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Problem definition: We study the practice-motivated problem of dynamically procuring a new, short

life-cycle product under demand uncertainty. The firm does not know the demand for the new product but

has data on similar products sold in the past, including demand histories and covariate information such as

product characteristics.

Academic/practical relevance: The dynamic procurement problem has long attracted academic and

practitioner interest, and we solve it in an innovative data-driven way with proven theoretical guarantees.

This work is also the first to leverage the power of covariate data in solving this problem.

Methodology:We propose a new, combined forecasting and optimization algorithm called the Residual Tree

method, and analyze its performance via epi-convergence theory and computations. Our method generalizes

the classical Scenario Tree method by using covariates to link historical data on similar products to construct

demand forecasts for the new product.

Results:We prove, under fairly mild conditions, that the Residual Tree method is asymptotically optimal as

the size of the data set grows. We also numerically validate the method for problem instances derived using

data from the global fashion retailer Zara. We find that ignoring covariate information leads to systematic

bias in the optimal solution, translating to a 6–15% increase in the total cost for the problem instances under

study. We also find that solutions based on trees using just 2–3 branches per node, which is common in the

existing literature, are inadequate, resulting in 30–66% higher total costs compared with our best solution.

Managerial implications: The Residual Tree is a new and generalizable approach that uses past data on

similar products to manage new product inventories. We also quantify the value of covariate information

and of granular demand modeling.

Key words : new product, inventory management, data-driven operations, Scenario Tree method, Residual

Tree method, demand uncertainty
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1. Introduction

Matching supply with demand is a critical challenge for retailers selling short life cycle products

in markets with fast-changing demand trends, such as fashion apparel and consumer electronics.

In response, retailers and academics have considered specific operational strategies, such as quick

response and fast fashion, for facilitating this matching. Such strategies make use of many levers at

the firm’s disposal, including product design (e.g., component commonality), forecasting and mar-

ket tests (e.g., early order incentives), manufacturing locations (e.g., on-shoring and near-shoring),

manufacturing sequencing (e.g., delayed differentiation), pricing (e.g., clearance or in-season mark-

downs), and logistics (Fisher et al. 2001).

Another recognized strategy involves the dynamic allocation of demand with different levels of

uncertainty to manufacturing facilities characterized by different lead times and costs. The key idea

is to selectively use fast and expensive supply sources after having acquired as much information as

possible about products with high initial demand uncertainty (risk-based supply portfolio strategy;

see Fisher and Raman 1996) or to supply the portion of demand that is associated with more

uncertainty (base/surge demand strategy; Allon and Van Mieghem 2010).

This paper is motivated by our interaction with the Spain-based apparel retailer Zara, which

has implemented such a procurement segmentation approach in its supply chain. Specifically, Zara

typically purchases some initial quantity of a new product from China several months before the

season, but depending on sales during the season it can subsequently place one of several in-season

replenishment orders for the same product from more expensive but closer vendors located in places

like Turkey or Portugal (Patel 2012). A key related challenge reported to us by Zara managers is

the related decision complexity. For example, it was often unclear to them exactly how much of a

given article should initially be ordered from China as a function of the different costs and lead

times associated with all capable suppliers worldwide and of the anticipated decrease in forecast

uncertainty once the selling season starts.

The second and third authors of this paper have been helping Zara adapt existing stochastic

programming approaches to address this dynamic procurement challenge and to implement this

work as part of the industrial decision support system shown in Figure 1. This system is designed

for use by a fashion buyer charged with making procurement decisions for a new product. It includes

tools for the buyer to visualize and edit the demand forecasts (line chart in Figure 1) and to see,

edit, and optimize the procurement plan (bar chart and the right-hand-side table in Figure 1). Field

testing of this system with Zara buyers has revealed additional critical challenges, however. Firstly,

the system currently relies on Zara’s legacy process for forecasting demand of new products, which
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requires a selection by the user of several past articles from previous seasons deemed “comparable”

to the new one under consideration. As buyers realized that this choice of prior comparable articles

was a subjective one often having a substantial impact on purchasing recommendations, they started

asking for automated suggestions of which comparable articles to use. Secondly, the system currently

relies on an ad hocmodel of demand learning dynamics which requires time and expertise to estimate

and maintain. For this reason, the learning model is shared by all articles within the same product

subfamily (e.g., women’s shirts), which for Zara can comprise a relatively large set of products. As a

result, a relatively well-understood article similar to ones sold in previous seasons, and thus having

little demand uncertainty, could get the same recommended initial purchase quantity from China

as a fashion-forward and untested article for which much demand uncertainty is resolved after the

first weeks of sales are observed. This results in suboptimal decisions; for example, the benefits of

a second purchase from Turkey or Portugal are lower for the well-understood garment than for the

fashion-forward one so that, all else being equal, the well-understood garment should have a larger

initial purchase quantity from China.

The present study lays the foundations for addressing these challenges as part of a more data-

driven, accurate and automated version of the existing decision support system shown in Figure 1.

Although we hope to help Zara implement such an enhanced system in the future as part of our on-

going relationship with the firm, we believe that the relevance of this foundation work extends much

beyond Zara. Specifically, this paper presents, analyzes and tests a practice-oriented, generalizable

and tractable data-driven computational method for optimizing the procurement of a new, short life

cycle product from multiple sources over time. As there is no historical data for a new product, the

key to our solution is the use of covariate (also known as feature/attribute/predictor) information

to link the new product to similar products that were sold in the past. Relevant product covariates

for apparel articles may include the procurement cost, retail price, colour, item type (e.g., sweater,

t-shirt, etc.), fabric, design style (e.g., sporty, classic), expert predictions of the product’s popularity,

etc. We refer to covariates tied to product attributes that do not change over time as “static.” Our

approach can also account for “dynamic” covariates—e.g., lagged demand observations included to

naturally account for demand auto-correlations. Importantly, covariates are essential for accounting

for product heterogeneity by providing a means for aligning demand observations across different

products. This allows us to construct a large number of estimated demand trajectories relevant to

the new product, which we can then use in a scenario-based model of forecast updating dynamics.

Our method employs a new approach which we call the Residual Tree method, which can be

used to solve general multi-stage stochastic programs where there is no information about the
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underlying uncertainty, but there are data on historical data trajectories of other stochastic processes

related through covariate information. The Residual Tree method extends the classical Scenario

Tree method of stochastic programming (see Shapiro et al. 2009), which relies on scenario samples

from the underlying stochastic process of interest (in our case, demand for the new product). In

contrast, our approach replaces these scenario paths with “residual paths”, composed of residuals

from a regression model relating the uncertainty in question and the available covariate information.

We show that our Residual Tree method can solve, to an arbitrary accuracy, a generic version of

the dynamic procurement problem by following three steps: (i) a least-squares or lasso regression

providing demand forecasts capturing the covariate information; (ii) binning of output residuals for

improved computational efficiency; and (iii) solving a large linear program in which the new product

demand is approximated by the binned residual paths. We prove, under natural assumptions, the

method just described is asymptotically optimal as the number of similar products increases.

Lastly, we numerically validate the Residual Tree method on stylized problems based on data

provided by Zara. The numerical results are promising in that the Residual Tree method finds

solutions quickly that have near-optimal finite-sample performance. Our numerical results further

show the importance of covariate information. For example, we find that ignoring static covariates

results in out-of-sample cost increases on the order of 6-15%, with statistical significance at the 1%

level in a four-period problem. We also find that considering just 2–3 branches per node for the

dynamic procurement problem, as is the case in much of the literature to date, is too simplistic

and may result in solutions that underperform substantially, with additional costs of 30− 66% of

the optimal total cost compared with our solution with 10 branches per node, also with statistical

significance at the 1% level.

Our approach integrates regression with multi-stage stochastic programming in a way that is

intuitive while retaining desirable theoretical properties such as asymptotic optimality. The approach

is practical in the sense that the main input is data a retailer is likely to have. While we assume

a linear relationship between a product’s demand and relevant covariates, we do not impose any

distributional assumptions on the residuals. We believe this work is the first to leverage the power

of covariate information in multi-stage procurement optimization.

