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Abstract

Glow discharge optical emission spectroscopy (GDOES) is a modem analytical technique for 
the analysis of the chemical composition of bulk materials and the depth profiling of multi-layer 
structures. Most research in the use of GDOES has concentrated on developing accurate 
methodologies for quantitative analysis and depth profiling. However, this thesis presents a 
study on various aspects of surface layer evolution under argon ion etching in GDOES.

The GDOES technique relies on the ion bombardment of sample surfaces which removes 
material from the surface, layer by layer, on the atomic scale. During the surface layer 
evolution, the ion bombardment causes different surface micro-textures and preferential 
sputtering in individual crystallites, which can cause degradation of depth resolution in GDOES 
depth profiling. Experimental results using pure iron specimens in this study show a correlation 
between textures induced by GDOES sputtering and the sputtering rate, and a difference in the 
sputtering rate for crystallites with different crystal orientations.

In studying ion bombardment by GDOES in semiconductors, a novel pitting morphology on the 
surface of a carbon-coated silicon wafer was observed and characterised in detail. This may 
have a potential application in the fabrication of micro-lens arrays. The generation and 
development of the pits were investigated, which are believed to be dependent upon the 
different sputtering rates between the film and the substrate. Geometric features o f the pits were 
obtained using atomic force microscope (AFM) and the sphere-like surface of the pit was 
confirmed. The experimental work in this study also shows that the Grimm source in GDOES 
is a powerful etching tool. Eroded surfaces of metal specimens with little damage to the 
crystallites and phase structures were obtained by GDOES etching. The method was found to 
be an ideal process for specimen preparation for electron back-scattered diffraction (EBSD). 
The GDOES-etched surface of single crystal copper showed that the damaged layer formed by 
mechanical polishing using 6 micron diamond paste was about 1-2 pm and was removed after 
only a few tens of seconds of GDOES etching. GDOES etching was also applied to an 
investigation of internal oxides in carburised steels. The eroded surfaces provided plan views of 
the morphologies of internal oxides of carburised steels by scanning electron microscopy 
(SEM) images. Results of energy dispersive spectrometer (EDS)/SEM elemental mappings of 
different layers of the steels were in good agreement with GDOES depth profiles, which 
revealed that the elements Cr, Mn and Si were involved in the oxides.

The last section of the thesis is about hydrogen detection in GDOES. The study includes a 
detailed analysis of: hydrogen contamination in GDOES, the hydrogen detection status of 
GDOES, the sample matrix effects on hydrogen detection and hydrogen effects on elemental 
concentrations in GDOES measurements. The experiments have confirmed that water vapour is 
the main source of the hydrogen contamination. When the GDOES system has stabilised, 
GDOES could be employed to differentiate specimens containing different concentrations of 
hydrogen. The experiments also showed that different hydrogen intensities could have resulted 
from different matrices even when the specimens were believed to contain no hydrogen. A 
possible explanation could be that variations of the y-electron ejection from different matrices 
and different sputtered atoms in the glow discharge, which altered the plasma and the 
energy distribution in the glow region, resulted in the variation o f  the excitation o f  the 
hydrogen atom s in the source. However, there are still some results in the matrix effects 
which could not be explained. The experiments concerning the consequence o f hydrogen 
effects on apparent elemental concentrations in GDOES measurements were also undertaken 
using two steel standards. The results indicated that the hydrogen in the source has a negative 
effect on the signal from most of the metal elements in the specimens, and a positive effect on 
the non-metal and semiconductor elements.
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Chapter 1 Introduction

Glow Discharge Optical Emission Spectroscopy (GDOES) is a modem analytical 

instrument for analysis o f the chemical composition o f bulk materials and depth 

profiling o f multi-layer structures. Sputtering and atomic optical emission are 

combined in the Grimm source (Grimm, 1968) in GDOES, providing an extremely 

rapid, accurate and reliable technique with the advantages o f simple specimen 

preparation, relatively deep analytical depth and good reproducible measurements 

compared to other quantitative techniques. GDOES is now routinely used to analyse 

industrial and research materials (Payling, 1997a).

The motivation for this work was to examine the special considerations which must be 

taken into account when GDOES is used to do analyses o f quantitative depth profiling. 

Most research in the use o f GDOES has concentrated on developing accurate 

methodologies for quantitative depth profiling. However, the study on GDOES in the 

Materials Research Institute o f Sheffield Hallam University, where this project was 

undertaken, has presented some results and novel applications, which have not been 

found in the literature. This thesis presents a study on various aspects o f surface layer 

evolution under argon ion etching in GDOES. The GDOES technique relies on ion 

bombardment o f the specimen surface which removes material from the surface layer 

by layer, on the atomic scale. During the surface layer evolution, the ion bombardment 

can cause different surface micro-textures and preferential sputtering in individual 

crystallites, which can cause degradation o f depth resolution in GDOES depth profiling 

(Chapter 3). On the other hand, the ion bombardment can induce a new morphology on 

a surface with previously coated material o f a low sputtering rate, for example the 

pitting phenomenon (Chapter 4), which may have a potential application in the 

manufacture o f micro-lens arrays, such as for new unique-marker technology. The
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Grimm source in GDOES is also a powerful etching tool. The eroded surface has little 

damage in the underlying crystallites and so it can be used as a method for preparing a 

surface for electron back-scattered diffraction (EBSD), which is a powerful method for 

measuring crystallite orientation in microcrystalline materials. The etching method can 

also be used to obtain a plan view o f internal oxides o f steels using scanning electron 

microscopy (SEM) (Chapter 5). In Chapter 6, the study is focused on various issues 

which impact upon hydrogen measurement in the glow discharge source o f the GDOES 

instrument.

In GDOES depth profile analysis, the elemental intensities after a particular sputtering 

time can be converted into an elemental concentration and sputtered depth. Therefore, 

the best depth resolution would be obtained when the sample surface is eroded layer-by- 

layer uniformly. However, the specimen is often eroded non-uniformly to a greater or 

lesser degree. On a gross level, the depth resolution is affected by the shape o f the 

sputtered crater and roughness o f the bottom surface o f the crater (Quentmeier, 1997). 

The best crater shape can be obtained by choosing optimum discharge conditions, i.e. 

the voltage, the current and the argon pressure (Angeli et al., 1993; Quentmeier 1994 

and Bengtson, 1996). The roughness o f the bottom surface is believed to be due to 

differential sputtering o f the sample material depending on size and orientation o f the 

crystal structures (Quentmeier, 1997 and Angeli, 1997). Until now there have been no 

detailed reports in the literature o f the orientation effects on the sputtering rate in 

GDOES. In this study, the effect o f  crystal orientation on the sputtering rate o f  different 

crystals and the effect on depth resolution have been investigated for the first time in 

detail (Chapter 3). Pure iron was chosen as the test specimen because o f its 

metallurgical significance and its moderate sputtering rate relative to other elements 

commonly analysed in GDOES. With its high purity, the influence o f non-uniformly 

distributed elements in the specimen on sputtering can also be eliminated. The 

specimens were sputtered in the GDOES with a dc source for different sputtering times 

under the condition o f optimal parameters for best sputtered crater shape. SEM was 

used to observe the micro-textures on the bottom o f sputtered craters. The orientations
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of the selected 'micro' areas with typical surface textures were obtained by EBSD. The 

sputtered depth corresponding to the selected areas were measured based on the 

correlation between the SEM images and profiles o f craters recorded by a profilometer. 

Different sputtering rates between the [001] and [111] poles have been observed and 

there is also a correlation between the eroded crystal surface textures and crystal 

orientation. The results imply that samples with small grain size will have the best 

possible depth resolution in GDOES.

Until now, all applications o f GDOES have focused on chemical composition analysis 

and depth profiling o f materials. However, the Grimm source is also in itself a 

powerful tool to ion-etch the surface. In Chapter 4, it is demonstrated that GDOES 

etching can introduce novel surface phenomena on silicon wafers. Although the 

analytical capability o f the GDOES is not part o f the etching process, it is required in 

this particular study in order to estimate when a surface layer (which is crucial for the 

pitting process that is being characterised) has been partially or completely removed. 

By stopping the etching process at well-defined points during the removal o f the surface 

layer, the GDOES can be used to examine the effects o f sudden changes in the 

sputtering rate at surface layer interfaces. This study is therefore facilitated by the 

GDOES’s analytical capability. It is known that surface topography can be developed 

under extended high energetic ion bombardment from existence o f small pits to a 

characteristic shape (Carter et al., 1983). In the present work, a silicon surface with 

carbon coating was eroded in the GDOES. Immediately after the carbon layer was 

completely removed (as measured by the loss o f the carbon signal in the analytical part 

o f the GDOES), uniformly distributed micron-size pits were left on the surface o f  the 

silicon. The mechanism o f pit generation appears to be due to a large difference in the 

sputtering rate between the coating and the substrate. The geometry o f  the pits was 

measured using atomic force microscopy (AFM), which further revealed the pit has a 

spherical surface. These pits have potential application as micro-lens arrays.
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In the first part o f  Chapter 5, the results o f the EBSD patterns collected from the 

surfaces o f the pure iron and the copper after GDOES etching have shown that a high- 

power Grimm source, as generally employed in GDOES, is an excellent tool for 

removing surface damage in iron specimens prior to study using EBSD. The technique 

is extremely fast and can in principle be applied to any sample, without the use o f  any 

chemicals. The Grimm source itself is a simple system (e.g. as compared to an ion 

beam thinner), and so could represent a very cheap and fast specimen preparation route.

GDOES was also used successfully in the investigation o f internal oxides in carburised 

steels by the plan view o f the oxides in the revealed layer and the depth profiling in 

GDOES. Most o f the prior studies on internal oxidation have utilised cross-sections o f  

the surface layers, either by SEM for a cross-sectional view o f oxides on the micron 

scale, or by Transmission Electron Microscopy (TEM) to determine the type o f  the 

oxides (Mural et a l , 1997). However, these approaches cannot reveal a plan view o f  

morphology and distribution and a depth location o f the oxides. In the second part o f  

Chapter 5, the internal oxides o f  the carburised steels were plan viewed in SEM after 

GDOES etching down to a surface layer with known depth. The oxides revealed in 

different layers showed different morphologies. Energy Dispersive Spectrometer (EDS) 

mapping in SEM identified that the oxide elements were Si, Cr and Mn, which is in 

agreement with the GDOES depth profiles for these elements.

Accumulation o f hydrogen atoms in steel causes hydrogen embrittlement, which shows 

a loss in ductility and toughness o f the steel. Hydrogen in metal can also produce 

cracks under the influence o f stress before use as well as in service applications o f  the 

steels (Timmins, 1997). However, detection o f hydrogen in steels often causes 

problems due to its immobility and light atomic mass. Hydrogen detection is 

impossible for most traditional surface analytical techniques (Lanford, 1982) and only a 

few techniques can be employed to do a surface analysis for hydrogen (Marwick, 1991; 

Tirira et al., 1996 and Payling, 1997f). GDOES is one o f  the few analytical techniques 

that are sensitive to hydrogen. It is fast, easy to operate and relatively inexpensive



compared to others. With a relatively high sputtering rate, GDOES with a dc source 

can carry out bulk and depth profiling analysis o f metal samples with tens o f microns of 

depth, which makes it possible to use this method for hydrogen analysis o f steels. Few 

applications in hydrogen detection have been found both in surface and bulk analysis 

(Alexandre et al., 1981). The reasons are probably the lack o f standards for the 

calibration o f hydrogen and hydrogen contamination in the source that is inevitable in 

GDOES operation. In view o f this, a research programme was set up to test the 

possibility o f using GDOES for detection o f hydrogen and to determine how sensitive 

the technique could be to hydrogen, so as to establish whether or not this could be used 

as, e.g., a routine test on steels or other metals that may suffer hydrogen attacks 

(Chapter 6).

Hydrogen contamination in the GDOES source was first tested, with the results 

showing that the hydrogen mainly came from water vapour deposited on the surfaces in 

the glow discharge source and measured samples, from hydrocarbons backstreaming 

into the chamber from the pumping system and from hydrogen contamination in the 

argon gas. These are in agreement with the observation o f Payling (1997a). A 

minimum limit o f the hydrogen intensity due to contaminants is hard to obtain as the 

hydrogen signal decays exponentially with an increase in the sputtering time, even after 

long etching times. However, after an appropriate 'warming up' period o f the GDOES, 

a so-called ‘hydrogen detection status’ can be obtained: a condition in which the 

GDOES is optimally sensitive to the detection o f hydrogen. In this status, different 

levels o f hydrogen in steels were differentiated. Furthermore, the experiments in this 

chapter significantly revealed that differences in the intensities o f the hydrogen 

contamination in GDOES can result from different sample matrices in the hydrogen 

detection status, even when the samples are believed to have no hydrogen. This 

phenomenon is named as matrix effects on the intensity o f hydrogen contamination in 

GDOES in this study. It was followed by discussions in consideration o f the relevant 

ionisation and excitation processes in the glow discharge. Then some results o f 

hydrogen detection in GDOES were obtained. They show that the GDOES in the
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hydrogen detection status has an ability to differentiate the hydrogen levels between 

steels with and without hydrogen loading. The GDOES can also detect the hydrogen at 

the interface between the coating and the substrate for electroplated samples.

On the other hand, hydrogen in the source can affect intensities o f detected elements in 

GDOES measurements and, consequently, the apparent concentrations (Hodoroaba et 

al., 2000a and 2000b). In Chapter 6, a simple experiment was also set up to confirm the 

hydrogen effect on the intensities and concentrations measured in the GDOES when 

using a fixed voltage and current with a variation in Ar pressure. The operation was 

without the addition o f hydrogen by introducing a mixed gas. It was shown that the 

hydrogen mainly comes from the water vapour that is inevitable in GDOES 

measurements. The experimental results for two stainless steel standards indicated that, 

for the elements in the standards, the hydrogen has negative effects on the level o f the 

signal for most o f the metal elements and positive effects for non-metal and 

semiconductor elements, which could be due to the hydrogen in the plasma modifying 

the energy distribution o f the energetic particles. After the quantification procedure, the 

effects on concentrations can be compensated to some degree by using the ratio values 

o f the elemental intensities to that o f argon. However, the results o f the relative 

variations for Si, C, Cr and Mn show that the hydrogen effects on these elements should 

not be ignored in a quantitative analysis in GDOES. This is especially true for the 

analysis o f layers a few microns thick, because the hydrogen contamination from the 

water vapour could be very high during the first tens o f seconds o f sputtering time. As 

a consequence o f the hydrogen effect on intensities, the sputtered depth, which is 

calculated based on the elemental intensities, will also be affected.

The last chapter includes the conclusions o f this study. Some ideas for future work are 

also presented concerning the subjects in this study. For example, experimental work 

could be done to combine the effects o f surface binding energy and crystal orientation 

effects on the sputtering rate in GDOES in order to get a further understanding o f 

sputtering rate parameters o f importance in low ion energetic bombardment. For the

6



application o f GDOES to the investigation o f  internal oxides o f  carburised steels, a 

combination o f SEM imaging and the argon ion etching o f  the surface would give a 3-D 

image o f  the internal oxide. The plan view o f  oxide regions o f relatively large size has 

also provided the opportunity to determine the crystalline structure using EBSD pattern 

detection.
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Chapter 2 Background of GDOES

2.1 Introduction

Glow Discharge Optical Emission Spectroscopy (GDOES) is a chemical composition 

analytical instrument for solid samples. Combining sputtering and atomic emission in a 

Grimm source (Grimm, 1968), it provides a modem, extremely rapid technique for bulk 

analysis and depth profiling o f samples. The Grimm source can work in conditions o f  

direct current (dc) and radio frequency (rf) glow discharge. GDOES with a dc source is 

used in the analysis o f conductive samples, while an rf source is used for both 

conductive and non-conductive samples. Light emitted by the glow discharge is 

analysed by an optical spectrometer. With a wide range o f optical wavelength analysis 

from llOnm to 800nm, GDOES can analyse almost all o f the elements in the periodic 

table. Relative standard deviations (RSD) o f  analytical precision are 0.1-1%  for major 

and minor analytes and detection limits are in the range 1-10 ppm for bulk analysis 

(Bengtson, 1996). By employing the concept o f emission yield, quantitative procedures 

o f GDOES have been developed for sample analysis to produce characteristics showing 

elemental concentrations against analysed depth. For surface depth profile analysis, the 

analytical precision and the detection limit are very close to that for bulk analysis. 

GDOES can analyse up to a depth o f ~  100 pm within a single bum for steel samples, 

yet the minimum information in depth is in the scale o f a few nanometres. The depth 

resolution o f depth profiling in GDOES is believed to be about 15% o f analysed depth. 

In recent decades, the technique has been successfully applied in routine tests and 

investigations o f industrial surfaces o f steels and alloys, thin films and hard coatings.

In this chapter, a general literature review on the GDOES technique is presented, which 

includes a description o f  the glow discharge source, the glow discharge process, the 

sputtering o f the sample surface, the quantification procedures, analytical performance



and recent applications. The description focuses on GDOES instruments with dc 

sources as most o f the studies in this thesis have been undertaken on this type o f  

instrument.

Much o f the introduction described here is covered in the major single-proceedings text 

edited by Payling et al. (1997). In what follows, the original literature is cited where 

possible, although most o f  the relevant chapters in Payling et a l  (1997) would provide 

the reader with a more thorough, and up-to-date analysis. Works published later than 

1997 are cited in full.

2.2 Glow Discharge Source and GDOES Instruments

2.2.1 The Grimm source in GDOES

All experimental work described later in this study has been performed in a GDOES 

which employs a standard Grimm glow discharge source. The Grimm source works on 

the same principle as a typical laboratory glow discharge source but with a different 

configuration. A typical laboratory glow discharge source, shown in Figure 2.1, 

consists o f two planar, parallel electrodes, one the cathode and the other the anode, 

located inside a cylindrical glass vacuum tube filled with gas (e.g. argon) at low  

pressure. A  voltage is applied between the cathode and the anode. When the conditions 

(gas pressure, voltage and current) are suitable and the discharge has ignited, the 

cathode is fully covered by a dark space. It is followed by the brightest band, called the 

negative glow, and a region o f dark and bright bands, called the positive column, which 

extends to the anode. When the anode is close to the cathode, the positive column 

disappears and only the dark space and the negative glow remain between the cathode 

and the anode. This is the fundamental structure o f glow discharge (Chapman, 1980).

The innovation o f the Grimm source is probably the most important development in the 

GDOES technique. The principle o f the source is based on the fact that the geometry



and the positioning o f the electrodes strongly influence the distribution o f the luminous 

zones inside the tube (Bouchacourt and Schwoehrer, 1997):

• the positive column diminishes and then disappears when the anode is sufficiently 

close to the cathode;

• the anode glow and the anode dark space also disappear and only the negative glow 

and the cathode dark space remain when the anode penetrates into the negative 

glow;

• the discharge ceases and no luminous phenomena are observed if  the anode is 

brought into the plane o f the cathode dark space.

Vacuum System Gas Inlet

AnodeCathode

Cathode Dark Negative Glow Positive Column
Space

Figure 2.1. Schematic diagram of a typical laboratory glow discharge source.

A schematic cross-section o f the Grimm source is shown in Figure 2.2. In the Grimm 

source, the anode is a hollow tube rather than the flat plate used with the laboratory 

glow discharge tube, and a flat sample acts as the cathode. The distance between the 

cathode and the anode is between 0.1 and 0.2 mm. The sample to be analysed is 

mounted onto an O-ring seal, completing a chamber. The chamber is first evacuated, 

then argon is bled continuously through the anode to maintain a low pressure (typically 

300-1300 Pa). A voltage is then applied between the anode and the sample 

(400-1200 V) (Payling, 1997a). Interaction between electrons and the argon atoms 

causes positive ionisation o f the argon. The argon ions are then driven by the negative 

bias in the cathode dark space to impact the sample, causing erosion (sputtering) o f the 

sample surface. These sputtered atoms move away from the surface o f the sample and 

are excited in the negative glow region through collisions with the electrons and 

metastable argon atoms, thus emitting photons. Energies o f the emitted photons
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correspond to those o f electrons in the atoms falling from a higher level to a lower level. 

Hence, the emitted photons have the characteristic wavelength o f the elements from 

which they were emitted. These photons pass through the window o f the source and 

their energy is detected to analyse the materials being sputtered from the sample 

surface. The processes o f glow discharge, cathode sputtering and de-excitation with the 

emission o f light in the Grimm source are shown in Figure 2.3 (Bouchacourt and 

Schwoehrer, 1997). During an analysis, most o f the sputtered material is deposited on 

the inside o f the anode tube and the edge o f the sputtered crater o f the sample. After the 

analysis, the deposited materials inside the tube must be removed by a high speed drill.

anode
tube

water
circulation

vacuum

water
circulation

emission
lens

argon
ions

air jack

O-ring

cathode
block

vacuum argon 
(I) inletinsulator

Figure 2.2. A schematic 
cross-section of the Grimm 
source

Cathode
Surface

Cathodic 
dark space

Cathode
Sample

%

Negative glow

Anode

Gas

Electrons

Positive ionised species 

Cathode atoms in fundamental 

state

Cathode atoms in excited state 

Photons

~  Positive ions 
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Figure 2.3. Schematic diagram of the glow discharge processes, cathode sputtering 
and de-excitation of the sputtered atoms with the emission of light in the Grimm source 
(after Bouchacourt and Schwoehere, 1997).
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2.2.2 Current-voltage-pressure characteristics of glow discharge source

The glow discharge process and hence the sputtering o f  the cathode (sample) can be 

controlled by three operating parameters: voltage, current and gas pressure from outside 

o f the source. In the abnormal glow region, the maintaining voltage Ug, i.e. the voltage 

between the anode and the cathode, is given by Weston (1968) as

Ug * U ' +igRg , (2.1)

where U f is the turn-on potential; ig is the source current and Rg is the source resistance. 

No current flows until Ug exceeds U f. Comparing the effects o f the gas pressure (Pg), 

cathode area and distance between the anode and the cathode, Eqn. (2.1) can be 

expressed in the GDOES system by (Payling, 1994 a and 1997a) as

Ak'ia
£ / * £ / ' + ------ 8-r , (2.2)

g nDmp \  K }

where A:'is a constant relating to the distance o f  anode to cathode; a is a constant 

between land 2; m and b are both approximately 2 and D  is the inside diameter o f  the 

anode. Most o f the constants in the equation appear to be dependent on the sample 

matrix. However, the three parameters, voltage, current and argon pressure, are not 

independent o f  each other. If two o f the three parameters are kept constant, the third 

one will find its own value depending on the cathode matrix. In theory, the source can 

only work under the one o f three operating modes: with either current, voltage or argon 

pressure as a variable. Figure 2.4 shows the current-voltage-pressure characteristics o f  

the source operating with a steel sample. In practice, all o f the three operating modes 

have been applied in GDOES measurements. For example, the mode o f variable 

current could be used in a bulk analysis because o f the rapid cleaning o f  the sample 

during a pre-bum which is required to remove surface contamination o f  the sample 

prior to analysis, and the mode o f variable argon pressure is becoming increasingly 

important in quantitative analyses following improvements in quantitative theories o f  

GDOES. Which mode is optimal will depend on the application and samples to be 

analysed (Bouchacourt and Schwoehrer, 1997).
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Figure 2.4. The current-voltage-pressure characteristics of the Grimm source in 
GDOES using steel as the cathode sample (Payling, 1994).

2.2.3 Instrumentation of GDOES

Figure 2.5 shows a schematic layout o f the GDOES instrument used in the work 

presented in this thesis (Leco Corporation, 1992). The emitted photons pass through the 

window o f the source, which is capable o f transmitting photons in the wavelength range 

o f 110-800 nm, and then into the optical spectrometer through an entrance slit. The 

photons with different characteristic wavelengths (and hence energy) are converted into 

intensity signals by the photomultiplier tubes in the spectrometer. The intensity signals 

for the elements to be analysed can be converted into elemental concentrations o f the 

sample (for bulk analysis), or into the elemental concentrations as the function of 

sputtered depth (for depth profiling analysis), based on GDOES bulk or depth profiling 

calibration procedure using certified reference samples with known compositions and 

sputtering rates.

PHOTOMULTIPLIER

GLOW DISCHARGE SOURCE

Figure 2.5. Schematic layout of 
the GDOES instrument used in 
this study.
(Leco Corporation, 1992)
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There are two kinds o f spectrometer. The first is a polychromator, with many fixed 

channels. It can record many elemental signals simultaneously. Another is a 

monochromator. It has only one channel but is tuneable over a wide wavelength range. 

The GDOES (Leco GDS 750), which was employed in this study, is equipped with a 

polychromator which is able to detect 44 individual elements and can analyse 24 

elements in a single measurement.

2.3 Glow Discharge in GDOES

2.3.1 Structure of the glow discharge

Discharge is a breakdown phenomenon in a conducting ionised gas. In a voltage- 

current characteristic o f  gas discharges, as shown in Figure 2.6 (Wagatsuma, 1997), 

when the voltage increases to Ub, called the breakdown voltage, the discharge current 

increases rapidly and a dark discharge (region A-B) is produced. Gas discharge is a 

self-sustaining process. Initially electrons accelerate and collide with gas particles 

causing ionisation o f  the gas. The resultant charged particles can also contribute to the 

ionisation collision. When the discharge current is increased further, the voltage 

decreases and reaches a constant value U„ (the region C-D). In such discharges, a zone 

with visible light in the discharge body can be observed. Glow discharge corresponds 

to the region D-F, created at reduced pressures o f  several hundred Pa and discharge 

voltages o f a few hundred volts, with characteristic ‘glow ’, i.e. blue luminance in the 

case o f  argon as the carrier gas. The glow discharge can be divided into two regions, 

i.e. ‘normal’ glow (D-E) and ‘abnormal’ glow (E-F). The 'normal' glow discharge has 

the characteristic that the voltage remains constant as the current is changed by several 

orders o f magnitude (e.g. from 10'4 to 10'2 A). Under these conditions, the current 

density at the cathode remains constant, while the area o f  the cathode covered by the 

glow expands proportionally with the current. When the cathode is fully covered, an 

increase in current is necessarily associated with a rise o f  the current density, so that a
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larger cathode emission is required, and this again increases the cathode fall and the 

potential. The region with the positive characteristic, i.e. where the voltage increases as 

the current increases, is that o f the 'abnormal' glow discharge. In analytical application 

o f GDOES, it is the ‘abnormal’ glow discharge which is employed as a light excitation 

source (Boumans, 1972).

Normal glow discharge

Voltage Abnormal glow dischargeTownsend dark discharge

Arc discharge

10'1 10

Figure 2.6. Voltage-current 
characteristic of gas discharges 
(Wagatsuma, 1997).

Region A-B: dark discharge;
Region C-D: visible light observed in 
the discharge body with a constant 
voltage;
Region D-F: glow discharge, which 
can be divided into two region: a 
‘normal’ glow (D-E) and ‘abnormal’ 
glow (E-F). The 'abnormal' glow is 
employed as a light excitation source 
in GDOES analysis.

Current/A

The glow discharge process depends on carrier gas, gas pressure, voltage, current, 

geometry and electrodes. In particular, the discharge structure may alter depending on 

the distance between the anode and the cathode. As the space between the electrodes is 

reduced, the positive column shrinks. When the space is reduced further (the space is 

just a few times the cathode dark space thickness and the minimum separation is about 

twice the dark space thickness), the positive column and the Faraday dark space finally 

disappear whilst leaving the cathode dark space and negative glow unaffected. Such a 

glow discharge is called the ‘obstructed’ glow, as described by Chapman (1980) and 

shown as Figure 2.7(a). This structure o f  glow discharge is a fundamental structure 

model o f glow discharge, and is just the basic model in the Grimm source in GDOES. 

As can been seen in Figure 2.7(b), Up is the plasma potential, which means that the 

glow region is at a small positive potential. Since a voltage Ug is applied between the
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electrodes (the anode is grounded), there is an electric field produced in the cathode 

dark space, called cathode fall, the potential difference being close to Ug.

Glow Region

A node Dark SpaceCathode Dark Space

AnodeCathode

(b) U,p 0 (ground)

D istance

Figure 2.7. (a) The ‘obstructed’ glow, 
which is a fundamental structure model 
of glow discharges and is the basic 
model in the Grimm source in GDOES. 
(b) The plasma potential in this model 
(Chapman, 1980).

2.3.2 Collision processes and behaviour of electrons in the plasma

2.3.2.1 Collision processes

Collision processes in the plasma have been reviewed by Chapman (1980) and Bogaerts 

and Gijbels (1997), which include the most relevant processes in analytical glow 

discharges, i.e. ionisation (and recombination) and excitation (and de-excitation), and 

the plasma species playing a role in these processes: electrons, argon atoms, singly 

charged positive argon ions, argon atoms excited to a variety o f energy levels including 

metastable levels, and atoms and ions o f the cathode material. However, the collision 

processes are much more complicated, for example the collision processes may involve 

multiple-charged particles, clusters and negative ions, and probably not all processes are 

known and understood. Some o f the collision processes are believed to play a dominant 

role and should not be neglected in a full description o f the glow discharge o f GDOES.
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Electron impact ionisation of argon atoms is one o f the most important and best- 

known processes in the glow discharge, simply expressed as

Ar° +e~ —> A r+ + 2e~ , (2.3)

where Ar° and A r+ are argon atoms in the ground state and argon ions with a single 

charge respectively. This collision is the essential process for the plasma being self- 

sustaining as it produces an extra electron which can ionise other argon atoms. The 

collision can have two effects: one is the ionisation o f argon atoms from the ground 

level, which needs a minimum energy o f  15.76 eV; the other is excitation to the 

metastable levels at 11.55 eV or 11.72 eV.

The metastable levels o f an argon atom are created when energetic particles collide with 

it. Electron impact excitation of argon atoms is expressed as

Ar° + e~ —» Ar* + e~ , (2.4)

where Ar* is the argon atom in the metastable levels. The minimum energy transferred 

is 11.55 eV, which is less than the ionisation energy o f an argon atom (15.76 eV). 

Therefore, the energy level is not high enough to eject an electron from the atom but 

can only excite the electron to a higher energy level within the atom. Sputtered atoms 

also can be excited to metastable levels. But the metastable argon atom has a longer 

life-time before it returns to the ground state than the metastable sputtered atoms.

In addition to processes involving argon atoms there are processes involving the analyte 

(sputtered) atoms. Electron impact ionisation and excitation of sputtered atoms are 

another two important processes in the glow discharge

M ° + e ~  - > M + +2e~ , (2.5)

M °  +e~ - + M *  +e~ , (2.6)

where M° ,  M + and M*  represent sputtered atoms in the ground, a single positive 

charged and excited states, respectively. The mechanisms o f these two processes are 

the same as for the processes o f electrons impacting argon atoms. These processes will
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depend on the average temperature, density o f electrons and cross-section o f the 

excitation. However, since the cross-section curve as a function o f the electron energy 

is o f comparable shape and magnitude for all elements, the ionisation and excitation 

processes are considered as rather unselective. Electron impact ionisation o f sputtered 

atoms can also produce an extra electron for the plasma being self-sustaining. Electron 

impact excitation o f sputtered atoms is one o f the two excitation processes for sputtered 

atoms (the other is metastable argon atom impact excitation o f a sputtered atom). Any 

excitation o f the sputtered atom will directly affect its light emission and, hence, the 

intensity o f the element recorded in GDOES analysis.

Metastable argon atom impact excitation of sputtered atoms is o f the form

M ° +  Ar*n ->  M* + Ar° . (2.7)

In the glow discharge in GDOES, the metastable argon atoms can also excite the atoms 

in the source to produce emitted photons.

Penning ionisation involves a process such that

M ° + Ar* —> M + + Ar° + e~ , (2.8)

where Ar* is the argon atom in the metastable state with energy 11.55 eV or 11.72 eV. 

Since most o f the atoms o f the periodic table have an ionisation potential lower than this 

value, then sputtered atoms can be ionised by collision with argon metastable atoms. 

Penning ionisation is another important process which results in the production o f 

charged particles. These charged particles can again contribute to ionisation collisions 

for the self-sustained discharge. Elements that cannot be ionised by Penning ionisation 

in argon include H, N, O, F, Cl and Br.

2.3.2.2 Behaviour of electrons in the glow discharge

Electrons in the glow discharge in GDOES have been classified into at least three 

groups (Wagatsuma, 1997), i.e. the y-electron, secondary electron and slow electron. 

The y-electrons are the electrons which are ejected from a cathode surface when argon
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ions impact the surface. Their energy is the highest among the electrons in the three 

groups. After the glow discharge has built up, the y-electrons are the primary electrons, 

maintaining the glow discharge to be self-sustaining by collisions with argon and 

sputtered atoms in order to produce extra electrons which can contribute to the 

ionisation processes. The secondary electrons are produced from the ionisation 

processes o f argon and sputtered atoms and collide with the argon and sputtered atoms 

in the plasma to cause the excitation o f the atoms. The slow electrons, which are 

trapped by the plasma potential because o f their low kinetic energies, are the largest part 

o f the glow electrons. Electron temperature in the plasma is determined mainly by this 

group o f electrons and is in the range o f a few eYs down to 0.1 eV. On the other hand, 

the electrons are also lost mainly through electron-ion recombination. In fact, the glow  

discharge is self-sustaining in a balance o f the production and reduction o f  electrons.

The energetic electrons also provide the only mechanism which enables energy 

coupling from the external power supply to the bulk plasma. The energy in the plasma 

is lost mainly through heating o f the electrodes by energetic particles. In view o f the 

balance o f  energy in the glow discharge, the lost energy must be compensated for 

through the energetic electrons in order to obtain a steady state discharge.

2.3.3 Properties of particles in the glow discharge

The particles involved in GDOES include the electrons, the positive ions, the excited 

atoms and the sputtered atoms. Fang and Marcus (1991) have investigated the 

properties o f particles in the plasma using a single cylindrical Langmuir probe with a 

computer-controlled voltage driving system. The glow discharge sputtering device has 

a simple, diode-plane electrodes configuration. Different cathode matrices -  copper, 

copper-zinc alloys, molybdenum, nickel, titanium and stainless-steel were sputtered in 

discharge conditions with constant current and argon pressure. The current and argon 

pressure were 8 mA and 2.7 mbar, respectively, at which the glow discharge was 

believed to be in the abnormal region. Axial distributions and the values o f  electron 

temperature, average electron energy, and electron and positive ion number densities in
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a particular sampling position have been investigated. In this sampling position, at 

about 5.4 mm from the cathode, the plasma is quite luminous and the probe disturbs the 

plasma least.

Particular areas o f interest lie within their experimental results about electron 

temperature, average electron energy, and electron energy distribution due to the 

relations to the discussion in Chapter 6 on hydrogen behaviours. Their experiments 

showed that the electron temperature decreased as the current and the voltage increased 

for the different cathode matrices, which was explained by the contribution o f  electrons 

produced by either Penning ionisation o f sputtered atoms or electron impact ionisation 

o f sputtered and argon atoms in the negative glow region. The secondary electrons 

produced by ionisation have quite low kinetic energy relative to the y-electrons that 

have gained kinetic energy in the potential fall o f the cathode dark space. In the 

abnormal glow region, the average electron energy increases with the current. 

However, for the different samples, the average energy values converged to a relative 

spread o f only ~10%. This spread was within the sample-to-sample deviations for the 

analysis o f the same alloys, which means that the cathode matrices have little effect on 

the average energy. The electron energy distribution functions for the different 

cathodes in the constant-current operating mode were also very similar.

A combination o f  different mathematical models for different plasma species in dc glow  

discharge have been produced by Bogaerts and Gijbels (1997). The models were one

dimensional, i.e. the quantities vary only with distance from the electrodes. For a dc 

glow discharge in argon with a copper cathode, at typical GDOES discharge conditions, 

i.e. a gas pressure o f  500 Pa, a discharge voltage o f 800 V  and an electrical current o f  

40 mA, some typical results o f the models were presented, such as density profiles o f  

the plasma species, the electric field and the potential distribution throughout the 

discharge, different ionisation mechanisms in the plasma, energy distributions o f  the 

different plasma species and relative contribution to sputtering. The models are, in 

principle, also able to predict other quantities o f the excitation to different levels and the
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intensities o f different spectral lines if  there are enough cross-sectional data for the 

computer simulations, which are o f interest for the glow discharge in GDOES.

