
Modelling and analysis of parallel information systems.

CUTTS, Geoff.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19524/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

CUTTS, Geoff. (1993). Modelling and analysis of parallel information systems.
Doctoral, Sheffield Hallam University (United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

i Z 3 H - i / W -O -

Sheffield HaHam University
Hallamshire Business Park Libra
100 Napier Street
Sheffield S l l 8HD

27 3 o zX

ProQuest Number: 10694405

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10694405

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

MODELLING AND ANALYSIS OF
PARALLEL INFORMATION SYSTEMS

Geoff Cutts

A thesis submitted in partial fulfilment of the
requirements of Sheffield Hallam University for the

degree of Doctor of Philosophy

July 1993

School of Computing and Management
Sciences

Sheffield Hallam University

Abstract

This thesis presents an investigation of modelling and analysis of parallel

information systems. The research was motivated by the recent

developments in networks and powerful, low-cost, desk top

multiprocessors.

An integrated approach for the construction of parallel information

systems was developed which focussed on modelling, verification and

simulation of such systems. The thesis demonstrates how Petri nets can be

used for the modelling and analysis of entity life histories and parallel

information systems, place transition nets for the modelling and analysis of

entity life histories and coloured Petri nets for the modelling and analysis

of complex parallel information systems.

These tools were integrated into a comprehensive framework which

allowed for the modelling and analysis of complex parallel information

systems and the framework was tested using a comprehensive case study.

The thesis concludes that Petri nets are an ideal tool for the modelling and

analysis of complex parallel systems. Verification is possible with

deadlocks and similar properties being easily identified. Further the

transformation rules proved to be beneficial to the process of moving from

one model to another. Finally simulation of parallel behaviour was

possible because the underlying models captured the notion of parallelism.

CONTENTS

1. BACKGROUND AND MOTIVATION FOR THE RESEARCH

1.1 Introduction

1.2 Parallel Information Systems

1.3 Motivation

1.4 Current Approaches to the Implementation of Parallel Information Systems

1.5 Developments in Architecture

1.6 Conclusions

1.7 The Hypothesis

1.8 Objectives

1.9 Thesis Organisation

2. RELATED WORK

2.1 Introduction

2.2 Methodologies

2.3 The Structured Approach

2.3.1 Data Flow Diagrams

2.3.2 Entity Modelling

2.3.3 Entity Life Histories

2.4 The Prototyping Approach

2.5 The Formal Methods Approach

2.5.1 Petri Nets

2.6 Extensions to Current Methodologies

2.7 Breaches of Current Methodologies

2.8 The Environment of Parallel Information Systems

2.9 Requirements for the Approach

2.10 Detailed Requirements

2.11 Conclusions

3. THE APPROACH TO MODELLING, VERIFICATION AND ANALYSIS AND

SIMULATION

3.1 Introduction

3.2 Enabling Technologies

3.2.1 Data Flow Diagrams

3.2.2 Petri Nets

3.3.3 System Nets

3.3 Modelling

3.3.1 Introduction

3.3.2 Entity Event Diagrams

3.3.3 Entity Life Histories

3.3.4 Information Systems

3.4 Verification and Analysis

3.4.1 Entity Life Histories

3.4.2 Information Systems

3.5 Simulation of Information Systems

3.6 The Approach

4. DEVELOPMENT OF ENTITY EVENT DIAGRAMS

4.1 Introduction

4.2 Entity Event Diagrams

4.2.1 Definition

4.2.2 Construction of Entity Event Diagrams

4.3 Conclusions

5. DEVELOPMENT AND ANALYSIS OF ENTITY LIFE HISTORIES

5.1 Introduction

5.2 Entity Event Matrix

5.3 Entity Life Histories

5.3.1 Introduction

5.3.2 Using Place Transition Nets for Entity Life Histories

5.3.3 Petri Net Constructs

5.3.4 Analysis of Entity Life Histories

5.4 Conclusions

6. DEVELOPMENT OF COLOURED PETRI NETS AND SYSTEM NETS

6.1 Transformation of Entity Event Diagrams and Entity Life Histories into
Coloured Petri Nets

6.1.1 Introduction

6.1.2 The Transformation Rules

6.2 Advantages of representing logical designs by Coloured Petri nets

6.3 System Nets

6.3.1 Introduction

6.3.2 Definition of System Nets

6.4 Conclusions

7. INTEGRATED TOOLS

7.1 Introduction

7.2 Automate Plus

7.3 The Entity Life History Tool

7.3.1 The Editor

7.3.2 The Analyser

7.4 The Application Development Environment

7.4.1 Introduction

7.4.2 The System Net Editor

7.4.3 The Test and Simulation Environment

7.5 Conclusions
8. CASE WORK

8.1 Introduction

8.2 The Duet Wright Case

8.2.1 Introduction

8.2.2 Description of the Business Environment

8.2.3 System Overview

8.2.4 Detailed Processing Requirements

8.3 The Logical Data Model

8.4 The Entity Event Diagrams

8.5 The Entity Event Matrix

8.6 The Entity Life Histories

8.7 The Coloured Petri Net

8.8 The Implementation

8.8.1 The System Implemented

8.8.2 System Testing

8.8.3 The Test Program Revisited

9. CONCLUSIONS

9.1 Research Focus

9.2 Overview

9.3 The Methodology

9.4 The Techniques

9.4.1 Entity Event Diagrams

9.4.2 Place Transition Nets for Entity Life Histories

9.4.3 System Modelling using Coloured Petri Nets

9.4.4 The Development Environment

9.4.5 A Comparison with Other Techniques

9.5 Commentary on Possible Future Paths

REFERENCES

APPENDICES

A. The Program Code for Duet Wright

The Test Code for Duet Wright

Chapter 1 BACKGROUND AND MOTIVATION FOR
THE RESEARCH

1.1 Introduction

The development of a large computer application is, without doubt, one of the major

consumers of resource in any organisation. Systems’ development projects are invariably

late, over budget, difficult to modify and maintain and do not meet the users’

requirements. In addition as much as 70% of the total effort is spent on maintenance

projects which leads to a dismal picture for systems’ development as more complex

systems embracing the notion of parallelism are developed.

Parallel programming skills were only required by a relatively small number of the

software development community until the recent development of networks and

powerful, low cost, desk top multiprocessors [Thakker-89]. It really does not matter

whether an information system is to be implemented on a network or a parallel desk top

computer, there remains a need to analyse, specify and develop parallel information

systems. This need is addressed by this thesis. The hypothesis is that the approach to the

development of parallel information systems is deficient in a number of key areas

including modelling, analysis and verification, and simulation. This first chapter explains

what is meant by parallel information systems, it describes the motivation for the

research and concludes with a more detailed hypothesis.

1.2 Parallel Information Systems

Modem organisations exhibit parallel characterisitics, for example:-

1. An organisation is seen as one of interfacing individuals, all acting in
parallel rather than as a unified whole.

2.There is non-hierarchical interaction as well as hierarchical interaction
between groups.

3. Groups ’own’ their information and software, and self control and

1

participation is to be encouraged.

4. Administration is decentralised.

[Burns-87].

The real world comprises people acting in parallel interfacing with other people both

across as well as up and down management hierarchies. People use private as well as

global data and they exhibit self control within a system of decentralised administration.

Parallel information systems exist in many and various topologies, however, the physical

structure of a network should not determine the communication pattern for the

application. It should be possible to produce a logical design independent of the target

hardware and software.

Parallel information systems fall into two categories; those which share a common

memory and those where each node of the system has independent memory. These

system categories have been defined as tightly or loosely coupled. This research is

concerned with loosely coupled systems since they better represent the true world of

information systems. In this type of system, programs execute on independent processors

to achieve the goal of the information system. This requires communication between

programs leading to information systems which encompass parallel processing. The

motives for parallel information systems include performance improvement, cost

reduction, configuration flexibility, increased reliability and ease of development.

13 Motivation

Many of the development problems stem from the failure to use a sound engineering

approach to information system development. In this work the sound engineering

approach is developed using modelling of the information system, analysing that model

for consistency, prototyping, and simulation of the design before detailed building and

2

testing.

Engineering is the profession in which a knowledge of the mathematical and natural

sciences, gained by study, experience and practice, is applied with judgment to develop

ways to utilise economically the materials and forces of nature for the benefit of

mankind. The use of a sound engineering approach is what is lacking from current

approaches particularly in the area of parallel information systems. Information

engineers are responsible for constructing specifications, developing designs and

implementing applications. Each of these may be regarded as a description of an

application represented in some notation or notations. The development of notations,

techniques and tools to specify and analyse parallel information systems is addressed by

this thesis.

With the continual fall in the cost of microcomputers, and the steady advance in

networking technology, it will become increasingly advantageous for commercial

information systems to be implemented on a network of essentially independent

processors co-operating to achieve the goals of the application. This work is therefore

very important to the future work of information engineers. Current notations,

techniques and tools fall considerably short when considering parallel information

systems. If information engineers are to fulfil their role in this environment systems

analysis and design methods and software engineering methods must be extended to

parallel information systems in an elegant and efficient manner.

The more complex the application being designed, the more difficult it is to ensure that

the design will work correctly under the specified conditions. The most complex design

problem is that of distributed asynchronous parallel processes, which are at the heart of

parallel information systems. Over the past few years, trends in the area have been

characterised very much by developments in hardware, by slow progress in programming

3

languages and software and by very little progress in information systems’ analysis and

design. This gap leaves a significant area of research.

Another issue is that of reliability. A centralised system based on a single controller is

vulnerable to the failure of the control unit. Replication of this has previously been

expensive, the minimal cost of components now makes it practical to partition the

various functions onto separate processing elements. The complexity of individual

functions is reduced, however, there is an attendant increase in the complexity of the

inter process communication. This complexity exhibits itself in the problems of

synchronisation and freedom from deadlock. If these cannot be organised properly then

the designer will not be able to realise any of the advantages. This research addresses

inter process communication, providing elegant analysis methods so that the benefits of

synchronised but separate processing elements and reliability can be achieved.

1.4 Current Approaches to the Implementation of Parallel Information
Systems

The most straight forward approach is to design and code a series of individual, separate

programs with communications handled explicitly. This requires that the analyst,

designer and programmer have knowledge of the physical communication mechanisms

available. The designer must decompose the application into separate executable

programs and specify the communication required between the modules. The

disadvantage of this approach is that the designer can only use knowledge of the

application, the target hardware and the target software as inputs to a design task based

on experience alone.

My observation is that no acceptable approach is available to guide the decomposition

task nor is there anyway other than code and test to analyse and review the results. A

rigid structure is imposed on the application which can only be modified by a redesign

4

exercise. Parallelism is considered, in this approach, after the analysis of the application

has been completed. Parallelism is treated as part of design and implementation not part

of the specification. This is the obvious disadvantage of the approach.

A single parallel program approach avoids the problem for the designer by considering

the application to be one single distributable, potentially parallel program. The approach

requires the designer to follow good design practice to ensure a highly cohesive, loosely

coupled modular program. The designer may have an intuitive consideration for the

parallelism inherent in the information system but generally the designer concentrates

on ’good practice’. The programmer, therefore, is completely unaware of the physical

communication media available it is the implementor who dictates the degree of

parallelism at system set up. Again this approach does not capture the parallelism

inherent in the information system.

It is the analyst and designer, not the implementor, who should control the degree of

parallelism. The programmer should be unaware of the physical communication media

available. The analyst should be able to capture the inherent parallelism in the

application and this parallelism should be within the approach not ’bolted on’ at some

stage during the development process.

What is required, therefore, are specification and design schemata which embrace the

notion of parallelism. The specification schema should specify what parallel

opportunities exist within the information system. This requires the analyst to understand

and document the degree of parallelism which exists within the current application and

to represent the notion in the specification. The schema should specify the parallelism

and communication between individual separate programs which comprise a single

parallel information system. Further since programs are separated from each other the

programmer may be unaware of the design schema leading to flexibility, reliability and

5

ease of programming. This design schema should be produced as a product of a systems

analysis and design exercise which from its outset considers parallelism. From

understanding through to the production of a design schema the approach must embrace

the notion of parallelism. The research is supported by developments in architecture

which embrace parallelism. The development of a comprehensive set of techniques and

tools to support the information system development cycle which embrace the notion of

parallelism is highly desirable.

1.5 Developments in Architecture

Recent developments and innovations in hardware and software [Kung-89,

Murakami-89] have resulted in performance improvement. Many developments have

been characterised, among other factors, by the decreasing cost of components. This

means it is now cost effective to realise parallel micro-computer based solutions to large

complex commercial information systems. In addition to improved performance the

motivation for their design includes simpler analysis, design and implementation, and

greater reliability. However, although the information systems may show these

improvements, new problems arise associated with inter-process communication

[Munro-82]. This research sought to realise the benefits whilst providing a solution to the

problems of inter-process communication.

An analysis of the architecture development cycle [Crookes-88] revealed a four stage

cyclic process.

1. New hardware features are developed for improved machine(s)
performance. This is usually followed by a period where programming is
carried out in assembly language to exploit the new features and no change is
made to systems analysis and design methods.

2. Machine oriented high level languages are developed to enable more
convenient programming with still no change to systems analysis and design
methods.

3. Machine independent notations are developed for the new concepts

6

provided by the hardware.

4. The notations are incorporated and supported by the hardware.

Only at this stage do language and methodology designers turn their attention to

improved systems analysis and design approaches. Within the last ten years hardware

designers have begun to support block structuring with stacks and register displays. Block

structuring being originally developed by language designers. In addition it is only within

that timescale that methodology designers have developed structured analysis and design

development methods. A more recent example of language design leading hardware

design has been the development of the Inmos transputer. The design of the transputer

was influenced by the Communicating Sequential Processes principles. [Hoare-78]. New

processor architectures are being developed at an ever increasing speed, there was never

a more necessary time for technique and tool development than the present.

Many approaches are strong in their representation of structure, but weak when

specifying processes. They usually produce a specification in terms of a composition of

actions and data flows, but cannot reflect the intended behaviour in a dynamic process

form. This imbalance needs to be redressed by augmenting representations and

developing new representations to provide further process information [Kramer-88].

This gap is addressed by the research. A representation must be converted from one

form to another during the development process. Ideally these conversions should be

computer aided. In spite of the popularity of models and their support tools, relatively

little work has been done in providing a theoretical approach to them. As a result

transformation is done manually and is the source of many errors. Users tend to try to

represent everything using one model. There is a need to develop a unifying theoretical

approach [Tse-86]. A number of transformations are proposed in the thesis, each is given

by a formal set of transformation rules which may be automated.

7

1.6 Conclusions

Traditional approaches to analysis and design are inadequate to move towards the

implementation of parallel information systems. In particular methods of verification

and validation are hopelessly inadequate. The result of relatively independent

development of ’good practice’, methods, techniques and formal notations has resulted

in a tendency to prematurely freeze development. Information systems developed

against the motives of increased performance, decreased costs, flexibility of

configuration, reliability and ease of development lead to information systems which are

parallel. The ’real’ world of information systems is parallel, it is these properties which

need to be understood and developed as an integral part of the information system.

1.7 The Hypothesis

1. Many information systems are parallel. There is a need to develop techniques and

tools to deal with this parallelism.

2. Current structured systems analysis and design approaches are deficient in the

modelling and description of dynamic states which are required to enable any approach

to embrace the notion of parallelism.

3. There is a need to develop a means by which it is possible to prototype and implement

information system designs for parallel systems.

4. There are a number of unresolved problems between the potential of parallel systems

and their realisation in actual commercial feasible terms.

The hypothesis raises many problems which need solving, including:-

1. The gluing of techniques into an approach.

8

2. The modelling and analysis of dynamic states.

3. The development of software to enable prototyping and simulation of
parallel information systems.

4. The development of tools to enable all levels of modelling with automated
transfer from model to model.

The research therefore focused around the modelling, analysis and simulation of parallel

information systems. There are a number of detailed problems whose solutions lead the

way to techniques and tools to solve many of the problems.

Modelling was used to understand the breakdown and distribution of business processes

and for understanding the structure of the interconnections. Verification was used to

eliminate deadlocks and traps and for the identification of bottlenecks and simulation

was used to examine the system’s tolerance to breakdown as regards the ability to

reconfigure and to assist the mapping of a logical design schema onto a physical

configuration.

1.8 Objectives

The major objective was to develop a means of modelling, verification and simulation

within an acceptable approach leading to the implementation of parallel information

systems on parallel architectures.

The approach must develop a representation of the characteristics of parallel

information systems. These characteristics may be grouped under four headings;

structure, behaviour, communication and configuration.

Structure is the static partitioning of the information system into its
components.

Behaviour is the dynamic operational characteristics of an information system
or its components, representable as the flow of control between functions.

9

Communication is any interaction between system components during
operation of the application. Communication has three aspects;
static(interface), dynamic(protocol), and performance.

Configuration is the partitioning of the information system design into
descriptions of building blocks for meaningful manufacture of system
components.

Development: Different organisational units should be able to develop
information systems in parallel, large information systems being built from
separate components developed as small projects.

Execution: Software components should be capable of being bound together
at execution time with tasks performed in parallel on multiple processors.

The approach should be concurrent in two aspects:-

Figure 1.1 summarises the objectives.

Objective Enabling technology

Modelling of Entities and Events Developed Data Flow Diagram

Entity Life Histories Place Transition Nets

Information Systems Coloured Petri Nets

Analysis of Entity Life Histories The Theory of Place Transition Nets

Information Systems The Theory of Coloured Petri Nets

Simulation of Information Systems System Nets

Figure 1.1

10

In addition the research attempts to glue the modelling, analysis and simulation into a

coherent approach using transformation rules wherever possible. For example rules were

developed to transform entity life histories and entity event diagrams into coloured Petri

nets and subsequently coloured Petri Nets into System Nets.

11

1.9 Thesis Organisation

Chapter 2 describes the research undertaken on related work in the area of approaches

to information system development. Different methodological themes were researched

together with their associated techniques and tools.

Chapter 3 examines two of the chosen techniques in detail, entity life histories and Petri

nets. The approach introduces a number of novel features as well as using standard

techniques such as data flow diagrams.

Chapter 4 describes the modelling of entities and events paying particular attention to

the way in which they are developed from data flow diagrams.

Chapter 5 describes the modelling and analysis of entity life histories using place

transition nets.

Chapter 6 looks in detail at the approach to the modelling of Information Systems using

coloured Petri nets. It gives a set of formal transformation rules for the construction of

coloured Petri nets from entity event models and entity life histories. Chapter 6 also

examines the analysis and simulation of information systems using Coloured Petri nets

and System nets.

The objectives included the development of a number of integrated tools to assist the

approach. These tools are described on chapter 7. These chapters really describe the

major contribution of this thesis.

A substantial system was developed to demonstrate the use of the approach and the

support tools. This case work is described in chapter 8.

12

Finally chapter 9 concludes the thesis. It draws conclusions from the work undertaken as

well as looking towards possible future work.

13

Chapter 2 RELATED WORK

2.1 Introduction

A wide ranging study was undertaken of existing techniques and tools which were

considered to be candidates worthy of further study and development. This chapter

documents that study, identifies candidates and selects and initially justifies those chosen

for further study. A major decision was undertaken at this stage regarding the breadth

and depth of research and study. It was agreed to limit the breadth to enable a number of

promising areas to be studied in depth. The focus of the research enabled an early

selection of promising areas for study.

2.2 Methodologies

Methodologies have been recognised over the last decade as one of the most popular

approaches for information system development. They are widely accepted by practising

computer professionals because of their largely top down nature and the graphical

nature of the support tools. Methodologies have been designed by a number of authors

and organisations using a wide variety of philosophies, frameworks, techniques and tools.

Different approaches have been found to be appropriate for different environments and

different stages in the development process. Methodologies may be classified under a

number of themes.

Avison and Fitzgerald [Avison and Fitzgerald-88] considered a number of themes. The

Systems Approach attempts to understand the nature of systems which are large and

complex. This approach is mainly directed at gaining a better understanding of an

organisation and a better understanding of the ill defined systems within an organisation.

