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Abstract

This thesis describes work to establish the feasibility of using active vision on a 

mobile robot to improve survey techniques for concrete and clay sewers of less 

than lm  diameter. Software and hardware components of a prototype mobile 

remote visual sensing system have been designed and developed.

The active vision system (AVS) operates within smooth-walled small-bore pipes 

(0.5m<d<1.0m). The AVS consists of two distinct, but related hardware 

components, a controllable (pan and tilt) camera head mounted on a remote 

control tractor and a system control unit which interfaces this remote system to a 

PC-based system supporting image capture and analysis.

The software associated with the AVS comprises modules to control the camera 

orientation and supplement existing Artificial Intelligence vision analysis tools. 

The latter modules estimate the vanishing point (VP) of a sewer pipe (as a 

reference feature) and detect coaxial cracks in the periphery of the image (nearest 

the camera). Control software for the camera head has also been developed.

The VP detection and crack detection modules have been evaluated on images 

captured from library videos of sewer surveys. The results show that the routines 

successfully locate the VP and can successfully detect coaxial cracks in a 

predefined region of interest in an image. The AVS as a whole has been tested in 

a laboratory setting using a short section of concrete pipe and simulated cracks in 

its wall. The AVS successfully implements a control cycle which determines and 

fixes the pipe VP, detects coaxial cracks in the pipe wall, orients the camera to 

attend to those cracks, and then re-fixes the VP.
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1 The Sewer Maintenance Problem

This chapter provides an overview of the sewer maintenance problem and 

describes common problems that occur with existing survey techniques. It 

includes a review of recent advances in survey technology.

1.1 The Sewer Construction and Condition

Sewer systems are a vital, if unglamorous, part of the civil infrastructure 

supporting modem living. In the late 19th and early 20th centuries there was a 

rapid growth of the sewer system across the world, especially in urban areas. This 

trend continues.

The sewer system is broadly characterised by two construction technologies for 

the transfer of waste water. Older sewers are constmcted of brick. More recently, 

clay or concrete pipes have been used. Clay and concrete sewers are constmcted 

by laying a contiguous series of generally straight pipe elements, usually of 

circular cross-section, connected by occasional curved elements at comers 

(Figure 1.1).

Today, the combined effects of ageing, unanticipated demands on capacity, and 

undermaintenance pose a threat to the integrity of these systems 

[Wirahadikusumah et al., 1998; NSF, 1993; NWC, 1977]. Failure of sewer 

systems is inconvenient, often expensive to repair, and can pose a threat to public 

health. Despite this, it is frequently the case that that maintenance is carried out 

on a reactive basis when collapse or flood occurs. The impact of the legacy of 

undermaintenance is not just the cost resulting from catastrophic failure; it is also 

reflected in decreased performance leading to higher running costs 

[Wirahadikusumah et al., 1998].

An obstacle to improving maintenance is the fact that our knowledge of the 

condition of sewers in the UK (and elsewhere) is very limited. Approximately 

96% of sewers are of less than lm  diameter and are classified as non-man entry
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(NME). In the UK, NME sewers account for over 5000 km of those pipes 

thought to require inspection or attention. The exact location of many NME 

sewers is unknown due to incomplete and/or obsolescent records.

In 1977, the UK’s National Water Council (NWC), in its report entitled ‘Sewers 

and Water Mains - A National Assessment’, suggested that around 10% of the 

UK's sewers are likely to require reinstatement through the next decade [NWC, 

1977]. The NWC urged a rolling programme of sewer renewal and maintenance 

at an estimated annual cost of £148m. (A similar picture has been found in the 

USA [NSF, 1993].)

It seems evident that even small percentage savings, brought about through 

improvements in renovation and maintenance practice, would lead to appreciable 

reductions in both capital and revenue expenditure. A precondition for such a 

programme is an effective, efficient and economic survey technology. The work 

described in this thesis represents a contribution to this effort.

Figure 1.1. Three contiguous sections of a modem concrete NME sewer pipe. 

Note the flanges where the sections are joined, and the two cast junctions joining 

the pipe from the left.
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The work described here concentrates on clay and concrete sewer pipes as these 

constitute about 90% of the UK’s sewers, by length. Complementary research by 

my co-workers in the Sheffield Hallam University Al Lab was exploring similar 

issues related to brick sewers. Brick sewers feature mortar joints between brick 

courses. In many respects, these mortar joints themselves resemble cracks and 

fissures. Addressing the problem of crack detection in concrete and clay pipes, 

where the mortar joints are absent, was deemed a sensible first step prior to 

tackling the more difficult problem of crack detection in brick sewers. Finally, 

the choice was also determined by pragmatic considerations as the laboratory 

facilities available did not allow the construction of a brick sewer, but a section 

of concrete sewer pipe was readily installed (Figure 1.1.).

1.2 Common Failure Modes in Concrete Sewer Pipes

Cracks and fractures may occur in any position and orientation and have a wide 

variety of general shapes. However, in both brick and concrete pipes, the majority 

of structural failures fall into one of a number of categories or modes [WRC, 

1986]. These include profile deformation, sag and cracking (followed by 

collapse), pipe deflection and joint displacement.

In clay and concrete pipes* the common failure modes follow from standardised 

practice in the laying of pipes. Most pipes are almost horizontal and ground 

pressure is generally normal to the pipe wall. External pressure can cause pipe 

joints to be displaced. It also causes individual pipe elements to become 

deformed, eventually introducing small cracks or larger fractures in the pipe 

surface. Many such faults are co-axial, i.e. roughly parallel to the pipe’s 

(cylindrical) axis. Figure 1.2(a-c) illustrates some of these common failure modes 

in concrete sewer pipes.

* Henceforth, the term ‘concrete sewer pipe’ may be taken to include clay pipes unless stated 
otherwise.

3



(a)

(b)

(c)

Figure 1.2. Some common failure modes in concrete sewer pipes: (a) pipe joint 

displacement; (b) coaxial crack (in roof of pipe) and slight joint displacement; (c) 

radial fracture near pipe joint and coaxial cracks between the joint and the 

fracture. (These images were made available by Neil Bunting of North West 

Water, Chesterfield, UK.)
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1.3 Current Survey Techniques for Sewers

Structural surveys are commonly conducted by internal inspection. In larger 

diameter sewers, direct inspection by a person who enters the sewer is possible. 

For NME sewers, inspection by closed-circuit television (CCTV) is currently the 

technique of choice [Porch, 1979]. A camera and lighting unit are mounted on a 

sled or tractor and pulled by cable through a length of NME sewer pipe (the cable 

is just visible in Figure 1.2(c)). The CCTV camera is connected to an 

aboveground survey station via an umbilical cable that relays the camera control 

signals from the ground station to the camera and the image signal from the 

camera back to a display unit and video recorder. The video images are examined 

by an operator who identifies and records salient features [WRC, 1986]. The 

quality of current CCTV systems is variable. A number of factors, technical and 

human, contribute to overall performance. These are considered below.

1.3.1 Camera, Video and Illumination Systems

The two factors of importance in respect of cameras used for pipe inspection are 

quality of image and robustness. The first factor encompasses parameters such as 

resolution, signal to noise ratio, contrast and distortion. Many systems use low 

quality cameras which give poor images. The images are usually recorded and 

viewed as a (VHS) video stream, a medium which itself irretrievably loses 

information from the original image and introduces noise. The quality of the 

image is also dependent upon illumination and this is often primitive: few 

tractors have the facility to vary and control lighting conditions in the sewers. 

Illumination is often configured to aid the human interpreter and this does not 

always suit the requirements of image processing techniques.

The second factor, robustness, relates to the extent to which cameras are able to 

withstand the uncertain and often hostile environment within the sewers.
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1.3.2 Cables and Traction

Operating (control) signals and video feedback are communicated via cables. 

There may be separate cables for winching the tractor or sledge forward and 

backward along the pipe. In some cases the winching and data cables may be 

incorporated into a single armoured sheath of cable. The connecting cables limit 

the length of sewer to be inspected. Traditional traction methods are being 

replaced gradually by self-traction devices where they can be used. Self-traction 

devices are a comparatively new development in the UK and are not yet used 

extensively. Current self-traction devices consume a large amount of power. The 

size of the inspection vehicle may also be a problem. Currently self-traction 

devices are only suitable for sewers above 225 mm in diameter.

1.3.3 Display and Recording Units

To enhance the value of videotape, facilities are usually available for annotating 

images at the ground station. Annotation frequently includes distance surveyed, 

location, image number (index) and date and time. Occasionally, annotation may 

obscure features of interest in recorded images.

1.3.4 Human Factors

The skill and experience of the members of the survey team contribute 

significantly to the quality of the survey information. The interpretation of the 

CCTV images requires selective and subjective judgement and these depend 

upon prior experience and familiarity, mental awareness, field distraction and 

interruption. The task of capturing and recording CCTV footage is difficult and 

many teams concentrate on this aspect of the task. Attention is paid to obvious 

and significant evidence of impending failure. Substantial libraries of video have 

been accumulated, awaiting closer scrutiny than was possible in the field. 

However, such 'off line' scrutiny is time consuming, tedious and expensive 

[Wirahadikusumah et al., 1998a].
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1.3.5 Survey Productivity

Current survey techniques are time consuming and, as indicated above, the 

earliest signs of deterioration may well be missed given the difficulties of 

operating in the field. For each defect noticed the operator stops and scrutinises 

the images [Moselhi and Shehab-Eldeen, 1999]. This may involve time in 

manoeuvring the sled or tractor to try to improve the image. The effort involved 

in deploying and redeploying the tractor and cables in contiguous sections of pipe 

is significant.

1.4 Recent advances in survey technology

The research challenge posed is to develop systems against the following 

performance related criteria [Wirahadikusumah et al., 1998]:

i) more accurate and dependable survey information

ii) improved survey efficiency and economy

iii) reduced disruption from survey

iv) ease of deployment of surveying technology

Recent research has both extended the range of technologies used and improved 

on CCTV techniques*. Some projects have sought to integrate information from 

different sensor systems.

1.4.1 Infrared Thermography

Infrared thermography is a surface technology that detects thermal energy 

gradients in the ground [Weil et al., 1994]. Diagnostic gradients arise if either 

the pipe wall or the insulating backfill around it are compromised. It has proved 

effective at locating leaks and voids caused by erosion. The technology is

* The developments described have all been reported since the inception of the research 
programme that forms the substance of this thesis.
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relatively easy to deploy and so the production rate is high (3-100 miles per day). 

However, any positive diagnoses require further complementary survey 

techniques and so this production rate is perhaps misleading. The major 

disadvantage is that interpretation of the thermal images is highly skilled and so 

the percentage of false positive and false negative diagnoses may also be high.

1.4.2 Sonic Distance Measurement

Sonic distance measurement deploys a sled or float-mounted tool within the pipe 

[Price, 1995]. A piezoelectric transducer generates a sound signal, the timed 

returns of which are then detected. Given that the velocity of sound changes with 

density and elasticity of the transmitting medium (e.g., air, water, slurry, 

concrete, aggregate, soil) a radial profile of the sewer void, the pipe wall, its 

insulation and backfill can be formed. The system is comparable to conventional 

CCTV technology in respect of ease of deployment and productivity. Its strength 

is perhaps in detection of early symptoms of failure such pipe wall deflection and 

corrosion.

1.4.3 Ground Penetrating Radar (GPR)

GPR deploys an antenna, mounted on a robot tractor, within the sewer [Kuntze et 

al., 1995]. Electromagnetic waves are transmitted and the reflected waves contain 

information about the electrical properties of the interfaces between transmitting 

media. Signal analysis reveals defects in sewer structure and the conditions in the 

matrix surrounding the sewer pipe. Again, the system is comparable to 

conventional CCTV technology in respect of ease of deployment and 

productivity. Its strength is in the information about the condition of the 

surrounding soil, e.g., voids and other pipelines/cable systems. Interpretation of 

GPR data is highly skilled and subjective.

1.4.4 Integrated sensor systems
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There are three independent attempts to deploy integrated sensor systems on a 

single survey vehicle.

KARO [Kuntze et al., 1995] is a prototype robotic inspection system that fuses 

data from ultrasonic, microwave, 3D optical sensors and colour TV camera 

technology. It has optional GPR and cartography units. The system is winched 

trough a pipe section. Control signals and data transmissions are communicated 

via an umbilical cable to a ground station. The main advantage of the prototype is 

the integration of complementary sensor systems.

PIRAT [Campbell et al., 1995] integrates CCTV with either sonar (flooded 

pipes) or laser (drained pipes). It is connected to a ground station where the 

control system and the system for interpreting the complementary signals are 

located.

The Sewer Scanner and Evaluation Technology system (SSET) [Abraham et 

al.,1997] is a prototype system combining a scanner, CCTV and gyroscope 

technology to provide an analysis of faults over a pipe section. In the prototype, 

the sensor systems are carried on a rigid sled that is winched through the pipe. 

The designers of SSET claim that its major benefit is that its data logging and 

analysis facilities relieve the survey technician from the task of analysing the 

CCTV signals during the survey itself.

1.5 Summary

There continues to be a need for improved sewer survey techniques. The sensor 

technologies described above are largely complementary. Ease of deployment 

and productivity (e.g., IR Thermography) are traded against resolution. All 

survey technologies continue to depend upon teams of skilled and experienced 

technicians and engineers for their operation and visual inspection will continue 

to play an important part in fault diagnosis.
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The survey units are relatively large and the use of power and signal cables to 

control them and the use of steel cables to propel them pose appreciable 

constraints on productivity. Improving productivity will probably entail 

increasing the autonomy of the survey units. This implies a need for cheaper, 

more robust tractors and sensors together with signal transmission systems that 

avoid umbilical cables.
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2 The Research Project

This chapter begins by outlining the long-term vision held by a group of research 

co-workers, based initially at the Al Lab at Sheffield Hallam University and 

which forms the context within which this work was undertaken. It then defines 

the scope of the work that concerns this specific project. This leads to a 

specification of the project aims and objectives of the work subsequently 

undertaken and documented in this thesis.

2.1 Long-term Project Vision

In Chapter 1 ,1 have suggested that modest, incremental automation of elements 

in the surveying process offers potential benefits in terms of cost effectiveness, 

accuracy and safety. New developments in the field of robotics offer the prospect, 

albeit well into the future, of a step change in the autonomy of survey vehicles. 

Increasing technological advances in microelectronics and communications offer 

the prospect of smaller inspection vehicles with cameras and other sensors less 

constrained by demands for electricity supply. An intelligent autonomous robotic 

pipe inspection vehicle is not beyond the realms of possibility and its realisation 

seems a legitimate long-term research goal.

2.2 Project Scope

Surface-based technologies (e.g., IR thermography) will frequently require 

confirmation by inspection from within the sewer pipe. As we have seen, a 

variety of sensing technologies may be deployed within the sewer itself. The 

decision of three independent research projects, KARO, PIRAT and SSET (see 

Chapter 1), to deploy multisensor systems reflects the fact that such systems can 

provide complementary data about the sewer pipe and its supporting matrix, to 

give a fuller picture of sewer condition than internal inspection alone. However, 

all three projects use vision systems to support inspection. CCTV is cheap and 

requires relatively little expertise to interpret data. Visual inspection gives 

engineers the confidence to undertake much more expensive and potentially
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inconvenient excavation and repair. For these reasons alone, it seems likely that 

vision will play a role in most future inspection platforms.

A prime motivation for computer vision research is to develop sensor systems 

capable of supporting robots performing a variety of tasks in both open and 

enclosed environments (e.g., offices, factories, tunnels, reactors). Hence, 

anticipating advances in autonomous robotics, computer vision seems likely to 

play a role in enabling robots to interpret their environment.

Visual inspection is a major research topic in computer vision and attempts have 

been made (with mixed results) to detect flaws in a variety of materials [Wallace, 

1982]. There is, however, little work published on the identification of flaws such 

as cracks and fractures in either concrete or clay. There is even less work on the 

problem of visual inspection in sewers. This may be because assumptions, which 

are valid in many circumstances, are not valid in relation to sewers. For example, 

inspection systems in other domains assume that the area to be inspected can be 

viewed from a single viewpoint and so inspection can be performed on the basis 

of a single image.