We discuss the related literature and our contributions in Section 2, the optimization model in

Section 3, our proposed solution approach in Section 4, asymptotic optimality results in Section 5,

and numerical experiments in Section 6. We conclude in Section 7. The proofs of all mathematical

results are placed in the online Appendix. Some of the data presented in this paper have been

disguised to protect its confidentiality, and we emphasize that the views presented in this paper do

not necessarily represent those of the Inditex Group.
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Figure 1: Graphical user interface component used by Zara as part of a decision support system
adapted to the dynamic procurement problem in its environment.

2. Literature Review

This paper relates to the literature on production/inventory systems investigating how one or mul-

tiple supply sources should be used when demand forecast updates become available over a finite

time horizon. As discussed in the recent survey by Serel (2016), these feature a variety of model-

ing approaches, including multi-period extensions of the newsvendor model (Lau and Lau 1996),

Bayesian updating (Eppen and Iyer 1997, Burnetas and Gilbert 2001), the martingale model of

forecast evolution (Iida and Zipkin 2006, Lu et al. 2006, Wang et al. 2012) and the forecast band

refinement model (Kaminsky and Swaminathan 2001, 2004). Within this body of work, our paper

is closest to the practice-oriented studies motivated by collaboration with industry, such as Fisher

and Raman (1996), Fisher et al. (2001), Jones et al. (2001) and Peng et al. (2012). We also highlight

Escudero et al. (1993) and Higle and Kempf (2011), which propose computational approaches based

on stochastic programming to address production/inventory problems with demand uncertainty. Fi-

nally, our work is closely related to Agrawal et al. (2002), which is a practice-based study reporting

the use of stochastic programming to address a dynamic procurement problem arising in a retail

environment. In contrast to all papers above, our approach is data-driven, captures a potentially

large amount of covariate information, and is justified by an asymptotic optimality result.

This paper also contributes to the growing literature on data-driven approaches to operations

management challenges, which seeks to inform operational decisions using available historical data
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and minimal distributional assumptions. There are now many studies on data-driven inventory

management (e.g. Burnetas and Smith 2000, Huh and Rusmevichientong 2009, Kunnumkal and

Topaloglu 2008, Godfrey and Powell 2001, Levi et al. 2007, Levi et al. 2015, Ban and Rudin (2018),

Ban 2018 and references therein). A number of recent studies are further motivated by the avail-

ability of large data sets that contain covariate data (also referred to as features, characteristics,

attributes or explanatory variables), as is this paper. These include Ban and Rudin (2018), Ferreira

et al. (2015), Chen et al. (2015), Cohen et al. (2016), Qiang and Bayati (2016), Hu et al. (2016), Ban

and Keskin (2017) and Baardman et al. (2017). Our work is distinct from the data-driven operations

management literature just discussed, which considers covariate information for single-period opti-

mization problems only. In contrast, we focus on the dynamic procurement problem, which requires

analyzing a more complex multi-stage stochastic program.

From a methodological standpoint, our Residual Tree method adds to the literature on Scenario

Tree methods for solving multi-stage stochastic programs. We refer the reader to Dupačová et al.

(2000) for a review up to 2000, and Pennanen and Koivu (2002), Dupačová et al. (2003), Heitsch

and Römisch (2003), Casey and Sen (2005), Pflug and Hochreiter (2003) and Rios et al. (2015)

for more recent developments. In the classical Scenario Tree method, knowledge of the distribution

of the underlying stochastic process is assumed, enabling the decision-maker to simulate arbitrary

quantities of data from it. In contrast, our Residual Tree method is intended to be used when the

decision-maker does not know the distribution of the underlying stochastic process of interest, but

instead has finite observations of other stochastic processes that are related to the one in question

through covariate information. In this sense the Residual Tree method is a covariate data-driven

generalization of the classical Scenario Tree approach. Our proof of asymptotical optimality relies

on the epi-convergence theory of Pennanen (2005) and Pennanen (2009) developed for classical

Scenario Tree methods. We note that our proof must show that both discretization error (which also

arises in the classical Scenario Tree method) and estimation error (which arises from our regression

modeling of the data) vanish, and is therefore a nontrivial extension of past work.

Methodologically, the most closely related paper to ours is Rios et al. (2015), who use functional

regression based on historical data to estimate a stochastic model of electricity demand, then use

their model to generate scenarios for a Scenario Tree formulation of an electricity generation problem.

There are a few key differences with our paper. First, Rios et al. (2015) assume limited data on

the process of interest along with some temporal covariates (that are revealed over time) compared

with our assumptions of no data on the process of interest and the existence of both static and

temporal covariates. Second, our approach directly constructs demand scenarios from regression
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residuals, whereas theirs first fits distributions to residuals and then samples from the distributions.

Thirdly, Rios et al. (2015) does not include any theoretical guarantees, whereas we prove asymptotic

optimality of our method.

Figure 2: Timeline of events.

3. Model

We formulate our dynamic procurement problem in two steps. We first describe our assumed demand

process and connect it to data that is likely to be available to a fashion retailer. We then formulate

the stochastic optimization problem.

3.1. Demand Model and Description of Existing Data

Stochastic demand for a new product arrives in every period, described by a random vector {D0t}Tt=1

defined on the probability space (Ξ0,F0,P0), where each D0t : Ξ0t→ R+, 1 ≤ t ≤ T is a random

variable on P0t, and P0 = P01 × . . .× P0T is the product measure. (We use the index 0 to refer to

the new, focal product; data from n other, historical products will be indexed by k= 1, . . . , n.) Note

the demands up to time t induce a natural filtration F0t = σ({D−10s (A) : 1≤ s≤ t,A∈Ω}) on F0.

We assume that the demand D0t linearly depends on a mt-dimensional random covariate vector

X0t, where each element may consist of product features such as price, color and style code, as well

as time-series factors such as seasonality and past demands. Note the subscript t in mt is used to

allow for the number of covariates to differ across periods. In other words, we assume the random

demand D0t for our focal product in period t is given by:

D0t|(X0t = x0t) = αt +β>t x0t + εt, (1)

where αt ∈R is a scalar intercept coefficient, βt ∈Rmt is a vector of model coefficients, x0t ∈Rmt is

a vector of mt realized covariates at time t, and εt is the random error described shortly.
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Since the product is new, the coefficients αt and βt and some components of x0t (e.g. past demands

d0(t−1) if there are time-series dependencies) are unknown to the firm. However, in our problem

setting the firm has access to a large amount of data on similar products sold in the past, using

which it can forecast the demand for the new product. We now describe the demand model which

makes this cross-learning possible.

Assume the following demand model for the family of n+ 1 products (the focal product 0 plus n

other similar products sold in the past):

Dkt|Xkt = αt +β>t Xkt + εt, k= 0,1, . . . , n, (2)

where αt, βt and εt are as in (1), and for each k = 0, . . . , n, Xkt is an independent mt-dimensional

random covariate vector with a common distribution PXt , where we use the notation Xt to denote the

generic random covariate vector. The random errors εt, t= 1, . . . , T are assumed to be independent

across time and of the feature vectors Xkt, k= 0, . . . , n and t= 1, . . . , T . They are also assumed to be

drawn independently from a (common) continuous distribution with strictly increasing cumulative

distribution function Fεt (i.e., an inverse cdf exists), with mean zero and variance σ2
t , for each

t= 1, . . . , T . Finally, we assume that E[XtX
>
t ], where Xt := [X1t, . . . ,Xnt], exists and is a symmetric

positive definite matrix.

As for the data, we assume the firm has a database of past demands and covariates of n similar

products sold in the past, D= {(xk1, dk1)nk=1, . . . , (xkT , dkT )nk=1}, drawn from the demand model (2).