For the purpose of this research it is assumed that the objectives of the information

system to be developed can be defined and therefore the systems approach may be

considered to be outside the scope of the research. Whatever approach is adopted, the

14

systems analyst ought to look at the organisation as a whole during the development

cycle, this is the essence of the systems approach.

The Planning Approach stresses the planning involved within a development project. It

sets out the phases of a project which might apply to any project. The objective of the

research is to develop new techniques and tools which will fit within any overall

approach. The planning approach is one approach that could be used by any

organisation, however the exact approach used does not impact on the development of

techniques and tools.

Avison and Fitzgeralds’ third theme is the Participative Approach. This is an approach to

development which encourages user involvement without specifying the techniques and

tools to be used. Four qualities are suggested which are used later as design parameters

for the new techniques and tools, they are:-

visibility - user understanding and control

simplicity - ease of use

consistency - a standard human computer interface

flexibility - the means whereby users can adapt the interface.
The Prototyping Approach is common in areas such as engineering where mass

production makes it imperative that the design has been tested thoroughly first. It is also

found in areas where the final version is one-off, like a bridge or building when it would

be very expensive if the designers got it wrong.

The benefits to be gained from prototyping are obvious, increased quality and reliability

with a reduction of risk and possibly costs. We should seek to realise these benefits in

information systems development. Prototyping is therefore considered as a strong

candidate for inclusion in my approach to modelling and analysis of parallel information

15

systems.

Formal Methods are methodologies which incorporate mathematical precision in

specification and design. The major advantage of formal methods is that results can be

analysed and proved. Detailed analysis is a major goal of the research, formal methods

must, therefore, be included.

Structured Methodologies are based on decomposition, that is breaking down a complex

problem into manageable units in a disciplined way. To achieve a high degree of

parallelism it is vital to break down an information system into its individual functions.

Structured approaches have been studied to achieve this goal.

23 The Structured Approach

Structured approaches were introduced by many authors [De-Marco-78, Gain and

Sarson-79, Yourdon and Constantine-78, Jackson-83] resulting in a number of structured

systems analysis and design methodologies. These include Stradis, STRuctures Analysis

Design and Implementation of Information Systems based on the work of Gain and

Sarson; JSD, Jackson Structured Development; LSDM, Learmonth and Burchett

Structured Development Method; SSADM, Structured Systems Analysis and Design

Method, developed for the CCTA by Learmonth and Burchett and IE, Information

Engineering based on the work of James Martin and Clive Finkelstein. Many of the

benefits and objectives of the structured approach are embraced by the author’s work on

structured systems analysis and design, a basic input to the research.

Structured methodologies have many common techniques and tools. Methodologies

themselves were therefore not studied in detail, the techniques and tools within the

methods were the subjects for investigation. Nearly all structured methodologies

embrace the notions of data flow diagrams and entity modelling whilst some include

16

entity life histories and guidelines for selection of events and functions. A range of

techniques within selected methodologies were therefore studied as candidates for

further study and development. These techniques are discussed below.

23.1 Data flow diagrams

The data flow diagram provides the key means of achieving one of the most important

requirements, that is the notion of the structure of functions which comprise an

information system. The data flow diagram enables an information system to be

partitioned into independent units for ease of general understanding and, more

importantly from the viewpoint of parallelism, as an aid to understanding and specifying

the inherent parallelism within the information system. Data flow diagrams also provide

the analyst with the ability to specify functions at a logical level as well as providing the

known benefits of enhanced user communication, abstracted levels of detail, etc.. One

major benefit and reason for choosing data flow diagrams is their wide acceptance by

practising systems analysts.

Data flow diagrams are however used in many different ways. There is considerable

difficulty amongst analysts with two tasks, they are logicalisation and the identification of

functions and events. It is my opinion that more formal rules should be developed for

these tasks. This opinion has been formed from consultancy work and from teaching both

within and external to the University. Discussions have taken place over the years with

LBMS particularly on the above topics. Logicalisation of data flows diagrams was

developed by the author [Cutts-87] and it is now used extensively by industry and

academia. This research sought to extend data flow diagrams to a point where functions

were atomic and data stores represent entities. This level of decomposition ensures the

maximum potential for parallelism and leads to flexibility and ease of development.

Data flow diagrams were developed during the research to a position where data stores

17

represent entities, functions are atomic and logical, and data flows represent entity

access, messages between functions and basic information system input output. These

diagrams were called entity event diagrams, they enabled the modelling of an

information system, a prime objective.

2.3.2 Entity Modelling

Entity modelling is a particular technique used to analyse and understand the data within

an organisation. The perceived requirement for the research was the development of

entity life histories. Any technique leading to the identification of entities for inclusion

on entity event diagrams and entity life histories will satisfy that need. Since there are

many very acceptable approaches to data modelling of this nature further study and

research was not considered necessary.

2 3 3 Entity Life Histories

The development of entity life histories requires that the effect of each event on the

affected entities is charted. This is usually accomplished by some sort of cross reference

chart or matrix. Methodologies such as SSADM require the development of two

matrices, the function event matrix and the entity event matrix. The problems associated

with this process include the identification of events which trigger processing and the

subsequent matching of events against entities. The task often results in a major revisit of

analysis which is not necessary.

The development of entity event diagrams as a natural development of data flow

diagrams overcomes the above problems. It is my experience that the development of an

entity function matrix is now very straight forward and it can be automated. The

construction of an entity function matrix is a necessary first step towards the

development of entity life histories. Entity life histories were first used by the author

when working with a large British car manufacturer. They were used as a prime vehicle

18

for developing and agreeing specifications with users.

Entity life histories gather together all the functions which effect an entity. Each row of

the entity function matrix shows how an entity is affected by its functions. It does not

show the sequence nor when it is valid to carry out a function. Entity life histories

therefore link together entities and functions to produce a dynamic view, vital to the

research, as opposed to the static views shown in data flow diagrams and entity models.

Data flow diagrams tend to show the normal functions which affect an entity, entity life

histories may be used to discover and document all error and abnormal processing.

Entity life histories became central to the approach and therefore much of the research

centred around them. Their inclusion was very necessary because they provided the

encapsulation of entity and functions required to achieve maximum parallelism and to

provide a way forward to system modelling and implementation. Entity life histories

were used to model the effect of events on entities, a dynamic view as opposed to the

static views provided by entity event diagrams and entity models. Further with the

development of place transition nets as the notation for entity life histories then analysis

was possible realising two prime objectives, the modelling and analysis of entity life

histories.

2.4 The Prototyping Approach

Prototyping became more common with the introduction of software tools such as screen

painters, report generators, fourth generation systems and operating systems.

Prototyping can be used as a technique to assist user analyst communication during many

of the analysis tasks. For example the definition of screen output will be enhanced by the

user being able to define the output using a screen and appropriate user friendly

software. Secondly prototyping can be used during design to try out alternatives before

the final design is defined.

19

Prototyping can, however, be more than just a technique. It can form the basis of a

approach. It can be used to specify the required information system and to complete the

design and implementation stages, by developing and implementing successive

prototypes. Prototyping will be used within the overall approach to enable small scale

systems to be built and tested with final system construction being done only at run time.

2.5 The Formal Methods Approach

Professionals who have become skilled in one or more of the above approaches appear

to dislike formal approaches. There has been a slow acceptance of formal approaches

themselves. However, it is plain that most formal approaches are merely notations. For

example Z and VDM (set theory), OBJ (heterogeneous algebra), CCS and CSP (process

algebra), Petri nets (graph theory) and Prolog (Horn clause logic) all have their

foundations in mathematical notation. The engineering approach desired requires the

use of mathematical notations. A number of formal notations were therefore studied.

The main criteria for selection of a formal notation were the ability to deal with

parallelism and the availability of a non mathematical interface to enable information

system designs to be more easily understood and therefore studied. Further the chosen

method should have a wealth of theory leading to analysis methods already researched.

Finally any chosen method must be in a development arena which will enable this

research project to prosper from that research. Only Petri nets meet all of the criteria.

2.5.1 Petri Nets

C. A. Petri developed a system for graphically portraying asynchronous events known as

Petri nets. Net theory is a theory of system organisation which originated from Petri’s

dissertation [Petri-62]. The dissertation explained the need for a theory of asynchronous

machines. Many of the early papers in the area were by Petri. The MIT Information

Systems Theory Project saw the involvement of MIT in net theory. Many examples of

20

early net theory using Place Transition nets [Reisig-84], a special class of Petri nets, can

be found in MIT papers [Holt-70, Hack-73, Commoner-71, Commoner-72].

The application and theory of Petri nets has been further developed by many centres

especially throughout Europe to include Higher Order Petri nets and complex and

detailed mathematical analysis techniques and tools. H. Genrich and K. Lautenbach

introduced system modelling with high level Petri nets in 1981 [Genrich and

Lautenbach-81]. Additional modelling power was provided by introducing individual

tokens, predicates on transitions and variables on arc labels. This enabled additional

information to be embedded in the net. These models were called Predicate Transition

nets.

Mathematical analysis of Petri net models is one of the major advantages of using Petri

nets. The variables in Predicate Transition nets yield difficulties during analysis, this led

to K. Jensen’s variable free nets with individual tokens introduced in 1981 [Jensen-81]

called Coloured nets. A full theory has been developed for Coloured nets [Jensen-93].

Other net models followed including FIFO nets [Roucairol-86], Timed nets

[Ajmone-Marsan-84] and Stochastic nets[Pagnoni-86]. FIFO nets possess token

characters which behave according to first in first out principals. The FIFO principle

extends the power of place transition nets to that of a Turing machine. Timed nets

provide a way to estimate response times in systems that have strict timings. This can be

a very complex process, simplification of complex systems have therefore been proposed

which preserve information for accurate response time estimation [Chung-88].

Timed Petri nets can represent real time asynchronous and concurrent activities with

specific execution times and its execution exploits the maximum concurrency at a time

during the execution. Timed Petri nets have been used for this type of analysis.

21

[Ramamoorthy-80, Zubereck-80, Maggot-84, Halliday-85, Coolahan-85]. The underlying

idea of stochastic Petri nets is to apply the methods of stochastic process theory to a

system represented by a net instead of the system itself. There exists a number of classes

of stochastic Petri net. [Florin-81, Dugan-84].

Petri nets were developed to impose a communications discipline on asynchronous

operators based on local conditions, and therefore to eliminate the need for global

evaluation of the system state. This makes Petri nets an ideal notation for the modelling

and analysis of parallel information systems. Petri nets were studied as a candidate for

formal documentation of system designs. Their graphic syntax makes them ideal for

understanding and developing designs. Their mathematical foundation makes them ideal

for formal modelling of designs leading to analysis and optimisation prior to

construction. Their ability to elegantly model parallelism makes them ideal for modelling

parallel environments.

Many designers of parallel information systems have found Petri Nets very difficult to

use as a design method. Petri Nets are a notation for expressing designs which embrace

the notion of concurrency. Significant progress has been made recently by the Meta

Corporation[Meta-Software-88] with the developed of Hierarchical Coloured Petri Nets

supported by very sophisticated software tools. However it is also easy to observe that

many of the published papers detailing significant use of Petri Nets for designing parallel

systems have included very significant input from Meta[Huber and Pinci-91]. The

acceptance of Petri Nets as a specification and analysis notation has been very slow.

There has been for several years a need to concentrate on the application of Petri Nets

rather than further development of detailed and largely unusable theory. This thesis fills

the gap. Petri nets will not be acceptable to the information engineer until

transformation rules from well established approaches such as the structured approach

to systems analysis and design are developed and implemented as easy to use tools. For

22

this reason this thesis developed transformation rules from recognisable structured

analysis notations to a Petri net notation. In my opinion this is a major contributor to the

reluctance to use Petri nets and the techniques and rules developed in this thesis

contribute a major step forward for information engineers. The study described above

led to the identification of a number of key techniques which were considered as strong

candidates for further research. In addition research was carried out into the area of

proposed extensions to current techniques.

2.6 Extensions to Current Techniques

There are currently several approaches to the development of parallel information

systems [Munro-82, Aspinall-77]. There are approaches where the problem is seen as a

set of communicating processes and those based on data flow.

Extended data flow diagrams are one approach where events are shown by dotted data

flows which originate either from an external source or from a special function within the

data flow diagram. These data flows trigger or stop the execution of their destination

function. This notion was used in the development of entity event diagrams.

State transition diagrams have also been used to show how a system changes its

behaviour in response to outside events [Post-86]. These diagrams were used as an

extension to the Yourdon Methodology to incorporate real time process control. State

transition diagrams are a special case of Petri nets, Petri nets without the parallel

construct. The ideas presented in this research have been taken forward to the

development of the new approach.

The methodology also uses data flow diagrams for decomposing problems into

inter-communication sub-units, mini-specifications for procedure specification, a data

dictionary, and entity relationship diagrams. Events may arrive from outside the system

23

by direct signals, thus the definition of an event is an atomic happening which changes

the state of the system which can be further represented on a state transition diagram.

These state transition diagrams are a simpler form of entity life histories, particularly

entity life histories which have atomic events as their functions.

A design methodology, CYBA-L [Munro and Dagless-82] partitioned the problem into a

control graph and a data graph. The control graph specified the sequence of operations

in the data graph. The methodology used stepwise refinement to move from an abstract

level of control to a final design specification incorporating concurrency. This method

leads to two separate but similar diagrams.

Process Graphs [Jelly, Gorton, Grey-93] are a language and architecture independent

graphical design notation for parallel software systems. Designs are constructed by

expressing the partitioning of the problem into processes and then specifying the

communication relationship between them. The approach requires the programmer to

understand and specify how, when and why the processes interact. In my opinion leaving

decisions of this magnitude to the technical does not achieve the objective of harnessing

the parallelism inherent in the information system itself. It merely seeks to increase

throughput on purely technical considerations. The authors state there is no single

approach which has tried to encompass analysis, proof and verification in the systems

development cycle for the building of parallel software. The authors’ approach is to

decompose the problem using the process graph notation then to translate the process

graph to a Petri net. Additional elements have to be added to the net model to show the

internal operation of processes. The Petri net is then used for validation of the design

before translation into an implementation strategy [Gorton-93].

This work is similar to my research, it concentrates on program design whereas my

concentration is on information system design. There is a real need to bring the research

24

into the information systems arena and out of the technical.

2.7 Breaches of Current Methodologies

There are many breaches of current methodologies which should be avoided. Logical

analysis is difficult and seldom done, the processors and their functions, for most

information systems, are decided upon for reasons of implementation necessity before

analysis commences. The architecture and allocation of functions to parallel processors

is highly influenced by the configuration of hardware considered necessary for the

information system and by previous similar information systems. This naturally

influences the way in which data flow diagrams are constructed based upon architecture

considerations rather than by doing an independent analysis. Once the architecture of

individual parallel processes has been decided there is a tendency not to continue the use

of structured techniques into sequential process design. The approach must guard

against the tendency to short cut.

2.8 The Environment of Parallel Information Systems

To enable an objective selection of techniques for further study it is necessary to define

the environment of parallel information systems. An early definition was given in chapter

1, the next few paragraphs seek to further refine that initial definition.

The environment of a parallel information system can be considered to be two fold. The

external environment which may influence the information system and the environment

of the information system itself. The information system environment covers a structural

dimension, a geographical dimension, a temporal dimension, an activity dimension, a

spatial dimension, an economic dimension and a social dimension. Each of these is

defined below.

Structural dimension, the management and staff structure working within the

25

information system environment. Very often a hierarchical structure
dominates with information systems contained within the levels.

There is a need to link information systems across levels and up and down
heirarchies.

Geographical dimension, the physical placement of resource including
personnel across an organisation.

There is a need to allow information systems to operate across departments,
buildings, counties, states, and countries.

Temporal dimension, the hours of work or hours at work.

There is a need to ensure people can work at their own speed, within their own
timeframe; major corporations have global operations which never sleep.

Activity dimension, the tasks which are performed.

There is a need to ensure each task making up the whole is defined and available
across the network wherever and whenever it is required.

Spatial dimension, the area where a person works relative to their colleagues.

There is a need to enable people to work independently within their own work
space or to work from any terminal world wide.

Economic dimension, the economic criteria which drives the organisation and
by which people are assessed.

There is a need to develop and implement information systems in manageable
affordable phases across the global network

Social dimension, the social and psychological reasons which motivate people.

There is a need to allow people to interact with the system in a way which allows
them best to be motivated by their working environment.

All these issues are addressed by the research.

People work in conjunction and co-operation with other people according to a structure

26

and methods which have developed in time. People are, therefore, performing tasks

individually or in groups using predominantly local resources. Tasks are performed in

parallel using local resources including data to feed other tasks within the total, forming

the organisational system. The organisations system is a set of concurrent tasks

cooperating according to a structure to achieve an organisation’s objectives. The

processing and data is distributed across the organisation. Each of the dimensions

described must be embraced by new and enhanced techniques within the new approach.

Parallel information systems are systems comprising software, hardware and people

which exhibit parallelism, that is, the information system may be implemented on a

multi-processor configuration using distributed data. A typical information system might

be car hire where the software is implemented on personal computers linked within each

car hire station by local area network and linked nationwide by a wide area network.

Each local area network stores the data concerning hire vehicles currently available from

that station with each personal computer across the network capable of implementing, in

parallel, any of the tasks required by the car hire information system.

The development of parallel information systems requires analytical ability to be able to

detect effects such as deadlock. Predictive ability is required to be able to predict

response times for different system configurations and synthetic ability is required to be

able to bring together different views of an information system to produce the composite

design schema for the complete information system. The ability to perform all of these

tasks must be within the new approach.

2.9 Requirements for the Approach

It is necessaiy to fit the new techniques and tools into an overall approach to

development. Three main themes describe the overriding requirement for any new

approach. They are a better end product, a better development process, and a

27

standardised process. [Avison and Fitzgerald-88].

A Better End Product.

The quality of information system produced is very difficult to judge. The following

points might be considered when examining quality. Key points are underlined.

Acceptability Availability Cohesiveness Compatibility Development rate

Documentation Ease o f learning Economy Efficiency Feasibility

Fitness-for-Purpose Flexibility Functionality Implementahilty Low coupling

Maintainability Portability Reliability Robustness Security Simplicity

Testability Timeliness Usability Visibility

A Better Development Process.

The benefits which are achieved by a tight control of the development process and the

identification of the deliverables at each stage are issues for this heading. The benefits

include improved project control, improved productivity, decreased cost of development

and a reduction in the skill level required for projects.

A Standardised Process.

This includes the benefits of having a standard common approach across an organisation.

An approach was developed within the work to enable the techniques and tools to be

applied to the case study.

A contractual model of product development was proposed by [Cohen-82]. He still

considered the development process to be a sequence of stages; specification, design and

28

implementation but with the boundaries between the stages being identified by

deliverables. Each deliverable is looked upon as a contract. Figure 2.1 shows the stages

and contracts. Further it shows the consequence of non agreement over the contract.

C O N T R A C T S T A G E S

suppliercustomer

analyst
fnfeasiblstate r-

requirements

•verifyvalidate

accept
C O N T R A C T 1

designeranalyst

technically
infeasible

modify

validate verify

C O N T R A C T 2

implementordesigner

manufacturerimplementor

analyse

design

informal
requirements
specification

requirements
specification

requirements
specification

logical
design

Figure 2.1

29

The proof of a contract is largely the acceptance of the contract by the parties involved.

For example the first contract is between the client and the supplier for the product

itself. The automation of correctness proofs could massively increase the quality of the

development process. However to enable proof the specification must be sufficiently

formal, the parties must be able to argue the correctness and the reviewers must be able

to follow it. This is the approach followed in the development of the case study.

2.10 Detailed Requirements

This gives rise to a number of detailed requirements for the techniques and tools to be

developed. These requirements are listed below.

1. Modelling serves as a means of communication between the users and the developer.

By using various models and by continuous development of the models the current

situation can be transformed systematically into a new situation. In this way it enables the

developer to turn real world situations into manageable abstractions. Finally it forms a

basis for implementation.

2. Functional decomposition is important to ensure a process oriented perspective which

is understandable. We need to move away from any emphasis on a computerisable

process towards an understanding of processes from the real world that could, if

required, be computerised. Business activity is highly complex. To understand this

complexity a top down approach is required with high level processes being represented

by ’black boxes’ which are decomposed into their more detailed processes. This leads to

a hierarchical set of representations.

