
phases formed.

Another form of lattice liquid crystal model solved 
by Monte Carlo technique is that in which long 
semi-flexible molecules are represented by strings of 
adjacent squares or cubes on a simple grid in 2- or 3- 
dimensions. Attempted Monte Carlo moves are performed on 
individual segments of the molecules, with the rejection 
of moves that would involve the disintegration of an 
individual molecule. Such simulations have been used in 
the study of lyotropic mesogens in solution [65].

Hard repulsive interactions have often been used in 
the Monte Carlo simulation of liquid crystalline systems 
in which the molecules are given translational freedom 
[66-76]. These hard interactions are defined by 
assigning to the molecules some shape, such as that of a 
cylinder, and associating with that shape a pair-wise 
interaction in the form of a step function which becomes

22



infinite when any part of the two molecules overlaps, and 
which is zero otherwise. Hence, in the Monte Carlo 
simulation, any configuration generated in which any two 
or more molecules overlap is always rejected, and any 
configuration in which no molecules overlap is accepted. 
Consequently, the Boltzmann probability factor takes only 
values of one or zero, the result of which is that the 
state of the system is independent of the temperature. 
Phase transitions are, therefore, observed as a function 
of the density, rather than as a function of the 
temperature.

Simulations of hard particles can be relatively 
inexpensive in terms of computing time, provided a 
suitably simple shape is chosen for the molecules. In a 
large box of molecules most will not overlap and it is a 
straight-forward task to eliminate most pairs of 
molecules from the list of those which might possibly be 
overlapping. Efficient computing routines can be devised 
which are able to determine whether any of the remaining 
pairs of molecules overlap. However, performing Monte 
Carlo simulations on a system of anisometric molecules 
which have translational as well as orientational freedom 
is generally more expensive in terms of computing time 
than the simulation of molecules on a lattice. 
Consequently, simulations have been performed on systems 
of a few hundreds of translationally mobile molecules in 
comparison with the simulation of systems of several 
thousands of molecules confined to a lattice.

Many simulations of liquid crystalline systems have 
been performed using translationally mobile molecules of 
a variety of hard repulsive interactions. Viellard-Baron 
showed the transition from the crystalline solid to 
nematic fluid at high density and from nematic to 
isotropic fluid at lower density for a system of 170 hard
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ellipses in 2-dimensions [66]. However, the extension of 
this work to hard spherocylinders (cylinders with 
hemi-spherical ends) in 3-dimensions did not yield an 
ordered liquid phase [67], Since then other workers have 
employed a variety of hard shapes [68-75]: thin discs,
oblate and prolate ellipsoids, cylinders and 
spherocylinders; and ordered phases have been located in 
3-dimensional simulations. Nematic ordering has been 
observed for disc-like objects and studies on systems of 
uniaxial ellipsoids have shown an approximate equivalence 
in the phase behaviour of prolate and oblate ellipsoids 
which share the same axial ratio [72].

The study of hard-core particles has contributed to 
the debate as to the essential nature of the interaction 
between molecules which form liquid crystalline phases 
[74,77]. Short-range repulsive interactions have been 
shown to be sufficient to produce various smectic and 
nematic liquid crystalline phases [75]. However, the 
formation of a variety mesophases has also been 
successfully predicted by models which include only 
longer-ranged anisotropic forces, such as the various 
lattice Monte Carlo models and the Maier-Saupe mean field 
approximation. The debate as to whether the steric 
packing of hard-core particles dominates the behaviour of 
liquid crystalline materials is still active.

Relatively few Monte Carlo simulations have been 
undertaken on liquid crystalline systems in which the 
molecules, which have translational and orientational 
mobility, interact via pair-potentials with long-range 
attractive forces as well as short-range repulsive 
forces. The reason for this is that of the computing 
cost. The long-ranged attractive forces will necessitate 
the calculation of the interactions beyond the first 
shell of surrounding molecules. The pair interaction
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itself will also be somewhat involved, comprising 
separation and orientational terms. However, the
benefits of these simulations is in the use of more 
realistic interaction potentials and the retention of 
both spatial and temperature dependent effects.

One simulation of this type was that of Luckhurst 
and Romano [78] in which 256 translationally and 
orientationally free molecules interacted via a simple 
anisotropic pair potential based on the Lennard-Jones 
12-6 potential. The system exhibited a weak first order 
transition from a nematic to an isotropic phase on 
increasing the system temperature.

We have used the Metropolis Monte Carlo technique to 
perform simulations on two models chosen to mimic the 
expected behaviour of the cyclic oligomer liquid crystals 
synthesised [79,80]. In both of these models, the 
molecules are allowed translational and rotational 
freedom and interact via anisotropic pair-potentials 
based on the Lennard-Jones 12-6 potential, thus 
comprising attractive and repulsive elements. 
Translational mobility was required in order to allow the 
possible formation of smectic or columnar discotic 
mesophases which might be expected to result from the 
complex nature of our molecules. In one of the models, 
the whole liquid crystal molecules are represented as 
soft disc entities and simulations of 50 discs in 2-D 
have generated partially ordered configurations in which 
the discs stack in columns. In the other model the 
cyclic backbones and the attached mesogens are 
represented individually and the simulations have 
exhibited a variety of phases dependent upon the 
temperature, density and, of particular interest, the 
strength of the coupling between the ring backbone and 
the attached mesogenic units.
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Our application of the Monte Carlo method to the 
study of low molecular weight polymeric liquid crystal 
systems forms a natural progression from the study of 
monomeric liquid crystal systems, in parallel with the 
increased experimental interest in polymeric mesogens in 
recent years [5].

Another simulation technique which may be used in 
the study of fluids is that of ’molecular dynamics’ [41]. 
The concept is very simple: the classical equations of
motion for a box of N particles are repeatedly solved 
until the system reaches equilibrium. The real time path 
of the system is followed, unlike the artificial Markov 
process used in the Monte Carlo technique. Although the 
molecular dynamics approach has been applied to the study 
of some liquid crystal situations [81], the breadth of 
the application of this method has not been as wide as 
that of the application of the Monte Carlo technique to 
the study of liquid crystals [41]. Consequently, the 
Monte Carlo method seemed the more appropriate choice for 
our studies, providing us with a variety of documented 
applications of the technique from which to draw our 
inspiration and with which to make comparison. In 
particular, we have been able to compare our results with 
those of Luckhurst et.al. [78].

THE MEAN FIELD APPROXIMATION

The mean field approximation is a common first 
order approximation in the study of many body systems and 
has been applied to a variety liquid crystalline fluids 
[28,29,31,36,45-47,82-87]. In common with the Monte
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Carlo method, the aim is the calculation of the
expectation values of various properties of a system of 
particles interacting via a pair-wise potential, as given 
by equation 1.5, in which the kinetic energy dependence 
has been removed. Unlike the Monte Carlo method, an
exact solution is not obtained, but rather the equation
is reduced to a soluble form by the applications of
successive averages and approximations.

Following the method outlined by P.J. Wojtowicz [13] 
we note that the pair interaction between axially 
symmetric molecules can be written as an expansion in 
spherical harmonic functions:

4tc )  UT T ( r . .) Yt (6 . , <p. ) Y* ( 6 ., <f>. )
Z_j L . L .m ij' L . m i* i' L.mv j* j 'J J

L . L . mi J
1.7

where Y^m are the standard spherical harmonic functions 
and the angles are as defined in figure 1.9. For
molecules with a mirror symmetry plane perpendicular to 
the rotational symmetry axis, the spherical harmonic 
terms with odd values of L drop from the series.

This pair-potential can be reduced to a single
particle potential by the calculation of the potential
experienced by particle i under the influence of the mean
potential field created by the presence of all the other
particles. Three averaging processes are involved.
Firstly, the pair potential is averaged over all of the
orientations of the relative position vector, r. . = r. -— i J — i

r., with respect to the unique rotational symmetry axis 
J

o f  molecule i. Some assumption as to the distribution of 
these orientations is required, and that chosen here is 
that the orientations of the r . . are evenly distributed

V. . =ij
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axis of molecule j

axis of molecule i

ij

Figure 1,9 Full angular description of a pair of axially 
symmetric molecules.
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on the surface of a sphere. This is a simplification of
the real distribution present in a nematic fluid, which
we might expect to possess cylindrical rather than
spherical symmetry. This averaging process removes all
terms in the interaction potential for which L. ^ L..i J

The second average of V. . is over all of theijorientations of the unique symmetry axes of the 
molecules j with respect to the unique axis of molecule 
i. The potential resulting from these two orientational 
averages is:

<<Vi(cos0)>> = ^  ULLm*r * <PL> PL <COS0) x *8
L

where 0 is the angle between the unique axis of the 
i-th molecule and the director of the system, n, and
are the usual Legendre polynomial functions.

Finally, an average is made over all values of the
separation of the two particles, |r. .| to give the1 J
following single particle potential:

V i(cos0) = X  UL <PL> PL (COS0) 1.9

where the are given by

U, = X  < ULLm(r) > 1.10

and

< UTT (r) > = LLm ' ULLm(r) n2 (r) dr 1.11
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where n is the number density of the molecules and n2(r) 
is the distribution function for the separation of pairs 
of molecules.

From equation 1.5 the expectation values of the PL
can be expressed in terms of the single particle
potential in equation 1.9:

J P^(cos6) exp(-V^(cos©)/kgT) dcosO
<p l > -  ------------------- --------------------

J exp(-V^(cos6)/kgT) dcosO
1.12

If N values of L are used in the original expansion
of V . . in equation 1.7 then there will be N equations ofA J
the form of equation 1.12 which will be self-consistent
in the P^ and each of which will contain all the <Pjj>
within V\(cos0) in the integrals on the right hand side.
The simultaneous solution of these N equations at a given
temperature yields the values of <PT > at that
temperature. Hence the temperature dependence of the
<P^> can be obtained, the solution for <?2> the
usual nematic order parameter. At some temperatures
several solutions for the <PT > are possible and in theseLi
cases it is necessary to calculate the free energies 
associated with these solutions to determine which one 
corresponds to the equilibrium state.

The results of the classic mean field theory of 
Maier and Saupe [45-47] may be obtained by using in the 
above derivation a pair-interaction potential which is 
dependent upon only the second order spherical harmonic 
functions. Only one self-consistent equation is obtained 
in this case:
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J PgCcosG) exp( (cos© ) <Pg>/kgT) dcos0
<Po> = ------------------------------------------------

exp(PP2 (cos0 )<P2 >/kBT) dcos©
1.13

where v is a measure of the strength of the
pair-interaction.

The numerical solution of this equation yields three 
solutions for temperatures below T = 0.22284 P/k-, and
just one solution, <?2> = above this temperature.
These solutions are shown in figure 1.10. The solid 
lines represent the equilibrium solutions and the dashed 
lines the other solutions. The solution at low
temperature is that of an ordered nematic, the order 
parameter of which, drops discontinuously from a
value of 0.4289 to 0 at a critical temperature of Tc = 
0.22019 P/kg.

The success of the Maier-Saupe theory lies in its 
prediction of a first-order transition from the nematic 
phase to the isotropic. However, quantitative
comparisons with experimental measurements and Monte 
Carlo calculations have shown some discrepancies. For 
example, a comparison with a lattice model solved by the 
Monte Carlo technique [36] suggests that the transition 
temperature is too high in the Maier-Saupe theory by 17% 
and the spontaneous order parameter, at the
transition too large by 25%. The entropy change at the 
transition was also found to be about a factor of four 
too large.

There has been some debate as to the source of the 
quantitative deficiencies of the theory [82-84]. It has 
been suggested that the prediction of a first-order 
transition is an artifact of the use of the mean field
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Figure 1.10 The solutions to the Maier-Saupe self 
consistent equation. The equilibrium solution is
shown as a solid line.
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approximation in the solution of the Maier-Saupe model 
[82]. Others, however, have extended the theory by the 
retention of the higher order, , terms in the expansion 
of the pair potential and very good agreements with 
experimental data has been achieved in some cases [83].

In brief, the major limitations of the mean field 
approach in its application to the study of nematic 
liquid crystals lies in the neglect of short-range 
ordering and fluctuation effects. The loss of
short-range ordering places too much emphasis on the 
longer range interactions, leading to an enhancement of 
the nematic ordering and the stability of the ordered 
phase. Pretransitional behaviour in the isotropic phase 
just above the critical temperature is precluded by these 
limitations of the mean field approximation.

Mean field calculations have been applied to a 
variety of liquid crystal systems more complex than that 
of rod-like nematogens. These have included the study of 
binary mixtures of rods and plates [85,86] and several 
polymer liquid crystal systems [28,29,31]. Of particular 
interest to us has been the work of Wang and Warner in 
which the uniaxial phases of comb-like liquid crystal 
polymers have been explored [31]. Various nematic phases 
were found in which either the polymer backbones or the 
rod-like side groups or both together exhibited positive 
ordering.

In parallel with our Monte Carlo models we have 
developed a further model of cyclic liquid crystal 
oligomers [87] which we have solve by means of a mean 
field approximation. We define a mean field which 
includes energy contributions for ring-ring, mesogen- 
mesogen, and ring-mesogen interactions. The uniaxial 
solution of this model has yielded two ordered phases: a
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conventional calamitic nematic in which the rod-like 
mesogens align parallel and a discotic nematic in which 
it is the rings which tend to align parallel. The 
formation of these phases is dependent upon the relative 
strengths of the three energy contributions, the number 
of mesogens attached to a ring and temperature.
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CHAPTER 2 MEASUREMENTS

INTRODUCTION

We have studied a series of oligomers which are the 
cyclic homologues of the linear side-chain liquid crystal 
polymers synthesized by Finkelmann et al. [88,89]. The 
chemical structure of these cyclic oligomers has been
given in figure 1.8 in chapter 1. These comprise cyclic 
dimethylsiloxane backbones with biphenyl mesogenic units 
attached as side chains via alkyl spacer units. Samples 
of five liquid crystalline oligomers were available for 
investigation which allowed us to study the effects of 
altering the number of repeat units in the ring or the 
length of the alkyl spacer. An estimate of the relative 
sizes of the constituent parts of these oligomers has 
been made by the use of molecular graphics software. The 
over all phase behaviour of the materials was studied by 
optical microscopy and D.S.C. techniques, and the 
dielectric behaviour of the samples was studied in the 
temperature region of the mesogenic to isotropic phase
transition.

For convenience, the cyclic liquid crystal materials 
will be referred to by abbreviations of the form DxCy 
where ,x* corresponds to the number of repeat units in
the siloxane backbone and *y* is the number of -CHg-
units in the alkyl spacer. Table 2.1 lists the available 
materials using this notation, separating them into two 
homologous series according to variation in the spacer 
length and variation in the size of the cyclic backbone.
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D4C4
D4C6

D4C4
D5C4
D6C4
D7C4

spacer variation

ring size variation

Table 2.1 The available cyclic liquid crystal oligomers, 
separated into two homologous series.

BOND LENGTHS: C-C 1.54 A
C-C (benzene ring) 1.38 A
C=0 1.34 A
C-0 1.51 A
C-Si 1.87 A
Si-0 1.61 A
C-H 1.09 A
C-H (benzene ring) 1.02 A

BOND ANGLES: all Si, O, C 109°

except:

O
C —  O -  120 coplanar

- < £ >  120 coplanar

Table 2.2 Bond lengths and bond angles used in the 
construction of the molecular graphics model of D4C4. 
Bond lengths obtained from covalent radii [90,91],
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MOLECULAR DIMENSIONS

A molecular graphics package [90] has been employed 
in the construction of a model of a possible molecular 
structure of one of our oligomeric compounds, D4C4. 
Estimates of the dimensions of the major elements of the 
structure have been obtained from measurements made on 
this graphical model.