In their further work, three-dimensional models for calculations o f density profiles o f 

sputtered atoms and ions (Bogaerts et al., 1997a) and argon metastable atoms (Bogaerts 

et al., 1997b) in a dc glow discharge have been established. The calculations, based on 

the models, also included the profile o f electrons, the current-voltage characteristics, the 

flux energy distributions o f positive ions, the profile o f the sputtered crater on the 

cathode and the argon atomic optical emission spectrum (Bogaerts and Gijbels, 1998; 

Bogaerts et al., 2000 & 2001). The calculated results were compared with experimental 

results obtained by laser-induced fluorescence spectroscopy (for the sputtered atoms, 

the ions and the argon metastable atoms), and Langmuir probe and optical emission 

spectrometry measurements (for the electrons). In general, satisfactory agreement has 

been qualitatively reached for most o f the particles except the argon metastable atoms. 

Although exact quantitative agreement cannot be expected between the mathematical 

calculations and the experimental data, however, the modelling gives a better insight 

into the complex glow discharge as a complement to experimental plasma diagnostics.

2.4 Sputtering in GDOES

Most o f the work described later in this study is related to sputtering o f surfaces o f 

samples in GDOES. Sputtering is the ejection o f target atoms following the impact o f 

energetic particles on the target surface. In GDOES, when the argon ions, driven by the 

negative bias in the dark space, impact the surface o f the cathode, sputtering occurs. 

Figure 2.8 illustrates the interaction o f an incident ion with a surface (Chapman, 1980). 

Generally, when an incident ion impacts on a solid surface, one or all o f the following 

phenomena may occur:

• the ion may be reflected, probably in a neutralised state;

• electrons may be ejected from the surface, usually as secondary electrons (in this
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work they are called as the y-electrons);

• the incident ion may be implanted into the surface;

•  the ion impact may be responsible for some structural rearrangements in the target 

material;

• atoms may be ejected from the surface.

This ejection process o f the atoms is known as sputtering. Most ejected atoms 

(95-99% ) are neutral, especially when the target material is a metal. It is these atoms 

which are normally analysed in GDOES.

I n c id e n t  R e f le c te d  Io n s
Io n  & N e u t r a l s

S e c o n d a ry
E le c t r o n s

S p u t t e r e d
A to m s

S t r u c t u r a l  *  
C h a n g e s  P o s s ib le

B o m b a rd in g  Io n s  
M ay  b e  I m p la n te d

C o llis io n  M ay  T e r m in a te  o r  R e s u l t  In  T h e  E je c t io n
S e q u e n c e :  W ith in  T h e  T a r g e t  O f A  T a r g e t  A to m

( S p u t t e r in g )

Figure 2.8. A diagrammatic 
sketch of interaction of an 
incident ion with cathode 
surface (Chapman, 1980).

2.4.1 Sputtering models

Sputtering theory has been reviewed by Payling (1994b and 1997b). The simplest 

model o f sputtering is based on single elastic collisions, which was developed by Stark 

in 1909 (Payling, 1994b). In a simple binary collision the energy transferred from the 

incident particle to the target particle is given by Chapman (1980) as

E, 4mm, 2 _ ^
=  !- l t  c o s 2 e , (2.9)

E, («;,.+/»,)

where Et is the energy transferred to a target in a single collision; Ei is the energy o f  an 

incoming particle; /»,- and mt are the masses o f  the incident and target particles, 

respectively; 0 i s  the angle o f velocity o f the incident ion to the line joining the centre o f
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mi and mt at the moment o f collision. Therefore, for a head-on binary collision, Stark 

determined a minimum threshold energy for sputtering, E 0, given by

( 2 J 0 )
4 mjmt

where Us is the latent heat o f sublimation, a measure o f the energy required to break the 

surface atomic bond. Us is typically 3-9 eV (Kaminsky, 1965), and for argon 

mi = 40 amu, then m jm i varies from 0.1 to 5. So Eo in the Stark model typically varies 

from 3 to 20 eV.

In fact, the sputtering process is much more complex than the binary collision model. A 

single binary collision will only produce forward scattering o f the target atom and not 

back-scattering as required for sputtering. Thus, following the initial binary collision 

between the incoming ion and the target atom, Langberg (1958) improved Eqn. (2.10) 

by multiplying Eo with a factor L, which included the ejection o f a near-neighbouring 

atom,

i  = 10(1.1 — + 0.2)(1 -  —  ln(l + 0.83N> ) ) '2 , (2.11)
n ad

where N  is the number o f bonds o f  an atom in the lattice; n the number o f  nearest 

neighbours; a the Morse potential constant and d  the closest-neighbour spacing. For 

most elements, the average value o f L = 16 ± 3 (2 SD). Calculated values for the 

minimum threshold energy Eo in the Langberg model vary form 31 eV for lead up to 

152 eV for aluminium, and are typically around 100 eV (Payling, 1997b).

Sigmund (1969) presented a more rigorous theory for ion beam sputtering. In the 

Sigmund approach, a series o f binary collisions occurs between the incident ion and the 

atoms in the target, causing multiple scattering o f target atoms, and subsequent ejection 

o f a neighbouring atom(s). Furthermore, Sigmund classified sputtering qualitatively by 

three regimes: single-knock-on regime, linear cascade regime and spike regime, as 

illustrated in Figure 2.9. In the single-knock-on, the atoms may be ejected from the 

target surface directly if  the energy o f the atom is enough to break down the binding
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forces o f the surface. In the linear cascade and spike regimes, the recoil atoms get the 

energies from the impact ions, which are enough to produce secondary and higher- 

generation recoils. Some o f them may overcome the surface barrier and be ejected from 

the target surface. The difference between the linear cascade and the spike regimes is 

that the spatial density o f moving atoms in a linear cascade is small but in the spike it is 

large.

(b)(a) (c)

Figure 2.9. Three regimes of sputtering classified by Sigmund (1981):
(a) Single-knockon regime.
(b) Linear cascade regime.
(c) Spike regime.

2.4.2 Sputtering yield and sputtering rate

The sputtering yield S  is defined as the number o f sputtered atoms per incident ion, and 

the sputtering rate q is defined as the sputtered mass per second (pg sec '1). For 

sputtering in the Grimm source o f a GDOES system, the ion current is related to the 

total current by

i+ ~ ~~~ ? (2.12)
l  +  y

where ig is the glow discharge current (A); y is the secondary electron yield (i.e. the 

number o f extra electrons produced per incident ion). Then the sputter yield and the 

sputtering rate are related by (Boumans, 1972)



where, mt is the atomic mass o f the sputtered atom; e the electronic charge (C); and Na 

the Avogadro number (mole'1). In most cases, y = 0.14 ± 0.11 (2SD), so that (1 + y) 

varies by only about ±10% for most elements and is often ignored (Payling, 1997b).

In the Langberg model o f  sputtering, sputter yield is quadratic at energies near Eo and 

linear at higher energies. For energies E »  Eo and normal incidence, the sputter yield 

was given as (Payling, 1997b)

S  = b ( E - E 0) , (2.14)

where b is a constant and E  the incident energy. Therefore, the sputter yield, in the 

Langberg theory, is related to the energy above the minimum threshold energy.

The sputtering yield was given, in the Sigmund theory as (Payling, 1997b),

3
An m, U c

where a(mt/mi) is an energy-independent function and varies form ~ 0 .1 to >2 depending 

on the ratio m/mi', Sn(E) is the nuclear stopping cross-section and Us is the binding 

energy o f the target material. For incident energies below about 1 keV, which are the 

energies o f interest in GDOES, but well above the threshold;

Sn( E ) = , /  \ 2 E  (2.16)
4 mimt 

(m{ + m t) ‘

Therefore, in the Sigmund theory, the sputtering yield is proportional to incident energy 

rather than to the energy minus threshold value.

In the non-linear regime, experimental work showed that sputtering yields changed in a 

complex way with incident ion energy. In the range 50-150 eV, the sputtering yield is 

roughly quadratic with energy. In the range 150-250 eV, the sputtering yield is 

approximately linear with energy, and above 250 eV, it begins to bend over and 

eventually reaches a saturation level and then falls at much higher energies (Payling, 

1994b). Therefore, the linear portion o f Sigmund’s theory does not extend as high in
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energy as was originally envisaged. Matsunami e t  al.  (1980) altered Sigmund’s 

expression o f the sputtering yield by considering the different dependence o f sputtering 

yield on incident energy and gave the sputtering yield which could apply to both the 

near-threshold and linear regions by

S = S slgm, a - ( E j E ) ) ' /2 (2.17)

They also found it necessary to include higher order terms in their equations and 

derived a sputtering yield equation as

5  = 0 . 0 4 2 a * ( ^ ) 7 ^ [ l - ( £ ' 0/£ ') ,,2f  , (2.18)
m, U s

where N « 2.8 (Payling, 1994b), and for argon ions in GDOES

(  \*A
a  « 0.257

and

\ mu
(2.19)

5 „ (£ )~ 4 .7 8 5  4w.-m' E 'n  (2.20)
\ m i + m t )

In the context o f GDOES, the most important investigation o f the sputtering yield and 

sputtering rate could be the work produced by Boumans (1972), which introduced a 

simple and well-known empirical relationship between the sputtering rate and the glow 

discharge current and voltage in the Grimm source o f the GDOES system:

q = CQig{Ug - U  o ) ,  (2.21)

where C q  is the reduced sputtering constant (pg w att'1 sec '1); ig the discharge current; Ug 

the operating voltage; and Uo the threshold voltage for cathode sputtering. C q  and Uo 

depend on the cathode material and the plasma gas but are independent o f the current, 

the voltage and the gas pressure. The Boumans equation now forms an essential part in 

the understanding, calibration, bulk analysis and depth profiling o f GDOES. In his 

work, the experimental results o f some pure metals and binary alloys showed that a 

linear relationship between the mass sputtered in unit time per unit o f current strength 

(q/ig) and the operating voltage (Ug) was established for both metals and alloys. The
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reduced sputtering constant C q  (i.e. slope o f the linear relationship) for some pure 

metals and alloys is listed in Table 2.1.

Table 2.1. Results o f  sputtering measurements fo r  metals in the Grimm glow  
discharge with argon as a carrier gas (Boumans, 1972).

Target Cq (pg W '1 sec '1) Uo (V) ig (mA)

Al 0.084 340 213-320

Cu 0.84 360 24-260

Mo 0.39 300 48-213

Ni 0.36 360 48-260

Ta 0.81 320 108-213

W 0.79 320 108-213

Zn 1.64 330 24-72

Brass 1.08 340 24-213

Cu-Ni 0.58 365 24-108

Cr-Ni-Steel 0.24 520 48-108

This linear relationship was confirmed in the experimental work by Bengtson (1985) by 

measurements o f the sputtering rates with different materials. The results are listed in 

Table 2.2. Comparing the results o f Uo in Tables 2.1 and 2.2, the threshold voltages Uo 

obtained by Bengtson were generally lower than those o f Boumans. This was believed 

to be due to slight differences in the geometry o f the individual source.

Table 2.2. Experimental data o f  C q  and Uo o f  some pure  
materials and alloys (Bengston, 1985).

Target CQ (pg W '1 sec '1) Uo (V)

Al 0.099 340

Fe 0.25 330

Cu 0.81 290

CuNi10 0.75 300

CuZn30 0.90 285

CuZnNi25/10 0.80 290

Sn 1.70 240

Zn 0.81 180

CU2O 0.61 320
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Payling and Jones (1993) measured the sputtering rates o f zinc-iron and zinc-aluminium 

alloys and concluded that, for pure elemental solids, Uo varies from 220 V for 

chromium to 340 V for aluminium, and averages 308 ± 66V (2 SD) for 25 published 

values o f metals and alloys. Payling (1994a) also calculated the turn-on voltage U ' by 

multiple linear regression o f the data from steel, copper and aluminium standards. The 

estimated values o f U ' vary from 205 V to 265 V, i.e. a range o f 235 ± 30 V. He 

suggested that the threshold voltage Uo in the Boumans equation is thus a sum o f the 

turn-on voltage U ' and a minimum voltage above U ' for sputtering. As £ / '«  235 V and 

the average o f Uo is 308 V, this suggests that the minimum voltage for sputtering is 

~73 V. From the equation o f the incident ion energy related to voltage in GDOES 

(Payling, 1994a), which was obtained by regression o f the experimental data by Suzuki 

(1988)

where k and U 'a re  both constant with k = 0.5. The minimum sputtering voltage ~73 V 

corresponds to ~37 eV o f incident energy, which is sufficient to break atomic bonds at 

the target surface and cause sputtering.

Equation (2.21) was also confirmed by Payling (1994b) by measurements o f the 

sputtering rates with copper alloys. The review and the experimental data in (Payling, 

1994b) suggested that the argon gas pressures in the source have no effect on the 

sputtering rate. It was also noted that in the experiments (Boumans, 1972) the 

sputtering time was kept constant, which would then result in different sputtered depths 

for different matrices. By keeping the sputtered depth constant, rather than the 

sputtering time, the experimental data in (Payling, 1994b) indicated that the sputtering 

rate is still proportional to the current ig, but no longer to the Ug when the sputtered 

depth is in a range o f 5-10 pm. Based on the non-linear dependence o f sputtering with 

the operating voltage in the glow discharge, which was presented by Yamamura et al.

(1983), Payling (1994b) altered the Boumans equation (2.21) as follows

E  = k(U g - U ') , (2 .22)

(2.23)
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where Uo and n are constants, which were obtained by fitting the experimental data 

from copper alloys, stainless steels, nickel and the Boumans data to Eqn. (2.23). These 

values are listed in Table 2.3 and show a mean value for Uo o f 396 V, and n o f 0.74.

Table 2.3. Results o f  fitting data to Eqn. (2.23) (Payling, 1994b).

Matrix Data points Uo (V) n R*

Copper alloy (/g40mA) 8 399 0.75 ±0.02 0.9990

Copper alloy (/g60mA) 8 397 0.73 ± 0.02 0.9994

Stainless 9 364 0.74 ±0.01 0.99992

Nickel 7 424 0.74 ± 0.04 0.998

Mean 396 ± 49 0.74 ±0.02

Zinc(Boumans) 5 373 0.72 ±0.01 0.99995

The experimental data (Payling, 1994b) showed that the sputtering rate increased with 

sputtered depth in GDOES. Mechanisms for the changes with depth were explained by:

• The greater depth means that the sample surface is effectively further from the 

anode, and anode-to-sample spacing will affect the sputtering rate;

• The gas temperature near the target can be expected to increase with sputtering time. 

This will alter the plasma density near the target, hence the number o f collisions and 

thus the impact energy; and

• During sputtering, material deposits on the sample surface opposite the annulus o f 

the anode. This deposited material affects the argon flow by restricting the gap and 

therefore the pressure inside the anode, which in turn may affect the sputtering rate 

by changing the discharge conditions.

2.5 Quantification Procedure in GDOES

2.5.1 Quantitative theory

Some o f the GDOES measurements described later in this study have been performed 

using the quantification procedure for GDOES in order to obtain information o f
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quantitative depth profiles o f samples. When a measurement is made in GDOES, there 

are three processes involved in generating the analytical signal: 1) the supply o f  

sputtered atoms; 2) excitation followed by de-excitation to emit photons o f  the sputtered 

atoms and 3) detection o f the emitted photons. It is usually assumed that these 

processes are independent (Payling, 1997a). Therefore the recorded signal for a given 

emission line from element i is given by

= kieiql , (2.24)

where qi is the sputtering rate o f element i, which represents the supply rate o f  the 

element into the plasma; e,- represents the emission process; and kt is the instrumental 

detection efficiency.

The sputtering rate is defined as sputtered mass o f the element per unit time, and will 

vary with the concentration ct o f  the element i in the sample and with overall sputtering 

rate q o f the sample,

q, = c,q  (2.25)

The emission term e,- can be described as

(2.26)

where Si is a correction o f self-absorption o f the emitted photons in traversing the 

plasma to reach the source window; Ri is the emission yield, defined as the number o f  

photons emitted per sputtered atom entering the plasma (Takadom et al., 1984).

For a recorded elemental signal in GDOES, it should also include a background term, 

which is an intercept o f a calibration curve (in concentration vs. intensity) on the axis o f  

elemental intensities. After considering a background term b\ (Payling et al., 1994), the 

recorded signal can be presented by

I ^ k f r R f i a  + b, (2.27)

By assuming the signals from all o f the elements with significant concentrations in a 

sample are recorded, i.e.

30



2 > , . = 1 ,  (2.28) 

all o f the concentrations at a depth where the signals were recorded and the 

instantaneous overall sputtering rate q could be obtained through solving Equations

(2.27) and (2.28) simultaneously.

2.5.2 The concept of emission yield in GDOES quantification

The emission yield term Rh in Eqn. (2.27), which was first proposed by Takadom et al.

(1984), is probably the most important term in GDOES quantitative analysis. The 

emission yield concept is based on the fact that the emission intensity o f  a spectral line 

in a glow discharge source is proportional to the sputtered mass o f the corresponding 

element and is independent o f  the sample matrix (Payling and Jones, 1997). 

Experimentally, independence o f the emission yield on the matrix has been investigated 

by Takadoum et a l  (1984) with Zn-Fe alloys o f  different composition and by other 

authors (Pons-Corbeau, 1985; Takimoto et al., 1987; Bengtson and Lundholm, 1988), 

and is now widely accepted to be valid.

The first application o f the emission yield concept in GDOES depth profiling 

quantification is known as the integrated emission intensity method (IEI) by Takimoto 

et al. (1987). The emission yield o f a spectral line o f each element is experimentally 

obtained beforehand. From the emission yield concept there is

I i =(Swi /St)Ri , (2.29)

where Sw{ is the sputtered mass o f an element i during a time increment o f  St. 

Eqn. (2.29) is equivalent to Eqn. (2.24). The self-absorption S{ will vary depending on 

the elemental sputtering rate and can be neglected when ct q is small. Fortunately Si is 

not a major factor in the GD source (Payling, 1997a and Bengtson, 1997a).

From Eqn. (2.29), the spectral intensity per unit sputtering time o f an element in an 

analysed sample is directly converted into sputtered mass. The total sputtered mass in 

sample segment b in the unit sputtering time, SWb, is given by
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SWb = Y JSw, (2.30)

Then the elemental concentration (in weight percent) o f an element i in the 

corresponding sputtered segment b can be expressed as

and the sputtered depth corresponding to the segment b can also be determined from the 

total sputtered mass as follows

where 5db is the sputtered depth; k  is a geometrical conversion factor; and pb is the 

density o f the sample in the segment b. For the calculation o f the sputtered depth, the 

density o f analysed sample is also required. The density can only be obtained based on 

the information on the composition o f the analysed sample, which is already obtained 

by Eqn. (2.31).

2.5.3 Differences between analyses of bulk and multi-matrix samples

The basic information obtained in a GDOES measurement is the signal intensity o f 

elements in the measured sample against sputtering time. To obtain the elemental 

concentrations at a sputtered depth or variations o f the concentrations as the function o f 

sputtered depth, a calibration for GDOES must be done using a set o f certificated 

reference materials (CRM) with known chemical compositions and sputtering rates.

For an analysis o f a bulk sample, a set o f CRMs with similar compositions (matrix) as 

analysed samples are generally needed. The parameters (voltage, current and argon 

pressure) used for the calibration bums must be the same as that in the analysis 

measurement. In bulk analysis in GDOES, only corrections for the temporal variations 

o f the parameters o f the source, the sputtering rate and the emission yields from sample 

to sample are necessary. This can be done by use o f the ratio intensity o f an element to 

an internal standard signal (Nelis, 1997). In theory, any signals which have a linear 

response to the variation o f elemental intensities could be used as the internal standard, 

such as a spectral line o f the major element or total emission o f  light, both o f which

c ,= (S w ,/  swb)m  , (2.31)

Sdb = k5W bj  p b , (2.32)
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have been proven successful (Hunault and Bailly, 1990). Emission o f an argon line was 

used as the internal standard in the multi-matrix quantification procedure (Bengtson, 

1994), and the accuracy and precision o f elemental determinations can be improved by 

taking the ratio.

When GDOES is applied to quantitative depth profiling for a coating sample, there are 

some differences compared to the bulk analysis (Bengtson, 1994):

• Coated samples normally contain a wider range o f elemental concentrations in the 

coating and the substrate than homogeneous samples, which results in the selection 

of CRMs with very different compositions. So elemental intensities o f  the CRMs 

could be affected by the variation o f sputtering rates o f the CRMs;

• The matrix composition o f analysed samples must vary as the sputtering penetrates 

through the interface between the layer and the substrate. So it is impossible to use 

a major elemental line as an internal standard with this multi-matrix problem;

• The parameters o f the glow discharge source, the voltage, the current and argon 

pressure could change during sputtering through the layer to the substrate, due to 

parameters dependent on the sample matrix. This change also needs to be taken into 

account in the depth-profiling calibration;

• To calculate the sputtered depth in depth profiling analysis, the sputtering rate and 

the density o f the analysed sample also need to be known.

2.5.4 The intensity normalisation quantification method of GDOES 

analysis

The intensity normalisation method for quantitative analysis in GDOES was developed 

at the Swedish Institute for Metals Research (SIMR) by Bengtson et al. (1994 and 

1997b), and this is also used by the GDOES (Leco GDP 750) used in this study. The 

difference between this method and the emission intensity integration method is that the 

concentration o f an element in the analysed sample is obtained from calibration curves 

as for bulk analysis, rather than from the ratio o f  sputtered mass o f an element to the
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total sputtered mass from the analysed sample. In practice, there are two different sorts 

o f intensity normalisations:

(1) Normalisation o f measured intensities from calibration samples to a reference 

sputtering rate in calibration procedure, that is

I lm (normalized) = I imqref /q ,  , (2.33)

where / /w is the emission intensity o f the spectral line m o f  an element i; qref  and qs are

sputtering rates o f a reference matrix (e.g. pure iron) and a calibration sample, 

respectively.

(2) Normalisation o f measured intensities from analysed samples to reference excitation 

conditions (the voltage and the current) in an analytical measurement, that is

(2-34)

where 7/w is the normalised emission intensity o f the spectral line m o f  an element i; k-m 

is an atomic- and instrument-dependent constant characteristic o f  the spectral line m o f  

the element i; c,- is the concentration o f the element i\ CQb is a constant related to the 

sputtering yield o f the material; in the term o f iAm, i is the excitation current, Am is a 

matrix-independent constant, characteristic o f the spectral line m only; and f m(U) is a 

polynomial o f degree 1-3, also characteristic o f the spectral line m, and given by

f m W g ) = a0 + aiUg + a2U \ + a jJ \  (2.35)

The Am constants, and f m(Ug) for a large number o f spectral lines have been measured by

several laboratories with generally good inter-laboratory agreement (Bengtson, 1997c).

The quantitative procedure for GDOES depth profiling analysis in the intensity 

normalisation method is summarised in Figure 2.10. The true elemental concentrations 

need to be calculated by a sum normalisation o f total elemental concentration 

determined by the calibration curves to 100% due to the intensities in the calibration 

curves having been normalised using the ratio o f  sputtering rates o f  qre/q s- Meanwhile, 

the relative sputtering rate o f the analysed sample to that o f pure iron can also be 

obtained by the sum normalisation.
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In order to obtain the corresponding sputtered depth, the real sputtering rate and the 

density o f the analysed sample have to be known. Since the relative sputtering rate o f  

the analysed sample to that o f pure iron is obtained by the sum normalisation, the only 

information that needs to be known is the sputtering rate o f  pure iron at the actual 

excitation voltage and current which are used in the measurement o f  the analysed 

sample. For calculation o f  the sputtering rate o f  pure iron, the Boumans equation (2.21) 

has been employed in the method to provide a reliable solution. The density o f  

analysed sample can only be calculated based on the information o f the composition o f  

the analysed sample, which is already obtained from the depth profiling measurement in 

GDOES. Bohm (1997) summarised four different ways to calculate the density by the 

elemental composition o f  the analysed sample (Bohm, 1997):

• the density is based on the mass percentage o f the constituent elements

A = Z M )  (2-36)

• the density is based on the atomic percentage o f  the constituent elements

f t  = £ ( » , / > , )  (2-37)

• the density is based on a concept o f constant atomic volume

l / p 3 = £ > , . / A )  (2-38)

• the density is based on the weighted densities o f  py, p 2 , and p?

P t = aP\ + b p 2 + cp % (2.39)

In Eqns. (2.36)-(2.39), py, p2 , pj, and p 4  are the calculated densities in the different 

ways respectively, p,- is the density o f a pure element /, q  and w,- are fractions o f  the 

element i in mass percentage and atomic percentage, a , b and c are weighting factors. 

In the SIMR method, Eqn. (2.37) has been used to calculate the densities o f  analysed 

samples. It is believed that the density p 2  based on the atomic percentage provides very 

good results for many alloys, especially for oxides (Bohm, 1997). py, p 2 , and pj were 

experimentally compared by Payling (1997c) using 50 metal alloys, 10 oxides and 10 

organic materials. The overall results showed that the best approach was p? based on 

the constant atomic volume, slightly ahead o f atomic fraction with mass fraction an
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unsatisfactory third. The best results were obtained for metal alloys with relative errors 

less than 2%, but worst results for oxides with errors o f about 40%.

Creation o f  a new QSDPA 
m ethod

Selection o f  the CRMs 
with known composition 
and relative sputtering rate

Calibration curves 
(elemental concentration vs. 
norm alizaed intensity)

M easurem ent o f  calibration 
samples (in ref. voltage and 
current: 700V and 20mA)

M easurem ent o f  analysed sample 
(different voltage/current from 
the ref. settings could be used)

N orm alization o f  recorded 
intensities o f  the CRMs to 
a reference matrix by 
Iim(normalised) = Iim qref/qs

Calculation o f  the density o f 
analysed sample (ps) based on 
the inform ation o f  the elemental 
concentrations.

Calculation o f  the real 
elemental concentration o f 
analysed sample by the sum 
norm alization to 100%

Calculation o f  the sputtering 
rate o f  analysed sample (qs) by 
the sum norm alization 
calculation (qref/q s).

Calculation o f  the sputtered depth 
o f  every interval o f  sputtering time 
based on qs, ps and geometrical 
factor o f  sputtered crater

Calculation o f  total elemental 
concentration based on the 
calibration curves and the 
normalised intensities o f 
analysed sample.

N orm alization o f the m easured 
intensities o f  analysed sample to 
ref. excitation conditions by 
em pirical intensity expression:
h ^ c c ^ y u u )

Calculation o f  the 
sputtering rate o f  the 
reference matrix (qref)  
at actual excitation 
conditions by the 
Boum ans equation 
q CqigfUg- Uq) .

Figure 2.10. Flow chart of the quantification procedure in the GDOES used in this 
study, based on the intensity normalisation method for quantitative analyses in GDOES 
developed by Bengston et al. (1994 and 1997b).
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2.5.5 Other investigations in GDOES quantification

2.5.5.1 Operating parameters’ effects on the emission yield

Although the emission yields in GDOES are considered to be nearly matrix- 

independent quantities, it is a well-known fact that they do vary significantly with the 

excitation conditions. The excitation processes in the glow discharge source are 

determined by the operating conditions, which are the current, the voltage and the argon 

pressure o f the source. During measurements o f calibration and analysed samples in 

GDOES, the operating parameters could vary from sample to sample, even from layer 

to layer in one sample, because the parameters are not independent o f each other: two o f  

them are selected, and the third one will find its own value dependent on the sample 

matrix. The resulting variations o f the emission yields must then be taken into account 

in a complete quantification model. There are various combination modes o f operating 

parameters in calibration and analysis. Two o f them are typical regarding the parameter 

effects. One is the mode o f constant power and argon pressure, in which it is believed 

that the pressure is the only significant parameter affecting the emission yield (Payling 

and Jones, 1993a, 1993b). The other is the mode o f constant voltage and current, in 

which it is assumed that the voltage and current have significant effects on the emission 

yields but the pressure does not (Bengtson, 1994 and Bengtson et al., 1999).

Bengtson and Hanstrom (1998) have investigated the emission yield o f  Si using the 

288.2 nm spectral line with three different matrices o f  steel, brass and aluminium for 

various operating conditions. The results showed that, compared to pressure, the 

current and the voltage have a considerably larger influence on the emission yield. The 

emission yield was found to increase with the current and decrease with voltage and 

pressure. For the investigated Si 288.2 nm line, it is concluded that the influence o f  

pressure is nearly negligible within a normal operating range o f discharge parameters.

The effects o f experimental parameters on the emission yields have also been 

investigated by Marshall (1999). In this investigation, a multi-matrix calibration was
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performed for constant voltage and current mode (VC mode) and constant power and 

pressure mode (PP mode) with 32 standards in four matrices: iron, copper, zinc and 

aluminium. Concentration for each standard, multiplied by the standard’s known 

sputter rate, was then plotted against the average signal intensity recorded for that 

standard. Root-mean-square (RMS) errors o f the linear least-squares curve fit in both 

operating modes for 15 elements, listed in Table 2.4, indicated that the VC mode was 

always at least as good as, and usually better than, the PP mode. The actual analytical 

results obtained from four check standards in both the VC and PP operating modes also 

indicated that the VC mode obtained significantly more accurate results on three o f the 

four check standards; only on the iron standard is there little difference.

Table 2.4. Comparison o f  multi-matrix calibrations between VC and PP  
operating modes.

Element Wavelength
(nm)

VC RMS error 
(normalised mass%)

PP RMS error 
(normalised mass%)

PP/VC

Al 396.15 1.0 4.7 4.7

C 165.70 0.0044 0.0087 2.0

Cr 425.43 0.017 0.072 4.2

Cu 327.39 0.29 2.6 9.0

Fe 371.99 1.9 2.2 1.2

Mg 383.82 0.16 0.22 1.4

Mn 403.44 0.090 0.20 2.2

Mo 386.41 0.0021 0.0029 1.4

Ni 341.48 0.075 0.097 1.3

Pb 405.78 0.019 0.025 1.3

Si 288.15 0.021 0.074 3.5

Sn 317.50 0.027 0.032 1.2

Ti 337.27 0.0092 0.0093 1.0

V 318.54 0.0010 0.020 20.0

Zn 334.50 0.72 2.3 3.2

Payling et al. (1995) also compared the effects o f operating mode on the emission yield 

using a set o f steel and zinc-aluminium alloy standards for three different quantitative 

methods: the SIMR method, the IRSID method (invented separately by Cazet and
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Hocquaux at the Institut de Recherches de la Siderurgie Fransaise) and the BHP method 

(Payling and Jones, 1993). In their investigation, a constant current was chosen for all 

o f  the three methods. Therefore, for the SIMR method, a constant current and a 

constant pressure with an emission yield correction for variation o f the voltage was 

used; for the IRSID method a constant current and a constant voltage with variable 

pressure was used, and for the BHP method a constant current and a constant pressure 

without correction for variations o f the voltage was used. The normalised emission 

yields, instead o f  the emission yields themselves, were calculated for the steel and the 

zinc-aluminium standards using the three methods at the chosen operating modes, and 

compared with a simple calibration curve using a constant current and a constant 

pressure without any corrections (i.e. no corrections for the sputtering rates and 

emission yields). Relative standard deviations (RSDs) for the normalised emission 

yields o f some elements in the steel and the zinc-aluminium standards, listed in Table 

2.5, indicated that for Mn, Ni and Cu in steel it is possible to get good workable 

calibration curves with any o f the methods. However, this was not the case for copper 

and several other elements in zinc-aluminium alloys. The best calibration curves for 

zinc-aluminium were obtained with the IRSID and SIMR methods. This suggested that 

the effect o f pressure is less important than voltage on the emission yield.

Table 2.5. RSDs fo r  the normalised emission yields in steels and zinc-aluminium alloys 
fo r  three modes o f  operating conditions (Payling et al., 1995a).

Elts No correction IRSID SIMR BHP Cone, range (mass%)

Steels Zn-AI Steels Zn-AI Steels Zn-AI Steels Zn-AI Steels Zn-AI

Mn 3.9 3.0 3.4 3.0 0.0057-1.5

Ni 4.0 4.2 4.2 4.5 0.0058-0.5

Cu 2.6 61.0 2.5 10.2 2.4 12.1 2.8 19.2 0.016-2.0 0.21-3.2

Mg 43.6 15.2 21.2 28.7 0.02-0.12

Al 53.4 14.8 11.9 9.0 0.047-13

Fe 53.5 21.8 16.5 24.7 0.01-0.12

Pb 55.8 7.0 10.7 18.5 0.0076-0.35

Mean 3.5 54.3 3.2 13.9 3.3 14.5 3.4 20.0
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However, when the IRSID and SIMR methods are corrected for pressure, or when the 

BHP method is corrected for voltage, all three corrected methods give comparable, 

good results, listed in Table 2.6. The work showed clearly that both pressure and 

voltage must be accounted for in a quantitative analysis using GDOES.

Table 2.6. RSDs fo r  the normalized emission yields in zinc-aluminium alloys with 
corrected IRSID, SIMR and BHP methods (Payling et al., 1995a)

Method Mg Al Fe Cu Pb Mean

IRSID(corrected for pressure) 5.5 6.1 19.7 7.0 7.1 9.1

SIMR(corrected for pressure) 9.2 7.8 13.1 7.5 10.3 9.6

BHP(corrected for voltage) 12.1 8.8 13.1 9.2 10.4 10.7

In later work by Payling (1995b), an empirical equation was derived that describes the 

relationship between a recorded emission signal and the current, the voltage and the 

argon pressure in a model-independent way. The experimental results showed that the 

current, the voltage and the pressure all contribute significantly to the recorded signal 

and emission yield. Typically, the emission yield was proportional to the current, 

decreased as the square root o f the voltage and increased linearly with the pressure at 

low pressures but decreased exponentially at higher pressures.

2.5.5.2 Background signal correction

There are still some problems that have not been well solved, although GDOES 

quantification has been successfully applied in bulk and depth profiling analysis. The 

effect o f background signals in GDOES analysis is one o f them. Although background 

signals in GDOES are very low, usually comparable with the photomultiplier dark 

current, and lower than with many other OES techniques such as spark or ICP (Payling, 

1997e), at low concentrations the background cannot be neglected and needs to be 

corrected for in some way. In the quantitative theory o f GDOES, the background signal 

is described as an independent term £/, as in Eqn. (2.27), and is an additional
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contribution to the intensity o f an element i apart from the sputtered atoms o f the 

element. Eqn. (2.27) can also be rewritten as

c, = I , l(k,R,qt) -  cBEC , (2.40)

in which,

cBEc=b,KklRlg) , (2.41)

is known as the background equivalent concentration (BEC) (Payling, 1997d).

Only a few papers in the literature deal with background signal correction in GDOES 

quantification (Bengtson and Eklund, 1992; Payling et al., 1994; Weiss, 1995). From 

bulk analysis in GDOES, it is known that the background signal varies with the sample 

matrices. If the matrix does not change, it is o f no consequence in the evaluation o f the 

concentration. However, in depth profile analysis, the matrix may change completely 

as different layers are penetrated, and consequently the BEC normally will change as 

well. In practice, it is very difficult to determine the “matrix-independent” BEC from 

the available calibration data. The BEC is also dependent on the discharge conditions 

in a different way from that o f the line intensities. In the experimental work by 

Bengtson and Eklund (1992), they found the BEC o f pure materials decreased with 

discharge current, but remained approximately constant with voltage. This difference in 

behaviour between the background signal and the emission yield dependence on 

discharge current and voltage makes GDOES calibration with a correction for the 

background signal difficult. Therefore, the BEC remains a constant in their quantitative 

method (the SIMR method) o f GDOES.

The background signal in GDOES was also described by the sum o f four terms (Payling 

et al., 1994; Payling, 1997d): a constant component from the photomultiplier dark 

current and other instrumental noise sources, an argon term which varied with the argon 

pressure and the power o f the source, and two matrix terms, a matrix continuum 

component largely associated with iron and a matrix line interference component. A  

background signal correction was presented by a general description o f the behaviour o f
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the background signal as a function o f the source parameters: the pressure, the current 

and the voltage (or the power). The success o f  these methods was demonstrated in the 

depth profiles o f three commercial metallic and polymer-coated steel samples.

2.5.5.3 Gaseous impurity effects on the glow discharge

In Chapter 6 o f  this thesis the hydrogen signal in the glow discharge source and the 

effect o f hydrogen on the measured elements will be discussed. Mixed gas effects on 

emission characteristics o f the plasma in GDOES and on the cathode dark-space region 

o f the Grimm source have been reported by Wagatsuma (2001), Videnovic et al. (1996) 

and Kuraica et al. (1997), which included argon-helium, argon-oxygen, argon-nitrogen, 

neon-helium and nitrogen-helium mixtures. For applications o f  GDOES, most interest 

lies with the gaseous impurities o f N, O and H mixed into argon gas in the source o f  

GDOES, since they are unavoidable in GDOES measurements, especially when 

analysing elements in the plasma from samples containing these elements.