3. Encapsulation is the key idea of the object oriented approach in that an object should

encapsulate its data and the operations on its data. The encapsulated objects in the new

approach will be entities with their events charted by means of entity life histories. A

30

compromise is allowed in that the entity may be read but not modified by external

events. In this way all entities are visible but protected from interference.

4. A graphical representation is a schematic convention for displaying the outcome of a

technique. A graphical representation is required to aid understanding by everyone

involved with the development process.

5. The term prototyping typically covers various possibilities from a rough and ready

version of the information system to dummy screens containing illustrations of what and

how the user will observe in the final version. Prototypes get the visible aspects of the

information system correct. It is much more difficult to evaluate correctness,

completeness and consistency of complex computation and integrity rule, therefore

prototyping is used throughout the proposed approach.

6. Behavioral analysis focuses on the dynamic nature of the data and the need to

understand events as they happen in the real world. It is necessary to distinguish between

business activity and business events. Order processing is an activity and receipt of an

order an event. Application areas are event intensive, careful analysis is required to

determine the sequence or otherwise of events to protect the integrity of the data.

Behavioral analysis provides a cross reference between the process and data

perspectives.

7. Formal methods have excellent expressive power and are well suited for making

inferences about specifications. Verification becomes possible, however, formal methods

are generally much harder to apply if only a formal language is used. Formal

underpinning needs to be provided in a mixed form where there exists more than one

form to represent the specification. Graphical representations play a major role with

automated transition from graphical form to formal notation and vice-verca. Analytic

31

techniques give rise to the detection of inconsistencies and incompleteness. Analysis of

entity life histories leads to the detection of deadlocks and traps and the identification of

process loops. Analysis of Coloured Petri nets leads to the detection of deadlocks, traps

and bottlenecks in the final system.

8. Simulation is a means by which a prototype may be made dynamic. Simulation will be

used as a means of testing the complete information system on a single processor prior to

implementation on a multiprocessor system. Large complex systems can only be

constructed and enhanced by synthesis of small system building blocks. The techniques

used within the approach must ensure that when the blocks are cemented together the

correctness of the whole can be guaranteed by the correctness of the individual parts.

The major thread of the proposed approach is to be able to transform a ’model of the

real world’ into a ’specification of requirements’ into a ’realisation’ of those

requirements.

2.11 Conclusions

Systems analysis and design methodologies [De-Marco-78, Gain and Sarson-79,

Yourdon-78, James Martin-80, Finkelstein-89, Jackson- 83, LBMS-87, LBMS-90,

Downs-88, Cutts-87, Ashworth-90, Cutts-91] were developed to overcome many of the

problems evident in the development of large complex computer information systems.

Techniques selected from the structured systems analysis and design methodologies and

engineering approaches coupled with concurrency theory seem ideal candidates to form

the basis of a new development approach for modelling and analysis of parallel

information systems.

It is my opinion that to support the development of parallel information systems new

tools and new ways of implementing information systems are required to enable a new

32

approach to information systems development. The research develops new techniques

and new tools to enable the modelling, analysis and simulation of parallel information

systems.

33

Chapter 3 The Approach to Modelling, Verification and
Simulation

3.1 Introduction

The table below represents a summary of the conclusions reached in chapter 2.

Requirement Enabling Technology

Modelling of Entities and Events Extended Data Flow Diagrams

Entity Life Histories Place Transition Nets

Parallel Information Systems Coloured Petri Nets

Verification of Entity Life Histories The theory of Place Transition nets

Parallel Information Systems The theory of Coloured Petri nets

Simulation of

Parallel Information Systems The System net Environment

A further requirement was to glue the modelling, verification and analysis and the

simulation into a life cycle type approach.

This chapter introduces modelling, verification and analysis, simulation and finally the

overall life cycle approach. Before looking at each of the requirements a brief

description of each enabling technology is provided. Readers who are familiar with these

techniques may wish to omit this section.

3.2 Enabling Technologies

3.2.1 Data Flow Diagrams

Data flow diagrams are well known techniques. The research used the standard notations

34

from SSADM. For these reasons it was not considered necessary to describe data flow

diagrams in detail. The usage of data flow diagrams was extended to enable entities and

atomic events to be discovered and documented. The proposed extensions are described

in Chapter 4. They have been called entity event diagrams.

3.2.2 Petri Nets

3.2.2.1 Introduction

Petri nets can be used as a method for representing any given application to any degree

of refinement. The simple and immediately understandable principles of application

modelling with nets makes it possible to provide an illustrated description of the model

without having to develop the mathematics behind it. This satisfies the need for a

graphical interface to aid understanding of the specification.

Their graphic syntax is precisely defined[Reisig-84], they are strict "bipartite graphs" and

semantics exist for them. Their mathematical foundation is straight forward, it is possible

to fall back on formalisms to clear up doubts and sufficient theory is available, and in

part implemented on computers, when it is needed. This satisfies the need for detailed

analysis of the specification. Petri nets have been and are being used in many areas of

data processing, for the modelling of hardware, communications protocols, parallel

programs and distributed databases, particularly in the requirements specification

context. Their graphic syntax coupled with the mathematical foundation makes Petri nets

an ideal vehicle for specification and analysis of complex parallel information systems.

Many approaches to the modelling of behaviour of an application result in a separate

model, eg. CSP. In a Petri net approach behaviour of the application is an integral part of

the design schema. This satisfies the desire to keep the number of notations to a

minimum since it is necessary to specify transformation rules from notation to notation.

The concepts of Petri nets have been used for the modelling of database structures

35

[Voss-80, Voss-81, Voss-87, Hura Singh Nanda-86], specifically using the reachability

and conflict concepts. Petri nets have been shown to provide useful data for the design of

databases and insights into the behaviour of databases have been obtained by analysis of

Petri net models. From the reachability set it is possible to study various problems such

as safeness, liveness, boundedness, conservation, concurrency and performance. This

shows the depth of research currently available within the Petri net community.

The problem of sequential program construction and manufacture has been widely

studied but there are only a few studies on parallel program manufacture. Petri nets

extended in several ways have been used to study parallel program construction [De-

Bondelli-83, Cutts/Onley-88]. The modelling of Ada by Extended Petri nets was

undertaken by [Ghezzi-88] resulting in the identification of unfeasible rendez-vous

sequences. The use of Petri nets in the field of parallelism is not new, they have proved

to be beneficial in many areas including the specification and validation of

communication protocols [Diaz-83, Diaz- 87].

3.2.2.2 Properties of Petri Nets

It is worth noting the properties of Petri nets which are immediately relevant to the

objectives.

1. An ability to describe information systems at various levels of detail [Meta
Software-88].

2. A graphic and precise nature.

3. Theory and tools exist to determine and verify the dynamic behaviour of
Petri net systems from their structure.

4. An ability to represent parallelism.
Petri nets attempt to give satisfactory answers to the following questions.

How can we separate different views and relate them to one another?

How can we model the (dynamic) behaviour of an information system
alongside its (static) structure?

36

How do we represent individual and interrelated processes in parallel
information systems?

The most obvious difference between Petri nets and other methods is the fact that they

provide a representation of parallel dynamic behaviour. No mathematics is needed. This

is because Petri nets were specially developed with an eye to intuitive understanding

intended to promote and formulate intuitive knowledge. This is necessary since an

essential part of systems analysis and design comprises communication between the user

and the development team. The user cannot and should not be expected to deal with a

complicated formal system. However, mathematics is indispensable where analysis

procedures are used to establish the characteristics of a design. For these reasons two

special classes of Petri nets were chosen for the research, place transition nets and

coloured Petri nets.

3.2.23 Definition of Place Transition Nets

A formal definition of place transition nets is given below. This formal definition is

required later for the definition of the transformation rules from place transition nets

and entity event diagrams into coloured Petri nets.

A place transition net consists of

1. places, represented as circles.

2. transitions, represented as rectangles.

3. directed arcs from places to transitions.

4. directed arcs from transitions to places.

5. a capacity indication for every place, represented as a label.

6. a weight for every arc, represented as a number.

7. an initial marking, defining the initial number of tokens for every place
(cannot be greater than the indicated capacity).

37

The arc weight "1" can be omitted or assumed. The capacity of a place does not need to

be indicated if it is not important or if there is never a danger that it will be exceeded.

Moreover a place can have an unrestricted (infinite) capacity. A marking of the net, such

as the initial marking, is indicated by the number of tokens in every place. Further a

place p is in the preset (or post-set) of a transition t if there is an arc from p to t (or an

arc from t to p);

A transition t is said to be enabled if

1. for every place p from the preset of t the weight of the arc from p to t is not
greater than the number of tokens indicated at p.

2. for every place p in the post-set of t the number of tokens at p increased by
the weight of the arc from t to p is not greater than the capacity of p.

An enabled transition t occurs in that the number of tokens at every place p is decreased

by g if p-*t and in that the number of tokens at every place p’ is increased by g’ if t— p \

3.2.2.4 Reachability Trees

Reachability trees represent all reachable markings and therefore all routes through a

net. The ability to analyse a net for reachability provides an excellent analysis technique

for both entity life histories and system nets. Reachability trees allow the definition of

dynamic properties which are related to occurrence sequences. An occurrence sequence

is a sequence of valid functions which may affect an entity. In the research it is required

that the first occurrence is the insertion of an entity and the final occurrence its deletion

or archive. Further it is required that between the first and final occurrences the entity is

’live’ and after the final occurrence the entity is ’dead’. Liveness and dead markings are

two of the properties which can be analysed automatically using reachability trees which

lead to the discovery of important conclusions regarding entity life histories.

A marking is dead ie. no function can execute, if no transition is enabled from the

marking, and a net is said to be deadlock free if no reachable marking is ’dead’. Liveness

38

is another required property. Liveness requires all places to be reachable from the initial

marking and the net to be deadlock free. Although live and dead are related concepts, it

should be noted that they are not negations of each other. Demanding a net to be live is

much stronger than demanding it to have no dead markings.

3.2.2.5 Calculation & Interpretation of Place & Transition Invariants

Place and transition invariants will be used to further analyse entity life histories. They

provide static structural analysis which is highly desirable when dealing with large nets.

There are sets of places on which the token count can vary in a particular way leading to

deadlocks and traps [Hack-73]. Deadlocks are sets of places which remain empty if they

loose all their tokens and traps are sets of places which remain marked once they gain at

least one token. It is necessary for the liveness of a marking that all deadlocks remain

marked. The motivation for analysis using place invariants is that we do not wish to

analyse nets by reachability tree since in a large net this soon becomes unwieldy. This

will be particularly important when we build large system nets from the synthesis of nets

representing entity life histories.

Definition

L etN = (S,T;F,K,W) be a pure place transition net.

1. A column vector v:S-~Z indexed by S is called an s-vector on N.

2. A matrix N:S x T— Z where N(si, tj) : = W(tj, si) - W(si, t j) is called the incidence

matrix of N. (The same letter is usually used for the incidence matrix and the Petri net.)

T T3 .1 is called a place invariant of N if I . N = 0

39

Theorem

Let M be a marking of N; then for all M’ E [M] : IT.M = IT.M\ For a proof of this

theorem see [Lautenbach-87].

Calculation of place invariants

Calculation of place invariants involves the solution of a set of linear equations
T Tgenerated by making I .N = 0 . This set of equations can be solved using Gaussian

elimination, by using defined algorithms [Martinez-82] or by using Petri net analysis

packages. A review of packages available can be found in [Jensen-86].

Definition

Let N = (S,T;F,K,W) be a pure place transition net.

1. A column vector w:T-^Z indexed by T is called a T-vector of N.

2. If J is a T-vector of N; J is called a transition invariant iff N.J = 0.

The transition invariant J represents the occurrence of transitions. For example JT = (0,

1 ,2 ,1 ,0) represents

0 occurrences of transition A

1 occurrence of transition B

2 occurrences of transition C

1 occurrence of transition D

0 occurrences of transition E.

40

Theorem

If J is a transition invariant then there exists a marking Mj of N that is reproducible

under J. For a proof of this theorem see [Lautenbach-87].

Place transition nets provide all the necessary and sufficient formalisms to adequately

represent entity life histories. The use of nets for entity life histories is described in detail

in chapter 5.

3.2.2.6 Coloured Petri Nets

Introduction

Coloured Petri nets, CP-nets, are a more powerful net type used to describe complex

systems in a manageable form. Jensen has shown how Coloured Petri nets can be

constructed using hierarchies [Jensen-89] and their applicability to real world systems

[Jensen-87]. Shapiro proposed an extension to Coloured Petri nets that incorporates the

concept of time [Shapiro-90].

The Coloured Petri net (CP-net) shown in figure 3.1 describes the system shown by the

Place Transition net, figure 3.2. [Jensen- 91].

41

2 p + 3 q

oo
□ □

[x = q] e

[x= q]e

[x = q] e

e + [x = p]e T 2

T 3

T 4

T 5e + [x = p]e

• e
Ch
O p

t o k e n s

Figure 3.1

42

q processesp processes

nqTip

T2qT2p

T3qT3p

T4p T4q

T5qT5p

Figure 3.2

43

The places Ap and Aq are folded into one place. To distinguish between p processes and

q processes different tokens are used in the coloured net. Squares represent q processes

and circles p processes. Colours are often used to distinguish tokens. Each place has U

= { p,q } as the set of possible coloured tokens. Place A has 2 p tokens and 3 q tokens,

the marking of place A is the bag { 2p + 3q }. The places R, S and T only require one

kind of token, therefore E = { e } is the set of possible token colours. The transitions T1

to T5 are also folded. T1 represents both T ip and T lq. Arcs acquire arc inscriptions

composed of variables and expressions. In this case the variable x takes the value p or q.

This corresponds to transition T1 occurring in two different ways representing a p

process or a q process. The colour sets for the coloured net are U = { p, q } and

E = { e }. The variable x : U.

Both Petri nets describe two processes competing for resources R, S, and T. There is one

resource of type R, three of type S, and two of type T. There are five processes, 2 p

processes and 3 q processes. The p processes each require zero of resource R, two of S at

one time and two of R one after the other. All resources are returned at the conclusion

of the processing cycle. The q processes each require one R resource and one S resource

at the same time, followed by a further S and a T. The R resource is returned part way

through the processing cycle and the S and T resources are returned at the end of the

cycle. The p and q processes are represented by individual loops in the place transition

net. In the coloured net p processes are represented by hollow circles, q processes by

hollow squares and resources by filled in circles. The tokens become individual.

The behaviour of the CP-net is exactly the same as the corresponding PT-net. When T1

occurs with occurrence colour p, a p token is removed from place A and added to place

B. When T1 occurs with occurrence colour q, a q token is removed from place A and

added to place B, and an e token is removed from place R and added to place S.

44

To describe this CP-net we use the notation

[Boolean] Exp = Exp if Boolean

0 if not Boolean

We can now formally describe the arc expressions surrounding transition T1 as shown in

figure 3.3. The variable x is of type U, it may therefore take the value p or q.

• e
□ q
O p

t o k e n s

2 p + 3 q

oo
□ □

T1

Figure 3.3
When transition T1 occurs with x = q then x = q is true and tokens of type e are

consumed from places R and S and a token of type q is deposited on place B. The new

marking is

place A 2p + 2q

place B q

45

place R 0

placeS 2e
When transition T1 occurs with x = p then x = q is not true and no tokens are removed

from place R or place S. A token of type p is deposited on place B. The new marking is

place A p + 3q

place B p

place R e

placeS 3e
It is possible, as in this case, for a transition to be concurrently enabled with itself.

The Benefits of using CP-nets

The benefits of using Coloured Petri nets over place transition nets for large systems

include:-

1. Description and analysis becomes more compact and manageable since the
complexity is distributed between the net structure and the inscriptions.

2. Similarities between system parts are highlighted as having the same
structure and inscriptions but different bindings.

3. Some syntax checking can be performed on the net such as consistency of
arc expressions and colour sets.

The considerable benefits of coloured nets over place transition nets leads to their use

for modelling and analysis of parallel information systems.

3.23 System Nets

System nets are a very simple realisation of systems which are specified using Coloured

Petri nets. In System nets places represent relations and message buffers. They are drawn

as shaded boxes and are implemented as relational tables using a relational database.

46

Transitions represent executable processes. They are drawn as rectangles and are

implemented as two programs, a test program which determines if the transition is

enabled and a further program which carries out the transition’s task. The System nets

are input to a simulation environment which provides a sophisticated work bench for

developing, testing and simulating parallel information systems. Chapter 6 describes

System nets and Chapter 7 the simulation environment.

33 Modelling

33.1 Introduction

The growing demand for information systems of ever increasing size, scope and

complexity has caused the introduction of various high-level modelling languages, by

which functional application requirements and information system components may be

modelled at a conceptual level [Loucopoulos-92]. This research has developed the

notion of entity event diagrams, Place Transition nets have been used for modelling

entity life histories and Coloured Petri nets have been used for modelling information

systems.

33.2 Entity Event Diagrams

Entity event diagrams are developed from ’conventional’ data flow diagrams and entity

models, both well known techniques within the world of structured analysis. Entity event

diagrams are similar to data flow diagrams but restricted by asserting that each data store

must represent an entity and each process must represent an atomic event. Further all

processes and data flows must be ’logical’, representing ’what’ is required, not ’how’ it is

to be implemented. The diagrams are developed to represent the required system.

Chapter 4 explains in detail the development of entity event diagrams.

3 3 3 Entity Life Histories

There are many notations for entity life histories, enhanced Jackson structures used in

47

SSADM^the network structures peculiar to LSDM and the structures based on Petri nets

presented in [Cutts-87] and now used by many organisations. This chapter examines each

of the structures and selects one for the further development of entity life histories.

SSADM uses a hierarchical notation for entity life histories veiy similar to the notation

used for Jackson Structured Programming. Boxes represent functions with sequence

being represented by placing the boxes left to right on the page. Repeating functions are

annotated with an *, optional functions with an o, in the top right corner of the box.

These constructs are easy to use for normal lives, however, to represent error situations

and abnormal processing it is necessary to use quit and resume markers. These are

difficult to insert, difficult to follow and there is no way to check that they are consistent.

Finally there is no way to represent functions which may occur in parallel, except for a

simple documentation ’trick’ whereby the single line which represents sequence is

doubled up to represent parallelism.

The notation was developed from a programming notation, it is therefore not

appropriate for higher level design although many skilled analysts have used it for this

purpose. Finally there is no mathematical underpinning to the notation which means that

all analysis must be done by inspection. This is not sufficient in the arena of parallelism.

A network diagram convention was developed by LBMS. This convention overcame

some of the drawbacks of the purely hierarchical notation. Different icons are used for

insert functions, modify functions and delete functions making the diagrams clearer and

a simple connection arrow shows the life flow. However the * is still retained for a

repeating function and artificial perimeter boxes have to used to signify repeating section

of the life history. Again, there is no convenient natural way to express parallelism,

indeed parallelism is represented in the same way as alternate. No mathematical

underpinning exists. It is interesting to note that the tools developed for structured

48

systems analysis and design only provide a diagrammer for entity life histories, they are

not loaded into the data repository for further analysis. This is partly due to there being

no easy way to represent the conventions internally within the data repository. An

important feature of entity life histories is the entity status. With the hierarchical and

network notations the status is added after the completion of the diagram. This makes

status identification difficult and often meaningless. All of the above difficulties are

overcome using Place Transition nets, a subset of Petri nets, to represent entity life

histories. Chapter 5 examines their use in detail.

33.4 Information Systems

The choice of Coloured Petri nets as the modelling technique for parallel information

systems enabled the benefits of modelling with nets to be obtained without the side

effect of large unwieldy models. The benefits of modelling with Petri nets have been

discussed. Coloured Petri nets allow the modelling of complex systems in a manageable

form folding places and transitions by making tokens individual and by including

inscriptions on the net. The benefits were described in 3.2.2.6.

3.4 Verification and Analysis

3.4.1 Entity Life Histories

Formal verification of entity life histories is made possible because of the use of place

transition nets which possess a formal mathematical notation. Verification tools were

developed aS part of the research and sophisticated tools are now available, for example

from Meta. Verification was undertaken using reachability and linear algebra.