The bond-lengths used in the construction of the 
molecule were obtained from mean covalent bond radii 
[90,91] and are listed in table 2.2 together with the 
bond angles employed. In the construction of the 
mesogenic moieties, the benzene rings and the carboxyl 
group were constrained to be coplanar, with the 1-4 axes 
of the benzene rings parallel [92-94]. Other torsion 
angles about the bonds were chosen arbitrarily. The 
resultant mesogen and four membered alkyl spacer are 
shown in figure 2.1. A four membered ring of cyclic 
poly(dimethylsiloxane) was constructed in which the 
silicon atoms were fixed in one plane and the oxygen 
atoms fixed in a second plane parallel to the first, thus 
making a regular structure as shown in figure 2.2. Note 
that for the four membered ring oligomer, four of the 
Si-CHg bonds radiate from the ring structure in the plane 
of the Si atoms. The attachment of the alkyl spacers to 
the siloxane ring via these splay bonds results in the 
structure for the complete molecule given in figure 2.3.

Several points should be noted with regard to the 
construction of this molecule. The method of
construction of this graphical model does not indicate 
the synthesis route used in the manufacture of the 
physical compounds [34,35]. The structure presented is 
just one of many possible conformations for these

37



Figure 2.1 Molecular graphics model of the mesogen and 
four membered spacer: CHg-(CH2 )3-OCgH4COOHC6H4 )CH3 .

Figure 2.2 Molecular graphics model of cyclic
(dimethylsiloxane)4 .
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Figure 2.3 A molecular graphics construction of D4C4.
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compounds and no minimum energy calculations have been 
involved in the construction. We expect the physical 
samples provided to contain a mixture of molecular 
conformations with only a proportion of the alkyl spacers 
attached to the siloxane rings in approximate splay 
conformations. The actual molecules will exhibit some 
flexibility, particularly in the alkyl spacer units and 
in the polymer ring backbone, dependent upon the number 
of repeat units in each [34]. We would expect the 
benzene ring pair, coupled by the carboxyl group, to 
provide an essentially rigid structure within the 
mesogenic moieties [92-94].

However, the molecular graphic model as constructed 
gives us insight into the interplay between the 
constituent parts of the molecules and their relative 
dimensions. If we consider as our simplified picture of 
the molecules a planar ring, with rod-like mesogenic 
units attached equidistant around the ring via spacer 
units, then we can make measurements on our graphical 
model to estimate the dimensions of the constituent parts 
of our idealised molecule. The relevant dimensions are 
the diameter of the central ring, the length of the 
spacer units and the length and diameter of the rod-like 
mesogens. The actual measurements made in three
dimensions on the molecular structure are shown in figure 
2.4. Owing to the possibility of other molecular 
conformations, these measurements should be treated as 
approximate.

From these measurements it is seen that the shape of 
the mesogenic part can be approximated to that of a 
rectangular prism some 13.2 A long by 4.2 A wide with a 
thickness of one atomic diameter, which we can take as 
approximately 1.5 A. However, it is usual as a first 
approximation to reduce the shape of a nematogen to that
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Figure 2.4 The distances measured from the model of 
D4C4.

MESOGEN ROD LENGTH 13.2 A
ROD DIAMETER 4.2 A

SPACER UNIT 4-MEMBERED 5.0 A
(length) 6-MEMBERED 7.5 A

RING DIAMETER 4-MEMBERED 5.6 A
5-MEMBERED 6.4 A
6-MEMBERED 7.1 A
7-MEMBERED 7.9 A

Table 2.3 Approximate lengths of the basic units of the 
cyclic liquid crystal oligomers.
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of a cylinder. Such a cylindrical shape may be obtained 
by the rotation of the lath-like mesogen about its long 
axis. The length of the (CHg)^ spacer is 5 A, somewhat 
larger than one third of the length of the mesogenic 
unit. It is less clear how to define the diameter of the 
oligomer ring, and two measurements have been made: one
the diameter of the circle of Si atoms and the other the 
diameter of the larger circle which includes the first C 
atoms of the flexible spacer when attached in a planar 
radial conformation. However, it is known that in the 
samples provided the spacer units will not all be 
attached to the backbone via radial bonds and so the mean 
of these two measurements, 5.6 A, is adopted as the 
diameter of the idealised ring backbone.

Table 2.3 lists the approximate sizes the 
constituents of the idealised molecules for all of the 
compounds available. More involved calculations of the 
radii of gyration of cyclic dimethylsiloxane polymers 
have been undertaken [95,96], but these were for larger 
rings than in our oligomers. However, comparison the 
radius of gyration of an eight membered 
poly(dimethylsiloxane) ring is quoted as 4.5 A, which 
compares well with the value of 4.4 A as calculated by 
our method. It would be expected that our calculations 
would provide a reasonable estimate of the ring diameters 
for the smaller rings in which the number of available 
conformations is limited.

THERMAL AND OPTICAL MEASUREMENTS

Phase transition temperatures were measured by 
direct scanning calorimetry using a Mettler TA3000
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scanner. These measurements were supported by optical 
observations using a polarising microscope with a

ohot-stage which had a temperature resolution of 0.1 
Celsius.

The glass transition temperatures, T , and the 
clearing temperatures, T , are given in table 2.4 for the 
available materials. These were measured by D.S.C.

ocalibration, cooling at a rate of 10 C/min from the 
isotropic phase. The clearing temperatures were
confirmed by optical observation and for all of the 
materials the optical characteristics below Tc suggested 
possible nematic behaviour. In general the glass

otransition temperatures are about 10 C and the clearing
otemperatures about 90 C. In the case of D4C4,

crystallites were seen to persist at temperatures above 
the clearing of the bulk of the fluid and to undergo a

omonotropic transition into the isotropic phase at 107 C. 
The density of the crystallites was increased when theOsample was annealed for several hours at 50 C before 
heating beyond Tc on the optical stage. On cooling, a 
birefringent phase was not produced until the temperature

odropped below 84 C. Repeated D.S.C. scans of D4C6 at
o5 C/min indicated the formation of possibly crystalline

oforms at about 50 C for this material also. However,
this form did not persist beyond the clearing
temperature. Although further detailed examination of
the phase behaviour of the other materials was not
possible, these also may exhibit more than one phase
between T and T . However, owing to the high viscosity s C
of the materials, the exact form, or mixture of forms, 
would largely be dependent upon the thermal history of 
the sample.
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compound

D4C4

Tg <’C > 

8

Tc (°C)

84, 107 (see text)

D4C6 5 93

D5C4 6 83
D6C4 8 93
D7C4 13 92

Table 2.4 Glass transition temperature, T , and clearing8
temperature, T , of the cyclic oligomers, c

compound activation energy (eV)

D4C4 1.818

D4C6 1.572

D5C4 1.677
D6C4 1.740
D7C4 1.673

Table 2.5 Arrhenius activation energies of the cyclic 
oligomers.

44



DIELECTRIC PERMITTIVITIES

Dielectric measurements were made using glass 
capacitance cells in a parallel plate configuration with 
a grounded guard-ring. The plates were kept 50 Hm apart 
using mylar spacers and had an active area of one square 
centimetre. Electrical connections to the sample were 
achieved by an indium tin oxide coating and the plates 
were surface treated with Cr-complex to favour 
homeotropic alignment of the liquid crystals in the 
absence of an external aligning field. The cells were 
calibrated with air before filling with the oligomers by 
capillary action at a temperature a few degrees above the 
transition to the isotropic phase.

The capacitances of the filled cells were measured 
over the frequency range of 50Hz to 1MHz using a Hewlett 
Packard self balancing bridge HP4129A. The cells were 
held in a shielded holder and heated by a hot air 
temperature controller system. Homeotropic and
homogeneous alignment were induced by a magnetic field of 
1.5 T provided by a Newport electro-magnet with 7" 
diameter poles.

The method of measurement involved heating the 
filled cell into the isotropic phase and then applying 
the magnetic field to induce homeotropic alignment as the 
cell was cooled in stages into the liquid crystalline 
phase. Capacitances were measured over the full
frequency range at each temperature. It was not 
generally possible to make repeatable measurements belowo50 Celsius as it was found that the capacitances drifted 
indefinitely, probably due to the high viscosity of the 
materials and the possible formation of other crystalline 
forms at these temperatures.
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After measurements had been taken at the lowest
temperature the cell was heated again into the isotropic

ophase, turned through 90 to give homogeneous alignment, 
and measurements were again made as the cell was cooled 
in stages. Good alignment in the liquid crystalline
phases was confirmed by the fact that the relaxations
observed in the dielectric permittivities for homeotropic 
(parallel) alignment were not observed in the
permittivities for homogeneous (perpendicular) alignment.

The measurements obtained from the bridge were the 
capacitance, C, and the quality factor, Q, of the 
equivalent parallel resistor-capacitor circuit. The real 
component of the complex dielectric permittivity, e*, was 
obtained from:

e * = 2.1

where Cq was the capacitance of the cell when filled with 
air.

The resistive part of the circuit is related to the 
imaginary component of the complex dielectric 
permittivity, known as the dielectric loss, e", which was 
calculated from:

e *
e" = ----  2.2

Q

The parallel dielectric permittivities of D4C4 are 
given in figure 2.5 as a function of frequency. A single 
clear relaxation process is observed within the frequency 
and temperature ranges of the measurements. 
Corresponding peaks in the parallel dielectric loss are

46



6.5

90 C
5.5

80 C

70 C
80 C4.5

40*C '■o 60 C.

3.5

f(kHz)

b

c"II
0.8

90*C
0.6

80*C

0.4

70*C

0.2 60 C

40*C
0.0 I0‘

f(kHz)

Figure 2.5 Parallel components of a) dielectric 
permittivity, ej and b) dielectric loss, ejj, plotted 
against frequency for the compound D4C4.
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also observed and are shown separately in the same 
figure. The perpendicular dielectric permittivities of 
D4C4 shown in figure 2.6 do not exhibit relaxations over 
the same range of frequency and temperature as those for 
the parallel permittivities, and neither are there any 
peaks in the perpendicular dielectric loss. However,
there is some fall off of the perpendicular permittivity 
at high frequency which may be the result of another 
relaxation process or possibly due to the finite 
resistance of the tin oxide conductor. This high 
frequency fall off is also observed in the parallel 
permittivity. The material is clearly dielectrically 
negative (ie. ej - e^< 0), resulting from the large
transverse component of the dipole in the mesogenic side 
chains [97]. The lack of a dominant longitudinal dipole 
in the mesogenic units prevented the simple estimation of 
the nematic order parameter from these dielectric 
measurements [17].

The existence of the relaxations only in the 
parallel permittivities confirms that good alignment was 
achieved for both orientations and suggests the
6-relaxation due to end to end motions of the mesogens.

The dielectric permittivities for the other
materials showed qualitatively similar behaviour to that 
of D4C4.

The Debye theory of dielectric relaxation predicts a 
single relaxation frequency for dielectric material 
[98,99b], The complex dielectric permittivity is given
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Figure 2.6 Perpendicular components of a) dielectric 
permittivity, c* and b) dielectric loss, , plotted 
against frequency for the compound D4C4.
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as:

1
1 + iuT

2.3
0

i

where £^ is the dielectric permittivity at infinitely 
high frequency and £^ is the static dielectric 
permittivity. is the relaxation time of the material
and w is the angular frequency of the measurement.

From equation 2.3 it can be shown that the plot of 
the dielectric loss against the real part of the complex 
dielectric permittivity is that of a semi-circle. The 
Debye theory has been extend by Cole and Cole to allow 
for a spread of relaxation times, in which case the 
equation for the dielectric permittivity becomes:

where is here the mean relaxation time. The plot of 
£" against £’ is now part of a semi-circle, the centre of 
which is depressed below the e"=0 axis. The parameter a 
is related to the amount by which the semi-circle is 
depressed below the axis and is a measure of the 
broadening of the relaxation. The minimum value of a is 
zero, which corresponds to a single relaxation time, and 
the maximum value is unity.

The Cole-Cole plots for the parallel permittivities 
of all of the materials were nearly semi-circular with 
the centre depressed below the £*- axis, corresponding to 
broadened Debye-like relaxations. As an example, the 
Cole-Cole plot of D4C4 for 70 C is given in figure 2.7.

1
1 + (i<*>T0 )1-a

2.4
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Cole-Cole plots were constructed for all suitable
relaxations of the materials and the broadening
parameter, a, calculated from the depression of the
semi-circle. These Cole-Cole parameters are plotted as a 
function of relaxation frequency in figure 2.8. The 
broadening is largest for D4C4, the molecule with the
smallest ring and the shortest spacer, averaging
a * 0.26. For this material there is an apparent trend 
in which a diminishes as the relaxation frequency is 
increased. However, for the other materials, the a are 
scattered and show no clear trends. For D4C6 the average 
broadening parameter is a » 0,21, 0.05 lower than that 
for D4C4. It would appear that the effect of lengthening 
the spacer by two -(CHg)- units is to increase the 
decoupling of the mesogenic units from the broadening 
effect of the ring backbone. The reduction in the a is 
even more pronounced as the number of repeat units in the 
ring is increased. The average of a for D5C4, D6C4 and 
D7C4 is about 0.18.

Another method of estimating the broadening of 
relaxation times was developed by Fuoss and Kirkwood, 
whose relation is [99b]:

cosh“1(eM /£") = £ ln(f/fn ) 2.5' max 0

where e" is the peak value of the dielectric loss and max
fg is the corresponding mean frequency of the relaxation.
The Fuoss-Kirkwood coefficient, 0, can be calculated from
the slope of the curve cosh V "  /e" ) againstmax
ln(f). Such curves are shown in figure 2.9 for D4C4. 
The coefficient takes the value /3 = 1 for a pure Debye
relaxation of a single frequency and lower values for 
broadened relaxations. The /3 were calculated for all the 
materials for all suitable loss peaks and figure 2.10 
shows against fq . Again, the largest broadening occurs
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for D4C4, for which P * .60 is typical. The addition of 
two alkyl units to the spacers results in an increase in 
P to about 0.61 for D4C6. A more marked increase in P of 
approximately 0.12 is observed to correspond to an 
increase in the number of repeat units in the ring 
backbone. The average value for D5C4, D6C4 and D7C4 is P 
« 0.72.

Relaxation processes may also be modelled by a 
system with two energy states [99a] in which the mean 
relaxation frequency, f q , is related to the potential 
energy barrier, AW, separating the two states:

fQ = A exp(-AW/kgT) 2.6

where A is some constant. A measure of the activation 
energy, Aw, can be therefore be obtained from the slope 
of the plot of In f^ against 1/T; such a plot is known as 
an Arrhenius plot. Figure 2.11 gives the Arrhenius plot 
for the relaxations in the homologous series of molecules 
of increasing ring size. There is a linear dependence of 
the relaxation frequencies on the inverse temperature, 
with a slight curvature in D4C4 at high temperature as 
the isotropic phase is approached. The slope of the 
linear part of the D4C4 plot is clearly greater than 
that of the molecules with larger rings, and the
activation energies as calculated from the slopes are 
given in table 2.5. There is clearly a general reduction 
in the activation energy as the size of the polymer ring 
increases. This could be explained by a decrease in the
rigidity of the ring as the number of repeat units is
increased resulting in the ring playing a less dominant 
part in the relaxation processes. The Arrhenius plots 
for the homologous series with the spacer length 
increasing are given in figure 2.12. Again a linear
relation is observed and the slope for D4C4 is larger
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than that for D4C6. The corresponding activation 
energies are given in table 2.5. The decoupling of the 
mesogenic unit from the ring by the lengthened spacer
results in a substantial decrease in the activation 
energy for D4C6 when compared to D4C4.