Fischer et al. (1993) reported on the influence o f a controlled addition o f oxygen and 

nitrogen to argon on the effective sputtering rate, the emission intensities o f  aluminium, 

titanium, iron, nickel, copper and silver, and the discharge current with a Grimm glow  

discharge source in a constant-voltage operating mode. Additions o f  oxygen and 

nitrogen smaller than 0.1% by mass do not lead to any alternations o f parameters 

relevant to GDOES analysis. Concentrations o f oxygen and nitrogen in argon 

exceeding this value, which are believed to be easily reached when bulk compounds 

with nitrogen and/or oxygen (nitrides, oxides) or scales (coatings, corrosion scales) are 

sputtered, or which may be caused by air leakages occurring at the gasket between the 

sample and cathode plate, could alter the analytical line intensities o f the elements o f  

interest significantly. The line intensity may increase or decrease depending on the 

elements present in the discharge plasma. The presence o f  nitrogen and oxygen in the 

discharge may initiate chemical reactions in the plasma. The formation o f  compounds 

reduces the number o f free atoms o f the elements to be determined in the plasma and
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hence their available number for excitation. The resulting reduction in intensity 

suggests a decrease o f the elemental concentration in the sputtered layer o f the sample.

Recently, the effects o f adding hydrogen to argon on the glow discharge in GDOES 

have been investigated. Bengtson and Hanstrom (1999b) have observed that small 

amounts o f hydrogen (< 0.1% partial pressure) added to an argon glow discharge can 

significantly alter analyte emission yields. The effects enhanced certain lines but 

quenched other lines o f the same element. Hodoroaba et al. (2000a and 2000b) have 

investigated the effects o f small amounts o f hydrogen (up to 0.6% relative partial 

pressure) on the emission intensities o f Ar I, Ar II, Cu I and Cu II lines. Different 

behaviours for different lines were observed. Most o f the emission lines o f Cu I 

increase strongly with the addition o f even a small quantity o f hydrogen, including the 

327.40 nm line o f Cu I used for the quantification o f Cu in many commercially 

available GDOES spectrometers. They also presented evidence o f the effects caused by 

hydrogen for the different matrix elements copper, stainless steel, titanium, aluminium 

and silicon. In an overview o f various processes that may occur in an argon-hydrogen 

glow discharge plasma, the effect o f EE molecules and H atoms on the argon analytical 

glow discharge were predicted (Bogaerts and Gijbels, 2000b), i.e. a drop in argon ion 

(and maybe electron) density, a drop in the argon metastable atom density and a change 

in the electron energy distribution function. However, because o f the simplifications in 

the estimations, the authors suggested that these predictions need to be checked by 

experiment with analytical glow discharges.

2.6 Analytical Performance and Applications of GDOES

2.6.1 Analytical performance of GDOES

2.6.1.1 The detection limit

Analytical figures o f merit o f GDOES have been reviewed by Bengtson (1996) and 

Payling (1997e). Detection limits in GDOES are typically 0.1-10 ppm in steel and
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copper matrices. Typically, detection limits o f a few ppm normally are achieved in bulk 

analysis with long integration times o f 5-10 sec. In depth profding, detection limits at 

any particular point in a depth profile will be a factor o f ten or worse compared to bulk 

analysis due to shorter integration times. Because o f the high stability o f the discharge, 

GDOES may analyse all elements (including C, N, O, H) present at a concentration 

above 10-100 pg/g (Hoffmann, 1993). In the case o f the analysis for a steel sheet 

surface, experience has shown that 0.01% by mass is a practical detection limit for 

common steel-alloy elements with high dynamic detection ranges (Angeli et al., 1993).

2.6.1.2 The sample-to-sample precision

Concerning the precision o f GDOES analysis, sample-to-sample precision o f  GDOES is 

carried out in practice by recording from single or multiple bums for a number o f 

identical samples and the precision is expressed as a relative standard deviation (RSD) 

for each element. A sample-to-sample precision o f 0.4-3.7%  RSD has been reported by 

Kruger et al. (1980) using ten identical steel samples for a range o f ten elements. 

Sample-to-sample precision for the determination o f major and minor elements in 

stainless steel (CRM JK-8F) is typically in the range 0.1-1%  RSD (Bengtson, 1996).

2.6.1.3 The analytical accuracy

The accuracy o f GDOES measurements can be expressed by the RSD o f the differences 

between measured concentrations and the certified values. The reviewed accuracy o f 

RSDs by Payling (1997e) show a range o f spreads, which were believed to vary 

considerably, depending on the concentration range, number o f samples, matrix effects, 

emission line interferences, etc. For example, typical RSD values are 0.2% for major 

elements and 1% RSD for minor elements (Cu in leaded bronze), and 1-13%  RSD for 

Cr, Ni, Fe, and Zn in copper and aluminium matrices.

2.6.1.4 The depth resolution

Depth resolution in sputter-profiling was defined in terms o f a characteristic depth (or 

sputtering time) necessary for the decrease o f the normalised output signal from 84% to
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16% if  the measured profile is obtained by sputtering through a true rectangular 

concentration profile (Hofmann, 1977). Theoretically, sputtering in GDOES has a 

depth resolution o f several nanometres (Angeli et al ., 1993; Bengtson, 1996), but in 

practice the depth resolution in GDOES depth profiling is dependent on the shape o f the 

sputtered crater, which is mainly affected by the source parameters, i.e. the voltage, the 

current and the argon gas pressure (Angeli et al., 1993; Quentmeier, 1994; Bengtson, 

1996). It is believed that these effects result from the inhomogeneous distribution o f the 

electric field between the anode and the cathode and o f the pressure o f the plasma gas in 

GDOES (Hamada et a l , 1995).

The crater shape was represented by a ratio o f the depth at the edge to the depth in the 

centre o f a sputtered crater (Angeli et a l , 1993). The experimental results in their work 

showed effects o f the argon gas pressure and the source voltage on the shape o f  the 

crater and suggested that the excitation voltages between 600 and 800 V are preferable 

to obtain a near-flat material erosion by GDOES sputtering with a 4 mm diameter dc 

source.

The influence o f the working conditions o f a discharge source in GDOES on depth 

profiles and interface widths was investigated by Quentmeier (1994). Operating voltage 

and argon gas pressure were found to be the dominant parameters that determine the 

formation o f the crater shape. Under the optimum discharge parameters (250 Pa argon 

gas pressure, 800 V discharge voltage and 8 mm anode), the crater remained nearly flat 

with increasing sputtered depths up to 37 pm, and this tendency was observed for nearly 

all matrices. Apart from the crater shape, the roughness o f the bottom o f  the crater, 

which develops during sputtering due to the preferential sputtering o f different crystal 

sizes and orientations, can deteriorate the depth resolution. The results showed that the 

surface roughness was also affected by the discharge voltage and the gas pressure. A  

low voltage is favourable for the reduction o f sample roughness. The effects o f crystal 

size and orientation on the depth resolution are studied in detail in Chapter 3.
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The depth resolution was also estimated by the full width at half-maximum (FWHM) o f 

a differentiated emission intensity-depth curve at a layer-substrate interface in GDOES 

analysis (Hamada et al., 1995). The experimental results about dependence o f the 

FWHM on the voltage and the current showed that the best depth resolution for the 

interface o f a nickel coating on a copper substrate was obtained at a voltage o f ~650 V 

(constant voltage mode) or a current o f ~55 mA (constant current mode), and was 

almost independent o f the measurement modes.

The correlation between the depth resolution and the crater formation process was also 

investigated by Prapier et al. (1995). By using multi-layer structure samples (five 

double layers with 100 nm Cu and 100 nm CrNi each), the depth resolution increased 

linearly with the sputtered depth and amounted to 5-10%  of the depth under optimised 

conditions. Experimental results o f the depth resolution for multi-layer samples, 

obtained by Ives et al. (1997) under the optimised conditions o f 700 V and 30 mA, were 

similar to that o f Prapier et al. GDOES measurements o f the samples with Ni/Fe 

multiple layers consisting o f 10 individual layers showed that the depth resolution was a 

linear function with the depth and amounted to ~ 10-15% o f the total sputtered depth. 

As a general rule o f thumb under good conditions the depth resolution is about 15% of 

the sputtered depth, i.e. about 15 nm at 100 nm depth and about 3 pm  at 20 pm depth 

(Payling, 1997a).

2.6.2 Recent Applications of GDOES

In this study the Grimm source as a sputtering tool has been used to reveal the pitting 

phenomenon (Chapter 4) and to obtain surface layers with less structural damage for the 

collection o f EBSD patterns and for plan views o f internal oxides o f steels (Chapter 5). 

However, applications o f GDOES in the literature are mainly focused on depth profiling 

analyses. The first depth profiling analysis by GDOES was reported by Green and 

Whelan (1973) and concerned the measurement o f Sb concentrations in thin films o f 

GaAs-GaSb. Applications o f GDOES in quantitative analysis and depth profiling have 

now been extended to a wide range in the fields o f metallic coatings, industrial surfaces,
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oxide scales, corrosion, semiconductors and PVD/CVD hard coatings (Payling, 1997a). 

Some applications o f GDOES analysis in the last few years are summarised in Table 

2.7.

Most o f the applications were focused on the fields o f modified surfaces, diffusion 

surfaces, thin films and hard coatings. The elements involved included not only 

common elements in analysis for steel samples but also Li, Na (Lindbergh and Zhu, 

2000; Zhu et al., 1998, 2001), and Ca, Cl (Olofsson and Dizdar, 1998). Wackelgard 

(1998) showed GDOES can compare hydrogen content in the thin film o f black nickel 

coatings (~100 nm thick) before and after heating the samples. Angeli (2001) showed 

the high detection sensitivity o f GDOES where a concentration o f ~20 ppm for Pb in a 

zinc layer was analysed. The spread o f  analysed depth in these measurements was in a 

wide range from a few tens o f  nanometres for thin films (Olofsson and Dizdar, 1998; 

Wackelgard, 1998) to ~100 pm for nitrided stainless steel (Flis et al., 2000). With 

multiple measurements by grinding repeatedly sputtered surfaces to the level o f  the 

bottom o f the sputtered crater, GDOES analysis is able to profile the decarburised layer 

o f steels to a depth o f ~350 pm (Bellini et a l , 2001). Suchaneck et al. (1999) reported 

a depth resolution o f a few tens o f  nanometres for ~200 nm-thick lead zirconate titanate 

ferroelectric films. A  depth resolution o f ~20 nm for ~100 nm black nickel coating was 

also obtained by Wackelgard (1998).

Hard coatings, including titanium nitride, titanium carbide, and ternary and quaternary 

systems (TiN, TiC, CrN, AIN, TiCN, TiAIN, TiAlVN, etc.), have been widely applied 

in industry for cutting and forming tools and machine parts that are exposed to a 

continuous abrasive wear, due to their outstanding performance in corrosion- and wear- 

resistance and tribological properties. GDOES depth profiling has been successfully 

applied in the analysis o f the composition and depth o f the coatings (Payling, 1997a), 

due to its unique ability to analyse a wide range o f elements with a depth resolution o f  

only a few tens o f nanometres. Some limitations which may affect the accuracy o f
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concentrations and depth resolution in GDOES analysis for hard coatings have been

mentioned by Bohm (1997). For example,

• if  a wide range o f elemental concentrations in both the coating and the substrate 

exists and in conjunction with a high depth resolution, then this poses limitations in 

respect to the dynamic range o f the photomultiplier;

• for some hard coatings, the optimised discharge conditions for the best depth 

resolution may be far from the normalised conditions o f calibration (e.g. 700 V and 

20 mA for the multi-matrix quantitative method). This strong deviation may 

exclude the use o f the approximation to transform the measured intensities into 

normalised intensities;

• in the calculation o f the density o f a coating material in quantitative GDOES, which 

is based on the measured elemental concentrations, it is essential to transform a 

sputtering rate to a sputtered depth. This can provide reasonably accurate results for 

metallic alloys. However, errors can occur in the quantification o f hard coatings 

because o f differences in electronic and lattice structures o f the compounds o f light 

elements with metal atoms;

• a lack o f calibration samples for some elements in the coatings, for example, CRMs 

with carbon between 5% and 20% by mass, nitrogen between 0.5% and 6.7% by 

mass, and with oxygen, makes the calibration o f GDOES for hard coatings difficult.
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Chapter 3 Crystal Orientation Effects on the 
Sputtering Rate in GDOES

3.1 Introduction

For quantitative depth profiling in GDOES, the sputtering time is converted into a depth 

on the assumption that the sample surface is eroded layer-by-layer uniformly. In fact, 

material is often removed non-uniformly due to uneven sputtering o f  the sample 

surface. In the case o f the analysis o f surface structures, such as coatings and nitrided 

layers, this results in a degradation in depth resolution. The principal cause o f  low  

depth resolution in GDOES is the formation o f crater curvature, i.e. the shape o f  the 

crater (Quentmeier, 1997), which is affected by the discharge parameters o f voltage, 

current and argon gas pressure (Angeli et a l , 1993; Hamada et al, 1995; Prattler et al., 

1995). The depth resolution is believed generally to worsen as the depth o f the bum 

increases (Prattler et al., 1995). The crater shape can most easily be controlled by the 

voltage, the current and argon gas pressure above the sample (Quentmeier, 1994). 

Roughness o f  the crater bottom can also affect the depth resolution in GDOES depth 

profiling. The roughness is thought to depend on the composition o f  the sample and 

orientation o f crystallites within it. For example, selective sputtering was found to be 

responsible for the apparent enrichment o f the alloying elements Cu, Mg, Mn, and Si in 

aluminium cast-alloys and considered to be caused by distinguishable metallurgical 

phases, which were heterogeneously distributed in the base material (Dessenne, 1993). 

Crystal orientation effects on the sputtering rate are also believed to increase the 

roughness o f the crater bottom in GDOES (Quentmeier, 1997), but no evidence in the 

range o f  low ion energies (below 500 eV) to support this can be found in the literature.
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It is well known that sputtering rates at high ion energies (1-20 keV) are affected 

significantly by crystal orientation (Robinson, 1981; Roosendaal, 1981). GDOES 

typically operates at a voltage o f around 500-1200 V, and the corresponding ion 

energies are believed to be below at most ~1 keV, where crystal orientation effects 

generally are regarded as less important. Furthermore, most ion impacts are at rather 

lower energies than 1 keV due to scattering and charge-exchange processes within the 

plasma. The results presented in this chapter clearly demonstrate that crystallite 

orientation does significantly affect sputtering rates at these low ion energies, at least in 

iron. Furthermore, crystal orientation affects the surface roughness o f the crater on a 

sub-grain scale: both these effects may reduce the depth resolution o f the technique 

when it is used for depth profiling.

SEM images are seen to reveal different topographical structures on the bottom surface 

o f a GDOES crater using pure iron as the test sample. Combined w ith the depth 

measurements o f individual crystallites using a profilometer and their orientation 

detection by the EBSD technique, a correlation between the sputtering rate, the 

crystallite orientation and the micro-texture has been found.

3.2 Experimental

High purity (99.995%) rolled iron was chosen as the test sample in this investigation. 

The reason for choosing pure iron was due to its metallurgical significance and the fact 

that, relative to other elements, its sputtering rate is average. Also, the influence o f non- 

uniformly distributed impurity elements in the sample on the sputtering can be 

eliminated by the high purity. The iron was 1 mm thick and was first cut into several 

15x15 mm pieces. The iron samples were then mounted in bakelite, which facilitates 

sample polishing and GDOES sputtering. The samples were mechanically polished to a 

1 pm-grade diamond paste finish before sputtering in GDOES.

56



The sample erosion was performed in the GDOES (LECO 750 GDS) with a 4 mm- 

diameter anode and Grimm dc source. The glow discharge source (GDS) was operated 

in the discharge mode o f constant voltage and current. Because the three parameters are 

not independent in GDOES, once the voltage and current are both kept constant, the 

argon pressure will be dependent on the sample matrix (Payling, 1997a). In fact, the 

discharge conditions used in the GDOES are that the voltage and the current are chosen 

using a fixed voltage value, and the argon pressure is controlled automatically by a gas- 

flow controller to maintain a constant current as the matrix changes. In this work the 

argon pressure did not change significantly because o f the homogeneity o f  the sample 

matrix.

Profiles o f sputtered craters were measured by a laser probe profilometer (UBM). The 

sample was moved in the X  and/or Y  direction by a computer-controlled stepper motor, 

so that a line profile scan and a 3-D surface scan o f the crater could be obtained. The 

depth resolution o f the profilometer depends on the measuring range chosen and is 

about 0.5 pm at the 50 pm height range used here. At first, the voltage and the current 

parameters (between the ranges o f 500-1000 V and 15-35 mA) o f  the glow discharge 

source were determined in order to optimise the flatness o f  the gross crater shape. The 

sputter time was adjusted from 200-700 seconds to yield mean sputtered depths 

between 13.5 and 18.8 pm. The dependence o f  the gross crater shape on the voltage 

and current is shown in Figure 3.1. From the different profiles with varying voltage, it 

can be seen that a concave shape is sputtered at 500 V and a convex shape at 1000 V. 

From the profiles with different currents, it can be seen that the influence o f  the current 

on the shape o f the crater is less than that o f voltage. Therefore, a flat crater bottom can 

be obtained at optimum conditions with a voltage o f  600-800 V  and a current o f  

25-30 mA for the iron sample. The results presented for the rest o f the chapter are from 

craters sputtered at 600 V and 30 mA.
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Figure 3.1. The profiles of craters measured by the profilometry (UBM) with varying 
voltages and currents in the glow discharge. The profiles on left column show the 
shape of crater changing from concave (at the voltage of 500V) to convex (at 1000V). 
On the right, it is shown that the current has less effect on the shape of crater.

In addition to the gross crater shape described above, scanning electron microscopy 

(SEM/JEOL 840) was employed to reveal detailed topographical structure in the base o f 

each crater. Figure 3.2 illustrates the morphologies o f the crater bottoms under different 

GDS conditions and sputtered depths obtained in SEM images. Most o f these features 

seem to have a size that corresponds to the crystallite size within the iron. In order to 

confirm this, electron back-scattered diffraction (EBSD) was employed to determine the 

crystalline orientation o f the iron substrate at many different positions on the surface o f 

the eroded samples. EBSD is performed simultaneously with conventional SEM 

imaging. High energy electrons (20 keV) are focused into a beam approximately 50 nm 

in diameter onto the specimen surface. Some high energy electrons are back-scattered 

directly from sub-surface atomic nuclei. These high-energy electrons may then be 

further diffracted by the crystal structure on their way out o f the specimen. A two- 

dimensional EBSD detector mounted to one side o f specimen can record the angular 

distribution o f these emergent diffracted electrons (Figure 3.3) to form a Kikuchi 

pattern. Standard analysis o f such patterns, which consist o f parallel lines
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(a) 600V/30mA/500s/18.3(j.m (b) 700V/35mA/100s/8.6^m

(c) 700V/35mA/800s/39|Lim (d) 700V/35mA/1000s/44)im

(e) 700V/35mA/2000s/98(im (f) 1100V/35mA/500s/63^im

Figure 3.2. SEM images illustrate morphologies of bottoms of the craters under 
different GDS conditions and sputtered depths.

electron beam

sample

screen of detector

sample stage
tilted angle 71

Figure 3.3. Schematic diagram of 
collection of back-scattered electrons 
to form the EBSD pattern. A tw o - 
dimensional EBSD detector mounted 
to one side of specimen can record 
the angular distribution of emergent 
diffracted electrons to form a Kikuchi 
pattern.
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corresponding to low-index planes, yields the crystalline orientation o f  the volume o f 

material irradiated by the electron beam (Randle, 1993). In pure iron, this sampling 

volume was expected to be about 1 pm in size below the incident spot on the surface o f 

the sample. The method can therefore easily differentiate between crystallites on the 

scale found in the iron samples (about 50-100 pm). Scanning the probe can allow all 

the crystallites in the field o f  view to be indexed. The technique has opened up the 

detailed study o f crystallite texture in metals or other materials. In this work, the SEM 

(Philips XL30) with the Oxford EBSD detection system was used to index the crystal 

orientation o f individual crystallites revealed by GDOES sputtering. As correlating 

sputtering rate with the crystal direction normal to the surface sample is o f interest, care 

was taken to measure the geometrical calibration o f the EBSD detector, which ensured 

that the measuring was in the sample normal.

CmmD

Figure 3.4. Correlation between the profile of crater and the SEM image. The profile 
was obtained along the reference line shown on the SEM image below.

The profilometer data (Figure 3.1) also contains significant microstructure on about the 

same scale as the crystallites seen in the SEM images. The depth o f the surface o f  each 

crystallite was correlated by superimposing a profilometer scan taken along a line, and 

comparing this directly with the SEM image, as shown in Figure 3.4. Registration o f  

these separate data is difficult, but accurate correlation can be achieved routinely with
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full confidence. In this way, each crystallite which is observed in the SEM image can 

have its absolute depth measured (via the profilometer scan) -  from which the effective 

sputtering rate can be inferred, assuming the crystallite depth is larger than the crater 

depth -  and at the same time its crystal orientation can be determined (via the EBSD 

detector). Thus, crystal orientation can be correlated with sputtering rate and the 

surface texture that results from the sputtering process.

3.3 Results and Discussion

The topographical structures o f bottom surfaces o f  the GDOES craters were first 

revealed in SEM images. The low-magnification SEM image illustrating a quarter o f a 

sputtered crater is shown in Figure 3.5. It demonstrates clearly crystallite grain 

boundaries and coarse crystal grains with different topography on the bottom o f  the 

crater.

Figure 3.5. Low magnification SEM image shows a range of different textures within 
about one quarter of a typical GDOES crater. Different regions correspond to different 
crystallites, each with a distinct surface texture. GDS parameters: 600V/30mA/500s.

O  — ‘rough’ texture; A  — ‘smooth’ texture;

□  — ‘concaved’ texture; I I — ‘ripple’ and ‘concaved’ texture.
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For the sake o f this discussion, the different surface textures are classified arbitrarily 

into a number o f  different types. Figure 3.6 demonstrates the common textures in the 

bottom surfaces o f GDOES craters at different sputtering times. The most typical 

micro-texture is the so-called ‘rough’, as shown in Figure 3.6 (a), (e) and (i). It is most 

commonly found on the flat surface o f  coarse grains relative to the other textures. 

Another common texture consists o f shallow hollows, referred to as ‘concaved’ texture: 

this appears much smoother than the ‘rough’ texture in the low-magnification SEM 

images. But in the SEM image at a magnification o f xlOOO (Figure 3.6 (b), (f) and (j)), 

it appears to have many adjacent concave surfaces. Note that the eye may deceptively 

interpret the image as a series o f convex domes, but knowledge o f  the detector 

geometry in the SEM ensures that these features are indeed concave. The third texture, 

called ‘smooth’, appears completely flat in the low-magnification SEM image. In fact, 

at higher magnification it can be seen to consist o f a very finely jagged laminated 

microstructure, as shown in Figure 3.6 (c), (g) and (k). Occasionally a ‘ripple’ texture 

appears, as shown in Figure 3.6 (d), (h) and (1): this is often adjacent to the ‘concaved’

(a) 'rough' texture (b) 'concaved' texture

(d) 'ripple' and 'concaved' texture(c) 'smooth' texture
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e) 'rough' texture

'smooth' texture

rough texture

'concaved' texture

texture

(j) 'concaved' texture

(k) 'smooth' texture (I) 'ripple' texture

Figure 3.6. SEM images of the typical micro-textures on the high purity iron sample 
sputtered by GDOES. (a), (e), (i) ‘Rough’ texture, which is easily found on flat coarse 
grains, (b), (f), (j) ‘concaved’ texture appears to have many adjacent concave surfaces, 
(c), (g), (k) ‘smooth’ has fine structure compared with ‘rough’ and ‘concaved’, (d), (h),
(I) ‘ripple’ is often found adjacent to ‘concaved’. GDS: 600V/30mA/4 mm anode.

(a) ~ (d) sputtering time: 500 s, depth: 20.3 pm;
(e) ~ (h) sputtering time: 1000 s, depth: 38.1 pm;
(i) ~ (I) sputtering time: 1300 s, depth: 41.8 pm.

63



areas. These types o f  micro-textures have also been observed when the pure iron has 

been sputtered at different source voltages and currents. Note that the proportion o f  the 

area o f the crater bottom displaying the ‘ripple’ texture reduces as the sputtering time 

increases from 500 s to 1300 s, but as yet there is no explanation for this.

The results from the GDOES craters in the high-purity iron samples with different 

sputtering times, 500 s, 1000 s and 1300 s, were selected to show the sputtered depth, 

micro-textures and orientation. The average sputtered depth corresponding to the stated 

sputtering times are 20.3 pm, 38.1 pm and 41.8 pm, respectively. From the three 

craters o f different depths, a total o f 70 micron scale areas, with different textures o f  

‘rough’, ‘concaved’ and ‘smooth’, were selected and the crystal orientations normal to 

the sample surface o f these areas were then measured via EBSD. The results are 

presented in the form o f an inverse pole diagram, as shown in Figure 3.7. Despite the 

arbitrariness o f  the classification o f  texture, there is significant correlation between 

orientation and the different micro-textures. Most areas with the ‘rough’ texture have a 

surface-normal close to the [111] pole and ‘concaved’ textures tend to be close to the 

[001] pole. ‘Smooth’ textured areas range between the [111] and [001] poles, although 

the correlation is less clear in this case.

This correlation can also be seen in the orientation maps obtained on the EBSD system, 

as shown in Figure 3.8. Figure 3.8(a) shows a typical SEM micrograph o f the surface 

texture observed in the bottom o f a GDOES crater. In Figure 3.8(b), the same area is 

shown, but in this picture the colour coding corresponds to sub-surface crystalline 

orientation calculated by the EBSD technique. In other words, for every pixel in the 

colour part o f  this image, a whole back-scattered diffraction pattern has been collected 

and its crystalline orientation has been indexed. The colour-schematic pole diagram in 

Figure 3.8(c) shows how these colours correspond to the crystal orientation. Because 

the iron is a bcc structure, only a small segment o f angle space (between the [001],

[110] and [111] poles) represent truly unique crystalline orientations (Sutton and 

Balluffi, 1995). It is evident that the visible surface texture is correlated directly with
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the underlying crystallography o f  the sample: each orientation gives a different surface

texture.

[l 11]

‘rough’

‘concaved’

‘smooth’

[101]

Figure 3.7. Correlation between the ‘rough’, the ‘concaved’ and the ‘smooth’ textures 
and the measured orientations normal to the sample surface by EBSD. The orientation 
for the most of micro-areas with ‘rough’ texture are close to [111], ‘concaved’ close to 
[001] and ‘smooth’ stay in the region between [111] and [001],

Crystal Axis Figure 3.8. The mapping result by the 
EBSD for three crystallites with the 
‘rough’, the ‘concaved’ and the ‘smooth’ 
textures.
(a) shows a typical SEM image in 

bottom of GDOES crater;
(b) the colour coding superimposed on 

the SEM image indicates the 
different orientation corresponding 
to the underlying grain;

(c) shows how these colours correspond 
to the crystal orientation.
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The average sputtered depth with the orientation o f  a crystallite as a function o f 

sputtering time can also be correlated, as shown in Figure 3.9(a). Figure 3.9(b) shows 

the relationship between the average depth and the different textures. The configuration 

o f Figure 3.9(b) is similar to Figure 3.9(a), which emphasises the correlation between 

the orientations and the textures. It is noted that the spread in the measured depth o f 

bum  for the crystallites at first increases, and then ceases to increase as the sputtering 

time increases. This is particularly true o f crystallites with ‘rough’ and ‘concaved’ 

surface textures. The depth difference at 1300 s is 5.0 pm compared w ith 5.3 pm at 

1000 s. One possible explanation for this is that as sputtering proceeds, some fast- 

eroding crystallites are completely removed to reveal lower crystallites which, being o f 

different orientation, sputter more slowly. To determine the average crystallite depth, a 

cross-section view o f the crystalline arrangement in the sample is shown in Figure 3.10, 

which is an optical image obtained after etching the cross-section o f the iron specimen 

in 2% nital. It is seen that the crystallites are flat in shape and are around several tens o f 

microns deep: much less than their size in the other two dimensions, and about the same 

depth as the bottom o f the GDOES crater after a long bum. In other words, the 

reduction o f the spread o f measured depths across the crater surface occurs at around 

the same depth as the average crystallite depth. The reason the sample is anisotropic is 

that it was manufactured by a rolling process. Hence when sputtering starts, the 

roughness o f the crater increases until such a time when, on average, more than one 

crystallite has been sputtered from each point o f the surface.

(a)

60
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3 40

-g 30 <uO)
CO

20
CO

close to [001] 
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200 400 600 800 1000
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(b)
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1000 1200 1400

Figure 3.9. Average sputtered depth for crystallites with different orientations and 
textures as a function of the sputtering time. The spread in the sputtered depth tends to 
increase with time with both different orientations, as shown in (a), and for the different 
textures (b). The error bars are obtained from the standard deviations (STDEV) of the 
average depth measured over many grains and are in the region of 1.5-4.5 pm, except 
for the depths of orientations between [001] and [111] at a sputtering time of 1000 s, for 
which there was a large STDEV of 7.3 pm.

Figure 3.10. A view of cross-section of 
the high purity iron sample after etching 
with nital (2%). It shows that the 
crystallites are flat in shape and are 
around several tens of microns deep.

Figure 3.9(a) reveals that the average depth o f regions with zone-axes close to [001] is 

deeper than that o f regions with zone-axes close to [111] (i.e. the sputtering yield is 

10-15% greater in areas close to [001]). One possible explanation for this observation 

is the existence o f channelling o f the incident Ar ions. It is well known (Robinson, 

1981) that for ion energies exceeding ~1 keV, the sputtering yield shows a strong 

dependence on crystallographic orientation. This has been explained in terms o f
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channelling, which is where a high-speed particle is incident on a crystal and nearly 

parallel to a row o f atoms. Rather than undergoing hard collisions, these ions undergo 

glancing collisions and are channelled deep into the material. Channelled ions result in 

collision cascades occurring deeper in the material than for non-channelled ions, 

resulting in the reduction o f the sputtering yield. Obviously some crystal orientations 

are more transparent (i.e. channel more readily) than others. In the case o f bcc Fe, one 

would expect the [111] zone axes to be more transparent than the [001] and hence the 

[111] zone axes would have a lower sputtering yield, which is what is observed 

experimentally.

The problems o f using channelling alone to describe the observations are twofold. The 

theoretical model used to describe channelling was developed to explain observations at 

energy levels o f a few keV. To the best o f our knowledge, the energy distribution o f the 

Ar ions in the plasma in the GDOES has not been measured. Computer models 

(Bogaerts and Gijbels, 1997) predict a wide range o f incident ion energy ranging from 

50 to 600 eV. The other problem o f using channelling alone to describe the results in 

Figure 3.9(a), is that the sputtering yield o f high-index planes is lower than that o f the 

low-index planes. These high-index planes are less transparent than the low-index 

planes and should have a higher sputtering rate, in contrast to what is actually observed. 

Unfortunately, there are few studies in the literature o f sputtering at lower energies. 

However, the sputtering o f Cu with Ar ions has been studied (Robinson, 1981) at 

energies o f less than 500 eV. Differences in sputtering yields o f around 20% for 

different orientations have been reported, which is similar to the different erosion rates 

reported here. Furthermore, high-index planes showed a lower sputtering rate than 

lower-index planes, in general agreement with the results shown here. The 

phenomenon is poorly understood, but it has been suggested that as well as channelling, 

the surface binding-energy plays an important role at these lower energies.
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3.4 Conclusions

Pure iron samples have been used to investigate the crystal orientation effect on the 

sputtering and the depth resolution in depth profiling analysis by the GDOES. The 

SEM images o f the GDOES crater bottom revealed three main classes o f surface 

textures; ‘rough’, ‘concaved’ and ‘smooth’. Electron back-scattered diffraction was 

used to determine the crystal orientation o f  the typical micro-areas. The depths o f  these 

areas were measured using profilometry, and these depths were correlated with crystal 

orientation and surface texture.

Most o f the areas with ‘rough’ texture are close to [111], the ‘concaved’ areas are close 

to [001], whilst the ‘smooth’ areas have higher-index planes in a region between the 

[111] and [001] zone-axes. The fastest erosion occurred when the normal surface 

vector is parallel to [001]. The difference in the sputtered depth between [001] and

[111] increases as the sputtering time increases from 500 s to 1000 s. As the sputtering 

time increases further, the differences in the sputtering depth o f different areas does not 

continue to increase but rather begins to decrease. This may be because the erosion rate 

in different regions balances when the sputtered crater depth is over the mean crystal 

depth (as it becomes likely that a mixture o f faster and slower crystallites have been 

encountered).

The results imply that samples with small grain size will have the best possible depth 

resolution in GDOES. For iron samples with larger crystallite size, depth resolution 

will be compromised by about 20% o f the total crater depth, although this tends to a 

constant resolution at greater than the average crystallite depth.
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Chapter 4 Pitting Phenomena in Surface Evolution of
Coated Samples

4.1 Introduction

Sputtering in GDOES, as with other ion etching techniques, can induce micro-textures 

on etched surfaces (Payling, 1997a and Quentmeier, 1997). When a carbon-coated 

silicon wafer was etched in the GDOES, an interesting surface morphology, the 'pitting' 

phenomenon, was found, as seen in Figure 4.1(a). No pits were found on silicon wafers 

without carbon films after GDOES etching, an example o f  which is seen in Figure 

4.1(b). The etched surface o f the silicon wafer, which had a grill mask during the 

carbon-coating process, clearly shows that the pits are only present in the region with 

the carbon film, as seen in Figure 4.1(c).

(b)

Figure 4.1. (a) SEM image shows pitting 
phenomena on a silicon surface after 
GDOES etching of the carbon-coated 
silicon wafer.
(b) SEM image shows that there are no 
pits on a silicon surface without carbon 
film after GDOES etching.
(c) Optical microscopy image shows pits 
only in the region with carbon-coated film 
before GDOES etching.

(C)
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The development o f surface topography under heavy ion-bombardment is well known. 

It is dependent on the ion flux and energy, initial surface state, and crystalline structures 

and defects in grains. Carter et al. (1983) have classified the stages o f development o f  

surface topography and its dependence on the ion flux. The process o f ion

bombardment-induced sputtering creates at least atomic-scale discontinuities at the

16 •  2surface, and such effects may be observed for ion fluence o f up to 10 ions cm" . As 

ion fluence increases above this level, the features become microscopically observable 

with a size in the range 100-10,000 A. At a fluence o f 1017 ions cm"2, when sufficient 

bombardment-induced defects are built up within the crystal, local variations in 

sputtering yield occur, resulting in major changes in surface topography. In this stage, 

the development o f etch pits, cones and ripples and a further striking three-dimensional
10 90  • 9

mosaic was observed. At very large ion fluence above 10 -1 0  ions cm" , the features 

assume macroscopically observable dimensions o f sub-millimetre size. For etched pits, 

which are o f more interest in the investigation here, it is suggested in the literature that 

they originate presumably from intrinsic defects, and have very well-defined shapes that 

are identical within each grain but differ in shape from grain to grain. An increase in 

the fluence o f bombarding ions usually results in the appearance o f more small pits and 

the already-existing pits grow in size, eventually overlapping with others but, until that 

happens, always retaining their characteristic shape. Examples can be seen in Figure 

4.2 (Cater et a l ,  1983), obtained from Cu, W and Si by Ar ion bombardment with ion 

energies o f either 4 or 40 keV.

Figure 4.2. Pitting phenomena caused by bombardment with high energy Ar ions 
(Carter et. al., 1990). (a) 40 keV argon ion bombardment on Cu. (b) 4 keV argon ion 
bombardment on W. (c) 40 keV argon ions bombardment on Si, 1020 ions cm'2 at 45° to 
surface normal.
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In GDOES sputtering, using the conditions 600 V/25 mA and using a 4 mm anode, an 

ion flux in the order o f 1018 (ions cm"2 s'1) is expected. Computer modelling indicates 

that the ion energies typically lie in the range 50 to a few hundred eVs (Bogaerts and 

Gijbels, 1997). Some features, like cones or pyramids, ripples, concaved dots and 

mosaic patterns can also be observed in the bottom o f craters sputtered by GDOES 

(Chapter 3), which are very similar to those mentioned in the literature. However, for 

the pitting phenomenon, which will be discussed later, no reports on this or similar have 

been found in the literature. The pits may have different mechanisms o f formation and 

geometric characteristics compared with the pits formed on well-defined surfaces under 

high-energy ion bombardment. Further investigations on the characteristics and 

development o f the pits also showed that the pitting phenomenon has a potential 

application as a random array o f micro-lenses. With a parallel light beam irradiating the 

pitted surface, a set o f luminous spots, which are focused on a layer at a certain distance 

above the surface by pit surfaces, can form a unique luminous pattern. Figure 4.3 shows 

a set o f luminous spots that correspond to the pits in optical images o f  a pitted surface. 