We assume that n−1
∑n

k=1XtX
>
t are finite symmetric positive definite matrices. At the beginning of

the selling season, the firm also has the covariates for the new product, [x̂01, . . . , x̂0T ], where we use

theˆnotation to highlight the fact that some non-static elements of the covariate vector (e.g. past

demands, weather or economic indicators) may be estimates of values to be revealed later (as the

season unfolds, the firm will observe X0t = x0t, t= 2, . . . , T ). (Note that if the demand only depends

on static, product-characteristic covariates, then x̂0t = x0t for all t= 1, . . . , T .)

As an example, if the new product 0 were of a particular t-shirt design, the database D would

include the demand histories for other t-shirt products offered last season. For any product k =

0,1, . . . , n and any time period t, the feature vector xkt could include numerical representations of

t-shirt k’s color, fabric, and design; the historical demand strength of t-shirts during the time of

year represented by period t; and the observed demand for t-shirt k in period t−1. We remark that

in describing the database D we are not distinguishing between observed sales and demand.

Comments on the demand model (2) and the available data
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1. Linearity. The linear demand model (2) is a widely-used and useful model that can arbitrarily

approximate nonlinear models and is general enough to subsume many time-series models (e.g.

autoregressive and martingale models such as the Martingale Model of Forecast Evolution

(MMFE) of Heath and Jackson 1994 and Graves et al. 1986). We refer the readers to Ban and

Rudin (2018) for details on how smooth nonlinear models can be approximated by linear ones

through Taylor expansions and enlargement of the covariate dimension, and on how time-series

models and MMFE models can be captured by the linear demand model.

2. Assumptions on the residual error εt. As the residual error is not product-dependent, the un-

derlying assumption is that the demands for products within the same product family have the

same distribution once adjusted for their means. For example, the demands for two different

t-shirt designs both being normally distributed with the same variance but different means

would satisfy the assumptions of our model. Thus the assumption of a common error distribu-

tion at each time t= 1, . . . , T allows for cross-learning of the product demands. We believe this

is a reasonable assumption, since all effects due to other factors are meant to be captured by

the linear demand model, leaving a noise term with a common distribution across products.

3. Assumptions on the design matrix Xt. The assumptions on E[XtX
>
t ] and its empirical coun-

terpart n−1
∑n

k=1XtX
>
t are standard requirements for least-squares regression estimation to be

possible. Violation of the assumptions (i.e. the matrices are not positive definite) implies the

existence of redundant covariate dimension(s), and this can be dealt with by removing the

problematic dimension(s) from consideration.

4. Data-driven learning. The inclusion of an arbitrary selection of covariates realized over time, in-

cluding past demand observations, enables the learning component of our model. This learning

would typically be reflected by an estimated positive correlation structure between the initial

observations of weekly sales and sales subsequently predicted, and/or by an estimated decreas-

ing variance pattern for the random error term εt over time. While a variety of alternative de-

mand learning models have been used in past studies of related dynamic production/inventory

problems (e.g., the Bayesian model in Burnetas and Gilbert 2001, the MMFE in Wang et al.

2012, the band refinement model in Kaminsky and Swaminathan 2001, 2004), we emphasize

that our approach is data-driven. That is, the starting point assumed for the demand model

(2), the combined estimation and optimization method to be presented in Section 4 and the

related asymptotic optimality theory to be developed in Section 5 is a data set of historical

observations, as opposed to exogenously given distributional knowledge.
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3.2. Optimization Problem Formulation

We model the management of a single new product over a finite, T -period time horizon indexed

in the forward direction by t = 1, . . . , T . In each period t, the firm may order some quantity of

the product from a vendor chosen from a set S of potential suppliers, letting S = |S|. Orders from

supplier j placed in period t then arrive after a deterministic lead time `j at a cost of ctj.

The firm has initial inventory I0. Any unmet demand is assumed lost, incurring opportunity costs

of bt per unit. The firm also incurs a holding cost of ht per unit for inventory held at the end of

periods t= 1, . . . , T − 1. At the end of the horizon, any remaining units of inventory are salvaged,

generating revenue v per unit. We assume ht > 0 and bt ≥ bt+1 for all t= 1, . . . , T and bT > v. The

assumption bt ≥ bt+1 is justified because retail prices, and hence stockout opportunity costs, typically

decrease in time. The condition bT > v precludes giving the retailer an incentive to withhold stock

from customers in period T in order to make more money in salvage.

Figure 2 illustrates the sequence of events within a period. Orders are chosen and placed with

the covariate vector x̂0t, but before past orders arrive and the new demand D0t is observed; note

this timeline allows for orders from suppliers with zero lead time to arrive in the same period the

order is placed. Let qtj denote the quantity ordered in period t from supplier j. We have qtj ∈Qtj,

where Qtj is a bounded subset of R+. We require qtj ∈F0t, i.e. adapted to the natural filtration of

the demand process up to time t.

The multi-stage stochastic procurement problem we wish to solve is thus:

min
qtj ,It,lt

1≤t≤T,1≤j≤S

E

[
T−1∑
t=1

htIt +
T∑
t=1

btlt +
T∑
t=1

S∑
j=1

ctjqtj − vIT

]
(PP)

s.t.

qtj ∈F0t, ∀ 1≤ t≤ T, ∀ 1≤ j ≤ S, (PPa)

It =

It−1 +
∑
j∈S

∑
1≤τ≤t−1:
τ=t−`j

qτj −D0t


+

, ∀ 1≤ t≤ T (PPb)

lt =

D0,t− It−1−
∑
j∈S

∑
1≤τ≤t:
τ=t−`j

qτj


+

, ∀ 1≤ t≤ T (PPc)

qtj ∈Qtj, ∀ 1≤ t≤ T, ∀1 ≤ j ≤ S (PPd)

It ≥ 0, lt ≥ 0, ∀ 1≤ t≤ T, (PPe)
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where PP is short for “procurement problem” and the expectation is taken over the measure induced

by {D01, . . . ,D0T}. Note
∑

1≤τ≤t:
τ=t−`j

qτj denotes the total order quantity arriving from supplier j during

period t, lt the lost sales incurred during period t and It the inventory on-hand at the end of time t.

The constraint (PPa) is a requirement that decisions are adapted to the history, (PPb) captures the

inventory dynamics, (PPc) captures the lost sales dynamics and (PPd)–(PPe) define the domains

of the decision variables. Note constraints (PPb) and (PPc) apply almost surely. We assume the

parameters of problem (PP) are such that it is feasible and thus at least one optimal solution exists.

Denote the solution to (PP) by (q∗, I∗, l∗), where q∗ = [q∗t1, . . . , q
∗
tS]Tt=1, I∗ = [I∗1 , . . . , I

∗
T ] and

l∗ = [l∗1, . . . , l
∗
T ]. Denoting the available information at the beginning of period t by Ht :=

{I0, . . . , I(t−1), l0, . . . , l(t−1),x01, . . . ,x0t, [q
∗
τ1, . . . , q

∗
τS]

(t−1)
τ=1 }, we note that q∗tj, j = 1, . . . , S, I∗t and l∗t

are policies (functions) that map Ht to the reals. Finally, we note I0, the initial inventory on-hand,

is a constant assumed given.

Some features of optimization formulation (PP) are motivated by considerations in Zara’s envi-

ronment. We allow for an arbitrary number of supply options with differing lead times, in keeping

with the number and diversity of the vendors and shipping options available to Zara. While lead-

times are assumed to be deterministic for tractability reasons, we understand the typical variability

of vendor delivery times to be lower than, or at worst comparable to, our intended planning period

of one week. We also emphasize that the assumption of boundedness imposed on sets Qtj allows us

to capture realistic supply constraints and cost structures such as limited vendor capacity, minimum

order quantities, and quantity discount schemes. Finally, the assumed lost sales dynamics align

with Zara’s observations of typical customer behaviors when confronted with stock-outs of fashion

products. While these lost sales dynamics can present specific tractability challenges (Zipkin 2008),

the following proposition establishes that the inventory and lost sales constraints (PPb)-(PPc) in

(PP) have equivalent linear expressions in this case.