As the polymer ring size or alkyl spacer length is 
increased the spread in the relaxation times becomes
narrower. This effect is more marked for changes in ring
size. Conversely, the decrease in the activation energy
is larger for the increase in spacer length than for the 
increase in ring size. The rigidity of the alkly spacer 
makes the dominant contribution to the potential barrier 
associated with the relaxation of the rod-like mesogenic 
units. However, it is the polymer ring environment which 
mostly affects the broadening mechanism.

CONCLUSIONS

A molecular graphic representation of the compound 
D4C4 has been constructed and from which the approximate 
dimensions of the molecular building blocks of these 
materials has been measured. We have shown that the side 
chains may be attached to a four membered 
poly(dimethylsiloxane) ring by means of radially splay 
bonds although in the physical samples supplied we expect 
a variety of bond angles. However, we suggest that it 
should be possible to synthesise a molecule with short 
alkyl spacers in which the mesogens adopt a fairly rigid 
planar splay conformation. Such a material might be 
expected to exhibit discotic mesogenic behaviour.

The five cyclic oligomers examined exhibit one or
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more mesophases between the glass transition temperature 
and the clearing temperature. Two of the compounds, D4C4 
and D4C6, have been shown to exist in at least two forms 
in the liquid phase below their respective clearing 
temperatures and it is likely that the other compounds 
may also exhibit more than one birefringent phase under 
normal laboratory conditions. From optical observations 
it is suggested that the phase dominant just below the 
clearing temperature is nematic for all of the materials, 
although this would need to be confirmed by, for example, 
X-ray diffraction.

Dielectric studies have revealed a clear relaxation 
in the parallel component of the dielectric permittivityo opresent in the temperature range 50 C to 100 C for all of 
the samples. This relaxation is not pure Debye, but is 
broadened and the amount of broadening has been 
quantified in terms of the Cole-Cole parameter, a, and 
the Fuoss-Kirkwood coefficient, /5. The broadening is 
most pronounced for the compound whose molecules have the 
smallest ring backbone and the shortest length of alkyl 
spacer between the backbone and the mesogenic units, 
namely D4C4. From Arrhenius plots, activation energies 
have been calculated for the relaxations and D4C4 has the 
highest activation energy. The activation energy is 
sensitive to the length of the alkyl spacer unit, the 
molecule with the longer spacer exhibiting a lower 
activation energy, although the size of the cyclic 
backbone also affects the activation energy of the 
relaxation.
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CHAPTER 3 SOFT DISC MODEL

THE MOLECULAR INTERACTION POTENTIAL

This model was developed to investigate by 
Metropolis Monte Carlo simulation the properties of a 
system of cyclic liquid crystal oligomer molecules 
represented by a simple intermolecular potential.

In this model, each complex, multi-component,
oligomeric liquid crystal molecule is represented as a
single entity by a pair interaction potential. A
spherical Lennard-Jones 12-6 potential is used to model
the cyclic polymer backbone and the average effect of
splay conformations of the attached mesogenic moieties
is provided by the addition of a ring of softer potential

-9m  the form of an angular dependent r term. This gives 
an essentially disc-like object as shown in figure 3.1.

The interaction between rod-like liquid crystal 
molecules is commonly represented as an intermolecular 
potential which depends solely upon the separation of the 
molecules and the angle between their symmetry axes 
[43-47,78]. However, this angular simplification leads to 
some unrealistic packing properties of the molecules as 
shown, for example, in figure 3.2. In order to allow the 
construction of an interaction potential which gives more 
realistic treatment to the two disc configurations shown 
in the figure, a fuller angular description of the 
molecular relationships is required, such as that given 
in figure 1.9 in chapter 1.

As discussed in the introduction, the interaction
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Figure 3.1 The approximate shape of the molecules in the 
Soft Disc model.

( h

Figure 3.2 Parallel configurations of two i) rod-like 
and ii) disc-shaped molecules. Configurations (a) and 
(b) have the same energy at equal separations if the 
interaction potential is angularly dependent only on the 
angle between the molecular symmetry axes.
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potential for a pair of axially symmetric molecules can 
be represented in the following standard expansion [13]:

V. . = 4n  ij L . m i 1
L . L . mi J

3.1

where YT are the usual spherical harmonic functions and
the angles are as defined in figure 1.9.

For molecules with a mirror symmetry plane 
perpendicular to the rotational symmetry axis, the 
spherical harmonic terms with odd values of L drop from 
the series, and our interaction potential is represented 
as such a series of spherical harmonic terms truncated 
after the second order terms.

The modified Lennard-Jones potential used was taken 
to have the following form:

the proposed separations of the molecules in specific 
configurations of two molecules which are shown in figure 
3.3. The expansion (equation 3.1) was then equated to 
the modified Lennard-Jones interaction (equation 3.2) in 
these configurations to determine the coefficients of the 
spherical harmonic terms. The potential was simplified 
by the omission of the dependence in order to make
efficient use of computing time. The resulting potential

3.2

The values of F(0. ,4>. ,0 . ,$.) were calculated to givel l j j
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Figure 3.3 Specific equilibrium configurations of the
molecules used to define the Soft Disc pair interaction 
potential. a^ is the equilibrium separation for the
standard Lennard-Jones 12-6 potential.
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used in the simulations is given by:

V. . = 4 e
i j

85 71 ( 2 n -l. 2 a  \  ( cos 0. + cos 0. )
2 1 J

57 2 n 2 n , 3 5  . 2 n+ ---  cos 0. cos 0. +   s m  0O 1 J O i sin2ej ) }

3.3

Contour diagrams and isometric projections of this 
potential are presented in figure 3.4 for specific 
configurations of the molecules.

COMPUTING DETAILS

Simulations were performed with the centres of the 
molecules constrained to lie in a plane, but still 
allowed free translational motion in 2-D and rotational 
freedom in 3-D. The restriction to a plane increased the 
speed of the simulation and allowed configurations to be 
presented in a simple diagrammatic form, from which the 
ordering in the system could be observed. The
simulations were performed in the NVT ensemble as, in 
general, the volume change at the nematic to isotropic 
phase transition is known to be small [67,100].

New configurations were obtained by choosing a 
molecule at random and moving it in one of two ways, a 
translation or a rotation. For a translational move, the
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molecule was moved along a randomly chosen direction by a 
random amount, up to a maximum, Â _. For a rotational 
move, one of the laboratory axes was chosen at random and 
the symmetry axis of the molecule rotated randomly about 
this chosen axis by a randomly determined angle, 6<P.

6<p = —  A (23R - 1 ) 3.4r ' '
2 r

where SR is a pseudo-random number on the interval 0,1 and
A^ is the maximum rotation. After each move, the change
in interaction energy for the whole system was calculated
and the new configuration was accepted or rejected
according to the usual Monte Carlo criteria [40]. The
magnitude of A and A were adjusted between simulations I* z
to give approximately equal occurrence of accepted and 
rejected moves.

A minimum molecular separation was defined in order 
to eliminate overflow errors in the calculation of the 
interaction potential. The effect of this was to 
introduce a small spherical region of infinite potential 
at the centres of the molecules. this minimum separation 
was set low enough to just eliminate all possible 
overflow errors, and in practice less than one in 200 000 
moves needed to be rejected for this reason. Hence, the 
simulation was not greatly affected by this additional 
procedure.

Simulations of a system of fifty particles were 
started from a random configuration at high temperature 
and, as the temperature was reduced, the final 
configuration of a run at one temperature became the 
starting configuration of the run at the next lower 
temperature. The simulations were performed overnight on 
the IBM 4341 mainframe computer at the polytechnic. 
Owing to low computing demand at this time, about four
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hours of CPU time were available for these simulations 
each night, which, it was estimated, was enough time to 
allow for thermalisation of the system at one
temperature. Subroutines were written to allow a
configuration to be stored on computer disk and then
picked up in a subsequent run, allowing a simulation to 
continue over several nights. The results of these 
simulations are presented as diagrams of the molecular 
positions and orientations which were obtained from the 
final configurations of the simulations at each 
temperature.

♦ $The reduced temperature, T , and density, p , used
in these simulations are given:

* * m/t ̂T = ; p* = 3.5

where N is the number of discs in the 2-D box which has 
area A.

An overnight simulation at one temperature involved 
250 000 attempted moves of each type and typically used 
some 256 minutes of central processor time.

RESULTS

In the diagrams presented, the projections of the 
unique symmetry axes of the disc-like molecules onto the 
plane are represented by the lengths of the lines. The 
attached circles indicate the upper end of the axes.

Figure 3.5 shows configurations of three simulations 
at the same temperature, but with different densities.
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Figure 3.5 Typical configurations from the Soft Disc
*model at a reduced temperature of T =1.43.

The scale indicates the length of an axis parallel to 
the plane.
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It can be seen that as the density is increased, the 
molecules pack more evenly to reduce the system internal 
energy. Furthermore, at the highest density, there is a 
tendency for the discs to be perpendicular to the plane 
rather than lie flat in it. This is indicated in the 
diagrams by the longer axis lines.

Figure 3.6 shows configurations at a relatively high 
density of 0.39. It can be seen that as the temperature 
is reduced, the molecules tend to align themselves with 
one another to produce localised columnar stacking in 
domains. This stacking is typical of discotic liquid 
crystalline behaviour [8]. The simulations did not 
produce any configurations with an overall uniform 
ordering, and it it thought that this may be due to the 
restriction to two dimensions [57]. No attempt was made 
to quantify the ordering of the molecules in this model.

The above simulations have generated configurations 
showing typically discotic ordering and have shown the 
applicability of the Metropolis Monte Carlo method to the 
modelling of these cyclic liquid crystal oligomer 
systems. However, the simple potential used here does 
not offer scope to examine the interplay between the 
polymer rings and the attached mesogens. A more 
complicated model which reflects the multi-component 
nature of the liquid crystal oligomer molecules was, 
therefore, developed and simulated in three dimensions.

68



T =

T =

scale

T = 0.33

/

Figure 3.6 Typical configurations from the Soft Disc 
model at a reduced density of p =0.39.
The scale indicates the length of an axis parallel to 
the plane.
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CHAPTER 4 THE MULTI-MESOGEN RING MODEL

The multi-mesogen ring (m.m.r.) model was developed 
to investigate the effects of altering the internal 
structure of the cyclic oligomeric liquid crystalline 
molecules. The cyclic polymer backbone and the mesogenic 
moieties are given separate representations, thus 
allowing the behaviour of the molecules to be observed as 
the coupling strength between the rings and the attached 
mesogens is varied.

THE MOLECULAR INTERACTION POTENTIAL

In the m.m.r. model, the individual mesogenic units 
are represented separately, with a mesogen-mesogen 
interaction potential chosen for the interaction between 
these rod-like moieties. The cyclic polymer backbones 
are simply represented as a constraint on the relative 
motions of the attached mesogens. Figure 4.1 shows the 
general structure of the model. The cyclic backbones areItaken to have a planar ring conformation and the mesogen 
centres of mass are placed at sites equal distances 
apart on this rigid ring. The flexibility of the 
coupling between the mesogens and the rings is 
incorporated by means of a restriction on the 
orientations which the mesogens may have with respect to 
the ring axes. An axis may be imagined to pass through 
the centre of the ring and the centre of mass of a 
mesogen. The mesogen is then only allowed to adopt 
orientations for which the angle between this imagined 
axis and the long axis of the mesogen is less than some
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Figure 4.1 The structure of the multi-mesogen ring 
model.
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maximum, referred to as the flex angle. Any attempted 
Monte Carlo move of the mesogen which would cause the 
mesogen to be orientated outside the cone defined by this 
flex angle is rejected.

By suitable choice of parameters, this model can 
represent a range of molecular structures. These 
adjustable parameters are the ring size, the number of 
attached mesogens and the ring-mesogen coupling 
flexibility via the flex angle. Also, the interaction 
potential to describe the mesogens can be chosen to have 
an appropriate form.

The mesogen-mesogen interaction potential adopted 
for use in this model is that developed by 
Luckhurst et. al. [78] for their simulation of rod-like
molecules in the NPT ensemble. This potential contains 
both attractive and repulsive contributions, allowing the 
study of the temperature dependent behaviour of the 
translationally mobile molecules. The pair potential was 
constructed by the addition of an anisotropic term to the 
usual, spherical, Lennard-Jones 12-6 potential:

u0 + ua

where

u0

and

4.1
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where 0. . is the angle between the unique symmetry axes J
of the two mesogenic moieties and X is a measure of thea
anisotropy of the interaction.

This potential was chosen for two reasons. Firstly, 
Luckhurst et. al. had already shown the applicability of 
the potential to the simulation of rod-like mesogens 
using the Metropolis Monte Carlo technique, observing a 
transition from a nematic phase to isotropic fluid. We 
might also expect a similar transition for our molecules 
in the case of full flexibility, and the use of the same 
mesogen interaction potential would allow for a 
comparison between our results and those of 
Luckhurst et. al. . Secondly, owing to the complexity of 
the Monte Carlo moves involved in the simulation of our 
multi component molecules it was essential to use a 
relatively simple mesogen-mesogen interaction potential 
in order to minimise the necessarily large computing time 
required for the simulations. The potential proposed by 
Luckhurst et. al. has an angular dependence which is 
dependent only upon the angle between the long axes of 
the mesogens, and consequently is simpler to calculate 
than the interaction potential used in the soft disc 
model which had a fuller angular description.

The choice of an interaction potential whose angular 
dependence is limited to the angle between between the 
unique axes of the mesogens results in a somewhat 
unrealistic symmetry. A pair of molecules which maintain 
the same angle between their unique axes will interact 
with a reduced form of the potential which is 
independent of the orientation of the relative position 
vector, j • For the interaction potential adopted by 
ourselves and Luckhurst et. al., two molecules which 
maintain the same relative orientations will ’see’ each 
other as Lennard-Jones spheres. These Lennard-Jones
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functions are shown in figure 4.2 for our potential with 
an anisotropy of X = .15 over a range of fixed angles
between the unique axes of the mesogens.

For the Lennard-Jones curves we define two 
characteristic values: the depth of the well, Uq , and the 
separation, reqm > corresponding to this minimum in the 
potential energy. It can be seen that for our potential 
reqm i-ncreasec* by approximately 7% as the molecules
turn from parallel to perpendicular alignment. This is 
accompanied by a reduction in the well depth of nearly 
50%.