Due to the stochastic nature o f the creation o f the micro-lens, the luminous pattern 

created is unique and could be used in marker technology applications.

(a) 1 (b)

(c)

Figure 4.3. Optical microscopy images 
show a set of luminous spots that 
correspond with the pits.
(a) Pits on silicon wafer.
(b) Luminous spots corresponding to 

the pits in (a).
(c) Combination of images (a) and (b).
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In this chapter, the mechanism o f pit generation on surface-coated silicon wafers will 

first be discussed. It appears that pit formation is mainly due to a large difference in the 

sputtering rates between the coating and the substrate. The density o f pits determined 

from SEM images revealed different processes o f pit development in etched layers o f  

carbon film and silicon substrate. Finally, geometries and the development o f the pits 

on silicon surfaces were investigated in detail. A model for the pitting phenomenon is 

given based on AFM results.

4.2 Experimental 

4.2.1 Coating processes

All films in this investigation were grown in a vacuum coating system (Edwards 

E306A). Different materials o f carbon, aluminium, silver, germanium and silicon were 

deposited onto silicon wafers. For carbon film preparation, the evaporation source 

consisted o f two carbon electrodes. One o f  them was fixed and another, sliding in an 

insulated bush, was pressed against the fixed electrode by a light spring. The contact 

region was tapered to a reduced cross-section so that passage o f  an electric current 

resulted in local resistive heating o f the contact area. The heating is sufficient to cause 

the carbon to sublime from the narrowest part. For other coated materials, a resistance- 

heated filament made from a basket-shaped tungsten wire was used as the evaporation 

source. Coating materials were cut into chips o f millimetre size so that it was able to fit 

the chips into the basket.

4.2.2 Estimation of thickness of the coatings

The thickness o f the film deposited by the vacuum coating system was in the range o f  

tens to hundreds o f nanometres. It is difficult to measure the thickness by a 

profilometer or other common techniques. In this study, the thicknesses o f  the films 

were estimated by calculation. Given that the coated material was vaporised and
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deposited on the substrate surface in an evacuated chamber under a vacuum o f  

<10'5 bar, the vaporised particles in the chamber can be expected to diffuse 

isotropically. Then, in any part o f a sphere with the vaporising point as the centre, the 

thickness should be same. Therefore, assuming that the sample surface is a part o f the 

sphere, the thickness o f the film can be calculated from the mass loss o f the coating 

material and the density o f the film. In this study, the mass loss o f coating materials 

was obtained with a microbalance. For carbon film, the density is 2.2 g/cm (Watt, 

1985). However, densities for other films in this study were not found in the literature. 

Therefore, the densities o f bulk materials o f aluminium, silver, germanium and silicon 

were chosen as the densities o f the films. The use o f bulk densities may result in errors 

in the calculations o f thickness o f the films. Coarse particles vaporised from coating 

materials can also cause the calculated thickness o f  the coating to be less than that o f  

real values.

The accuracy o f the calculated thickness o f  the carbon film on the silicon wafers was 

tested by sputtering the coated samples in the GDOES. Silicon wafers with different 

calculated thicknesses o f the carbon film o f 110, 180, 215 and 260 nm were sputtered 

until the carbon films were completely removed. Figure 4.4 shows GDOES profiles o f  

carbon and silicon intensities versus sputtering time for the carbon-coated silicon 

wafers. If the midpoint o f silicon intensity between its lowest and highest levels is 

considered as a reference point for the interface between the coating and the substrate, 

the sputtering times corresponding to the points for those samples were 65, 110, 131 

and 163 seconds. Figure 4.5 shows a good correlation between the thickness and the 

sputtering time. If the midpoint is considered as a reference o f  the interface, the 

thickness o f the carbon film could be indirectly measured by subtracting the sputtered 

depth o f silicon wafer only from the depth o f the sputtered crater. For example, for the 

silicon wafer with the 260 nm-thick carbon film, the total sputtering time was 241 

seconds. The depth o f the sputtered crater was measured by a profilometer as 1.20 pm. 

In the sputtering conditions used in this study the etching rate, defined as etched depth 

in nanometres per second, o f the silicon wafer was measured as ~12 nm/sec. Therefore,
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the thickness o f the carbon film would be 265 nm, which is close to the calculated 

thickness o f 260 nm.

(a)

(b)

(c)

(d)

Figure 4.4. GDOES depth profiles of carbon-coated silicon wafers with different 
thicknesses of carbon film. The thicknesses were (a) 110 nm, (b) 180 nm, (c) 215 nm 
and (d) 260 nm. GDS parameters: 600V/25mA/4 mm anode.
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Figure 4.5. Calculated thickness of carbon film against the sputtering time at the mid 
point of the profile of the silicon intensity. The good correlation shows the reliability of 
the calculated thickness of the carbon film.

4.2.3 AFM measurements

The pitting phenomenon was identified by optical microscopy and SEM images o f the 

sputtered surfaces. Nevertheless, they cannot provide 3-D data o f the pits. 3-D 

scanning by a laser-beam profilometer can give some information for relatively large 

pits, but its resolution is not good enough to give information on the geometry o f  

smaller pits. The Atomic Force Microscope (AFM) makes it possible to measure the 

details o f the pits in three dimensions even when pits’ diameters are only o f  the order o f  

a micron or less. AFM probes the surface o f a sample with a sharp tip a couple o f  

microns long and usually around five nm in diameter. The tip is located at the free end 

o f a cantilever that is 100 to 200 pm long. Forces between the tip and the sample 

surface cause the cantilever to bend, or deflect. A  detector measures the cantilever 

deflection as the tip is scanned over the sample, or the sample is scanned under the tip. 

The measured cantilever deflections allow a computer to generate a map o f  surface 

topography (Howland and Benatar, 1993). Figure 4.6 shows a schematic diagram o f  an 

AFM. A laser beam bounces o ff the back o f the cantilever onto a position-sensitive 

photodetector (PSPD). As the cantilever bends, the position o f the laser beam on the 

detector shifts. The PSPD itself can measure displacements o f  light as small as 10 A . 

The ratio o f the path length between the cantilever and the detector to the length o f  the
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cantilever itself produces a mechanical amplification. As a result, the system can detect 

sub-angstrom vertical movement o f the cantilever tip.

laser diodemirror

PSPD
detector

cantilever

sample

scanner

Figure 4.6. Schematic diagram of an AFM

Once the AFM has detected the cantilever deflection, it can generate the topographic 

dataset by operating in one o f two modes: constant-height or constant-force mode. In 

this study, the AFM was working in the constant-force mode. In this mode, the 

deflection o f the cantilever is used as input to a feedback circuit that moves the scanner 

up and down vertically, responding to the topography by keeping the cantilever 

deflection constant. In this case, the image is generated from the scanner’s motion. 

With the cantilever deflection held constant, the total force applied to the sample is 

constant.

AFM images o f  the pits on surfaces o f silicon wafers showed that the pits have circle

like edges before joining with others. Section profiles o f a pit along two cross

diameters o f the circle were symmetrical about their centre lines. Examples are shown 

in Figure 4.7(a) (the circle edge) and Figure 4.7(b) (the symmetric feature o f the profile 

o f a pit). The observations o f the circle edges and the symmetric feature led to an 

assumption that the pit’s surface could be a part o f a sphere. The assumption can be 

proved by calculating the radii o f the profile based on any three points on it, as any three

77



points in a plane can define a unique circle. If the calculated radii based on the points 

on two cross-profiles o f a pit have similar values, the pit surface should be regarded as 

an approximate sphere.

Section Analysis

O

O

2 . 5  5 . 0  7 . 5  1 0 . 0
|jm

(a) (b)

Figure 4.7. AFM image of a pit and two profiles obtained by cross-cutting the pit along 
its diameters.

4.3 Experimental Results and Discussion

4.3.1 Experiments with different coatings

The 'Pitting' phenomenon was first found on the surface o f a carbon-coated silicon 

wafer after the GDOES etching. When the carbon film was completely removed, a 

random array o f pits o f characteristic shape was present on the etched surface o f  the 

silicon substrate, as seen in Figure 4.1(a). A carbon-coated silicon wafer covered with a 

grill mask during the coating process was also prepared. Figure 4.1(c) clearly shows 

that the pits were only present in the regions with the carbon film after the surface was 

etched by GDOES sputtering. No pits can be found in the areas without carbon film 

after the GDOES etching. It seems that the pitting phenomenon only occurs when 

silicon wafers are coated with a thin film o f carbon. It is known that the sputtering rate 

o f carbon is the lowest among the elements in common use. For example, the measured 

sputtering rate o f carbon in the GDOES is 18 times lower than that o f  pure iron, while 

silicon is only about 6 times lower. The etching rates (nm/sec) in GDOES (under the
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conditions o f a 600 V/25 mA/4 mm anode) for carbon film and silicon wafers are 

~1.65 nm/sec and ~12 nm/sec, respectively.

A series o f samples with different coatings o f silver, aluminium, silicon and germanium 

were produced in order to study why and how the pitting phenomenon occurs. The pure 

metals silver and aluminium were selected as coating materials because these metal 

films are expected to have a crystalline structure. However, carbon, silicon and 

germanium films are believed to be amorphous. On the other hand, the sputtering rate 

o f aluminium in GDOES is the lowest among the common metals. The measured 

sputtering rate o f aluminium in the GDOES in this study is about 2.5 times lower than 

that o f pure iron and comparable to that for Si.

In GDOES etching, a display o f elemental profiling is simultaneous with the etching 

evolution. This allows the etching to be stopped in a particular layer o f the evolution. 

For example, the etched surface could stay in the coating, or the etched surface could 

reveal the substrate material just after the coating is completely etched away or the 

etched surface could be the substrate surface that has experienced a long etching time 

after the coating has been completely removed.

Silver and aluminium were first coated onto silicon wafers. The calculated thickness o f  

the aluminium film was around 150 nm. The GDOES etching parameters were 600 V  

and 25 mA with a 4 mm anode tube. As the etching rates in GDOES are different for 

the silver and aluminium films, the etching times to the interface between the film and 

the silicon substrate were ~1 second and ~4.5 seconds for silver and aluminium, 

respectively. Therefore, a variety o f etching times were chosen, which were 2, 5, 8 and 

30 sec for the silver-coated silicon and 5, 8, 10 and 30 sec for the aluminium-coated 

silicon, in order to observe morphologies o f the surfaces in different etched layers. 

GDOES profiles o f the silver- and the aluminium-coated silicon wafers indicated that all 

the bums with the different etching times mentioned above had removed all the coating 

material and revealed substrate surfaces completely. The etched surfaces were observed
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in the SEM (JEOL 840). With short etching times (etching times up to 8 sec for the 

silver-coated silicon wafer and up to 10 sec for the aluminium), no pits were found on 

the etched surfaces o f both coated silicon wafers (Figure 4.8(a) and (c)). These short 

etching times corresponded to at most 7 sec and 6 sec o f substrate etching times for the 

silver- and aluminium-coated silicon wafers, respectively. With a long etching time o f  

30 sec, very few pits were found on the etched surface for Ag-coated silicon, as seen in 

Figure 4.8(b). This time was corresponded to ~29 sec o f substrate etching time for the 

silver-coated silicon wafer. However, after 30 seconds’ etching for the aluminium- 

coated silicon (corresponding to ~25 sec o f  substrate etching time), a pit-like 

topography on the surface was produced, an example o f which can be seen in Figure 

4.8(d), but at a much lower density than for the carbon-coated silicon wafer.

(c) (d)

Figure 4.8. SEM images of etched surfaces of Ag- and Al-coated silicon wafers after 
short and long times of GDOES etching. GDOES parameters: 600 V/25 mA/4 mm 
anode.
(a) Sample: Ag-coated silicon wafer, etching time: 8 sec, no pits were found on the 

etched surface.
(b) Sample: Ag-coated silicon wafer, etching time: 30 sec, very few pits on the surface.
(c) Sample: Al-coated silicon wafer, etching time: 10 sec, no pits on the surface.
(d) Sample: Al-coated silicon wafer, etching time: 30 sec, a pit-like topography was 

found on the surface.
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A germanium film was deposited onto silicon wafer with a calculated thickness o f  

around 90 nm. The GDOES setting was the same as above. The etching time to the 

interface is about 1.5 seconds, therefore different etching times o f 2, 5, 10 and 30 

seconds were selected to obtain the etched surface in different layers o f the substrate. 

SEM images o f the etched surfaces showed no pits on the etched surfaces with short 

etching times up to 10 seconds (corresponding to at most ~8 sec etching for the 

substrate only), e.g. see Figure 4.9(a). With a longer etching time o f  30 seconds 

(corresponding to an etching time o f ~28 sec for the substrate only), small pits with low  

density were again observed in the SEM image o f  the etched surface, as seen in Figure 

4.9(b).

(a) (b)

Figure 4.9. SEM images of etched surfaces of Ge-coated silicon wafers after 10 and 
30 seconds of GDOES etching respectively. GDOES parameters: 600V/25mA/4 mm 
anode.
(a) Sample: Ge-coated silicon wafer, etching time: 10 sec, no pits were found on the 

etched surface.
(b) Sample: Ge-coated silicon wafer, etching time: 30 sec, small pits on the surface.

Figure 4.10 shows an SEM image o f the pits on an etched surface o f a silicon wafer. 

The silicon wafer was coated with carbon film 135 nm thick. The same etch conditions 

o f GDOES as that in Figures 5.8 and 5.9 were used. The total etching time was 107 

seconds and the etch time for the substrate only was about 25 seconds. From Figure 

5.10, it can be seen that the density and the size o f the pits are much larger than those 

with Ag, Al and Ge films.
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Figure 4.10. Pits on an etched silicon 
wafer. The silicon wafer was coated with 
carbon film 135 nm thick and etched in 
GDOES under the same conditions as 
that in Figures 5.8 and 5.9, but much 
higher pit density was obtained. The total 
etching time was 107 sec and the etching 
time for the silicon substrate was ~25 sec. 
GDS: 600V/25mA/4mm anode.

The topography o f the sputtered surface is mainly dependent on the characteristics o f  

argon ions, the original surface definition and the microstructures o f  the sample. In this 

case, the GDOES parameters were set to keep the ion energy and fluence constant. 

Single-crystal silicon wafers were selected as the substrates. Therefore, the only 

difference was the coated film, which could act as a mask on the surface. Differences in 

film structures and defects were almost inevitable in the coating process. These 

differences will introduce a difference in sputtering yields in some localised areas and 

consequently result in a specific topography on the surface when the film is etched 

away. The experimental results above show that no pits were observed on the etched 

surfaces with short etching time, which does not mean there is no sputtering-induced 

surface topography. In fact, the topography on the etched surfaces could be at less than 

the micro-scale, which cannot be distinguished in the SEM images. With a long 

substrate etching time after the film is etched away, the topography on the sub-micron 

scale is developed up to the micro size. It is the pitting phenomena introduced by the 

etching under GDOES sputtering that were observed on silicon surfaces with metal-, 

non-metal- and semiconductor-coating in SEM images with long etching times.

The 'pitting' phenomenon was also confirmed by etching Si-coated silicon wafers. The 

Si coating has an amorphous structure when grown at room temperature, as do the 

carbon and germanium films. Two silicon wafers with different calculated thicknesses
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(~50 nm and ~160 nm) o f the silicon coating were prepared by evaporation. The 

interface between the silicon film and silicon substrate was identified in GDOES depth 

profiling by a peak in the carbon signal and a step in the silicon signal at the interface. 

Under the same GDOES conditions, the etching time to the interface for the silicon 

films o f 50 nm and 160 nm thickness were less than 0.1 and ~1.2 seconds, respectively. 

It can be seen in SEM images in Figure 4.11(a) and (b) that a pit-like topography was 

revealed on the etched surfaces with the thick silicon film after only eight seconds o f 

etching. However, for the thin silicon film, no pits were observed even after 10 seconds 

o f GDOES etching, as seen in Figure 4.11(c) and (d). The significant pit-like 

topography in Figure 4 .11(a) and (b) is mainly due to the thick silicon film providing a 

longer time than the thin film for the ions to etch the silicon surface in some local areas. 

Therefore, the etching rate o f the coating material should play a key role in the pit 

formation. Although the pit-like topography can be introduced on silicon surfaces 

coated w ith silver, aluminium, germanium and silicon films using GDOES sputtering, 

the pit size was much smaller and the pit densities were lower than that on the carbon- 

coated silicon surface. The reason for this difference can be explained by the difference 

in etching rates between the film and the substrate. For the carbon film, the etching rate 

was measured as ~1.65 nm/sec at GDOES conditions o f 600 V/25 mA with a 4 mm 

anode. It is seven times lower than that o f the silicon wafer (~12 nm/sec). Etching rates 

o f other films in this study cannot be obtained due to the inaccuracy o f the calculated 

thickness o f the films and much shorter etching time than the carbon film. However, 

sputtering yields o f carbon, silver, aluminium, germanium and silicon under argon ion 

bombardment were obtained by the computer simulation (SRIM, 2003), w ith the ion 

energy o f 500 eV and for 100 atomic layers, and are listed in Table 4.1.

Table 4.1. Calculated sputtering yields (atoms/ion) o f  carbon, silver, aluminium, 
germanium and silicon by the computer simulation (SRIM, 2003) and estimated etching 
rates (nm/sec) fo r  silicon, aluminium, germanium and silver film s according to the 
etching rate o f  the carbon film  1.65 nm/sec and the simulated sputtering yields.

Carbon Silicon Aluminium Germanium Silver

Sputtering yield 0.13 0.50 0.68 1.30 2.50

etching rate 1.65 14.0 16.3 43.1 59.8
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Figure 4.11. SEM images show pits-like topography on the etched surfaces with the 
thick silicon film even after 8 seconds of etching. However, for the thin silicon film, no 
pits can be observed even after 10 seconds etching. GDS: 600V/25mA/4mm anode.
(a) sample: silicon wafer with coated Si film in 160 nm thick, etching time: 8 sec;
(b) sample: silicon wafer with coated Si film in 160 nm thick, etching time: 23 sec;
(c) sample: silicon wafer with coated Si film in 50 nm thick, etching time: 5 sec;
(d) sample: silicon wafer with coated Si film in 50 nm thick, etching time: 10 sec.

To compare the etching rates o f two materials, the sputtering yield must be converted to 

the sputtering rate based on Eqn. (2.13). Therefore, a ratio o f etching rates o f two 

different targets 1 and 2 can be expressed as:

Px _  S x mlX p 2 (4 1)
P2 S 2 mt2 p\

where P  is the etching rate o f the target; S  is the sputtering yield; mt is the atomic mass 

o f the target and p  is the density o f the target. In the case o f the carbon film and the 

silicon wafer, the ratio o f the etching rates o f the silicon wafer to the carbon film was 

calculated as 8.5 based on the sputtering yields in Table 4.1. That is, the etching rate o f
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carbon film is 8.5 times lower than that o f the silicon wafer, which is close to the 

measured results (seven times lower). The etching rates o f  the silicon, aluminium, 

germanium and silver film were calculated according to the etching rate o f the carbon 

film (1.65 nm/sec) and the sputtering yields in the table, which are also listed in Table 

4.1.

Figure 4.12 shows the SEM images o f a carbon film on pure iron after GDOES etching. 

The calculated thickness o f the carbon film was ~600 nm. After 155 seconds’ etching 

in the GDOES at 700 V/30 mA, the surface layer was still in the carbon film, which was 

confirmed by GDOES profiles for the Fe and C intensities. From Figure 4.12(a) it can 

be clearly seen that the pits formed initially. Occasionally we can even see the pits on 

the substrate where the carbon film was broken over a relatively large area, as seen in 

Figure 4.12(b).

Figure 4.12. SEM images of pits on a surface of carbon-coated pure iron after 
GDOES etching. The surface layer was still in the carbon film. Original thickness of the 
carbon film: -600 nm. Etching time: 155 sec. GDOES parameters: 700V/30mA/4mm 
anode.
(a) The pits formed initially in carbon layer.
(b) The pits on the substrate where the carbon film was broken over a relatively large 

area.

The pitting phenomenon was observed not only on single-crystal silicon surfaces, but 

also occurred on pure polycrystalline iron. Figure 4.13 shows an SEM image o f a 

surface o f carbon-film-coated pure iron after the film has been completely etched away
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by GDOES sputtering. In the image, the ripple and smooth textures represent different 

crystallites with different orientations (Chapter 3). The pits formed on both the ripple 

and smooth areas, suggesting that the crystal structure has no effect on the pitting 

phenomenon.

Figure 4.13. SEM image of pits on a 
surface of carbon-coated pure iron after 
the film was completely etched out in the 
GDOES. The pits generated on the 
‘ripple’ and the ‘smooth’ areas imply 
crystal structure has no effect on the 
pitting phenomenon.
Thickness of the carbon film: -600 nm. 
Etching time: 200 seconds.
GDS: 700 V/30 mA/4 mm anode.

4.3.2 Effect of carbon film thickness on pit formation

Silicon wafers with different thicknesses o f carbon film have been prepared to 

investigate the effect o f  film thickness on pit formation. The calculated thicknesses o f 

the films were 50, 110, 215 and 260 nm. The etching parameters used in the GDOES 

were 600 V/25 mA and a 4 mm anode. The samples were etched in the GDOES until 

the silicon signal just began to rise. The bums were stopped when the silicon intensity 

reached 0.2 V, which is only ~4% o f the Si signal on a pure silicon wafer. This implies 

that a few o f the argon ions were only just penetrating the carbon film in some local 

areas and were bombarding the silicon surface. In this stage, most o f the ions were still 

bombarding onto the carbon film. SEM images in Figure 4.14 show pits on the etched 

surfaces o f the carbon-coated silicon wafers with original thicknesses o f the carbon film 

o f 50, 110 and 260 nm respectively. From the SEM images, it can be seen that 

diameters o f the biggest pits increase as the original thickness o f  the carbon films 

increases. However, the smallest pits have similar size, which can be seen more clearly 

in the SEM images in Figure 4.15. Densities o f the pits were determined for each o f  the
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samples corresponding to that in Figures 4.14 and 4.15, which are shown in Figure 4.16. 

The density decreases as the original thickness o f  the carbon film increases.

*

(C)

(b)
Figure 4.14. SEM images of pits on 
etched surfaces of carbon-coated silicon 
wafers with different original thicknesses 
of the films. The surfaces were in the 
layers in where argon ions just penetrated 
through the films and silicon atoms began 
to be sputtered out. GDOES parameters: 
600 V/25 mA/4 mm anode. Original 
thickness of carbon films and etched 
times: (a) 50 nm/20 sec.

(b) 110 nm/39 sec.
(c) 260 nm/106 sec.

(b)

Figure 4.15. SEM images of the smallest 
pits on the surfaces of carbon layers. 
Sizes of the smallest pits in the different 
layers were almost same, around one 
micron. GDOES parameters: 600 V/25 
mA/4 mm anode. Original thicknesses of 
carbon films and etched times were:
(a) 110 nm/39 sec,
(b) 215 nm/83 sec,
(c) 260 nm/106 sec.
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Figure 4.16. Densities o f the pits on 
the su rfaces o f carbon layers o f the 
sam ples co rresponding to that in 
F igu res 4.14 and 4.15.

The sputtering times for the samples in Figures 4.14 and 4.15 suggested that thicknesses 

o f the remaining carbon films differ according to the original thicknesses o f the carbon 

film. For example, the sputtering times for the samples with thicknesses o f 110 nm, 

215 nm and 260 nm were 39 sec, 83 sec and 106 sec, respectively. However, the 

GDOES profiles o f the samples (see Figure 4.4) show that sputtering times to the 

interfaces between the carbon film and the substrate were 65 sec, 131 sec and 163 sec, 

respectively. Therefore, the thicknesses o f the remaining films could be estimated as 

-45  nm, -8 0  nm and -95  nm, based on the etching rate o f the carbon film o f 

-1 .65  nm/sec.

This phenomenon, i.e. the pit density decreasing as the original thickness o f the carbon 

film increases, could be explained by the stochastic roughening model for ion 

bombardment o f surfaces (Carter, 1995). In this model, ion bombardment is considered 

to erode surfaces only by sputtering in the absence o f all other effects. The incident ion 

flux consists o f a random statistical arrival in time and space o f individual ions at the 

surface with each ion sputtering a fixed number o f atoms at the point o f incidence (the 

sputtering yield). The model suggested that the ‘m acroscopic’ surface becomes 

increasingly rough with increasing time (or mean sputtering depth). The surface 

roughness o f the samples in Figures 4.14 and 4.15 were measured and plotted in Figure 

4.17. The roughness does increase as the etching time increases, which supports the 

stochastic roughening. As schematically illustrated in Figure 4.18, shorter sputtering
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time will result in a relatively smooth surface structure, which will result in higher pit- 

densities (Figure 4.18a) than longer sputtering time and a rough structure (Figure 

4.18b). Therefore, the stochastic roughening resulted in the higher pit-density and the 

thin remaining carbon film for the sample with the thin original carbon film. However, 

the thicker original carbon film required a longer sputtering time before the ions reached 

the silicon surface, which resulted in the rougher surface and the lower pit-density.

0.18 - 

0.16 - 

0.14

I.0-12 '
^  0.1 - 
C/5

1 0.08 
sz
05  
|  0.06

0.04 -

0.02

0
0

R2 = 0.9834

20 40 60

sputtering time (s)

100 120

Figure 4.17. M easured roughness of etched su rfaces o f the sam ples co rrespond ing to 
that in F igure 4.16. The roughness increases as the sputte ring tim e increases. A  best 
fit s tra ight line has been fitted to the data w ith R2 = 0.9834.
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Figure 4.18. S chem atic  illustration o f the stochastic  roughening model.
(a) W ith th inner orig inal carbon film , the stochastic  roughing results in a h ighe r 

density o f pit and leaves a th inne r rem aining th ickness o f carbon film .
(b) The th icker carbon film  requires a longe r sputte ring tim e and leaves a rougher 

su rface, which produces the pits on the silicon su rface with low er density.
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4.3.3 Effect of thickness of carbon film on pits developing in the silicon 

substrate

By etching the carbon film completely away, pits with different appearances were left 

on completely exposed surfaces o f silicon wafers. Figure 4.19 shows the difference on 

the surfaces o f the silicon wafers with different original thicknesses o f the carbon film 

o f 50, 110, 180, 215 and 260 nm. The etching evolution o f the samples were monitored 

by the GDOES depth profiling so that the etching was stopped when the carbon signals 

were down to -0.1 V, as shown in Figure 4.4. Variations o f densities o f the pits and the

(c)

(e)

(d)

Figure 4.19. SEM images of pits on 
silicon wafers with different thicknesses of 
original carbon films when the films were 
etched out completely. GDOES 
parameters:600 V/25 mA/4 mm anode. 
Thicknesses of carbon film and etched 
times: (a) 50 nm/36 sec.

(b) 110 nm/103 sec.
(c) 180 nm/163 sec.
(d) 215 nm/201 sec.
(e) 260 nm/241 sec.
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diameter o f the biggest pit corresponding to the thicknesses o f  the carbon films were 

plotted in Figure 4.20 and Figure 4.21 respectively. There are two possible explanations 

for the observed decrease in pit density. First, the density o f the pits originally formed 

on the silicon surface decreases as the thickness o f the carbon film increases (Figure 

4.16), due to the stochastic roughening effect o f the ion bombardment on the carbon 

film. Second, some small pits have been engulfed by the development o f bigger pits 

(Figure 4.19), as the pits initially formed on the silicon surface with a thicker carbon 

film have a longer developing time before the film is completely etched away.
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Figure 4.20. Densities of the pits 
corresponding to the samples in 
Figure 4.19. A best fit straight line has 
been fitted to the data with R2=0.9514.
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Figure 4.21. Diameter of the largest 
pit in the samples in Figure 4.19. A 
best fit straight line has been fitted to 
the data with R2 = 0.9551.

4.3.4 Identification of characteristics of pits on silicon wafers by AFM

4.3.4.1 Diameters and depth of the pits

SEM and optical images have shown all o f the pits have circular edges before joining 

with other pits, even the smallest ones that can just be observed in the SEM images 

(Figure 4.15). The circular edges have also been confirmed using AFM images. Figure



4.22 shows typical AFM images o f the pits on silicon wafers after the carbon films were 

just etched away by GDOES etching. The thicknesses o f the original carbon films were 

65, 105 and 180 nm respectively. The diameters o f the circle and depth o f  42 individual 

pits selected from the three samples were measured directly from the AFM 

measurements and listed in Table 4.2. Each o f the selected pits has an entire circular 

edge, which means the pits had not joined with others. The measured diameters are in a 

range from less than one micron to nearly 20 microns. Nevertheless, the measured 

depths vary from 10 nm to 610 nm.

D ig ita l In strum ents NanoScope 
Scan s i z e  50 .00  pr
Scan r a te  0 .7443  H;
Number o f  sam ples 512
Image Data Height
Oata s c a le  1 0 0 .0  nrn

M»ht

D ig ita l Instrum ents NanoScope 
Scan s i z e  50 .00  pn
Scan r a te  1 .1 3 0  H2
Number o f  sam ples 512
Imaae Data Height
Data s c a le  2 5 0 .0  nm

D ig ita l Instrum ents NanoScope 
Scan s i z e  4 0 .0 0  pm
Scan ra te  1 .017  Hz
Number o f  sam ples 512
Image Data Height
Data s c a le  500 .0  nm

Figure 4.22. AFM images of pits on silicon wafers with different original thicknesses of 
the carbon film. GDOES parameters: 600 V/25 mA/4 mm anode. Thickness of original 
carbon films and etched times: (a) 65 nm/21 sec. (b) 105 nm/90 sec. (c) 180 nm/163 
sec.
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4.3.4.2 Identification of the surface of the pit

The surface o f the pit was initially assumed to be a part o f a sphere and the assumption 

is further proved using the method mentioned in Section 4.2.3. In this study, for each o f  

the pits listed in Table 4.2, two section-profiles along two cross-diameters o f the pit 

circle were obtained from the AFM measurements. Five points on each o f the profiles 

were selected evenly, and then divided into six different combinations with three o f the 

five points. Six radii based on the six data combinations were calculated. For two 

cross-profiles o f one pit, 12 radii were obtained. Therefore, the sphere o f  the pit surface 

can be confirmed when a mean radius o f  the 12 radii has a small relative standard 

deviation. The mean radius for each o f the pits in Table 4.2 was calculated. The mean 

radii and their relative standard deviations are also listed in Table 4.2. Results in the 

table show that the relative standard deviations o f the mean radii for most o f the pits are 

less than 5%, with the exception o f pits with diameters below one micron. This implies 

the surface o f the pit is very close to a part o f a sphere when the diameter o f the pit is 

larger than one micron.

4.3.4.3 Developments of pits in silicon wafers with different thicknesses 

of carbon film

Diameters, depth and radii o f  the pits in Table 4.2 were measured from the AFM  

measurements. The diameters were measured from the circular edges o f  the pits. The 

depth represents a distance from the plane o f the circular edge to the deepest point on 

the surface o f a pit. The radius o f the pit surface is an average o f 12 calculated radii 

from two profiles o f the pit along two cross-diameters. The results in Table 4.2 were 

also plotted as pit depth and pit radius versus pit diameter respectively, as shown in 

Figure 4.23(a) and Figure 23(b). From the figures, it can be seen that the depths and 

radii o f the pits in any one o f the three samples increased with increasing pit diameter. 

A linear relationship was followed, with the exception o f a few lower data points o f  the 

samples with carbon film thicknesses o f 65 nm and 105 nm in Figure 4.23(a). Slopes o f  

the lines for both the depth and the radius are almost the same for the samples with the 

different thicknesses o f carbon film. The gradient slope represents the developing speed
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o f the pit in pit depth or pit radius. In the graph o f depth vs. diameter, the higher the 

gradient o f the line, the faster the pit depth develops. Therefore, the fact that the 

gradients are nearly constant indicates that the variation o f thickness o f the carbon film 

has no effect on the pit development speed in the silicon wafer. For the coated samples 

etched in GDOES, once the pits have formed, the development o f  the pit on a substrate 

should only depend on the density, energy and incident angle o f the argon ions and 

substrate materials. As these parameters were kept constant in this study, the gradient 

o f the slope is constant.
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Figure 4.23. Depths (a) and radii (b) against diameters of pit based on the AFM 
results listed in Table 4.2.
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4.3.4.4 Developing speeds of the pits in pit diameter and pit depth

The data in Table 4.2 also show a difference in the developing speeds of the pits 

between directions o f the diameter and the depth. For example, considering the 18 pits 

from the sample with the 105 nm-thick carbon film, the diameters varied from 2.3 pm to 

9.6 pm, while the depth ranged from 21 nm to 347 nm. This implies the developing 

speed in the direction o f the diameter is much faster than the depth. There are two 

explanations for this observation. First, consider the profile o f a pit as a part o f a circle, 

as shown in Figure 4.24, and assume that etching in the direction normal to the pit 

surface occurs at the same rate anywhere on the surface. This means that circle 

enlargement takes the same point as its centre. Using geometry, a ratio o f the 

developing speeds o f the pit in the diameter and the depth can be obtained as,

Ax n — 1
(4.2)

A/z yl2n -1

where Ax and Ah are the developing speeds in the directions o f pit diameter and pit 

depth; n is a ratio o f the radius to the depth o f the pit. When n = 40, the minimum o f the 

ratio for all o f the pits in Table 4.2, the developing speeds have Ax/Ah = 4.5. Hence, the 

developing speed o f the pit diameter in Table 4.2 is at least nine times faster than the pit 

depth.

Y

Point 
P (x, R-h)

Figure 4.24. S chem atic d iag ram  o f a pit profile in geom etry. The orig in point O is 
located at the centre point o f the circle. The pit profile is a part o f the circle, h  is depth 
o f the pit. P is the point o f in te rsect o f the profile and the line o f the fla t su rface. G 1 and 
Q2 are the angles between ion incidence and norm al o f the surface.
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During the development o f the pits, the flat surface o f the silicon wafer was etched layer 

by layer, which should engulf some o f the diameter more than the depth. From Eqn.

(4.2) it can be calculated that when the ratio o f n > 3.4, the erosion o f the flat surface 

will cause more reduction o f the diameter than o f the depth o f the pit. This is the case 

with the pits listed in Table 4.2. Even so, the experimental results still indicate the 

developing speed o f the pits by pit diameter is much faster than by pit depth.

Second, the developments o f the pits could be affected by the angular dependence o f 

sputtering yield (Chapman, 1980). The angle is defined as the angle between direction 

o f ion incidence and normal to the etched surface. In the literature, it is indicated that 

the sputtering yield is not a maximum at an angle o f zero. It will increase as the angle 

increases from zero and reach a maximum at an angle o f around 60°, as shown in Figure 

4.25. As it is expected that most o f the argon ions in the GDOES sputtering were along 

a direction normal to the sample surface, 0\, the incident angle at the edge o f the pit, is 

bigger than O2, at a point close to centre o f the pit, as shown in Figure 4.24. For the pits 

listed in Table 4.2, the angle <9/ is in a range o f 2.9°-13.5°. These angles could cause 

the sputtering yield from the outside area o f the pit surface to be higher than in the 

central area, and did result in this phenomenon. This could aggravate the increase in 

p its’ diameters.

A t o m s / I o n

O 30 90
A n g l e  o f  I n c i d e n c e

Figure 4.25. Sputte ring yield dependence on angle o f ion incidence (Chapm an, 1980).
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The different developing speeds o f the pit in the diameter and the depth resulted in a 

growth in the p its’ diameters and shallowness in their depths. Figure 4.26 shows 

measured roughness o f silicon surfaces with the pits after different times o f etching. 

The roughness decreases with increased etching time, which gives indirect evidence for 

the difference in the developing speeds.

Figure 4.26. Roughness o f pitting 
su rface o f silicon w a fe r decreases as 
etching tim e increasing.
GDS : 700V/30m A/4m m  anode.