Reachability allows questions such as ’Does the entity behave properly?’, ’Is there always

a route to end of life?’, and ’Have all abnormal and error events been discovered?’ to be

answered. Analysis by reachability involves the execution of the net. This no longer

becomes feasible with large nets, the so-called ’state space explosion’ takes place. Static

verification using linear algebra leading to the discovery of place and transition

49

invariants allows deadlocks, traps and pathways to be investigated. Verification of entity

life histories is described in Chapter 5.

3.4.2 Information Systems

Formal verification of information systems is possible because of the detailed theory

developed for Coloured Petri nets. This theory developed over the past ten years has

recently been incorporated into a sophisticated tool by Meta. Reachability analysis and

place invariants lead to the identification of deadlocks and traps whilst transition

invariants lead to the identification of pathways through the system. These pathways

represent the transaction routes through the system. Further the recent development of

timed Petri nets and their application to Coloured Petri nets leads to the identification of

transaction bottlenecks.

3.5 Simulation of Information Systems

The transformation of information system models from Coloured Petri nets to System

nets facilitates their implementation. The development of the simulation environment

allowed the system to be incrementally developed and tested on a single processor. The

simulation enabled incremental development and testing effectively implementing

’correct by construction’. Further the simulator enabled full system execution on a single

processor whilst highlighting the full potential for parallel execution.

3.6 The Approach

The area of information systems is dominated by references to the real world and it has

been argued that the problems found are a mixture of empirical, formal and engineering

problems [Verrijn-Stuart-87]. Empirical problems are those concerned with observing

real world phenomena, formal problems are concerned with abstraction, structure and

representation of this knowledge in a way that it is possible to reason about it and

engineering problems arise when one attempts to implement the information system.

50

[Loucopoulos-92].

It was argued earlier that the real world of information systems is parallel. The approach

to development of parallel information systems is based on modelling for abstraction,

structure and representation. The choice and development of modelling techniques was

crucial to enable verification and analysis to take place and thus reasoning about the

models. Finally a simulation environment was developed in order to minimise the

engineering problems which arise during implementation.

51

Chapter 4 DEVELOPMENT OF ENTITY EVENT
DIAGRAMS

4.1 Introduction

The objective of chapters 4, 5 and 6 is to explain the new techniques introduced as part

of the research. Chapter 4 examines the development of entity event diagrams. Chapter 5

examines in detail the use of place transition nets for the development and analysis of

entity life histories and chapter 6 looks at the transformation of entity event diagrams

and entity life histories into Coloured Petri nets and System nets.

The development of new techniques required for the new approach followed a series of

guidelines developed to ensure good practice and commonality of approach.

Wherever possible graphical notations were chosen. The approach seeks to introduce

increased rigour and formalism gradually from loose graphical representations during

the ’understanding problems’ stage through to exact mathematical representations in the

design stages. Many methodologies suffer from problems in the transformation of

information from one format to another. Transformation of this information is

considered vital so, whenever possible, formal transformation rules have been developed

and specified, and, in many instances, automated.

4.2 Entity Event Diagrams

4.2.1 Definition

An event is defined to be an atomic task which affects one entity only at a time. An

atomic task undertakes a single indivisible action. Entity event diagrams are defined by

their diagram conventions. Entity event diagrams comprise four icons, a rectangle

representing an event, an open ended rectangle representing an entity, an ellipse

representing an external source or destination for data and an arrow representing data

flow. Entity event diagrams are a specific class of data flow diagrams.

52

The aim of entity event diagrams is to collect together all of the events which affect an

entity. Since events are atomic there should be no possibility of further decomposition

which will lead to maximum concurrency in the new system. If events are not atomic then

opportunities for concurrency may be lost. Entity event diagrams are a development of

data flow diagrams. They enable user- computer professional communication and ensure

that the parallelism aspects of the business area are understood.

4.2.2 Construction of Entity Event Diagrams

A set of entity event diagrams may be constructed from a set of data flow diagrams and

an entity model. An entity event diagram is a logical diagram developed from physical

data flow diagrams. The transformation rules given below convert a physical data flow

diagram to a (logical) entity event diagram.

TODAY’S
ORDERS

DELIVERY

ORDER

CUSTOMER

PRODUCT

CUSTOMERSALES
LEDGER

INVOICE

CREDITPAYMENT

Figure 4.1

53

CUSTOMER

delivery noteorder form

delivery
order

customer
order

product
TODAY’S ORDERS

order

delivery

customer

ORDER
ENTRY

PRODUCE
DELIVERY
NOTE

Figure 4.2

Transformation Rules

1. For each physical data store on the data flow diagram annotate the data store with the

names of the entities it contains. An example is shown in figure 4.1.

2. For each data flow to or from a data store annotate the flow with the appropriate

entity name or names shown in figure 4.2.

3. Delete the physical data store and terminate each data flow with an open ended

rectangle named with the entity name.

4. For each data flow not to or from a data store, logicalise the name. For example:

54

reorder card might be renamed reorder request and sales printout, sales information.

Other data flows might not be so simple, it may be necessary to undertake further

investigation to ascertain the exact contents of the data flow. An example from a recent

system was the change from 'reverse of white sheet’ to ’testing instructions’. If the

resultant name is that of an entity which flows between two events they must be

decoupled. The entity must be inserted into the data store at the earliest opportunity

with the subsequent events retrieving the entity for processing. This is to ensure

maximum opportunity for concurrency.

5. Finally the DFD functions themselves must be logicalised and decomposed to create

atomic events. Functions which perform physical only processing should be deleted and

function descriptions should be modified. For example ’Print sales tab.’ should be

changed to ’Produce sales information’. This removes any reference as to ’how’ the

existing system operated. The function has now been transformed into an event,

however, if the original DFD function had not been decomposed to a single action

function, the resultant transformation may lead to multiple events. The transformation of

functions to events must identify the atomic events within the function and it is these

atomic events which must be recorded on the entity event diagram.

6. Some data flows may remain between events. These data flows have no data content,

they are triggers indicating that processing has been completed by one event and another

event may proceed. In this case the latter event cannot proceed until it is triggered. The

data flow guards the latter event and is, therefore, termed a guard. An example of this

type of transformation is shown in figure 4.3.

55

Guards on event entity diagrams

ORDER HEAD ORDER LINE

CHECK GUARD ALLOCATE
CREDIT OK

CREDIT AGREED
STOCK

SALES LEDGER PRODUCT

Figure 4.3
Entity event diagrams comprise

entities represented by open ended rectangles

atomic events represented by rectangles

data flows representing inserts, reads, modifies, deletes and archives of
entities

data flows representing the information system’s inputs and outputs

data flows representing guards

ellipses representing sources and destinations for data.

56

4.3 Conclusions

The transformation rules for conversion of data flow diagrams and entity models into

entity event diagrams were developed using experienced gained from both consultancy

and teaching activity and then further during the research. These rules are designed to

maximise the opportunities for parallelism.

It was found necessary to develop rules for ’logicalisation’ of data flow diagrams to

enable practising analysts and students to convert physical data flow diagrams to logical

ones. This fundamental task within structured approaches often merits one line in texts

or courses, "Convert the physical dfd to a logical dfd". These rules have proved to be

highly successful and are used world wide. The development of the guard comes from the

observation that some data flows had ’no data’. The related research work also

highlighted the need for guards which were generally documented using additional icons

or by using separate diagram types. The transformation rules presented here have proved

to be a natural extension of data flow diagram decomposition, they lead to inclusion of

the entity model on the diagram, and they incorporate rules for ’logicalisation’ providing

an elegant development approach for entity event diagrams which is acceptable to the

professional analyst.

This provides a major contribution to the research and the new approach.

57

Chapter 5 DEVELOPMENT AND ANALYSIS OF
ENTITY LIFE HISTORIES

5.1 Introduction

The adoption of place transition nets for entity life histories was justified earlier. This

chapter seeks to further justify their use by showing how to develop them and by

demonstrating the many interesting properties which can be discovered using standard

analysis techniques for place transition nets. The development of entity life histories has

one prerequisite task, the production of the entity event matrix.

5.2 Entity Event Matrix

The construction of an entity event matrix is a technique which leads to the construction

of entity life histories. The matrix has entities as rows and events as columns. The entities

and events may be easily identified from the entity event diagrams. Figure 5.1 shows an

entity event matrix.

EVENT
0 E
R N

P O A
R R C

R D
E E

P 1
R N

ENTITY

D T
E R
R Y

0 DK.
D E
U R
C
E

C L
0 1
R V
D E

R
Y

0 V
D 0
U 1
C C
E E

CUSTOMER R R R

PRODUCT R M R

INVOICE 1

DELIVERY 1 D

ORDER 1 M M D

Figure 5.1

58

Matrix entries comprise single letters or combinations of the letters I,R,M,A,D. I

indicates that an entity occurrence is inserted by the event, R indicates that an entity

occurrence is read by the event, M indicates that an entity occurrence is modified by the

event, A indicates that an entity occurrence is archived by the event and D indicates that

an entity occurrence is deleted by the event.

The matrix provides a proving mechanism. It is easy to observe in figure 5.1 that the

entity ’customer’ needs events to insert and archive it, the ’product’ entity needs

maintenance events, the ’invoice’ entity is inserted and never accessed and the ’delivery’

entity is simply inserted then deleted. In general the solution to these anomalies is to

introduce a number of new events onto the matrix and of course onto the entity event

diagram. Reading across a row of the matrix gives the entity life history. The entity

’order’ is inserted by event, ’order entry’; modified by events, ’produce order

acknowledgement’, and ’record delivery’; and eventually deleted by event, ’produce

invoice’. Reading down a column gives the processing necessary. Event, ’record

delivery’, modifies the ’order’ and ’product’ entities and inserts the ’delivery’ entity. The

entity event matrix, therefore, provides a technique for plotting the effect of events on

entities. It also provides a way forward into entity life histories.

5.3 Entity Life History

5.3.1 Introduction

Each row of the entity event matrix shows how an entity is effected by events. It does not

show the sequence of events nor does it show when it is valid to carry out an event. The

matrix only shows the normal events which effect the entity. The entity life history

technique provides a graphical representation which shows the sequence of events and

when it is acceptable to execute an event. Entity life histories also show abnormal events.

59

Figure 5.2 shows a simple entity life history with no abnormal events. Entity life histories

have been modelled with place transition nets.

^CU STO M ER ACCOUNT ^

MAKE FINAL
PAYMENT

MAKE
PAYMENT

INSERT
NEW
ACCOUNT

CLOSE
ACCOUNT

AGREE
MORTGAGE

Figure 5.2

60

The rectangles represent events and the circles show the current status of the entity

occurrence. The use of places to represent the entity statuses overcomes the problem of

having to introduce statuses artificially onto the diagram after the diagram has been

completed. The event, ’make payment’, modifies the entity ’customer account’. It is only

valid to make payments when the entity occurrence has a status of two. The status of the

entity occurrence should be reset to two, in this instance, on completion of successful

processing. The event ’make final payment’, is only valid if the status is two; the set to

status, in this case is three. The only valid event when the status is three, is ’close

account’. Each event possesses, for each entity it effects, a valid previous status and a set

to status.

Entity life histories allow the analyst to concentrate on a particular entity. In this case,

perhaps the entity life histories should be amended to allow subsequent mortgage

agreements. Figure 5.3 shows an amended entity life history for the entity, customer

account.

61

CUSTOMER ACCOUNT

MAKE FINAL
PAYMENT

INSERT
NEW
ACCOUNT

MAKE
PAYMENT

CLOSE
ACCOUNT

AGREE
MORTGAGE

Figure 5.3

62

This third view of the information system allows the following types of question to be

answered:

1. Does each entity have an event which inserts it and an event which deletes
it?

2. Is each entity accessed after insertion?

3. Which entities are referenced by an event?

4. Does each entity possess a complete life?

5. Does each event behave properly?

In this way the approach is able to validate the specification alongside its development

ensuring correctness from within the approach.

5.3.2 Using Place Transition Nets to Model Entity Life Histories

For the purpose of entity life histories place capacities are always one, arc weights are

one and the initial marking is such that the only enabled transition is the insert of an

entity occurrence. Petri nets have been introduced into the development cycle by a

software house, a pharmaceutical manufacturer and a major international bank after

detailed discussions and consultancy work by the author. In all cases the results have

exceeded expectations and have been very encouraging.

The development of entity life histories can be undertaken in a similar fashion to

structured programming in that Petri net constructs exist which are similar to those used

in structured programming. Petri nets support two further very important constructs,

parallel and alternate. Each construct is discussed below.

63

5 3 3 Petri Net Constructs

Concurrency Structure. This is the most natural structure for Petri nets. Consider the

entity life history, figure 5.4.

CUSTOMER ACCOUNT

INSERT
NEW
ACCOUNT

PATH A

AGREE MAKE FINAL

MORTGAGE PAYMENT

MAKE

PAYMENT

PATH B
B1

ACCOUNT

MAINTAINCLOSE
ACCOUNT

Figure 5.4

64

After an occurrence of the entity has been inserted into the database two concurrent

paths are enabled. Path A shows the application of transactions to the entity whilst path

B allows for the entity to be maintained at any time. Path A represents the agreement of

a loan with a customer with subsequent payments and path B represents the change of

address of the customer at any time during the loan repayment cycle. There are many

examples where concurrent sets of activities are valid. The Petri net construct shown in

figure 5.5 allows for both the start of concurrent processing of an entity occurrence and

the conclusion of concurrent activity.

(en tity name ")

START OF

CONCURRENT

c o n c u r r e n t

SECTION

A 3 B 3

END

CONCURRENT

Figure 5.5

65

This construct overcomes the major problems experienced with the hierarchical and

network representations.

Sequential Structure. Many processing tasks must be executed in sequence. Petri nets

represent sequence very easily using the construct shown in figure 5.6.

EVENT 1

EVENT 2

Figure 5.6
Selection Structure. Selection can be made on the basis of the result of a conditional

expression, for example on the evaluation of the expression

customer current overdraft + new request > overdraft limit.

Depending upon the outcome of the expression, which can be immediately evaluated, a

choice of processing can be expressed. Very often choice of processing comes from the

need to be able to process error situations such as the demise of the customer in figure

5.7.

66

MAKE PAYMENT CLIENT DEATH

Figure 5.7

Petri nets use the following construct for choice, figure 5.8.

EVENT 1a EVENT 1b EVENT 1c

Figure 5.8

67

This is the natural way to represent choice. The hierarchical and network representations

have to resort to optional and null events to represent choice.

Selection can also be influenced by outside interaction. Figure 5.9 shows that the entity

application (form) may await a decision before further processing is possible. In this case

the decision will effect the future processing.

RECEIVE
APPLICATION

A1

AWAIT
DECISION REVIEW

YES NO

B3B2

INVITE FOR

INTERVIEW
REJECT

Figure 5.9

68

Alternate, A l, is different to choice, Bl. This difference is important when one considers

appropriate implementations for each construct. The Petri net construct for representing

choice based upon an outside influence is shown in figure 5.10, it is an alternative

structure.

ALTERNATE 2ALTERNATE 1

Figure 5.10

Iteration Structure. Iteration is very often required in the building of entity life histories,

for example multiple repayments and the multiple loan pay cycle as shown in figure 5.3.

The Petri net construct is simple, choice, together with sequence and parallel constructs,

there is no need to introduce a new icon for iteration.

These constructs allow entity life histories to be constructed in a top down structured

fashion.

53.4 Analysis of Entity Life Histories

A widely developed formal theory, based on linear algebraic techniques, exists for

analysing basic Petri net properties which can be qualitative or quantitative. Qualitative

analysis concerns net properties such as the absence of deadlock, liveness, boundedness,

69

mutual exclusion and conflicts whilst quantitative analysis allows the evaluation of the

dynamic behaviour and of the performance of the modelled system. Petri nets may be

analysed using a variety of techniques including ’the token game’, reachability trees and

the use of invariants.

The paths through an entity life history represent possible entity lives from birth

(insertion) to death (deletion). These paths can be traced by playing ’the token game’.

The ’token game’ is played by placing a token on the inaugural place, figure 5.11, and

then following the enabling and occurrence rules of Petri nets.

70

CUSTOMER ACCOUNT

MAKE FINAL
PAYMENT

MAKE
PAYMENT

INSERT
NEW
ACCOUNT

CLOSE
ACCOUNT

AGREE
MORTGAGE

Figure 5.11

71

When a transition is enabled, the corresponding ’move in the token game’ may take

place, we then say the transition or event occurs. The effect of an occurrence is that

tokens are removed from the input places and added to the output places. Figure 5.12,

5.13, 5.14, 5.15 show the path of a customer account after insertion to deletion having

behaved normally, that is negotiated an agreement for a mortgage, taken out a mortgage,

paid it back, not taken out a second mortgage and therefore the account is deleted.

72

(cu st o m e r account

MAKE FINAL
PAYMENT

MAKE
PAYMENT

INSERT
NEW
ACCOUNT

AGREE
MORTGAGE

Figure 5,12

(aCUSTOMER ACCOUNT

MAKE FINAL
PAYMENT

MAKE
PAYMENT

CLOSE
ACCOUNT

INSERT
NEW
ACCOUNT

AGREE
MORTGAGE

Figure 5.13

73

(cu st o m e r ACCOUNT

MAKE FINAL
PAYMENT

CLOSE
ACCOUNT

INSERT
NEW
ACCOUNT

AGREE
MORTGAGE

Figure 5.14

0 .CUSTOMER ACCOUNT

INSERT
NEW
ACCOUNT

AGREE
MORTGAGE

MAKE FINAL
PAYMENT

CLOSE
ACCOUNT

sJ

MAKE
PAYMENT

Figure 5.15

74

The ’token game’ can be used further to investigate all possible routes to deletion by

following all the different choice options available. In this way all of the possible lives for

an entity may be established. The ’token game’ is not guaranteed to discover all possible

lives. This can be done with reachability trees.

The analysis of entity life histories by reachability tree assists the development of

abnormal lives and the handling of error situations as well as leading to the discovery of

all possible lives. Consider the entity life history shown in figure 5.16.

[a c c o u n t)

ARCHIVE

MAKE
LOAN

AGREE
LOAN

MAKE
PAYMENT

FINAL
PAYMENT

INSERT
ACCOUNT

Figure 5.16

75

After a customer account is inserted no further events are allowed until the amount of a

loan is agreed. Once agreement has been reached a loan can be made followed by zero

or many payments and a final payment. From this status a further loan can be taken out

or the account record can be archived. After insertion a token is deposited on place 1,

there are zero tokens on all other places. The entity life history has a marking of (1,0,0).

According to the enabling rules of Petri nets, the only enabled transition is ’agree loan’.

If a loan is agreed then the transition ’agree loan’ occurs and the marking becomes

(0,1,0). From this marking either a loan can be made or the account record can be

archived. If a loan is taken out the transition ’make loan’ occurs and the marking

becomes (0,0,1). From this new marking either a payment can be made or a final

payment can be made, the new marking being (0,0,1) or (0,1,0) respectively. From

marking (0,1,0) via the transition ’archive’ we reach deadlock. Figure 5.17 shows the

reachability tree.

A

100

B

010

001 DEADLOCK

Figure 5.17

The reachability tree shows that an occurrence of the entity account is inserted (born), it

has a proper life, and it is eventually archived (death) from which no further events are

possible. Figure 5.18 shows an entity life history and figure 5.19 its corresponding

reachability tree, note that there exists a possibility of deadlock. This entity life history is

therefore not valid.

ORDER ENTR” A

AGREE CREDICREDIT OKARCHIVE

INVOICEBACK ORDER DELIVER

DISCONTINUED

LATE DELIVEFj

Figure 5.18

77

10000
B

DEADLOCK

01000 D

00100 00010

H

00001
DEADLOCK

Figure 5.19

In fact two markings lead to deadlock. The marking following event I is the expected

deadlock required after an order has been entered, cleared for credit, delivered and

invoiced or entered, cleared for credit, back ordered, late delivered and invoiced. Note

that credit clearance is available by two routes. However, if a order is back ordered and

subsequently the stock item ordered is discontinued then a deadlock ensues leaving the

order in limbo. Further action is required to remove orders from this limbo state which is

represented by the marking following event H.