Proposition 1. The multi-stage stochastic program (PP) is equivalent to the following problem,

in that the optimal solution(s) and the optimal objective values coincide:

min
qtj ,It,lt

1≤t≤T,1≤j≤S

E

[
T−1∑
t=1

htIt +
T∑
t=1

btlt +
T∑
t=1

S∑
j=1

ctjqtj − vIT

]
(PP2)

s.t.

qtj ∈F0t, ∀ 1≤ t≤ T, ∀ 1≤ j ≤ S, (PP2a)

It = It−1 + lt +
∑
j∈S

∑
1≤τ≤t−1:
τ=t−`j

qτj −D0t, ∀ 1≤ t≤ T. (PP2b)
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qtj ∈Qtj, ∀ 1≤ t≤ T, ∀1 ≤ j ≤ S (PP2c)

It ≥ 0, lt ≥ 0, ∀ 1≤ t≤ T. (PP2d)

4. Solution Approach: the Residual Tree Method

A standard numerical approach to solving multi-stage stochastic programs such as (PP2) is to model

the uncertainty using Scenario Trees that directly represent the evolution of the key uncertainty

drivers such as the demand. Such an approach would be justified for (PP2) if the decision-maker

(DM) had sufficiently many iid observations of the demand process, or, if the DM knew the dis-

tributions of the underlying demand process (from which s/he could simulate an arbitrarily many

observations of iid demand trajectories). Clearly, neither situation is applicable to our problem of

procuring a product that has never been sold before, thus the Scenario Tree method (which is a

well-known and studied technique in stochastic programming; see the references in the literature

review for the latest on this method) is not applicable in our setting.

To solve Zara’s procurement problem (PP2), we thus develop a new method, called the Residual

Tree method, which circumvents the lack of direct demand observations for the new product by using

historical data on similar items sold in the past. While the DM could use the demand data on similar

products to construct a Scenario Tree directly, this would yield decisions that are systematically

biased, due to differences in the products. Instead, the Residual Tree method employs a two-step

approach whereby in the first step, least-squares (or lasso) regression is carried out to not only

learn the parameters of the demand model (2), but also to construct artificial demand data for the

never-before sold new product using the residuals from the regression. The second step solves an

approximated version of (PP2) using the constructed data set.

We present two versions of the Residual Tree method to estimate the solution of (PP2), (q∗, I∗, l∗).

The first version (presented in Section 4.2) is to be used when the number of features, mt, is

small relative to n (perhaps identified through a prior feature-selection step). The second version

(presented in Appendix B) is designed for situations when mt is large, possibly much larger than n,

and only a subset of the features have a non-negligible role in the demand model (2). In Section 5

we prove the asymptotic optimality of both versions of our approach. For comparison, we first

present the standard Scenario Tree approach to solving (PP2) under the hypothetical assumption

that demand observations for the new product were available.
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Figure 3: A schematic of the Residual Tree, when there is no serial correlation in the demand
(otherwise, the second-stage residuals depend on the first-stage residuals) (left plot). A schematic
of histogram binning to reduce the size of the Residual Tree, where twelve residual scenarios are
reduced to six. Note that the distribution of the residuals need not be normal, and the bell-curve
in the schematic is for illustrative purposes only (right plot).

4.1. Scenario Tree Algorithm

In the hypothetical situation where the DM had K observations of the demand path for the new

product, {dk01, . . . , dk0T}Kk=1, a textbook Scenario Tree approach to the problem (PP2) is to solve the

following approximation:

min
qktj ,I

k
t ,l

k
t

1≤t≤T,1≤j≤S,1≤k≤K

1

K

K∑
k=1

[
T−1∑
t=1

htI
k
t +

T∑
t=1

btl
k
t +

T∑
t=1

S∑
j=1

ctjq
k
tj − vIkT

]
(SC)

s.t. ∀ 1≤ k≤K & ∀ 1≤ t≤ T :

qktj = q`tj ∀ k, ` with same demand path up to t− 1, ∀ 1≤ j ≤ S, (SCa)

Ikt = Ikt−1 + lkt +
∑
j∈S

∑
1≤τ≤t−1:
τ=t−`j

qτj − dk0t, (SCb)

qktj ∈Qtj ∀ 1≤ j ≤ S (SCc)

Ikt ≥ 0, lkt ≥ 0. (SCd)

The key changes to (PP2) by the approximation (SC) are: (i) the decision processes become K-

dimensional vectors, one for each demand path scenario; (ii) the objective is now an empirical

average of the costs over theK scenario paths, rather than an expectation; (iii) the non-anticipativity

constraint (PP2a) simplifies to (SCa); and (iv) the almost-sure random constraint (PP2b) is replaced

by K deterministic constraints (SCb).

The Scenario Tree approach is one of the standard approaches to solving a multi-stage stochastic

program as (PP2). In the special case where the demand process is a discrete random vector with

K equally-weighted scenario paths, (SC) is equivalent to (PP2); otherwise (SC) is a computable
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approximation of (PP2). For a textbook treatment of the topic we refer the readers to Shapiro et al.

(2009), and for recent developments, the references mentioned in the literature review.

Although the Scenario Tree approach is popular and well-studied, the assumptions that under-

pin it renders its application to our problem impossible, because the DM does not have demand

observations for a brand-new product (either directly or through the knowledge of the demand

distribution), which appears in (SCb). Our Residual Tree method remedies this shortcoming by

constructing trees based on residuals from regressions on similar products sold in the past.

4.2. Residual Tree Algorithm (Least-squares Regression version)

Step 1. Residual Tree construction.

(a) Least-squares regression. For each t ∈ [1, . . . , T ], perform least-squares regression on

available data on the n historical demands of similar products sold in the past:

min
αt∈R, βt∈Rmt

n∑
k=1

(dkt−αt−β>t xkt)
2. (3)

Let (α̂t, β̂t) denote the optimal solution, and {εkt}nk=1 the residuals. We can construct

n “samples” of the demand for the new product by combining the results of (3):

{d̂k0t = α̂t + β̂>t x̂0t + εkt}nk=1, (4)

where we use the d̂ notation in d̂k0t to highlight the fact that dk0t is not a draw from

a known distribution of the new product demand (as is the case in the Scenario Tree

method), but an estimated sample from cross-learning from similar products, and in x̂0t

to highlight the fact that some components of x̂0t may themselves be estimated from

data (e.g. time-series components), as discussed in Sec. 3.1. We now have n independent

demand estimates at every point in time for the new product, equalling nT scenario

paths in total.

(b) Histogram binning (for efficient computation if n is too large). We could use the demand

samples constructed in Step 1 (a) directly, but if n is too large, we can reduce the

computation time by binning the residuals into a histogram (see Fig. 3, right plot).

Choose 1≤Bt ≤ n, the number of histogram bins at time t, for t= 1, . . . , T , and ε̄bt,

b = 1, . . . ,Bt the center of the b-th bin at time t. Bt is also equal to the number of

branches emanating from each node in the tree at period t. Let pbt denote the empirical

probability of a residual εkt being in the b-th bin at time t.
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We now have Bt sample predictions for the demand at time t= 1, . . . , T :

{d̄0t(b) := α̂t + β̂>t x̂0t + ε̄bt}Btb=1, (5)

each occurring with probability pbt. The total number of scenarios is thus reduced to

B :=B1× . . .×BT . Let B= {{b1, . . . , bT} : bt ∈ {1, . . . ,Bt}, t= 1, . . . , T} denote the set

of labels for all possible scenario paths, and denote a particular scenario path by b =

[b1, . . . , bT ], which occurs with probability pb = pb1 × . . .× pbT . Denote the discretized

state space by Ξ̂n = Ξ̂1× . . .× Ξ̂T and the corresponding discretized probability measure

by P̂n = P̂1× . . .× P̂T .

Step 2. Solve an estimated problem using the Residual Tree from Step 1.