4.3.4.5 A model of the pit formation and development

Based on the results obtained in AFM, a model for how the formation and the 

development o f the pits on the silicon substrate was built up as seen in Figure 4.27. Pits 

are first formed on a surface o f a layer o f the carbon film. The size and density o f the 

pits depend on the original thickness o f the film. After the carbon film is completely 

removed by GDOES etching, the pits develop in a different way than on the surface o f 

the carbon layer. The developing speed in pit diameter is much faster than in pit depth. 

This results in the pit enlarging in diameter and becoming shallower in depth as the 

etching time increases. Some small pits (later formed) will be engulfed by the 

development o f bigger pits (early formed). The etched surface will become smoother 

and smoother.
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Later-formed small pits are 
engulfed by the development of 
early-formed bigger pitsSilicon substrate

Carbon film

Figure 4.27. The model for the formation and the development of the pits on the 
silicon substrate.

4.4 Conclusions

A pitting phenomenon was found when a carbon-coated silicon wafer was etched in 

GDOES. After the carbon film was completely etched away, pits in a random array 

with a variety o f sizes were formed on the silicon surface. Experimental results from 

the samples coated with Ag, Al, Si and Ge films confirmed that some o f  the pit-like 

topography on silicon surfaces could be developed as the etching time increases. 

However, the pits with high density and bigger size were only produced on the silicon 

surfaces under carbon films. A big difference in sputtering rate between the film and 

the substrate appears to play a crucial role in pit formation. The experiments also 

indicate that the structure o f the film or the substrate has little effect on the pitting 

phenomenon.

The silicon wafers with different thicknesses o f carbon films were etched in GDOES. 

The pitting phenomena o f the surfaces were observed using SEM. For the surfaces o f  

etched layers still in the carbon film, the pit density decreased as the thickness o f  the 

carbon film increased. This could be due to the stochastic roughening by ion 

bombardment o f the carbon film. The measured roughness o f the surfaces increased as 

the etching time increased, which supports stochastic roughening. For the etched
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surface o f a silicon wafer, the density o f pits also decreased as the thickness o f  the 

carbon film increased. Possible explanations for this could be that the density o f the pits 

originally formed on the silicon surface decrease as the thickness o f the carbon film 

increases, and some small pits have been engulfed by the development o f bigger pits.

Detailed geometrical data for the pits were obtained from AFM measurements. The 

sphere-like surface o f the pit was confirmed by the mean radius, which was calculated 

based on the data points on the two cross-profiles o f the pit, with small relative standard 

deviations. The measured diameters, depths and the calculated mean radii for each o f  

the 42 pits from three samples with different original thicknesses o f the carbon film 

revealed that;

(1) the original thickness o f the carbon film has no effect on the development o f  the 

pits in the silicon surface;

(2) the developing speed o f the pit by its diameter is faster than that by its depth, 

which results in the pit enlarging in diameter and becoming shallower in depth as the 

etching time increases. Based on the results obtained in AFM, a model for the 

formation and the development o f the pits was built up.
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Chapter 5 The Applications of GDOES in Collection 
of EBSD Pattern and Investigation on 
Internal Oxides in Carburised Steels

5.1 Introduction

Although GDOES is principally used as a surface analysis technique and most 

applications o f GDOES are focused on the depth profiling o f surfaces, GDOES with a 

dc glow discharge source is also a powerful tool in removing materials from sample 

surfaces layer by layer on an atomic scale. This chapter is concerned with the use o f  the 

glow discharge itself to alter the surface o f a specimen. The sputtering process involves 

a high flux o f  low-energy argon ions incident on a surface. These ions typically have 

energies o f a few hundred eV that only bombard the surface in the range o f a few nm in 

most materials. This leaves an ion etched surface with little damage to the underlying 

crystal structures. By appropriate depth measurement o f the sputtered craters either by 

a profilometer or in GDOES quantitative depth profiling with a proper calibration, a 

fresh surface with known depth from a few nanometres to around a hundred microns 

can be easily obtained. In the first part o f this chapter it is demonstrated that GDOES 

can successfully be used to etch the surface to remove the damaged surface layer so that 

electron back-scattered diffraction (EBSD) patterns can be collected. In the second part 

it is shown that GDOES etching combined with quantitative depth profiling is a 

powerful tool in investigations o f internal oxides o f carburised steels by plan views o f  

the oxides revealed by etching.

Electron back-scattered diffraction is a well-developed technique that allows 

measurements o f  the orientation o f individual crystallites in bulk samples (Randle, 

1993). Specimen preparation for EBSD is fast relative to other competing techniques
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for measuring grain size and orientation (such as plan view TEM) but the need for not 

disturbing the crystallinity o f  the specimen within the depth o f the back-scattered signal 

(typically about 20 nm) can still require considerable care. The usual method is to 

employ mechanical polishing followed by a chemical etch or electro-polishing. Non- 

metallic samples often require lengthy ion milling. In the following section (5.2), it is 

shown that GDOES etching with plasma glow discharge in the Grimm source is a very 

effective method for removing any surface damage prior to EBSD work. The technique 

has the advantages o f speed (sample preparation can be less than 20 seconds), flexibility 

and o f not requiring the use o f any toxic chemicals. It also allows us to assess the depth 

o f surface damage in metals, and so could also be useful in the microscopy o f surface 

wear phenomena.

In Section 5.3, the application o f GDOES in the research o f internal oxides in 

carburised steels is demonstrated. The internal oxidation o f carburised steels has long 

been known to degrade component properties. In particular, it leads to low surface 

hardness and reduced component strength (Natio et al., 1984). Moreover, internal 

oxides are stress-raisers and are known to act as fatigue crack initiation sites, resulting 

in poor fatigue properties o f the components (Dowling et al., 1995). Most prior studies 

on internal oxidation have utilised cross-sections o f the surfaces, either by SEM for a 

cross-sectional view o f oxides on the micron scale, or by TEM to determine the type o f  

the oxides (Mural et al., 1997). However, these approaches cannot reveal a plan view  

o f the morphology and distribution o f the oxides. For a plan view o f internal oxides, the 

necessary preparation o f a sample surface by polishing will damage internal oxides. 

Internal oxides in a sample could be revealed after deep etching o f the sample surface 

by electrochemical etching (Stott et al., 1984). The electrochemical etching for 

different sample matrices needs a number o f attempts in order to result in a proper 

surface. But it also cannot reach a particular surface-layer accuracy. In this study, two 

types o f steels were studied. They had been carburised in three different thermal cycles. 

By GDOES etching, fresh surfaces in different layers o f the carburised steels were 

obtained. Morphologies and distributions o f internal oxides in the eroded surfaces were
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observed in SEM images. EDS/SEM analysis o f the surfaces also gave information of 

the relevant elements o f the internal oxides, which were in agreement with the 

corresponding results o f the GDOES depth profiles.

5.2 Collection of EBSD Pattern by Etching Surface in GDOES

5.2.1 Experimental

The principle o f the EBSD analysis has been described in Chapter 3. In this study, the 

SEM (Philips XL30) equipped w ith the Oxford EBSD detection system was employed. 

Pure rolled iron (Fe: 99.999%) and single-crystal copper were employed as test 

specimens. The iron specimens were 1 mm thick and cut to a size o f 15 x 15 mm. The 

biggest grain size in the iron was around a few millimetres in the rolling direction by a 

few hundred microns width by -50  pm in depth, which was established by the SEM 

image o f a GDOES etched surface and the optical image o f a cross-section view after a 

conventional chemical etch, as shown in Figure 5.1. Mechanical polishing for EBSD 

work is usually finished w ith 1 pm-grade diamond paste. In order to deliberately retain 

significant surface damage, the specimens were only polished to a 6 pm-grade diamond 

paste finish. Examination in the SEM revealed extensive surface scratching. In this 

state, no recognisable EBSD patterns are expected to be obtained from anywhere on the 

surface at an electron accelerating voltage o f 20 keV. Given that at this energy the 

EBSD signal emanates from approximately the first 20 nm o f the sample, it can be 

inferred that the polishing process has severely distorted the lattice structure within this 

initial depth.

The specimens were then placed in the GDOES (Leco GDS 750) using a 4 mm anode in 

dc discharge. This device is usually employed to measure atomic concentrations in bulk 

samples by bombarding a surface with a high-flux plasma glow discharge and then 

measuring the intensity o f various optical emission lines to quantify the presence o f 

particular elements. In the present discussion, the spectroscopic capability is redundant:
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what is o f concern here is the ability o f the high-flux glow discharge to etch away the 

surface o f the sample without introducing any artefacts into its underlying crystallinity. 

The source parameters o f the voltage o f 600 V and the current o f 25 mA were chosen in 

the sputtering for a flat bottom. Under these conditions, the flux o f the Ar ions was
1 o  9  1

expected to be in the order o f 10 ions cm* s' (see Eqn. (2.12) in Section 2.4.2).

Figure 5.1. SEM and optical images show sizes of crystallites of the pure iron sample 
in the plan view and the cross-section.
(a) SEM image of the bottom of a GDOES crater on the pure iron specimen.

GDS: 600V/30mA, depth of crater: -45  pm.
(b) Optical microscope image shows the size of the crystallites in cross-section after 

chemical etching with 2% nital.

5.2.2 Results and discussion

The EBSD patterns obtainable in the SEM, as shown in Figure 5.2, are very greatly 

enhanced by subjecting the specimen to a relatively short exposure in the GDOES etch. 

Figure 5.2(a) shows an unprocessed EBSD pattern taken from the mechanically 

polished region o f an iron specimen prepared as described above: no Kikuchi lines are 

visible. In Figure 5.2(b), 5.2(c) and 5.2(d) the EBSD patterns were taken under 

identical conditions to Figure 5.2(a) (i.e. the same beam current, spot size, working 

distance, detector position, detector gain and contrast) from the same specimen, but 

after it has been etched in the Grimm source for 10 seconds, 25 seconds and 50 seconds, 

respectively. The patterns obtained from the 10-second etch are definitely o f  inferior 

quality, but still give rise to recognisable Kikuchi patterns that are easily indexed by the 

automatic software.
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(b)

(d)

Figure 5.2. The EBSD patterns obtainable in the SEM with the pure iron specimens 
before and after GDOES etching.
GDS: voltage: 600 V, current: 25 mA, diameter of anode: 4 mm.
EBSD detection: electron beam: 20 keV, spot size: 6, gains: high gain 6.2, integration 

time: 1.3 sec, average frame: 5.
(a) Mechanical polished surface to a 6 pm-grade diamond paste finish.
(b) Etching time: 10 sec.
(c) Etching time: 25 sec, depth: 0.37 pm.
(d) Etching time: 50 sec, depth: 0.80 pm.
(e) Etching time: 200 sec, depth: 5.3 pm.
( f ) Etching time: 1470 sec, depth: 42.3 pm.

A profilometer (UBM) was used to measure the depth o f the crater obtained in a 

GDOES etch. Erosion rates were calculated as a function o f the etching time, as shown 

in Figure 5.3. The erosion rate o f the pure iron in the conditions in this study is divided 

clearly into two parts. In the first 100 seconds’ sputtering, the erosion rate increases 

with increasing time more sharply than after 100 seconds. Thus, the removal o f a 

surface layer o f the iron corresponding to the 10-second etch was calculated as 

approximately 150 nm thick. Without resorting to very detailed image analysis 

methods, it can be observed that EBSD patterns collected after a 10-second etch are not 

nearly as crisp as those collected after 50 seconds. Patterns collected after a 25-second 

etch were clear but still o f noticeably lower quality than the best available. More
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lengthy etch times (up to 1470 seconds) do not result in any noticeable improvement or 

degradation o f pattern quality (see Figure 5.2(a) and 5.2(f)). That would imply that the 

polishing process with 6 pm-grade diamond paste has damaged the specimen to a depth 

o f between 0.2 and 1.0 pm, which agrees broadly with earlier TEM work on the surface 

damage o f copper (Turley and Samuels, 1997).

0.035

0.03

0.025

0.02

= 0 .015

0 .005

1000 1200800

sputtering time (s)

1400 1600200 400 600

Figure 5.3. The e rosion rate o f 
the G DO ES etching fo r the pure 
iron specim en as a function o f 
e tching tim e. GDS conditions : 
vo ltage: 600 V  and current: 25 
mA.

The enhancement o f the EBSD pattern by GDOES etching was also obtained using 

single-crystal copper as the specimen. The GDOES etching for 10, 30 and 50 seconds 

produced etched depths o f 0.7 pm, 2.1 pm and 3.5 pm respectively. The patterns and 

corresponding surface morphologies are shown in Figure 5.4 and Figure 5.5. The 

pattern taken from the mechanically polished region o f the copper specimen also 

showed no visible Kikuchi lines. The patterns collected after 30 seconds’ and 50 

seconds’ etching show crisper Kikuchi lines than that after a 10-second etch, although 

the pattern after a 10-second etch is close to the best quality. This implies that the 

damage layer by a polish with 6 pm-grade diamond paste could damage the surface to a 

depth up to ~2 pm  for the copper sample. The fact that the damage layer by the 

polishing with 6 pm-grade diamond paste in a copper surface was double that o f iron 

also agrees with the fact that the hardness o f iron is nearly double that o f copper.
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(a) (b)

(c) (d)

Figure 5.4. The EBSD patterns collected from surfaces of the single crystal copper 
with and without the GDOES etching.
GDS: 600V/25mA/4 mm anode.
Microscope beam: 30keV, spot size: 6, magnification: 2481, working distance: ~10mm. 
EBSD detection gains: high gain 4.5, integration time: 1.3 sec, average frame: 25, 

background subtract: 80%
(a) From polished surface with 6 pm-grade diamond paste finish.
(b) From the surface after 10 sec of the etching, the depth was 0.7 pm.
(c) From the surface after 30 sec of the etching, the depth was 2.1 pm.
(d) From the surface after 50 sec of the etching, the depth was 3.5 pm.

(a) (b)
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JAcc V Spot Magn Dot WD Exp
20 0 kV 5 0 2407x SE 10.2 33 Hivac

|Acc V Spot Magn Det WD Exp
|20 0 kV 5 0 2413x SE 10 2 33 Hiyac

(C) (d)

Figure 5.5. Surface morphologies of the single crystal copper corresponding to the 
surfaces in Figure 5.4.
(a) Polished surface to a 6 pm-grade diamond paste finish.
(b) After 10 second-etching, depth was 0.7 pm.
(c) After 30 second-etching, depth was 2.1 pm.
(d) After 50 second-etching, depth was 3.5 |um.

There may be various factors affecting the quality o f  the diffraction pattern other than 

simply the removal o f the damaged material. The most debilitating o f these would be 

that the high-power Grimm source actually heats the specimen surface, inducing re

crystallisation. However, this is unlikely to be a problem with such short etch times for 

iron and copper specimens. It should be noted that in general, materials like Al, Cu, Ni, 

Cr and steels tend to develop their grain boundary microstructures after the etching by 

the Grimm source, and this depends on the different grain orientations (Angeli, 1997). 

Therefore, in the case o f the copper and iron specimens here, it would seem very 

unlikely that re-crystallisation could have occurred. There may also be re

crystallisation induced by the ion bombardment itself. However, the average ion energy 

is likely to be less than 200 eV (see Section 2.4). Simulation calculations suggest that 

the range o f Ar ions and any associated deposition o f  energy and ion-vacancy defects 

are restricted to less than 1 nm in depth (King, 1997). This compares with the fact that 

the EBSD signal comes from about 20 nm below the specimen surface.

There can be confidence, therefore, that after a 10-second etch in GDOES a good 

representation o f the actual crystal structure was obtained, which was at about 0.2 pm 

below the (original) surface o f the pure iron and 0.7 pm o f the copper, and that the
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improvement in pattern quality is due solely to the removal o f the most severely 

damaged layer.

5.3 Investigation of Internal Oxides in Carburised Steels by Plan View 

and GDOES Depth Profiling

5.3.1 Experimental

Three carburised steels were used in this study. Chemical compositions o f the steels 

before carburising are shown in Table 5.1. The main difference in the compositions 

between specimen A and specimens B and C is the concentration o f Si. Specimen A  

has a higher concentration o f Si (0.31%) than do specimens B and C (each 0.19%). The 

specimens had already been carburised in a commercial furnace using different thermal 

cycles outlined in Figure 5.6. In the figure, the base process (from A to D) is only 

aiming to heat parts in the furnace evenly to a required temperature. The carbon 

potential required for the carburising process was not introduced at this stage. A  fully 

carburising atmosphere was introduced into the furnace in the boost process (from D to 

F). Specimen A was only heat-treated at 800 °C for 2.0 hours in the heat-up stage (from 

point A to B). Specimen B was treated from the beginning o f the thermal cycle for a 

total exposure time o f 9.0 hours (from point A  to E), which means that specimen B 

experienced both heat-up and carburising processes. Specimen C was directly put in the 

furnace at the beginning o f the boost process and was carburised for a total time o f 12.0 

hours (from point D to F). Oxygen partial pressures in the furnace were 5E-21 atm. at 

800 °C and 2E-19 atm. at 900 °C in the base process, and 2E-20 atm. in the boost 

process.

Table 5.1. Compositions o f  the steels before carburising processes (mass%).

Sample Steel type C Si Mn Cr Ni Cu Al P s
A Commercial 0.19 0.31 1.00 0.96 1.07 0.21 0.025 0.012 0.047

B&C Commercial 0.19 0.19 1.02 1.01 1.14 0.17 0.019 0.010 0.049
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Figure 5.6. The thermal cycles of carburising process in a commercial furnace.

For GDOES depth profiling o f the carburised steels, a set o f certified reference 

materials (CRMs), listed in Table 5.2, was used for the calibration o f  the GDOES. The 

calibration did not include oxygen due to the lack o f suitable standards. Coefficient 

factors and data points o f  the calibration curves for the elements o f interest are listed in 

Table 5.3. The compositions o f specimens A and B were measured in the GDOES and 

are listed in Table 5.4. This shows a general agreement with the supplied chemical 

compositions. The conditions o f the GDOES sputtering were 600 V o f voltage and 25 

mA o f current. The argon pressure was controlled by a gas-flow controller to keep the 

current as constant as possible. A 4 mm anode was used in this study, which can 

produce an analysed area o f ~12.6 mm per bum. In this condition, a sputtered crater 

with a relatively flat bottom can be obtained for the sample. Profiles o f the craters were 

obtained by the laser profilometer (UBM); examples o f such profiles are shown in
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Figure 5.7. Profiles of craters obtained by the laser profilometer (UBM) for specimens 
A and B. Depths of the craters calculated by the GDOES quantification procedure 
were: (a) specimen A: 3.26 pm, (b) specimen B: 2.85 pm, (c) specimen B: 8.40 pm. 
GDS conditions: 600 V/25 mA/4 mm anode.

Table 5.3. Coefficient factors and data points o f  the calibration curves fo r  the elements 
o f  interest.

Element C Si Mn Cr Ni Cu Al
Coefficient 0.9901 0.9735 0.9813 0.9923 0.9687 0.9943 0.9953
Data points 16 17 16 8 13 7 7

Element P S As Co V Mo
Factor 0.9776 0.9843 0.8866 0.9975 0.9930 0.9410

Data points 12 12 5 5 11 9
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Table 5.4. Compositions o f specimens A and B measured in the GDOES (mass%).

Sample C Si Mn Cr Ni Cu Al P s As Co V

A 0.30 0.39 0.97 0.88 0.91 0.25 0.015 0.008 0.042 0.020 0.037 0.003
B 0.31 0.29 0.99 0.88 0.99 0.21 0.009 0.007 0.045 0.019 0.010 0.005

The morphology o f the sputtering eroded surface and internal oxides revealed by the 

etching were observed by secondary electron and back-scattered electron images in the 

SEM (JEOL 840) under an operating electron voltage o f 20 keV. The qualitative 

elemental distribution o f the internal oxidation zone was analysed by EDS (Oxford ISIS 

system) with the operating setting 15 or 20 keV for the electron beam and 1 or 3 nA for 

the probe size.

5.3.2 Results and discussion

Plan view SEM images of the sputtering eroded surface o f the three specimens in 

different layers were obtained, as shown in Figures 5.8 to 5.10. Different surface 

morphologies were revealed in the secondary electron images (in left column). From 

the back-scattered electron images (in right column), different morphologies and 

distributions o f internal oxides were also displayed. A relative uniform distribution of 

the oxides can be seen from these images. However, morphologies o f the oxides in 

different layers in a specimen were changed. For example, in Figure 5.9 the oxides’ 

morphologies in specimen B changed from a large size within grains and on grain- 

boundaries in the layer 2.85 pm below the surface to intergranular oxides at 8.40 pm 

below the surface. While, for sample C, even in the layer 1.53 pm  below the surface, 

the oxides appeared as uniform intergranular oxides.
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(a) SE image at the depth of 3.26 jim (b) BS image

(c) SE image at the depth of 3.26 pm (d) BS image

Figure 5.8. SEM secondary electron (SE) and back-scattered electron (BS) images for 
plan views of the eroded surface of specimen A at the depth of 3.26 pm.
GDS conditions: 600V/25mA/4mm anode.

(a) SE image at the depth of 2.85 pm (b) BS image

(c) SE image at the depth of 2.85 pm

-'f-
*» .• j  ' —w y e  *

, i

(d) BS image
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(e) SE image at the depth of 5.87 pm

•• #  * # v } < |  f  :

'3— E

- f / M V  >  •

(g) SE image at the depth of 5.87 pm

(f) BS image

(h) BS image

(j) BS image

(k) SE image at the depth of 8.40 pm 1̂) BS image

Figure 5.9. SEM secondary electron (SE) and back-scattered electron (BS) images for 
plan views of the eroded surfaces of specimen B at the depth of 2.85 |um (a)-(d), 5.87 
pm (e)-(h) and 8.40 pm (i)-(l) respectively.
GDS conditions: 600V/25mA/4mm anode.
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(a) SE image at the depth of 1.53 pm (b) BS image

(d) BS image

Figure 5.10. SEM secondary electron (SE) and back-scattered electron (BS) images 
for plan views of the eroded surfaces of specimen C at the depth of 1.53 pm (a), (b), 
4.0 pm (c), (d) respectively.
GDS conditions: 600 V/25 mA/4 mm anode.

Elemental mapping results using the SEM/EDS for the area containing internal oxides 

are shown in Figures 5.11 to 5.13, which correspond to the back-scattered electron 

images in Figure 5.8(d), 5.9(d) and 5.9(1) respectively. The results confirmed the oxides 

existed by their oxygen counts and gave extra information that the oxide elements were 

Si, Cr and Mn. Figure 5.12 shows the mapping results for the layer 

2.85 pm below the surface o f specimen B. The oxygen enrichment was associated w ith 

elements Cr and Mn, and w ith depletion o f  Fe. This indicates that the large size o f  

oxides in the upper layer mainly consists o f the oxides o f chromium and/or manganese. 

In fact, the TEM analysis o f the oxides indicated that they could be Cr and M n complex 

oxides (An et al., 2003). In the deep layer 8.40 pm below the surface, the mapping 

results shown in Figure 5.13 indicated clearly that the oxides with the characteristic o f

(c) SE image at the depth of 4.0 pm
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elongated morphology were intergranular oxides o f silicon. The mapping results in 

Figure 5.11 in the layer 3.26 pm below the surface o f specimen A revealed that the 

oxides were relevant to the elements Si, Cr and Mn.

BS image of specimen A at depth 
of 3.26 gm

OKcc, 38

CrKcc, 30

MnKa, 20 FeKa, 145

Figure 5.11. SEM/EDS elemental mapping results for an area in specimen A at the 
depth of 3.26 pm show that the oxides were relevant to the elements Si, Cr and Mn, 
whereas Fe was depleted.
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BS image of specimen B at depth 
of 2.85 jim

OKa, 38

MnKa, 25

Figure 5.12. SEM/EDS elemental mapping results for an area of specimen B at the 
depth of 2.85 |um show that the oxides were relevant to the elements Cr and Mn, 
whereas Fe was depleted.

FeKa, 72
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BS image of specimen B at depth OKa, 26
of 8.40 pm

SiKa, 34 CrKa, 16

MnKa, 29 FeKa, 137

Figure 5.13. SEM/EDS elemental mapping results for an area of specimen B at the 
depth of 8.40 pm show the silicon oxides, whereas in where Fe was depleted.

Depth profiles obtained using the GDOES for the specimens showed similar results 

with that o f the EDS mapping. Figure 5.14(a) is the GDOES depth profile o f  specimen 

A to the depth o f 3.26 pm. Figures 5.14(b) and (c) are the depth profiles o f  specimen B 

to the depths o f 2.85 pm and 8.40 pm respectively. The elemental concentrations in the 

final layers o f the depth profiles are listed in Table 5.5. These final layers also 

correspond to those o f  the EDS mapping in Figure 5.11 to 5.13.
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(c)

Figure 5.14. GDOES depth profiles for specimen A to the depth of 3.26 pm (a) and for 
specimen B to the depth of 2.85 pm (b) and 8.40 pm (c) respectively.
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Table 5.5. The elemental concentrations o f  specimens A and B in the layers 
corresponding to those o f  the EDS mapping in Figure 5.6 to 5.8 and the depth profiles 
in Figure 5.9. (elemental concentration: mass %)

Sample Depth (pm) C Si Mn Cr Mo Ni
A 3.26 0.176 0.50 0.382 1.26 0.119 0.94
B 2.85 0.535 0.323 1.531 4.123 0.069 0.539
B 8.40 0.78 0.353 0.324 0.378 0.142 1.128

Sample Depth (pm) Cu Al P S
A 3.26 0.21 0.019 0.072 0.02
B 2.85 0.127 0.009 0.007 0.022
B 8.40 0.196 0.015 0.009 0.029

From the table, in the layer o f  3.26 jam below the surface o f  specimen A, the enrichment 

o f the elements Si and Cr corresponded to the oxides o f Si and Cr as shown in Figure 

5.11. The depletion o f Mn was due to diffusion o f Mn toward to the oxidation front. 

This, consequently, resulted in the matrix depletion o f the element, which can be clearly 

seen in the depth profile in Figure 5.14(a). In different layers o f  specimen B, the 

enrichment o f Cr and Mn in the layer 2.85 pm below the surface corresponded to the 

oxides o f Cr and Mn. Meanwhile, Si in the layer 8.40 pm below the surface 

corresponded to the oxides o f Si. These are clearly showed in Figures 5.12, 5.13, 

5.14(b) and 5.14(c). From Table 5.5 and Figure 5.14(c), in the layer 8.40 pm below the 

surface o f specimen B, there were also depletions o f Cr and Mn resulting from the 

diffusion o f Cr and Mn toward the oxidation front. Figure 5.14(c) also reveals a 

decarburised zone within a depth o f ~3 pm, corresponding to the zone o f oxides o f  Mn 

and Cr, and a depletion o f  Fe corresponding to the peak o f  Cr. Peak concentrations o f  C 

in the outermost surfaces were due to the contamination o f C in the anode (see Section 

6.2) and on the original surfaces o f the specimens.

The profiles in Figure 5.14(b) and (c) were from different bums o f  the same specimen. 

The depth o f the profile in Figure 5.14(b) is up to 2.84 pm. For the same depth range in 

Figure 5.14(c), the elemental profiles o f Cr, Mn, Si, C and Fe are quite similar to those 

in Figure 5.14(b). This indicates that the GDOES measurements have good
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reproducibility. All o f the depth profiles in Figure 5.14 show that there were always Si 

peaks close to the outer surfaces, followed by strong Mn peaks, and then Cr peaks. 

Internal oxidation is driven by the oxygen in the furnace atmosphere. The difference o f  

alloying element affinities for oxygen and oxygen partial pressure in the different 

heating stages led to the formation o f different internal oxides. The results in Figure 

5.14 agreed with the thermodynamic data, reported by Kozlovski et al. (1967), that 

alloy elements’ affinities for oxygen should be in the order o f Si, Mn and Cr in the gas 

carburising atmosphere, while Fe, Ni, Mo are not expected to oxidise.

Combined with observations on the oxides’ morphology, it is clearly indicated that Cr 

and Mn oxides are formed at larger sizes in the outer layer zone close to the surface and 

Si oxides are formed as intergranular oxides remote from the surface. These different 

morphologies related to different heat processes and stages, in which the oxygen partial 

pressure was different. Thermodynamically, for the three elements, the free energy o f  

formation o f Si oxides is lowest, followed by Mn and Cr (Birks and Meier, 1983). 

Therefore, growth o f  the silicon oxides was prevented from their nucleation and then 

stable silicon-oxides were formed in the boundaries, as seen in Figures 5.9(j) and (1). 

They can form even in a lower oxygen-activity region. As a result, Si oxides formed in 

the deep region as a network o f  uniform intergranular oxides. Meanwhile, the oxides o f  

Cr and Mn tended to growth rather than nucleation, so the oxides o f Cr and Mn with a 

large size were seen in the layer in front o f the region o f  Si oxides.

For the surface analysis o f steels, GDOES has an ability to do a depth profiling at a 

depth from hundreds o f nanometres down to ~100 pm. The depth resolution is 

generally about ~15% o f sputtered depth. For example, the depth resolution is less than

0.5 pm for a depth o f 3 pm. The region o f internal oxides in carburised steels is 

generally less than ~30 pm. This is just the favoured range o f  depth profiling in 

GDOES. Through the depth profiling for the oxidation-affinities elements such as Si, 

Cr, Mn and the elements C and Fe, GDOES depth profiles can be used to identity 

different oxidation zones in the whole range o f oxidation by the concentration changes
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of the elements. This is very helpful in the investigation o f mechanisms o f internal 

oxidation and the choice o f thermal cycle in the carburising process. This ability, then, 

cannot be replaced by traditional analysis methods for internal oxides, for example, 

cross-section line scans in SEM/EDS and electron probe microscopy analysis (EPMA), 

and a depth profile in X-ray photoelectron spectroscopy (XPS). Moreover, GDOES 

provides unique plan view images o f the oxide structure to a known depth when the 

eroded surface is subsequently examined in SEM, allow ing direct correlation of 

chemical information with oxide distribution and a potential use o f other 

complementary techniques, such as the EBSD (see Section 5.2).

5.4 Conclusions

1. The results o f the EBSD patterns collected from the surfaces o f the pure iron and 

the copper after GDOES etching have shown that a high-power Grimm source, 

as generally employed in GDOES, is an excellent tool for removing surface 

damage in iron specimens prior to study using EBSD. The technique is 

extremely fast and can in principle be applied to any sample, without the use o f 

any chemicals; non-conducting specimens would require the use o f a rad io

frequency plasma source. The Grimm source itself is a simple system (as, say, 

compared to an ion beam thinner), and so could represent a very cheap and fast 

specimen preparation route.

2. GDOES has proved a powerful tool for the study o f internal oxidation, 

combining excellent depth resolution with good elemental sensitivity and rapid 

specimen analysis. A secondary benefit o f the GDOES sputtering technique is 

the ability to sputter to a known depth and hence to reveal the oxide morphology 

in a plan view.
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Chapter 6 Hydrogen Detection in GDOES

6.1 Introduction

Hydrogen can enter the surface o f solid metal in its mono-atomic form. At room 

temperature this commonly occurs during the electrochemical evolution o f hydrogen 

such as in corrosion cells, in the electroplating processes, acid cleaning and cathodic 

protection. At higher temperatures, hydrogen enters the surface o f solid metal bases 

through a different mechanism known as chemisorption. M olecular hydrogen gas can 

readily enter a molten metal surface via water contained in the ambient atmosphere. 

The dissolved molecular hydrogen can be retained as a mono-atomic solute on 

solidification (Cater et al., 2001). At normal pressures and low temperatures, it is 

difficult to form metal hydrides. As an interstitial solute, hydrogen remains in its mono- 

atomic form and exists in the microstructure o f metals (Hill, 1961). The atomic 

hydrogen can be trapped in the lattice defects, usually dislocations and interfaces 

between the metal and a second phase, or grain boundaries. M olecular hydrogen can 

also be formed in voids in the metal, which is very dependent on the energy o f motion 

o f the hydrogen atoms and the nature o f the lattice defects. As atomic hydrogen 

accumulates in a steel, it becomes hydrogen embrittled and shows a loss in ductility and 

toughness. The hydrogen contained in metals can also cause cracks under the influence 

o f stress and results in the premature failure o f parts before and while in service 

(Timmins, 1997).

Hydrogen in metal samples can be detected in different ways. Hydrogen embrittlement 

o f steel is evidenced as a reduction in ductility. Therefore, mechanical tests which 

actually measure or evaluate reduction in ductility in combination with residual or 

applied stresses are mostly applied in studies o f hydrogen embrittlement. Standard
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embrittlement testing methods have been modified to incorporate fracture mechanics. 

Since 1980, various types o f  hydrogen damage have been further classified in terms o f  

crack nucleation, crack growth rates, and threshold stress-intensity measurements 

(Raymond et al, 1987). Hydrogen contained in steels can also be detected by the tin- 

fusion method (Snavely, 1961), which involves dissolution o f  the steel samples in 

molten tin to free the contained hydrogen as a gas. The tin-fusion method combines the 

advantages o f accuracy, relative ease o f performance, and short time for completion; 

however, its cost and complexities have often been stumbling blocks in embrittlement 

studies. The concentration o f hydrogen in metal pieces can be detected by the barnacle 

electrode (Fullenwider, 1983), which is an electrochemical device. This device can 

cause any hydrogen near the surface o f a specimen to diffuse out, resulting in a decay 

transient, recorded as a current. Provided that the diffusion coefficient for hydrogen in 

the specimen is known, the recorded current can be used to directly calculate the 

concentration o f hydrogen in the specimen.

Hydrogen detection is impossible via most traditional surface analytical techniques. For 

example, hydrogen has no X-ray or Auger transition; it does not neutron-activate, and it 

is too light for Rutherford back-scattering analysis (Lanford, 1982). Only a few  

techniques can deal with hydrogen detection in the near surface, for example, Secondary 

Ion Mass Spectroscopy (SIMS), Nuclear Reaction Analysis (NRA) and Elastic Recoil 

Detection Analysis (ERDA). However, these all suffer from disadvantages in that they 

are limited to the outermost surface, are time consuming and expensive. SIMS can be 

used in hydrogen detection in metals (Suzuki and Ohtsubo, 1984; Oya et a l., 2001). For 

hydrogen depth profiling, SIMS is sensitive but difficulties may arise in layered 

samples, due to both the mobility o f hydrogen under the analysing beam and differences 

in the ionisation probability o f the sputtered atoms in different layers (matrix effects) 

(Bishop, 1986). It is also generally only suited for relatively shallow depth profiling 

(<1 pm).
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H igher-energy ion beam techniques rely on binary collisions between the beam ions and 

hydrogen nuclei. Although the sensitivity o f hydrogen is usually not as good as SIMS, 

matrix effects are small or negligible, and the requirement for standards is reduced or 

even eliminated (Marwick, 1991). Methods for quantitative analysis for hydrogen 

based on nuclear reaction analysis were developed in the 1970s (Lanford et al., 1976; 

Z iegler et al., 1978; Clark et al., 1978; and Lanford, 1982). The NRA technique 

makes use o f a narrow isolated resonance in the nuclear reaction: 

1SN + ‘H ->  12C + 4He + 4.4 MeV gamma-ray. The sample to be analysed is bombarded 

w ith b N from a nuclear accelerator with an energy equal to the resonance energy 

(6.4 MeV) or above. The yield o f characteristic 4.4 MeV gamma-rays is a measure o f 

the hydrogen concentration on the surface or within a certain depth o f the analysed 

sample. Applications o f NRA in hydrogen detection are found in the field o f semi

conductors (Marwick, 1991). This technique has good near-surface depth resolution, as 

high as 12 A in theory. But it would degrade to 200 A f.w.h.m. at a depth o f 580 A in 

practice for Si samples (Hjorvarsson and Ryden, 1990). Sensitivities to hydrogen in 

silicon as low as 50 appm (Damjanschitsch et al., 1983) or 20 appm (Kuhn et al., 1990) 

have been achieved.