The use of reachability trees is a more rigorous approach, however, as soon as the net

reaches any significant size the tree becomes large and unmanageable since it charts all

of the occurrence sequences. It is sometimes easier to analyse the underlying structure of

the net instead of observing its behaviour. The use of invariants proved to be very useful

in the discovery of net properties.

78

A Petri net and its incidence matrix are shown in figure 5.20.

ORDER ENTRY A

1

B

G

BACK ORDER

LATE DELIVER

ARCHIVE CREDIT OK AGREE CREDIT

DELIVER INVOICE D

0

A B C D E = (i I
1 1 -1 1 -1 -1
2 1 -1 1 -1
3 1 -1
4 1 -1 1

Figure 5.20

79

Transition ’A’, the insertion of an order occurrence, is a special transition in that it

creates tokens. Similarly transition T is special in that it removes tokens. If we exclude

transitions ’A’ and T , once a token representing an order is inserted into the database

then it remains until removed by transition T . This can be shown by examining the

matrix shown in figure 5.21 which excludes the insert and archive transitions and noting

that a place invariant is I.

B C D E F G I

1 -1 1 -1 1

2 1 -1 1 -1 1

3 1 -1 1

4 1 -1 1 1

Figure 5.21

80

The interpretation of this invariant is that

1 times the number of tokens on place 1

+ 1 times the number of tokens on place 2

+ 1 times the number of tokens on place 3

4- 1 times the number of tokens on place 4

= (the number of tokens introduced by transition ’A’)

- (the number of tokens removed by transition T).

This proves that order entity occurrences, once entered into the database, remain in the

database until they are archived. Place invariants provide valuable results concerning the

structure of entity life histories particularly in the detection of deadlocks and traps.

J1T = (0,1,1,1,0,0,0,0),

J2T = (0 ,0 ,1 ,1 ,1 , 0 ,0 ,0),

J3T = (0 ,1 ,0 ,1 ,0 ,1 ,1 ,0) ,

J4T = (0 ,0 ,0 ,1 ,1 ,1 ,1 ,0)

are all transition invariants of N, figure 5.20, in that they satisfy N.J = 0.

If we take Mo = (1 , 0, 0, 0) which represents an order newly inserted into the database

then we can observe that this marking is reproducible, enabling the order to be archived,

under any if the transition invariants above.

8 1

J1 represents credit OK, deliver, invoice;

J2 represents agree credit, deliver, invoice;

J3 represents credit OK, back order, late deliver, invoice; and

J4 represents agree credit, back order, late deliver, invoice.

Transition invariants show all of the valid routes through an entity life history. This

information is very useful in ensuring the specification meets the user requirements and

in the construction of test specifications.

We have seen how deadlock can be observed using reachability trees. We have also

shown that place invariants provide valuable information about the number of tokens on

a Petri net. We will now use these ideas to check the structural properties of entity life

histories. Examine the set of places (1, 2, 3, 4) in figure 6.20. Note that with transition

’A’ excluded, if the set of places becomes empty it remains empty. This can be shown by

asserting that each transition which inserts a token into the set (1, 2, 3, 4) requires a

token from the set to occur. Software exists to detect such sets of places. This software

was used successfully in the identification of a number of potential deadlocks in software

for telephone exchanges.

Transition B inserts a token onto place 2 but requires a token on place 1 to occur;

transition E inserts a token onto place 2 but requires a token on place 1 to occur;

transition F inserts a token onto place 3 but requires a token on place 2 to occur;

transition C inserts a token onto place 4 but requires a token on place 2 to occur;

82

transition G inserts a token onto place 4 but requires a token on place 3 to occur; and

transition D inserts a token onto place 1 but requires a token on place 4 to occur.

We know that transition ’A’, order entry, inserts a token representing an order

occurrence into the set (1, 2, 3, 4). If it is removed from the set the set will become

empty and deadlock will occur. P is called a deadlock iff the preset of P is a subset of the

post set of P. Observe that transitions H and I remove a token from the set. Transition T

is acceptable, it is the archive process, transition ’H’ is not acceptable as it leaves the

token or order occurrence in limbo. The life history must be amended to overcome this

problem, generally this means that some events have been overlooked.

Examine figure 5.22 and note that the set of places (3, 5) represents a trap. Q is called a

trap if the post set of Q is a subset of the preset of Q. Once a token, entity occurrence is

back ordered then it remains back ordered forever, that is it is trapped.

83

(o r d e r)

ORDER ENTRY A

ARCHIVE CREDIT OK AGREE CREDIT

F BACK ORDER DELIVER C INVOICE D

H DISCONTINUED

REVIEW J

5 r LATE DELIVER G

Figure 5.22

84

It is possible to establish all the sets of places which represent deadlocks or traps,

therefore it is possible to analyse the structure of the entity life history separately from its

behaviour. Again the entity life history requires further development.

5.4 Conclusions

It has been shown that the use of place transition nets for entity life histories overcomes

all of the drawbacks discusses earlier. Place transition nets have natural constructs for

sequence, selection and iteration and more importantly also for parallel and alternate.

Further the places naturally represent the entity status. Error and abnormal situations

can be handled easily by the use of the choice construct. Exercises conducted with

practising analysts and students have shown the token game to be very useful. It is

possible to discover all error and abnormal processing, it is possible to ensure there is

always a route to end of life and it is possible to produce complete specifications. The use

of Petri nets for entity life histories has proved to be very successful.

Reachability trees and invariants were used during the case study work. They ensured

that the entity life histories were complete and consistent. Analysis of entity life histories

using trees and invariants has now been introduced into consultancy work and into

teaching.

85

Chapter 6 DEVELOPMENT OF COLOURED PETRI
NETS AND SYSTEM NETS
6.1 Transformation of Entity Event Diagrams and Entity Life Histories
into Coloured Petri nets

6.1.1 Introduction

The approach now requires that a coloured Petri net be developed to provide a model of

the complete information system. Coloured Petri nets can be very difficult to construct

directly from a specification of requirements. The reasons for this were discussed earlier.

Given below are a set of formal rules for transforming the entity event diagrams and the

entity life histories into a coloured Petri net. These rules have been automated using the

software discussed in chapter 7.

6.1.2 The Transformation Rules.

A set of formal transformation rules for EEDs and ELHs into a Coloured net that

characterise semantic equivalence is given below. The list is divided into groups

indicating the scope and purpose of the transformations.

The transformations are formulated in terms of changing a set of lowest level EEDs.

EED = (EEV,EEX,EEN,EDF,EG) where

EEV is the set of events

EEX is the set of external entities

EEN is the set of entities

EDF is the set of data flows

EG is the set of guards

86

EEV n EEX n EEN = 0

EDF is a subset of (EEV x EEX) U (EEX x EEV) U

(EEV x EEN) U (EEN x EEV)

EG is a subset of (EEV x EEV’) where EEV’ not = EEV

and a set of Entity Life Histories

ELH = (HEV, HES, H E F) where

HEV is the set of events

HES is the set of entity states

HEF is the set of flows

HEV D HES = 0

HEF is a subset of (HEV x H E S) U (HES x H E V)

into a coloured Petri net CPN = (P,T,A,S,C,V,G,E,M) where

1. P is a finite set of places. T a finite set of transitions and X = P U T is a set
of nodes.

2. A, a subset of (P x T U T x P), is a set of arcs.

3. S is a finite set of types, called colour sets.

4. C is a colour function mapping from P into S. It attaches to each place a set
of possible token colours.

5. V is a variable function defined from T into finite sets of variables, such that
each variable belongs to S.

6. G is a guard function defined from T into predicates, such that G(t) has a

87

finite set of variables VAR(G(t)), a subset of V(t), and [Type(g(t) = Boolean
and Type(Var(G(t))) sub set S] for all t^T .

7. E is an expression function defined from A into expressions, such that [Type
(E(a)) = C(p(a)) and Type (Var(E(a))) subset S] for all a]£A.

8. M is the initial marking.

Transformation of the Entity Life Histories.

1. Every event HEV of ELH becomes a transition T of CPN.

2. Every entity state HES of ELH becomes a place P of CPN.

3. Every flow HEF of ELH becomes a flow A of CPN.
(The ELH are simply collected onto one diagram)

Transformation of the Entity Event Diagrams.

1. Transformation of guards. (EEV x EEV’)

a) Create a new place, P of CPN, name the place with the guard name.

b) Create an arc between EEV and the new place, where EEV = HEV (T
of CPN).

c) Create an arc between the new place and EEV’ where EEV’ = HEV’
(T of CPN).

2. Transformation of Entity Reads. (EEN x EEV).

a) Create a reference place, P of CPN, name the place with the entity name.

b) Create a double arc between the new reference place and EEV = HEV
(T of CPN).

88

These rules give the places, transitions and arcs for the Coloured Petri net.

Colour Sets and Colour Functions.

The set of colour sets is created by the union of the attributes from the entity tuples and

the attributes from the guard tuples. The colour function maps the entity tuples onto

coloured places from the corresponding entity life histories and the guard tuples onto

each place generated from a guard.

Variables.

The variables for each transition comprise all the colour sets from the transition’s

surrounding places together with any colour set read by the transition.

Guard Functions and Expression Functions.

Guard functions are determined from the event descriptions. They represent any

condition which may prevent the event from occurring. Expression functions reflect the

event functionality.

Initial Marking.

The initial marking is given by the distribution of entity tuples in the database.

To illustrate the transformation from ELHs and EEDs to a Coloured Petri net first

consider figure 6.1. This figure shows extracts from four entity life histories, order

number, a simple parameter, order head, order line and stock.

89

GET ORDER

NUMBER

ENTER ORDER
HEAD

CLEAR CREDIT

ENTER ORDER
LINE

RECORD STOCK

ALLOCATED

PRODUCE A

DESP. NOTE

ALLOCATE
STOCK

Figure 6.1

90

Figure 6.2 shows an entity event diagram.

CUSTOMER

order

GET ORDER
NUMBER

ORDER NUMBER

order-2
^ Ss\ ^ o r d e ^

INSERT INSERT

ORDER LINE ORDER HEAD

ORDER LINE

RECORD STOCK

ALLOCATED

PRODUCE

DESP. NOTE

stock
allocated credit OK

ALLOCATE
STOCK

despatch note

CUSTOMER

ORDER HEAD

CLEAR
CREDIT CUSTOMER

STOCK

Figure 6.2

91

Orders are inserted as an order head and multiple order lines after an order number has

been obtained. The insertion of order head and order lines is guarded by the event get

order number. The order head is cleared for credit. The allocation of stock is guarded by

the credit clearance event and the recording of any stock allocated on the order line is

guarded by the allocate stock event.

Figure 6.3 shows the four new places representing the guards.

ORDER-2

ENTER ORDER
LINEORDER-1GET ORDER

NUMBER

RECORD
STOCK
ALLOCATED

ENTER ORDER
HEAD

PRODUCE A

DESP. NOTE
CLEAR CREDIT

STOCK
ALLOCATED

CREDIT OK

Figure 6.3
Figure 6.4 shows the places, transition and arcs for the Coloured Petri net.

92

Colour Sets

order no available order numbers

cust no customer numbers

no_of_lines the number of lines on an order

product_no product numbers

qty_ordered the quantity ordered on an order line

qty_allocated the quantity of stock allocated to an order line

qty_in_stock the quantity of a product in stock

stopped the customer status, stopped yes/no

Colour Function

SI = order_no;

S2 = product cust_no * orderjio;

S3 = product order_no * product_no * qty;

S4 = product product_no * qty_in_stock;

S5 = product order j io ;

S6 = product order_no * product_no * qty_allocated;

Variables

var o,o’:order_no;

var c,c’:cust_no;

var s:stopped;

var p,p’:product_no;

var q,q’:qty;

Guard Functions

Guard functions are required where more than one colour set provides the input. A

guard is required to match the tuples from each colour set. For example, to allocate stock

the order from the credit OK must find all its order lines (o = o’) and the product from

the order line must be a valid product (p = p’).

The event functionality can influence the guard. To clear credit the order head must

locate its customer tuple and the stopped status must be ’no’.

94

Expression Functions

The expression functions for allocate stock are min. and max. The stock required is

represented by q’, stock on hand by q. The maximum of 0 and q - q’ is returned to stock.

If q > = q ’ then the stock remaining is returned to stock else if ,q< q’ then q - q’ is

negative and the stock level is set to zero. The stock allocated to the order line is given

by the minimum of q and q \ If q> = q’ then q’ is the minimum and the stock requested

is allocated else if q < q’ then the stock allocated is the stock available.

The Coloured Petri net with inscriptions is shown in figure 6.4.

95

ORDER-2

(o+1,c,p,q)
* C * P * Q

ENTER ORDER
LINEORDER-1GET ORDER

NUMBER o * co+1 ,c)

O *

(o,c)(o+l) mm
RECORD STOCK

ALLOCATED
ENTER ORDER

HEAD
o = o ’ p=p*

(o.P.q)
(°>c)

PRODUCE A

DESP. NOTE

CLEAR CREDIT [c’,s)
c=c* s=*n*

(0,C) ^

o *

STOCK
ALLOCATED

O* P * Q

T (p,q):

ALLOCATE
STOCK

P=P0=0

CREDIT OK

Figure 6.4

96

6.2 Advantages of representing logical designs by Coloured Petri Nets

The major advantage is that the design embraces the notion of parallelism and therefore

leads to implementation of information systems on parallel architectures. The creating of

large complex logical designs is feasible. The analysis of such designs using the theory of

Petri nets before implementation is vital with large, complex, parallel applications.

Modelling with coloured Petri nets makes analysis possible.

63 System nets

6.3.1 Introduction

Simulation of coloured Petri net models require a mapping of each of the net elements

into a real resource. To enable simulation system nets have been introduced which

model programs and relational tables. Mapping rules have been developed from

coloured Petri nets into system nets which are then implemented using the simulator.

System nets [Cutts/Magee-89] are the notation for information system designs. They are

constructed by applying transformation rules to Coloured Petri nets. System nets enable

the construction of design schema embracing the notion of parallelism.

Figure 6.5 shows a System net.

97

ENTER
ORDER

TABLE 1
order-no

TABLE 2
cust-no
order-no
no-of-lines

CLEAR 2

PRODUCE
DESPATCH

TABLE 4
cust-no

order-no
no-of-lines

ALLOCATE
STOCK

cupt-no
order-no
product-no

product-no
qty-in-stock

Figure 6.5

98

63.2 Definition of System nets

-places, representing relations and message buffers, drawn as shaded boxes,

-transitions, representing by executable processes,p, and executable tests,pt,
drawn as boxes, and

-arrows, representing record input / output.

System nets use places to represent relations and message buffers. The colour functions

represented on the coloured net are translated into relational tables. Each place on the

system net is associated with a filename which contains details of the relational table’s

domains. System nets use transitions to represent events. Each transition is associated

with two files. The first file contains a specification of the transition’s enabling criteria.

The enabling criteria embrace the guards and the availability of input (pre- conditions).

The second file contains a specification of the event’s action including the output

(post-condition) and the expression functions. The first file is called the ’test’ file and the

second the ’process’ file. System nets are a way of representing coloured nets in an

implementable format..

6.4 Conclusions

Coloured Petri nets can be easily constructed from entity life histories and entity event

diagrams. The use of coloured Petri nets to represent parallel information systems in

graphical form has further proved to be beneficial as individual processing elements,

tables and messages can be easily identified and studied. The translation to system nets

proved to be a useful route through to simulation of the complete information system.

99

Chapter 7 INTEGRATED TOOLS

7.1 Introduction

An integrated support environment is a combination of software utilities that permit a

system to be used to best effect for a particular purpose, in this case the development

and maintenance of software based on a System net schema. The tool should enable

specification and design documents to be created and edited quickly and easily in a

graphical format, a textual format and a mathematical format. Moreover the tool should

be able to transform one format to another. The tools must be capable of representing

the characteristics of the application, principally structure, behaviour, communication

and configuration.

Animation of a design is the process of providing an indication of the dynamic behaviour

by walking through a specification fragment in order to follow some scenario. It involves

stepping through each process action, examining the resultant output behaviour and

interacting with the scenario when desired. Where appropriate, tools were selected from

those available, however, it was necessary to develop tools for the analysis of entity life

histories and for the simulation of system nets.

7.2 Automate Plus

Automate plus from LBMS was selected for development of data flow diagrams, entity

event diagrams, entity models and their associated documentation. The author was

familiar with Automate having used it extensively in consultancy and teaching work.

There were no problems with its use for the production of diagrams and associated

documentation.

Diagrams are stores within Automate as text files. This has one major disadvantage in

that the diagrams must be reconstructed by Automate utilities every time they are

100

displayed or printed. It was found that the text files have a standard format which can be

analysed making it possible to write software to analyse entity event diagrams to identify

the events, the entities, the input and output, data flows and the guards. This software

written by the author in Pascal saved a considerable amount of time inspecting entity

event diagrams for the significant items. The output also formed a major input to the

transformation rules described in chapter 6. The selection and use of Automate Plus was

very successful.

7.3 The Entity Life History Tool

The entity life history tool comprises two main functions, an editor and an analyser.

7.3.1 The Editor

The editor provides three major functions.

1. Loading, saving and renaming ELH files.

2. ELH drawing and subsequent editing.

3. Plotting to paper size A3 or A4.

Functions 1 and 3 are straight forward. Edit provides six major functions connected to

the three icons, circle, rectangle and arc. They are, add a place, add a transition, add an

arc, scaling, moving icons around the screen and editing labels and text.

Figure 7.1 shows an ELH entered into the screen.

101

ELH EDITOR

ADD WINDOW MOVE CHANGE

o 1 ' — >

Figure 7.1

The ELH editor provides a simple interface for the graphical construction and

amendment of entity life histories. The editor was built to provide a similar user

interface to Automate Plus. It is a mouse driven editor with facilities to select and

position icons on the screen.

The moving and scaling options proved to be satisfactory. The ability to scale by decimal

factors prooved particularly useful, a facility which was not available in Automate.

Generally the software proved to be reliable for small entity life histories, it did however

cause major difficulties with large entity life histories and could not be recommended for

use with large files. Significantly commercial software is now available for the

construction of place transition nets which could be adapted easily for development of

entity life histories. The major problem with the software was its ability to handle large

files. The software also proved to be frustrating to use. The graphics produced by Pascal

were no where up to Automate standards and the speed of response to the mouse was

slow. An understanding of the problems in this area led to a rewrite of the software in C

which overcame these problems.

102

The specification of the tool envisaged a general purpose tool. The consequence of this

was that many of the parameters had to specified over and over again when their use for

entity life histories was standard. Examples of this are place capacities and arc weights

which for entity life histories are always 1. The tool as specified prompted the user to

input capacities and weights, which, in the entity life history case, was always 1. This

again proved to be frustrating.

7.3.2. The Analyser

The analyser provides identical functions for loading and saving ELH. Its major function

is via a COMPILE operation which provides the analysis facilities. COMPILE takes a

loaded ELH and analyses it for deadlock, safeness, conservation and boundedness.

COMPILE also creates the reachability tree which can be displayed on the screen using

the VIEW option. The reachability tree may be saved alongside the ELH.

Figure 7.2 shows an example COMPILE screen and figure 7.3 an example reachability

tree.

103

ANALYSER

Compilation successful

ELH exhibits sa feness : YES
ELH exhibits conservation : NO
ELH is deadlock free : YES

Reachability tree complete : YES

DISK COMPILE VIEW PLOT

Figure 12

ANALYSER

REACHABILITY TREE

DISK C OMPILE VIEW

3.2 .23.1 .3

go to 2

"I 3 .2 .33.2.43.3 .3

go to 2

00

go to 3

DEADLOCK

PLOT

Figure 13

104

The analyser provides an easy way to determine if ELH are correct. There were no

problems with the analyser and very valuable results were obtained from its use. This

software was again written in Pascal, it was slow but had no other drawbacks. The major

problem was that it depended on an entity life history being input via the editor.