Owing to the small size of the variation in r weeqm
may expect our mesogenic moieties to exhibit spatial
packing analogous to that of simple Lennard-Jones spheres
of a radius of approximately r = 1.1 (7. Theeqm
interpretation adopted by Luckhurst et. al. for this 
packing behaviour is that the pair interaction may be 
associated with highly ordered clusters of rod-like 
molecules, the clusters being considerably less 
anisometric than their constituent rod-like molecules. 
This interpretation is not applicable to our molecules 
because we define the interaction potential to act 
between a pair of individual mesogens. However, a 
variety of models of mesogenic behaviour have made use of 
interactions which posses the same angular dependence as 
equation 4.1. These models include many lattice based 
Monte Carlo simulations and the classic Maier-Saupe 
theory. Consequently we believe that the interaction 
potential chosen contains the essential features required 
for the representation of the mesogens in the m.m.r. 
model.

The simulations were performed with a mesogen 
anisotropy of X^= 0.15. Preliminary calculations were
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also performed with a higher anisotropy, but it was found 
that the degree of order obtained was persistent up to 
high temperatures, in agreement with the results obtained 
by Luckhurst et. al. for their monomeric rod-like 
mesogens.

COMPUTING DETAILS

The Metropolis [40] Monte Carlo technique was used 
to simulate a system containing Nr molecules in which the 
mesogenic units were attached four to a ring. The 
simulations were performed in the NVT ensemble and each 
molecule was allowed free translational and rotational 
motion in 3-dimensions. For most of the simulations Nr
was given the value 15, as detailed in the results 
section of this chapter.

The simulations were performed subject to the usual 
periodic boundary conditions. In order to prevent the 
interaction of mesogen i with more than one duplicate of 
mesogen j , the pair interaction potential was 
discontinuously reduced to zero at a distance equal to 
half of the length of the sides of the cube containing 
the molecules. This cut-off distance will, therefore, 
vary between simulations performed on molecules in boxes 
of different size. However, the majority of results 
presented are for boxes with the same density of 
molecules and the same number of molecules in the box. 
For these simulations the size of the box and range of 
the interaction potential are constant.

As in the soft disc model, a small central region of 
infinite potential was included in the mesogen
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interaction to prevent computer overflow should two 
molecules get too close. However, this condition never 
occurred in practice in the simulation of the m.m.r. 
model.

The structure of the molecules allowed for just 
three types of Monte Carlo move: ring translations, where 
the attached mesogens were moved by the same 
translational increment, maintaining their relative 
positions; ring rotations, in which the ring-mesogen 
entity was rotated as a rigid body; mesogen rotations 
where an individual mesogen was rotated with respect to 
the ring. The directions and amounts of these motions 
were chosen in the same random manner as used in the 
simulation of the soft disc model described in chapter 3. 
The number of accepted moves of each type was recorded 
and the nominal move size adjusted between simulations to 
achieve an approximately equal frequency of accepted and 
rejected moves for each type.

Output from the model consisted of the reduced 
*internal energy, E , two order parameters describing the 

ordering of the rings and two order parameters describing 
the ordering of the mesogens.

The internal potential energy of the system was 
calculated from the simple sum of the mesogen pair 
interactions, averaged over the Monte Carlo 
configurations generated after the system had reached 
equilibrium:

N N
E = < 4.2

i=l j=i+l

where N is the number of mesogenic units in the system



and the angled brackets, ’<...>’, represent the thermal 
average over the Monte Carlo configurations. The values 
are presented in the form of a dimensionless reduced 
energy, E*:

eN

The mesogen order parameters were obtained by first 
calculating the following order tensor [100]:

< X .X .> 1 1 < x .y .> l i < x .z .> 1 1
£  = <y .x .> 1 1 <y y • >i i <y .z .> 1 1 4.4

<Z . X . > 1 1 < z .y .> i i < z .z .> 1 1

where is the x-component direction cosine of the i-th 
mesogen and the angled brackets represent the average 
over all molecules as well as Monte Carlo configurations. 
This tensor was diagonalised to yield three eigenvalues, 
Q1 , Q g » and . In the uniaxial state, one of these 
eigenvalues, , is different from the other two, which 
are equal. The usual uniaxial order parameter (as given 
in equation 1.1 in chapter 1) is then

S = —  (3 Q- - 1) 4.5m 2 1

However, for the composite m.m.r. molecules
the formation of biaxial phases is possible, in which 
case no two eigenvalues are the same. Such a biaxial 
phase indicates the tendency of the unique axes of the 
mesogens to align with a secondary preference along an 
axis perpendicular to the primary director, the 
ordering of this phase being described by the three
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eigenvalues of Q. The tensor Q has unit trace and so
only two of the eigenvalues are independent. The
problem, therefore, is how to present the two values in a
meaningful form. Based on the results of Luckhurst et.
al. we expected the formation of uniaxial phases at low
temperatures for some of the systems of our molecules.
Therefore, we attempted the calculation of a uniaxial
order parameter in all cases. Where all three
eigenvalues differed, , was taken as that eigenvalue
most different from the other two and the usual uniaxial
order parameter was calculated from . A biaxiallity
order parameter, B , was then calculated from them
difference in the other two eigenvalues [103]:

\  = 7  I ' »3 I 4-6

This biaxiallity parameter can take values from zero for 
uniaxial phases up to 0.5 for a phase with maximum 
biaxiallity.

The order parameters for the ring normals were 
calculated in an analogous manner.

$The reduced temperature, T , and reduced volume, V , 
used in the simulations are defined as:

T* = knT/e ; V* = V/N o 4.7£ m

where £ and o are from the definition of the pair 
interaction 
the system.
interaction potential and is the number of mesogens in

The model was programmed in PASCAL and run on the 
CRAY X-MP/48 at the Atlas Centre of the Rutherford 
Appleton Laboratory. A variation of the main programme 
was also developed in order to explore the behaviour of a
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system of lone mesogens in the NVT ensemble. The same 
mesogen pair interaction potential was used as in the 
m.m.r. model, allowing for comparison with the results of 
the simulations of the ring molecules and comparison with 
the results of Luckhurst et.al. which were performed in 
the NPT ensemble. The programme for the mesogen only 
model was derived from the m.m.r. programme by the 
addition of mesogen translational moves and the removal 
of the procedures pertaining to the rings.

The programmes were developed on the IBM 4341 
mainframe computer at the Polytechnic and all of the 
computational routines, such as the diagonalisation of 
the order tensors, were coded into the programme in 
preference to accessing library routines. This was to 
allow the programme to be portable between different 
computers. The only exception to this was the use of the 
random number generator as provided on the computer, as 
the change from the use of one generator to another was 
generally quite straightforward.

Two series of runs were performed. The first series 
involved only the model for the lone mesogens. As 
explained above, this allowed us to compare our results 
to Luckhurst*s and to assess the effect of using the NVT 
ensemble rather than the NPT ensemble. In the second 
series the m.m.r. model was employed to explore the 
effect of altering the coupling between the mesogens and 
the rings by means of adjusting the flex angle. A run of 
the lone mesogens model was included in this second 
series for comparison.

In the second series of runs the system consisted of 
sixty mesogens attached four to a ring. The ring radius 
was chosen by considering two competing requirements. 
The first requirement was that the rings should be
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substantially smaller than the box in which they were
contained so as to minimise any unwanted effects which 
might result from the combination of large rings and the 
periodic boundary conditions. The other requirement was 
that the rings should be large enough such that 
interactions between neighbouring mesogens on a ring
would not outweigh all other interactions between pairs
of mesogens. The ring radius was chosen such that the
interaction between a pair of neighbouring mesogens on
the ring could adopt any relative orientation without 
forcing the pair interaction between them into the
repulsive region of the modified Lennard-Jones curve. 
The combination of these requirements provided a ring 
radius of 0.76 which was used throughout.

The programmes were divided into several nesting 
levels, each level comprising a number of repeats of the
next, inner level and usually some data processing as
appropriate to the level. The number of repeats required 
for each level was estimated from preliminary 
calculations as indicated in the discussion of the 
programme structure given below. The numbers quoted 
apply to the runs of the m.m.r. model, although similar 
numbers of repeats were used in the simulations of the 
lone mesogens. The nesting structure is summarised in
figure 4.3.

SHUFFLE level.

The shuffle level consisted of a number of attempted 
Monte Carlo moves. These comprised one attempted ring 
rotation, one attempted ring translation and four 
attempted mesogen rotations. Preliminary simulations of

omesogens alone and rigid rings (flex angle = 0 ) 
suggested that this ratio of ring to mesogen moves should 
cause the ring and mesogen elements to equilibrate at



for TEMPERATURE = START_TEMP to END_TEMP do
- begin ----------------------- -— — -----------------------------
for SECTION = 1 to 5 do
r- b e g i n -------------------------------------------------------

for COUNT = 1 to 10 do
r- b e g i n ----------------------------------------------------

MACROSTEP *write macrostep averages of E , S , S , B , Bm r m r
accumulate running totals of E ,S , S , B , Bm r m r

L- end (for C O U N T )----------------------------------------
average E*, S , S , B , Bm r m r t
write section averages of E , S , S . B , Bm r m r
if SECTION £ 3 then {ie. "production" stage of run} 

begin
accumulate running totals of E * , S , S . B , Bm r m r
end (if SECTION)

L e n d  (for SECTION)-----------------------------------------*average E , S , S ,  B , B m r m r
write "production" averages of E , S , S , B , Bm r m r

L  end (for TEMPERATURE)--------------------------------------

MACROSTEP-------------------------------------------------------
for COUNT = 1 to NSUBMACROSTEPS do 

begin
SUBMACROSTEP--------------------------------------------

for COUNT = 1 to NSTEPS do 
begin
S T E P --------------------------------------------

for COUNT = 1 to NSHUFFLES do 
begin
S H UFFLE -------------------------------

RING rotation 
RING translation 
for COUNT = 1 to 4 do 

begin
MESOGEN rotation 
end

end

calculate E and order tensors *accumulate running totals of E and 
order tensors

end

calculate S , S , B , B m r m r
accumulate running totals of S , S , B , Bm r m r
end

Figure 4.3 The nesting structure of the programme used 
in the simulation of the m.m.r. model.
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approximately the same rate. For each move a new ring or 
mesogen was chosen at random.

STEP level.

The step level consisted of a number of repeated 
shuffles. Measurements on the final configuration 
generated in each step contributed to the average values 
of the various properties. A requirement for the Monte 
Carlo technique is that the configurations from 
consecutive steps should not be correlated.

A method of estimating the number of Monte Carlo
moves required to satisfy this criterion has been
suggested by Binder [38], A ’guess* is made at the
required number of moves and Monte Carlo runs of
different length are performed on an equilibrated system.
If the configurations generated are not correlated then
the product of the length of the run and the statistical
error in some configurational property of the system will
be independent of the length of the run. This technique
was applied to the lone mesogens version of our model and
measurements of the variance in the internal energy of
the system suggested the number of Monte Carlo moves
required per step was of the order of 2.4 N , where N ism m
the total number of mesogenic units in the system. 
Similar calculations on rigid rings did not yield clear 
results, probably because of the relatively small number 
of rings in the system. The configurations appeared to 
be uncorrelated even for steps of a few Monte Carlo 
moves. The number of shuffles in a step was therefore 
chosen as 36 in accordance with the requirement for the 
mesogens, given that there are four attempted mesogen 
moves per shuffle.
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SUBMACROSTEP level.

The submacrostep consisted of 20 steps, at the end 
of which the order parameters were calculated from the 
order tensor averaged over those steps. The number of 
repeated steps in the submacrostep was chosen such that 
the drift in the directors during the submacrostep was 
less than one degree. This was confirmed by observation 
of the drift in the directors in simulations of lone 
mesogens and rigid rings in equilibrated systems at a 
temperature just above the critical temperature. A 
substantial drift in the directors during a step would 
result in the calculation of inaccurate order parameters 
from the averaged order tensor.

MACROSTEP level.

Each macrostep comprised 35 submacrosteps, at the 
end of which the averages of the order parameters and the 
internal energy were calculated.

SECTION level.

Each section consisted of 10 macrosteps. Statistics 
were performed on the values of the energy and the order 
parameters calculated at each macrostep to yield mean 
values and standard deviations.

The whole of a run was divided into five sections. 
The first two sections were discarded as equilibration 
and the final three sections provided the average values 
of the order parameters and energies for plotting in the 
figures. However, close to the transitions it was found 
that longer than usual equilibration was required in some 
cases. Here the plotted results were obtained from just 
one or two sections as appropriate.



The length of run required for the equilibration of 
the system and for the collection of data from the 
configurations was estimated from the variations in the 
internal energy and order parameters for extended 
simulations of lone mesogens and rigid rings. Adequate 
equilibration was checked in the rest of the simulations 
by inspection of the mean values calculated at each 
section and at each macrostep.

The difficulties involved in estimating the required 
run lengths can be gathered from figure 4.4. The 
variations in the two uniaxial order parameters and the 
internal energy are plotted throughout a run of the

om.m.r. model in which the flex angle is 60 . The system 
is in a fluctuating state just above the clearing 
temperature and the plots are dominated by a substantial 
scatter in the measured values which are shown for every 
macrostep. The solid lines drawn correspond at each 
macrostep to the average of the given properties over 
the whole of the run up to that macrostep. From these 
lines we can estimate the length of the data collection 
part of the runs required. At the start of the 
simulations the running averages are dominated by the 
initial values. The influence of the early values is 
mostly lost by about one fifth of the total run length, 
with the running average settling by just over half of 
the total run length. Hence a production run length of 
at least one fifth of this total run length would be 
required to provide reliable estimates of the 
configurational properties. A more reliable measurement 
would be obtained from a production run length of just 
greater than one half of the total. Owing to the 
substantial scatter in the values at each macrostep it is 
more difficult to estimate the length of run required for 
equilibration. In the example given the system appears
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*Figure 4.4 The development of S^, and E during a run 
of the m.m.r. model at a reduced temperature of T* = 1.0Oand with a flex angle of 60 . The symbols represent the 
values averaged at each macrostep and the solid line 
represents the cumulative average.
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to have settled into an equilibrium state by the first 
one fifth of the total run length at most. This was 
confirmed by inspection of the values averaged over each
section, which showed no general drift.

In the simulation of the m.m.r. model, 1 260 000
shuffles were performed at each temperature. The first
two fifths of the configurations generated were 
discarded for equilibration except in those cases near to 
a phase transition in which inspection of the section 
averages suggested that longer equilibration was 
required.

The simulations were started from a random 
configuration at high temperature and as the temperature 
was reduced, the final configuration at one temperature 
became the initial configuration for the next, lower, 
temperature. For a typical simulation of the m.m.r. 
model involving 23 temperatures, a total of about 14 
hours of CRAY central processor time were required. In 
total over 300 hours of CRAY processor time were used in 
this project.

Results of preliminary simulations of the m.m.r. 
model have already been published [79,80].

Copies of the source code of the implementation of 
the m.m.r. model have been deposited with the applied 
physics department of the Polytechnic.

RESULTS

i) Simulations of Lone Mesogens

First a comparison is made with the results of the
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simulation of the monomer mesogens by Luckhurst et al. 
[78] to assess the effects of the use of the NVT ensemble 
and the size of the system of molecules.

Luckhurst’s results were obtained by the simulation
of a system of 256 rod-like mesogens in the NPT ensemble.
The simulations were started from an ordered phase at low
temperature and a first order transition into the
isotropic phase was observed as the temperature was
increased. The temperature of the transition was $estimated as T ^  = 1.13 ± 0.02, at a reduced volume of
V* = 1.334 ± 0.004.NI

We have also performed a simulation of a system of 
256 lone mesogens, in our case in the NVT ensemble. The 
reduced volume was set at 1.334 in agreement with the 
critical volume observed by Luckhurst et. al. and the 
simulations were started from a random configuration at 
high temperature with 6.16 million moves attempted at 
each temperature as the temperature was reduced. We also 
performed a simulation of 60 lone mesogens at the same 
reduced volume, with 1.44 million attempted moves at each 
temperature.