In small-bore pipes, the inspection camera is typically orientated so as to provide 

a view down the pipe: the camera and pipe axes are almost parallel. Coaxial fault 

lines are therefore heavily foreshortened - points at either end of the image of a 

fault arise from widely separated points on the pipe surface. As a result, coaxial 

faults are not readily described from a single image. The resolution of the image 

of one end of a fault is likely to be significantly different from that obtained at the 

other end. A suitably high-resolution description of the full length of the fault can 

only be obtained by integrating data extracted from a sequence of images 

captured over time as the camera travels down the pipe.

The pipe surface may be assumed, locally at least, to be a cylinder. If the cracks 

move away from the optical axis (centre of the image) on a cylindrical surface, 

distortions in the perceived width of the crack will be introduced by perspective. 

As the pipes we are concerned with have < lm  diameter, and some may be as
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narrow as 300mm diameter, these distortions could be significant. It is proposed 

that location and accurate description of coaxial faults in small-bore pipes is best 

achieved by an active computer vision system capable of automatically altering 

the orientation of the camera. The camera will detect faults in the pipe surface. 

Eventually, it must integrate data from a sequence of images thus obtained.

One approach to this problem would be to use statistical pattern recognition. This 

would involve building models from training sets of sample data. However, 

cracks in sewer walls vary considerably and it is not clear that a reliable statistical 

model could be built. At the very least, an extremely large training set would be 

required. This study seeks to establish the feasibility of taking a comparatively 

simple, structural approach based upon heuristics which describe the features 

expected of a crack in a pipe wall.

2.3 Project Aims and Objectives: Active Vision for an Autonomous 

Inspection Vehicle

The principle and practical aim of this research programme is to establish the 

feasibility of a prototype tractor-mounted Active Vision System (AVS) capable 

of detecting cracks and fractures on the internal surfaces of concrete NME sewer 

pipes.

The principle objectives were to design and then evaluate key elements of the 

AVS prototype. Within this overall objective, other objectives or milestones of 

the investigation were determined as follows:

i. review the literature on active vision for sewer and other pipes (especially 

concrete pipes);

ii. identify and evaluate algorithms for initial detection of cracks/fractures in 

small-bore pipe walls given a single image of the pipe;

iii. determine the camera kinematics required for feature fixation;

iv. develop the system hardware;

v. develop the system software;
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vi. test the prototype system on simulated faults in a laboratory environment;

vii. draw conclusions relating to the feasibility of further development of the 

prototype AVS.

While a final pipe inspection system should be capable of operating in real time, 

the current project sought only to demonstrate the feasibility of the proposed 

approach.

Experimental evaluation was to be performed using laboratory-based facilities. 

The final tractor mounted vision system was tested within a concrete NME sewer 

pipe (Figure 1.1) and evaluated on simulated cracks introduced on inner surfaces 

of the sewer pipe.

The remaining chapters of this thesis address each of the above objectives in turn.
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3 Literature Review

The scope of this review is determined largely by a focus on vision research 

relevant to active inspection of continuous, smooth walled, cylindrical pipes. 

Section 3.1 examines the relevant work carried out in the field of active vision. It 

looks first at low-level object detection and tracking, where the detailed 

description of the object is not of primary interest. It then looks at higher-level 

object analysis where, for example, the dimensions and orientation of an object 

are of primary interest.

I have chosen not to include extensive reference to active vision using stereo. Use 

of a second camera is constrained by the limited room available in NME pipes 

and second cameras entail additional expense -  not least in terms of 

computational effort. More significantly, the cracks and fissures of interest in this 

domain are found on the walls of the pipes and, given knowledge of the pipe 

geometry relative to the camera, and some basic information on distances (e.g. 

between successive pipe joints) the relative depths of different features may be 

derived from images taken with a single camera.

Section 3.2 looks specifically at feature detection in concrete sewer pipes. The 

features of interest in this domain are pipe joints, pipe junctions and pipe flaws 

such as cracks or fractures. This section also examines work that seeks to 

determine the vanishing point (VP) within a pipe. (The VP may be used as a 

valuable reference point for visual analysis -  see section 3.2.5).

Finally, section 3.3 summarises relevant research that has been published since 

the conclusion of the experimental research documented in this thesis.

3.1 Active Vision

Active Vision Systems receive much attention from the computer vision 

community. Much of the work in this area is orientated towards the design of 

object tracking systems in which a camera actively follows an object of interest.
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Allen [1989] describes a motion tracking system capable of identifying and 

tracking an object wandering in a confined space. The system computes an 

estimate of the location of the centroid of the robot’s motion energy and uses this 

to guide a camera mounted on a robot arm above the test area. The camera is at a 

fixed height above the object and so the system tracks in 2D. The dark rectangle 

of the robot’s form is the only object in the image and is relatively easy to 

identify in a well-illuminated environment against a uniformly white background. 

Allen highlights the fact that many approaches to motion detection contain “a 

burdensome computational cost that precludes real-time implementation”.

Allen’s tracking of a derivative feature (in this case, the centroid of motion 

energy) seems a useful strategy for simplifying the tracking of an object when its 

precise orientation, or indeed boundary, are not of immediate concern.

Papanikolopoulos et al. [1992] describe a monocular, real-time, 3D tracking 

system in which a camera mounted on the end-effector of a PUMA robot tracks 

an object of interest attached to the end-effector of a second PUMA. The system 

tracks “distinct features” of an object as selected by a human operator: typical 

objects were books or pencils. Papanikolopoulos does not expand upon what is 

meant by the term distinct feature.

In the domain of sewer inspection, some features are readily described as distinct, 

e.g., pipe joints. It may also prove possible to define some features of cracks or 

fractures as ‘distinct’ for the purposes of tracking. However, it would not serve 

the purpose of this project if such features had to be nominated by a human 

operator.

An interesting aspect of Papanikolopoulos’s approach is the strategy of reducing 

the computational burden by using world-knowledge. For example, the change in 

depth of the target between two time instances is constrained by knowledge of 

the maximum permitted translational and rotational velocities of the robot end- 

effectors.
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Murray et al. [1995] are similarly concerned with target acquisition and tracking 

in real-time. Again, the goal of their system is to keep a camera focussed on a 

moving object over extended time periods. The system employs a surveillance 

strategy that implements a high-level gaze controller as a finite state machine 

(FSM). The FSM has five states labelled ‘inactive’, ‘wait’, ‘saccade’, ‘pursuit’ 

and ‘panic’. The gaze controller determines which visual state-related process to 

use depending upon the visual observations and the current state. The ‘wait’ state 

is associated with a general, wide-area search function. If an object of interest 

enters the periphery of the scene the gaze-controller enters the saccade mode, 

causing the camera to centre (foveate) the target object. If analysis confirms 

identification of a target, the ‘pursuit’ state is entered. Loss of the target (usually 

because its movement violates an assumed constant velocity) triggers the ‘panic’ 

state, which attempts to predict a new location for the target. If the target is not 

quickly recovered, the ‘wait’ state is re-engaged.

Their implementation of the vision analysis states, in conjunction with the 

mechanical camera control feedback, achieves responses to a peripheral target or 

a tracked target quickly enough to satisfy the ‘real-time’ requirements of their 

problem domain, which is tracking human movement. It is not specified how the 

system deals with multiple features of interest entering the periphery.

The fault detection problem in sewers differs from the tracking and fixation 

problem in that, instead of attempting to solve low-level tasks in real time, we 

must address a higher level problem - active visual inspection using necessarily 

simpler hardware. However, the state-based approach to active vision adopted by 

Murray et al. does capture, in a natural way, the general problem of control in a 

closed loop vision sensing system. Each active state is associated with a system 

function. Camera control signals, as actions, are associated with state transitions. 

The active FSM approach of Murray et al. would seem to provide the basic 

structure for an active vision system for sewer inspection.
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Brunnstrom et al. [1996] have attempted higher-level active visual inspection. 

They have confined themselves to what they call a “static world containing man- 

made objects”. Following Malik [1987], they define objects as “opaque solid 

objects bounded by piecewise smooth surfaces with no markings or texture”. 

Their goal is the identification of manufactured piece-parts. They assert that “in 

an active, continuously operating vision system it is not reasonable to base 

recognition on complete surface or scene reconstruction”. Instead, they propose 

using ‘selective attention’, ‘fixation’ and ‘structure integration’. Attention and 

fixation are distinguished: attention relates to a region of the image, fixation 

relates to the zoom and focus operations that identify points within a feature, e.g., 

a point on a curved line. Their approach features a number steps; find a structure 

to attend to, fixate the structure, choose another attention point and decide 

whether re-fixation is required, decide whether junctions should be connected, 

integrate structure information between one fixation and another. Attentional 

features of interest are ‘standard’ shapes such as junctions of straight and curved 

edges. The camera fixations are determined by a grouping strategy, which forms 

sets of junctions, separated by depth of field differences (determined with the aid 

of stereo images). The work has begun the development of a system for rapid 

active detection and classification of these junctions by selecting fixation points.

The difference between this research and sewer pipe inspection is that in sewers 

we must deal with both standard and non-standard features. Whilst non-standard 

features (e.g., cracks) may be classified at some level of abstraction, they are 

essentially unique. This is mainly because they are naturally occurring and are not 

man-made. Further, Brunnstrom et al. are looking at object recognition within 

open and illuminated environments whereas sewer pipes, by contrast, are 

characterised as relatively small, enclosed spaces and are, by their nature, not 

well illuminated.

A number of similarities between the two research problems are identifiable. It is 

certainly possible to share Brunnstrom’s scepticism that ‘recognition based on 

complete surface or scene reconstruction’ will prove feasible in the case of sewer 

images -  not least because of the signaknoise ratio in the sewer images. As with
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Murray et al., the state-associated processing of images seems natural. The 

concepts of attention and fixation are usefully distinguished. In the case of 

sewers, joints and cracks may be detected initially by a region-based attentional 

mechanism whilst the detailed description of these features warrants, in part at 

least, the closer scrutiny associated with ‘fixation’. The idea of defining a set of 

classifiers would seem to offer a way forward in developing a sewer inspection 

system, but this too may prove difficult as it in far from obvious that there is a 

‘standard’ set of features such as is found in the junctions of regular polyhedra 

(pipe junctions may prove an exception). Feature integration may prove more 

demanding when the objects of interest do not have straight or smoothly curved 

features.

Some workers report on active stereo vision. Most stereo vision systems use 

knowledge of the geometry of a pair of cameras to recover depth information 

from the two slightly separated views they receive from a single scene.

Pretlove and Parker [1993] have developed an Attentive Robot Vision System 

intended for use in a traditional manufacturing environment. Their system takes 

advantage of good uniform ambient lighting, which is not available in a sewer 

environment. In common with many stereo systems, significant computational 

resources (transputer arrays) are required.

Abbott and Ahuja [1992] have also developed a stereo active vision system 

which employs two high-resolution cameras for image acquisition. The system is 

capable of automatically directing movements of the cameras so that camera 

positioning and image acquisition are tightly coupled with visual processing. The 

system was developed as a research tool and is largely based on off-the-shelf 

components. It this is not designed for real-time performance and is currently a 

research tool.

In principle, a single moving camera can be used to generate a pair of images for 

stereo analysis. In practice, this requires precision control of the positioning of 

the single camera. This is not feasible in a sewer pipe environment where, for
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example, wheel slippage can introduce significant errors in estimates of change 

in position of the camera/tractor unit.

Stereo vision adds complexity and computational overheads, which we choose to 

avoid. Further, knowledge of the sewer pipe geometry allows recovery of much 

relative depth information on the basis of a single image. This is especially true 

of features such as coaxial cracks, which are of immediate relevance in this 

project.

3.2 Feature Detection

Interpretation of digital images captured during sewer surveys has recently 

received considerable attention. The information contained within these images is 

needed for automated, offline, surveying or active surveying and/or guiding 

robot vehicles engaged in renovation and repair work within NME sewer pipes. 

Image interpretation is about relating identifiable features of the image to 

interesting features of the viewed world.

This section considers different features of interest in turn, prefaced by a short 

section on edge detection. In addressing a considerable body of literature on 

feature detection, I have scoped the task by defining an ‘environment specific’ 

feature set and seeking related work. Features of immediate relevance to this 

exploratory work in sewer pipes are normal and abnormal pipe joints, pipe 

junctions, and other pipe flaws (of varying degrees of severity). In addition to 

these diagnostic features, the vanishing point (VP) of a sewer pipe constitutes a 

valuable reference feature for camera orientation and scene analysis and, 

therefore, research on VP location is also included.

3.2.1 Low-level Features (Edge Detection)

A vital step in the design of a machine vision system is the determination of 

relations between the interesting features of the viewed world and measurable
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properties of the digitised image. If some feature of a viewed object is to be 

detected by a vision system, it is clearly important to determine how that feature 

will appear in the pixel array. Figure 3.1 shows a typical grey level digital image, 

obtained from a field CCTV survey, of a non-man-entry sewer. Pipe joints appear 

as bright rings. Longitudinal cracks are usually represented by connected series of 

near-random line segments. Wall encrustation gives rise to a dappling effect. 

These real-world changes in luminance give rise to sharp changes in image 

intensity. Step changes in image intensity, commonly known as edges, are easily 

detected features that may be used as cues to the location of features of interest.

Figure 3.1 Grey-level digital image, obtained from a field CCTV survey, of a 

non-man-entry sewer. Three pipe junctions and a co-axial crack (top right 

quadrant) can be seen.

There are a number of edge detection algorithms. Figure 3.2 shows the result of 

applying one such algorithm, Canny edge detection [Canny, 1986], to the video 

image of Figure 3.1. (A fuller description of Canny edge detection as used in this 

project is given in Chapter 6.)
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Having generated such an image, the problem remains of distinguishing one 

feature from another and assessing the diagnostic implications of each.

1 r  j mono

Size Mouse Proj Paint

in sta ll clone in it  repaint

r o i : adjust /  to g g le  /  show

Figure 3.2 Canny Edge Detection on the image of an NME sewer Pipe. Note the 

edges (in colour) formed by each of the first three pipe joints and by the crack in 

the top right quadrant. Note the spurious short 'strings' of edge data generated by 

illumination of wall encrustation.

3.2.2 Pipe Joints

Pipe joints within prefabricated concrete sewer pipes normally occur at fixed 

distances along the length of the pipes. The pipes are constructed so that all joints 

are tight fitting and flush. With the passage of time, earth settlement, disturbance
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and various other natural or induced effects, pipe joints are displaced to varying 

degrees (Figure 1.2(a)).

Ruiz-del-Solar and Koppen [1996] propose a neural architecture for an image 

processing system that recognises circular features such as pipe joints. The 

system is not evaluated and does not assess the condition of the joints.

Pan et al. [1994; 1995] have developed an approach to the detection of pipe 

joints. Detection is facilitated by the fact that there is often strong reflection from 

pipe joints and they are approximately circular. However, reflection from a pipe 

joint can vary considerably and much of it may be obscured by water and debris 

in the pipe. Following application of a standard edge detection algorithm, edges 

that appear to be from a common arc are grouped together. Circle fitting 

algorithms are then applied to the arc segments. For a healthy joint, the fitted 

circles should share a common radius and common centre. When the joint has 

been displaced the radii are common but the centres are displaced.

3.2.3 Pipe Junctions

Pipe junctions occur within sewer pipe systems, when other pipes merge with 

existing pipe systems. The junction is usually cast as a feature of a special pipe 

length.

Lateral intersections (see Figures 1.1 and 1.2(b)) generate light image regions, 

usually smaller and less bright than those arising from similarly distant displaced 

joints. The near edge of a lateral connection is marked by a sharp change in depth 

or distance from the viewer as the sewer wall gives way to the incoming lateral 

wall. The far edge exhibits a similar though reversed change in surface 

orientation.

Taylor et al. [1988] use Canny edge detection to extract descriptions of lateral 

pipe connections. The effects of different types of illumination are looked at, e.g., 

direct or reflected illumination.
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3.2.4 Pipe Flaws, Cracks and Fractures

Pipe flaws also include major features such pipe collapse, pipe obstruction, tree 

root intrusion. These catastrophic flaws are usually detected by virtue of the fact 

that they bring a survey to a halt!