Elastic recoil detection analysis is another high-energy ion beam technique applicable in 

the detection o f hydrogen, especially when the hydrogen concentration is rather high 

and poor depth resolution is not a disadvantage. The essence o f the method is to knock 

hydrogen atoms out o f a target using an MeV beam, so that the recoiling hydrogen 

atoms have MeV energies, then their energy spectrum is measured to get the hydrogen 

depth profile. Reflection ERDA was introduced by Tirira et al. (1996) and is an 

accurate and convenient method o f hydrogen depth profiling. With the techniques o f 

the channel-depth conversion and the energy-spread correction (Verda et al., 2001; 

2002a; 2002b), the channel axis o f ERDA spectra can be converted directly to units o f 

depth. With MeV He+ beams the sensitivity o f ERDA is usually quoted as being of 

order 0.1 at.% (1000 appm) (Marwick, 1991). The depth resolution o f ERDA using 

MeV He+ beams is quite poor. Comparing experimental results between ERDA and
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NRA by Wielnski et al. (2002) shows that the best depth resolution and sensitivity for 

hydrogen detection are offered by resonance NRA. MeV-He+ ERDA only has good 

depth resolution for the near surface, and rapidly reduced with depth.

GDOES is one o f  the few analytical techniques that are sensitive to hydrogen. It is also 

fast, easy to operate and relatively inexpensive. GDOES has been successfully applied 

in depth profiling analysis for both conductive and non-conductive materials. However, 

there are only a few applications involving hydrogen detection for surface analysis 

reported in the literature. In an early study on GDOES, Alexandre et a l  (1983) 

compared GDOES, SIMS and AES (Auger Electron Spectroscopy) depth profiles o f  the 

first few nanometres o f passive films formed on iron surfaces after a borate treatment. 

They showed that only GDOES provided a hydrogen depth profile. Hydrogen cannot 

be detected directly in AES and can be difficult in SIMS, although SIMS provided some 

additional molecular evidence, namely the presence o f OH”. Recently, Shimizu et al. 

(2002) reported a hydrogen depth profile using GDOES with an rf-source in an analysis 

o f a boron-doped diamond film, ~13 pm thick, deposited onto a mirror-finished n- 

Si(100) substrate by microwave plasma chemical vapour deposition. After 2000 

seconds o f sputtering, hydrogen was detected both in the diamond film and in the 

silicon substrate. In the film, the intensity o f hydrogen decreased rapidly during the first 

200 seconds, and then to a steady and low value after 400 seconds o f sputtering. In the 

silicon substrate, a hydrogen peak was detected near to the film. The significance o f  the 

hydrogen intensity in the first few hundred seconds o f sputtering time suggested that it 

was genuine and not associated with moisture layers adsorbed on to the diamond 

surface. The hydrogen peak detected in the silicon substrate suggested that hydrogen 

had diffused into the silicon substrate during the early stage o f film deposition. The 

hydrogen profile is quite similar to those that have been detected in electroplated 

samples in this study, which will be described in Section 6.3.2. GDOES also has a 

relatively high sample-erosion rate. It can do bulk and depth profile analysis o f  metal 

samples with tens o f  microns o f depth, which makes it possibly suitable for the 

hydrogen analysis o f  steel samples. In view o f this, a programme o f  research was set up
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to test the possibility o f using GDOES and how sensitive the GDOES technique could 

be in the detection o f  hydrogen in steels, so as to establish whether or not this could be 

used as, say, a routine test on steels or other metals that may suffer hydrogen attack.

Background signals always exist in most detection techniques. For common 

applications o f GDOES analysis, the background term is known as consisting o f five 

separate components: a constant component from photomultiplier dark current and other 

instrumental noise sources; continuum and line components from the argon plasma; and 

from the sputtered matrix (Payling, 1997a). It can be dealt with, however, in the 

quantification procedures at certain levels (Weiss, 1995 and 1997). But for hydrogen 

detection in GDOES the results also suffer, apart from the background signal mentioned 

above, from contamination due to the hydrogen which already exists in the glow  

discharge source (GDS) before the sample is analysed and the hydrogen contamination 

that keeps entering the GDS during GDOES measurement. With the addition o f the 

effects o f hydrogen contamination, the background signal o f GDOES in hydrogen 

detection becomes more complex and variable, and is the main problem o f GDOES 

applications for hydrogen detection. In GDOES, the hydrogen contamination is 

believed to come from water vapour, hydrocarbons and the argon gas (Payling, 1997a). 

In this investigation, the origins o f the hydrogen contamination were classified and 

quantified. The data indicated that the hydrogen mainly comes from water vapour. 

Unfortunately, this is inevitable during the first tens o f seconds o f sputtering time in 

GDOES measurements. However, in this investigation, it is shown that with a proper 

warming up o f the instrument, a so-called “hydrogen detection status” can be obtained. 

In this status, intensities o f the hydrogen contamination at a selected sputtering time, say 

two hundred seconds, can be kept nearly constant for different bums. Therefore, a 

comparison o f  hydrogen contained in different steels can be carried out. Furthermore, 

the experiments in this chapter revealed that significant differences in the intensities o f  

the hydrogen contamination in GDOES can be the result o f different sample matrices in 

the hydrogen detection status, even when the samples were heated and were believed to 

have no hydrogen in them. These different hydrogen intensities detected using samples



w ith different matrices are collectively named as the “matrix effect” on the intensity o f 

hydrogen contamination in GDOES in this study, and will be discussed in Section 6.2.3 

in consideration o f the relevant ionisation and excitation processes in the glow 

discharge. Some results o f hydrogen detection in GDOES were obtained and show that 

the GDOES in the hydrogen detection status has an ability to differentiate the hydrogen 

contained in bulk samples with similar matrices.

It was found in this study that the hydrogen contamination in the source can also affect 

quantitative results for some elements in the GDOES measurements. Hodoroaba et al. 

(2000a) have reported experimental results on the influence o f hydrogen in the case o f 

copper as a cathode sample by means o f the addition o f small quantities o f molecular 

hydrogen (<1% relative partial pressure) to the argon carrier gas. The glow discharge 

was controlled by keeping the voltage and gas pressure constant. The progressive 

addition o f molecular hydrogen caused different intensity changes particular to the 

individual lines o f different species such as atomic (Cu I) and ionic (Cu II) copper, and 

also atomic (Ar I) and ionic (Ar II) argon. M ost o f the emission lines o f Cu I increased 

strongly with the addition o f even small quantities o f hydrogen. They also presented 

evidence o f the effects caused by hydrogen for the different matrix elements in copper, 

stainless steel, titanium, aluminium and silicon (Hodoroaba et al., 2000b). In general, 

the lines o f most o f the sputtered elements, Fe I (371.9 nm), Fe II (249.3 nm), Cr I 

(425.4 nm), Ni I (349.2 nm), Mn I (403.4 nm), Mo I (386.4 nm), W I (429.4 nm), Ti I 

(365.3 nm), Al I (396.1 nm) and Cu II (219.2 nm), decreased in intensity as hydrogen 

increased, but at different rates. However, many lines such as Cu I 

(327.3 nm) and Si I (288.1 nm) increased in intensity when a copper sample and a 

silicon wafer were sputtered.

Not many papers can be found in the literature on correction for the hydrogen effects on 

the measured elemental concentrations in GDOES. An improved method for 

quantitative GDOES depth profiles o f hard coatings has been developed to account for 

all known variables in the plasma, notably the electrical plasma parameters, pressure
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and especially for the hydrogen effect (Payling et al., 2001; Payling et a l., 2002). The 

experimental results by Hodoroaba et al. (2000b) have been taken from this method and 

were normalised to a general form o f hydrogen effect on an inverse relative emission 

yield. It is aimed principally at radio-frequency (rf) operation, while the method is 

applicable to direct current (dc) operation. The method with hydrogen correction has 

been successfully applied in TiCN, TiN, TiC, CryC3 , TiAIN, CrN and MoS2+Ti coated 

steels.

To test the hydrogen effects on measured elements in normal operation, i.e. without a 

special mixture o f hydrogen with the argon, and what level o f the effect occurred in the 

normal operation, GDOES measurements were carried out using two steel standards in 

GDOES conditions o f fixed voltage and current. The hydrogen effects on measured 

elements and depth in the GDOES using the standards will be discussed at the end o f  

this chapter.

6.2 Hydrogen Signal in GDOES Analysis

If a sample contains hydrogen, whether as molecules, atoms, ions or in hydride 

compounds, the hydrogen in the sample should be included in the intensity o f  hydrogen 

detected in GDOES. Figure 6.1 shows a typical plot o f a hydrogen signal detected from 

a carbon steel that may reveal the hydrogen contained in the sample. This is a simple 

plot o f elemental intensities recorded as corresponding photomultiplier responses, 

without further processing in any way. The hydrogen signal starts high, and appears to 

decay exponentially, approaching an asymptote at about 200 units. The most naive 

interpretation o f this behaviour would be that this exponential represents the actual 

hydrogen profile in the steel measured as a function o f  depth. Detailed experiments 

described in Section 6.2.1 will show that the main cause o f the high intensity o f  

hydrogen at the beginning o f the sputtering and the decay is to do with various types o f  

gaseous and surface contamination. The warming-up procedure o f GDOES before
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detection o f hydrogen also severely affects the hydrogen value as it decays 

asymptotically. However, it is possible to reach a ‘hydrogen detection status’ in 

GDOES, which will be described in Section 6.2.2. Effects o f the sample matrices on 

the hydrogen intensity in GDOES detection will also be discussed in the last part o f this 

section.
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Figure 6.1. A typical profile of a hydrogen intensity detected from a carbon steel using 
GDOES.

6.2.1 Hydrogen contamination in GDOES measurements

6.2.1.1 Experimental technique and results

Due to the working principle o f GDOES and the procedure o f operation, the hydrogen 

contamination comes mainly from the water vapour deposited on the surface o f the 

GDS chamber and the sample, hydrocarbons that have back-streamed into the chamber 

from the pumping system, and the hydrogen contamination o f  the argon gas. To 

confirm the contamination o f  hydrogen intensity in GDOES, pure silicon wafers were 

chosen as samples because they are manufactured under a process with strict controls 

and their perfect mirror-like surfaces can provide a uniform surface and also seal the 

GDS chamber as tight as possible. The discharge conditions and gain o f  the 

photomultiplier (PMT) for hydrogen were also fixed w ith a voltage o f  700 V, a current 

o f  30 mA and gain o f the PMT for hydrogen o f 10.
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Water vapour

In GDOES measurements, exposure o f  the sample surface and the source to ambient 

water vapour is unavoidable as the source must be sealed from the air by a measured 

sample forming a vacuum chamber. When the source is open (i.e. no sample is in 

place), argon gas is blown through the source continuously to minimise contamination 

from outside o f the source. However, water vapour still has a chance to deposit onto the 

annular space between the anode and the cathode and the end surface o f  the source 

facing the cathode sample. So the exposure time, ambient moisture and temperature can 

affect the water vapour deposited on these surfaces, and consequently affect the 

hydrogen intensity in GDOES detection.

The effect o f the exposure time on the hydrogen intensity was tested by a series o f  

measurements using silicon wafers. A  warm-up procedure was first carried out for 

about a thousand seconds’ sputtering before the test to reduce the hydrogen already 

existing in the source to a low level. Between the measurements, the source was 

exposed to ambient conditions for different times. Figure 6.2 shows how the hydrogen 

intensities change with different exposure times o f  the source to the atmosphere from 20 

seconds to 30 minutes. For each o f the measurements, a peak o f  hydrogen intensity is 

always detected within the first 10 seconds o f sputtering. The hydrogen intensities then 

decrease as the sputtering time increases. All the hydrogen intensities o f  the different 

measurements are similar after etching has proceeded for about 100 seconds. From 20 

seconds to 30 minutes, the longer the exposure time, the higher the peak o f the 

hydrogen intensity. This implies that the exposure times have an effect on the hydrogen 

intensity, particularly during the first few tens o f seconds’ sputtering, due to the water 

vapour. The integrated values within 300 seconds o f sputtering time for the hydrogen 

intensities in Figure 6.2 indicate a saturated status o f  the water vapour diffused onto the 

surfaces as the source is exposed to the atmosphere for a longer time (after 600 

seconds), as shown in Figure 6.3.
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Figure 6.2. The hydrogen intensities change as different exposure times of the source 
to the atmosphere from 20 seconds to 30 minutes. Samples: silicon wafers. GDS: 
700V/30mA/4mm anode. Gain of the PMT for hydrogen: 10.
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Figure 6.3. Integrated values for the hydrogen intensities in Figure 6.2 indicate a 
saturated status of the water vapour diffused onto the surface as the source is exposed 
to the atmosphere for a longer time.

The hydrocarbons

Rotary pumps were used in the GDOES equipment employed in this research. They 

maintain the vacuum in the spectroscopy chamber and are used for the evacuation o f the 

source chamber. Hydrocarbons from the oil in the pump that evacuates the source 

chamber can diffuse back into the source. To test the hydrocarbon effect on the 

hydrogen intensity, the water vapour effect must be removed as much as possible. In 

the GDOES, it is possible to make multiple bums on one spot without the source being
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exposed to the atmosphere, called 'same spot' bums. With this kind o f procedure, the 

sample can be held on the source under the vacuum and kept on the source after the 

prior bum until the next bum is ready to be done after an interval o f time. An 

experiment with multiple-bums procedure was done at different intervals between the 

bums. Each o f the bums has 300 seconds o f sputtering time and the intervals were 

100s, lhrs, 2hrs, 4hrs, lOhrs and 20hrs. During these intervals, the source vacuum was 

kept at 1.3 Pa. At the beginning o f sputtering, the vacuum o f the source was 

-1 .5  x 102 Pa. In this procedure, most o f  the hydrogen signal in the GDOES 

measurements is expected to come from the hydrocarbons’ back-diffusion as the source 

was isolated from the ambient environment. Figure 6.4 shows results o f the 

measurements o f  the hydrogen intensities in the procedure o f  multiple bums. The 

longer the time interval, the higher the peak value o f the hydrogen intensity. This 

suggests that hydrocarbon back-streaming into the source does exist. Figure 6.5 shows 

the carbon signals o f the bums corresponding to those in Figure 6.4. The similarity o f  

the configuration between the curves o f  hydrogen and carbon signals in the two figures 

confirms that hydrocarbons are back-streaming and discounts the possibility o f the 

increase being due to hydrogen build-up in the pumping system (such as out-gassing o f  

water in the pumping lines, etc.).
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Figure 6.4. The hydrogen intensities in the procedure of multiple burns with different 
intervals between the burns from 100 seconds to 20 hours. Samples: silicon wafer. 
GDS: 700V/30mA/4mm anode. Gain of the PMT for hydrogen: 10.
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Figure 6.5. Carbon signals of the burns corresponding to those in Figure 6.4. The 
similarity of the configuration between the curves of hydrogen and carbon signals in the 
two figures confirms that hydrocarbons are back-streaming.

The argon pressure during the sputtering (~1.5 x 10 Pa) mentioned above seems not to 

be in the range o f  the argon pressure o f the glow discharge (Section 2.2.1). In the 

GDOES, the displayed argon gas pressure o f the source corresponds to the pressure on 

the annular space side o f  the anode-cathode block. The actual pressures in the glow  

discharge were measured during a simulation test without discharge by a vacuum gauge 

installed in place o f  the cathode sample (Bouchacourt and Schwoehrer, 1997). The 

results indicated that the pressure in the discharge region was around 10 times greater 

than that measured in the annular anode-cathode space for a 4 mm anode. Therefore, 

the argon pressures displayed in the GDOES should be around 10 times lower than the 

actual pressures in the discharge region.

Hydrogen in the argon gas

During sputtering in GDOES, argon gas is continually bled into the source to maintain 

the glow discharge. The argon pressure in the GDOES is controlled by a gas controller 

to keep the current constant in accordance with changes o f the sample matrices. Since 

the same sample matrix (silicon wafers) was used, the argon pressure in this experiment 

should not change significantly either during a measurement or from sample to sample. 

Therefore, the hydrogen atoms in the source from the argon gas should be fairly 

constant if  the argon flow does not change during the sputtering. Experimental results
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using high-purity argon gas and normal analysis argon respectively are shown in Figure 

6.6. Peak values o f hydrogen intensity can be seen in the first few tens o f  seconds’ 

sputtering for both argon gases although the GDOES was well warmed up. This is due 

to the water vapour effect since the procedure o f  same-spot bums could not be 

employed in this test. After 100 seconds’ sputtering, the two lines decay with 

increasing sputtering time parallel to each other, with a difference o f  -1 5  (a.u.) on 

average between 100s and 1200s, and about 10 (a.u.) after 1300 seconds o f  sputtering 

time. Comparing the results in Figures 6.2 and 6.4, whatever the peak values o f  

hydrogen intensities at the beginning o f sputtering are, after more than 200 seconds o f  

sputtering, the intensities are very close. So the difference o f -1 5  (a.u.) can be 

considered as an effect on the hydrogen intensity due to the hydrogen coming from 

different purity argon gases.
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Figure 6.6. Hydrogen intensities detected in the GDOES using high-purity argon gas 
and normal analysis argon gas, respectively. Samples: silicon wafers.
GDS: 700V/30mA/4mm anode. Gain of the PMT for hydrogen: 10.

6.2.1.2 Discussion

It is noted that the hydrogen intensities in Figures 6.1, 6.2 and 6.4 decrease as the 

sputtering time increases, even within the long sputtering time o f 2000 seconds as 

shown in Figure 6.6. The peak values o f hydrogen intensities are normally present at 

about 10 seconds o f  sputtering time, and then decay exponentially. The hydrogen 

contamination from the hydrocarbons is quite small compared with that from the water

136



vapour diffusion. The highest peak value in Figure 6.4 with a 20-hour interval is only 

600 (a.u.), which is even lower than the peak value with 3 minutes o f source exposure 

time in Figure 6.2. The hydrogen level in the GDOES due to the hydrogen 

contaminants in the argon gas should change little if  the argon flow is kept constant. 

For the hydrogen contamination tests in the source here, only silicon wafers were used 

and the argon pressure should be constant. Therefore, the hydrogen contaminants in the 

argon are not expected to contribute to the decay. Actually, the hydrogen contaminant 

in argon gas is the smallest component in the three sources o f hydrogen contamination. 

Comparing Figures 6.2, 6.4 and 6.6 it can be seen that the water vapour is the most 

significant contribution to the hydrogen signals in GDOES measurements within the 

first hundred seconds o f sputtering.

In the operation o f the GDOES, there is a pumping time after the source is sealed by a 

sample and before the sputtering starts. In this study the pumping time was 20 seconds. 

The source chamber was evacuated by the pumping to a vacuum in the range o f  

1.2-2.0 Pa, which should have removed some o f the hydrogen existing in the source 

before the sputtering started. However, there was still residual hydrogen in the source 

chamber, which came from the water vapour and the hydrocarbons that have back- 

streamed into the source during the pumping time. During sputtering, therefore, the 

decay o f the hydrogen intensity as the sputtering time increases should be a dynamic 

process which involves hydrogen entering the source and exiting the source 

simultaneously. Since the hydrogen intensity showed decay as the sputtering time 

increased, it suggested that a minimum limit o f hydrogen intensity should principally be 

obtained with a long sputtering time, when a hydrogen balance status between the 

hydrogen entering and leaving the source is reached. However, this condition is almost 

impossible to reach in practice due to the sputtered materials being deposited on the 

edge o f the sputtered crater during the sputtering. After an extended sputtering time the 

material eventually leads to an electrical circuit between the anode and the cathode 

(sputtered sample), which will form a short circuit and interrupt the sputtering. Under
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normal conditions the sputtering time cannot exceed about 2000 seconds when steel 

samples are sputtered.

6.2.2 The hydrogen detection status in GDOES

The peak value o f hydrogen intensity is inevitable during the first tens o f seconds o f  

sputtering time and a minimum limit o f the intensity o f  hydrogen contamination in 

GDOES is impossible to reach. However, it is found in this study that when the 

GDOES is in the low hydrogen background status after proper warming-up o f the 

GDOES, the hydrogen intensity at a selected sputtering time, for example two hundred 

seconds, is nearly constant over multiple measurements o f the same sample. This status 

is called the ‘hydrogen detection status’ o f GDOES in this study.

6.2.2.1 Experimental and results

In order to test the hydrogen detection status o f  GDOES, two groups o f samples were 

prepared. One o f the groups was used to obtain the status o f the low hydrogen 

background, and named the warm up (WUP) samples. The WUP specimens were cut 

from a steel block into a size o f 30x30x3 mm and mechanically polished using grade 

600 grinding-paper to get a uniform surface finish and to provide a good surface to seal 

the source chamber. Before GDOES measurements, the specimens were baked in an 

oven at 250 °C for 20 hours in order to remove possible hydrogen in the specimens. 

The baking temperature o f  250 °C was chosen so that most o f the hydrogen in the steel 

(i.e. the more mobile or diffusible part) could be removed before the temperature 

reached 250 °C (Smialowski, 1962). Another group consisted o f five steel specimens 

(STL 1-STL 5), which may contain hydrogen. The STL specimens were cut into a size 

o f 30x30x6 mm with lubricant to prevent the samples from overheating during the 

cutting process. Compositions o f the steel specimens were measured in the GDOES and 

are listed in Table 6.1. All o f  the samples in the two groups were at room temperature 

before measurement and were then sputtered in the GDOES for 300 seconds. Hydrogen 

intensity at 200 seconds and 300 seconds respectively for each o f the measurements 

were collected and are shown in Figure 6.7. The hydrogen intensities are averages o f 10
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data points around the selected sputtering times. The 10 data points correspond to about 

6 seconds o f sputtering.

Table 6.1. Compositions o f  the steel specimens measured in the GDOES (mass%).

Fe C Si Mn Cr P S Ni

Steel 1 94.17 0.227 0.484 1.510 3.165 0.032

Steel 2 93.66 0.135 0.420 2.012 2.993 0.030 0.117

Steel 3 94.11 0.200 0.458 1.568 3.110 0.031 0.006

Steel 4 95.94 0.070 0.101 0.337 3.135 0.032 0.011

Steel 5 90.60 0.512 1.538 0.777 3.740 0.032 1.928

Mo Co Cu V Ti Pb Nb Zr

Steel 1 0.009 0.174 0.052 0.053 0.095 0.002 0.026

Steel 2 0.288 0.010 0.175 0.044 0.071 0.010 0.033

Steel 3 0.012 0.360 0.024 0.092 0.028

Steel 4 0.013 0.185 0.025 0.125 0.027

Steel 5 0.395 0.015 0.247 0.053 0.023 0.117 0.023
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Figure 6.7. Hydrogen intensities of the warm-up specimens (WUP) and the steel 
specimens (STL) at 200s and 300s of sputtering time, respectively. The intensities of 
WUP3 to WUP8 indicate that the GDOES was in a status of low background of the 
hydrogen intensity (the status of hydrogen detection of GDOES).
GDS: 700V/30mA/4mm anode. Gain of the PMT for H: 10.

From Figure 6.7 it can be seen that the hydrogen intensity o f the warm-up specimens 

reduced from WUP 1 to WUP 3 and the GDOES reached a stable and low level o f
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hydrogen intensity from specimen WUP 3. The average hydrogen intensity o f the 

warm-up samples from WUP 3 to WUP 8 at sputtering times o f 200 and 300 seconds 

were 65.2 and 56.1 (a.u.) with standard deviations o f 3.16 and 2.38, respectively. This 

small standard-deviation implies the GDOES was in a status o f stable background signal 

o f the hydrogen intensity. The steel specimens were sputtered follow ing the warm-up 

specimens in the order STL 1 to STL 5. The hydrogen intensities o f STL 5 and STL 4 

were a little higher than the other steels and the averages o f the warm-up specimens, 

both at 200 and 300 seconds. In order to remove the effect o f the sampling order in the 

results in Figure 6.7, another round o f measurements in the GDOES for the same 

samples and under the same parameters o f GDOES was undertaken. In the second 

round o f measurements, sampling o f the steels was in the order STL 5 to STL 1, in the 

reverse order to the last round. The results are shown in Figure 6.8. The average o f the 

hydrogen intensities o f the warm-up specimens WUP 2 to WUP 5 at 300 seconds was 

40.6 (a.u.) with a standard deviation o f 1.20, which confirmed the status o f the GDOES. 

The hydrogen intensities o f STL 5 and STL 4 were still a little higher than the others. 

Similar results to those o f the last round o f measurements were obtained.
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Figure 6.8. The hydrogen intensities o f the second round o f m easu rem ents using the 
sam e specim ens with those in F igure 6.8 but in a reverse sam pling o rder fo r the steel 
specim ens confirm ed the status o f stable background o f the hydrogen in tensity  o f the 
GDOES. The setting o f the GDOES we re sam e with that in F igure 6.7.
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6.2.2.2 Discussion

The intensities o f hydrogen contamination in the stable condition are very low and do 

not change significantly with the sputtering time in the different measurements. This 

means that the hydrogen contamination in the source at the selected sputtering time 

(reasonably far from the hydrogen peak at the beginning o f sputtering time) can be kept 

almost constant. Therefore, this low and stable hydrogen-level status can be employed 

as a hydrogen detection mode in GDOES. Samples containing differing amounts o f  

hydrogen could be compared by GDOES measurements using this hydrogen detection 

status at a selected sputtering time, for example 200 or 300 seconds. For pure iron, 300 

seconds’ sputtering in GDOES with the parameters o f  700 V and 30 mA and with a 

4 mm anode can erode the sample’s surface to a depth o f 11.5 pm. The eroded surface 

is far from the outermost surface o f the sample and thus there is little effect upon the 

hydrogen intensity from water vapour on the sample surface.

It was noted that there is a difference o f 15.5 (a.u.) between the two hydrogen averages 

o f the warm-up specimens at 300 seconds in the two rounds o f measurements as seen in 

Figure 6.7 and Figure 6.8. This could be due to cleanliness o f  the lens in the source, 

which can have an affect on the transmission o f light. Cleanliness o f  the lens not only 

affects the sensitivity o f the emission transmission but also the relative sensitivities for 

different elements. Jones (1997) gave an example in which the lens was not cleaned for 

three weeks. Loss o f transmission is most evident at the shortest wavelengths. The 

wavelength for hydrogen in the GDOES used here was 121.57 nm, which is the shortest 

wavelength used in this GDOES. The result in Figure 6.13 obtained with a newly 

cleaned lens shows an average for the hydrogen intensity o f 86.3 (a.u.) for the warm-up 

specimens; two times higher than that in Figure 6.8.

6.2.3 Sample matrix effects on intensity of hydrogen contamination in 

GDOES

The differences in the hydrogen intensities between STL 5 and the other steel specimens 

and the average values o f the warm-up specimens, shown in Figure 6.7 and Figure 6.8,
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seem to indicate that there is more hydrogen in STL 5 than the others. However, from 

Table 6.1 it can also be seen that there are significant differences in composition 

between the specimens, for example the concentration o f Fe in STL 5 is only 90.6%, 

lower than that in STL 1 to STL 4 (93.66-95.94%), while the concentrations o f Fe in 

STL 1 to STL 4 are similar. This implies the matrix o f the specimen STL 5 is 

significantly different from the other steels, which suggests that the different intensities 

o f the hydrogen contamination could have been affected by the different matrices o f the 

sample, i.e. the different hydrogen intensities in the measurements under the hydrogen 

detection status could have resulted from the different cathode matrices even when there 

was no hydrogen contained in the samples. This is called the ‘matrix effect’ on the 

intensity o f hydrogen contamination in GDOES detection in this study.

6.2.3.1 Experimental details and results

In order to test for the matrix effect on the hydrogen intensity in GDOES detection, 

three types o f sample, steel, pure iron and a silicon wafer, were used. Five specimens 

for each type were prepared, so that in total there were 15 specimens. Surfaces o f  the 

steel and the pure iron specimens were mechanically polished to a 1 pm-grade diamond 

paste finish to obtain a surface as close as possible to the mirror-like surface o f the 

silicon wafer. Before sputtering in the GDOES, the steel specimens were baked at 250 

°C for 20 hours to remove possible hydrogen contained in the specimens. The pure iron 

and silicon wafer are considered to have little hydrogen due to their strict production 

process. Each o f the specimens was at room temperature before sputtering in the 

GDOES. The 15 specimens were divided into five groups. Each group contained three 

specimens with one from each type. Classification o f the samples is listed in Table 6.2. 

The 15 specimens in the five groups were sputtered in the GDOES for 300 seconds, in a 

sampling order from group 1 to group 5 and from the steel to silicon wafer in each o f  

the groups. In this way, the hydrogen contamination effects on the intensities in the 

GDOES were expected to be as similar as possible between the three types o f samples. 

The hydrogen intensities at 300 seconds for each o f the specimens were collected as 

shown in Figure 6.9. The sputtering rates corresponding to the measurements, as shown
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in Figure 6.10, were obtained by weighing the sputtered mass using a micro-balance. 

Averages o f the sputtering rates and the hydrogen intensities for each o f  the three types 

o f samples are shown in Figure 6.11. Standard deviations o f  the average sputtering 

rates for the steel specimens and the pure iron specimens were 1.42 x 10' 1 and 

6.80 x 10' 1 respectively. It was impossible to obtain a standard deviation o f the 

sputtering rate for the silicon wafers due to the precision-limitation o f the micro

balance, which is only to 0.1 mg. It was noted that the standard deviation o f  the average 

sputtering rates o f the pure iron specimens was larger than that o f the steel specimens. 

This could be caused by the orientation effect on the sputtering rates due to coarse 

grains with different orientations in the pure iron specimens (Chapter 3).

Table 6.2. Classification o f  the samples in five groups fo r  the test o f  the different 
matrices effects on the intensities o f  hydrogen contamination.

Type of samples Group 1 Group 2 Group 3 Group 4 Group 5

Steel WUP01 WUP02 WUP03 WUP04 WUP05

Pure Iron PFE01 PFE02 PFE03 PFE04 PFE05

Silicon Wafer SIW01 SIW02 SIW03 SIW04 SIW05

□  Steel 

i !  Pure iron

□  Si W a fe r

group 1 group 2  group 3  group 4  group 5

sam p le groups

Figure 6.9. Hydrogen intensities at 300 seconds of sputtering time. The 15 specimens 
in the five groups were sputtered in a sampling order from group 1 to group 5 and from 
the steel to silicon wafer in each of the groups.
GDS: 700V/30mA/4mm anode. Gain of the PMT for hydrogen: 10.
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Figure 6.10. Sputtering rates corresponding to the measurements in Figure 6.9, were 
obtained by weighing the sputtered mass using a micro-balance and divided by 300 
seconds of sputtering time.
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Figure 6.11. Averages of the hydrogen intensities and the sputtering rates in pg/s and 
atoms/sec corresponding to the measurements in Figure 6.9. Standard deviations of 
the sputtering rates in pm/s for the steel and the pure iron specimens are 1.42E-01 and 
6.80E-01, respectively.

In Figure 6.9, the hydrogen intensities o f  the steel specimens and the pure iron 

specimens are clearly higher than that o f the silicon wafers in each o f  the sample 

groups. There was no big difference in the intensities between the steel specimen and 

the pure iron. M inimal differences in the intensity between the steel specimens (or the
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pure iron specimens) and the silicon wafers were obtained in group 5, in which the 

intensities o f the steel and the pure iron are about 50 units, twice as high as that o f the 

silicon wafer at 24.8 units. From Figure 6.11, the average o f the sputtering rates o f the 

pure iron specimens is 4.27 pg/s, a little higher than that o f the steel at 3.47 pg/s, but ten 

times higher than the silicon wafers at ~3.33 x 10"1 pg/s.

From the averages o f the hydrogen intensity and the sputtering rates o f the three types 

o f sample, as shown in Figure 6.11, it seems that the sample matrix effect on the 

hydrogen intensity is relevant to the sputtering rate o f the measured sample. In order to 

further understand this, a further experiment was carried out. In this experiment, types 

o f sample included steel, silicon wafer, and pure metals o f copper, aluminium, 

molybdenum, titanium, cobalt, tin, and nickel. The specimens o f the steel, pure copper 

and aluminium were baked at 250 °C for 20 hours. All o f the specimens were at room 

temperature before being sputtered in the GDOES. The GDOES was well warmed-up 

until it reached the hydrogen detection status. The hydrogen intensities when sputtering 

the samples in GDOES were also collected at 300 seconds o f sputtering time. The 

sputtering rates were obtained by known densities o f the samples and sputtered depth 

measured using a laser profllometer. Averages o f the hydrogen intensities, the 

sputtering rates and argon pressures for each type o f sample are shown in Figure 6.12. 

From the figure it can be seen that the averages o f the hydrogen intensity are as high as 

205 and 61 (a.u.) for the aluminium and the copper, and as low as 10 and 9 (a.u.) for the 

silicon and the tin. The resulted sputtering rates are also varied in a range o f 18.3 pg/s 

o f the pure tin to 0.68 pg/s o f the silicon wafer.

In the GDOES employed here, the voltage and the current were fixed. The argon 

pressure was automatically adjusted to keep the selected current as a constant. 

Therefore, the argon pressure could change by some level in accordance with the 

different matrices to be sputtered. The argon pressures o f the different specimens were 

also recorded in Figure 6.12. It could be argued that the baking temperature and time 

(250 °C, 20 hours) were not high enough and long enough to release the hydrogen from
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the specimens. Therefore, measurements in the GDOES using samples o f  the steel, the 

pure metals o f copper and aluminium, which were baked at the temperature o f 400 °C 

and for 48 hours, were also undertaken. The averages o f the hydrogen intensities 

measured in the GDOES with the same conditions as the samples at 250 °C, 20 hours 

were 37.8, 76.6 and 246.1 (a.u.) for the steel, the pure copper and the pure aluminium, 

respectively. This result is similar to that in Figure 6.12. The similarity o f the results 

between the samples heated in the two baking conditions means that the results in 

Figure 6.12 are validated, at least for samples o f the steel, the pure copper and the pure 

aluminium.

□  sputtering rate in m ass/s  

® sputtering rate in atom s/s

□  hydrogen intensity

□  Ar pressure

250

o

200

2 150o

S> o 100

STEEL SIW CU AL Mo Ti Co Sn Ni
sputtered sam ples

Figure 6.12. Averages of the hydrogen intensities, the sputtering rates and argon 
pressures for steel, silicon wafer, and pure metals of copper, aluminium, molybdenum, 
titanium, cobalt, tin, and nickel.
GDS: 700V/30mA/4mm anode. Gain of the PMT for hydrogen: 10.

6.2.3.2 Discussion

The results in Figure 6.12 clearly show that the hydrogen intensities do vary w ith the 

different cathode matrices. However, the results o f the aluminium and the tin give a 

result opposite to that expected from the hypothesis that the matrix effect on the 

hydrogen is relevant to the sputtering rate o f  the measured sample. The hydrogen
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intensities and the sputtering rates o f the other matrices in Figure 6.12 also do not 

support this hypothesis. This then refutes the previous prediction that the intensity o f 

hydrogen contamination was affected by the sputtering rate.

How does the cathode matrix affect the hydrogen intensity in GDOES detection? It 

may be helpful to understand this phenomenon by reviewing the processes o f ionisation 

and excitation in the GDOES source (Section 2.3). During sputtering in GDOES there 

are three major particles in the source, i.e. neutral atoms, ions, and electrons (Mehs and 

N iemczyk, 1981). It is known that only the energetic particles, i.e. high energy 

electrons and metastable argon atoms, are major contributors in the emission o f  photons 

when they collide with atoms in the source (Eqns. 2.6 and 2.7).

For the three groups o f electrons in the glow discharge, the energies o f the y-electrons 

cannot be transmitted in the excitation o f the atoms directly due to their low cross- 

section o f electron collision with higher energy. It is the secondary electrons that make 

a contribution to the atomic excitation in the glow discharge (Wagatsuma, 1997). The 

secondary electrons result from ionising collisions, have considerably lower energies on 

average than the y-electrons, and have appropriate kinetic energies for excitation o f the 

atoms in the discharge. However, the y-electrons’ impact ionisation o f argon atoms 

(Eqn. 2.3) and the Penning ionisation o f sputtered atoms (Eqn. 2.8) are the main 

ionisation processes in the production o f secondary electrons.

In the ionisation o f the argon atoms, the y-electrons play a key role in the collisions. 