The uniaxial mesogen order parameters for these 
three simulations are plotted against temperature in 
figure 4.5. In contrast with the first order transition 
observed in the NPT ensemble, a continuous transition 
from a disordered to an orientationally ordered phase is 
observed for both of the simulations in the NVT ensemble. 
At high temperature, the order parameters for the two 
simulations of 256 mesogens are equal. However, at low 
temperature, the order parameters obtained in the NVT 
ensemble are much lower than those from the simulation in
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Figure 4.5 The uniaxial order parameter for simulations 
of lone mesogens in the NVT and NPT ensemble. Data for 
the NPT ensemble from Luckhurst et. al. [78].
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the NPT ensemble. Owing to the continuous nature of the
transition in the NVT ensemble it is difficult to ascribe
a single temperature to the transition, although it is
clear that the transition occurs over a range of$temperatures lower than T ^  for the transition in the NPT 
ensemble. It would appear that the removal of the volume 
as a variable coordinate of the system has the effect of 
weakening the strength of the transition.

The difference in the transition temperatures may 
result from hysteresis in the system in the NPT ensemble. 
Simulations from low temperature to high temperature have 
shown that there is no hysteresis in the transition in 
the NVT ensemble. However, it is possible that the first 
order phase transition in the NPT ensemble exhibits some 
hysteresis resulting in the transition temperature being 
higher than that which would have been observed if the 
simulation had been undertaken from high temperature to 
low temperature.

The major difference between the two simulations in 
the NVT ensemble is in the slope of the transition in the 
order parameters. The reduction in the number of 
mesogens in the simulation causes an increase in the 
order parameter at high temperature and a decrease in the 
order parameter at low temperature. The actual
temperature of the transition, if taken as the mid-point 
of the slope, is unchanged.

Localised pre-transitional ordering in the isotropic 
phase above the transition will make a larger 
contribution to the overall order for the smaller system 
of molecules. This results in the larger order parameter 
observed at high temperature in the simulation of 60 
mesogens. The relatively low order parameter observed at 
high temperatures in this smaller simulation may be
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caused by the shorter cut-off length in the pair 
interaction potential necessitated by the smaller box.

In summary, a continuous transition in the uniaxial 
order parameter is observed for the simulation of the 
monomeric mesogens in the NVT ensemble, where as a first 
order transition had been observed in the NPT ensemble. 
Whether there is also a difference in the transition 
temperature is uncertain owing to the lack of data for 
the reverse transition in the NPT ensemble. A shallower 
transition is observed for the simulation of a smaller 
number of molecules in the NVT ensemble.

ii) Simulations of the M.M.R. Model

The simulations of the multi-mesogen ring model were
started from a random configuration at a reduced

$ $ temperature of T = 2.0 and cooled in stages of T =- 0.1
$down to T = 1 . 3  with 1.26 M shuffles at each temperature

as detailed earlier. The systems were then cooled more
$slowly in 15 stages of AT = -0.05, with the

disorder-order transitions occurring in this lower 
temperature range. The initial random configuration at 
high temperature was chosen by placing the rings at 
randomly chosen positions in the box and at randomly
chosen orientations with respect to the axes of the box. 
The mesogens were placed on the rings in planar radial 
splay conformations in this starting configuration. 
Thermalisation at high temperature allowed the mesogens 
to adopt less rigid relations to the rings in the cases 
of finite flex angle.

It was decided to cool the system from a temperature
*of T = 2 . 0  because earlier simulations starting from a 

lower temperature only produced partially ordered phases
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at low temperature for rigid rings. For consistency, the 
same method of cooling was adopted for all of the 
simulations, regardless of the flex angle.

*A reduced volume of V = 1 . 4  was used in these
simulations. In simulations of rigid rings at a lower
reduced volume the extent of pretransitional ordering and
fluctuations were increased, reducing the definition of
the transition. However, in simulations at a reduced

$volume larger than V = 1 . 4  the definition of the 
transition was not improved further, but the transition 
temperature was depressed.

We look first at the simulation of rigid rings in 
the m.m.r. model, that is molecules with a flex angleOof 0 . The ring uniaxial order parameter and biaxiallity
parameter are plotted against reduced temperature in
figure 4.6. At high temperature the uniaxial ordering of
the rings averages at about S * 0.25 with substantialr
fluctuations as indicated by the error bars which 
correspond to one standard deviation in the values 
obtained at each macrostep. At lower temperatures there 
is a region of higher order, Sr * 0.5, and substantial 
fluctuations. This region corresponds to the local 
pretransitional ordering typically observed in mesogenic 
systems just above the transition temperature. In our 
system of just 15 rings, the local ordering of just a few 
rings could make a substantial contribution to the 
measured order parameter.

*As the temperature is reduced further to T w 0.9 a 
transition is observed in the ring order parameter to 
Sr = 0.95, accompanied by a sharp reduction in the size 
of the fluctuations. A transition is also observed in 
the ring biaxiallity which drops from a value of about 
0.18 to about 0.04. The ordering of this phase is
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stabilised at lower temperature with an increase in the 
uniaxial order parameter to 0.98 and a further reduction 
in the biaxiallity to very nearly zero.

For this rigid case the mesogen order parameters are 
directly related to the ring order parameters:

S = -0.5 S m r

B = 0.5 B 4.8m r
♦The internal energy of the system, E , and the 

specific heat capacity, Cv , are plotted in figure 4.7. 
The specific heat capacity was obtained from the gradient 
in the reduced internal energy:

c .V  #v dT
The gradient at each temperature was obtained by fitting 
a cubic polynomial to four adjacent values of E . 
Estimates of the specific heat capacity were also 
attempted by the measurement of the fluctuations in the 
reduced energy during the simulation [51], but these 
values showed too much scatter to be of any use. A clear
discontinuity in the reduced energy is seen in the figure

$ $ between the temperatures of T =0. 9 5  and T = 0.9. This
*is accompanied by a sharp peak in C at T = 0.925.

A reverse simulation was also performed starting
$from the ordered state at T =0.55  and increasing the 

temperature. The uniaxial order parameter and the 
reduced energy for this reverse simulation are given in
figure 4.8. Here the transition appears to occur at a

* * slightly lower temperature between T = 0 .85 and T = 0 . 9
However, other, preliminary, simulations of systems of
rigid rings showed the transition temperature to be
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slightly higher for the simulation from low to high 
temperature than for the simulation of decreasing 
temperature. It would appear that the exact transition 
temperature for the rigid rings is somewhat uncertain 
owing to the large fluctuations in the order parameters 
in the pretransitional region. There is insufficient 
evidence to suggest any genuine hysteresis in the 
transition.

From the combination of the ’forward* and ’reverse* 
simulations the transition temperature is estimated at 
T* = 0.9 ± 0.25.

We have explored further the effect of the use of a
small number of molecules on the behaviour in the region
above the transition. Simulations have been performed at

$a reduced volume of V = 1.4 on systems of 60 and 15 lone 
mesogens. At temperatures above the transition the 
smaller system does exhibit order parameters and 
fluctuations larger than those for the 60 mesogen system. 
However, these values are much lower than those observed 
in the pretransitional region of the rigid ring 
simulation. Therefore the size of the fluctuations in 
the pretransitional region for the rigid m.m.r. 
molecules does not result solely from the smallness of 
the system.

In figure 4.9 is shown a frequency diagram of the
uniaxial ring order parameters calculated at each
macrostep in the production part of the simulation of the

*rigid rings at a reduced temperature of T = 0.95 in the
pretransitional region. There is a clear bistability in
the system with preferred uniaxial order parameters
centred about S * 0.28 and S w 0.58, Fluctuationsr r
between the two preferred states contributes to the 
uncertainties in the measured order parameters and the
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difficulties in locating the exact position of the 
transition.

Note the occasional excursions into negative order. 
This results from the definition of the uniaxial order 
parameter in the case of finite biaxiallity and only 
moderate uniaxial order. The biaxiallity of a phase has 
a maximum possible value equal to the magnitude of the 
uniaxial order of the phase according to the manner of 
calculation described earlier in this chapter. As the 
limiting value of biaxiallity is approached the three 
eigenvalues of the order tensor become evenly spaced in 
value and there is ambiguity as to whether the largest or 
smallest eigenvalue should be adopted in the calculation 
of the uniaxial order parameter. Although in the 
simulations this limit is never achieved exactly, the 
biaxiallity may increase as if to cross the limit, in 
which case there is a change in the sign of the uniaxial 
order parameter accompanied by a change in the choice of 
director. Consequently, a small continuous change in the 
ordering of a system may produce a large discontinuous 
change in the measured uniaxial order parameter. Some 
other workers [58] have adopted other methods of 
calculating the uniaxial order parameter, but these also 
have had drawbacks. In particular, if the uniaxial 
order parameter is defined solely in terms of the largest 
eigenvalue of the Q tensor it can never take negative 
values. We have adopted our method of calculation 
because it correctly measures strong uniaxial order, both 
positive and negative, and the simple relations between 
the mesogen and the ring order parameters (equation 4.8) 
are preserved for rigid rings. Cases in which the 
uniaxial order parameter frequently changes sign may be 
identified by the average in the biaxiallity parameter 
being larger in value than the average uniaxial order 
parameter.
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As a control, a system of m.m.r. molecules in which
the anisotropic mesogen pair interaction has been
replaced by a simple spherical Lennard-Jones potential
has also been simulated. From this simulation, the
contribution made by steric interactions to the ordering
of the rings may be gauged, in the absence of the
aligning forces of the attached mesogens. The uniaxial
and biaxial order parameters, and the internal energy for
this simulation are given in figure 4.10. There is a
transition to partial uniaxial ring ordering at 
$T » 0.62, accompanied by an increase in the biaxiallity 

of the ring system. The transition is first order, with 
a discrete change in the internal energy. The transition 
is different from that of the rigid rings in several 
respects. The transition occurs at a much lower 
temperature and produces only a partially ordered biaxial 
phase. Also, there is a lack pretransitional ordering at 
temperatures above the transition.

It would appear that the anisotropic contribution to
the mesogen interaction potential is essential for the
formation of a uniaxial phase of the rigid ring m.m.r.

*molecules at a temperature of T * 0.9, and also for the 
production of localised pretransitional ordering above 
this temperature.

In the simulation of a small system of molecules, 
such as ours, it is difficult to determine whether the 
observed phase transitions are first order or continuous. 
Similarly the extrapolation of the transition into a 
macroscopic system is non-trivial and therefore it is not 
possible to state with certainty the expected nature of 
the discotic nematic to isotropic fluid transition in a 
macroscopic system of rigid m.m.r. molecules. According 
to Binder [38] some finite hysteresis may be observed in
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the Monte Carlo simulation of both first order and second 
order transitions owing to the finite sampling of phase 
space. However, in practice, strong hysteresis has been 
taken as an indication of a first order transition [104], 
Although no clear hysteresis is observed in our 
simulation of rigid m.m.r. molecules the bistability 
observed in the pretransitional region indicates that the 
transition may first order. Localised pretransitional 
ordering is a characteristic of the first order nematic 
to isotropic transition for rod-like molecules, although 
for non-mesogenic systems pretransitional behaviour is 
more generally associated with continuous transitions 
[13]. The sharp discontinuities in the order parameters 
and the sharp peak in the specific heat capacity also 
indicate that the transition observed for our rigid 
m.m.r. molecules may be first order [100].

We summarise the behaviour of the rigid ring m.m.r.
model. At high temperature the system is in the
isotropic phase. Owing to the small number of molecules
in the system, the statistical fluctuations in the
orientations of the molecules produce finite uniaxial and
biaxial order parameters. As the temperature is lowered
an increase in the uniaxial ring order parameter is
observed, which we identify as a region of localised
pretransitional ordering and bistability. A transition
into a strongly uniaxial ring ordering is observed as the

$temperature is further reduced below T = 0.9. The 
strong uniaxial ring ordering forces a reduction in the 
biaxiallity of the system and also forces the mesogen 
system into negative uniaxial order. The transition is 
identified as probably first order.

The m.m.r. model has also been explored for finite 
values of the flex angle. Owing to the multi component 
nature of the systems and the complicated phases
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produced, a nomenclature has been developed to summarise 
the phases formed. This is explained by example. For 
the above rigid ring simulation the ordered phase at low 
temperatures is described by:

The letters M and R refer to the mesogen and ring systems 
respectively. The superscripts refer to the uniaxial 
ordering of the phase. A *+* indicates a positive 
uniaxial order parameter and a ’ a negative order 
parameter. The lack of a superscript indicates a low 
uniaxial order parameter, not significantly different 
from that in the high temperature isotropic phase. The 
subscript b indicates a change in the biaxiallity from 
that observed in the isotropic phase. The ’ + ’ or 
indicate an increase or a decrease in the biaxiallity 
respectively. The lack of a subscript indicates no 
change in the biaxiallity from isotropic.

The order parameters and internal energy are plotted 
in figure 4.11 for the simulation of the m.m.r.

omolecules with a flex angle of 15 . As the temperature 
is reduced there is a general increase in the uniaxial 
ring order parameter until a discontinuous transition to 
Sr w 0.87 is observed at a reduced temperature of 
$T = 0.775 ±0.025. The transition in is accompanied

by a small discontinuous fall in the ring biaxiallity.
The mesogens are still strongly coupled to the rings and
are forced into a negative uniaxial order, although
little change is observed in the mesogen biaxiallity
which hovers about its high temperature background level
of 0.1 at all temperatures. The transition is
accompanied by a discrete change in the internal energy $of E = -0.50 ± 0.17 and is probably first order. We 
identify the phase at low temperature as M ^+b_ in our
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Figure 4.11 a) the uniaxial order parameters; b) the 
biaxial order parameters and c) the internal energy forOthe simulation of the m.m.r. model with a 15 flex angle.

continued over...
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notation.

The behaviour of the uniaxial order parameters is 
similar to that of the rigid rings except that the 
transition occurs at lower temperature and the order 
parameters change more smoothly in the pretransitional 
region. It would appear that the increase in the
orientational freedom of the mesogens allows the ring 
dominated system to drift more smoothly between the
isotropic and the ordered states. The change in the 
biaxiallity is less marked than for the rigid ring
system.

oFor the system with a 30 flex angle we found a low
temperature state of positive uniaxial mesogen ordering
and negative ring ordering at low temperature when the
system was cooled in the usual manner. However,
preliminary investigations had predicted a low
temperature state in which both the mesogens and the
rings were positively ordered and so the simulation was

$re-run with a slower cooling rate of AT = -0.025 over
the region of the transition. The order parameters and 
the internal energy of the system are plotted in figure
4.12. A discrete increase in S is observed at a reduced* m temperature of T w 0.79, accompanied by a small decrease
in the internal energy and a drift in S into negative
order. At a lower temperature of T * 0.74 the ring
system becomes quite strongly positively ordered,
accompanied by a further increase in the mesogen order
parameter and a decrease in the internal energy. Little
change is observed in the biaxiallity order parameters
between the high and low temperature states, although
there are some small discrete changes associated with the
transitions in the uniaxial order parameters.