Less obvious features that may represent the early symptoms of later problems 

include corrosion of concrete and pipe wall deformation. Pipe deformations, prior 

to cracking, are difficult to detect from CCTV inspection alone. Pipe deflections 

of as little as 1% or 2% will result in cracking of clay pipes. Such deflections are 

readily masked by image distortions of up to 10% introduced CCTV technology.

Henry and Luxmoore [1996] have developed a visual profiling system for CCTV 

pipe inspection cameras. The positioning of a light source in front of the CCTV 

camera allows a ‘light ring’ to be projected on the internal surfaces of 

sewer/water pipesDistortions and degradations within the inner surface of the 

pipe are identified using pattern-matching software.

Xu et al. [1998] have developed an approach to detecting distortion in pipe walls 

near pipe joints. A digitised image of an illuminated pipe is obtained. It is 

"cleaned up" prior to analysis. The characteristic circular section of the pipe joint 

is estimated by least squares fitting of a circle (LS circle) to the data points 

associated with a well illuminated pipe joint (see Figure 1). Distortion (prior to 

cracking) deforms the circle into an ellipse. The aspect ratio of the ellipse, which 

is proportional to the ratio of maximum and minimum diameters, is compared to 

that of the reference circle to give a measure of the distortion present. Given the 

profile of a pipe at a pipe joint, this work significantly improves upon human 

visual inspection for early distortion (<2%). However, the feature extraction 

currently identifies only 85% of pipe joints and so a combination of human and 

machine are necessary if more than 85% of pipe joints must be analysed.
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Moselhi and Shehab-Eldeen [1999] have described an approach to processing 

images from clay and concrete sewer pipes. Following standard edge detection 

operations, they can provide information on axis lengths (major and minor), 

angular orientation and elongation of significant features, and cracks in 

particular. Their longer-term objective is to use this derived data to train a neural 

classifier to distinguish between displaced joints, cracks, and other flaws.

Xu et al. [1998] have extended the approach which detects profile distortion 

(described above) to detect cracks near pipe joints. When a coaxial crack appears 

in a pipe wall, all further deformation occurs as rotations about the crack (the 

crack is rather like a hinge). A plot of the radius of the pipe (boundary distortion) 

relative to the reference LS circle shows a sharp change in curvature if a crack is 

present. The technique can be used only if the original size and position of the 

pipe are known, or can be estimated accurately. If estimation is used (e.g., LS 

circle), the technique is very sensitive to the estimated centroid and radius and 

this is a limitation of the technique.

3.2.5 Vanishing Points

A vanishing point is defined as the image projection of an (infinitely distant) 

point of intersection of a set of parallel lines. Vanishing points have been 

exploited in a variety of situations. Fischler et al. [1982] use the vanishing point 

generated by vertical edges of buildings in urban scenes to ease the identification 

of other vertical objects. Barnard [1982] exploits vanishing points in the 

interpretation of perspective drawings of plane-faced objects. A further body of 

work concerns the use of vanishing points in camera calibration. Beardsley and 

Murray [1992], for example, present an algorithm to recover camera parameters 

from vanishing points extracted from images of precisely measured calibration 

targets. Straforini et al. [1993] use vanishing points to recover the heading of a 

mobile robot travelling through corridors and offices.

Tai et al. [1992] give a review of vanishing point detection algorithms. Most 

(e.g., Barnard [1982]) rely on some form of Hough Transform. Lutton et al.
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[1994] have argued that Hough transform approaches to vanishing point 

detection are inherently biased towards solutions which lie within the boundaries 

of the input image. They go on to propose a probabilistic method which avoids 

this bias.

In sewer pipes, the vanishing point can be thought of as an infinitely distant point 

on the principal (cylindrical) axis of the pipe. Photographically, it corresponds to 

the centre of the 'dark* region at the end of the pipe (see Figure 3.1). Although of 

no diagnostic significance itself, the VP provides a valuable reference point or 

datum for image analysis and camera orientation. Having identified the VP, it is 

easier to identify the main structural features of the environment.

Taylor et al. [1998] have proposed a method for estimating the VP within the 

image of a concrete/clay sewer pipe. This method uses thresholding. A single 

luminance threshold segments the image into dark and light regions. The largest 

connected dark region is found and its centroid is taken as an estimate of the VP. 

The approximation to the actual VP obtained is used to give an indication of 

where in the image a lateral pipe joint may be found. Pridmore et al. [2000] 

extend this approach to estimate the orientation of lateral pipes. The advantage of 

the method of Taylor et al. is that it is much more computationally efficienct.

Cooper et al. [1998] have developed an approach to VP estimation in brick 

sewers. They use a two-stage process. The first stage uses the method of Taylor et 

al. (above) to obtain an initial point estimate of the VP (i.e., the centroid of the 

largest connected ‘dark’ region). The second stage uses the longitudinal (coaxial) 

mortar lines associated with brick coarses (Figure 3.3). A least squares estimate 

of the intersection of all such horizontal lines is computed. Lines are deemed 

horizontal if they pass through the neighbourhood of the initial VP estimate.

Here, the neighbourhood is defined by a circle, centred on the estimated VP, and 

with a radius determined as the distance of the furthest pixel in the connected 

region from the estimated VP. Cooper et al. have gone on to extract information 

on camera orientation relative to pipe axis when evaluating camera motion during
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surveys. The reliance of this technique on visible co-axial mortar lines means it is 

not applicable for concrete sewers.
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(C)

(d)

Figure 3.3. Two-stage process for VP estimation in brick sewers, (a) thresholded 

image of brick sewer; (b) initial estimate of the VP as the centroid of the largest 

connected region in the thresholded image; (c) selection of horizontal mortar 

lines passing through the neighbourhood of the initial estimate of the VP; (d) 

revised (least squares) estimate of VP.
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3.3 Recently Published Research

L. Paletta et al. (1999) have developed a method for automatically detecting 

inlets in a sewer from video images in real time [Paletta & al., 1999]. Exploiting 

prior knowledge of sewer pipe construction, they extract regions of interest 

(defined as trapezoids) to the right and to the left of the distant pipe head. A 

trained neural network identifies any inlet feature within the region of interest. If 

an inlet is detected, its centre is estimated, together with a confidence value that 

the feature is, indeed, an inlet. The system has been evaluated in a laboratory 

environment and achieves a detection rate of 94.6 percent; no false-positives 

were detected and only two false-negatives.

Kolesnik and Baratoff (2000a) present a method for computing the 3-D 

orientations of circular structures appearing in sewer images and their distances 

relative to the robot. The circular features of interest are the boundary of the dark 

region which surrounds the VP of the sewer and the elliptical profile of lateral 

pipe junctions. In both cases a brightness threshold is chosen to segment the 

image. The dark central region around the vanishing point is assumed to be in the 

central sub-threshold area of interest is selected and inlet pipe features are 

assumed to be within the above-threshold segment of the image. The resulting 

two regions of interests are smoothed using median filtering. Edge detection is 

applied to the filtered image to detect the edgels of any ellipses. A conic section 

is then fitted to the edgels. The results are used to estimate camera (robot) 

orientation and to estimate distances within the pipe environment, e.g., distance 

to pipe inlet. Such distance information is a key element of any autonomously 

conducted survey.

Kolesnik and Baratoff (2000b) present an algorithm for recovering the distance 

between pipe joints. The technique uses standard image processing techniques to 

detect the distinctive circular profile of pipe joints. Knowledge of camera a sewer 

pipe parameters allows estimates of distances to be made. A distinctive feature of 

the system is that the robot orients its camera using a laser crosshair projector to 

ensure close alignment of the camera and pipe axes. As a result, the circular
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structures in the sewer project onto circles (rather than ellipses) in the image, 

thereby simplifying the image processing operations necessary for detecting, 

locating, and interpreting them (Kolesnik, 2000).

Moving away from feature detection and analysis, this work has been extended to 

develop a guidance system for a robot [Kolesnik, 2002; Kolesnik and Streich, 

2002]. The simplicity of pipe geometry, together with knowledge of the way in 

which laser crosshairs will appear when projected onto the pipe wall allows very 

efficient analysis of an image sequence so as to recover the robot’s instantaneous 

orientation and hence guide its navigation.

Most recently, the image analysis work of Kolesnic (above) has been brought 

together with the camera technology of the the Center for Machine Perception, 

Czech Technical University Prague to form the basis of the EU funded ISAAC 

Project [http://cmp.felk.cvut.cz/projects/isaac/]. This project, funded for the 

period 2002-3, has yet to produce public output.

3.4 Summary

The literature review has identified a number possible components for an overall, 

initial strategy for the problem of crack detection that is the central concern of 

this project. The process-related ‘active’ state machine [Murray et al., 1995; 

Brunnstrom et al., 1996] is a natural representation for the discrete control steps 

in an inspection cycle. The distinction between attention and fixation 

[Brunnstrom et al.,1996], the latter involving a reorientation of the camera to 

‘centre’ a feature attended to is also natural in such an active vision system. The 

method of VP estimation proposed by Taylor et al. [1998] is appealing for its 

simplicity but its accuracy in untested. The concept of projecting a light-ring onto 

the wall of the pipe to detect pipe joints [Henry and Luxmoore, 1996] suggests 

the possibility either of using pipe joints themselves to estimate a VP (modest 

deformation of joints by the l%-2% prior to cracking would prove problematic) 

or of using luminance thresholds themselves as the basis of a VP estimate (thus
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avoiding the need to have a joint in the current image prior to VP estimation). 

The concept of selecting coaxial mortar joints between bricks in brick sewers 

[Cooper at al, 1998] suggests an approach to the selection of coaxial cracks in 

sewer walls. An outstanding concern is the detection of highly irregular, non­

standard, features such as cracks.
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4.0 Realising the Prototype Active Vision System (AYS)

This section describes the work undertaken to construct the prototype active 

vision system for sewer pipe inspection. Following a high-level statement of 

requirements, the structure of the account reflects the design and implementation 

of the following system components:

i. system-level control architecture;

ii. active vision hardware;

iii. active vision software for camera control and image analysis.

4.1 Requirements for Prototype AVS

The AVS must operate within NME sewer pipes. It will eventually be mounted 

on an autonomous inspection robot but a remotely controlled tractor may be used 

to evaluate the feasibility of active vision system components. This has mounted 

upon it a flxed-axis light source and a small digital camera attached to a camera 

mounting that facilitates controllable orientation of the camera.

The camera provides a signal to image capture and analysis subsystems. The aim 

of image analysis is to identify features of interest. I shall be concerned only with 

detection of coaxial cracks and fractures on the pipe wall, near the camera.

Image analysis and camera control can exploit the cylindrical geometry of the 

pipe to save computational effort when examining each image. Features of 

interest are most reliably detected when they are near the camera. By aligning the 

camera axis with the pipe axis, features on the wall of the sewer pipe nearest the 

camera will appear in the periphery of the image (and not in the centre of the 

image). By manoeuvring the camera so that the VP is centred in the image (at 

least to a reasonable approximation), the robot can achieve the required 

alignment of the camera and pipe axes.
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In operation, the inspection robot first locates the vanishing point and adjusts the 

camera so that vanishing point is centred in the image. Power to the tractor 

wheels is turned on and the robot moves slowly along the pipe processing images 

from the video stream as it goes. As the tractor moves along the pipe, it must 

periodically re-evaluate the position of the VP and make any appropriate camera 

adjustment. A simple ‘time-out’ mechanism can ensure this happens. When an 

image is examined and a possible feature of interest is detected, the robot should 

halt and bring the camera to bear on that feature for detailed analysis (e.g., length, 

width, axial orientation).

Following a successful feature analysis, the robot must again locate the vanishing 

point, orient the camera in that direction, and start the motors which take it 

forward down the pipe, looking for the next feature of interest.

4.2 System-level Control Architecture

Given the above high-level description of the system, it is possible to specify a 

system-level control architecture. Following the active finite state machine 

approach suggested by Murray et al. [1995], Figure 4.1 provides a state-based 

description of the system control. Once the system is ready (initialised on power- 

up), the ‘Determine VP’ state locates the VP, the ‘Fix VP’ state then orients the 

camera towards the VP and the robot is ready to move forward. The robot then 

enters the ‘Detect Feature’ state. Moving forward, it processes the image stream 

looking for features of interest. Periodically, it must check camera alignment, re­

entering the ‘Determine VP’ state. When a feature is detected, the system enters 

the ‘Fix Feature’ state, which determines a new orientation for the camera so that 

the feature can be analysed in more detail. The ‘Analyse Feature’ state develops a 

description of the feature (length, width, axial orientation). When complete, the 

system reports or logs the analysis before re-determining the VP in readiness for 

the next feature search cycle.
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Figure 4.1. Statechart specifying system-level control of active vision system. 

Each state is an active state, associated with the performance of a system 

operation.

4.3 Active Vision System (AVS) Hardware Architecture

The AVS requires a controllable pan and tilt head that will support a miniature 

CCD camera. This assembly must be mounted on mobile robotic inspection 

vehicle. Control and communications software is required. Constraints on the 

design of the prototype AVS are specified in Table 4.1.

An evaluation of the relative merits of purchasing a commercial pan/tilt head and 

controller against design and development of bespoke hardware and software was 

undertaken. The result was a decision to develop a bespoke system. (Appendix 1 

provides further detail of the evaluation.) The details of the bespoke system 

constructed are presented below.
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Table 4.1 Constraints for the prototype AVS hardware.

FEATURE REQUIREMENT(S)

Weight Pan/tilt head plus camera must be sufficiently light to be 

used on a mobile robot system.

Pan/tilt control and 

flexibility

Hardware must be designed to minimise restriction on 

orientation.

Positional accuracy Adequate positional information of the CCD camera 

(choice of optical shaft encoders, potentiometers and 

stepper motors).

Back-Lash A common problem with pan/tilt heads - need to 

minimise in order to fix new target points efficiently.

Power

consumption

The prototype may use a normal power supply. However, 

there is an eventual requirement for the system to run 

autonomously from a battery system so power 

consumption must be kept to a minimum.

Hardware Cost There was a budget limitation of £700-£800.

Software Specification, design, programming and testing for the 

control, interface and input/output capabilities.

Processing Processing for the control mechanisms would have to be 

kept to an absolute minimum. There would already be a 

major processing overhead for analysis of the video 

stream.

Display A display giving information on positions of motors and 

of the commands, etc that had been entered would be 

advantageous.

Portability A system that was designed for use by other robotics/AI 

applications would be extremely desirable.
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4.3.1 The Pan/Tilt Head.

The design of the head was developed using AutoCAD (version 12). The 

casement for the pan/tilt head was Dural, a type of aluminium. This provides a 

chassis for two stepper motors that control the orientation of the camera.

Four-phase hybrid stepper motors were used in preference to the permanent 

magnet types as they offered much higher working torque and better stepping 

rates. These factors were of significance, as the motors would need to move the 

CCD camera and fittings. One of the motors would need to move the entire 

weight of the head. The chosen motors were capable of delivering a high detent 

torque even when not energised. The detent torque of 5mNm, and a holding 

torque of 70mNm, make this motor capable of moving the Pan and Tilt Head 

comfortably.

The motors had a step angle of 1.8 degrees. Half step mode gives 0.9 degrees per 

step.

The weight of each stepper motor is 187g. The remaining weight of the housing 

for the head was engineered to ensure a total weight of less than 1kg as required.

The chosen stepper motors has a rated voltage of 5 V, and a rated current of 0.5A. 

These allow the motors, and the rest of the electronics, to be powered from a 

single dedicated power supply based in a controller unit.

4.3.2 The CCD Camera

A commercial camera from WATEC CO Ltd, Kawasaki, Japan was chosen. The 

WATEC model WAT-902A CCD camera was chosen for weight, cost, resolution 

and power consumption. It was supplied by Vista Vision Systems (Levanroy)

Ltd. The pan/tilt head and camera assembly is shown in Figure 4.2.
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Figure 4.2. Pan/tilt head assembly with WATEC CCD Camera.

4.3.3 The AVS Control Unit.

The Active Vision System Control Unit is housed in a standard, modular, 

nineteen inch, Euro-card sub-rack system (Figure 4.3).
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Figure 4.3 AVS Control Unit.