Compute replenishment decisions by solving the following optimization problem (denoted

EPP, for “estimated procurement problem”):

min
qtj(·),It(·),lt(·)
1≤t≤T,1≤j≤S

∑
b∈Bn

pb

[
T−1∑
t=1

htIt(b) +
T∑
t=1

btlt(b) +
T∑
t=1

S∑
j=1

ctjqtj(b)− vIT (b)

]
(EPP)

s.t. ∀ 1≤ t≤ T :

qtj(b) = qtj(b
′), ∀ b,b′ ∈B, s.t. d̄0τ (bτ ) = d̄0τ (b

′
τ ), ∀ 1≤ τ ≤ t− 1, ∀ 1≤ j ≤ S,

(EPPa)

It(b) = It−1(b) + lt(b) +
∑
j∈S

∑
1≤τ≤t−1:
τ=t−`j

qτj(b)− d̄0,t(bt), ∀ b∈B, (EPPb)

qtj(b)∈Qtj, ∀ 1≤ j ≤ S, ∀ b∈B (EPPc)

It(b)≥ 0, lt(b)≥ 0, ∀ b∈B, (EPPd)

where we indicate the dependence of the demand data and decisions on the particular

scenario path b explicitly. Denote the solution to (EPP) by (q̂(n), Î(n), l̂(n))∈ (RTS×RT ×

RT )B, where q̂(n) = [q̂1j(·), . . . , q̂Tj(·)]Sj=1 ∈ RTS, Î(n) = [Î1(·), . . . , ÎT (·)] ∈ RT and l̂(n) =

[l̂1(·), . . . , l̂T (·)]∈RT .

Remarks.

1. Decisions after t = 1: The estimated optimal ordering policy q̂(n) from (EPP) is a matrix of

values that maps the initial state (starting inventory, I0) and the n constructed demand paths to

ordering decisions. At time t= 1, the decision-maker orders q̂1j from each supplier j = 1, . . . , S,

the actual demand for the new product d01 is observed, with which inventory I1 and lost sales

l1 can be computed. For subsequent decisions in periods t = 2, . . . , T , the decision-maker re-

solves (EPP) with ordering quantities, inventories and lost sales up to period t−1 fixed by their
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realized values. In other words, the decision-maker solves the procurement problem via a forward

rolling-horizon approach.

2. Histogram binning : There are a myriad of ways to construct the histogram in Step 1 (b), with

the total number of bins, Bt, the centres ε̄bt, b= 1, . . . ,Bt and the widths δbt of the bins at time

t being free parameters. (Clearly, a smaller number of bins is more computationally efficient but

has greater discretization error; we illustrate this tradeoff in Section 6.) Note that, however, for

the asymptotic optimality results in Section 5, the decision-maker needs to increase the total

number of bins with n such that the resulting histogram measure is asymptotically equivalent to

the sample-average measure. We state this requirement precisely in the statement of Theorem 1

in the next section.

3. Unknown covariates for the new product : Whenever constructing a residual tree, we construct

sample demand predictions d̄0t(b) using equation (5) for a bin b in a period t > 0 using mid-points

from bin b’s parent bins as values for the relevant lagged demand covariates. When (EPP) is

solved in a forward rolling-horizon manner (see Remark 1), as the season progresses the firm will

observe actual dynamic covariate values for the new product and so can progressively replace

any estimated components of the covariate vector x̂0t, t= 1, . . . , T , before each re-solve of (EPP).

4. We leave the sets Qtj unspecified in (EPP) for the sake of expositional simplicity, reminding

the reader that the theory to be developed in Section 5 only requires these sets to be bounded.

Various possible choices of set types with that property lead to different specifications of (EPP)

for computational purposes. For example, for closed intervals [0,Kj] where Kj is a capacity limit

for supply source j (EPP) is a linear program. Sets of the type {0}∪ [Oj,Kj] would also capture

a minimum order quantity Oj and would lead to (EPP) being a mixed integer program.

5. Comparison with Scenario Tree algorithm of Sec 4.1: Apart from fundamental differences in

the starting assumptions, the key mathematical difference between the two approaches is in

the inventory balancing equations, whereby in (EPPb), the estimated demand sample is used

as opposed to the actual demand sample in (SCb). Thus, the Residual Tree method is subject

to estimation errors as well as discretization errors, unlike the Scenario Tree method which is

subject to only the latter. Our theory in Section 5 extends results for the Scenario Tree method

by reconciling both errors.

In the online Appendix B, we extend the algorithm just stated to the high-dimensional setting

where the DM may have a number of redundant covariates in the data set, by replacing the least-

squares regression of Step 1 (a) with lasso regression. That is, the decision-maker has access to a

superset of rt >mt covariates (among which the identities of the true mt covariates are unknown).
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Applying least-squares regression (3) using all rt covariates becomes problematic in this case because

of ill-conditioning of the design matrix, hence the need for a modification to the algorithm.

In the following section we state the asymptotic optimality of the procurement solutions obtained

using the Residual Tree Algorithm (Least-squares Regression version). The lasso version of the

algorithm is also asymptotically optimal; we leave this statement to Appendix B.

5. Theory: Asymptotic Optimality of the Residual Tree Method

The main result of this section is that if nature generates product family demand data from the

random models (1)–(2), then both the optimal value and the optimal solution of (EPP ) converge to

the optimal objective value and the optimal solution of (PP ) as the number of products n tends to

infinity, which is known as epi-convergence in the stochastic programming literature. (Note that we

use the terms ‘epi-convergence’ and the more self-evident ‘asymptotic optimality’ interchangeably.)

We state this formally below. The proofs of the results are deferred to Appendix C, and below we

provide some qualitative explanations of the key ingredients.

Theorem 1. Assume that, for all y ∈R and 1≤ t≤ T ,∣∣∣∣ ∑
1≤b≤Bt

pbtI(d̄0t(b)≤ y)− 1

n

n∑
k=1

I(d̂k0t ≤ y)

∣∣∣∣ P→ 0 (6)

as n→∞, where P→ denotes convergence in probability. Then the optimal values of (EPP ) obtained

using Residual Tree Algorithm (Least-squares Regression version) converge to that of (PP ) as n→

∞ and all cluster points of {q̂11(n), . . . , q̂1S(n), Î1(n), l̂1(n)}n∈N are optimal first-stage solutions of

(PP ).

The assumption (6) requires the binned histograms to converge to the true density as the sample-

average distribution. A necessary requirement for this is for Bt to grow linearly with n, i.e., Bt =Cn

for some constant C ∈ (0,1). One intuitive way to bin the residuals so that (6) is satisfied is to bin

them into finer intervals as n grows (e.g. by binning into quartiles at first, then by deciles, then in

ever smaller percentiles as n grows).

An immediate consequence of Theorem 1 is that decisions made in periods t= 2,3, . . . , T by the

forward recursion process described in Remark 1. of Sec 4.2 also converge to the optimal t-stage

solutions of (PP), conditioned on the demand path d01, . . . , d0(t−1) and orders [q̂1j, . . . , q̂(t−1)j]
S
j=1

made up to period t− 1. The result is immediate because conditioned on the demand path and

orders up to period t− 1, the T -stage problem (PP) reduces to a T − t+ 1-stage problem, whose

first-stage solution is the decision for period t.
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To prove Theorem 1, we make use of recent results of Pennanen (2005) and Pennanen (2009), who

establish sufficient conditions for discretized multi-stage stochastic programs to epi-converge (i.e.

both the objective and the first-stage solutions converge). We extend these results to the Residual

Tree method, which are subject to estimation errors as well as discretization errors, as discussed

in Remark 5 in Sec. 4.2. The full proof is rather intricate and we simplify the presentation by first

establishing three separate lemmas on the nature of the true problem (PP), one on the continuity

property of the random objective function, one on the expectation of the objective function, and

one on the property of the demand model. Apart from the well-behaved nature of (PP), asymptotic

optimality requires the consistency of the estimated demand processes, with or without the residual

binning, and convergence of the probabilities of the scenario paths as the number of similar products

grows. We show that our Residual Trees, with and without binning, satisfy both requirements.