7.4 The Application Development Environment

7.4.1 Introduction

A total environment was created to support the development of parallel information

systems. The environment implements a System net design and provides a simulation

tool comprising:-

1. A System net editor.

2. A database create, modify and view facility.

3. A program development facility.

4. A program test environment.

5. A system test environment.

6. An application simulation environment in which the real information
system executes on a single processor.

Places are implemented using a relational database, transitions are implemented by

separate executable files. Each transition comprises four files, its test source code file, its

test executable file, its process source code file and its process executable file. Output

flows, i.e. flows from processes to tables are implemented within the process. The test

program, for each process, determines if input is available and if its guard is true and

therefore whether the process should execute. This is equivalent to binding. The ’test’

code evaluates the binding and returns a true or false flag. If the flag is true then the

process code is enabled.

105

7.4.2 The System Net Editor

The net editor allows System nets to be easily constructed using graphics and positioning

of icons by mouse. It provides for the addition of processes (transitions), tables (places),

links (arcs) and text, deletion of a process or a table, window adjustment, icon size

adjustment, retrieval of a net from disk and writing of a net to disk.

These facilities allow a net structure to be input, modified and saved. The lessons learned

from construction of the entity life history editor were used to overcome the problems

experienced. The software was written in C with standard graphics routines,

sophisticated scaling and the ability to construct a net over many screens using the

physical screen as a window. The tool is quick, it uses mouse driven menus and is very

easy to use. System nets were input and edited very easily using the tool. Additional

information may be added to the net using edit functions. These functions link the

structure of the net to program and data files to enable the simulator to execute

programs for transition occurrence and to pick up data from places represented as tables.

Each place is instantiated as a relational table and given a filename. This filename is

associated with the place and stored as part of the net. Further utilities allow tables to be

created and modified, and table contents to be examined.

Name, edit and compile options exist for both the process and test functions associated

with a transition. The first option associates a filename with the source code and

executable code. The file names are stored with the net for each process. Each process,

therefore, has two source code files and two executable files. The second option allows

the source code files to be edited. Source code programs may now be created or

modified using the editor’s facilities. The third option allows compilation of the source

code. The executable code is written to the executable code filename. These names were

106

associated with the process on the net.

The edit process function therefore associates with process, two source code files and

two executable code files. This code may be in any language as all code files are

independent. These facilities allow each of the System net structures to be associated

with resources to be used during simulation.

There were no problems with these processes, the software proved to be particularly easy

to use. The ability to link directly from the System net structure on screen directly to

table create and modify, to program editors and compilers, to an execution facility and

then to be able to examine the table contents provided an excellent interactive,

incremental program test facility, small scale prototyper and a means by which large

systems could be developed incrementally. Much of the success of this tool was due to

the developers interface which linked all these facilities.

The development program comprises a three window screen, the graphics area where

System nets are constructed and displayed, a menu area with selection by mouse and an

input area for text, eg. filenames. The system is clear and easy to use.

7.43 The Test and Simulation Environment

This is the crux of the system and perhaps the total research programme. The software

provided a test and simulation environment for parallel information systems. All of the

facilities are available from an Execute menu. One facility, GO performs a number of

functions.

1. The System net is displayed on the screen. At this stage SELECT & EXAMINE may

be used to determine the exact state of all the tables.

107

2. The TEST CYCLE executes all test.exe files, ie. all tests are performed. According to

their return, true or false a table of enabled processes is displayed.

TEST CYCLE

Testing PI enabled

Testing P2 not enabled

Testing P3 not enabled

Testing P4 not enabled

Testing complete - press left mouse to proceed

Pressing the right mouse at this point returns the execute to the menu screen. It may be

processes enabled/not enabled are not as expected and the SELECT/EXAMINE process

may need to be repeated. It may be necessary to return & examine the test programs, this

is possible, indeed programs could be edited and recompiled before testing continues.

Pressing the left mouse continues the execute phase.

3. The Process Cycle displays the System net on the screen with the mouse pointer

pointing to the first enabled process.

Left mouse invokes the process’s executable file (right mouse returns to menu), which

executes and may adjust table contents. Any executable code in a separate named file is

acceptable, the simulator will work with test and process code in any language. On

completion of execution the cycle pauses, ’execution of process n complete.’ Right

mouse now returns to the menu so that tables may be examined to ascertain that the

108

process has been executed correctly; left mouse invokes the next enabled process. When

all enabled processes have been executed the system returns to the test cycle.

This method of examining the net structure for enabled processes, followed by

inspection then execution of enabled programs one at a time with possible inspection of

tables between each execution made testing and modification significantly easier than

any other environment I have ever encountered. The production of tested code and

tables was very rapid, no problems were experienced and because the structure of the

information system was captured by the system net the information system grew

incrementally using small scale prototypes. Because the underlying structure was correct

then the system was correct as it was constructed and integration testing was not

required. This achieved a major objective, that of ’correct by construction’.

The test and execute cycles contain several pauses where right mouse will return the

system to the menu. If ’no pause’ is selected the system will continuously alternate test

and execute cycles until no processes are enabled. This option runs the information

system comprising relational tables and individual code files which manipulate tables. All

code files are independent and only pass data and control via tables. This is a very

important feature when considering parallel execution since all enabled processes are

enabled in parallel ie. they may execute concurrently. On a single processor each process

is executed in turn, on a parallel architecture machine with multiple processors all

processes could execute in parallel. This is the vital point of the design.

This final simulation of the information system on a single processor proves the

correctness of the design. In fact the information system works as required and very

considerable benefit accrues from the approach even when implementation is not on a

parallel architecture. The ease of development makes this approach an important

contributor to the development of large complex information systems.

109

7.5 Conclusions

This design environment and tool demonstrates that the construction and

implementation of System nets is very easy. An information system comprising over fifty

tables and thirty programs has been implemented successfully. This application is

described in detail in chapter 8.

110

Chapter8 CASEWORK

8.1 Introduction

The case work is based on a case study supplied by Learmonth and Burchett

Management Systems (LBMS). The case is the Duet Wright Consulting Company.

Section 8.2 provides the case study scenario. The data modelling aspects of the case study

were relatively straight forward. The case work included the entity event diagrams, the

entity event matrix, the entity life histories, the coloured Petri net, the System net and a

part implementation.

8.2 The Duet Wright Case [LBMS]

8.2.1 Introduction

In 1980, two brothers named Wright (not Orville and Wilbur) who were both in the

data processing business, decided to join forces in the spirit of true entrepreneurship,

and started a consulting company. They named the company Duet Wright, not only

because there were two of them and their last name was Wright, but also because they

felt the name reflected what they hoped to accomplish with each project they took on.

When the company consisted solely of the two brothers with a few projects, the manual

system for doing business was sufficient. As business and staff grew, the manual system

could no longer handle the load. They have now requested an automated system to track

projects, consultants, clients and time reporting.

8.2.2 Description of the Business Environment

The company has defined a number of standard skills, i.e. IDMS, ADABAS, Logical

Design, Teaching, etc. Each skill has a unique skill code. Any consultant could have a

range of skills and a skill may be held by many consultants.

The company has a scale of consultant grades ranging from Managing Consultant as the

111

top grade to Associate Consultant at the bottom. Each consultant belongs to only one

grade at any time. Grades are identified by unique grade codes. Each consultant is

allocated a unique personnel number. The company has four divisions and each

consultant belongs to only one division at a time. Each division has a unique division

number and can have many consultants.

Each client is given a unique client reference. Each project undertaken is given a project

reference unique within the client reference. A project is related to only one client, but a

client could be related to many projects. There will be a requirement to find all clients

who are active (have outstanding projects) e.g. only inactive clients may be cancelled.

At any time, a consultant could be assigned to work on many projects and a project could

have more than one consultant. When defining a project, the consulting manager will

want to relate the requirement for specific skills to the project. A project may require

many skills and any skill may be needed on many projects. Each week, consultants send

in time sheets, identified by the consultant’s personnel number and the week ending

date. Time may be charged to many projects on a single time sheet and a project may

take more than one week to complete. Consultants may only charge time to projects to

which they have been assigned.

8.23 Systems Overview

The managing consultant will maintain a variety of information in the system, including:

- Consultant Data

- Details of Projects

- Client Information

112

The Consultant data will also be maintained by the Personnel Department to ensure

accuracy.

When a project is to be started, Assignments will be entered on- line by the Managing

Consultant for those Consultants who are available and have the appropriate skills

required for the project. A monthly assignment report will be produced for review by the

Managing Consultant and monthly schedule reports will be issued to the Consultants.

Consultants charge time to the project using time sheets which are sent to accounting

ever week. The time sheets will be input and edited on-line to ensure that the Consultant

has been assigned to the project. Any erroneous time sheets will be sent back to the

Consultant for correction. A Time sheet Summary may be produced monthly for

Accounting to ensure all time sheets have been submitted. Every month, the time sheets

are extracted and consolidated with rate information to produce a billing report which

Accounting uses to produce client invoices.

8.2.4 Detailed Processing Requirements

The computer system defines the systems boundary.

Consultant, Project, and Client data are independently maintained on the system.

Consultant and Project data will be used to assign Consultants to projects.

Consultant data will include billing rates to produce the billing data for Accounting.

The personnel Department may update (add, modify or delete) all consultant data,

Managing Consultants are only permitted to modify the Consultant records.

Additions - when a Consultant is added to the system, the Personnel
Department will enter the basic details

Modification - include changes to basic details (e.g., name and address) as

113

well as the entry of a skill profile and changes in grade and division. If
necessary, new standard skills may be identified.

Deletions - this flags the Consultants who have left the company as cancelled,
so that they will be removed from the system by the monthly housekeeping run.

The Consultant add, change and delete transactions are kept in a transaction file and

later used to produce the batch action summary.

When a project is proposed, the Managing Consultant will enter the project details into

the system, ensure that the Client exists, and if necessary, flag the client as ’active*. The

project profile may subsequently be extended through the use of ’modify project’

function to include details of expected hours and skills required, etc. If a project is

cancelled, it will be flagged as such on the system and the client status updated (to

inactive) if appropriate.

The Accounting Clerk receives time sheets from Consultants on a weekly basis. These

are entered into the system and validated against consultant, project, and assignment

details. The system will maintain all time sheets on the time sheet file. Only when a time

sheet has been input correctly will the project and assignment records be updated to

reflect time spent to date. On a monthly basis, a time sheet summary may be produced

for the Accounting Department and the Managing Consultants. This information

includes Consultant and time sheet details and is used by the managers to indicate to the

system that the time sheets are approved and ready for client billing.

114

83 The Logical Data Model

Figure 8.1 shows the logical data model.

ASSIGNED
SKILL

ASSIGNMENT

SKILL

ACQUIRED
SKILL

TIMESHEET
LINE

REQUIRED
SKILL

CLIENT

TIMESHEET

PROJECT CONSULTANT

Figure 8.1
The data items are shown in figure 8.2.

115

PROJECT

Client#, project#, name, start date, expected hours, hours to date

REQUIRED SKILL

client#, project#, skill#, hours required, required date, comments

ASSIGNMENT

client#, project#, person#, expected start date, expected hours, role

ASSIGNED SKILL

client#, project#, skill#, person#

CONSULTANT

person#, name, grade, division, billing rate, address

ACQUIRED SKILL

skill#, person#, date acquired

CLIENT

client#, name, address, contact, status, ’phone#

TIME SHEET

person#, date weekend

TIME SHEET LINE

person#, date, client#, project#, hours this week, hours to go, expected
completion date

Figure 8.2

116

8.4 The Entity Event Diagrams

The entity event diagrams are shown in figure 8.3. There are 18 diagrams.

117

00 oo

UJ

ss sc a s

o
8035

rn
oo
o
u
B
0J3• pm*

CO
CO
o6
QJ
u
p
OX)

>—

>- __1

eg
H-t V>

S a
C Li

£
• Y t O
Q U

TT
CO
00
V <Nu —
3
OJD

P=H

U9
zSH

K W
O <A

Fi
gu

re

8.
3.

5

J Z .

h-sc

—
m ae sc

u a

Fi
gu

re

8.
3.

6

Figure 8.3.7

Figure 8.3.9

CO
CO

u
3
OD

r -(N

su.

tn
tH
co
00
&u
&
OX)

Pm

o
CO

cn
oo

u
2
Ofl

Pm

cn

u to
rH
CO
00
o>

W>

(NCO

q

VO
tH
eo
oo
a>
Jh
S3
GD

(SI

CO
oo
a>
u
P
OX)• pH

Q

(Yi

00
rH
cn
00
a;
u
3
OX)

tnro

8.5 The Entity Event Matrix.

The entity event matrix is shown in figure 8.4.

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 4.3 6.1 6.2 6.3 7.1 7.2 7.3 7.4

PROJECT ft a T (A M

ASSIGNMENT X R R

CONSULTANT Z K R R R &

TIMESHEET X

TIMESHEET LINE Nl X £ n

CLIENT X tA R

ACQ. SKILL V
ca

ASS. SKILL X

REQ. SKILL X (A

Figure 8.4

136

8.6 The Entity Life Histories

There are 9 entity life histories, one for each entity. Each event is annotated with its

entity event diagram reference and each place with its ELH status.

The housekeeping function was not shown in detail on the entity event diagram. It is

simply shown as function 5 on all the ELH.

The ELH diagrams are shown in figure 8.5.

137

CONSULTANT

1.1.2

1 .2.11.3.1

Figure 8.5.1

ACQUIRED SKILL

1.2.21.1.3

1.2.3 1.3.2

Figure 8.5.2

139

PROJECT

3.1.2

7.1.63.2.13.3.2 6.3

Figure 8.5.3

140

REQUIRED SKILL

3.2.2

3.2.4

3.1.3

3.2.33.3.3

Figure 8.5.4

141

CLIENT

4.1

4.23.3.43.1.4 4.3

Figure 8.5.5

142

ASSIGNMENT

1.3.3.1

2 .1.2

3.3.5.1

Figure 8.5.6

1.3.4.1

7.1.5

143

ASSIGNED SKILL

1.3.4.2

1.3.3.2

2.1.3

3.3.5.2

Figure 8.5.7

TIME SHEET

6 .2.1

7.1.2

Figure 8.5.8

145

TIME SHEET LINE

6 .2.2

7.4

7.1.3

Figure 8.5.9

146

8.7 The Coloured Petri net

Figure 8.6 shows the coloured Petri net.

get can
''projectcons-b

get project

detailsto 3.3.5.1get consultant
details

ta3.3.3

K>.fcX
a< id cli

add n
skill

acquired
mark client \
active

add projedt i proj-b
\ mark clidn^ inactive

details t \

modify con.
add required:;:*

skill cancc I cltehtmodify client

add time sheeK \ I J

x l
H Z

cca \ rerlove
ski I

3.2.2

Insert required skill

| e a r . projN modify proj. 3.2.3

modify required skill

remove required
skill

3.2.43.3.3

to 7.1.6
\ get billing data

asslg-a/ f J assig-b70r--T-i»M
/ I . . . V . .I make assignements

to 7.1.5 timesl-a

ttmesl-ba Jsignment add a signed skilljli-a1L i get time sheet

1.3.4.1
add
time sheet
line

\ add
cancel con.

tim e^sheet
1.3.4.2

cancel con.update ass.

1.3.3.21.3.3.1 3.3.5.23.3.5.1
cs ncei con.cancel c a tcel con.

proiec
flag for
billing

bill'b \

Figure 8.6

147

8.8 The Implementation

8.8.1 The System Implemented

A subset of the complete system was implemented comprising 18 events, 9 entities as

relational tables and eleven message buffers also implemented as relational tables.

Figure 8.7 shows the fragment of the system which was implemented.

3.1.11.L1 get project
details

get consultant
details add client.proj-c

4.1
1.L2 Ll.3

proj-a
ad< I acquired
ski mark client

active I- 3.1.4 client-1
add project

details 3.1.2cons-1

aild requi
skill 3.1.3

proj-1

billing 6.3

rsk-1

/ bill-c

\ get billing

6.1 da,a
 2.1.1 __________ I '__' j b
make assignments j as>l^~assig-a

'^^tim^sl-a
 ' Jget tim esh ee t'

details \
add V - ■
tim eshee t 7.1.3
line / | ::

add assignment add assigned skill2.L32.1.2

add
time sheet 7.1.2

times-1 timesl-1

flag for
billing

7.4

i bill-b

6 .2.2bill

Figure 8.7

148

The application development environment was used linked to dBASE as the vehicle for

table creation and dBASE linked to the Clipper compiler was used for program creation.

Test and process programs were written for each transition.

The program listings are included as Appendix A. There were no major problems

encountered during the implementation phase.

8.8.2 System Testing

The system was tested using the simulator as follows.

1. All tables were empty and a first test / execute cycle executed.

Programs 1.1.1, 3.1.1, 4.1, and 7.1.1 were enabled. These programs input details of new

consultants, new projects, new clients and new time sheets.

1.1.1 Two new consultants were entered with their acquired skills.

Person# 1 2

Name Cutts Jones

Bill Rate 10 20

Skill # s 1,2 2,3
3.1.1 Two new projects were entered with their required skills.

Client# 1 2

Project# 1 2

Required skill 1,3 2
4.1 Two new clients were entered.

client# 1 2

name SCP LBMS

149

7.1.1 No new time sheets were entered.

Tables cons-a, cons-b, proj-a, proj-b, proj-c and client-1 now contain appropriate tuples

which mark the net.

2. Test / process cycle 2

Programs 1.1.1,1.1.2,1.1.3,3.1.1,3.1.2,3.1.3,3.1.4,4.1 and 7.1 were enabled.

1.1.1 No new consultants were entered.

1.1.2 Consultant details were added to the database.

1.1.3 Acquired skill details were added to the database.

3.1.1 No new projects were entered.

3.1.2 Project details were added to the data base.

3.1.3 Required skill details were added to the database.

3.1.4 Clients 1 and 2 were marked active.

4.1 No new clients were entered.

7.1.1 No new time sheets were entered.

This cycle processed all the messages in the system to deposit tuples in cons-1, acqsk-1,

proj-1, rsk-1 and to update tuples in client-1.

3. Test / process cycle 3

The input programs 1.1.1, 3.1.1, 4.1 and 7.1.1 were enable together with program 2.1.1

the program which makes assignments.

No new data was entered.

2.1.1 The following assignments were made.

client# project# skill# person# assign Y/N

1 1 1 1 Y

1 1 3 2 Y

2 2 2 1 N

2 2 2 2 Y
All three required skills have been assigned to consultants. Message buffers assig-a and

assig-b now contain tuples relating to the assignments.

4. Test / process cycle 4

The input programs were enabled together with programs 2.1.2 and 2.1.3.

No new consultants, clients or projects were entered.

2.1.2 Assignments were added to the database.

2.1.3 Assigned skills were added to the database.

151

7.1.1 Two time sheets were entered.

person# client# project# hours this week

1 1 1 10

2 2 2 20
Message buffers timesl-a and timesl-b now contain tuples.

5. Test / process cycle 5

The input programs were enabled together with programs 7.1.2 and 7.1.3.

No new input was entered.

7.1.2 Time sheets were added to the database.

7.1.3 Time sheet lines were added to the database.

Tables times-1 and timesl-1 now contain tuples.

6. Test / process cycle 6

In addition to the input programs program 7.4 was enables as time sheet lines were

available for billing.

7.4 The following time sheet lines were made available for billing,

person# client# project# BillY/N

1 1 1 Y

2 2 2 Y

152

Table timesl-2 now contains tuples.

7. Test / process cycle 7

In addition to the input programs 6.1 was enabled.

6.1 Billing data was extracted and written to message buffer bill-c for billing and project

update and to bill-b to remove billed time sheet lines from the database.

8. Test / process cycle 8

Again the input programs were enabled together with programs 6.2.2 and 6.3.

6.2.2 Billed time sheet lines were marked for removal from the database.

6.3 The project tuples were updated with the hours billed this week.

The eighth cycle concluded the processing until further input is made. The only programs

now enables are the input programs.

All the message buffers are empty.