The Control Unit comprises the following:

• Stepper Motor Programmable Controller - Card 1

• Quadrature Track-ball - Card 2 (development purposes only)

• Stepper Motor Drive - Cards 3&4

• HITACHI LED Display - Card 5

• Opto-Coupler Input/Output - Card 6

• pan/tilt Communications - Card 7

• Power Supply Unit (PSU) - Card 8.

The Controller Unit is powered from a single 240V power supply, from which 

the on-board PSU supplies all the voltage requirements for the cards, led, camera, 

motors, etc. The system is ventilated by a low voltage, four-inch diameter fan, 

based on the rear of the rack mounting. Input from the pan/tilt head is via the 

communications card.

Output from the Unit is via cards (1) and (2). The Euro-size peb cards are 

mounted and held in place using quick release pins, mounted at each comer of 

the front plates. Each card has a red LED surface mounted on the front plate to
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indicate that the card is operational. Each Euro-card fits into a standard back­

plane in the sub-rack mounting using DIN 41494 Euro-size 32/64 way 

connectors.

4.3.3.1 The 2-Axis Stepper Motor Programmable Controller Board (Card 1)

The 2-axis stepper motor programmable controller board is designed to control 

one or two stepper motors via stepper motor drive cards. The board is 

programmed via an RS-232 serial link, with a suitable programming device. The 

board has the capability to move both axes at the same time, or each 

independently of the other.

The board has the capability to be “daisy-chained” with other processor boards, 

where one acts as a “master” board co-operating with the other “slave” boards. 

The combined effect of this is increased processing and control capabilities. The 

board has 32k x 8 bits of non-volatile RAM memory. Stand-alone operation is 

envisaged, hence we require a non-volatile memory, as power may be lost at any 

time.

The stepper motor controller board uses a 5 V regulated dc supply (of less than 

one Amp), which is supplied by the on-board PSU. The processor board provides 

facilities for user input/output, via Darlington opto couplers. This facility has 

been included to allow up to eight inputs/outputs. These could take the form of a 

number of control functions, such as hand-shaking with a PLC, reading sensors 

or some other user defined interface. The processor board is fitted with a 64 way 

DIN 41494 connector, which fits into the back-plane of the Controller Unit.

The 4-phase hybrid stepper motors are driven by unipolar 2 Amp stepper motor 

drive boards, one for each stepper motor. These drive cards are located in cards 3 

and 4 on the main Controller Unit. The drive cards convert the signals from the 

stepper motor processor controller board, into the required stepper motor 

sequence for the hybrid stepper motors. There are two modes of operation for 

energising the motors, via the driver cards. These are Full Step or Half Step
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modes. To step a motor in a particular direction, a specific switching sequence 

for the drive transistors Q1-Q4 needs to be followed. If the sequence is followed, 

i.e., unipolar full step mode, it results in the rotor advancing through one 

complete step at a time.

4.3.3.2 Stepper Motor Drive Cards (Cards 3 and 4)

The 4-phase hybrid stepper motors are driven by unipolar 2 Amp stepper motor 

drive boards, one for each stepper motor. These drive cards are located in cards 

(3) and (4) on the main Controller Unit. The drive cards convert the signals from 

the stepper motor processor controller board, into the required stepper motor 

sequence for the hybrid stepper motors. There are two modes of operation for the 

stepper motor, Full Step or Half Step modes of operation.

4.3.3.3 HITACHI Alpha-Numeric Display (Card 5)

The HITACHI alphanumeric LED type display is provided so that process and 

control messages can be built into programs. This functionality will aid an 

operator and positional information on the pan/tilt head and other useful 

information, via the LED on the front of the Main Controller Unit. The messages 

are alphanumeric in format. This type of LED is an intelligent, alphanumeric, dot 

matrix module with integral CMOS controller and driver IC’s. The HITACHI has 

a high contrast and a wide viewing angle, with LED back lighting. The LED 

display is incorporated into an in-house built Euro-size pcb, incorporating a DIN 

41494 32 way connector, and modifications to enable correct voltages to be 

applied from the on-board pcb.

4.3.3.4 Opto Coupler Input and Output (Card 6)

Darlington I/O opto couplers have been installed on the Programmable Controller 

Board. These Input/Output devices can be programmed to drive other devices 

that may be added to the AVS.
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4.3.3.5 Switch Mode Power Supply Unit (Card 8)

A 25-Watt, triple output, switch mode PSU was the basis for the on-board PSU 

based in the Controller Unit. The Unit will provide +5V and -/+ 15 V as output 

voltage. The PSU was incorporated into a Euro-size card and modifications 

made, to enable safety cutouts to be implemented. The PSU card incorporates an 

on-board fuse, and a surface mounted fuse on the front plate of the card. The PSU 

has a voltage regulator to ensure there is a smooth voltage supply. The voltage is 

supplied via a standard EEC lead. All electrical safety standards 

have been met, and the unit is fully PAT tested and correctly earthed.

4.3.4 Tractor Unit

For the purposes of evaluating the prototype system, the pan/tilt head and camera, 

together with a local power supply, were mounted on a small, 6-wheel, radio 

remotely controlled tractor, which could be placed in a laboratory-based NME 

sewer pipe (Figure 4.4).

Figure 4.4 . Active vision camera mounted on 6-wheel tractor.
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4.4 AVS Software Architecture

The software required to implement the AVS active states (Figure 4.1) features 

two image analysis modules, ‘Detect VP’ and ‘Detect Feature’, and two camera 

control states, ‘Fix VP’ and ‘Fix Feature’. The latter two make use of a single 

control module for the pan/tilt head and camera. The remainder of this section 

describes the development of the camera control software and then describes the 

image processing modules.

4.4.1 Control Module

A small library of control routines has been developed. To meet the requirements 

of the programmable controller hardware, the chosen programming language is 

RSL, a structured programming language very similar to ‘C’. The programmable 

controller board has an enhanced EPROM and the control software can be 

installed in the EPROM to facilitate autonomous operation.

The control software to be used within the AVS takes account of mechanical and 

control constraints of the AVS.

4.4.1.1 Mechanical Constraints

Mechanical constraints arise from the hardware engineering of pan and tilt head. 

The hardware allows multiple turns (n360°) of both the main body of the pan and 

tilt head, and of the attachment for the CCD camera head. This must be restricted 

via software design to limit the extent to which the pan/tilt head may rotate to 

avoid snaring of the communications cables.

Other mechanical constraints relate to the rotational velocities and accelerations 

that may be applied to both the main body of the pan/tilt head and the camera 

attachment. Software must control the momentum of each of these items in order 

to optimise positional integrity. Velocities and accelerations have been 

determined and these are incorporated into the software design. We maintain a
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uniform angular velocity in each axis of rotation, though not necessarily the same 

velocity in each axis.

4.4.1.2 The Control Element of the AVS.

The kinematic control for the camera was developed using a LINKLAB, a 

software package designed to take a description of a robotic effector in terms of 

joints and link length and return code which is a kinematic controller for the 

effector. The AVS pan/tilt head and camera can be represented as three-link 

model (Figure 4.5). The controller computes the desired pan and tilt rotations for 

each of the two stepper motors in the pan/tilt head. The LINKLAB simulation 

environment allows verification of the controller’s performance prior to 

implementation (Appendix 2). The controller software was implemented in RSL.

Axis of rotation 
for pan

CameraAxis of i 
for tilt

otation

Camera
Mounting

Figure 4.5 Wire-frame illustration of the pan/tilt head and camera illustrating 

links used by LINKLAB to determine a kinematic controller (see Appendix 2 for 

detail).
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4.5 Image Analysis Software Modules

There are three image analysis states in the control statechart of Figure 4.1, 

Determine VP, Detect Feature and Analyse Feature. For the purposes of this 

feasibility study, the only features of interest were the VP and coaxial cracks. 

(The development and evaluation of the software to estimate VP, and to detect 

coaxial cracks form a central part of this feasibility study and the full details, 

together with results, are discussed in subsequent chapters.)

The software modules were developed within the TINA Vision Research 

Environment made available by the University of Sheffield Artificial Intelligence 

Vision Research Unit (ATVRU).

4.6 Hardware and Software System Summary

The completed prototype system comprises the robot unit with pan/tilt head and 

CCD camera connected by a control and communications cable to an control 

unit. This, in turn, is connected to A PC, which has hardware and software for 

video image acquisition and analysis. Software on the PC is summarised in Table 

4.2.

The evaluation of this system is described in Chapter 7 following description of 

the software modules for vanishing point detection and coaxial crack detection in 

Chapters 5 and 6, respectively.
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Table 4.2 Software on the AYS PC.

MS - WINDOWS LINUX 2.0

Video Blaster SE software X -  Windows

Terminal Emulation G N U -C

CCD Feedback XXGDB

AVS Software Interface to TINA Vision Research Environment

Programmable Controller

LINKLAB Robotics Research Tool

Image Processing Environment

(XGRAB)
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5 Detecting Vanishing Points in Images of Concrete Sewers

The VP of a sewer pipe can be exploited in at least three respects:

1. If the camera is oriented so that the VP lies on camera axis, then the VP is 

centred in the camera image. Accordingly, the best-illuminated and most 

highly resolved region of the image lies in the periphery of the image, as this 

is where the wall of the sewer is nearest to the camera. When examining the 

image for features of interest, an appreciable region in the centre of the image 

of the video stream can be excluded from processing because, features, 

especially cracks, are most reliable detected in the periphery of the image. 

This approach offers efficiency gains in image processing.

2. The VP can be used as a reference point for the geometry of the pipe. The 

diameter of a relatively undamaged clay or concrete sewer pipe is known at 

the outset of a survey. Thus, if the camera and pipe axes aligned, it is possible 

to estimate the dimensions and relative distances of features appearing on the 

wall of the pipe. The alignment of the axes is never perfect. Errors in 

estimates are proportional to displacement of the optical centre of the camera 

from the pipe axis. As long as this is small, especially in relation to the 

diameter of the pipe, then the errors will be small.

3. The VP may be used in controlling the path of the robot. As the tractor moves 

forward, the alignment of the camera axis and the pipe axis is displaced. If 

the camera has not moved (rotated) relative to the tractor upon which it is 

mounted, then the angular displacement of the of the pipe and camera axes 

may be used to derive a correctional steer for the tractor.

The vanishing point usually lies towards the centre of sewer survey images and 

may reasonably be expected to lie within the image boundary. Although the 

survey camera may yaw away from the axis of the pipe this rotation is unlikely to 

be severe enough to move the vanishing point outside the image frame. By 

assuming the vanishing point to be visible in the input image we avoid the need 

for both the probabilistic scheme of Lutton et al. [1994]. The major difficulty in 

locating the vanishing point in images of clay sewers is the lack of geometric
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features; longitudinal lines are not marked on the wall of concrete and clay pipes. 

Intensity, rather than feature-based techniques must be used.

The following sections describe attempts to locate the vanishing point of a small­

bore concrete sewer using two such intensity-based methods. The first method is 

that of Taylor et al. [1998] (see Chapter 3) and the second is an implementation 

of a new method based upon multiple luminance thresholds (as originally 

suggested in the summary of Chapter 3). These methods are evaluated using 

library images from a sewer survey conducted in Acton Town, London. The 

evaluation compares the relative performance (accuracy and speed) with which 

the methods make an estimate of the VP. The outcome of this evaluation is used 

to inform the laboratory-based experiments on the prototype AVS (Section 7).

5.1. Intensity-based Vanishing Point Detection

Consider a survey camera viewing the internal wall of a clay or concrete sewer 

illuminated by a single point light source. Light travelling from the pipe wall to 

the imaging plane of the camera decays with an inverse square law. In an ideal 

pipe, with the point light source and the principal axis of the camera coincident 

with the cylindrical axis of the pipe, the grey-level image of the pipe would 

appear as a series of concentric grey rings with grey level reducing towards the 

centre of the image. The vanishing point would lie at the centre of that pattern. Of 

course, the camera is not, in general, parallel to the pipe axis. (If it were, the VP 

would be fixed at the image centre and no new information would be provided.) 

And not even the most pristine sewer pipe is ideal.

In practice we see a roughly elliptical dark area near the middle of the image. The 

central portion of this area is usually black, producing too little light to register 

on the CCD array of the camera. Image intensity becomes steadily higher with 

distance form the centre of the region; producing a series of roughly concentric, 

approximately elliptical, “isoluminance” contours along which image intensity is 

constant. For a fixed light source, these contours are a function of the relative
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orientation of the camera and pipe axes and can in principle be used to estimate 

the position of the vanishing point.

Taylor et al. [1998] use Gaussian smoothing to reduce noise before applying a 

single threshold to generate an “archipelago” of dark regions in the image. They 

assume that the largest such region includes the dark region generated by the 

most distant points in the pipe and that that the region is roughly symmetrical 

about the vanishing point. Finally, they compute the centroid of the dark region 

and take this as a point estimate of the vanishing point. This approach is 

computationally cheap but very sensitive to noise and any violation of the 

assumptions made. Broadhurst [2000] applied this method to pairs of images, 

captured from the same viewpoint but under different lighting conditions. The 

pair of VP estimates produced was then combined by simple averaging to 

produce a slightly more robust estimate. The intention in both cases, however, 

was only to locate a region of (dis)interest around the vanishing point (option 1 

above). In these circumstances accurate estimation of the vanishing point is not 

required.

Tsukiyama [1995] describes a multi-threshold method designed to solve a similar 

problem, showing that the relative orientation of two planar surfaces can be 

estimated from the pattern of elliptical isoluminance contours that arise when 

both surfaces are illuminated by a single, point light source. This pattern is 

extracted by applying a set of thresholds to identify isoluminance contours, 

segmenting each contour into circular arcs and using a least-squares method to 

estimate the centre of the pattern from the set of circle centres. This algorithm is 

similar in structure to that of Cooper et al. [1998] who locate the vanishing point 

in images of brick sewers, and raises the possibility of using multiple thresholds, 

contour fitting and a least squares approach to produce a vanishing point estimate 

that is reliable enough to allow both the determination of regions of interest and 

some degree of robot/camera control (option 3 above).
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5.2 Vanishing Point Estimation from Isoluminance Contours

Estimation of the position of the vanishing point of a concrete sewer proceeds as 

follows:

1. Apply Gaussian smoothing to reduce noise. The Gaussian parameter is 

typically in the range 1.0-3.0.

2. Apply a series of image thresholds, again determined empirically. This 

generates contours that segment the image into bands of similar grey level. 

Under ideal conditions (above), the boundaries of these bands, the 

isoluminance contours, would be circular. Under non-ideal conditions, they 

may be described as conic sections, (c.f. Pan et al. [1994,1995]).

3. Segment and fit conic sections to the isoluminance contours. This is achieved 

using techniques incorporated in the TINA environment and based on 

Pridmore et al. [1987].

4. Estimate the vanishing point position by taking the mean of the centres of the 

conic sections.

The advantage of the conic section method is that should be more robust than the 

single threshold technique and gives an estimate of precision. The disadvantage 

is that it is a more computationally expensive method.

5.3 Evaluation

Digitised images of from the Acton Town sewer pipe video surveys have been 

captured. The evaluation of the accuracy of the two methods is necessarily 

subjective in that the true VP in the images cannot be known. The protocol is 

illustrated below.
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To illustrate the evaluation, four pairs of images are presented below (Figure 

5.1(a-d)). Each image is analysed by each of the two methods presented using the 

same computer hardware (see above). The cross hair in the image represents the 

VP as estimated by the respective method. The method of Taylor et al. is labelled 

as the ‘Region Method’ and the method using isoluminance contours is labelled 

the ‘Conic Section Method’. In the images produced using the Region Method, 

the diameter of the circle about the estimated VP corresponds to the description 

of the neighbourhood of the VP as described in Chapter 3. The circle about the 

estimated VP in the Conic Section images is set at an arbitrary fixed value and 

has no significance.

Considering each image in turn:

Image 1: This is a reasonably unproblematic image and both methods might be 

thought to produce reasonable estimates. Closer inspection suggests that the 

Conic Section method is marginally better as it is more centred in relation to the 

2 or 3 contours associated with pipe joints. The centroid computed by the region 

method responds to the irregular (keyhole) shape of the thresholded dark region.