6. Numerical Study

In this section we present results of a numerical study designed to illuminate the properties and

behavior of the Residual Tree algorithm. Our primary goals in this section are to understand the

finite-sample performance of the algorithm— namely, the dependence of the performance on the

amount of available data (both covariate information and the number of observations), the resolution

of the Residual Tree, and the running time of the algorithm — thereby providing insight into its

potential for wide-spread applicability in practice. We also seek to verify that the policy output of

our computational algorithm has qualitative properties that are consistent with the known optimal

solutions of related stylized analytical models described in the literature. All results we report on

were calculated using MATLAB 8.6, calling Gurobi 6.00 to solve linear programs, running on a

single Macintosh desktop computer with a 3.2 GHz Intel i5 processor. We view this as a conservative

choice relative to industrial computing clusters available at many firms.

Our tests focus on two sets of procurement problem instances differing primarily in how we

simulate the demand data inputs. The first set of problem instances are two-period problems in

which the demand does not depend on static covariates but is serially correlated across periods. The

second includes four-period problems in which the generative model is based on both static and time-

series covariates. In both cases, we first specify the true demand model (either by construction or

from raw Zara data), then simulate data sets of various sizes from them to evaluate the convergence

behavior of the Residual Tree algorithm.

For both sets of examples we use the Residual Tree Algorithm (Least-squares Regression version)

as described in Section 4, and we reduce the size of our Residual Trees using the binning technique
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described in Step 2, which controls the number of bins (i.e., the number of tree branches) at each

node of the Residual Tree. The bin breakpoints are set at equal percentiles of the residual data used

to fit the tree, and we represent each bin in the tree by its median residual value. It follows that all

the bins b= 1, . . . ,Bt at a node are assigned equal probabilities pbt = 1/Bt. Note that this binning

method satisfies the required condition specified in (6) if Bt is made to grow linearly with n.

We note that for the results reported here we solve the problem (EPP) once at the beginning

of the horizon and apply the single policy obtained over the whole horizon. Thus the performance

results are for the largest problem instance the DM has to solve, and we omit reporting results for

the entire forward rolling horizon approach described in Remark 1 of Section 4.2 for the sake of

brevity and simplicity. To implement the Residual Tree policy without re-solving, we interpret each

bin as capturing a range of possible residual values, such that the set of bins {1, . . . ,Bt} represents a

mutually exclusive and exhaustive partitioning of the possible residual realizations in period t. This

enables us to trace out-of-sample residual paths through the tree. It also means that a single solution

to (EPP) yields an ordering policy that can be applied to new products with previously unseen

error sequences, even without re-solving in a rolling-horizon manner. (In practice, the DM may as

well re-solve the problem as the selling season unfolds and new demands are observed.) When we do

not re-solve (EPP) in subsequent periods, we obviously forego the opportunity to replace dynamic

covariate estimates with realized values, as described in Remark 3 in Section 4.2.

6.1. Two-Period Instances without Static Covariates

For the instances considered in this subsection, there are two periods with ordering opportunities

and demand realizations in each period. There are three supply options: the firm can place an order

to be delivered prior to period 1 at cost 0.5 (“pre-season” supplier), the firm can place an order prior

to period 1 to be delivered between the two periods at cost 0.5 (“slow” supplier), and the firm can

deliver after period 1 for delivery prior to period 2 at cost 1 (“fast” supplier). We assume a penalty

cost of b= b1 = b2 = 11 per unit of unmet demand, a holding cost of h1 = 0.25 per unit carried over

between the two periods, and no salvage value for units left over at the end of the problem horizon.

We simulate demand trajectories such that demand realizations do not depend on any static

covariates but are linearly dependent across periods. For each path, demand in period 1 is sampled

from a normal distribution with mean 1000 and standard deviation 100, and demand in period 2

is sampled from a normal distribution with standard deviation σ2 and mean equal to the period 1

demand realization. That is, we sample from the following population demand model for k= 1, . . . , n,
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where n is the number of similar products in the product family for which the firm has demand

data.

Dk1 = 1000 + ε1, ε1 ∼N(0,1002), (7)

Dk2 = 0 + 1Dk1 + ε2, ε2 ∼N(0, σ2
2),

Note that in demand model (7) the standard deviation σ2 of the second error term ε2 is a

parameter capturing the amount of learning occurring between the first and the second period. This

is because smaller values of σ2 induce larger correlations between Dk1 and Dk2 in our problem,

so that observations of the first-period demand are more predictive of the second-period demand

when σ2 is small. As a result, the problem instance defined in this subsection is qualitatively similar

to the two period models with learning considered for example in Fisher et al. (2001), Milner and

Kouvelis (2002, 2005) and Li et al. (2009). Later, we will present some results examining how order

quantities produced by our approach vary with σ2. Until then, we set σ2 = 100.

For each of the results reported here, we run the algorithm on 200 independently generated train-

ing sets, then we evaluate the resulting policies on a single, common, and independently generated

“test set.” We vary the number n of demand trajectories in the training sets, but we use a common

test set of size 100,000. (Since the instances we consider here do not depend on static covariates, the

same policy can be applied to all paths in the test set. We take a different approach in the next sub-

section, where demand depends on static covariates that differ across test set paths.) Times, costs,

and orders reported in this subsection are averaged across 200 runs. Unless indicated otherwise, we

keep the number of bins per node constant (i.e., B =Bt for all t) for each instance.

Table 1 reports the performances of policies generated using training sets (n = 50,200,1000)

and trees of different sizes (B =B1 =B2 = 1,2,3,5,10,25,50). We express the average percentage

costs in Table 1 as percentages relative to the average cost 1813.46 of the best-performing policy,

calculated using n= 1000 and B = 50 and assuming that the coefficients in the generative demand

model (7) are known. We use this as a proxy for the cost of the true optimal policy, noting that this

average cost is within 1% of that produced using the next-largest tree. We give results for versions

of the model in which the coefficients in the generative demand model are known, unknown, and

estimated from the training data, and estimated using a misspecified intercept-only set of models

that ignore the dependence between the first and second period demands. Note the case with known

coefficients eliminates the estimation error, leaving only the discretization error (defined in Section

4.2 Remark 5) and is thus equivalent to a situation in which the firm has n sample paths of past

demand for the focal product and applies the Scenario Tree method as outlined in Section 4.1.
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Known coefficients Estimated coefficients Intercept-only
B n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000

1 67.1 65.6 65.1 67.0 65.6 65.1 66.8 65.8 65.1
2 27.7 26.1 25.5 27.8 26.2 25.5 23.1 22.0 21.8
3 10.0 8.9 8.7 10.1 8.9 8.7 11.8 10.5 10.4
5 3.7 3.0 2.8 3.8 3.0 2.8 5.4 4.4 4.3
10 1.5 1.0 0.9 1.6 1.0 0.9 2.6 1.9 1.7
25 0.7 0.2 0.1 0.9 0.2 0.1 3.8 3.0 2.9
50 0.7 0.1 0.0 0.8 0.1 0.0 3.5 2.6 2.5

Table 1: Out-of-sample performance of three versions of the proposed policy for a two-period problem
without static covariates. Results are presented as percentage cost increase compared with the
best-performing policy, marked in bold. We provide standard errors for these estimates in online
Appendix D.

Interestingly, the “estimated coefficients” policy based on a relatively small data set of n = 50

training paths and a relatively small Residual Tree with B = 10 bins per node achieves an out-of-

sample cost performance just 1.6% larger than our best policy. This is a promising result from an

implementation standpoint, as n= 50 is a realistically small number of similar items in a product

family. B = 10 bins per node achieves an attractive balance in this case between oversimplifying the

stochasticity in the problem and computational efficiency.