153

Database tables contain data as follows.

cons-1 contains 2 tuples

acqsk-1 4

client-1 2

proj-l 2

rsk-1 3

assig-1 3

assigs-1 3

times-1 2

timesl-1 empty

timesl-2 empty

timesl-3 2

8.83 The Test Programs Revisited

The enabling rules for each transition are implemented in the test program associated

with each transition or process. The test program code is included as Appendix B.

The following transition have test programs which always return true since there are no

guards.

Programs 1.1.1,3.1.1,4.1 and 7.1.1, the input programs.

Throughout the execution input was always possible.

154

The guards on the other programs are as follows.

Test 1.1.1 enabled if a tuple (token) exists in cons-a.

1.1.3 " cons-b.

3.1.2 " proj-a.

3.1.3 " proj-b.

3.1.4 " proj-c.

2.1.1 enabled if unassigned tuples in rsk-1.

2.1.2 enabled if a tuple (token) exists in assig-a.

2.1.3 " assig-b.

7.1.2 " timesl-b.

7.1.3 " timesl-a.

7.4 " timesl-1.

6.1 " timesl-2.

6.2.2 " bill-b.

6.3 " bill-c.

The test/process cycles and enabling of processes followed the above rules.

155

Chapter 9 CONCLUSIONS

9.1 Research Focus

The research focussed on modelling, verification and simulation within a development

approach to parallel information systems. The research sought to include the areas of

responsibility for information engineers, construction of specifications, development of

designs and the implementation of information systems. The idea that each of these

areas of responsibility could be represented in some notation or notations was adopted

together with the need to convert from notation to notation during the development

process.

The ’real’ world of information systems is parallel. The requirement to engineer parallel

information systems together with the motives of increased performance, decreased

costs, flexibility of configuration, reliability and ease of development was the driving

force for the research.

There is a need to bring new and developing techniques and tools into a methodological

framework which embraces modelling, verification and simulation. To achieve

parallelism loosely coupled systems were chosen. In this type of system, programs

execute on independent processors to achieve the goal of information system.

Many of the requirements could be obtained from the many well developed structured

systems analysis and design methodologies. In addition the research required a

communications discipline on asynchronous processes based on local conditions. Petri

nets provided a modelling and analysis approach for this discipline. The use of Petri nets

also contributed to solving the problems of synchronisation and deadlock and Coloured

Petri nets with their high level of modelling power contributed to the modelling and

analysis of complete information systems.

156

The hypothesis developed in the early days of the research centred on four areas of

concern, parallelism in information systems, modelling and analysis of dynamic states,

simulation and prototyping, and the pragmatic application of theory. The main thrust of

the research has been to concentrate on the techniques. The use of Place Transition nets

for Entity Life Histories and Coloured Petri nets for system modelling proved to be

excellent notations for the modelling and analysis of dynamic states in parallel

information systems. The development process, developing Entity Event Diagrams as a

restriction of Data Flow Diagrams and the transformation of Entity Event Diagrams and

Entity Life Histories into Coloured Petri nets proved easy to use and highly beneficial to

the building of ’correct’ System nets. The process embraced parallelism, prototyping,

simulation, user involvement whilst remaining a very practical approach. The

development environment enabled a full case system to be developed easily and rapidly

demonstrating many of the benefits that the approach and techniques offered.

9.2 Overview

The work clearly demonstrates that the approach, techniques and notations embrace the

notions of parallelism in a formal way which allows for specification, analysis of the

specification, design and realisation. To develop an information system which comprises

objects which exist independently and concurrently and which are distributed with

interaction via messages then the method must provide for each object to be identified,

specified, analysed and developed independently with the knowledge that the objects can

be brought together to create the application without the loss of any of the properties of

the independent development. The approach developed is very strong in its formal

representation of events and the dynamic states which trigger events, these dynamic

states allow the construction of prototypes since the application can be built in sections

due to the property it possesses of ’correct by construction’. This property was used in

the development of the case study.

157

Information systems built in this way exhibit high cohesion with strong links from the

environment to the schema as well as low coupling. This property will lead to easier

maintenance and modification. The information system can accept new components

’plugged in’ at all stages of development and operation. Again this property was

demonstrated in the development of the case study. An approach which develops small

scale prototypes coupled to synthesis of the application leads to flexible, low cost

development which can be highly adaptive to user requirements and effectively user

driven. The application can be synthesised from components, the components being the

objects or entities. Further the method provides for a wide view of the information

system’s environment. Because of the incremental development features of the

approach, the building of prototypes and the inherent parallelism featuring the

environmental dimensions of structure, geography, time, activity, space, economy and

social aspects are easily accommodated.

The approach developed covers information system inception to realisation using

transformations from one notation to another as the mechanism. In many instances the

transformations have been formalised and mechanised. The approach incorporates a

number of fundamental tenets including modelling, functional decomposition,

encapsulation, prototyping, verification and simulation. Finally the approach is

supported by a number of techniques and integrated tools.

Many of the techniques are familiar, some have been developed from an existing

technique, several are new. Entity event diagrams are a useful development of data flow

diagrams, they are a more rigorous form of data flow diagram in which data stores must

be entities and processes must be independent events which effect the entities. The

research derived steps to develop entity event diagrams from data flow diagrams. One of

the major tasks is the development of entity life histories. Entity life histories are

158

fundamental to the approach. The application and theory of Petri nets was used to

develop network entity life histories which may be represented formally. In this fashion

entity life histories can be proved to be complete and consistent. This idea is one of the

fundamental development concepts of the thesis enabling formal evaluation of the

application design before simulation. The use of Petri nets was developed during the

research and subsequently applied as part of the applied research by a software house, a

pharmaceutical manufacturer and an international bank. The formal transformations

from a set of proven entity life histories and an entity event diagram into the Coloured

Petri net is again one of the fundamental development concepts. The transformation

rules have been specified, used on the case study and partly automated.

A number of tools proved very useful. Auto-Mate plus from LBMS was used for the

production and checking of diagrams. However, Auto- Mate plus did not provide an

entity life history facility. An appropriate tool was developed which comprised an editor

and an analyser. This tool is being enhanced but has now been overtaken by

commercially available tools especially the Coloured Petri net system from Meta

Software. The major tool developed was the application development environment. The

tool provides a System net editor, a database create, modify and view facility, a program

development facility, a program test environment, a system test environment and an

application simulation environment. The environment is that of Coloured Petri nets.

All of the above was demonstrated by case work using a case study supplied by

Learmonth and Burchett Management Systems.

93 The Approach

The approach should be regarded as a framework, a framework which encourages good

practice and encompasses an engineering discipline. Good practice through a disciplined

approach to development and the use of appropriate techniques and tools. Good

159

practice in that the approach and the production of documentation are integrated. These

are the good practices extracted from the structured development paradigm and from

the application and theory of Petri nets. The linking of these two areas proved to be ideal

for the development of parallel information systems.

An engineering discipline is engendered through the use of graphical and formal

notations as appropriate together with transformation rules to move between notations.

In this way rigour was included which was required for many of the assertions such as

correct by construction and freedom from deadlock. The transformation rules furnished

the method of providing a unifying approach required. The approach moves smoothly

from data flow diagrams to entity event diagrams to entity life histories and Coloured

Petri nets and on into System nets used for prototyping, construction and simulation of

parallel information systems. The approach clearly separates modelling and logical

representation from physical realisation. This solves the problem discovered early in the

research, which is the direct coupling of thinking about concurrency to realisation.

9.4 The Techniques

9.4.1 Entity Event Diagrams

The idea to develop data flow diagrams originated from a need to discover atomic events

and entities which could be distributed across processors. A further benefit resulted in

ease of development. Modules which effect a single entity, are atomic, are very highly

cohesive in that they handle a single event and are only coupled via message passing are

easy to develop, test, modify and maintain. Side effects are eliminated and testing is easy

as full-blown testing is truly integrated. The guidelines for developing entity event

diagrams proved successful and the benefits were realised.

9.4.2 Place Transition Nets for Entity Life Histories

Place Transition nets proved to be ideal for development and analysis of Entity Life

160

Histories (ELH). Development used the standard structures of sequence, selection and

iteration. However, Petri nets provided two further structures not available naturally in

other notations, they are parallel and alternate, both necessary for ELH design. ELH as

Petri net graphs provided a very useful interface with users so much that they are now

used in industry and on courses. The token game allowing animation of the ELH is

particularly beneficial to enable developers and users to visualise the dynamic behaviour.

The mathematical equivalent notation for Petri nets enabled a number of properties to

be discovered. It is necessary to ensure all ELH are free from deadlock and that is there

is always a route from any state of an entity occurrence through to archive or deletion of

the occurrence. Equally it is necessary to be able to identify a number of properties

about an ELH, for example, that no entity occurrences are created or deleted from

within the ELH itself. It is also necessary to identify traps, can an entity occurrence

become trapped in a cycle, for example, a backorder, review, report cycle with no exit

route into normal processing.

All of the above were proved using set theory and place invariants, which analyse the

ELH structure and not its dynamic behaviour. This overcomes the major problem of

state space explosion when analysing behaviour. Finally the use of transition invariants

allows all of the routes from entry to deletion of an entity occurrences to be identified.

This ensures the ELH meets the user’s requirements. The above analyses are

implemented in Petri net analysis packages.

9.43 System Modelling using Coloured Petri Nets

Entity Life Histories represent a single entity. Each place in an ELH represents the state

of an entity occurrence, a single token can therefore be used to represent an occurrence.

ELH therefore are adequately represented by Place Transition Nets.

161

The first transformation of ELH and EED into Coloured Petri nets involves the bringing

together of the individual ELH into a single net. Clearly different places represent

different entities. Tokens must now be individual. We could colour each token, red for

the customer entity, blue for the order entity, however, it is better to use a token vector

whose elements represent the attributes of the entity. The individual ELH are connected

by message buffers again represented by places on the Coloured Petri net. Message

buffers are individual so again individual tokens representing the message attributes are

required. Finally message content may vary according to their processing by an event.

The output of an event can be represented by functions in Coloured Petri nets.

These considerations led to the decision to use Coloured Petri nets. Sophisticated

software now exists for the development and analysis of Coloured Petri nets. The

package CPN-Palette from the Meta Software Corporation has been developed over the

past two years. Coloured Petri nets with their net inscriptions and individual tokens allow

the rigorous formality of ordinary Petri nets to be retained whilst enabling the size of

models to be kept small. This enhances the graphical model building features but

unfortunately very much complicates the mathematics for analysis. However the

mathematical notation for Coloured Petri nets does allow similar properties to the ELH

to be investigated. Questions such as, Will transactions as a sequence of messages always

pass through the system? and What are all the routes a transaction can take? can be

answered.

Entity occurrences and their life can be considered to be orthogonal to transactions as a

series of messages. Entity occurrences originate at the top of the net and are archived at

the bottom whilst transactions pass from left to right interfacing with the entity

occurrences. Because of the way in which nets can be fused according to mathematical

rules which preserve all of the net’s properties then one of the research’s objectives that

162

of ’correct by construction’ was achieved. These rules have been recently extended to

develop the idea of hierarchies of nets.

9.4.4 The Development Environment

Prototyping, incremental development, ’correct by construction’ were all proved using

the case study and the development environment. The ability within the environment to

build the System net incrementally alongside database construction and program writing

was very successful. Indeed all testing was integrated with construction and due to the

prior analysis the system worked without further activity. The case study system is

working and demonstrable. The overall conclusion is that the research has contributed

significantly in the areas of modelling, verification and simulation particularly applied to

parallel information systems.

9.4.5 A Comparison with Other Techniques

The approach developed rules for the formal transformation of data flow diagrams into

entity event diagrams, and the combination of entity event diagrams and entity life

histories into coloured Petri nets. Commercially available methods do not address the

issue of transformations, the use of an underlying common modelling technique based on

Petri nets, particularly the formal notation for Petri nets allowed transformations to be

developed and proved by their use on the case study.

Entity life histories are generally represented by Jackson structure diagrams or by

LBMS’s network convention. The use of Place Transition nets obviated the need for quit

and resume markers. They modelled naturally state indicators, parallel events, alternate

events as well as the standard constructs of sequence, selection and iteration. The formal

mathematical notation allowed entity life histories to be analysed for deadlocks, traps

and bottlenecks which is not possible using the heirarchical or network notations.

163

The use of Coloured Petri nets to model information systems allowed complex parallel

information systems to be modelled using a single technique. This single technique is

different in that a formal notation exists which facilitated formal verification. The

verification of models of complex information systems is a major improvement over

techniques such as data flow diagrams and logical data structures. Finally, modelling

using constructs which naturally represent parallelism leads to the easy development of a

simulation environment and further into implementation on parallel architectures. These

properties were demonstrated in the development of the case study.

9.5 Commentary on Possible Future Paths

The major benefit of this approach is the ability to build small scale sub-systems which

can be guaranteed to fit into the total system even before the total system is known. To

realise this benefit a fully integrated set of tool is required.

Kurt Jensen, the developer of Coloured Petri nets, has spent part of the last few years on

secondment to the Meta Software Corporation, Cambridge, USA. Meta have developed

the CPN-Palette comprising a CPN Editor which supports hierarchy and fusion coupled

to standard analysis support for Coloured Petri nets. Meta have used the software to

describe systems such as telephone systems, protocols, buffer systems and VLSI chips.

Apart from a very small attempt to link SADT to CPN all of the above work uses

hierarchical CPN directly as the model for development. Meta have also extended

Standard ML to enable colour sets and CPN variables to be declared. CPN ML is then

used to calculate , enabling and the occurrence of bindings. This effectively implements

the CPN specification.

The potential for Coloured Petri nets is very well supported by this package. To fully

realise this potential much more work is necessary to make CPN available and

acceptable to the potential users. Translations from ideas familiar to system

164

professionals into CPN are required.

Further the rather theoretical work on stochastic and timed Petri nets has been very

recently added to CPN. This will enable timing to be added to the CPN so that queue

sizes and bottlenecks can be established. The answers to these questions would allow the

dynamic reconfiguration of processors in a parallel system to satisfy the demands of the

application.

Generally the theoretical work is more than adequate the concentration must be on the

application of the work.

165

REFERENCES

Ajmone Marsan M, Balbo G, Conte G,A Class o f Generalised Stochastic Petri Nets for
the Performance Evaluation o f Multi-Processor Systems, ACM Transactions on
Computer Systems Vol 2, No. 2,(1984)

Ashworth C, Goodland M, SSADM: A Practical Approach, McGraw-Hill, (1990)

Aspinall D, Dagless E L, Dowsing R D, Design Methods for Digital Systems Including
Parallelism, IEEE Journal Electronic Circ. & Syst. Vol 1. No. 2,(1977)

Avison D E, Fitzgerald G, Information Systems Development, Methodologies, Techniques
and Tools, Blackwell Scientific Publications.(1988)

Burns A, Rathwell M A,A Communications Environment for Co-operative Information
Systems Development, Software Engineering Journal,(1987)

Chung W H, Ryoung H, Park K H, Kim M ,A Transformation o f Timed Petri Nets for
Response Time Estimation, Private Communication - Korea Advanced Institute,(1988)

Cohen B, Justification o f Formal Methods for System Specification, Software and
Microsystems. Vol. 1, No. 5,(1982)

Cohen B ,A Rejustification o f Formal Notations, Software Engineering Journal. Vol. 4,
No. 1, (1989)

Commoner F, Holt A W, Even S, Pnueli A, Marked Directed Graphs, Journal of
Computer and System Science, 5,(1971)

Commoner F, Deadlocks in Petri Nets, Report, Applied Data Inc,(1972)

Coolahan J E, Roussopoulos N,v4 Timed Petri Net Methodology for Specifying Real Time
System Timings, International Conference on Timed Petri Nets, Torino,(1985)

Crookes D, Translation as a Language Implementation Technique for Supercomputers,
Software Engineering Journal Vol. 3, No. 2, (1988)

Cutts G, Structured Systems Analysis and Design Methodology, Paradigm
Publications(1987)

Cutts G, Bidwell L, Masters Project (Bidwell) implementing the work o f Taubner - 82, SCP
Library (1997)

Cutts G, Systems Engineering and Nets, 9th European Workshop on Application and
Theoiy of Petri Nets, Venice, Italy,(1988)

Cutts G, Structured Systems Analysis and Design Methodology Techniques and LSDM,
First European Conference On IT for Organisational Systems, EURINFO,(1988)

R1

Cutts G, Onley M, Masters Project (Onley), Parallelisation of mathematical algorithms,
SCP Library (1988)

Cutts G, Magee D, A Net Based Application Design Environment and Tool for Simulation
o f Distributed and Parallel Systems, Pratique Des Methodes, Universite De Nantes,(1989)

Cutts G, Structured Systems Analysis and Design Methodology, Second Edition, Blackwell
Scientific Publications, (1991)

Cutts G, Proving PLC Programs with Petri Nets, 13th International Conference on
Application and Theory of Petri Nets, (1992)

Cutts G, Modelling and Analysis o f Entity Life Histories with Petri Nets, IFIP -92 (1992)

De-Bondeli P, Models for the Control on Concurrency in ADA Based on Predicate
Transition Nets, ADA- Europe, (1983)

De-Marco T, Structured Analysis and System Specification, Yourdon Press, (1978)

Diaz M, Modelling and Analysis o f Communications and Cooperation Protocols Using
Petri Net Based Models, Computer Networks, (1983)

Diaz M, Applying Petri Net Based Models in the Design of Systems, Advances in Petri
Nets, (1987)

Downs E, Clare P, Coe I, Structured Systems Analysis and Design Method: Application
and Context, Prentice Hall (1988)

Dugan J B, Extended Stochastic Petri Nets: Application and Analysis, Ph, D. Thesis, Duke
University, (1984)

Finkelstein C,An Introduction to Information Engineering: From Strategic Planning to
Information System, Addison Wesley, (1989)

Fitzgerald G, Information Systems Development for Changing Environments, First
European Conference on IT for Organisational Systems, EURINFO, (1988)

Florin G, Natkin S, Evaluation based upon Stochastic Petri Nets, Informatik
Fachberichte, Springer Verlag, (1981)

Foulk P W, Directed-Graph Models and their Application to Software Development,
Software and Microsystems, Vol. 1, No. 7, (1982)

Fritzson P, Towards a Distributed Programming Environment Based Upon Incremental
Compilation, Ph. D. Thesis, Linkoping University, Sweden, (1984)

Gain C & Sarson T, Structured Systems Analysis: Tools and Techniques, Prentice Hall,
(1979)

Gallard R H, An Extension in the Definition of a Petri Net Execution, The Computer
Journal, Vol 30, No 1, (1987)

R2

Genrich H J, Predicate Transition Nets, Advances in Petri Nets Vol 1, (1986)

Genrich H J,A Formalism for Higher Level Petri Nets, GMD, St. Augustin, Germany,
(1988)

Genrich H J, Lautenbach K, System Modelling with High Level Petri Nets, Theoretical
Computer Science, 13, (1981)

Gorton I, Parallel Program Design using High-level Petri Nets, Concurrency: Practice and
Experience (1993)

Ghezzi C, Mandrioli D, Pezze M, Petri Nets as a Support to Symbolic Execution o f
Concurrent Ada Programs, Private Communication - Politecnico di Milano, (1988)

Guttag J V, Horowitz E, Musser D R, The Design o f Data Type Specifications, Current
Trends in Programming Methodology IV, Prentice Hall, (1978)

Hack M H T, Analysis o f Production Schemata by Petri Nets, MIT Project, (1973)

Halliday M A, Vernon M K ,A Generalised Timed Petri Net Model for Performance
Analysis, International Conference on Timed Petri Nets, Torino, (1985)

Heijmink F et al, Development o f Tools for Designing OIS, First European Conference
on IT for Organisational Systems, EURINFO, (1988)

Hoare C A R , Communicating Sequential Processes, Communications of the ACM,
(1978)

Holt A W , Commoner F, Events & Conditions, Applied Data Research Inc,(1970)

Huber P, Pinci V 0 ,A Formal, Executable Specification o f the ISDN Basic Rate Interface,
12th International Conference on Application and Theory of Petri Nets, (1991)

Hura G S, Singh H, Some Design Aspects of Data Base Through Petri Net Modelling,
IEEE Transactions - Software Engineering, Vol SE-12, No. 4, (1986)

Jackson M A, System Development, Prentice Hall, (1983)