We identify the phases as M R (isotropic) at high
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Figure 4.12 a) the uniaxial order parameters; b) the 
biaxial order parameters and c) the internal energy for

othe simulation of the m.m.r. model with a 30 flex angle, 
slower cooling in stages of AT = -0.025.
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temperature, M+R at lower temperature and M+R+ at even 
lower temperature. However, considering the results 
obtained at the usual, faster, cooling rate we cannot 
identify with certainty which of the states is the true 
equilibrium state at low temperature. It is clear that at

othis flex angle of 30 the system is in a region of 
transition from ring dominated ordering, for smaller flex 
angle, to mesogen dominated ordering, for larger flex 
angle. In such a region close to a triple point it may 
be expected that the transition temperatures would be 
difficult to locate exactly, a problem exacerbated by the 
use of such a small system of molecules [38,102].

The results of the simulation with a flex angle of
o45 are given in figure 4.13. There is a sharp 

transition in the uniaxial mesogen order parameter from
low order at high temperature to S * 0.8 at a reduced

* mtemperature of T = .925 ± .025. This transition is
accompanied by a fall in the mesogen biaxiallity, an
increase in the ring biaxiallity and a discontinuous
decrease in the internal energy. There is an apparent

£transition in Sr at the lower temperature of T * 0.625,
but there is no associated change in the internal energy.
However, in the temperature region between this apparent
transition and the transition identified in S , the ringm
system is highly biaxial and the fluctuations in Sr are
large, as indicated by the error bars. In this region Sr
is fluctuating between moderate positive and negative
order as may be expected for a highly biaxial system.
The magnitude of the instantaneous ring uniaxial order
parameter must be as large as B , ie. IS I * 0.4. Ther r ^
apparently large transition in the rings at T * 0.625 
merely corresponds to a small increase in magnitude of 
the uniaxial order parameter, which forces S p to be 
always positive rather than fluctuating between positive 
and negative values. Consequently, there is only one
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Figure 4.13 a) the uniaxial order parameters; b) the 
biaxial order parameters and c) the internal energy for

othe simulation of the m.m.r. model with a 45 flex angle.
continued over...
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true transition in the system, which is from isotropic to 
M+b-R+b+ •

The order parameters and internal energy are
presented in figure 4.14 for the system of m.m.r.
molecules with a flex angle of 60°. A single sharp
transition is observed at a temperature of $T = 0.975 ± 0.025. There is a large discontinuous
increase in S and S as the temperature is reduced, r m
which is accompanied by decreases in both of the
biaxiallity parameters. There is a large discontinuous

$decrease in the internal energy of E = -1.64 ± 0.36 
strongly suggesting a first order transition. The state 
at low temperature is highly uniaxially ordered in 
respect of both the rings and the mesogens and is

• • ^ "t* Oclassified as M . A simulation with 60 flex angle
was also performed from low to high temperature, in which
case the transition to the isotropic phase from the
ordered phase was observed at a reduced temperature of 
*T = 1.075 ± 0.025, indicating some small hysteresis in 

this transition.

There is a significant ordering of the mesogens at 
temperatures just above the transition, not seen also in 
the rings, which indicates that the ordering mechanism is 
mesogen dominated. However, it is clear that the 
coupling between the mesogens and the rings is strong 
enough to encourage the rings to align whilst not so 
strong that the high degree of uniaxial mesogen ordering 
inhibits the formation of a strongly ordered ring system,

o oas was observed in the cases of 30 and 45 flex angle.
oFor the 60 flex angle simulation, the temperature of the 

transition is relatively high and the uniaxial ordering 
of the state at lower temperature is especially strong 
for both the mesogens and the rings. At this strength of 
coupling, the mesogens and the rings reorientate in a
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Figure 4.14 a) the uniaxial order parameters; b) the 
biaxial order parameters and c) the internal energy for

othe simulation of the m.m.r. model with a 60 flex angle.
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cooperative manner to produce a stable and highly ordered 
phase.

Figure 4.15 gives the order parameters and the 
internal energy for a system of m.m.r. molecules with aO75 Flex angle. The variation in the uniaxial mesogen 
order parameter with temperature is mostly continuous, 
although two small discrete increases may be identified 
at T * 0.925 and T* * 0.825. Small changes in the 
internal energy are also seen at these temperatures, 
although the fluctuations in the energy are of a similar 
magnitude. There is a distinct increase in S a t  the 
lower of the two temperatures. An increase in the ring 
biaxiallity is observed at the lower temperature of 
T * 0.7, and associated with this is a temporary fall in 
the uniaxial ring order parameter and a change in the
gradient of the internal energy. The following phases

+ + + are identified: isotropic to M . _R down to M . R and
+ +further down to M . However, it is again likely

that the exact phase behaviour has been obscured by too 
rapid cooling, possibly inadequate thermalisation at low 
temperature and poor statistics due to the size of the 
system. The observed sequence of phases may be
simplified were the simulation performed on a much larger 
system, cooled more slowly.

The order parameters for the simulation with a flex
oangle of 90 are given in figure 4.16. The transitions 

in the mesogen order parameters are continuous, with the 
uniaxial order parameter becoming large as the 
temperature is reduced. At low temperature Sr is low 
with some scatter and the associated ring biaxiallity is 
large. The change in the internal energy is mostly 
continuous with a distinct drop at a temperature of 
T = 0.775 ± 0.025. Comparison between the change in the 
ring biaxiallity and the change in slope of the uniaxial
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Figure 4.15 a) the uniaxial order parameters; b) the 
biaxial order parameters and c) the internal energy forOthe simulation of the m.m.r. model with a 75 flex angle.
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Figure 4.16 a) the uniaxial order parameters; b) the 
biaxial order parameters and c) the internal energy for

othe simulation of the m.m.r. model with a 90 flex angle.
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mesogen order parameter suggest a single transition at T
* 0.75 from the isotropic phase to M+, R , .fc>- b+

The results of the simulation for the flex angle of
o180 are given in figure 4.17. The uniaxial order

parameter for the mesogens increases continuously as the
temperature is reduced, with a discontinuity in the slope $at T ^ 0.75, which corresponds with a small drop in the
internal energy and an increase in the ring biaxiallity
to about B w 0.2. The phase behaviour is therefore m
similar to the simulation with a flex angle of 90°,
except that for the simulation with the larger flex angle
the increased decoupling of the mesogenic units from the
ring backbones results in a lower B in the lowr
temperature ordered phase. Sr remains low throughout the
temperature range and Bm falls from its high temperature
statistical value as the mesogens adopt uniaxial order.
A single transition from isotropic to M+, R+, , isb— b+
identified.

A simulation of 60 free mesogens has also been
$performed at a reduced volume of V =1.4. In figure

o4.18, a comparison is made between S for the 180 flexm
angle m.m.r. system and the mesogen only system. At high 
and low temperature, the mesogen order parameters are 
closely similar. However, in the region of the
transition, the m.m.r. model exhibits a higher order 
parameter, indicating that the presence of the rings 
stabilises the mesogen phase to a small extent.

The phases observed are summarised in table 4.1 and 
the changes in the internal energy and the order 
parameters on the transition from high to low temperature 
are tabulated in table 4.2.

By considering only isotropic phases and the final
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Figure 4.17 a) the uniaxial order parameters; b) the 
biaxial order parameters and c) the internal energy for

othe simulation of the m.m.r. model with a 180 flex
angle.
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flexangle phase changes on reduction of temperature

0

O15

O30

o45

O60

o75

O90

180°

Table 4.1 
s imulation 
reduced.

T* = 0.9

T* = 0.775

T* = 0.79 _ T* = 0.74
I ---------> M R  ► M R

T*= 0.925

T* = 0.975

T* = 0.925 T*= 0.825
1  * Mb_ R  * Mb- R

T = 0.7
* Rb+

T = 0.75
* V  Rb+

T = 0.75
* Mb- Rb+

The phases observed in the Monte Carlo 
of the m.m.r. model as the temperature is 
I" = isotropic, "M R" symbols as in text.
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Table 4.2 The changes in the reduced internal energy and 
the order parameters for the m.m.r. model at transitions 
occurring as the system was cooled from an isotropic 
state.
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low temperature phase, a phase diagram of the behaviour
of the m.m.r. model has been created which shows the
variation of behaviour with flex angle. This phase
diagram is shown in figure 4.19, where the indicated 
temperature of the transition from isotropic to the 
ordered phase is that of the higher temperature
transition in each case where more than one transition
has been indicated in the above discussion. Hence it is 
the onset of ordering that is indicated in the diagram 
rather than the transition to the final low temperature 
state. The shape of the diagram would be little changed 
by the choice of one of the lower transition 
temperatures.

Three distinct regions are identified on the phase
diagram. In the ’discotic* region the uniaxial ring
order parameter is large and positive, and the mesogen
uniaxial order parameter is negative. The ring normals 
tend to align parallel and the mesogen axes are forced to 
lie in planes perpendicular to the director of the ring 
system. There is a single transition from isotropic to 
discotic which is probably first order. The discotic

obehaviour is observed for small flex angles of 15 or 
less.

oFor flex angles of 90 or greater the low 
temperature phase is labelled *calamitic/biaxial’. In 
this phase the mesogenic units tend to align parallel 
with a large positive Sm and the ring normals form a 
biaxial phase. The transition from the isotropic phase 
is continuous for the mesogens and discontinuous for the 
ring normals. The changes in the internal energy are 
continuous or small.

For intermediate flex angles both the mesogen and 
ring systems exhibit positive uniaxial ordering at low
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Figure 4.19 Simplified phase diagram of temperature 
against flex angle for the m.m.r. model.

128



temperature. This region is labelled as ’combined’. For
oflex angles of 60 the strength of the ordering is the 

maximum observed and the transition from the isotropic to 
the ordered phase is especially distinct and almost 
certainly first order. As the flex angle is either

oincreased or decreased away from 60 the strength of the 
ordering is reduced, especially in the case of the rings, 
the size of the discontinuity in the internal energy at 
the transition diminishes and the ring systems become 
biaxial at low temperature.

The end configuration of each temperature stage of 
each simulation was stored to allow further study of the 
phases. The interpretation of data obtained from these 
configurations needs to be considered with caution 
because the single configuration does not represent the 
ensemble average state of the system. However, this does 
not prevent the study of such configurations providing 
some insight into the behaviour of the systems.

The angles between the ring and mesogen uniaxial 
directors have been calculated from these end 
configurations and have shown a definite angular 
correlation between the directors in the ’discotic’ and 
’combined’ regions of the phase diagram. In these 
regions it is found that the mesogen and ring directors 
align parallel to each other to within a few degrees when 
the rings are positively uniaxially ordered and the 
mesogens are negatively ordered. When both the rings and 
the mesogens are positively uniaxially ordered the 
directors are, to within a few degrees, perpendicular.

oHowever, if the flex angle is increased to 90 or beyond 
then the coupling between the ring and mesogen directors 
is lost.

Similarly, it is also found in the ’discotic’ and
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’combined’ regions that at least one of the eigenvectors 
of each of the ordering matrices is aligned along an axis 
of the containing box. This alignment is a result of the 
periodic boundary conditions, although the exact 
mechanism is unknown. The interaction with the periodic 
boundaries would be expected to be more pronounced for 
systems of a small number of molecules, in which the size 
of the molecule is comparable to the size of the box. 
Indeed, some alignment with the box axes has been 
observed in a simulation of 15 lone mesogens, where no 
such alignment was observed in a simulation of 60 
mesogens. The alignment with the box axes is observed 
for the m.m.r. molecules in the cases of moderate to 
strong coupling between the rings and the mesogens. In 
these cases the ring structure is a more substantial 
entity than in the cases of weak coupling and some 
interaction between the 15 rings and the boundaries may 
be expected.

A simulation of nematogens in an external field [53] 
has shown that the alignment of an ordered phase may be 
forced along a specific direction without incurring a 
substantial change in the magnitude of the ordering of 
the phase. Similarly, we suggest here that the aligning 
nature of the periodic boundaries of the container make 
only a second order contribution to the formation of the 
ordered phases observed.

Diagrams of the positions and orientations of the 
mesogens and rings have been created from the 
configuration data. Such a diagram is given in figure 
4.20a for the rigid ring simulation in the ordered phase. 
The mesogen and ring axes are plotted in separate squares 
as indicated and the view is down the ’y ’ axis, 
compressed so that all of the molecules appear in the one 
’x-z’ plane. The asterisk symbols represent the centres

130



Sea le o ...
1, . , ... 1

Mes R in g

M e s o g e n s  R i n g s
Sm - . 4 5 6 3  Bm 0 . 0 2 8 1  Sr 0 . 9 1 2 5  Br 0 . 0 5 6 2

X X

Z z

Figure 4.20 The end configuration of the simulation ofOthe m.m.r. model with a flex angle of 0 at a temperature 
$of T =0.90. Symbols as in text.

a) viewing x-z plane. continued over...
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of mass of the mesogens and the geometric centres of the 
rings. The lines represent the long axes of the mesogens 
and the normals to the rings. The lengths of the lines 
indicate the components of the molecular axes in the 
’x-z* plane. The length of an axis which is parallel to 
the ’x-z* plane is indicated by the scale, the length of 
which is also o in the definition of the mesogen-mesogen 
interaction potential. The triangles indicate which end 
of the molecular axis is pointing downwards. The 
directions of the ring and mesogen directors are 
indicated in the box labelled ’ n ’.

For the case of the rigid rings given in the figure, 
well defined spatial ordering is observed for both the 
mesogens and the rings. Figure 4.20b gives a view of the 
same configuration down the ’z ’ axis. Some of the rings 
are stacked in staggered columns and the mesogens are 
forced to lie in planes perpendicular to the columns of 
rings with many of the mesogens aligned in pairs. This 
indicates how the uniaxial ordering of the rings produces 
a stable state when the only anisotropic energy 
contribution is that between the attached mesogens. As 
the temperature is reduced further the pairing of the 
mesogenic units and the grouping of the rings into 
columns becomes more complete, as shown in figure 4.21.

The well defined layering of the mesogenic units is 
typical of a smectic mesophase. However, only a small 
system of molecules has been studied here and it is 
uncertain whether the observed structure would persist 
over long distances in a large system. Also it should be 
noted that the spatial packing of the molecules may be 
strongly related to the dimensions of the periodic box 
[38] .

As the flex angle is increased, the definition of
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Figure 4.21 The end configuration of the simulation of
othe m.m.r. model with a flex angle of 0 at a temperature 

of T =0.85. Symbols as in text.

134



the spatial ordering is reduced. Figure 4.22 shows anoordered configuration of the 15 flex angle case. 
Correlations can be seen between pairs of ring normals, 
but no columnar stacking is present. There is still some 
layering of the mesogens, but this is less well defined 
than for the rigid rings.

As the flex angle is increased further the spatial 
ordering remains partial with some stacking of the

omesogens in layers until a flex angle of 60 is reached. 
In this case the mesogens stack quite well in layers and 
exhibit some hexagonal packing as shown in figure 4.23. 
However, no clear structure is observed in the spatial 
packing of the rings. The short-range hexagonal packing 
of the mesogenic units is likely to be an artefact of the 
spherical space packing properties of the model mesogens, 
as discussed earlier, and it is unlikely that this type 
of packing would be observed in a system of genuinely 
rod-shaped mesogens.