Directionally, the results conform to expectations. We see that the out-of-sample performance

of the policy generally improves as the number of training paths (n) increases and as the number

of bins per node (B) in the Residual Tree increases for each of the three versions of the policy.

This is intuitive: a larger training set reduces estimation error by yielding more accurate regression

coefficient estimates and by allowing for more accurate calibration of the discrete model of errors,

while more branching reduces the discretization error by imposing a finer model of demand. The

best cost performances are achieved for instances with largest n and B, which is consistent with

performance convergence both as a function of the amount of training data and with the size of

the tree. In addition, for fixed training set size and tree size we see that the policy based on known

coefficients outperforms the policy based on estimated coefficients, which in turn outperforms the

policy based on the misspecified intercept-only demand model for all instances except for those

using the smallest trees.

A closer examination of Table 1 shows a strong dependence of the results on the size of the tree

used in the algorithm but relatively small differences between policies computed with 50, 200, and

1000 training paths. By comparing the results of the policy with estimated coefficients with those

for known coefficients, we conclude that the value of knowing the true demand model coefficients

(which corresponds to using the hypothetical Scenario Tree algorithm of Sec. 4.1) is surprisingly
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marginal for the instances considered, even for the case with n= 50. This shows that the additional

estimation error introduced by the Residual Tree method, as explained in Remark 2 of Sec. 4.2, is

dominated by the discretization error that both it and the Scenario Tree method are subject to.

Using an over-simplified demand model (the “intercept-only” model), however, has a larger cost

penalty relative to using a correctly specified model, leading to an out-of-sample cost overage of

2.5% for the case even when n= 1000 and B = 50. This indicates the presence of a systematic bias

due to model misspecification.

Figure 4 (left plot) illustrates convergence of the policy itself by showing the average initial orders

placed as a function of the tree size B. Results shown are for n= 50 and the “estimated coefficients”

version of the policy. Plots for the cases n= 200 and n= 1000, omitted for brevity, show average

initial orders to be nearly identical to those for n = 50. Overall, we conclude that the numerical

results are consistent with asymptotic optimality as a function of both n and B.

The computation time required to compute the policy depends primarily on the size of the

Residual Tree. The largest tree we considered (B = 50) required an average computation time of

approximately 24 seconds to compute a policy based on a single training set of 1000 demand paths.

In all the computations discussed above, we have built Residual Trees with the same number of

bins for each node. However, the architecture of the Residual Tree can be optimized for a particular

instance. Figure 4 (right plot) shows the out-of-sample performance of the policies generated from

Residual Trees with more or fewer bins in the first period relative to the second period. Letting

B1 and B2 indicate the number of bins per node in the first and second periods, respectively, we

consider 9 policies with B1 = 1,2,3,4,6,9,12,18,36 and B2 = 36/B1. For the particular problem

considered, the best policies result from slightly more branching in the first period relative to the

second (B1 = 9,B2 = 4). In practice, the best tree architecture will depend on the problem instance,

the underlying uncertainty, and its evolution over time.

We have also investigated the sensitivity of the policies generated by our approach to various

problem parameters. We have found the sensitivities to the cost parameters to be quite intuitive,

and we omit the details for brevity. For example, we have seen that the average total order quantity

increases with the shortage penalty cost b and decreases with the supply costs. We have also found

that as we increase the costs of the pre-season and slow suppliers relative to the fast supplier, the

retailer (intuitively) tends to substitute the fast supplier for the less responsive suppliers.

Figure 5 shows how the average orders placed with the various supply options depend on the

learning parameter σ2 defined earlier. Total orders tend to increase with σ2, which can be understood

from basic newsvendor arguments; that is, the retailer stocks more stock to buffer added demand
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Figure 4: Initial orders under the policy as a function of the number of bins per node (B) in the
Residual Tree (left plot). Out-of-sample performance of policies based on Residual Trees with more
or fewer bins in the first period relative to the second period (right plot).

uncertainty. This increase comes from larger orders placed with the slow supplier. We observe that

orders with the pre-season supplier are unaffected by σ2 in these instances. (The demand uncertainty

in period 1 of our problem is relatively small compared with the expected demand in period 2,

implying that the problem effectively decomposes across periods.) The average orders placed with

the fast supplier actually decrease with σ2, which is more clearly evident in the right-hand plot of

Figure 5. Because smaller values of σ2 reflect a greater amount of learning occurring between the

first and second periods, our results suggest that the attractiveness of the fast supplier increases

with the ability to better predict second period demand based on the observation of demand in the

first period. We have confirmed this insight by measuring the increase in cost when we make the fast

supplier unavailable. Indeed, this cost increase exceeds 7% for σ2 = 25 but is only 2% for σ2 = 200.

We note that these results are qualitatively consistent with the numerical findings for the value

of flexibility reported in analytical studies of two period ordering problems with learning, such as

Milner and Kouvelis (2002, 2005). In the context of Zara, they are also consistent with the intuition

that orders from China should decrease with the speed of demand learning at the beginning of the

selling season (see Section 1).

Figure 6 illustrates the policy we compute for ordering from the fast supply option as a function

of realized first-period demand. We see that fast supplier orders given σ2 = 200 are no larger than

orders given σ2 = 25, in keeping with Figure 5. Both computed policies therefore involve a minimum

threshold for the second period order based on the first period demand realization, and a linear

increase for the second period order beyond that threshold. This exactly matches the (s,S) policy

structure that is proven to be optimal or near-optimal in analytical studies of two period ordering

problems with specific distributional assumptions, such as Milner and Kouvelis (2005) and Li et al.
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Figure 6: Policy for ordering from fast supplier as a function of the first-period demand realization.
(Each policy is computed based on a single training set path.)

(2009). Furthermore, we note that the ordering threshold for the second order decreases with the

amount of learning, and that the slope of the increasing portion of both plots is approximately

two. This comes from two sources: (1) each additional unit of first-period sales depletes stock by

one unit that must be replenished, and (2) each additional unit of first-period demand raises the

expectation for second-period demand by one unit, arising from the slope of “1” in the equation for

D2 in (7). We conclude that the solutions produced by our computational approach exhibit the same

key qualitative properties that were previously established by available analytical and parametric

studies of similar two period problem instances.

6.2. Instances with Static Covariates

As discussed in Section 3.1, a key innovation of our approach is its accounting for covariates in its

assumed demand process. While the demand model considered in the previous subsection includes

lagged demand as a “dynamic” covariate in the second period, we would also like to consider demand

models that include “static” covariates that reflect information known about the product prior to
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the selling season. As mentioned earlier, in practice these static covariates may capture features

such as price, design, or expected popularity.

Let us consider four-period problems in which the population demand model includes both static

and dynamic covariates. Specifically, the demand models for the k= 1, . . . , n products are:

Dk1 = {738 + 1072Xk1− 403Xk2 + 2.8Xk3− 55Xk4 + ε1}+ , ε1 ∼N(0,10442),

Dk2 = {−399− 638Xk1 + 53Xk4 + 0.854Dk1 + ε2}+ , ε2 ∼N(0,7812),

Dk3 = {−5 + 0.955Dk2 + ε3}+ , ε3 ∼N(0,6012),

Dk4 = {874− 46Xk4 + 0.516Dk2 + 0.318Dk3 + ε4}+ , ε4 ∼N(0,8202),

where the static covariates are distributed as follows:

Xk1
iid∼ Bernoulli(0.25),

Xk2
iid∼ Bernoulli(0.5),

Xk3
iid∼ Normal(900,2002),

Xk4
iid∼ Discrete Uniform on {7.95,8.95, . . . ,22.95}.

This demand model is based on regression models fit using stepwise forward variable selection

method to real sales data for a single category of 70 garments introduced by Zara during a single

season. Here, the covariates Xk1 and Xk2 correspond to binary features present (or absent) in each

garment, Xk3 to the number of stores in which the garment was initially introduced, and Xk4 to

the retail price of the garment. The distributions of these covariates are loosely based on observed

data for the category.