Jarayanta N, Normative information model-based systems analysis and design, Journal o f
Applied Systems Analysis, (1986)

Jelly I, Gorton I, Gray J, Process Graphs: A Graphical Notation for Parallel Program
Design, PARLE ’93 (1993)

Jensen K, Coloured Petri Nets and the Invariant Method, Theoretical Computer Science
14,(1981)

Jensen K, How to find Invariants for Coloured Petri Nets, Lecture Notes in Computer
Science, 118, (1981)

Jensen K, Computer Tools for Construction, Modification and Analysis o f Petri Nets,
Lecture Notes in Computer Science, 225 (1986)

R3

Jensen K, Coloured Petri Nets: A Way to Describe and Analyse Real-World Systems -
Without Drowning in Unnecessary Details, 5th International Conference on Systems
Engineering (1987)

Jensen K, Huber P, Shapiro R, Hierarchies in Coloured Petri Nets, 10th International
Conference on Application and Theory of Petri Nets (1989)

Jensen K, Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use,
Unpublished tex t, (Publication 1993)

Jones C B, Software Development: A Rigorous Approach, Prentice Hall, (1980)

Kerridge J, Dynamically Reconfigurable Arrays o f Transputers to support Database
Applications, 7th occam User Groupi, Grenoble, France, (1987)

Kramer J, Ng K, Potts C, Whitehead K, Tool Support for Requirements Analysis,
Software Engineering Journal Vol. 3, No. 3, (1988)

Kung H T, Clementi E, Seitz C L,Steele G L, Parallel architectures for supercomputing,
11th World Computing Congress, (1989)

Lautenbach K, Linear Algebraic Techniques for Place Transition Nets, Lecture Notes in
Computer Science, 254, (1987)

Lautenbach K, Linear Algebraic Calculation of Deadlocks & Traps, Advances in Petri
Nets (1987)

Learmonth and Burchett Management Systems, Automate Plus Manuals, (1988)

Learmonth and Burchett Management Systems, LSDM Part 1 and LSDM Part 2, LBMS
Consultants’ Booklets, (1987)

Learmonth and Burchett Management Systems, Systems Engineer, LBMS Consultants
Booklets (1990)

Loucopoulos P, Zicari R, Conceptual Modeling, Databases and CASE, John Wiley and
Sons(1992)

Maggot J, Performance Evaluation o f Concurrent Systems Using Petri Nets, Information
Processing Letters, North Holland, (1984)

Martin J, Strategic Data Planning Methodologies, Savant Institute (1980)

Martinez J, Silva M,^4 Simple and Fast Algorithm to Obtain all Invariants o f a
Generalised Petri Net, International Conference on the Application and Theory of Petri
Nets, (1982)

Meta Software, CPN ML, CPN Palette-Part 1(1988)

Meta Software, The CPN editor, CPN Palette-Part 3(1988)

Meta Software, Hierarchies in Coloured Petri Nets, CPN Palette - Part 2(1988)

R4

Mumford E and Weir M, Computer Systems in Work Design - The ETHICS Method,
Associated Business Press(1979)

Munro A, Dagless E L, Real Time Control Including Concurrency, Part 2:Implementation,
Software Engineering Journal Vol. 1, No.4, (1982)

Munro A, Dagless E L, Real Time Control Including Concurrency - Part 1 .'Design,
Software Engineering Journal. Vol. 1, No. 4, (1982)

Murakami K, Mori S, Fukada A, Sueyoshi T, Tomita S, The reconfigurable parallel
processor, Philosophy and architecture, 11th World Computing Congress, (1989)

Nicol C, Crowe M K, Corr M E, Oram J W, Jenkins D G, IDEA - An Incremental
Development Environment for Ada, Software Engineering Journal Vol 2, No. 6, (1987)

Olle T W et al, Information System Methodologies: A Framework for Understanding,
Addison Wesley, (1988)

Olle T W, An Information System Life Cycle and Related Concepts, First European
Conference on IT for Organisational System, EURINFO, (1988)

Pagnoni A, Stochastic Nets and Performance Evaluation, Proceedings of the Advanced
Course on Petri Nets, (1986)

Perrot R H, Aliabadi AT., A Supercomputer Program Development System, Software
Practice and Experience, (1987)

Petri C A, Kommunikatationen mitAutomaten (1962): Technical Report, Griffiss Air
Force Base, New York [English Translation] (1966)

Petri C A, Fundamentals o f the Theory o f the Asynchronous Information Flow, IFIP
Congress, North Holland,(1963)

Petri C A, Concepts of Net Theory, Slovak Academy of Science (1973)

Petri C A, General Net Theory, University of Newcastle (1977)

Petri C A, Concurrency Theory, Proceedings of the Advanced Course on Petri Nets
(1986)

Post J, Application o f a Structured Methodology to Real Time Industrial Software
Development, Software Engineering Journal Vol. 1. No. 6 (1986)

Ramamoorthy C V, Ho G S, Performance Evaluation o f Asynchronous and Concurrent
Systems using Petri Nets, IEEE Transactions, Software Engineering Vol SE-6, No. 5
(1980)

Reisig W, Petri Nets -A n Introduction, Springer Verlag (1984)

Roucairol G, FIFO Nets, Advanced Course on Petri Nets (1986)

R5

Rozenberg G, Behaviour o f Elementary Net Systems, Lecture Notes in Computer
Science, 254 (1986)

Taubner D & Brauer W, Petri Nets and CSP, Proceedings of the 4th Hungarian
Computer Science Conference (1986)

Thakker S, Parallel Programming- Harnessing the Power; IEEE Software, Vol. 6, No. 7,
(1989)

Thiagaijan P S, Condition Event Systems, Aarhus University, Lecture Notes (1983)

Thiagarajan P S, Elementary Net Systems, Proceedings of the Advanced Course in Petri
Nets (1986)

Tse TH,v4 Unifying Framework For Structured Systems Development Models, Private
Communication, University of Kong (1986)

Varadharajan V, Baker K D, Directed Graph Based Representation for Software System
Design, Software Engineering Journal, (1987)

Verrijn_Stuart A A, Themes and Trends in Information Systems, The Computer Journal,
30 (1987)

Voss K, Using Predicate Transition Nets to Model and Analyse Distributed Database
Systems, IEEE Transactions on Software Engineering, 6, 6 (1980)

Voss K, Stepwise Specification o f a Distributed Database System, 2nd. Conference on
Distributed Computer Systems (1981)

Voss K, Nets in Databases, Lecture Notes in Computer Science, 255 (1987)

Voss K, Nets in Office Automation, Lecture Notes in Computer Science, 255 (1987)

Ward P T, Mellor S J, Structured Development for Real Time Systems, Yourdon Press,
(1985)

Wilson B, Systems: Concepts, Methodologies and Applications, John Wiley and Sons
(1984)

Wood-Harper A T, Fitzgerald G ,A Conceptual Framework based on features, in Avison
D E and Fitzgerald G (1988)

Wood-Harper A T, Episkopou D M, Towards a Framework to choose appropriate
information system approaches, Computer Journal, 23,3,(1986)

Wood-Harper A T, Fitzgerald G, A Taxonomy o f Current Approaches to Systems
Analysis, Computer Journal, 25,1 (1985)

Yourdon E & Constantine L L, Structured Design, Yourdon (1978)

Zuberek W M, Timed Petri Nets and Preliminary Performance Evaluation, Proceedings
7th Symp. on Computer Architectures, (1980)

R6

APPENDIX A

The Program and Test Code for Duet
Wright.

Program p i l l .

* *

* get consultant details
*

* *

textmode()
select 1
use cons-a
select 2
use cons-b

answer = ’ ’
a new consultant? (Y/N) ’ get answer
read
do while answer = ’y’ .or. answer = * Y’

iperson = 0
iname = ’
igrade = 0
idiv = 0
ibill_rat = 0
iaddress = *

@6,10 say ’consultant number’ get iperson
@ 7,10 say ’ name’ get iname
@8,10 say’ grade’get igrade
@ 9,10 say ’ division’ get idiv
@10,10 say ’ billing rate’ get ibiU_rat
@11,10 say’ address’ get iaddress
read

select 1
go bottom
append blank
replace caperson with iperson
replace caname with iname
replace cagrade with igrade
replace cadiv with idiv
replace cabill_rat with ibill_rat

A2

replace caaddress with iaddress

answer = ’ ’
@ 13,10 say ’Enter a new skill? (Y/N) ’ get answer
read
iskill = 0
idacq = 0
do while answer = ’y’ .or. answer = ’ Y’

@ 15,10 say ’skill code ’ get iskill
@ 16,10 say ’date acquired’ get idacq
read

select 2
go bottom
append blank
replace cbskill with iskill
replace cbperson with iperson
replace cbdacq with idacq
@ 13,10 say ’Enter a new skill? (Y/N) ’ get answer
read
iskill = 0
idacq = 0

enddo
clear

answer = ’ ’
@4,10 say ’Enter a new consultant? (Y/N) ’ get answer
read

enddo
grphmodeQ

A3

program p i 12
*

ADD CONSULTANT DETAILS
*

textmode()
select 1
use cons-a
select 2
use cons-1

select 1
go top
do while .not. eof()

sperson = caperson
sname = caname
sgrade = cagrade
sdiv = cadiv
sbill_rat = cabill_rat
saddress = caaddress

select 2
go bottom
append blank
replace clperson with sperson
replace cl name with sname
replace cIgrade with sgrade
replace cldiv with sdiv
replace clbill_rat with sbill_rat
replace claddress with saddress

select 1
delete
skip

enddo
select 1
pack
grphmodeQ

A4

program 1.13

textmode()
select 1
use cons-b
select 2
use acqsk-1

select 1
go top

do while .not. eof()

sskill = cbskill
sperson = cbperson
sdacq = cbdacq

select 2
go bottom
append blank
replace acs Iskill with sskill
replace acs Iperson with sperson
replace acsldacq with sdacq

select 1
delete
skip

enddo
select 1
pack
grphmodeQ

program 2.1.1

textmode()
@ 2,2 say ’Making assignments’
count = 1 0
do while count 0

count = count -1
enddo

select 1
use rsk-1
select 2
use acqsk-1
select 3
use assig-a
select 4
use assig-b
select 5
use cons-1

select 1
go top
do while .not. eof()

sclient = rsl client
sproject = rslproject
sskill = rsl skill
scomm = rsl comm

ifscomm = ’ ’
@ 4,10 say ’Client ’
@ 4,20 say sclient
@ 5,10 say ’Project’
@ 5,20 say sproject
@6,10 say’Skill ’
@ 6,20 say sskill

assigned = ’n’
select 2

go top
do while (.not. eof()) .and. (assigned

if acslskill = sskill

sperson = acs Iperson
@ 8,10 say ’Consultant number, name has the required skill’
@ 9,12 say sperson

select 5
go top
locate for sperson = clperson

if eof()
sname = ’Not known’

else
sname = clname

endif
@ 9,30 say sname

answer = ’ ’
@ 12,10 say ’Do you wish to make this assignment? (Y/N) ’ get answer
read

if answer = ’y’ .or. answer = ’Y’

assigned = ’y’

select 1
replace rsl comm with ’assigned ’

select 3
go bottom
append blank
replace asaclient with sclient
replace asaproject with sproject
replace asaperson with sperson

select 4
go bottom
append blank
replace asbskill with sskill
replace asbclient with sclient
replace asbproject with sproject
replace asbperson with sperson

A7

endif
endif

select 2
skip

enddo
answer = ”
if assigned = V

@ 20,10 say ’No assignemt can be made ’ get answer
endif

read
@20,10 say’ ’
endif

select 1
skip

enddo
grphmodeQ

A8

program 2.1.2

textmode()
@ 2,2 say ’Entering assignments into the data base.’

select 1
use assig-a
select 2
use assig-1

select 1
go top
do while .not. eof()

sclient = asaclient
sproject = asaproject
sperson = asaperson
spesd = asapesd
speh = asapeh
srole = asarole

select 2
go bottom
append blank
replace asclient with sclient
replace asproject with sproject
replace asperson with sperson
replace aspesd with spesd
replace aspeh with speh
replace asrole with srole

select 1
delete
skip

enddo
select 1
pack
grphmodeQ

A9

program 2.13

textmodeQ
@ 2,2 say ’Entering assigned skills into the database’

count = 1000
do while count 0

count = count -1
enddo

select 1
use assig-b
select 2
use assigs-1

select 1
go top
do while .not. eof()

sclient = asbclient
sproject = asbproject
sskill = asbskill
sperson = asbperson

select 2
go bottom
append blank
replace assclient with sclient
replace assproject with sproject
replace assskill with sskill
replace assperson with sperson

select 1
delete
skip

enddo
select 1
pack
grphmodeQ

A10

program 311 enter project details

textmode()
select 1
use proj-a
select 2
use proj-b
select 3
use proj-c

Get Project Details’

answer = ’ ’
a new project? (Y/N) ’ get answer
read
do while answer = ’y’ .or. answer = ’ Y’

iclient = 0
iproject = 0
ipname = ’ ’
iasd = 0
ipeh = 0
iphtd = 0

@ 6,10 say ’Client number ’ get iclient
@ 7,10 say ’Project number’ get iproject
@ 8,10 say’ name’ get ipname
@ 9,10 say ’Act. St. Date ’ get iasd
@ 10,10 say ’Expected Hours’ get ipeh
read

select 1
go bottom
append blank
replace paclient with iclient
replace paproject with iproject
replace papname with ipname
replace paasd with iasd
replace papeh with ipeh
replace paphtd with iphtd

A ll

select 3

go bottom
append blank
replace pcclient with iclient

answer = ’ ’
@ 12,10 say ’Enter a Required Skill? (Y/N) ’ get answer
read
do while answer = ’y’ .or. answer = ’Y’

iskill = 0
ishr = 0
isrd = 0
icomm = ’ ’

@ 14,10 say ’Skill number ’ get iskill
@ 15,10 say ’Skill Hrs. Req. ’ get ishr

@ 16,10 say ’Skill Req. Date ’ get isrd
@ 17,10 say ’Comments ’ get icomm
read

select 2
go bottom
append blank
replace pbclient with iclient
replace pbproject with iproject
replace pbskill with iskill
replace pbshr with ishr
replace pbsrd with isrd
replace pbcomm with icomm

answer = ’ ’
@ 12,10 say ’Enter a Required Skill? (Y/N) ’ get answer
read

enddo
answer = ’ ’
@ 5,10 say ’Enter a new project? (Y/N) ’ get answer
read

enddo
grphmodeQ

A12

program 312 transfer project details to the database

textmodeQ
select 1
use proj-a
select 2
use proj-1

@ 2,2 say Transfer Project Details to the Database’

select 1
go top
do while .not. eof()

sclient = paclient
sproject = paproject
spname = papname
sasd = paasd
speh = papeh
sphtd = paphtd

select 2
go bottom
append blank
replace plclient with sclient
replace p Iproject with sproject
replace pIpname with spname
replace plasd with sasd
replace plpeh with speh
replace p Iphtd with sphtd

select 1
delete
skip

enddo
select 1
pack
grphmodeQ

A13

program 3.1.3

textmode()
@ 2,2 say ’Entering Required Skills into the Data Base’
count = 1000
do while count 1

count = count -1
enddo

select 1
use proj-b
select 2
use rsk-1

select 1
go top
do while .not. eof()

sclient = pbclient
sproject = pbclient
sskill = pbskill
sshr = pbshr
ssrd = pbsrd
scomm = pbcomm

select 2
go bottom
append blank
replace rsl client with sclient
replace rsIproject with sproject
replace rs Iskill with sskill
replace rs Ishr with sshr
replace rslsrd with ssrd
replace rs Icomm with scomm
select 1
delete
skip

enddo
select 1
pack
grphmodeQ

A14

program 3.1.4

textmode()
@ 2,2 say ’Marking clients active’
count = 1000
do while count 1

count = count - 1
enddo

select 1
use proj-c
select 2
use client-1

select 1
go top
do while .not. eof()

sclient = pcclient
select 2
go top
locate for cl client = sclient
if .not. eof()

replace clcs with 1
select 1
delete
else

answer = ’ ’
@ 5,10 say’Client number ’
@ 5,25 say sclient
@ 5,30 say ’not set up’
@ 7,10 say ’Press space bar to continue’ get answer
read
endif
select 1
skip

enddo
select 1
pack
grphmodeQ

A15

program 4.1

textmode()
@ 2,2 say ’Client Input’
select 1
use client-1
answer = ”
u want to input another client (Y/N) ’ get answer
read
do while answer = ’y’ .or. answer = ’Y’

iclient = 0
icname = ’ ’
icaddress = ’ ’
icont = ’ ’
ics = 0
•___ 7 7lCp =
@ 7,10 say ’Clent number’ get iclient
@ 8,10 say’ name’get icname
@ 9,10 say’ address’ get icaddress
@ 10,10 say ’Contact name’ get icont
@11,10 say ’ Tel. number’ get icp
read

select 1
go bottom
append blank
replace cl client with iclient
replace clcname with icname
replace clcaddress with icaddress
replace clcont with icont
replace clcs with ics
replace clcp with icp

answer = ’ ’
@ 5,10 say ’Do you want to input another client (Y/N) ’ get answer
read

enddo
grphmodeQ

A16

program 7.1.1

textmode()
select 1
use timesl-b
select 2
use timesl-a

answer = ’ ’
a time sheet? (Y/N)’ get answer
read
do while answer = ’y’ .or. answer = ’ Y’

iperson = 0
iclient = 0
idate = 0
iproject = 0
ihtw = 0
ihtg = 0
iecd = 0

@ 10,10 say ’Person number ’ get iperson
@11,10 say ’Weekend date ’ get idate
read
select 1
go bottom
append blank
replace tlbperson with iperson
replace tlbdate with idate

answer = ’y’
@ 13,10 say ’Enter a Time Sheet Line’
do while answer = ’y’ .or. answer = ’ Y’

@ 15,10 say ’Client number ’ get iclient
@ 16,10 say ’Project number’ get iproject
@ 17,10 say ’Hours this week’ get ihtw
@18,10 say ’Hours to go ’ get ihtg

A17

@ 19,10 say ’Exp. comp, date’ get iecd
read

select 2
go bottom
append blank
replace tlaperson with iperson
replace tladate with idate
replace tlaclient with iclient
replace tlaproject with iproject
replace tlahtw with ihtw
replace tlahtg with ihtg
replace tlaecd with iecd

@ 20,10 say ’More time sheet lines? (Y/N)’ get answer
read
iclient = 0
iproject = 0
ihtw = 0
ihtg = 0
iecd = 0

enddo
answer = ”
@5,10 say ’Enter a time sheet? (Y/N)’ get answer
read

enddo
grphmodeQ

A18

Program true

trueflagO

test 1.1.2

use cons-a
go top
if eof()
falsflag()

else
trueflagO

endif

test 1 .1 3

use cons-b
go top
if eof()

falsflag()
else

trueflagO
endif

test 2.1.1

falsflag()
use rsk-1
go top
do while .not. eofO

ifrslcomm = ’
trueflagO

endif
skip

enddo

test 2.12

use assig-a
go top
if eof()

falsflag()
else

trueflagO
endif

test 2 .1 3

use assig-b
go top
if eof()

falsflag()
else

trueflagO
endif

test 3.1.2

use proj-a
go top
if eof()

falsflag()
else

trueflagO
endif

test 3.1.3

use proj-b
go top
if eof()

falsflag()
else

trueflagO
endif

A20

test 3.1.4

use proj-c
go top
if eof()

falsflag()
else

trueflag()
endif

test 61

use timesl-2
go top
if eof()
falsflag()

else
trueflag()

endif

test 6.2.2
use bill-b
go top
if.eof()

falsflag()
else
trueflagO

endif

test 6.3

use bill-c
go top
if eof()
falsflag()

else
trueflag()

endif

A21

test 7.1.2

use timesl-b
go top
if eof()
falsflag()

else
trueflagO

endif

test 7 .1 3

use timesl-a
go top
if eof()
falsflag()

else
trueflagO

endif

test 7.4

use tim esl-1

go top
if eof()
falsflag()

else
trueflagO

endif

A22