As the flex angle is increased even further the 
spatial ordering of the mesogens is diminished, although 
some tendency for packing in layers is retained up to the 
full flexibility, as can be seen in figure 4.24 for a

o180 flex angle. No layering of the mesogens has been 
observed in the simulation of lone mesogens.

From these configuration plots we conclude that the 
attachment to rings induces layering of the mesogens for 
all flex angles. Well defined layering is observed in 
the extreme case of rigid rings, combined with the 
stacking of the rings in staggered columns. Some 
short-range hexagonal packing is observed in the case ofOa 60 flex angle, but it is not expected that this would 
be observed if the mesogenic units possessed more 
realistic rod-like space packing properties. For other
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Figure 4.22 The end configuration of the simulation of
the m.m.r. model with a flex angle of 15*temperature of T =0.70.
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Figure 4.23 The end configuration of the simulation ofOthe m.m.r. model with a flex angle of 60 at a$temperature of T =0.90.
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Figure 4.24 The end configuration of the simulation ofOthe m.m.r. model with a flex angle of 180 at aj|ctemperature of T =0,70.
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values of the flex angle the packing of the mesogens is 
less definite and it is suggested that all of the ordered 
mesogenic phases are smectic.

CONCLUSIONS

A multi-component model has been used to model the 
behaviour of cyclic side-chain liquid crystal oligomers. 
Because of the large amount of computing time required, 
the simulations have been restricted to systems of 60 
mesogens and 15 rings. Consequently, there has been some 
difficulty in the precise location of some phase
transitions and the identification of the phases 
produced. However, it has been possible to produce a
clear phase diagram of the change in behaviour of the
system of molecules as the flexibility of the linkage
between the mesogens and the rings is increased. A 
change from ring dominated to mesogen dominated behaviour 
is observed, with the formation of a phase of combined 
ring and mesogen order at intermediate flexibilities. 
This combined phase is particularly stable for a mesogen 
flexing angle of 60 .

Substantial biaxiallity has been observed in the 
ordering of the rings at low temperature for the system 
with large flex angles. Some low temperature biaxiallity 
has also been observed between the discotic and combined 
regions on the phase diagram.

Simulations near the boundaries of the three regions 
identified on the phase diagram exhibited several 
successive transitions as the temperature was reduced. 
Owing to the poor statistics provided by the small
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system of molecules and the possibility of too rapid 
cooling below the first transition we cannot be confident 
of the correct succession of the lower temperature phases 
or the transition temperatures. However, the good 
agreement between the ’forward* and ’reverse* transitions 
for the rigid ring case indicates that the equilibration 
time and cooling rate were adequate to locate the major 
transition in the system. Further investigations using 
larger systems of molecules and a slower cooling rate 
would be required determine the true polymorphism of the 
model, if any.

From the configurational data collected at the end 
of each simulation it has been shown that in the low 
temperature phases the mesogen and ring director systems 
are strongly coupled to each other and to the laboratory 
axes for the simulation of the m.m.r. model with a flexOangle below about 90 . It is thought that these 
correlations do not significantly alter the magnitudes of 
the order parameters in these phases.

From diagrams of the end configurations it has been 
observed that the mesogenic rod units tend to stack in 
layers, typical of smectic phases. The layering is 
especially well defined for the cases where the flex

o oangle is 0 or 60 . These flex angles correspond to 
regions of the phase diagram in which the mesophases are

oparticularly stable. For the case of 0 flex angle some 
stacking of the rings into staggered columns is observed, 
becoming more distinct as the system is cooled. For 
these simulations in the NVT ensemble it would be 
expected that the nature of the spatial packing of the 
molecules may be influenced by the dimensions of the 
periodic box. Consequently, the observed spatial packing 
may not be evident in macroscopic systems.
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CHAPTER 5 A MEAN FIELD THEORY

INTRODUCTION

The classic mean field treatment of the nematic 
phase is that developed by Maier and Saupe [45-47] in the 
late 1950s. Their work predicted a first order phase 
change from nematic at low temperatures to isotropic at 
high temperatures for rod-like molecules. This type of 
calculation has also been applied to a variety of liquid 
crystal systems including binary mixtures of rods and 
plates [85-86] and several polymer liquid crystal systems 
[28,29,31]. Of particular interest to us is the work of 
Wang and Warner [31] in which the uniaxial phases of 
comb-like liquid crystal polymers are explored. Nematic 
phases were found in which either the polymer backbones 
or the rod-like side groups or both together exhibited 
positive ordering.

A mean field model of cyclic side-chain oligomeric 
liquid crystals has been developed in parallel with the 
multi-mesogen ring model described in the previous 
chapter. In the mean field model, the ring backbone and 
the rod-like mesogenic side-chains are again represented 
separately. Energetic contributions to the mean field 
are included for rod-rod interactions, ring-ring 
interactions and the coupling between a ring and its 
attached mesogens.

The usual second rank order parameter is used to 
quantify the ordering of the two structural components.
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For the rod-like mesogens the order is given by:

1 2
Sm = <P2>m = < —  < 3 cos 0m - 1 ) > 5.1

where ’ <..>* denotes a thermal average and 0 is them
angle between a mesogen and the unique director of the 
phase. The order of the rings, <P9> , is defined 
similarly in terms of the angles, 0 , between the ring 
normals and the same director. Two possible ordered, 
uniaxial phases for the oligomers are shown
diagrammatically in figure 5.1. In the calamitic nematic
(Nc ) phase the mesogens tend to align parallel to the
director and the ring normals tend to lie in a plane 
perpendicular to the director, whilst in the discotic 
nematic (N^) phase it is the rings that tend to align 
parallel and the mesogens which are perpendicular to the 
director.

The phase behaviour of cyclic side-chain liquid 
crystal oligomers has been explored in the multi-mesogen 
ring model by using the Metropolis Monte Carlo technique 
[40]. However, mean field calculations are generally 
much cheaper in computational terms than Monte Carlo 
techniques and so the model presented here is used to 
assess the suitability of the mean field approach to the 
prediction of the phase behaviour of these types of 
mesogenic oligomer.

THE MODEL

We consider a system of rigid ring polymers each 
with n rod-like mesogens attached by flexible spacer 
units and consider only uniaxial phases. We assume that
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a .

Figure 5.1 A diagrammatic 
calamitic nematic phase (Nc ) 
phase (N^) for the cyclic ol
director of the phase.

b .

representation of a) the 
and b) the discotic nematic 
gomers. ’ n * indicates the
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each mesogen moves in a mean field potential of the form:

V cos V  = - V0 « P2>. - Xc<Vr> P2(cos V
5.2

where 0^ is the angle between the mesogen long axis and 
the unique director in the system and Pg is the second 
order Legendre Polynomial. The first term in this 
equation is a standard Maier-Saupe term and represents 
the drive towards parallel ordering which is caused by 
the steric and long-range forces between the mesogens. 
The second term represents a coupling between a ring and 
its attached mesogens which arises from the spacer unit. 
The strength of the coupling is determined by the 
positive dimensionless parameter X^ which is the ratio of 
the coupling potential to the mesogen-mesogen potential. 
We assume that the molecules are such that as the 
coupling strength is increased the molecules will adopt 
conformations in which the ring normals and the long axes 
of the rods tend to be mutually perpendicular.

The polymer rings are assumed to experience a mean 
field potential of the form:

V (cos 0 ) = - VnX (X <P > - n<P9> )P9 (cos 0 )r r U c r <2 r c m c r

5.3

where 0^ is the angle between the ring normal and the 
unique director in the system. The first term is a 
Maier-Saupe potential which will tend to induce parallel
ordering of the polymer ring backbones. The mesogenic
ordering of small chain cyclic poly(dimethylsiloxane) 
molecules has not been reported and so the polymer rings 
are assumed not to have any intrinsic drive towards
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parallel order. However, we envisage that if the
mesogenic rods attached to the rings are forced to adopt
a planar splay conformation perpendicular to the ring
normal then the resultant rigid molecules will be
approximately disc shaped and will tend to align with
their normals parallel owing to local packing effects.
We account for this steric interaction by scaling the
ring-ring interaction by X . The parameter X is ac r
positive dimensionless constant which determines the 
strength of the ring-ring interaction. The second term 
in the ring potential is a ring-mesogen coupling term 
which is scaled by the number of mesogens, n, attached to 
each ring.

We are only interested in oligomers with a small 
number of repeat units and so do not consider the drive 
towards maximal chain entropy which would be more 
appropriate for long chain polymers Also the interaction 
between rods and rings other than via the attachment 
spacer is not considered, as it is thought that rod-ring 
interactions are likely to be a second order influence on 
the formation of ordered phases.

The above potentials define the nature of the
molecules with three independent parameters X^, X^, and
n. These together with T* determine the phase of the

$material where T is a reduced temperature defined by:

* kBTT = — 2—  5.4
vo

From the two mean field potentials the following
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self consistent equations may be written:

f P0(cos 0 ) exp(-V (cos 0 J/k^T) d(cos 0 ) J « u m  m m  13 ni
< p o > _  =  -------------------------------------------------------------------------

exp(-V (cos 0 J/k^T) d(cos 0 ) m m B m

1
P2 (cos ©r ) exp(“Vr (cos 0^)/kgT) d(cos 6 ^ )

1
exp(-V (cos 0 )/k T) d(cos 0 )

0

5.5

These equations were solved numerically for < >̂2>m
and <Pn> for selected values of X , X , n and T* . In 2 r c ’ r ’
the regions of interest three solutions were found at low 
temperature: a calamitic nematic phase, a discotic
nematic phase and an isotropic phase. At these
temperatures the equilibrium phase of the system was 
taken as that with the lowest total free energy, ^<pot’ 
whilst at high temperatures the isotropic phase was the 
only solution.

The entropic contribution to the free energy was
obtained from the partition functions, Z and Z , for them r
mesogen and ring components:

and

<P0> = -2 r
J

J

J



The free energy terms for a mesogen and a ring are 
then [13]:

F = - kD T ln(Z ) - —  <V >m B m g m

F = - k„ T In(Z ) - —  <V >r B r' 2 r

And the total free energy, is

F = F + —  F 5.7Tot m n r

The results obtained were in agreement with
Maier-Saupe in the limit X -> 0. Extrapolation of the

* cnumerical results to T = 0  are also in agreement with 
the expected values, which were calculated exactly 
without recourse to numerical techniques.

RESULTS

Solutions to the model are presented for those 
values of n, X^ and X^ which might be expected to provide 
the best comparison with actual liquid crystal oligomers 
and the m.m.r. model. The mean field model was solved 
for values of n=4 and n=6, while for the m.m.r. model n=4 
was used and oligomers have been synthesised with a range 
of repeat units from 4 to 7. As already discussed, we 
would expect the ring-ring interaction to result from 
steric interactions and to be comparatively small, and so 
we arbitrarily restrict X^ to take values between 
0 and 2.

The ring-ring interaction is also scaled by Xc , and
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so for non-zero X^ the model may be expected to
correspond to the real oligomers more successfully for
low values of X .c

Figure 5.2 shows the ring and mesogen order
parameters as functions of reduced temperature for

= 0> ^ = 1*8 and n = 4. A transition from a strongly
ordered calamitic nematic phase (<P0> =0.69) at low£ m
temperature to a strongly ordered discotic nematic phase
(<P0> = 0.85) at high temperature is observed at a

*reduced temperature of T = 0.403, with an associated
increase in entropy of 2.65 J K ^mol”'*'. A further
transition from a weakly ordered discotic nematic phase
(<P9> =0.07) to isotropic is observed at T* = 0.828,

- 1 - 1with an increase in entropy of 0.063 J K mol . Figure
5.3 shows the over all phase behaviour as a function of
X for the model with X = 0 .  For values of X below a c r c
particular value only a single transition from calamitic
nematic to isotropic is observed. For X = 0  thec
transition from calamitic nematic to isotropic occurs at

*a reduced temperature of T = 0.220, in agreement with
the Maier-Saupe results. The model exhibits an isotropic
phase at high temperature and a calamitic nematic phase
at low temperature. If = 0 and X^ is greater than a
specific value, a phase exists between the isotropic
and N phases. This specific value of X corresponds to c c
a ’triple point’ at which the three phases co-exist in 
equilibrium.

The spontaneous order parameters at the phase 
transitions are given as a function of X^ in figure 5.4. 
The spontaneous order in every case is seen to weaken 
dramatically in the region close to the triple point.

It is especially interesting to note the formation 
of a discotic nematic phase in the absence of specific
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Figure 5.2 The equilibrium values of <?2 > f°r the rings
and the mesogens as a function of reduced temperature for
X = 0, X = 1 . 8  and n = 4. r c
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Figure 5.3 The phase diagram for X^ = 0, n = 4.
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ring-ring interactions. Analysis of the numerical data 
indicates that the ring based ordering results from the 
forces between the attached mesogens and the increased 
entropic contribution to the free energy over the more 
ordered calamitic nematic phase.

The phases of the model when X^ = 1 are shown in 
figure 5.5. The main effect of introducing a finite 
ring-ring interaction is to enlarge the discotic region 
at the expense of the calamitic and isotropic phases. 
Thus for X^ = 1 both the reduced temperature and coupling 
strength decrease at the triple point.

For non-zero X the calamitic phase is not the only
^  s|*equilibrium solution at T = 0 .  For values of the

coupling strength greater than X = n/X the discoticc r
phase is favoured. Hence, for large X^ only the discotic 
and isotropic phases are observed, in agreement with the 
results from the m.m.r. model for rigid molecules.

The values of coupling strength and reduced
temperature at the triple point for various X^ are given
in table 5.1. The stronger the ring-ring coupling the
more dominant the phase becomes, with associated
decrease of X and T at the triple point. Also given c
are the triple point values for n = 6. Again, the 
discotic phase dominates at the expense of both the 
isotropic and calamitic phases as the number of mesogens 
attached to a ring is increased. However in real 
materials increasing the number of mesogens necessitates 
an increase in ring size which may give rise to a 
decrease in ring rigidity. In the model presented no 
account is taken of such a decrease in ring rigidity.
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Figure 5.5 The phase diagram for X^ = 1.0, n = 4.

n ^r Ttriple ,triple

4 2.0 0.31 0.34
4 1.0 0.37 0.53
4 0.5 0.42 0.69
4 0.0 0.54 1.07
6 0.0 0.44 0.67

*Table 5.1 Values of T and X^ at the triple point for a 
range of n, X .
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CONCLUSIONS

The phase behaviour of liquid crystal cyclic 
oligomers is the result of a variety of influences owing 
to the composite nature of the molecules, and as such is 
generally more complicated than the phase behaviour of 
low molecular weight liquid crystals. We have presented 
a mean field model which predicts both calamitic and 
discotic liquid crystal phases for small ring, cyclic 
oligomers with side-chain mesogens. A discotic nematic 
phase is shown to result from the long-range interactions 
of splay clusters of rod-like mesogens in the absence of 
specific ring-ring interactions.

We have also shown the transition from a calamitic 
nematic phase to a discotic nematic phase as a result of 
a change in temperature in the cases where the 
ring-mesogen coupling energy is substantial. However, it 
should be noted that the results are restricted to 
uniaxial phases, precluding the formation of phases in 
which the mesogen and ring systems possess different 
directors or biaxial phases of the type observed in the 
m.m.r. model.