Image 2: This is a much more difficult image to analyse. Again, both methods 

achieve reasonable estimates. The conic section method produces the marginally 

better estimate, as the crosshairs appear to be inside the faint image of the most 

distant pipe joint. The diameter of the neighbourhood computed for by the region 

method includes much of the poorly illuminated wall of the pipe on the right of 

the image and so the VP estimate will have been generated using pixels not 

associated with the VP itself.

Image 3: In image 3, the region method has identified a wholly inappropriate 

region as the basis for its estimate. The conic section method is robust in the face 

of this problem.
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Image 4: Again, the region method has identified an inappropriate region as the 

basis of its estimate. The conic section method is considerably better, appearing, 

as it does, to have clearly picked up the edges associated with the clearly visible 

sequence of pipe joint flanges.

Image 1: Conic Section Method

Image 1: Region Method 

(a)
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Image 2: Conic Section Method

Image 2: Region Method

(b)

52



Image 3: Conic Section Method

Image 3: Region Method

(c)
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Image 4: Conic Section Method

Image 4: Region Method

(d)

Figure 5.1(a-d). Comparison of two methods for estimating the VP of sewer pipe 

images. VP estimates indicated by red cross hairs.
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5.4 Discussion of Results

In each case, the Conic Section Method gives a better estimate of the VP. 

Inspection of images 3 and 4 revealed the fundamental weakness of the Region 

Method: the single threshold to define the largest connected ‘dark region’ has 

included appreciable regions of the image which are not associated with the VP.

The effectiveness of the conic section method, and especially so in image 4, 

suggests that the method could usefully be compared to the method of Xu at al 

[1998] used to detect pipe junctions at some later date.

The region method, though seemingly the less accurate of the two methods, is 

very much quicker in terms of processing time. For practical, real-time, 

applications, we have to trade-off computational efficiency for 

accuracy/precision. In this case we are dealing with processing times that 

generally differ by roughly (n*tc) where n is the number of contours fitted and tc 

is the time to fit the centre of one conic section. In this evaluation, tc was about 

ten minutes! Roughly, ten times the time for the Region-based method. Although 

the significance of this will diminish with improvements in computing hardware, 

at this time, the use of the multiple contour (conic section) method is not 

practicable.
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6 Crack Detection

The prototype A VS must detect features of interest within the inner surface of 

sewer pipes. This feasibility study is concerned specifically with the detection of 

cracks in the sewer wall. As described in Section 5, using the estimated VP as a 

reference it is possible, to a reasonable approximation, to align the camera axis 

with the cylindrical axis of the pipe. When this is done, the best illuminated and 

most highly resolved region of the image lies in the periphery of the image as this 

is where the wall of the sewer is closest to the camera. <.

As the survey tractor advances through the pipe, sampling and examining images 

captured from the video stream, candidate cracks will migrate into the periphery 

of the image from the centre of the image. Of course, there may be more than one 

candidate crack in any image (Figure 6.1).

Figure 6.1 Multiple Cracks near a pipe junction in NME Sewer Pipe (Acton 

Survey).

The primary objective of the work described in this chapter was to operationalise 

the ‘Detect Feature’ state (Figure 4.1) so that the system carries out feature 

specific processing of an image. This involves using image processing modules,
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developed within the TINA environment [TINA], so that they could be used in 

this application context and includes determination of values for image 

processing parameters that are effective at highlighting cracks in the sewer wall. 

A second objective was to develop an approach to determining a region of 

interest, associated with a candidate crack, to be fixed (centred) by the AVS prior 

to detailed feature analysis. Again, use of library images from previous video 

surveys means that this is a subjective exercise. As in a conventional CCTV 

survey, judgement plays a significant part in determining which candidate cracks 

are of interest and which are not. The extent to which both of these objectives 

were met was later evaluated in the laboratory prototype (Section 7).

In order to achieve these goals, an image analysis module, CrackTool, was 

developed and added to the library modules of the TINA vision research 

environment. In processing an image, CrackTool first applies Canny edge 

detection and then processes the resulting image looking for edges that may be 

associated with cracks (see 6.2). Given a candidate crack, CrackTool then uses a 

simple heuristic to compute a ‘feature centre’ which is an estimate of the centre 

of the region of interest. If there is more than one candidate crack in the image, a 

series of such centres is generated. Each of these steps is now described.

6.1 Edge Detection

Many edge detection algorithms or operators exist; most are based on image 

differentiation. The first derivative of image intensity is usually estimated and 

significant peaks, which correspond to edge locations, are marked. In 1986,

Canny proposed an operator, which has become the de facto benchmark method 

for edge detection [Canny, 1986]. This operator is derived from an optimisation 

procedure seeking good detection (an edge detection algorithm should mark all 

edges and only edges), good localisation (points located should closely conform 

to the corresponding edge) and minimal response (each edge should be uniquely 

marked).
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The Canny algorithm involves removal of image noise by Gaussian smoothing 

followed by differentiation and a search for significant peaks. Canny edge 

detection requires a number of parameters to be specified: (Gaussian) smoothing 

(<T ), string length (/) and thresholds (Wm W ). A relatively low a  value provides 

minimal smoothing; maintaining sharp boundary detail but permitting a high 

volume of edge data, some of which may be the result of noise. A relatively high 

g  value gives greater noise reduction but will blur edge boundaries and may lose 

significant features. The line length threshold enables short edge strings to be 

discarded, discounting unwanted edge detail. Illumination or other effects may 

however cause significant line structures to be fragmented. High length 

thresholds will subsequently discard these fragments. The thresholds, tmax and 

tmin, are used to assess the height, and therefore significance, of peaks in the first 

derivative of intensity. The determination of appropriate values for these 

parameters results in an improved the signal to noise ratio in the images.

If a specific feature of known shape and dimensions is to be recoverd from an 

image, it is possible to use an automated thresholding technique to vary 

parameter values over a predetermined range so that the routine gives the ‘best’ 

image (e.g., based on uniformity and shape measures [Sahoo et al, 1988]. 

However, cracks do not meet the criteria of a ‘known shape’ and no such 

reference feature is shared in all sewer images. Accordingly, the task of choosing 

parameter values which provide good results across a range of actual survey 

images is a subjective task.

In order to determine a set of parameter values that give satisfactory results on 

actual surveys I carried out a study using images from the library video footage of 

the Acton Town Sewer Pipe Inspection Survey. A total of eight images were 

selected from a sub-set of approximately thirty original images acquired. These 

eight were identified as giving a fair representation of the range of crack features 

found commonly within sewer pipes. Each of the eight images was treated as 

follows. The original digitised image captured from the video stream using 

hardware and software described earlier (Ch.4) was subjected to Canny edge 

detection as the Canny parameters were varied over a range of values.
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Appropriate threshold values were quickly determined as tmin = 5; tmax= 10. The 

procedure to identify appropriate values for other parameters can be illustrated 

using an example, as follows.

Figure 6.2 presents a sequence of 12 Canny images for one of the eight original 

images from the Acton Town Survey sequence. Figure 6.2(a) shows the original 

sampled image: a pronounced coaxial crack can be seen in the top right quadrant. 

Figure 6.2(b) is the same image with the graphical output of the Canny Edge 

detection imposed upon it (cr=1, tmin=3, tmax=5,1= 5). The label (index) assigned 

to each processed image, together with the values of the Canny parameters that 

generate that image, are given at the foot of each image.

6.2(a) Crack 1 (Canny processing not applied)
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Figure 6.2. Canny Edge detection sequence applied to image of ‘Crack 1* for 

different Canny parameter values, (a) Original image from the Acton Town 

sequence. Note the coaxial crack in the upper right quadrant, (b) Edge detection 

applied to the upper right region and superimposed on the original image.

(c)-(m) remaining Canny images in the search.

For the sequence in Figure 6.2, a subjective assessment suggests that the main 

feature of interest (the appreciable coaxial crack) is distinguished from 

background in images 6.2(i) and 6.2(1) and thus, that parameter values of: oz4; 

tmin=3; tmax=5; 5</<10. A similar judgement was made over all 96 images 

examined. The results obtained suggest that effective parameter values are <r= 4, 

/ = 5, lower and upper thresholds of 3 and 5 respectively.

This subjective, empirical determination of parameters is common in image 

analysis and is appropriate as there is good reason to believe that the parameters 

chosen in this way will be effective on a range of sewer images. One of the most 

attractive practical attributes of the Canny algorithm is the stability of the 

thresholding with hysteresis method. As tmin and tmax determine an allowable 

range of 1st derivative values, rather than a single hard threshold value, it is 

comparatively easy to determine a range of threshold values that are applicable 

across similar images. The remaining parameters, a  and /, effectively determine 

the width and length, respectively, of the features detected. The apparent size of a 

crack in any given image depends upon the actual parameters of the feature and 

the viewpoint - particularly viewing distance. Seeking cracks in the periphery of 

the image restricts the effective viewing distance, and so puts a constraint on the 

apparent width of any cracks. This in turn restricts the range of a  values required 

to detect them; the a  determined for a small set of images should be valid in 

general. The length threshold only seeks to reject edge strings that are too short to 

arise from cracks. Restricting viewing distance by only searching the periphery 

similarly eases selection of / as viewing distance only varies a little. The apparent 

length of the shortest edge worthy of consideration will also vary only slightly. A
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value chosen to suit a small test set can reasonably be expected to be applicable 

to a wider class of images.

6.2 Coaxial Cracks and Crack Centres

Having determined edge detection parameters that gave subjectively good results 

in highlighting cracks of interest, the next objective was to identify an image 

region containing the crack of interest with the intention of orienting the camera 

towards these cracks for detailed inspection/analysis.

The features of interest for this feasibility study are coaxial cracks. Code was 

developed which processed a Canny edge image to identify this type of crack 

(Appendix 3). Given a set of edges identified by Canny edge detection, as above, 

the algorithm to distinguish coaxial cracks from other features and noise applies a 

sequence of criteria which progressively eliminate those features to be excluded 

from consideration. In order to visualise this processing, the edges eliminated at 

each stage of processing are assigned different colours.

The Canny operator as implemented in the TINA environment represents edges 

in any image as a linked list of edge points. An image is represented as a list of 

such linked lists. This data structure provides the input to the crack detection 

routine (CrackTool). A two-stage ‘filter’ determines candidate cracks. First, a set 

of tests is applied to each point in each edge in an image. All edges which survive 

this first filter are then considered pair-wise. Each pair which passes the second 

‘filter’ is considered to be a candidate crack. Before the tests were applied each 

string was Gaussian smoothed to reduce noise. The Gaussian smoothing was 

applied independently to x and y coordinates, both expressed as functions of arc 

length.

The first filter tests applied to each edge are as follows:

1) Exclude edges that are not sufficiently in the periphery of the image. A 

rectangular boundary, centred on the vanishing point, defines the region of
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interest. If the percentage of points in an edge that fall inside the rectangle 

exceeds a user-defined threshold, that string was rejected (coloured blue on 

the output image).

2) Exclude edges that are too short to be cracks. Remaining edges whose length 

is below a user-defined length threshold (i.e. which were largely outside the 

central region but too short to be considered further) were rejected (coloured 

green). In practice this threshold was usually set to the same value as the 

Canny length threshold.

3) Reject edges that are not (approximately) co-axial. For each remaining edge, 

a straight line is fitted through the end-points of that edge. The length of the 

normal (perpendicular distance) from the vanishing point to each such line is 

computed. If that distance exceeds a user-defined threshold the line is 

rejected (coloured yellow).

4) Remaining edges (coloured red on the output image) are passed to the pair­

wise test.

The second filter is applied as follows:

1) Determine what proportion of points in a given edge lies within a threshold 

distance of another edge. To test edges A and B, each point in A is considered 

in turn. The distance between this point and each in point in B is measured 

and the minimum such distance for that point is found. A count is kept of the 

number of points in edge A whose shortest distance to edge B is below a 

threshold value.

2) Select candidate cracks as pairs of edges. If the percentage of points in A that 

are within a minimum distance to B is above a user-determined threshold, the 

edge pair is considered to be sufficiently similarly oriented and closely spaced 

to be a candidate crack (coloured cyan on the output image).
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Finally, an estimate of the centre of interest for each crack is determined. The 

estimate is computed as the centroid of the four end-points of the two matched 

edges. (Graphically, the centre is represented as a cyan cross surrounded by a 

cyan circle.) The result of applying the CrackTool analysis to an image is 

illustrated in Figure 6.3: the edges are coded as above; crack centres are 

highlighted as Cyan cross hairs.

Consider Figure 6.3(a) which is the ‘Crack 1* image in Figure 6.2. The tool 

appears effective in detecting the coaxial crack in the upper right quadrant of this 

figure (Figure 6.3(b)). The blue crack edge(s) not in the periphery (furthest from 

the camera) are poorly resolved, being made thin by perspective. The yellow 

edges are not coaxial. The rightmost yellow edge might be considered coaxial for 

much of its length but the heuristic test for orientation fits a line through the end 

points and this line is clearly not axial. (A least-squares line fit over all points in 

the edge could be considered as an alternative approach at a later date.) The red 

edge has no matching edge; the cyan edges seem effective in defining the clearly 

resolved crack of interest. The multiplicity of cyan cross hairs indicates that the 

processing has identified a number of edge pairs, each of which has an associated 

centre (although it is not possible to distinguish them in the graphical image 

presented).
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(a)

(b)

Figure 6.3 (a-b) Cracktool highlights edges: blue edges are not sufficiently in the 

periphery; green edges are too short to be cracks; yellow edges are not 

sufficiently axial in their orientation; red edges have no matching edge to form a 

crack; cyan edge pairs are candidate cracks: centres are highlighted as cyan cross 

hairs.
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Figure 6.4 provides two further examples of images processed using the crack 

detection software module, CrackTool.

71



In Figure 6.4(a) three cracks (and respective centres) have been detected. The 

uppermost and lowermost of these are very short and must be considered false 

positives, suggesting that an adjusted length threshold may be warranted. 

However, the third crack detected is the peripheral component of a coaxial crack 

that extends into the pipe and this may not have been detected if the length 

threshold had been greater. Much the same can be said of Figure 6.4(b).

However, in this case, the two uppermost cracks appear to be part of a crack 

across the roof of the pipe that does not, as a single feature, fall within the criteria 

which select for coaxial orientation.

6.3 Summary

This chapter has used library images of sewer surveys to establish the feasibility 

of detecting coaxial cracks in the periphery of images. Having determined a set of 

parameters for Canny edge detection, it described the development of an image 

analysis tool, CrackTool, which seeks to identify candidate cracks.

For the purposes of the prototyping exercise, these results suggest that the crack 

detection software does, indeed, select candidate cracks. However, within the 

features detected, there are both false-positives and false-negatives. It will not be 

possible to eliminate both of these forms of error and, in practice, a balance will 

have to be established that trades-off wasted analysis and reporting of false- 

positives with failure to report false-negatives. The determination of the balance 

point will depend upon field trials of any advanced prototype and is beyond the 

scope of this initial study.
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7 Laboratory-based Prototype Testing

The final piece of work undertaken in this feasibility study was to test the 

prototype tractor-mounted A VS in a laboratory setting. The goal was to 

demonstrate that the software developed for the prototype using the Acton Town 

Survey images and the camera control software (developed using LINKLAB) 

worked effectively in a test environment. This chapter describes the laboratory- 

based test rig used for the prototype testing; it illustrates the application of the 

image analysis routines to images from the test rig; finally, it illustrates the 

operation of the A VS to control camera head movement.

7.1 Test Rig

The tractor with pan/tilt head and camera is illustrated in Figure 7.1. In figure 7.2, 

the tractor is positioned in the mouth of the concrete sewer pipe. The far end of 

the pipe is masked to eliminate light entry. Coaxial cracks are simulated using 

black tape. The tractor is connected via a communications cable to the system 

control unit. In turn, this is connected to a PC which runs the image capture and 

analysis software (see Table 4.2, above).

(a)
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(b)

Figure 7.1 Prototype AVS. (a) radio controlled tractor mounted AVS. (b) The 

pan/tilt head and camera and single, fixed-axis, light source as mounted at the 

front of tractor.

Figure 7.2 Prototype AVS in the mouth of a concrete NME sewer pipe. The tape 

used to simulate coaxial cracks is also visible, running into the pipe at about 2 

o’clock and 9 o’clock.