Although most o f the primary electrons reach the anode surface without any loss o f their 

kinetic energy in the plasma, (their energy results simply in heating o f the anode), only 

a small share o f their energy is essential for the maintenance o f the glow discharge 

(Wagatsuma, 1997). Bogaerts and Gijbels (1998) have reported that maximum cross- 

sections o f electron impact ionisation o f argon atoms are 3 x 10'16 cm2 and 8 x 10 '16 cm2 

at the electron energies o f 80 eV and 10 eV respectively, and the density o f  the argon
13 T

ions in the glow region is 2 x 10 cm' at 800 V o f voltage, 40 mA o f current and
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500 Pa o f  argon pressure. The cross-section o f the Penning ionisation between argon
i r  ^

metastable atoms and analysed atoms are generally in the order o f 5 x 10' cm . This is 

about one order higher than that o f electron impact ionisation o f argon atoms, and most 

o f the atoms in the periodic table have an ionisation potential lower than the argon 

metastable level (11.55 or 11.72 eV). However, it is suggested that the Penning 

ionisation is only dominant in low pressure discharge glow discharge (Bogaerts and 

Gijbels, 1998). Therefore, the y-electrons (which produce most o f  the secondary 

electrons) should play an important role in the excitation o f  the analysed atoms in the 

glow discharge. The y-electrons are ejected from the cathode sample during the 

sputtering and their number can vary depending on the specimen matrix. The efficiency 

o f the y-electron emission resulting from ion bombardment is higher for non-conductive 

cathode materials than for metals. It also does not vary much for clean metals and is 

almost independent o f the kind o f metal (Champman, 1980; Wagatsuma, 1997). The y- 

electron emission coefficient (i.e. the number o f ejected electrons per incident ion) is 

nearly independent o f the argon ion kinetic energy at energies below 500-1000 eV and 

is typically in the order o f 0.1 for most clean metal surfaces (Chapman, 1980). The 

hydrogen intensities collected here are after 300 seconds o f sputtering time, so the 

corresponding etched surfaces could be considered as the clean surfaces. In Figure 

6.12, the hydrogen intensities for the steel and the pure metals o f Mo, Ti, Co, and Ni are 

24.4, 18.0, 24.2, 29.6, and 26.6 (a.u.), respectively. They are not very different from 

one another and are also more similar than the corresponding sputtering rates, which are 

44.9, 50.0, 18.2, 54.8, and 66.5 (x 1015) in atoms per second. The fact that the 

sputtering rates do not match the corresponding hydrogen intensities could imply that 

the different hydrogen intensities are more related to the y-electron emissions from the 

surface during the sputtering rather than the sputtering rate. However, the y-electron 

emission coefficients in GDOES sputtering for the metals considered here cannot be 

found in the literature. This limits further discussion o f  the correlation between the y- 

electrons and the hydrogen intensities. In the figure mentioned, the dramatic results o f  

the hydrogen intensities for other pure metals o f  Cu, A1 and Sn can also be seen. This 

leaves further questions to improve understanding in this area.



The metastable argon atoms can also excite other atoms to emit photons. They are 

created by excitation in the collisions between argon atoms and the secondary electrons 

(Eqn. 2.6). The cross-section o f  the secondary-electron impact excitation o f  argon 

atoms has a maximum o f 1.6 x 10' cm (at 20 eV), which is o f the same order o f that 

o f the y-electron impact ionisation o f argon atoms. But the density o f  the metastable 

argon atoms in the glow is much lower compared with that o f the secondary electrons 

(Bogaerts and Gijbels, 1998). Therefore, the metastable argon atoms should have a 

lesser effect on the variation in the hydrogen intensities than the secondary electrons. 

This has been confirmed by comparing the different argon pressures when measuring 

the different samples in the GDOES, because the density o f the metastable argon atoms 

should be partly related to density o f the argon atoms in the source chamber and hence 

the argon pressure. The results in Figure 6.12 indicate that the argon pressures change 

from 98.8 to 131 Pa and do not match the variation in the hydrogen intensities. This 

implies the density o f the argon atoms or, by implication the metastable argon atoms, 

are not important to the variation in the hydrogen intensities.

To understand the matrix effects on the hydrogen intensity, it is also necessary to pay 

attention to the different types and densities o f sputtered atoms apart from argon atoms 

in the glow region, since in principle the same processes that cause the ionisation and 

the excitation o f argon atoms also apply to the ionisation and the excitation o f the other 

atoms in the glow discharge. What is o f interest in this case is the electron impact 

ionisation and excitation o f the sputtered atoms. They should have the same or higher 

probabilities o f being ionised as the argon atoms, at least for copper atoms as they are 

much more efficiently ionised than the argon atoms (Bogaerts and Gijbels, 1997). 

Differences in the energy level o f the ionisation and excitation and densities o f  the 

atoms could alter the energy distribution in the glow region and consequently result in 

variation o f the excitation o f the hydrogen atoms in the source. From the point o f  view  

o f only the densities o f the atoms, there are no correlations between the sputtering rates 

(in atomic percent) and the corresponding hydrogen intensities in Figure 6.12.
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Unfortunately, no data can be found in the literature about energy levels o f electron 

impact ionisation and excitation o f  sputtered atoms in GDOES.

The results in Figure 6.12 do imply that there is a variation in the hydrogen intensities 

with the different sputtered samples, which clearly indicates that the different cathode 

matrices have an effect on the intensities o f the hydrogen contamination in GDOES 

detection. In view o f what has been discussed concerning the ionisation and excitation 

processes o f argon and the analysed atoms, it is hard to give a conclusion about which 

process dominates in this effect. The y-electrons ejected by argon ions impacting the 

cathode surfaces should play an important role in the measured data. The hydrogen 

intensities for the samples o f the steel, and the pure metals o f Mo, Ti, Co, and Ni in 

Figure 6.12, may support the proposed y-electron effect. However, the experimental 

results for the pure metals o f Cu, A1 and Sn still cannot be explained. On the other 

hand, different sputtered atoms in the glow discharge, i.e. different densities and energy 

levels o f the ionisation and excitation o f the atoms, can alter the energy distribution in 

the glow region and result in variation o f the excitation o f the hydrogen atoms in the 

source.

6.3 Detection of Hydrogen in GDOES

Hydrogen contamination signals in GDOES measurements are unavoidable within the 

first few tens o f  seconds o f sputtering time due to the effects o f  water vapour on the 

sample surface and in the annular space o f the anode-cathode block. However, in the 

hydrogen detection status o f  GDOES, the hydrogen intensities at a fixed sputtering time 

(a few hundred seconds) are stable for samples with similar matrices in different 

measurements. Therefore, it is possible to compare the hydrogen content between bulk 

samples with similar matrices. Samples with big differences in their matrices could not 

be compared due to matrix effects on the hydrogen intensity. Since the hydrogen 

intensity only has a peak in the first few tens o f seconds o f sputtering time, and decays
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as the sputtering time increases, then for plated samples with a thick layer, GDOES has 

the ability to detect the hydrogen that could diffuse into the interface between the plated 

coating and the substrate in the plated process. Two experiments have been performed 

to detect hydrogen by GDOES. One is the detection o f hydrogen in steels that were 

loaded w ith hydrogen in an electrochemical process. Another is the hydrogen detection 

o f carbon steels that have been plated w ith pure chromium and nickel layers.

6.3.1 Hydrogen detection in bulk samples using GDOES

6.3.1.1 Experimental

To test the ability to detect hydrogen in GDOES on bulk samples, the warm-up 

specimens (cut from a steel block with a uniform matrix) were employed to obtain and 

confirm the hydrogen detection status o f the GDOES. Two o f them were loaded w ith 

hydrogen in an electrochemical process for 2 hrs and 4 hrs o f loading time, respectively. 

The solution and conditions employed to load the hydrogen were as follows: 

Conditions: —1.2 V o f voltage; -205  mA o f current;

Solution: 0.1 mol H2SO4; 3.5 g/1 CS(NH2)2— thiourea; 3.5 g/1 NaCl.

The hydrogen-loaded specimens were immersed in liquid nitrogen to prevent the 

hydrogen from escaping, and were then given the same exposure time to the ambient 

environment to reach room temperature before being measured in GDOES. In this way, 

it was hoped that the real differences in the hydrogen contained between the samples 

with and w ithout the hydrogen loading, and between the samples with different loading 

times, could be revealed in the hydrogen detection status. The GDOES was first 

properly warmed up using the warm-up specimens to reach the hydrogen detection 

status. The specimens with 2 hrs and 4 hrs o f the hydrogen loading time were then 

measured. After the hydrogen-loaded specimens, two o f the warm-up specimens were 

measured again to make sure that the GDOES was still in the hydrogen detection status. 

All specimens were measured in the GDOES for 300 seconds o f sputtering time with 

similar time intervals between the specimens. The averages o f hydrogen intensities at 

300 seconds o f sputtering time were collected. The hydrogen intensities at 300 seconds 

are not expected to show the influence o f water vapour on hydrogen intensity.
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6.3.1.2 Results and discussion

The recorded hydrogen intensities are shown in Figure 6.13. The average o f the 

hydrogen intensities o f the warm-up specimens from WUP 1 to WUP 7 is 86.3 (a.u.) 

with a standard deviation o f 2.7. The small standard deviation confirmed that the 

GDOES was in the hydrogen detection status during the measurements o f the hydrogen- 

loaded specimens. The hydrogen intensity o f the specimen with 2 hrs o f hydrogen 

loading time is 167.8 (a.u.), twice as high as that o f the warm-up specimens. The 

hydrogen intensity o f the specimen with 4 hrs o f hydrogen loading time is 491.0 (units), 

nearly three times higher than that o f the specimen with 2 hrs o f hydrogen loading time 

and about six times as high as the specimens without the hydrogen loading.
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Figure 6.13. Com pa rison o f the hydrogen intensities detected in the G DO ES between 
the carbon steel specim ens w ithout hydrogen loading and w ith hydrogen loading in 
d ifferent loading tim es.
GDS : 700V/30m A/4m m  anode. Gain o f the PM T fo r hydrogen: 10.

Carbon steels with longer hydrogen loading time (16 hours) have been measured in the 

GDOES. The hydrogen intensities o f the specimens were plotted in Figure 6.14, which 

shows some sharp peaks in the hydrogen profiles. These sharp intensities may indicate 

that there is a possible forming o f hydrogen bubbles in the specimens with longer 

exposure to the hydrogen loading process. The interesting point is that the detection o f
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hydrogen in GDOES can reveal not only the hydrogen bubbles in the sample but also 

can give depth information on the bubbles. In Figure 6.14, the sharp intensities that 

appear at -3 0  seconds and -300  seconds o f  sputtering time could indicate that hydrogen 

bubbles existed at depths o f - lp m  and -11  pm, respectively, below the surface o f the 

steel sample.
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Figure 6.14. Hydrogen profiles detected in the GDOES using carbon steel specimens 
with 16 hours hydrogen loading in the electrochemical process. The sharp peaks of 
hydrogen intensity show that there is a possible forming of hydrogen bubbles in the 
specimens.

6.3.2 Hydrogen humps in plated samples detected by GDOES

Hydrogen humps were found in GDOES depth profiles o f  plated samples at interfaces 

between the coating and the substrate. An example is shown in Figure 6.15. The hump 

o f hydrogen intensity at the interface between the Ni coating and the steel substrate is 

clearly seen. However, the hydrogen hump cannot be identified as straightforwardly as 

a hydrogen profile in a bulk sample can. The sputtering rate vs. sputtered depth o f  the 

sample in Figure 6.15 was plotted by the quantification procedure in the GDOES, and is 

shown in Figure 6.16. It indicates that the sputtering rate also increases at the interface. 

This increase in the sputtering rate was due to the matrix o f the sample at the interface 

changing as the GDOES sputtered from the coating to the substrate.

153



4000

-o  3500

— 3000

£  2500

a> 2000

£  1500

1000 -
500 -

100 200 300

sputtering time (s)
400 500

Figure 6.15. Hydrogen hump appears at the interface between Ni layer and carbon 
steel substrate.
GDS: 700V/30mA/4mm anode. Gain of PMT for hydrogen: 10
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Figure 6.16. The sputtering rate calculated by the quantitative procedure in the 
GDOES shows there is a hump at the interface between the Ni layer and the substrate.

In GDOES measurements, increasing the sputtering rate could cause an increase in the 

intensities o f the measured elements. For example, if  an element has a uniform 

concentration throughout the coating in a sample o f zinc-coated steel, the intensity o f  

the element measured in GDOES in the coating will be higher than in the substrate 

because the sputtering rate o f the zinc coating is higher than steel. However, after a 

quantification procedure in GDOES, the measured concentration o f  the element should 

not be affected by a variation in the elemental intensity, because the variation is 

corrected by the normalisation o f sputtering rates (Section 2.5.4). Unfortunately, the
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quantification procedure in the GDOES cannot carry out a quantitative analysis for 

hydrogen due to a lack o f hydrogen calibration standards. Therefore, in order to 

understand the hydrogen humps, it is necessary to differentiate between two possible 

causes for the humps:

• In principle, the hydrogen hump could be caused by a sputtering rate rise at the 

interface, even though the concentration o f hydrogen throughout both the 

substrate and the coating is constant;

• Alternatively, the hydrogen concentration really does increase at the interface.

6.3.2.1 Experimental and results

In order to identify the hydrogen hump, three groups o f Cr/Ni plated steel, groups A, B 

and C were prepared. All o f the samples were plated in an industrial plating line. The 

substrates were carbon steels. The surfaces o f the substrates were first cleaned before 

being coated by nickel and chromium layers. The cleaning process included an anodic 

clean, cold water rinse and acid dipping to remove the oxide scales and grease on the 

surface. The surfaces were then polished in a rumbling barrel, which is a vibrating box 

containing grinding particles that polish the surface o f the samples. The specimens in 

group C were cut from commercial products into a size o f 15x30x4 mm. Group A 

consisted o f a batch o f testing samples with a size o f 30x30x4 mm, which were 

specially prepared for this experiment in the same line as the specimens in group C. 

The substrates, the cleaning and the plating processes o f the specimens in group A were 

the same as that o f commercial products (in group C). After the specimens in group A 

were plated, they were immediately immersed into liquid nitrogen until ready for 

GDOES detection. The specimens in group B were another batch o f testing samples 

prepared by the same process as groups A and B. These specimens were not immersed 

into liquid nitrogen but were exposed to the ambient environment before GDOES 

detection.

The GDOES was first calibrated using a set o f certified reference materials (CRMs) 

with known elemental compositions and sputtering rates. The CRMs are listed in Table
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6.3. Because there are no suitable CRMs for hydrogen in GDOES calibration, it is 

impossible to obtain the concentration o f hydrogen in GDOES depth profiles. In this 

experiment, the GDOES was generally warmed up. The gain o f PMT for hydrogen, the 

voltage and the current o f  the source, and the pumping time, were all kept constant. 

Temperatures o f the specimens were at room temperature before being measured in the 

GDOES.

Table 6.3. CRMs o f  GDOES calibration fo r  Cr/Ni p lated  samples measurements in the 
GDOES. (Elemental concentrations in mass%, SR is the relative sputtering rate to a 
pure iron sample).

SR Fe C Si Mn P S Cr Mo Ni Al Cu Nb

K756 0.72 43.17 0.55 0.007 20.09 2.89 26.3 0.01

K757 0.94 43.82 0.91 1.75 0.005 0.003 17.87 29.4

K2009 1.29 71.86 1.05 0.98 0.005 0.004 18.07 7.95 0.005 0.01

K2010 1.29 64.40 0.73 0.99 0.014 0.014 28.64 0.49 0.02 0.02

K2249 1.14 66.26 0.52 1.01 1.15 0.049 0.016 18.64 0.98 8.86 0.015 0.31 1.06

JK-8F 0.80 66.94 0.424 1.552 0.0161 0.0183 16.91 2.775 11.04 0.0523

NBS1763 1.04 95.02 0.203 0.63 1.58 0.012 0.023 0.5 0.043 0.043 0.10

NSC3-G 0.90 61.44 0.87 1.07 0.029 0.017 21.1 2.28

SS287-1 1.32 67.44 0.569 1.48 0.027 0.0014 18.61 0.247 10.35 0.203

SS483/1 0.61 84.28 0.65 0.16 0.22 0.023 0.023 0.18

SS484/1 0.54 61.30 0.76 0.18 0.21 0.025 0.015 1.08

SS486/1 0.65 81.28 0.74 0.27 0.21 0.029 0.021 5.2

SS487/1 0.82 74.27 1.02 0.18 0.26 0.022 0.029 9.41 0.006

SS406/2 0.91 94.06 0.173 0.342 0.447 0.0102 0.043 0.98 0.013 0.289

SS407/2 1.05 93.59 0.49 0.66 0.195 0.038 0.0105 0.83 0.04 0.397

Pure Ni 0.98 99.9

The specimens from group A were measured in the GDOES with different exposure 

times to ambient conditions from several minutes to a few tens o f hours. The intensities 

o f hydrogen from specimens A1 to A5 were plotted in one graph o f  hydrogen intensity 

vs. sputtering time, as shown in Figure 6.17. From the graph it can be seen that there is 

a difference in the peak values o f the hydrogen intensities between the specimens. This 

is probably due to the effect o f the background signal from hydrogen contamination. 

The heights o f  the hydrogen humps are similar, which clearly implies that the different
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exposure times have little effect on the hydrogen humps. The humps were also shifted 

on the axis o f sputtering time, which indicates that the thickness o f the coatings were 

not uniform. The sputtering rates o f the specimens in group A in the GDOES 

measurements were also plotted in one graph o f  sputtering rate vs. sputtered depth, 

which is shown in Figure 6.18.
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Figure 6.17. Hydrogen humps detected in GDOES at the interfaces between the Ni 
layer and the substrate of the carbon steel specimens in group A.
GDS: 700V/30mA/4mm anode, PMT gain of hydrogen: 10.

— Sample A1
— Sample A2 

Sample A3
— Sample A4
— Sample A5

4.9

‘j? 4.7

4.5

?  4.3
CL
1/5 4.2 

4.1

10 15 20 250 5

sputtered depth (pm)

Figure 6.18. The sputtering rates in the GDOES measurements corresponding to 
those in Figure 6.17 show the peak values at the interfaces.

Five specimens from each o f the groups B and C were measured in the GDOES to 

obtain comparisons for the different coating batches. One specimen from group A was
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also measured, following the measurements o f  the specimens in groups B and C 

respectively, in order to compare their hydrogen humps in a similar status o f  GDOES. 

The detected hydrogen humps and corresponding sputtering rates are shown in Figures 

6.19 to 6.22.

The raised values (heights) o f the humps o f the hydrogen intensities and the sputtering 

rates at the interfaces were calculated to represent the increases o f  the hydrogen 

intensities and the sputtering rate. The initial values (the values at the point just before 

they start to rise), the peak values and the raised values o f the intensities and the 

sputtering rates at the interfaces for all o f the specimens in the three groups were 

calculated and are listed in Table 6.4. In this table, the initial values o f  the intensities 

and the sputtering rates, Hq and SRo, and the peak values Hp and SRP are all averages o f  

five data points. AH  and ASR are the raised values o f  the intensities and the sputtering 

rates, respectively, at the interfaces. The raised value equals the difference between the 

peak value and the initial value.
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Figure 6.19. Hydrogen humps detected in the GDOES at the interfaces between the 
Ni layer and the carbon steel of plated samples in another batch.
GDS: 700V/30mA/4mm anode. Gain of the PMT for hydrogen: 10.
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Figure 6.20. The peaks of the sputtering rates at the interfaces corresponding to the 
measurements in Figure 6.19. The sputtering rates and the depths were calculated by 
the quantitative procedure in the GDOES.
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Figure 6.21. Comparison of the hydrogen humps of the specimens in groups C and A 
at the interfaces between the Ni layer and the carbon steel.
GDS: 700V/30mA/4mm anode. Gain of PMT for hydrogen: 10.
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Figure 6.22. The peaks of the sputtering rates at the interfaces corresponding to the 
measurements in Figure 6.21, The sputtering rates and the depths were calculated by 
the quantitative procedure in the GDOES.
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Table 6.4. The initial, peak and raised values o f  the hydrogen intensities (a.u.), H0, Hp, 
and AH, and the sputtering rates (pg/s), SR0>, SRP>, and aSR, at the interfaces between 
the Ni layer and the substrate o f  the specimens in the three groups.

Samples Ho HP AH SR0 SRP ASR

A1 139 271 132 4.32 4.84 0.52

A2 140 278 138 4.33 4.86 0.53

A3 132 258 126 4.40 4.91 0.51

A4 115 258 143 4.34 4.85 0.51

A5 222 425 203 4.43 4.90 0.47

B1 225 258 33 3.94 4.49 0.55

B2 187 239 52 3.98 4.52 0.54

B3 242 280 38 3.69 4.17 0.48

B4 183 227 44 3.96 4.53 0.57

B5 177 216 39 3.72 4.19 0.47

A6 161 390 229 3.83 4.35 0.52

C1 383 419 36 4.21 4.51 0.30

C2 281 341 60 4.18 4.50 0.32

C3 248 312 64 4.23 4.52 0.29

C4 217 286 69 4.11 4.40 0.29

C5 203 268 65 4.28 4.67 0.39

A7 331 690 359 3.95 4.38 0.43

63.2.2 Discussion

On an initial examination o f the results in Figures 6.17 and 6.18, the correlation o f  the 

humps in the hydrogen intensities and the sputtering rates seems to show that the 

hydrogen humps are caused by an increase o f  the sputtering rates at the interfaces. 

However, comparison o f the results in Figures 6.19 to 6.22 shows evidence that the 

hydrogen humps were not a result o f the raised sputtering rate. It can also be seen that 

the raised values o f the hydrogen humps o f the specimens in group A are significantly 

higher than the specimens in groups B and C, but the raised values o f  the sputtering 

rates look the same. The results in Table 6.4 indicate that the raised values o f  the 

hydrogen intensities o f the specimens in group A are much higher than those o f  the 

specimens in groups B and C. The raised values o f the sputtering rates do not correlate 

with the variation o f the corresponding hydrogen humps, not only between the groups 

but also between specimens in any one o f the groups. This confirms that there is more
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hydrogen at the interfaces o f the specimens in group A than the specimens in groups B 

and C. The detected hydrogen humps have been less affected by the rising o f the 

sputtering rates at the interfaces.

It is also noted that the raised values o f the sputtering rates of the specimens in group C 

are a little smaller than those o f the others, but as yet there is no explanation for this. 

All the hydrogen humps detected at the interfaces shifted relative to the carbon steel 

substrates, an example o f which is shown in Figure 6.15. Hydrogen may have entered 

the substrate during the plating process and in particular during the cleaning process 

before the plating. In the cleaning procedures, the acid dipping to remove the oxide 

scales and grease on the surface could be the main origin o f the hydrogen. Further 

experiments are needed to confirm sources o f the hydrogen at the interfaces.

The two experiments above have demonstrated that GDOES has the ability to detect the 

hydrogen in both the bulk samples and plated samples. However, there is still a long 

way to go to achieve a quantitative analysis o f hydrogen using GDOES. For the bulk 

analysis, the results obtained show only the comparative difference o f the hydrogen 

intensities between the samples with and w ithout hydrogen loading. The experiments in 

this study do not tell us the sensitivity o f the GDOES technique to the detection o f 

hydrogen in steels.

6.4 The Hydrogen Effects on Emission Intensities and Concentrations 

of Elements in GDOES Measurements

While performing routine measurements with steel samples in the GDOES, it was 

noticed that some measured elements showed a lower intensity in the first few tens o f 

seconds o f sputtering time, particularly when the GDOES was not properly warmed up. 

An example can be seen in Figure 6.1: intensities o f the elements o f iron, manganese 

and copper in the first 30 seconds are significantly lower than their stable levels after
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100 seconds. Although an unstable voltage, current or argon pressure in the source 

and/or contamination on the surface o f the sample could cause variations o f the 

elemental intensities, they should be limited to the first few seconds o f sputtering. 

However, the high level o f hydrogen intensity in the first 30 seconds suggests that there 

may be some effects o f the hydrogen on the variations o f the elemental intensities, and 

consequently on the measured concentrations.

The behaviour o f the hydrogen contamination in the source has been discussed in 

Section 6.2.1. It is known that this hydrogen contamination is unavoidable in GDOES 

measurements, and could even remain at a very high level in the first few tens o f 

seconds o f sputtering time if  the GDOES is not properly warmed up. This period o f 

sputtering time is crucial for applications o f GDOES in depth profiling o f multi-layer 

samples. For a steel sample, 30 seconds o f sputtering in GDOES would remove a layer 

o f about 1 pm thick. Therefore, the hydrogen effects on elemental concentrations in 

GDOES measurements should receive special attention.

6.4.1 Experimental and results

An experimental procedure was set up to test the hydrogen effects on the intensities and 

concentrations o f elements in a GDOES measurement with fixed voltage and current. 

The GDOES was in a normal condition, i.e. without the addition o f molecular hydrogen 

to the argon gas in the source. Therefore, the hydrogen originated mainly from water 

vapour, which is unavoidable in GDOES measurements. Two steel standards, SS 410/2 

and JK-8F, were chosen as samples to investigate the hydrogen effects. The certified 

elemental compositions o f the standards are shown in Table 6.5. The GDOES was 

calibrated w ith a set o f CRMs, which are listed in Table 6.6 with selected gains o f 

PMTs and correlation coefficients o f the calibration curves for each o f the elements 

concerned. Surfaces o f the standards were mechanically polished to a 1 pm-grade 

diamond paste finish before the GDOES measurements. The source conditions o f the 

GDOES were 700 V o f voltage and 20 mA of current and included a 4 mm anode. The 

gain o f the PMT for hydrogen was 10.
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The standards o f SS410/2 and JK-8F were measured in the GDOES for nine and six 

bums, respectively. Each o f the measurements had 100 seconds o f sputtering time. As 

expected, the hydrogen intensities decreased, not only in just one o f the measurements 

as the sputtering time increased, but also from the first bum to the last. As an example, 

profiles o f the hydrogen intensities o f JK-8F in the six bums are shown in Figure 6.23.
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— JK-8F-02
— JK-8F-03
— JK-8F-04
— JK-8F-05
— JK-8F-06

3000
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Figure 6.23. Profiles of the hydrogen intensities in the GDOES measurements using 
the standard JK-8F. The intensities vary not only in one measurement as the sputtering 
time increases, but also from the first to the last at a same sputtering time.
GDS: 700V/20mA/4mm anode, Gain of the PMT for hydrogen: 10.

At the same time, intensities for all o f the elements in the standard could also be 

obtained. For each o f the bums, 10 data sets between 10 and 100 seconds o f sputtering 

time for each o f the elements were selected. Every data set included the elemental 

intensities and the corresponding hydrogen intensity. In this way, for each o f  the 

elements in the standards, 90 data sets for SS410/2 and 60 for JK-8F were obtained, 

which are plotted in Figures 6.24 and 6.25, respectively, in elemental intensity vs. 

hydrogen intensity.

In Figures 6.24 and 6.25, the data sets, which were from the different bums and the 

different sputtering times between 10 to 100 seconds, show a good correlation between 

the elemental intensities and the corresponding hydrogen intensities. Variations o f  the 

hydrogen intensities were in a wide range, from 80 (a.u.) to 2700 (a.u.) for SS410/2, and
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from 240 (a.u.) to 2500 (a.u.) for JK-8F. From the figures, it can also be clearly seen 

that the intensities o f  all the metal elements (Fe, Mn, Ni, Al, Cu, V, Mo and Co), apart 

from Cr, decrease as the hydrogen intensities increase. Intensities o f all o f the non- 

metal elements (C, S and P) and semiconductor elements (Si and As), however, increase 

as the hydrogen intensities increase. The results are generally in agreement with those 

reported by Hodoroaba et al. (2000a and 2000b).
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GDS: 700V/20mA/4mm anode, PMT gain of hydrogen: 10.
Sample: SS410/2.
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Figure 6.25. 60 data sets from  the six d iffe rent burns and the d iffe rent sputtering 
tim es between 10 to 100 seconds show  a good corre lation between the 
elem ental intensities and the co rrespond ing hydrogen intensities for Fe, Cr, Mn,
Cu, Ni, V, Mo, Co, Si, C, P and S.
GDS: 700V/20mA/4mm anode, PMT gain of hydrogen: 10.
Sample: JK-8F.

Oxygen and nitrogen may also exist in the source during the measurements. The 

oxygen and the nitrogen signals in the six bums o f the sample JK-8F are plotted in
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Figure 6.26. The oxygen and nitrogen intensities in the six bums, except for bum-01, 

nearly overlap and are very stable after 30 seconds o f the sputtering time for oxygen and 

60 seconds for nitrogen. The undulating intensities o f the nitrogen signal between 20 

seconds to 60 seconds are usually observed in measurements o f the GDOES, which may 

be attributed to leaks in the vacuum system and need to be further understood. 

Therefore, it can be confirmed that the variations o f the elemental intensities shown in 

Figures 6.24 and 6.25 are not caused by the existence o f  oxygen and nitrogen in the 

source.
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Figure 6.26. Oxygen and nitrogen signals in the GDOES measurements of the 
standard JK-8F in the six burns corresponding to that in Figure 6.25.
(a) Oxygen intensities.
(b) Nitrogen intensities.
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6.4.2 Discussion

There remains the question o f  why the elemental emissions vary with the variation o f  

hydrogen content in the source. In GDOES analysis, for a given emission line from an 

element z, the elemental emission can be expressed, if  the term for background signals is 

eliminated (Payling, 1997a) by

I i= K ,e ,q ,= K f i f i ,q  (6.1)

where K t is the instrumental detection efficiency for the element i. It represents a 

sensitivity factor o f the emission detection and will vary with the gain o f  the PMT and 

wavelength for an element. For the elements with the same PMT gain in this 

investigation, it should be constant for each o f the elements in the measurements 

respectively, but will vary between different elements, e,- represents the emission 

process o f the element z, and q; is the supply rate o f  the element i into the source,

q, = c,q , (6.2)

which depends on the elemental concentration q  and the overall sputtering rate q o f  the 

measured sample. In this case, therefore, only the elemental emission process and the 

overall sputtering rate could have the potential to alter the intensities.

Let us first consider the overall sputtering rate. For a bulk standard, the sputtering rate 

can increase by a small amount during a measurement as the sputtering time increases 

(Section 2.4.2). If the sputtering rate is changed in a measurement, supplies o f sputtered 

atoms into the source should change relative to the variation in the sputtering rate, but 

the proportion o f sputtered atoms in the source should correspond to the elemental 

composition o f the sample. This is an essential axiom employed in quantification 

procedures in GDOES analysis. Therefore, emissions o f  all the elements should change 

in the same direction with the change in the sputtering rate. This means that each o f the 

elemental intensities will increase as the sputtering rate increases, and vice versa. 

However, the elemental intensities in Figures 6.24 and 6.25 indicate that as the 

hydrogen intensity increases, the intensities o f the metal elements decrease, while the 

intensities o f the non-metal and semiconductor elements increase. This contrasting
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variation in the intensities implies that the variations o f  the elemental intensities cannot 

be caused by the changes in the sputtering rate.

The other term is the elemental emission process, which can be expressed as

e , = S tRt , (6.3)

where Si is a correction for self-absorption and Rj is the emission yield o f  the element 

(defined as the number o f  photons emitted per sputtered atom). The self-absorption in 

GDOES will be close to 1 if  the c #  term is small or nearly constant in GDOES 

measurements (Payling, 1997a). In this case, the Si could be considered constant. The 

emission yield is an atomic and instrument-dependent quantity, and is independent o f  

the sample matrix. From the concept o f the emission yield, the emission intensity o f an 

element in a spectral line is only related to the sputtered mass o f  that element, and 

should be constant as long as the excitation and the detection conditions in GDOES 

remain nearly constant. This is now widely accepted to be valid and is the basis o f  

quantitative procedures in GDOES analysis (Bengtson, 1997). However, in this case, 

the emission intensities were no longer constant for each kind o f sputtered atom ejected 

from the homogeneous standards. The source parameters and the detection conditions 

o f the GDOES did not change during the measurements. A  possible explanation could 

be that the excitation condition in the plasma had changed. The variation o f hydrogen 

atoms in the source could alter the temperature o f the energetic particles and modify the 

electron energy distributions function (EEDF) in the plasma (Bogaerts and Gijbels, 

2000b), which could possibly affect the excitation processes o f the atoms in the plasma 

due to the fact that atoms o f different elements have different excited status and 

excitation cross-sections.

In order to compare the emission yield for the elements o f interest, from Eqns. (6.1) to 

(6.3), the emission yield for element i at a given emission line can be expressed as

R, = I, !(K ,Sfi,q) . (6.4)
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A relative change in the emission yield o f an element i between two hydrogen levels is 

employed to identify the hydrogen effect on the emission yield, which is expressed as

AR. = R‘L ~ R , h  = I-‘l ~ I , h ■ , (6.5)

where ARj is the relative change o f the emission yield o f the element i between a high 

level (H) o f the hydrogen intensity and a low level (L) related to that in the low  

hydrogen level; Rn and Rm are the emission yields o f the element i corresponding to the 

low and the high levels o f  the hydrogen intensity. In and Im are the intensities o f  

element i at the low and the high levels o f hydrogen, respectively. Therefore, the 

relative change in the emission yield o f  the element i can be represented by the relative 

change in the corresponding intensities, i f  the background term is ignored.

The elements Fe, Si, Cr, Mn, Ni, Mo, Cu and V in the standard SS410/2, and Fe, Si, Cr, 

Mn, Ni and Co in JK-8F, were picked out to compare the relative changes in the 

emission yields with variations in the hydrogen intensity, due to their elemental 

concentrations in the standards (>0.1% by mass). The low level and the high level o f  

the hydrogen intensities o f 250 and 1050 (a.u.) were selected. The difference in the 

hydrogen intensity o f 800 (a.u.) represents a common range o f variations o f hydrogen 

intensity in practical measurements in the GDOES. The calculated relative changes in 

the emission yields for the elements at the two different levels o f hydrogen intensities 

are listed in Table 6.7. The negative symbol represents the emission yield decreasing as 

the hydrogen intensity increases. All o f the elemental intensities listed in the table were 

collected from linear regressive lines based on the intensity data in a range o f the 

sputtering time from 50 to 100 seconds. 50 seconds o f the sputtering time in the 

GDOES for the samples was responsible for a sputtered depth o f 1-2 pm. Therefore, 

the results obtained are expected to be independent o f the surface state o f  the samples.

Comparing the relative changes o f the emission yields for the elements in both o f the 

two standards, similar results were obtained, although there are remarkable differences 

in the elemental concentrations and sputtering rates between the two standards. From
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the table it can be seen that the relative changes o f some o f the elements are 

significantly larger than others. For example, the relative changes o f Cr are 19% and 

20.4% in the SS410/2 and the JK-8F respectively, which are the largest among the 

elements, and Co is the smallest (-2.7% ). The results in Table 6.7 reveal that hydrogen 

contamination does affect the elemental emission yields, and that the effects o f the 

hydrogen on the emission yields o f different elements are quite different. The order o f 

the elements from more affected to less was Cr, Mn, Mo, Si, Fe, V, Ni, Cu and Co, 

based on the results in the table.

Table 6 .7. The relative changes o f  the emission y ield  between the two levels o f  the 
hydrogen intensity with the difference o f  800 (a.u.) to the emission yield  corresponding 
to the lower hydrogen intensity, based on the data in the range o f  the sputtering time 

from  50 sec. to 100 sec.

Elemental intensity (a.u.) Difference of intensity
A li  =  Itf1050)-li(250)

Relative change of emission 
yield A R (  = (liH- l iL) /  liL

SS410/2 JK-8F SS410/2 JK-8F SS410/2 JK-8F

li(250) li(1050) h(250) li(1050) (a.u.) (a.u.) (%) (%)

Fe 966.1 856.8 881.4 774.8 -109.3 -106.6 -11.3 -12.1

Si 318.2 358.5 149.8 172.3 402 22.6 12.6 15.1

Cr 79.7 94.8 964.6 1161.7 15.1 197.1 19.0 20.4

Mn 350.7 294.2 1352.1 1116.2 -56.6 -235.9 -16.1 -17.4

Ni 321.9 293.5 1981.5 1796.0 -28.4 -185.5 -8.8 -9.4

Mo 715.3 615.1 -100.2 -14.0

Cu 192.1 178.3 -13.8 -7.2

V 123.3 109.9 -13.44 -10.9

Co 56.9 55.4 -1.52 -2.7

Measured elemental concentrations for each o f the measurements were collected at 100 

seconds o f sputtering time. Averages o f the measured elemental concentrations o f the 

two standards are also listed in Table 6.6. They are very close to the identified 

concentrations o f the standards. Elemental concentrations corresponding to the two 

levels o f the hydrogen intensity (250 and 1050 a.u.) were also calculated based on the 

data in the range o f 50 s to 100 s o f sputtering time, using the same method as for the 

calculation o f the intensities in Table 6.7. The relative changes in the elemental 

concentrations between the two hydrogen levels to those in the lower level are listed in 

Table 6.8. Comparing the relative changes in intensity (or emission yield) w ith the
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concentration, some differences can be seen between Tables 6.7 and 6.8. Firstly, after 

the quantification procedure in the GDOES, there are some differences in the relative 

changes in concentration between the two samples for the elements o f Fe, Si, Mn and 

Ni. Secondly, the order o f  hydrogen effect on the elements based on Table 6.8 has 

changed slightly from that in Table 6.7. For example, Si and Cr were more affected in 

terms o f  their concentration than in their emission intensity, while the effect for Fe, Ni 

and Mo was less. This could be due to the effect that in the quantification o f  the 

GDOES, the ratio o f the intensity o f an element to argon is employed instead o f an 

absolute value o f the element, which is believed to compensate for some variations in 

elemental intensity caused by variation o f the discharge parameters during 

measurements. This seems, in this case, to reduce the hydrogen effects on some o f  the 

elements such as Fe, Ni and Mo, but to increase for Si and Cr. This is not yet fully 

understood at this stage and should be further investigated. In general, from the results 

in Tables 6.7 and 6.8, the hydrogen effects for the elements o f Si, Cr and Mn should not 

be ignored in quantitative analysis in GDOES, if  there is a big difference o f hydrogen 

intensities of, say, a few hundred to a few thousand units at a gain o f the PMT for 

hydrogen = 10, 700 V and 20 mA o f the source parameters.