In our model, the specific phase behaviour was shown 
to be dependent upon the relative strengths of the 
various component interactions. However, the form of the 
phase diagram was not greatly affected by a change in the 
number of repeat units in a ring or the strength of the 
ring-ring interaction for the range of values 
investigated. The effect of increasing the ring-ring 
interaction or increasing the number of rods per ring was 
in each case to enhance discotic tendencies.
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CHAPTER 6 DISCUSSION

SUMMARY AND CONCLUSIONS

The phase behaviour of cyclic side chain liquid 
crystals has been related to the physical structure of 
the molecules by the use of two modelling techniques: the 
Metropolis Monte Carlo method and the mean field 
approximation. The models were supported by experimental 
measurements on several new oligomeric compounds 
comprising cyclic poly(dimethylsiloxane) backbones with 
mesogenic side groups attached by alkyl spacer units. 
The compounds available formed two homologous series, 
varying only in the number of repeat units in the 
siloxane ring or only in the length of the alkyl spacer 
units.

The construction of a molecular graphics model of 
one of the oligomers, D4C4, has given insight into the 
relative dimensions of the major structural elements of 
the molecules and spatial relationships between them. 
The largest of these structural units are the lath-like 
mesogenic moieties which, if approximated to the 
conventional rod shape of a nematogen, would have a 
length a little greater than three times the diameter. 
The alkyl spacer unit is comparatively short, measuring a 
little under half the length of the rod-like mesogen for 
a four-membered spacer and a little over half the length 
of the rod for a six-membered spacer. The diameter of 
the polysiloxane backbone ring is also of the order of 
one half of the length of the mesogenic rods for the 
range of ring sizes in the available samples.
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The molecular graphic construction of a planar form 
of the four-membered cyclic poly(dimethylsiloxane) 
backbone revealed that it should be possible to attach 
the side chains to the ring by bonds which are radially 
splay in the plane of the ring backbone. However, it was 
expected that in the samples provided the side chains 
would be attached by other bonds also.

Optical microscopy and direct scanning calorimetry 
measurements on the available samples have shown the 
formation of mesogenic phases over temperature ranges

o o ofrom about 10 C up to 80 - 90 C. The samples were
highly viscous at room temperature but became more fluid 
as the transition to the isotropic phase was approached. 
The optical textures of the samples just below the 
transition to the isotropic phase were indicative of a 
nematic phase, but further investigation by, for example, 
X-ray diffraction would be required to confirm the exact 
mesogenic phase. Two of the samples exhibited a second, 
possibly crystalline, form when annealed for a period of

otime at a temperature of about 50 C, and in one of the 
samples, D4C4, crystallites persisted at temperatures 
above the clearing point of the bulk of the fluid. 
Fuller examination of the other samples was not possible, 
though it is not unlikely that these would also exhibit 
some polymorphism.

Dielectric relaxations were observed in these 
materials below the clearing temperature. Relaxations 
were observed in the materials when the director of the 
mesophase was parallel to the applied alternating 
electric field but not when perpendicular. This
suggested that the relaxation mechanism was associated 
with the end to end motion of the rod-like mesogenic 
units. The extent of the broadening of the relaxations 
and the size of the Arrhenius energy barriers of the
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relaxations were shown to be dependent upon the length of 
the alkyl spacer unit and the size of the polymeric ring 
backbone. The size of the energy barrier was
significantly lower for sample with a six-membered alkyl 
spacer than for the four-membered alkyl spacer, 
demonstrating the decoupling of the mesogenic units from 
the cyclic backbones by the longer spacers.

The Monte Carlo technique has been used in the study
of two separate models of cyclic liquid crystalline
oligomers, both in the NVT ensemble. In the soft disc
model the complete oligomer molecules were represented
individually by an approximately disc-shaped interaction
potential derived from the standard Lennard-Jones 12-6

-9potential by the addition of an r term. Simulations 
were performed in which fifty molecules were allowed two 
dimensional translational freedom and three dimensional 
orientational freedom. At low temperature or at high 
density or both, the molecules were observed to pack in 
aligned columns in domains, but no uniform order was 
observed.

A more complicated model, the multi-mesogen ring 
(m.m.r.) model, was developed to investigate the effects 
of altering the structural components of the molecules 
upon the phase behaviour of the macroscopic system. In 
this model the mesogenic units and the cyclic backbones 
were represented separately. The mesogenic units were 
assigned an interaction potential which had been used by 
other workers in the simulation of rod-like mesogens. 
The ring-like backbones were represented solely as 
constraints upon relative motions of the mesogens, and 
the coupling between a ring and attached mesogen provided 
by the alkyl spacer unit was represented by a restriction 
upon the orientations the mesogen may adopt with respect 
to the ring. This orientational restriction was
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implemented by means of an imagined cone within which the 
mesogen was allowed to orient, the half angle of the cone 
being referred to as the flex angle.

Simulations of the m.m.r. model were performed on a 
system of sixty mesogenic units attached four to a ring, 
with full three dimensional freedom. Transitions from 
isotropic to an ordered phase were observed as the 
temperature was reduced, for all values of the flex 
angle. In the cases of strong coupling between the 
mesogens and the rings (small flex angle) the transition 
was distinct and probably first order and the ordered 
phase was discotic. In the cases of weak coupling (large 
flex angle) the observed transitions were either 
continuous or very weakly first order and the ordered 
phase was a calamitic nematic in which the ordering of 
the ring normals was significantly biaxial. For
intermediate coupling the uniaxial order parameters of 
both the ring and the mesogen systems were large and 
positive in the low temperature phase. For some of these 
simulations with intermediate coupling, several
transitions were observed in succession as the
temperature was lowered. However, it was shown for the

o30 flex angle case that the low temperature phases 
formed were influenced by the rate of cooling of the 
system. Therefore, further simulations with lower 
cooling rates would be required to confirm the true
polymorphism of these systems. For the case of
intermediate coupling provided by a 60° flex angle, the 
system showed a single phase transition from the 
isotropic phase to a phase in which the mesogens and the 
rings both exhibited particularly strong uniaxial
ordering. This transition was accompanied by large 
discrete changes in the internal energy and the order 
parameters, and was most probably first order.
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The diagrammatic representation of individual 
configurations from the simulations indicated that the 
mesogens tended to stack in planes in the ordered phases 
for all of the values of the flex angle. This spatial 
packing was particularly distinct for flex angles of 0°

o oand 60 . In the case of 0 flex angle, the ring units 
were observed to stack in staggered columns, but this 
packing was lost as the flex angle was increased.

A model of cyclic side-chain mesogenic oligomers was 
also solved by means of a mean field approach. The mean 
field potentials included terms for mesogen-mesogen 
interactions, ring-ring interactions and the coupling 
between rings and attached mesogens. There were three 
independent variables in the model: the number of
mesogens attached to each ring, a measure of the relative 
strength of the mesogen-ring coupling and a measure of 
the relative strength of the ring-ring interaction. 
Uniaxial solutions to the mean field equations were 
sought for values of these parameters which were thought 
appropriate for comparison with the actual mesogenic 
oligomers and the molecules in the m.m.r. model.

In cases where the ring-mesogen coupling was low a 
first order transition from a calamitic nematic phase to 
isotropic was observed as the temperature was raised, 
whereas for cases where the coupling was strong discotic 
phases were observed at low temperature, even in the
absence of a specific ring-ring interaction. For
intermediate values of the coupling the low temperature 
phase was calamitic, with a transition to discotic as the 
temperature was raised and a further transition to 
isotropic. An increase in the number of mesogens 
attached to a ring or in the strength of the ring-ring
interaction in each case caused an enhancement in the
discotic region of the phase diagram.
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Quantitative comparisons between the results of the 
m.m.r. model and the mean field model are difficult owing 
to differences in the definitions of the reduced 
temperature and the coupling strength between the rings 
and attached mesogens. At the extremes of the phase 
diagram the two models exhibit similar behaviour. Where 
the ring-mesogen coupling is strong, for both models a 
discotic phase is formed at low temperature, with a 
single transition to the isotropic phase as the 
temperature is raised. The transition is first order in 
the mean field model and there is evidence that this may 
also be the case in the m.m.r. model. However, the 
pretransitional ordering observed in the m.m.r. model is 
excluded by the mean field approach in which localised 
ordering has no meaning.

For cases where the ring-mesogen coupling is weak, 
both models exhibit calamitic phases at low temperature. 
A definite first order transition to the isotropic phase 
is observed in the mean field model, whereas the nature 
of the transition in m.m.r. model was less clear. 
However, it is known that the changes in the 
configurational properties of the mesogenic system at the 
transition predicted by the Maier-Saupe mean field model 
are too large and, hence, it is thought that the mean 
field approach may enhance the first-order nature of the 
transitions in our model. The biaxiallity observed in 
the m.m.r. model is precluded in the mean field model by 
the restriction to uniaxial solutions.

Further agreement between the models is noted, in 
that the temperature of the transition is higher for the 
case of strong coupling than it is for weak coupling. 
Therefore, with a few reservations, the mean field 
approach correctly predicts the phase behaviour of the

159



model molecules at the extremes of ring-mesogen coupling. 
However, the mean field approach is less suited to the 
intermediate region of the phase diagram. The m.m.r. 
model predicted the formation of a combined phase in 
which the mesogens and the rings were both strongly, 
uniaxially ordered. This phase was not identified in the 
mean field model, which, instead, predicted the formation 
of a calamitic phase at low temperature and a discotic 
phase at higher temperature, below the clearing point. 
The failure of the mean field model to predict the 
combined phase results from the restriction to uniaxial 
solutions. In the combined phase in the m.m.r. model, 
the mesogen and ring directors are perpendicular, a 
conformation excluded in the mean field model in which 
the ring and mesogen directors are forced to be 
coincident. The construction of a more complicated mean 
field model in which biaxial phases are permitted would 
be required if the true behaviour of the molecules with 
intermediate ring-mesogen coupling are to be observed.

The measurements on the real materials are limited 
but do not disagree with the predictions of the models. 
Some of the materials have exhibited more than one 
ordered phase below the clearing temperature, although 
the exact nature of these phases has not been 
established. Both the m.m.r. model and the mean field 
model predict some polymorphism for intermediate strength 
coupling between the mesogens and the rings. The 
formation of crystallites below the clearing temperature, 
as observed for some of the oligomers, was predicted in 
the m.m.r. model for certain strengths of coupling, for

Oexample a 60 flex angle.

From the optical texture of the oligomers it is 
suggested that the phase exhibited just below the 
clearing temperature is likely to be nematic, with no
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confirmed observation of a discotic phase. The synthesis 
of molecules in which the mesogens are attached to the 
backbones by radially splay bonds is required for a fair 
comparison with the results of the models. The
dielectric measurements support the notion that the 
coupling strength may be adjusted by a change in the 
length of the alkyl spacer units, a concept fundamental 
to both the m.m.r. model and the mean field model. 
Furthermore, the molecular graphics construction model 
has indicated that the synthesis of a molecule in which 
the mesogenic units are in a planar splay conformation 
should be possible; such a molecule corresponding to 
cases of strong ring-mesogen coupling in the m.m.r. model 
and the mean field model.

The oligomeric samples were quite viscous at room 
temperatures and it is likely that this viscosity would 
slow down, or possibly inhibit, the formation of some of 
the low temperature phases predicted by the models. The 
true anisometry of the rod-like mesogenic units is not 
reflected in any of the models and so it is expected that 
the ability of the molecules to rotate into the 
equilibrium phase is enhanced in the models.

The mean field and Monte Carlo models presented have 
predicted a shift from discotic to nematic phases as the 
flexibility of the ring-mesogen attachment is varied for 
a homologous series of cyclic side-chain mesogenic 
oligomers. Some of the predictions of the models and 
some of the assumptions made in the models have been 
supported by the physical measurements on a limited range 
of sample oligomers. However, further and different 
measurements would be required before a reliable phase 
diagram can be constructed for the real materials.
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FUTURE WORK

Although further and different measurements, such as 
by X-ray diffraction, would provide useful information 
about the structure of the mesophases formed by the
available oligomers, the systematic synthesis of new
materials of this general type is required in order to 
explore more fully the relationships between the 
molecular structure and macroscopic physical behaviour of 
cyclic side-chain liquid crystal oligomers. In
particular, the synthesis of molecules in which the side 
chains are attached to the backbones only by planar splay
bonds would allow us to be confident that an
approximately disc-shaped molecule would result from the 
use of short, rigid spacer groups. It is suggested that 
a four-membered poly(dimethylsiloxane) ring would provide 
four suitable points of attachment, and the use of a 
small ring size should provide a fairly rigid structure 
for the centre of the disc. These molecules should be 
synthesised with a variety of spacer lengths so that the 
effects of different coupling strengths between the rings 
and the mesogens can be observed.

These new materials should, ideally, be constructed 
with a different choice of mesogenic unit. The
interpretation of the results of the dielectric 
measurements on the available samples was hampered by the 
large angle between the axis of the dipole moment and the 
long-axes of the mesogenic units. If the mesogenic 
moieties had possessed a strong dipole moment 
approximately parallel to the long axis of the moieties 
then the order parameter for the mesogenic units could 
have been estimated from the dielectric measurements in a 
straight-forward manner. Such a dipole may be provided,
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for example, by the exchange of a cyano-group for the 
methyl- group at the far end of the mesogenic moiety.

The physical analysis of the proposed materials 
should be more likely to reveal interesting phase 
behaviour as a function of the variation in the 
structural components of the molecules than would be 
observed in the currently available materials, the 
molecular shape of which is expected to be neither 
regular nor consistent.

The mean field theory of the cyclic mesogenic 
oligomers would be greatly improved by the extension to 
allow for biaxial solutions. Such an extension would 
permit the formation of combined phases in which the
mesogenic units and the rings are both strongly,
uniaxially ordered, as were observed in the m.m.r. model 
for cases of intermediate strength coupling between the 
mesogenic units and the rings.

There is scope for further study with the m.m.r. 
Monte Carlo model. Runs with slower cooling rates and 
larger numbers of molecules are required in order to 
reduce the uncertainties in the results due to 
statistical fluctuations, the influence of the periodic 
boundaries and the possible formation of meta-stable 
states. However, as has been observed, this model is 
relatively expensive in terms of computing time and a 
full investigation of the phase diagram for a large
system of molecules would not be envisaged until
computing speed in general has improved by a factor of 10 
or so. One possible solution may be to transfer the 
model to a dedicated micro-computer with parallel 
processing capabilities.

Until adequate computing power is available for a
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fuller study, a small region of the phase diagram may be 
chosen for closer scrutiny with a larger system of
molecules. For example, the polymorphism of the
cross-over region between the ’discotic’ and the
’combined’ regions could be explored. Variations in the 
adjustable parameters of the model, other than the 
mesogen-ring coupling strength, may be explored. In 
particular, changes in the size of the ring backbone or 
the number of mesogens attached to each ring could be 
directly related to a homologous series of physical 
oligomers.

Some saving in computing time may possibly be 
achieved by the use of a simpler mesogen-mesogen
interaction potential, such as a hard-core potential. 
Such a model may mimic the space packing of the mesogens 
better than the current m.m.r. model, although the 
temperature dependence of the phases would be lost.

It is proposed that the major thrust of any future
work in this area should be in the synthesis and analysis 
of new cyclic liquid crystalline oligomer materials, the 
molecular structures of which are regular and known, in 
anticipation of advances in computer technology which 
would allow for a more thorough investigation with the
m.m.r. or similar model in parallel with the physical
measurements.
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