74



7.2 Image Analysis Tests

With the robot positioned in the test rig (Figure 7.2) pipe images can be captured 

and then processed using the TINA modules described in Ch.5 (VP determination 

-  region method) and Ch.6 (crack detection).

7.2.1 Initial Qualitative Evaluation

The images of Figure 7.3 show a selection of the pipe images that were used to 

test the modules. In each image, the direction of the camera axis is indicated by 

white cross-hairs. The VP is located using the method of Taylor et al [1998] as 

evaluated in Chapter 5. The estimate of the VP in the image is indicated by blue 

cross-hairs. Finally, the coaxial cracks detected by the CrackTool module as 

developed in Chapter 6 are defined by the cyan edgels and the 'crack centres' are 

marked by cyan cross hairs.

(a)

75



(b)

(c)

Figure 7.3. Processed images from test rig. The images (a-c) provide appropriate 

qualitative evidence of the effectiveness of the state-related analysis routines 

(white cross-hairs indicate direction of camera axis; blue cross-hairs the 

estimated VP; cyan cross-hairs the crack ‘centres’.
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These images (and others not illustrated here) provide sound qualitative 

confirmation of the effectiveness of the VP determination and crack detection 

modules. The ‘ideal’ conditions of an unused pipe significantly diminish the 

problem of noise in each image. The VP determination process has, perhaps, 

benefited from this in particular.

7.2.2 Quantitative Evaluation for VP Estimate

Table 7.1 presents quantitative data to support the initial qualitative test just 

described. Images were captured with the camera axis oriented away from the 

VP. The captured images were represented to the TINA VP location module such 

that the VP was subjectively located approximately at x = y = 150 and the 

direction of the camera axis was ‘off centre’ in respect of the VP. The TINA VP 

module then computed the estimated VP position.

Table 7.1. Computation of estimated coordinates of VP (in pixels). The poition of 

the camera axis is given by Camera-x and Camera-y, respectively. The estimated 

VP is given by the third and fourth columns. The actual VP was (subjectively) 

centred at 150:150.

Image Camera-x Camera-y estVP-x estVP-y

1 231 38 158 146

2 93 41 157 145

3 249 237 157 147

4 68 237 158 145

5 130 77 157 147

6 100 76 157 145
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The computed estimates of the VP in Table 7.1 show good precision. In respect 

of accuracy, given that the original centring of the VP was subjective, it is not 

possible to say whether the deviation in the estimates (in relation to the 

subjective target 150:150) arises from a lack of accuracy or from some systematic 

error. If so, the error in accuracy is still marginal and well within acceptable 

bounds for all practical purposes.

7.3 AVS Control

Figure 7.2 (above) shows the robot positioned in the test rig. Figure 7.4 shows 

similar images taken from closer in (the pipe joint flange forms an arc across the 

top of the image). The tape which simulates the coaxial crack is at about 8 

o’clock. In Figure 7.4(a) the camera is is not oriented to any feature. In Figure 

7.4(b) it has fixed the VP. In Figure 7.4(c) it has centred the region of interest 

containing the crack. Testing of the AVS control system has two elements 

described, in turn, below.

(a)
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(b)

(c)

Figure 7.4. Active control of the camera head. (Note: the bright spot in the centre 

of the image is the reflector of the fixed-point illumination source on the tractor.)

7.3.1 Recovery of VP alignment

In the first, the camera axis was aligned with the pipe VP of fourteen images and 

then displaced. The aim was to see if the system could recover the original 

position by estimating the pan and tilt angles needed to re-centre the VP. The 

effects of the displacements are illustrated by Figures 7.5(a-b). The test results 

are given in Table 7.2. The first column identifies the test image (tif file); the 

second and third columns are the introduced displacements (expressed in stepper 

motor steps -  half step mode); the fouth and fifth columns are the calculated
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angular displacements (expressed in stepper motor steps -  half step mode) 

needed to recover the estimated VP as computed by the pan-tilt software 

controller.

(b)

Figure 7.5. Effect of introducing controlled displacements away from the VP into 

direction camera axis.
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Table 7.2. Displacement and recovery of position in stepper motor half-steps (1 

half-step = 0.9 degrees). The signs differ because recovery of the VP requires the 

revesal of the introduced displacement.

Image

(*.tif)

Disp.

Pan

Disp.

Tilt

Calc.

Pan

Calc.

Tilt

tl - 18 - -18.5656

t2 - 9 - -9.6090

t4 - -18 - 18.1428

t5 18 - -18.2671 -

t i l 9 - -10.2325 -

t6 -18 - 18.0000 -

tl -18 -18 18.4002 18.2839

t8 18 18 -18.0002 -17.5758

t9 -18 18 18.2671 -18.1427

tio 18 -18 -19.5890 17.1482

tl2 9 9 -10.2325 -9.6090

tl3 -9 -9 10.2325 9.6090

tl4 -16 -13 16.7894 12.9187

tl5 -13 -16 13.2065 16.4312

tl6 -13 -13 13.2065 12.9187

tl7 -16 -16 17.1948 15.9985

Over the 16 images tested the average pan error in the was 0.66 half-steps 

(SD=0.56) and the average tilt error was 0.37 half-steps (SD=0.27). These figures 

suggest good accuracy and represent good precision for the camera head 

controller.
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7.4 Orient Camera Axis to Crack Centre

The final test carried out in the laboratory test rig was to confirm the ability of the 

camera to fix (orient to) an estimated crack centre (prior to detailed feature 

analysis). The sequence of images in Figure 7.6 illustrate the iterative orientation 

to features of interest. Figure 7.6(a) shows the original image in which two 

peripheral cracks are detected and their centres estimated. Given more than one 

centre, the AVS estimates a centre of centres and orients to the camera 

accordingly (Figure 7.6(b)). The process is now repeated (Figure 7.6(b)). A third 

iteration results in Figure 7.6(c). (Note that when orienting the camera to the 

region of interest, it is no longer appropriate to exclude crack analysis of the 

central part of the image.)

(a)
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(b)

(c)

Figure 7.6. Iterative orientation of camera axis with regions of interest associated 

with detected cracks.

The results of this and similar tests provide evidence that the camera is able to 

orient to the region of interest associated with a detected crack. Although not of 

direct interest here, the problem of false-positive and false-negative cracks 

(anticipated in Chapter 6) is in evidence here. The images of Figures 7.5(b) and
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7.5(c) illustrate that even in the ideal environment of the test rig, the crack 

detection tool highlights false positive features (see crack in top centre of each 

image respectively).

7.5 Summary

The laboratory-based tests for the AVS prototype have been presented. Using 

images from the test rig, the modules to estimate the VP and detect and compute 

centres for cracks have been tested, as has the software controller for the AVS 

camera control system.

In the somewhat ideal environment of the laboratory, the region method for VP 

estimation and the crack detection software have both performed more than 

satisfactorily. The AVS control (camera orientation) software has also proven 

capable of orienting the camera so that the camera axis is directed at the VP of 

the pipe as required.
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8 Summary and Conclusion

This aim of this project has been to begin the development of a prototype robotic 

AVS that could be deployed for autonomous sewer survey.

Within the overall aim, the scope of the project had specific practical objectives 

(originally stated in Chapter 2):

ii. identify and evaluate algorithms for initial detection of cracks/fractures in small­

bore pipe walls given a single image of the pipe;

iii. determine the camera kinematics required for feature fixation;

iv. develop the system hardware;

v. develop the system software;

vi. test the prototype system on simulated faults in a laboratory environment;

Each of these objectives is considered below.

The first objective gave rise to related objectives once the VP was identified as a 

useful reference point in a sewer pipe image. If centred in the image, the VP allows us 

to selectively analyse the image periphery for features of interest (coaxial cracks).

Two methods of VP estimation were evaluated. The first region-based method [Taylor 

et al, 1998] computes the centroid of a dark region generated by a single threshold.

The second method, developed as part of this project, fits conic sections to contours 

generated by multiple thresholds and computes the mean centre of these. The 

accuracy of the conic section method was better than that of the region method but the 

time required to arrive at this improved estimate was an order of magnitude greater 

and was not appropriate for practical purposes given current PC-based hardware1.

1 This can be kept under review in light of continually increasing computer performance. Indeed, as 

this report is submitted, it is likely to be the case that the real time performance of both approaches has 

improved by at least an order of magnitude. This is probably insufficient to warrant a change in choice 

at this time.
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A crack detection module was developed within the TINA environment. The 

performance of the crack detection tool is mainly influenced by the choice of edge 

detection parameters. Values for these were determined experimentally. These values 

may be adjusted on the basis of further experience, perhaps in a wider range of 

environments. The crack detection tool successfully detected cracks in both library 

images and on a laboratory pipe test rig.

The crack detection method described here took a comparatively simple, structural 

pattern recognition approach. Heuristic rules are written which describe the features 

expected of the image of a crack in the pipe wall. It might be argued that statistical 

pattern recognition, in which models are built from training sets of sample data, is a 

much more robust approach. In many situations this is the case. However, cracks in 

sewer walls vary considerably and it is not clear that a reliable statistical model could 

be built. At the very least, an extremely large training set would be required. The 

active vision approach taken here sought to avoid this problem by ensuring that 

inspection images were acquired under circumstances which allowed comparatively 

simple, structural methods to perform adequately.

A prototype tractor-mounted AVS has been developed. A radio-controlled tractor 

carries controllable pan/tilt head and camera. Control hardware and software for the 

head and for image processing and analysis has been developed and tested in a 

laboratory context.

In Chapter 4 a state-chart has been used to represent the important elements of an 

active process-based AVS (Figure 8.1). In considering the feasibility of continuing 

work in this area the outcomes of the project can be related to the statechart.
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VP centred 
/drive onVP determined

time-out 
/drive offfeature

analysed feature detected 
/drive off

analysis
complete

feature centred

Fix VP

Analyse
Feature

Fix
Feature

Detect
Feature

Determine
VP

Log Feature

Figure 8.1. Statechart specifying system-level control of active vision system. Each 

state is an active state, associated with the performance of a system operation. 

(Reproduced from Figure 4.1.)

• ‘Determine VP’: Two, alternative, methods for implementation of the ‘Determine 

VP’ state have been developed and compared (Chapter 5).

• ‘Fix VP’: Software capable of orienting the camera so that the VP is ‘fixed’ 

(centred) in the camera image has been developed (Chapter 4) and tested 

successfully on library images (Chapter 5) and in a laboratory setting (Chapter 7).

• ‘Detect Feature’: Software has been developed which is capable of detecting 

candidate coaxial cracks in the periphery of both library images (Chapter 6) and in 

a laboratory setting (Chapter 7).

• ‘Fix Feature’: this state uses the same camera control software as ‘Fix VP’. The 

fixation point is the crack centre as estimated by the ‘Detect Feature’ state.

At this stage, there would seem to be evidence to suggest that further work could be

undertaken to develop at least semi-autonomous survey technology.

Wirahadikusumah et al [1998] have set the broad goals for researchers in this area:

• more accurate and dependable survey information

• improved survey efficiency and economy

• reduced disruption from survey

• ease of deployment of surveying technology.
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In respect of the first two of these goals, I suggest that the AVS control and analysis 

routines developed and tested for this project make a contribution in that they are able 

to obtain machine analysable representations of important features of interest. The 

ability of the AVS to identify and orient to features of interest reduces current 

demands upon human operators to do likewise.

The remaining two goals will depend upon the extent to which a robust and largely 

autonomous robotic platform can be developed upon which to deploy the vision 

technology described in this thesis.
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Appendix 2: Camera Head Kinematics and LINKLAB Simulation

Kinematic control for the camera head was modelled using LINKLAB, a 
simulation package that takes a simple description of the device to be controlled 
and generates the code required to control the system. LINKLAB requires a 
description of the system using Denavit-Hartenberg (D-H) labelling [Denavit and 
Hartenberg, 1955]. This is obtained as follows.

Figure A2.1(a) shows the camera and its mounting. Figure A2.1(b) gives a 
schematic representation of this system.

Figure A2.1(a). The camera and the 
mounting.

Focal Plane
Axis of rotation 
"for pan motor

< -

CameraAxis of iotation[ 
for tilt m otor j

Camera
Mounting

Figure A2.1(b).Schematic representation of the system in Figure A2.1(a). The 
end-effector is taken as being the in the focal plane of the camera.
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The co-ordinate frame used to represent the system is given in Figure A2.2.

Figure A2.2. Co-ordinate frames used to represent 
camera and mount links and lengths in LINKLAB.

The individual co-ordinate systems (/=0,..,4) are related one to the other. For revolute 
pairs, D-H notation relates the (z-l)th co-ordinate frame to the zth co-ordinate frame by 
a transform obtained thus:

i. rotate about axis z,_i by 0, (joint angle - the included angle of axes X/.j and x,-)
ii. translate along z,_i by d,- (link offset - distance between the origin of the co­

ordinate system x/.j, y,-_i, z,-.i and the foot of the common perpendicular)
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iii. translate along x,- by 1/ (link length - distance between two feet of the common 
perpendicular)

iv. rotate about x,- by a, (link twist - the included angle of axes zm and z/)

(The transformation matrix is often denoted as T(0/, d/, 1,-, a,) for convenience.)

The transforms for the camera system are represented in Table A2.1. the distances dp, 
db and dt are those illustrated in Figures A2.1(b) and A2.2.

i 6/ d/ 1/ CC/
1 0 0 0 ti/2
2 -71/2 -dp 0 -tc/2
3 0 db 0 0
4 0 0 dt 0

Table A2.1. LINKLAB scheme relating co-ordinate frames of Figure A2.2..

A full LINKLAB description of the system is given in the following file (Note: for the 
camera head in Figure A2.1(a), dp= 83mm,d b = 8 1mm and dt=75mm).

#
# head_arm.rob
#
# Kinematic and dynamic parameter file. Kinematics are based on
# Denavit-Hartenberg labelling. Dynamics on the Newton-Euler
# equations. Robot structure is described as a pre-order
# recursive tree. For further details see ‘Fundamentals of
# Robotics, Analysis and Control’ (Schilling).
#

# Version number 
5
# Number of links 
4
# Joint circle size 
0.1
# Kinematic parameters per revolute link
# joint angle,
# joint distance,
# link length,
# joint twist angle,
# home position,
# max position,
# min position.

#The links are, in order: 
#
0.0 0.0 0.0 1.5707 0.0 3.142 -3.142
-1.5707 -0.083 0.0 -1.5707 0.0 3.142 -3.142
0.0 0.081 0.0 0.0 0.0 3.142 -3.142
0.0 0.0 0.075 0.0 0.0 3.142 -3.142

# Recursive description of robot structure 
1 1 
2 1 
3 1 
4 0
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# Dynamic parameters per link: link mass,
# coefficient of viscous friction
# coefficient of static friction
# coefficient of dynamic friction
# link centre of mass wrt link frame
# link inertia tensor wrt link centre of mass

# Link 1
# mass, viscous, static, dynamic friction
1.0 0.0 0.00.0
# link centre of mass wrt link frame.
-0.5 0.0 0.0

# link inertia tensor wrt centre of mass of link. 3x3 matrix. 
0.0 0.0 0.0
0.0 0.0833 0.0
0.0 0.0 0.0833

# Link 2
1.00.00.00.0

-0.5 0.0 0.0

0.0 0.0 0.0
0.0 0.0833 0.0
0.0 0.0 0.0833

# Link 3
1.0 0.00.0 0.0
-0.5 0.00.0

0.0 0.0 0.0
0.0 0.0833 0.0 
0.0 0.0 0.0833

# Link 4
1.00.0 0.0 0.0

-0.5 0.0 0.0

0.0 0.0 0.0
0.0 0.0833 0.0 
0.0 0.0 0.0833

#CSG representation of robot.
# parameters are:
# node type {u=union, i=intersect, d=diff, n=null, c=cuboid, s=sphere}
# x, y, z positions
# yaw, pitch, roll angles
# width, height, length dimensions

n
c 0 0.2 0 0 0 0 0.66 1.2 0.66 
c 0.2 0 0 0 0 0 1.0 0.5 0.5 
n

#

EOF
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LINKLAB allows simulation of the controller obtained from the system description 
given. Figures A2.3(a-b) serve to illustrate the camera simulation.