Table 6.8. The relative changes o f  the measured concentration between the two levels 
o f  hydrogen intensity with the difference o f  800 (a.u.) to the measured concentration 
corresponding to the lower level o f  the hydrogen intensity, based on the data in the 
range o f  the sputtering time from  50 sec. to 100 sec.

H

Concentrations (mass%) Concentrations (mass%) Relative change

SS410/2 JK-8F SS410/2 JK-8F

250 (a.u.) 1050 (a.u.) 250 (a.u.) 1050 (a.u.) (%) (%)
Fe 93.021 91.901 68.911 64.511 -1.2 -6.4

Si 0.863 1.103 0.355 0.427 27.8 20.3
Cr 1.888 2.448 16.226 20.786 29.7 28.1
Mn 0.361 0.321 1.445 1.185 -11.1 -18.0
Ni 2.023 2.021 10.563 10.163 -0.1 -3.8
Mo 0.431 0.407 -5.6
Cu 0.392 0.408 4.1
V 0.341 0.325 -4.7

Co 0.129 0.135 4.3
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Figure 6.27 shows the sputtered depth o f the standard SS410/2 at 100 seconds o f 

sputtering time for the nine measurements, which were calculated by the quantification 

procedure in the GDOES. Hydrogen intensities for the nine measurements at 100 

seconds varied in a range o f 80 to 1080 (a.u.), corresponding to 0.433 pm  maximum 

variation in depth. The relative variation in the calculated depth to the average depth o f 

the nine measurements is 16.2%. According to the quantification procedure in the 

GDOES, the depth in these measurements was only affected by the emission intensities 

o f the elements concerned. In the standards, the emission o f iron dominated the 

variation in the calculated depth.
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Figure 6.27. The sputte red depths o f the standa rd SS410/2 in the nine burns 
correspond ing to F igure 6.24 change as the hyd rogen intensity increases. The depths 
we re calcu la ted by the quantita tive p rocedure in the G DO ES at 100 seconds o f 
sputte r ing time.

In conclusion, the hydrogen effects on elemental emission, measured elemental 

concentration and calculated depth in GDOES have been demonstrated. The hydrogen 

could be from the hydrogen contamination existing in the source or the hydrogen 

contained in the sample. In the measurements, the hydrogen was expected to be present 

as contamination. Hydrogen contamination effects on elemental emissions in GDOES 

are significantly different for the different sputtered atoms in the plasma, which could 

be due to the hydrogen in the plasma modifying the energy distributions o f the energetic
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particles. For the elements in this experiment, the hydrogen had negative effects on 

most o f the metal elements and positive effects on the non-metal and semiconductor 

elements. After the quantification procedure in the GDOES, the hydrogen effects on 

elemental concentrations can be partly compensated by employing the ratio o f  the 

intensity o f the elements to argon for some elements, for example the elements o f Fe, Ni 

and Mo. However, this did not work for the measured elements o f  Si and Cr in this 

experiment. In general, from the results in Tables 6.7 and 6.8, it is seen that the 

hydrogen effects on the elements o f Si, Cr and Mn should not be ignored in quantitative 

analysis in GDOES. This is especially true in the analysis o f a sample with a few  

microns’ thick layer, due to the hydrogen being present as contamination (mainly from 

water vapour), which could be very high during the first few tens o f seconds o f  

sputtering time. As a consequence o f the variation in the intensity o f the matrix 

elements, the calculated depth by the quantification procedure o f the GDOES also 

changed.

6.5 Conclusions

1. Hydrogen contamination in GDOES measurements was confirmed 

experimentally. O f the three origins o f  hydrogen contamination, i.e. water 

vapour, hydrocarbons and the hydrogen in argon gas, the water vapour deposited 

on surfaces o f  samples and the anode play a key role. The hydrogen from argon 

gas is the smallest among the three effects and is kept nearly stable in GDOES 

measurements. The hydrogen intensity due to the hydrogen contamination in the 

glow discharge source always decays and could be reduced to a low and stable 

level by proper warming-up o f GDOES.

2. It is impossible to completely eliminate hydrogen contamination in a GDOES 

measurement. However, after a long warming-up time, say about a few  

thousand seconds, a hydrogen detection status can be reached. In this status, a 

stable hydrogen level during multiple measurements o f  a sample at the same
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sputtering time can be obtained. Therefore, for samples with similar matrices, 

the hydrogen contained in the samples could be differentiated. Furthermore, the 

experiments showed the significance o f the so-called cathode matrix effects on 

the intensity o f  the hydrogen contamination in GDOES measurements. The 

ejection o f the y-electron during the argon ions’ impact onto the cathode surface 

is expected to play a crucial role in the matrix effects. On the other hand, 

different sputtered atoms in the glow discharge, i.e. different densities and 

energy levels o f  the ionisation and excitation o f the atoms, can alter the energy 

distribution in the glow region and result in variation o f the excitation o f the 

hydrogen atoms in the source. In general, the matrix effects on the hydrogen 

intensity should be the overall result o f the y-electron, the density o f  sputtered 

atoms and the ionisation and excitation energy levels o f the atoms.

3. Experimental results show that it is easy to observe differences in the hydrogen 

intensity between steel samples with and without hydrogen loading via the 

electrochemical process and with the different loading times. For the Ni/Cr 

plated samples, GDOES has the ability to detect hydrogen at the interface 

between the Ni coating and the substrate as a hydrogen hump. Comparison 

between sputtering rates o f  the samples at the interfaces and the corresponding 

hydrogen humps indicates that the humps are real rather than artefacts.

4. Hydrogen in the source can affect the elemental intensities in GDOES 

measurements and consequently the measured elemental concentrations and the 

sputtered depth. The hydrogen effects are believed to be due to the hydrogen in 

the plasma modifying the energy distributions o f the energetic particles. The 

experimental results with two steel standards indicated that hydrogen has a 

negative effect on most o f the metallic elements and a positive effect on the non- 

metal and the semiconductor elements. The results for the elements o f Si, Cr 

and Mn have shown that the hydrogen effects on these elements should not be 

ignored in quantitative analysis in GDOES, especially when a thin layer o f  a few  

microns is being analysed.
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Chapter 7 Conclusions and Future Work

7.1. Conclusions

1. Pure iron samples have been used to investigate the crystal orientation effects on the 

sputtering and the depth resolution in depth profiling analysis by the GDOES. The 

etched surface o f the pure iron revealed different surface textures, which correspond 

to individual crystallites. The three main classes o f surface textures are ‘rough’, 

‘concaved’ and ‘smooth’. Most o f the areas with ‘rough’ texture are close to [111], 

the ‘concaved’ areas are close to [001], while the ‘smooth’ have higher index planes 

in a region between the [111] and [001] zone-axes. The fastest erosion occurred 

when the normal surface vector was parallel to [001]. The difference in the 

sputtered depth between [001] and [111] increases as the sputtering time increases 

from 500 s to 1000 s. At increasing sputtering times over 1000 seconds the 

difference in sputtered depth between [001] and [111] decreases. This is because, at 

this stage, the depth o f the sputtered crater is above the mean crystal depth. A 

mixture o f faster and slower crystallites has been encountered. The differences in 

sputtering depths o f different areas, then, do not continue to increase but rather 

begin to decrease. The results imply that samples with small grain size will have the 

best possible depth resolution in GDOES.

2. When a carbon-coated silicon wafer was etched by GDOES sputtering, pits were 

induced on the etched silicon surface. Experimental results o f the samples with Ag, 

Al, Si and Ge films have confirmed that a weak, low density pit-like morphology on 

silicon surfaces can develop after a long etching time. However, the high density, 

large pits were only produced on the silicon wafers with the carbon films. A large 

difference in sputtering rates between the film and the substrate has been shown to
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play a crucial role in pit formation. For the etched surfaces o f  carbon-coated silicon 

wafers, the density o f  the pits decreases as the thickness o f the carbon film 

increases. There are two possible explanations for this decrease. The first is the 

stochastic roughening o f ion bombardment o f the carbon film. A  thicker carbon 

film needs a longer etching time to penetrate the film and to bombard the silicon 

wafer, which will result in a rougher surface and a lower pit-density than a thinner 

carbon film. The second is that some small pits have been engulfed by the 

development o f  bigger pits during the pits developing as the sputtering time 

increased. The sphere-like surface o f the pit was confirmed by calculations o f  the 

radius o f  the pit surface. The radius o f  42 pits from three samples with different 

thicknesses o f carbon film were calculated based on results from AFM  

measurements. Developing speeds o f the pit in the direction o f its diameter is faster 

than that in its depth, which results in the pit enlarging in diameter and becoming 

shallower in depth as the etching time increases. The results o f  the AFM  

measurements also revealed that the thickness o f  the carbon film has no effect on 

the developing speeds o f the pit in a silicon surface.

3. The EBSD patterns collected from the etched surfaces o f  pure iron and copper 

samples after GDOES sputtering have shown that the Grimm source is an excellent 

etching tool for removing a surface-damage layer in metal samples prior to study 

using EBSD. The technique could represent a very cheap and fast specimen- 

preparation route. GDOES has also proved a powerful tool for the study o f internal 

oxidation, combining excellent depth resolution with good elemental sensitivity and 

rapid specimen-analysis. A  secondary benefit o f the GDOES sputtering technique is 

the ability to sputter to a known depth, and at the same time to measure the total 

concentration o f various elements as a function o f depth, and hence reveal the oxide 

morphology in a plan view. The SEM images revealed internal oxides with 

different morphologies on the GDOES etched surfaces o f carburised carbon steels. 

The EDS/SEM elemental mapping and the GDOES depth profiles indicated that the

182



oxides with different morphologies in different layers involved the elements Cr, Mn 

and Si.

4. Contamination o f  hydrogen in GDOES measurements were confirmed 

experimentally. In the three sources o f the hydrogen contamination, i.e. water 

vapour, the hydrocarbons and the hydrogen in argon gas, the water vapour deposited 

on the surface o f the cathode sample and the anode played a key role. The hydrogen 

from argon gas is the smallest among the three sources and is kept nearly stable in 

GDOES measurements. The measured hydrogen intensity due to the contamination 

o f  hydrogen in the glow discharge source always decays and could be reduced to a 

low level by a proper warm-up o f GDOES.

5. It was not possible to reach a steady state in the intensity o f hydrogen contamination 

in a GDOES measurement. However, hydrogen contained in the samples with 

similar matrices could be differentiated in the hydrogen detection status o f GDOES. 

Furthermore, the experiments showed significantly the so-called ‘cathode matrix 

effect’ on the intensity o f hydrogen contamination in GDOES measurements. The 

y-electron ejection during the argon ions’ impact on the cathode surface and 

different sputtered atoms in the source are expected to play crucial roles in the 

matrix effects.

6. For hydrogen detection, GDOES has the ability to detect differences in hydrogen 

levels between steels without hydrogen loading and steels loaded electrochemically 

with different levels o f hydrogen. For the plated samples, an increase in the 

hydrogen signal at the interfaces between Ni coating and steel substrate was 

detected in GDOES. Comparison between sputtering rates at the interfaces and the 

corresponding increase in hydrogen indicates that the increase was real rather than 

due to artefacts.
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7. Hydrogen in the source can affect the elemental intensities in GDOES 

measurements, and consequently the concentrations and sputtered depth. The 

effects are believed to be due to the hydrogen in the plasma modifying energy 

distributions o f the energetic particles. The experimental results with two steel 

standards indicated that the hydrogen has a negative effect on most o f the metal 

elements and a positive effect on the non-metal and the semiconductor elements. 

The results for the elements Si, Cr and Mn show that the hydrogen effects on these 

elements should not be ignored in quantitative analysis in GDOES, especially in an 

analysis o f a layer a few microns’ thick.

7.2. Future Work

1. It was observed (in Chapter 3) that the crystallites close to [111] have lower 

sputtering rates than those close to [001] in GDOES sputtering o f pure iron samples. 

This is in agreement with the results in the literature for ion bombardment o f copper 

by 500 eV ion bombardment, but cannot be explained by the channelling theory, 

which is applied for high-energy ion sputtering. However, in low ion-energy 

sputtering, the surface binding energy also plays an important role. Therefore, 

experiments to determine the relationship between crystal orientation erosion rates 

and surface binding energies need to be carried out in order to develop 

understanding o f the mechanisms o f crystal orientation effects on sputtering rates at 

low energies.

2. The pitting phenomenon has been discussed in Chapter 4. The pits formed on 

silicon wafers after etching the carbon-coated film away have a potential application 

as random micro-lens arrays. A parallel light beam irradiating the pitted surface 

results in a set o f luminous spots being focused by the pits at a certain distance 

above the surface. These form a unique luminous pattern. Due to the stochastic 

nature o f the creation o f the micro-lens, the luminous pattern created is unique and
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could be used in marker technology applications. The potential application o f this 

pitting phenomenon has been patented. However, it is still far from market 

application and further investigations on control o f the formation o f the pits need to 

be done.

3. Chapter 5 has demonstrated that GDOES etching is a powerful etching tool for 

removing a damaged layer and exposing a fresh surface that is ready for the EBSD 

pattern detection o f crystallites. With the GDOES etch, a plan view o f internal 

oxides o f a carburised steel can also be revealed w ith known depth. If  an SEM is 

combined w ith in-situ surface etching, it is possible to get a 3-D image o f the 

internal oxide. For example, it should be noted that a modem environmental 

scanning electron microscope (ESEM) works at about the same pressure as a 

GDOES etch. Therefore, it would be quite technologically feasible to combine the 

imaging capability o f ESEM w ith a Grimm source etch. It would then be possible 

to serially remove layers o f specimen and capture images at each depth. The data 

acquired could be used to obtain a full three-dimensional image o f the specimen. 

The plan view o f internal oxides in large size also provides an opportunity to 

determine the crystalline stmcture by the EBSD pattern detection.

4. GDOES is sensitive to hydrogen, but its usefulness is complicated due to the 

contamination o f hydrogen in the glow discharge source. However, with a long 

warm-up o f the instrument, the intensity o f the hydrogen contamination can reach a 

hydrogen detection status. This status can be employed to compare the hydrogen 

content in bulk samples. The experiments in this study have shown it is possible to 

indicate differences in hydrogen content between steels without hydrogen loading 

and steels loaded electrochemically with different levels o f hydrogen. However, the 

sensitivity to hydrogen detection in GDOES has not yet been obtained. Quantitative 

hydrogen loading and detection in GDOES need to be carried out in order to test the 

sensitivity o f GDOES detection o f hydrogen in the future. One way o f doing this 

would be to obtain a range o f different steels, each with a different hydrogen
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content, and to analyse the samples via both GDOES and a conventional wet 

chemical method. In this way, the GDOES sensitivity could be quantitatively 

assessed.
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List of Captions of the Figures in the Thesis

Figure 2.1. Schematic diagram o f a typical laboratory glow discharge source.

Figure 2.2. Schematic cross-section o f the Grimm source.

Figure 2.3. Schematic diagram o f the glow discharge processes, cathode sputtering and 
de-excitation o f the sputtered atoms with the emission o f light in the Grimm 
source (after Bouchacourt and Schwoehere, 1997).

Figure 2.4. The current-voltage-pressure characteristics o f the Grimm source in 
GDOES using steel as the cathode sample (Payling, 1994).

Figure 2.5. Schematic layout o f the GDOES instrument used in this study (Leco 
Corporation, 1992).

Figure 2.6. Voltage-current characteristic o f gas discharges (Wagatsuma, 1997).

Figure 2.7. (a) The ‘obstructed’ glow, which is a fundamental structure model o f glow 
discharges and is the basic model in the Grimm source in GDOES.

(b) The plasma potential in this model (Chapman, 1980).

Figure 2.8. A diagrammatic sketch o f interaction o f an incident ion with cathode 
surface (Chapman, 1980).

Figure 2.9. Three regimes o f sputtering classified by Sigmund (1981).
(a) S ing le-knockon regime.
(b) L inea r cascade regime.
(c) Spike regime.

Figure 2.10. Flow chart o f the quantification procedure in the GDOES used in this 
Study, based on the intensity normalisation method for quantitative 
analyses in GDOES developed by Bengston et al. (1994 and 1997b).

Figure 3.1. The profiles o f craters measured by the profilometry (UBM) w ith varying 
voltages and currents in the glow discharge.

Figure 3.2. SEM images illustrate morphologies o f bottoms o f the craters under 
different GDS conditions and sputtered depths.

Figure 3.3. Schematic diagram of collection o f back-scattered electrons to form the 
EBSD pattern.

Figure 3.4. Correlation between the profile o f crater and the SEM image. The profile 
was obtained along the reference line shown on the SEM image below.

Figure 3.5. Low magnification SEM image shows a range o f different textures within 
about one quarter o f a typical GDOES crater. Different regions correspond 
to different crystallites, each with a distinct surface texture.

Figure 3.6. (a) to (1): SEM images o f the typical micro-textures on the high purity iron 
sample sputtered by GDOES.

Figure 3.7. Correlation between the ‘rough’, the ‘concaved’ and the ‘sm ooth’ textures
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and the measured orientations normal to the sample surface by EBSD.

Figure 3.8. The mapping result by the EBSD for three crystallites with the ‘rough’, 
the ‘concaved’ and the ‘smooth’ textures.

Figure 3.9. Average sputtered depth for crystallites with different orientations and 
textures as a function o f the sputtering time.

Figure 3.10. A view o f cross-section o f the high purity iron sample after etching with 
nital (2%). It shows that the crystallites are flat in shape and are around 
several tens o f microns deep.

Figure 4.1. (a) SEM image shows pitting phenomena on a silicon surface after 
GDOES etching o f the carbon-coated silicon wafer.

(b) SEM image shows that there are no pits on a silicon surface without 
carbon film after GDOES etching.

(c) Optical microscopy image shows pits only in the region with carbon- 
coated film before GDOES etching.

Figure 4.2. Pitting phenomena caused by bombardment with high energy Ar ions 
(Carter et. al., 1990).
(a) 40 keV argon ion bombardment on Cu.
(b) 4 keV argon ion bombardment on W.

9 0  9(c) 40 keV argon ions bombardment on Si, 10 ions cm' at 45° to surface 
normal.

Figure 4.3. Optical microscopy images show a set o f luminous spots that correspond 
w ith the pits.
(a) Pits on silicon wafer.
(b) Luminous spots corresponding to the pits in (a).
(c) Combination o f images (a) and (b).

Figure 4.4. GDOES depth profiles o f carbon-coated silicon wafers with different
thicknesses o f carbon film. The thicknesses were (a) 110 nm, (b) 180 nm,
(c) 215 nm and (d) 260 nm.

Figure 4.5. Calculated thickness o f the carbon film against the sputtering time at the
mid point o f the profile o f the silicon intensity. The good correlation shows 
the reliability o f the calculated thickness o f the carbon film.

Figure 4.6. Schematic diagram o f AFM.

Figure 4.7. AFM image o f a pit and two profiles obtained by cross-cutting the pit along 
its diameters.

Figure 4.8. SEM images o f etched surfaces o f Ag- and Al-coated silicon wafers after 
short and long times o f GDOES etching.

Figure 4.9. SEM images o f etched surfaces o f Ge-coated silicon wafers after 10 and 30 
seconds o f GDOES etching respectively.

Figure 4.10. Pits on an etched silicon wafer. The silicon wafer was coated w ith carbon 
film 135 nm thick and etched in GDOES under the same conditions as that 
in Figures 5.8 and 5.9, but much higher pit density was obtained.

Figure 4.11. SEM images show pits-like topography on the etched surfaces with the 
thick silicon film even after 8 seconds o f etching. However, for the thin
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silicon film, no pits can be observed even after 10 seconds etching.

Figure 4.12. SEM images o f pits on a surface o f carbon-coated pure iron after GDOES 
etching. The surface layer was still in the carbon film. Original thickness 
o f the carbon film: ~600 nm. Etching time: 155 sec.
(a) The pits formed initially in carbon layer.
(b) The pits on the substrate where the carbon film was broken over a 

relatively large area.

Figure 4.13. SEM image o f pits on a surface o f carbon-coated pure iron after the film 
was completely etched out in the GDOES. The pits generated on the 
‘ripple’ and the ‘smooth’ areas imply crystal structure has no effect on the 
pitting phenomenon. Thickness o f the carbon film: ~600 nm. Etching 
time: 200 seconds.

Figure 4.14. SEM images o f pits on etched surfaces o f carbon-coated silicon wafers 
with different original thicknesses o f the films. The surfaces were in the 
layers in where argon ions just penetrated through the films and silicon 
atoms began to be sputtered out. GDOES parameters: 600 V/25 mA/4 mm 
anode. Original thickness o f carbon films and etched times:
(a) 50 nm/20 sec.
(b) 110 nm/39 sec.
(c) 260 nm/106 sec.

Figure 4.15. SEM images o f the smallest pits on the surfaces o f carbon layers. Sizes o f  
the smallest pits in the different layers were almost same, around one 
micron. Original thicknesses o f  carbon films and etched times were:
(a) 110 nm/39 sec,
(b) 215 nm/83 sec,
(c) 260 nm/106 sec.

Figure 4.16. Densities o f the pits on the surfaces o f carbon layers o f the samples 
corresponding to that in Figures 4.14 and 4.15.

Figure 4.17. Measured roughness o f  etched surfaces o f the samples corresponding to 
that in Figure 4.16. The roughness increases as the sputtering time 
increases. A best fit straight line has been fitted to the data with 
R2=0.9834.

Figure 4.18. Schematic illustration o f the stochastic roughening model.
(a) With thinner original carbon film, the stochastic roughing results in a 

higher density o f pit and leaves a thinner remaining thickness o f  carbon 
film.

(b) The thicker carbon film requires a longer sputtering time and leaves a 
rougher surface, which produces the pits on the silicon surface with 
lower density.

Figure 4.19. SEM images o f  pits on silicon wafers with different thicknesses o f  original 
carbon films when the films were etched out completely. Thicknesses o f  
carbon film and etched times:
(a) 50 nm/36 sec.
(b) 110 nm/103 sec.
(c) 180 nm/163 sec.
(d) 215 nm/201 sec.
(e) 260 nm/241 sec.

Figure 4.20. Densities o f the pits corresponding to the samples in Figure 4.19. A  best fit
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straight line has been fitted to the data with R = 0.9514.

Figure 4.21. Diameter o f the largest pit in the samples in Figure 4.19.Figure 4.22. A 
best fit straight line has been fitted to the data with R2 = 0.9551.

Figure 4.22. AFM images o f pits on silicon wafers with different original thicknesses

o f the carbon film. Thickness o f original carbon films and etched times:
(a) 65 nm/21 sec.
(b) 105 nm/90 sec.
(c) 180 nm/163 sec.

Figure 4.23. Depths and radii against diameters o f pit based on the AFM results listed 
in Table 4.2.

Figure 4.24. Schematic diagram of a pit profile in geometry.

Figure 4.25. Sputtering yield dependence on angle o f ion incidence (Chapman, 1980).

Figure 4.26. Roughness o f pitting surface o f silicon wafer decreases as etching time 
increasing.

Figure 4.27. The model for the formation and the development o f the pits on the silicon 
substrate.

Figure 5.1. SEM and optical images show sizes o f crystallites o f the pure iron sample 
in the plan view and the cross-section.
(a) SEM image o f the bottom o f a GDOES crater on the pure iron 

specimen. GDS: 600V/30mA, depth o f crater: -45  pm.
(b) Optical microscope image shows the size o f the crystallites in cross- 

section after chemical etching with 2%  nital.

Figure 5.2. The EBSD patterns obtainable in the SEM w ith the pure iron specimens 
before and after GDOES etching.

(a) Mechanical polished surface to a 6 pm-grade diamond paste finish.
(b) Etching time: 10 sec.
(c) Etching time: 25 sec, depth: 0.37 pm.
(d) Etching time: 50 sec, depth: 0.80 pm.
(e) Etching time: 200 sec, depth: 5.3 pm.
( f ) Etching time: 1470 sec, depth: 42.3 pm.

Figure 5.3. The erosion rate o f the GDOES etching for the pure iron specimen as a
function o f etching time. GDS conditions: voltage: 600 V and current: 25 
mA.

Figure 5.4 The EBSD patterns collected from surfaces o f the single crystal copper with 
and w ithout the GDOES etching.
(a) From polished surface with 6 pm-grade diamond paste finish.
(b) From the surface after 10 sec o f the etching, the depth was 0.7 pm.
(c) From the surface after 30 sec o f the etching, the depth was 2.1 pm.
(d) From the surface after 50 sec o f the etching, the depth was 3.5 pm.

Figure 5.5. Surface morphologies o f the single crystal copper corresponding to the 
surfaces in Figure 5.4.
(a) Polished surface to a 6 pm-grade diamond paste finish.
(b) After 10 second-etching, depth was 0.7 pm.
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(c) After 30 second-etching, depth was 2.1 pm.
(d) After 50 second-etching, depth was 3.5 pm.

Figure 5.6. The thermal cycles o f carburising process in a commercial furnace.

Figure 5.7. Profiles o f craters obtained by the laser profilometer (UBM) for specimens 
A, and B. Depths o f the craters calculated by the GDOES quantification 
procedure were:
(a) Specimen A: 3.26 pm.
(b) Specimen B: 2.85 pm.
(c) Specimen B: 8.40 pm.

Figure 5.8. SEM secondary electron (SE) and back-scattered electron (BS) images for 
plan views o f the eroded surface o f specimen A at the depth o f 3.26 pm.

Figure 5.9. SEM secondary electron (SE) and back-scattered electron (BS) images for 
plan views o f the eroded surfaces o f specimen B at the depth o f 2.85 pm 
(a)-(d), 5.87 pm (e)-(h) and 8.40 pm  (i)-(l) respectively.

Figure 5.10. SEM secondary electron (SE) and back-scattered electron (BS) images for 
plan views o f the eroded surfaces o f specimen C at the depth o f 1.53 pm
(a), (b), 4.0 pm (c), (d) respectively.

Figure 5.11. SEM/EDS elemental mapping results for an area in specimen A at the
depth o f 3.26 pm show that the oxides were relevant to the elements Si, Cr 
and Mn, whereas Fe was depleted.

Figure 5.12. SEM/EDS elemental mapping results for an area o f specimen B at the 
depth o f 2.85 pm show that the oxides were relevant to the elements Cr 
and Mn, whereas Fe was depleted.

Figure 5.13. SEM/EDS elemental mapping results for an area o f specimen B at the 
depth o f 8.40 pm show the silicon oxides, whereas in where Fe was 
depleted.

Figure 5.14. GDOES depth profiles for specimen A to the depth o f 3.26 pm (a) and for 
specimen B to the depth o f 2.85 pm (b) and 8.40 pm (c) respectively.

Figure 6.1. A typical profile o f the hydrogen intensity detected from a carbon steel 
using GDOES.

Figure 6.2. The hydrogen intensities change as different exposure times o f the source to 
the atmosphere from 20 seconds to 30 minutes. Samples: silicon wafers.

Figure 6.3. Integrated values for the hydrogen intensities in Figure 6.2 indicate a
saturated status o f the water vapour diffused onto the surface as the source 
is exposed to the atmosphere for a longer time.

Figure 6.4. The hydrogen intensities in the procedure o f multiple bums with different 
intervals between the burns from 100 seconds to 20 hours. Samples: silicon 
wafer.

Figure 6.5. Carbon signals o f the burns corresponding to those in Figure 6.4. The
similarity o f the configuration between the curves o f hydrogen and carbon 
signals in the two figures confirms that hydrocarbons are back-streaming.

Figure 6.6. Hydrogen intensities detected in the GDOES using high-purity argon gas
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and normal analysis argon gas, respectively. Samples: silicon wafers.

Figure 6.7. Hydrogen intensities o f the warm-up specimens (WUP) and the steel 
specimens (STL) at 200s and 300s o f sputtering time, respectively. The 
intensities o f WUP3 to WUP8 indicate that the GDOES was in a status of 
low background o f the hydrogen intensity (the status o f hydrogen detection 
o f GDOES).

Figure 6.8. The hydrogen intensities o f the second round o f measurements using the
same specimens with those in Figure 6.8 but in a reverse sampling order for 
the steel specimens confirmed the status o f stable background o f the 
hydrogen intensity o f the GDOES. The setting o f the GDOES were same 
with that in Figure 6.7.

Figure 6.9. Hydrogen intensities at 300 seconds o f sputtering time. The 15 specimens in 
the five groups were sputtered in a sampling order from group 1 to group 5 
and from the steel to silicon wafer in each o f the groups.

Figure 6.10. Sputtering rates corresponding to the measurements in Figure 6.9, were 
obtained by weighing the sputtered mass using a micro-balance and 
divided by 300 seconds o f sputtering time.

Figure 6.11. Averages o f the hydrogen intensities and the sputtering rates in pg/s and 
atoms/sec corresponding to the measurements in Figure 6.9. Standard 
deviations o f the sputtering rates in pm/s for the steel and the pure iron 
specimens are 1.42E-01 and 6.80E-01, respectively.

Figure 6.12. Averages o f the hydrogen intensities, the sputtering rates and argon
pressures for steel, silicon wafer, and pure metals o f copper, aluminium, 
molybdenum, titanium, cobalt, tin, and nickel.

Figure 6.13. Comparison o f the hydrogen intensities detected in the GDOES between 
the carbon steel specimens without hydrogen loading and w ith hydrogen 
loading in different loading times.

Figure 6.14. Hydrogen profiles detected in the GDOES using carbon steel specimens 
with 16 hours hydrogen loading in the electrochemical process. The sharp 
peaks o f hydrogen intensity show that there is a possible forming o f 
hydrogen bubbles in the specimens.

Figure 6.15. Hydrogen hump appears at the interface between Ni layer and carbon steel 
substrate.

Figure 6.16. The sputtering rate calculated by the quantitative procedure in the GDOES 
shows there is a hump at the interface between the Ni layer and the 
substrate.

Figure 6.17. Hydrogen humps detected in GDOES at the interfaces between the Ni 
layer and the substrate o f the carbon steel specimens in group A.

Figure 6.18. The sputtering rates in the GDOES measurements corresponding to those 
in Figure 6.17 show the peak values at the interfaces.

Figure 6.19. Hydrogen humps detected in the GDOES at the interfaces between the Ni 
layer and the carbon steel o f plated samples in another batch.

Figure 6.20. The peaks o f the sputtering rates at the interfaces corresponding to the 
measurements in Figure 6.19. The sputtering rates and the depths were 
calculated by the quantitative procedure in the GDOES.
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Figure 6.21. Comparison o f the hydrogen humps o f the specimens in groups C and A at 
the interfaces between the Ni layer and the carbon steel.

Figure 6.22. The peaks o f the sputtering rates at the interfaces corresponding to the 
measurements in Figure 6.21, The sputtering rates and the depths were 
calculated by the quantitative procedure in the GDOES.

Figure 6.23. Profiles o f the hydrogen intensities in the GDOES measurements using the 
standard JK-8F. The intensities vary not only in one measurement as the 
sputtering time increases, but also from the first to the last at a same 
sputtering time.

Figure 6.24. 90 data sets from the nine different bums and the different sputtering times 
between 10 to 100 seconds show a good correlation between the elemental 
intensities and the corresponding hydrogen intensities for Fe, Cr, Mn, Cu, 
Ni, V, Mo, Co, Si, C, P and S. Sample: SS410/2.

Figure 6.25. 60 data sets from the six different bums and the different sputtering times 
between 10 to 100 seconds show a good correlation between the elemental 
intensities and the corresponding hydrogen intensities for Fe, Cr, Mn, Cu, 
Ni, V, Mo, Co, Si, C, P and S. Sample: JK-8F.

Figure 6.26. Oxygen and nitrogen signals in the GDOES measurements o f the standard 
JK-8F in the six bums corresponding to that in Figure 6.25.

(a) Oxygen intensities.
(b) Nitrogen intensities.

Figure 6.27. The sputtered depths o f the standard SS410/2 in the nine bums
corresponding to Figure 6.24 change as the hydrogen intensity increases. 

The depths were calculated by the quantitative procedure in the GDOES at 
100 seconds o f sputtering time.
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List of Captions of the Tables in the Thesis

Table 2.1. Results o f sputtering measurements for metals in the Grimm glow 
discharge with argon as a carrier gas (Boumans, 1972).

Table 2.2. Experimental data o f C q and Uo o f some pure materials and alloys 
(Bengston, 1985).

Table 2.3. Results o f fitting data to Eqn. (2.23) (Payling, 1994b).

Table 2.4. Comparison o f multi-matrix calibrations between VC and PP 
operating modes.

Table 2.5. RSDs for the normalised emission yields in steels and zinc-aluminium 
alloys for three modes o f operating conditions (Payling et al., 1995a).

Table 2.6. RSDs for the normalised emission yields in zinc-aluminium alloys with 
corrected IRSID, SIMR and BHP methods (Palying et al., 1995a).

Table 2.7. A summary o f some applications o f GDOES depth profiling in the last few 
years.

Table 4.1. Calculated sputtering yields (atoms/ion) o f carbon, silver, aluminium, 
germanium and silicon by the computer simulation (SRIM, 2003) and 
estimated etching rates (nm/sec) for silicon, aluminium, germanium and 
silver films according to the etching rate o f the carbon film 1.65 nm/sec and 
the simulated sputtering yields.

Table 4.2. Measured diameters, depths and calculated mean radii with corresponding 
relative standard deviations for all o f 42 pits from three carbon-coated 
silicon wafers with different thicknesses o f original carbon film.

Table 5.1. Compositions o f the steels before carburising processes (mass %).

Table 5.2. CRMs o f GDOES calibration for depth profiling o f the carburized steels.

Table 5.3. Coefficient factors and data points o f the calibration curves for the elements 
o f interest.

Table 5.4. Compositions o f specimens A and B measured in the GDOES (mass%).

Table 5.5. The elemental concentrations o f specimens A and B in the layers
corresponding to those o f the EDS mapping in Figure 5.6 to 5.8 and the 
depth profiles in Figure 5.9. (elemental concentration: mass %)

Table 6.1. Compositions o f the steel specimens measured in the GDOES (mass%).

Table 6.2. Classification o f the samples in five groups for the test o f the different 
matrices effects on the intensities o f hydrogen contamination.
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Table 6.3. CRMs o f GDOES calibration for Cr/Ni plated samples measurements in the 
GDOES. (Elemental concentrations in mass%, SR is the relative sputtering 
rate to a pure iron sample).

Table 6.4. The initial, peak and raised values o f the hydrogen intensities (a.u.), H0, Hp, 
and AH, and the sputtering rates (jug/s), SRo,, SRPi, and aSR, at the interfaces 
between the Ni layer and the substrate o f the specimens in the three groups.

Table 6.5. The certificate and measured compositions o f the standards samples SS410/2 
and JK-8F (mass %).

Table 6.6. Compositions and sputtering rates o f the CRMs for the GDOES calibration, 
gains o f the PMT and correlative coefficients o f calibration curve for the 
elements.

Table 6.7. The relative changes o f the emission yield between the two levels o f the 
hydrogen intensity with the difference o f 800 (a.u.) to the emission yield 
corresponding to the lower hydrogen intensity, based on the data in the range 
o f the sputtering time from 50 sec. to 100 sec.

Table 6.8. The relative changes o f the measured concentration between the two levels 
o f hydrogen intensity with the difference o f 800 (a.u.) to the measured 
concentration corresponding to the lower level o f the hydrogen intensity, 
based on the data in the range o f the sputtering time from 50 sec. to 100 sec.
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