/0 3 _ a x is_  p la n a r  .ro<€*

J o in t : 1 2 j 3 4 5 6 7 e 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2S 
P o s itio n : -1^  -180 «■ ■■ 190

Set Horn V iew  Skeleton ; CSC

/0 3 _ a x ls_  p la nar.ro**

J o in t : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26

P o s itio n : 14, -180 - I . - - 190

Targets Fil* Snap Hoi*e Sot I t a  v ie w  Skeleton j CSC

(a) (b)

Figure A2.3. Illustration of LINKLAB simulation of camera manipulation.

Appendix Reference
[Denavit and Hartenberg, 1995] Denavit, J. and Hartenberg, R. S., "A Kinematic 
Notation for Lower-Pair Mechanisms Based on Matrices," ASME Journal o f Applied  
Mechanisms, 1955, pp. 215-221. (see also Yi Zhang, Introduction to Mechanisms, 
http://www-2.cs.cmu.edu/People/rapidproto/mechanisms/chpt4.html)
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Appendix 3: TINA Code to Select Candidate Cracks.

The following code contains the filters (highlighted in red) which take the output 

of TINA’s Canny edge detection routine (a list of linked lists) and select 

candidate cracks from the image. The unary filter progressively excludes single 

edges that do not meet the criteria described (see thesis). The pair-wise filter 

selects edge pairs that remain after the unary filter has been applied. For purposes 

of graphical illustration, the filters colour-code the edges as they are processed.

#include <tina/all_tina.h>
#include <tina/toolsfuncs.h>
#include <stdio.h>
#include <stdlib.h>

#include <tina/sys.h>
#include <tina/math.h>
#include <tina/vision.h>
#include <tina/tv.h>
#include <tina/tvfuncs.h>
#include <tina/tv_screen.h>
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>
#include <xview/textsw.h>
#include <xview/font.h>
#include <xview/canvas.h>
#include <xview/cms.h>
#include <xview/xv_xrect.h>
#include <xview/openmenu.h>
#include <tina/tw.h>
#include <tina/Xvfuncs.h>
#include <tina/X11funcs.h>
#include <tina/draw.h>
#include <tina/drawfuncs.h>

static Tv *tv = NULL; 
static Tv *graphtv = NULL;

static double estvpx = 128.0, estvpy = 128.0;
static int centx, centy, curvcount, use_gauss, all_strings;
static double *curv = NULL, *arcleng = NULL;
static double rhothresh = 50.0;
static double perpdist = 50;
static double pthresh = 50;
static int maxgap = 20;
static double disthresh = 50.0;
static double borderthresh = 50.0;
static double lengthresh = 10.0;
static double tpercent = 80.0;
static Tw_callback *xbit = NULL;
static Tw_callback *ybit = NULL;
static Imrect *lines2_im = NULL, *er=NULL;
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#define MAXPROF 1000 /* maximum gaussian profile size */

static int psize; /* gaussian mask size */
static double sigma = 2.0; I* gaussian smoothing parameter *1
static int border = 20;
static float profile[MAXPROF]; /* gaussian profile *1 
static float gprof(float, float);

static int in_fovea(Vec2 *pos)
{

Imrect *image = mono_image_get();

if (vec2_get_x(pos)<border || vec2_get_y(pos)<border || 
image->region->ux-vec2_get_x(pos)<border || 
image->region->uy-vec2_get_y(pos)<border) 

return(FALSE); 
else  

return(TRUE);

void string_display(Tv * tv, Tstring * string, int colour) 
{

Ddlist *start;
Ddlist *end;
Ddlist *dptr;
Vec2 oldpos = {Vec2_id};
Vec2 pos = {Vec2_id};

if (string == NULL) 
return;

start = string->start; 
end = string->end;

tv_save_draw(tv);

tv_color_set(tv, colour);

oldpos = edge_image_pos((Edgel *) start->to); 
tv_point2(tv, oldpos);

for (dptr = start; dptr != end;)
{

dptr = dptr->next;
pos = edge_image_pos((Edgel *) dptr->to); 

tv_point2(tv, oldpos); 
oldpos = pos;

}

tv_reset_draw(tv);
}

double cube(double x)
{

return(x*x*x);
}

static void plotcurv()
{

int i, xcurr, ycurr, xnext, ynext, height, width, border;
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double curvmax=0.0, arcmax=arcleng[curvcount-1];

/* first draw axes, leave a border of pixels */ 
height = tv_get_height(graphtv); 
width = tv_get_width(graphtv); 
border = 0.1‘height;

tv_set_color(graphtv, white);
tv_linexy(graphtv, border, height-border,border,border); 
tv_linexy(graphtv, border, height/2,width-border,height/2); 
tv_textxy(graphtv, "arc length", width/2, height-(border/2)); 
tv_textxy(graphtv, "k", border/2, border/2);

/* now add curv[] 7  
for (i=0; i<curvcount; ++i) 

if (i==0 || fabs(curv[i])>curvmax) 
curvmax=fabs(curv[i]);

xcurr = border;
ycurr = height/2;
for (i=0; kcurvcount; ++i)
{

xnext = border + (int)((arcleng[i]*(width-(2*border)))/arcmax); 
ynext = (height/2) -

(int)((curv[i]*(height-(2*border))/2)/curvmax); 
tv_linexy(graphtv, xcurr, ycurr, xnext, ynext); 

xcurr = xnext; 
ycurr = ynext;

}
}

static int curvthresh()
{

double thold, max, absmax=0.0; 
int peakcount=0;
int i, xleft, xright, y, ‘marks, height, width, border;

marks = (int *)malloc(curvcount*sizeof(int));

for (i=0; kcurvcount; ++i) /* recompute maximun 7
if (j==01| fabs(curv[i])>absmax)

{
absmax=fabs(curv[i]); 
max = curv[i];

}

thold = max*tpercent/100.0;

if (!all_strings) /* only draw threshold line when dealing with */
{ /* selected strings */

tv_set_color(graphtv, green); 
height = tv_get_height(graphtv); 
width = tv_get_width(graphtv); 
border = 0.1‘height;

xleft = border; 
xright = width-border;
y = (height/2) - (int)((thold*(height-(2*border))/2)/absmax); 

tv_linexy(graphtv, xleft, y, xright, y);
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}

for (i=0; kcurvcount; ++i) /* mark supra-thold values 7
{

if (max >= 0 && curv[i]>thold) 
marks[i] = 1; 

else  if (max<0 && curv[i]<thold) 
marks[i] = 1; 

else
marks[i] = 0;

}

for (i=0; kcurvcount; ++i) I* count supra-thold values V
if ((i==0 && marks[i]==1) ||

(i>0 && marks[i-1]==0 && marks[i]==1))
++peakcount;

format("%d peaks detected\n", peakcount);

return(peakcount);
}

void string_curv(Tstring *string) /* curvature as fn. of arc length 7
{

Ddlist *back, *curr, ‘front;
Vec2 backpos = {Vec2_id};
Vec2 currpos = {Vec2_id};
Vec2 frontpos = {Vec2_id};
Vec2 firstdiff = {Vec2_id};
Vec2 secdiff = {Vec2_id};
double backmag, frontmag, T, curvature, s=0.0;
Int i;

if ((back=string->start)==NULL) 
error("string_curv() can't initialise back", non_fatal); 

if ((curr=back->next)==NULL) 
error("string_curv() can't initialise curr", non_fatal); 

if ((front=curr->next)==NULL) 
error("string_curv() can't initialise front", non_fatal);

curv = (double *)malloc(string->count*sizeof(double)); 
arcleng = (double *)malloc(string->count*sizeof(double)); 
curvcount = 0;

while (front!=string->end->next)
{

backpos = edge_image_pos((Edgel *) back->to); 
currpos = edge_image_pos((Edgel *) curr->to); 
frontpos = edge_image_pos((Edgel *) front->to);

backmag = vec2_dist(backpos,currpos); 
frontmag = vec2_dist(currpos,frontpos);
T = backmag/(backmag+frontmag);

for (i=0;i<2;++i)
{

firstdiff.el[i] = backpos.el[i]*(T-1.0)/T +
currpos.el[i]*(2.0*T-1.0)/(T*(T-1.0)) - 
frontpos.el[i]*T/(T-1.0); 

secdiff.el[i] = 2.0*(backpos.el[i]/T +

A-10



currpos.el[i]/(T*(T-1.0)) - 
frontpos.el[i]/(T-1.0));

}

curv[curvcount] =
vec2_cross(firstdiff,secdiff)/cube(vec2_mod(firstdiff)); 

arcleng[curvcount] = (curvcount==0) ? backmag:
arcleng[curvcount-1]+backmag;

++curvcount;

back = back->next; 
curr = curr->next; 
front = front->next;

}
}

static void dogauss(Tstring ‘string) /* Gaussian smoothing 7
{

int i,index;
Vec2 backpos = {Vec2_id};
Vec2 tem ppos = {Vec2 _id};
Vec2 frontpos = {Vec2_id};
Vec2 frontlastpos = {Vec2_id};
Vec2 backnextpos = {Vec2_id};
Ddlist ‘back, *temp, ‘front;
double sum[2],k=0.0,sampletot,cprof=profiie[0],round;

float *xs, *ys; 
int count = 0;

xs = (float *)malloc(string->count*sizeof(float)); 
ys = (float *)malloc(string->count*sizeof(float));

for (temp=string->start;temp!=string->end->next;temp=temp->next)
{

tem ppos = edge_image_pos((Edgel *) temp->to); 
sum[0]=temppos.el[0]*cprof; 
sum[1 ]=temppos.el[1 ]*cprof; 
sampletot = cprof;

back=temp->last; 
if (back!=NULL)

{
backpos = edge_image_pos((Edgel *) back->to); 

k = vec2_dist(temppos,backpos);
}

while (back!=NULL && k<(float)psize/10.0)
{

round = (k*10.0) - (int)(k*10.0); 
if (round>=0.5) 

index = (int)(k*10.0)+ 1; 
else

index = (int)(k*10.0); 
for (i=0;i<2;++i) 

sum[i] += profile[index]*(backpos.el[i]); 
sampletot += profile[index];

back=back->last;
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if (back!=NULL)
{

backpos = edge_image_pos((Edgel *) back->to); 
backnextpos = edge_image_pos((Edgel *) back->next->to); 

k += vec2_dist(backnextpos,backpos);
}

}

front=temp->next; 
if (front!=NULL)
{

frontpos = edge_image_pos((Edgel *) front->to); 
k = vec2_dist(temppos,frontpos);

}
while (front!=NULL && k<(float)psize/10.0)
{

round = (k*10.0) - (int)(k*10.0); 
if (round>=0.5) 

index = (int)(k*10.0) + 1; 
else

index = (int)(k‘10.0); 
for (i=0;i<2;++i) 

sum[i] += profile[index]*(frontpos.el[i]); 
sampletot += profile[index];

front=front->next; 
if (front!=NULL)

{
frontpos = edge_image_pos((Edgel *) front->to); 
frontlastpos = edge_image_pos((Edgel *) front->last->to);

k += vec2_dist(frontlastpos, frontpos);
}

}

xs[count]=sum[0]/sampietot; /* store new positions in arrays 7  
ys[count]=sum[1 ]/sampletot;

++count;
}

for (temp=string->start, count=0;
count<string->count && temp!=string->end->next; 
temp=temp->next, ++count)

{
Edgel ‘edge = (Edgel *)temp->to;

edge->pos.el[0] = xs[count]; 
edge->pos.el[1] = ys[countj;

}

}

static int getprof() /* put (half) a gaussian mask in profile[] 7  
{

int i,psize; 
float sig2;

sig2=2‘sigm a‘sigma; 

for (i=0;i<MAXPROF;++i)
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{
profile[i]=gprof((float)i,sig2); 
if (profile[i]<0.0001) 

break;
}
psize=i-1; 

return(psize);
}

static float gprof(float x, float s2)
{

float i,sum=0; 
short tot=0;

x *= 0.1;
for (i=x-0.05;i<=x+0.05;i+=0.01)
{

sum+=exp(-i‘i/s2);
tot++;

}

return(sum/tot);
}

static void markpoint(int x, int y)
{

Imrect ‘ image; 
float drawx, drawy;
int xcoord, ycoord, height, width, imwidth, imheight;

if ((image = monoJmage_get())==NULL) 
error("markpoint: null image", non_fatai);

height = tv_get_height(tv); 
width = tv_get_width(tv); 
if (height!=width)

error("non-square tv in markpoint", warning);

imwidth = image->region->ux - image->region->lx; 
imheight = image->region->uy - image->region->ly;

xcoord = x - imwidth/2; 
ycoord = -(y - imheight/2);

/* scale image to window width 7  
drawx = ((float)width/(float)imwidth)‘x; 
drawy = ((float)width/(float)imwidth)‘y;

if (imheight != imwidth) /* centre vertically 7  
drawy = drawy + (height-imheight*((float)width/(float)imwidth))/2.0;

tv_set_color(tv, white); 
tv_cross(tv, ipos(drawx, drawy), 20); 
tv_circle(tv, ipos(drawx, drawy),

(int)(perpdist‘(float)width/(float)imwidth));
}

static double getrho(Ddlist ‘start, Ddlist ‘end)
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{
float theta, or, rho, x, y, vx, vy;
Vec2 startpos = {Vec2_id};
Vec2 endpos = {Vec2_id};
Imrect *im = mono_image();

startpos = edge_image_pos((Edgel *) start->to); 
endpos = edge_image_pos((Edgel *) end->to);

centx = (im->region->ux - im->region->lx)/2; 
centy = (im->region->uy - im->region->ly)/2; 
markpoint(centx, centy);

x = vec2_x(startpos) - centx; /* shift origin to VP estimate */ 
y = centy - vec2_y(startpos); /* rho calculation assumes y +ve upwards */

vx = vec2_x(endpos) - vec2_x(startpos);
vy = vec2_y(endpos) - vec2_y(startpos); /* vector orig in top left corner 7

if (vx<0)
{

vx = -vx; 
vy = -vy;

}
or = atan(fabs((double)vy/(double)vx)); 
or = (vy >= 0) ? PI - o r : or;

theta = or + PI/2.0; 
if (theta > PI) 
theta = theta - PI;

rho = x*cos(theta) + y*sin(theta);

return(rho);
}

/‘ Unary Test Filter7

int string_filter(Tv * tv, Tstring * string)
{

Ddlist ‘ start;
Ddlist ‘ end;
Ddlist ‘ dptr;
Vec2 oldpos = {Vec2_id};
Vec2 pos = {Vec2_id};
int peaks, near=0, maxlength = (int)(sqrt(2.0) * (double)border); 
double percent;

if (string == NULL) 
return (FALSE);

start = string->start; /* decide whether string is in right area */
end = string->end;

oldpos = edge_image_pos((Edgel *) start->to); 
if (in_fovea(&oldpos))

++near; /* count points within region of interest */

for (dptr = start; dptr != end;)
{
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dptr = dptr->next;
pos = edge_image_pos((Edgel *) dptr->to); 

if (in Jovea(&pos))
++near; 

oldpos = pos;
}

if (string->count - near < borderthresh)
{

if (tv != NULL) 
string_display(tv, string, blue); 

return(FALSE);/* not in periphery */
}

else if (string->count < lengthresh || string->count > maxlength)
{

if (tv != NULL)
string_display(tv, string, green); 

return(FALSE); /* in periphery but too short */
}

else if (fabs(getrho(start, end)) > perpdist)
{

if (tv != NULL) 
string_display(tv, string, );

return(FALSE); /* straight line between end points 7
/* does not pass close to image centre 7

}
else

{
if (tv != NULL)
string_display(tv, string, red); /* one of possible pair7 

return(TRUE);
}

}

void string_list_filter(Tv * tv, List * string J is t)
{ /* derived from tv_stringJ is t 7

List *sptr;
Tstring ‘ copy;

if (tv == NULL || tv->tv_screen == NULL || s t r in g jis t  == NULL) 
return;

fo r (sptr = s tr in g jis t;  sptr != NULL; sptr = sptr->next)
{ /* apply follow ing to each string 7

copy = str_copy(sptr->to, (void *)(*edge_copy), NULL); 
if (use_gauss) 
dogauss(copy); 

string J ilte r(tv , copy);
}

static void filter_proc(void)
{

Imrect *er = mono_edges();
List ‘ s tr in g jis t;

if (a ll.s trings)
s tr in g jis t  = (List *) prop_get(er->props, STRING); 

else
s tr in g jis t  = seg_select_es_get();
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if (use_gauss) 
psize = getprof(); 

t v_sa ve_d ra w(tv); 
string_list_filter(tv, s tr in g jis t) ;

}

/*edge pair filter*/
void pairJ ilte r(Tv * tv, Tstring * string*!, Tstring * string2)
{

Ddlist *dptr1, *dptr2;
Vec2 pos1 = {Vec2Jd};
Vec2 pos2 = {Vec2Jd};
Vec2 pos3 = {Vec2Jd};
Vec2 pos4 = {Vec2Jd};
int near = 0;
double dist, mindist, percent;
Imrect *image = mono_image_get(); 
float drawx, drawy; 
int height, width, imwidth, imheight; 
float meanx, meany;

if (s tring l == NULL || string2 == NULL) 
return;

for (dp trl = string l->start; dp trl = dptr1->next; dp trl != NULL)
{

pos1 = edge_image_pos((Edgel *) dptrl-> to); 
m indist = -1.0;

for (dptr2 = string2->start; dptr2 = dptr2->next; dptr2 != NULL)
{

pos2 = edgeJmage_pos((Edgel *) dptr2->to); 
if (mindist<0.0 || (dist = vec2__dist(pos1, pos2)) < m in d is t) 

mindist = dist;
}

if (m indist < maxgap)
++near;

}

percent = ((double)near/(double)(string1->count))*100.0;

if (percent > pthresh)
{

string,display(tv, s tring l, cyan); /*edge pair is candidate crack*/
string_display(tv, string2, cyan);

/* compute and mark the centroid of the endpoints of the 2 edges*/ 
pos1 = edgeJmage_pos((Edgel *) stringl->start->to); 
pos2 = edge_image_pos((Edgel *) stringl->end->to); 
pos3 = edge_image_pos((Edgel *) string2->start->to); 
pos4 = edge_image_pos((Edgel *) string2->end->to);

meanx = (vec2_get_x(&pos1) + vec2_get_x(&pos2) + vec2_get_x(&pos3) + 
vec2_get_x(&pos4))/4.0;

meany = (vec2_get_y(&pos1) + vec2_get_y(&pos2) + vec2_get_y(&pos3) + 
vec2_get_y(&pos4))/4.0;
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height = tv_get_height(tv); 
width = tv_get_width(tv); 
if (height!=width)
error("non-square tv in pair_filter", warning);

imwidth = image->region->ux - image->region->lx; 
imheight = image->region->uy - image->region->ly;

/* ======================== */

/* scale image to window width 7
drawx = ((float)width/(float)imwidth)*meanx;
drawy = ((float)width/(float)imwidth)‘ meany;

if (imheight != imwidth) /* centre vertically 7  
drawy = drawy + (height-imheight*((float)width/(float)imwidth))/2.0;

tv_set_co lor(tv,cya n);
tv_cross(tv, ipos(drawx, drawy), 20); /*mark cross hairsV 
tv_circle(tv, ipos(drawx, drawy),20);

}
}

void pair J is t  Jilter(Tv * tv, List * stringjist)
{

List *sptr1, *sptr2;

if (tv == NULL || tv->tv_screen == NULL || str in gjist == NULL) 
return;

stringjistJilter(tv, stringjist); /* apply unary tests 7

for (sptrl = stringjist; sptrl != NULL; sptrl = sptr1->next) 
if (string Jilter(NULL, sptrl->to)) 

for (sptr2 = sptrl ->next; sptr2 != NULL; sptr2 = sptr2->next) 
{ /* apply following to each string 7

if (string Jilter(NULL, sptr2->to)) 
pairjilter(tv, sptrl->to, sptr2->to);

}
}

static void pairs_proc(void)
{

Imrect *er = mono_edges();
List ‘stringjist;

if (alLstrings)
stringjist = (List *) prop_get(er->props, STRING); 

else
str in gjist = seg_select_es_get(); 

pair J is t  Jilter(tv, stringjist);
}

static void showestVP_proc(int choice)
{

Imrect ‘image;
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float drawx, drawy;
int type, height, width, imwidth, imheight;

if (choice==1 || choice==3)
{

if ((image = monoJmage_get())==NULL) 
error("showestVP_proc: null image", non_fatal);

}
e lse  if (choice==2)
{

if ((Bool) stack_check_types(IMRECT, NULL) == true) 
image = (Imrect *)stack_pop(&type); 

else
error("showestVP_proc: no image on stack", non_fatal);

}
e lse

error("showestVP_proc: unknown choice", non_fatal);

if (choice==1 || choice==2) 
tv_imrect2(tv, image); /* show image on tv 7

height = tv_get_height(tv); 
width = tv_get_width(tv); 
if (height!=width)
error("non-square tv in showestVP", warning);

imwidth = image->region->ux - image->region->lx; 
imheight = image->region->uy - image->region->ly;

/* scale image to window width 7
drawx = ((float)width/(float)imwidth)*estvpx;
drawy = ((float)width/(float)imwidth)*estvpy;

if (imheight != imwidth) /* centre vertically 7  
drawy = drawy + (height-imheight*((float)width/(float)imwidth))/2.0;

tv_set_color(tv, blue); 
tv_cross(tv, ipos(drawx, drawy), 20); 
tv_circle(tv, ipos(drawx, drawy),

(int)(rhothresh*(float)width/(float)imwidth));
}

static int isolated(lmrect *im, int x, int y)
{

int i, j, Ix, ux, ly, uy;

Ix = im->region->lx; 
ux = im->region->ux; 
ly = im->region->ly; 
uy = im->region->uy;

for (i=x-1 ;i<=x+1 ;++i) 
for (j=y-i ;j<=y+i ;++i) 

if ((i!=x || j!=y) &&
i>=lx && i<ux && j>=ly && j<uy && 
im_get_pixf(im, j, i)==0) 

return(O); i* pixel is not isolated 7

return(1); /* pixel is isolated 7
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static void relabel(lmrect *im, float old, float new)/* replace old with new 7  
{

int x, y, Ix, ux, ly, uy;

Ix = im->region->lx; 
ux = im->region->ux; 
ly = im->region->ly; 
uy = im->region->uy;

if (old==0.0)
error("relabel asked to relabel background", non_fatal);

for (x=lx; x< ux; ++x) /* done over the whole im, inefficient 7
for (y=ly; y< uy; ++y) /* but easy 7

if (im_get_pixf(im, y, x)==old) 
im_put_pixf(new, im, y, x);

}

static int neighJabels(lm rect *im,int x, int y, float *label) /* return 7  
{ /* no. of distinct neighbouring labels, pass back one via label 7

int Ix, ux, ly, uy, distinct, count=0, row, i, j; 
float min=0.0, val[4], record[4];

/* only concerned with previous 4 pixels on raster scan 7  
I* put them into a local array for ease  7

Ix = im->region->lx; 
ux = im->region->ux; 
ly = im->region->ly; 
uy = im->region->uy;

val[0] = (y-1 <ly) ? 0 : im_get_pixf(im, y-1, x); 
for (row=y-1, i=1; row<=y+1; ++row, ++i)

val[i] = (x-1<lx || row>=uy || row<ly) ? 0.0 : im_get_pixf(im, row, x-1);

for (i=0; i<4; ++i) I* count and record distinct labels 7  
if (val[i]!=0.0)

{
distinct = 1; 
for (j=0; j<i; ++j) 

if (val[j] == val[i]> 
distinct = 0;

if (distinct==1)
{

record[count] = val[i];
++count;

}
}

if (count == 0) 
return(count); 

else  if (count == 1)
{

if (record[0]==0.0)
error("neigh_labels returning zero B", non_fatal);

*label = record[0]; 
return(count);
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}
else  /* return lowest distinct label 7  
{

for (i=0; iccount; ++i) 
if (record[i]>0.0 && (min==0.0 || record[i]<min)) 

min = record[i];

if (min==0.0)
error("neigh_labels returning zero A", non_fatal);

*label = min; 
return(count);

}
}

static float big_region(lmrect *im, int count)
{

int x, y, Ix, ux, ly, uy, i, j, k, found;
Imrect *copy;
float ‘sizes, ‘ labels, label, maxlabel, max=0.0;

if (im==NULL)
error("big_region : null image passed", non_fatal); 

if (count==0)
error("big_region : zero count", non_fatal);

copy = im_copy(im);

labels = (float ‘)malloc(count‘sizeof(float)); 
sizes = (float ‘)malloc(count‘sizeof(float));

Ix = im->region->lx; 
ux = im->region->ux; 
ly = im->region->ly; 
uy = im->region->uy;

for (i=0; i< count; ++i) /* destructive count of pixels with ith label 7  
{

found = 0; /* first find the first pixel 7
for (x=lx; xcux && found==0; ++x) 

for (y=ly; y<uy && found==0; ++y)
if ((label=im_get_pixf(copy, y, x)) != 0.0)
{

found = 1; 
labels[i] = label;
sizes[i] = 1; /* first pixel found 7

}

/* now resume scan and cont pixels marked label 7  
for (j=lx; jcux; ++j) 

for (k=ly; k<uy; ++k)
if (im_get_pixf(copy, k, j)==labels[i])
{

sizes[i] += 1; /* first pixel found 7
im_put_pixf(0.0, copy, k, j); /* and destroyed 7

}
}

/* now find and return label of largest region 7  
for (i=0; i< count; ++i)
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if (i==o || sizes[i]>max)
{

max = sizes[i]; 
maxlabel = labels[i];

}

format("region %f is largest\n", maxlabel); 
return(maxlabel);

}

static void estVP_proc(void) /* assum es binary image on the stack, black 7  
{ /* pixels/regions are interesting 7

Imrect *im_orig, ‘regions; 
int context, row, numregions=0; 
int x, y, Ix, ux, ly, uy, type, current=0, count, spots=0; 
float xsum=0.0, ysum=0.0, label, val, largest, dist, maxdist=0.0;

if ((Bool) stack_check_types(IMRECT, NULL) == true)
{

im_orig = (Imrect *) stack_pop(&type);

Ix = im_orig->region->lx; 
ux = im_orig->region->ux; 
ly = im_orig->region->ly; 
uy = im_orig->region->uy;

for (x=lx; x< ux; ++x) I* first remove isolated black pixels 7  
for (y=ly; y< uy; ++y)

if (im_get_pixf(im_orig, y, x)==0 && isolated(im_orig,x,y))
{

++spots; 
im_put_pixf(255.0, im_orig, y, x);

}
format("%d isolated pixels removed\n", spots);

/* now segm ent the image into regions 7
regions = im_alloc(im_orig->height, im_orig->width, im_orig->region,

im_orig->vtype);
for (x=lx; x< ux; ++x) /* clear region map 7  

for (y=ly; y< uy; ++y)
im_put_pixf(0.0, regions, y, x);

for (x=lx; x< ux; ++x) /* label regions 7  
for (y=ly; y< uy; ++y)

if (im_get_pixf(im_orig, y, x)==0)
{ /* determine region number of black pixels 7

context = neigh Jabels(regions, x, y, &label);

if (context == 0) /* no neighbouring labelled pixels 7
{ /* so  new region 7

++current;
++numregions;
im_put_pixf((float)current, regions, y, x);

}
else  if (context ==1)  /* 1 neighbouring label, extend it 7  

im_put_pixf(label, regions, y, x); 
else

{ /* > 1 label; regions merging, label is lowest label 7

if (y-1 >= ly)
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{
val = im_get_pixf(regions, y-1, x); 
if (val!=0.0 && val!=label)

{
relabel(regions, val, label);

-num regions;
}

}

for (row=y-1 ;row<=y+1 ;++row) 
if (x-1>=lx && rowcuy && row>=ly)
{

val = im_get_pixf(regions, row, x-1); 
if (val!=0.0 && val!=label)

{
relabel(regions, val, label);

-num regions;
}

}
}

}

format("%d regions found\n", numregions);

/* find largest region 7
largest = big_region(regions, numregions);

count = 0;
for (x=lx; x< ux; ++x) /* and compute centoid 7

for (y=ly; y< uy; ++y)
if (im_get_pixf(regions, y, x) == largest)
{

xsum += (x+0.5); I* assum e intensity measured at 7
ysum += (y+0.5); /* pixel centre 7
++count;

}
e lse  /* black out other regions 7  

im_put_pixf(0.0, regions, y, x);

estvpx = xsum/count; 
estvpy = ysum/count; 
tw_fglobal_reset(xbit); 
tw_fglobal_reset(ybit);

/* also set filter threshold at distance of furthest region member 7  
/* estimated VP 7  
for (x=lx; x< ux; ++x) 

for (y=ly; y< uy; ++y)
if (im_get_pixf(regions, y, x) == largest)
{

dist = sqrt(((float)x+0.5-estvpx)*((float)x+0.5-estvpx) +
((float)y+0.5-estvpy)*((float)y+0.5-estvpy)); 

if (dist > maxdist) 
maxdist = dist;

}

rhothresh = maxdist;

regions = imf_scale(regions, 0.0,255.0); 
stack_push(regions, IMRECT, NULL);
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}
else

{
error("estVP_proc : wrong type on stack", non_fatal);

}
}

static void mono_init(Tv * tv)
{

Imrect *im = monoJmage();

if (im != NULL)
tv_camera2_image(tv, im->width, im->height);

}

static void tv_choice_proc(int choice)
{

switch (choice)
{
case 1:

tv_set_init(tv, m onojnit);
tv_set_next(tv);
break;

case 2:
tv_set_init(graphtv, m onojnit);
tv_set_next(graphtv);
break;

default:
error("tv_choice_proc : unknown choice\n", warning); 
break;

}
}

static void tv_display_proc(int choice)
{

Imrect ‘image = NULL;

switch (choice)
{
case 1:

image = imf_scale(lines2Jm, 0.0, 255.0);
tv_imrect2(tv, image);
break;

default:
error("tv_display_proc : unknown choice\n", warning); 
break;

}

static void use_gauss_proc(int val) 

use_gauss = val;

static void string_choose_proc(int val) 

alLstrings = val;
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void *crack_tool(int xpos, int ypos)
{

static void ‘ tool;

tv = tv_create(" Lateral");
graphtv = tv_create("Lateral Graphics");

tool = (void *) tw_tool("Crack Tool", xpos, ypos);
{

tw_menubar("Setup",
"Install TVs",

"Lateral", tv_choice_proc, 1,
"Lateral Graphics", tv_choice_proc, 2,
NULL,

NULL);

tw_menubar(NULL,
"Display",

"Lateral", tv_display_proc, 1,
NULL,

NULL);

tw_newrow();
tw_button("Estimate VP", estVP_proc, NULL); 
tw_menubar(NULL,
"Show estimate",

"on image", showestVP_proc, 1,
"on region", showestVP_proc, 2,
"on grey", showestVP_proc, 3,
NULL,

NULL);

tw_newrow();
xbit = tw_fglobal("estimated VP x &estvpx, 12);
ybit = tw_fglobal("estimated VP y &estvpy, 12);

/* tw_newrow();
tw_choice("Gaussian Smoothing:", use_gauss_proc, 1, 

"Off", "On", NULL);*/;
tw_newrow();
tw_choice("Strings:", string_choose_proc, 1,

"Selected", "A ll", NULL);

tw_newrow();
tw_button("Unary Filter", filter_proc, NULL); 
tw_button("Pairwise Filter", pairs_proc, NULL);

/* tw_newrow();
tw_fglobal("sigma :", &sigma, 12); 

tw_newrow();
tw_fglobal("curvature thold factor (% ):", &tpercent, 12);*/ 

tw_newrow();
tw _ig lobal("border:", &border, 12); 

tw_newrow();
tw_fglobal("length in border :", &borderthresh, 12); 

tw_newrow();
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tw_fglobal("length threshold &lengthresh, 12); 

tw_newrow();
tw jg lo b a lf 'rh o  threshold &perpdist, 12);

}
tw_end_tool(); 

return tool;
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