We assume two supply options available each period: a fast supplier able to supply with zero lead

time `1 = 0 at cost c1 = c11 = c21 = c31 = c41 = 1, a slow supplier able to supply with lead time `2 = 1

and cost c2 = c21 = c22 = c32 = c42 = 0.5, a holding cost of h = h1 = h2 = h3 = h4 = 0.25 per unit

per period, and a penalty cost of b= b1 = b2 = b3 = b4 = 11 per unit of unmet demand. We assume

salvage value of zero for inventory left over at the end of the horizon.

As previously, we simulate data sets to serve as training and test data for fitting and evaluating the

policies, respectively. Here, for each demand path we also generate a set of static covariates, randomly

and independently drawn according to the distributions specified above. Solving the optimization

problem (EPP) yields an ordering policy conditional on a single set of static covariates. Therefore,

to generate the results in this section we must re-solve the policy for each test demand path. For

this reason, we make use of a smaller test set than in Section 6.1. Specifically, the test set comprises
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200 independently generated combinations of covariates and demand paths. As before, we vary the

size of the training sets and the size of the Residual Trees.

In Table 2, we present the out-of-sample performance of policies generated using training sets

of sizes n = 50,200,1000 and Residual Trees of increasing sizes (B = B1 = B2 = B3 = B4 =

1,2,3,5,7,10). We compute four versions of the policy in order to understand the value of covariate

information: one in which we assume that the true regression coefficients used to generate the data

are known, one in which the form of the true regression model is known but the coefficients must

be estimated from the training data, one in which the static covariates are unavailable, and one

that ignores both static and dynamic (i.e., lagged demand) covariates. As previously, we present the

results as percentages relative to the best-performing policy, which was computed assuming known

coefficients based on 1000 training paths and a Residual Tree with 10 bins per node.

As we saw in the previous 2-period example, in Table 2 we see that the policy performances

improve with the amount of training data, with the size of the Residual Tree, and with better-

specified regression models. Strong performance can be achieved even with a relatively limited

amount of training data; for example, for trees with 10 bins per node, the performance difference

between the n = 50 and n = 1000 policies is just 2.0% for the policy based on known coefficients

and 4.0% for the policy based on estimated coefficients. Convergence of the policy performances is

evident as the underlying Residual Trees increase in size.

For B = 10 and for a realistically small training set of n= 50, the performance of the estimated

problem is within 4.9% of the best-performance, again supporting the practical validity of the

algorithm. The value of the covariate information is evident; for the same data set size n= 50 and

coarseness B = 10, the loss in the total cost by ignoring static covariates only and by ignoring

all covariates are 10.8%− 4.9% = 5.9% and 20.3%− 4.9% = 15.4% of the total cost of the best-

performing policy, respectively. A two-sample t-test reveals that these differences are statistically

significant at the 1% level.

Interestingly, we also observe that the performance of the algorithm heavily depends on the

number of bins used. For instance, for n= 50 with all covariates, using B = 2 yields solutions that

are worse than then B = 10 by 71.2% − 4.9% = 66.3% of the total cost of the best-performing

policy. For B = 3, the difference is 34.6%− 4.9% = 29.7% of the total cost of the best-performing

policy. Both differences are statistically significant at the 1% level. The literature on the dynamic

procurement problem to date often considers only 2–3 demand branches per node, and our results

indicate that such simplified models may not yield good solutions in practice.
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Known coefficients Estimated coefficients Ignoring static covariates Ignoring all covariates
B n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000

1 181.2 178.4 178.9 184.3 183.0 179.8 199.8 190.7 192.8 195.2 189.7 191.4
2 55.3 52.1 53.0 71.2 58.9 53.8 69.1 66.5 69.8 75.6 75.1 74.3
3 26.3 21.3 22.6 34.6 25.3 26.7 34.6 34.2 34.0 46.2 46.2 45.3
5 6.3 6.2 4.9 15.7 8.0 6.2 19.6 17.5 15.6 27.6 26.5 24.5
7 2.8 3.0 2.6 7.6 5.4 2.1 14.3 14.2 11.6 22.0 22.4 21.5
10 2.0 0.4 0.0 4.9 1.5 0.9 10.8 9.1 9.0 20.3 18.8 19.0

Table 2: Out-of-sample performance of four versions of the proposed policy for a four-period prob-
lem with static covariates. Results are presented as percentage cost increase compared with best-
performing policy, marked in bold. We provide standard errors for these estimates in online Appendix
D.
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Figure 7: Initial orders under the policy as a function of the number of bins per node (B) in the
Residual Tree.

Figure 7 plots average initial orders to the fast and slow suppliers as a function of the size of

the underlying Residual Tree. Results reflect the policy based on the correctly specified regression

model with estimated coefficients and training sets of n= 50 demand paths, although we note that

using larger training sets makes no discernible difference in the appearance of this plot. As predicted

by our theory, we see the policy decisions converging as the tree increases in size and granularity.

6.3. Computation Time

One limitation of the Residual Tree method, as with the Scenario Tree method, is that the compu-

tational complexity of a tree-based approach will grow exponentially with the horizon T .

For the purpose of understanding computation times, we solve instances of the problem (EPP)

for horizons T = 4,6,8, for simulated training sets of size n= 1000, and for various choices for the

binning configuration [B1, . . . ,BT ]. We assume two suppliers, and we sample training data from

a discrete-time martingale population demand model with increments given by normal random

variables and no static covariates.
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Figure 8: Average computation time required to compute the “estimated coefficients” policy based
on a single set of 1000 training paths for various horizons and binning configurations.

The times plotted in Figure 8 represent times to solve (EPP) averaged over 20 instances on a

single desktop computer processor. (As mentioned previously, this is a conservative choice relative

to industrial computing clusters available to some retailers.) We find that the times in Figure 8 are

well-described (R2 = 0.9994) by a quadratic function of the count of nodes in the tree
∑T

t=1

∏t

τ=1Bτ :

Computation time (seconds)≈ 0.4832 + 0.0067(Node count) + (1.178× 10−6)(Node count)2.

We can use this quadratic relationship to predict the time required to solve similar instances of

various horizons with various binning configurations. We present some example predictions in Table

3, where we estimate both the time to solve a single T -period problem (“solve time”) and the total

time required to re-solve in each period t using bin configuration [B1, . . . ,BT−t+1] (“re-solve time”).

We see that (EPP) remains computationally feasible for 8- and 10-period problems with 3 bins per

period, but becomes prohibitively time-consuming for larger trees. One opportunity for improvement

would be to consider trees with differing numbers of bins per period; for example, the last line in

Table 3 shows that we expect that a 10-period configuration with 10 bins in the first period and 2

bins per period for periods 5-10 will be solved faster than the configuration with 3 bins per period.

Some preliminary experiments have suggested that the best choice of binning configuration depends

on the evolution of uncertainty over time.

It is also possible to use solutions to short-horizon versions of our residual tree method as heuristic

policies for longer-horizon problems. For example, even if replenishment decisions can be made

weekly in practice, we might consider using a coarser time granularity in the model, as there may

be limited incremental benefit to modeling more ordering opportunities within a selling season.

Other promising ideas include smart scenario reduction methods, parallelization, limited lookahead

heuristics, re-solving on rolling horizons, and hybrid approaches that combine some of these ideas.

To characterize the relative performance of these heuristics over a representative set of problem

instances is a significant task that we leave for future work. We point out that, while in practice
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Node Est. solve Tot. re-solve
T B count time (s) time (s)
4 [5 5 5 5] 780 6 9
4 [7 7 7 7] 2,800 29 33
4 [10 10 10 10] 11,110 221 232
6 [3 3 3 3 3 3] 1,092 9 15
6 [5 5 5 5 5 5] 19,530 581 635
6 [7 7 7 7 7 7] 137,256 23,119 23,738
6 [10 10 . . . 10] 1,111,110 1.5e+06 1.5e+06

Node Est. solve Tot. re-solve
T B count time (s) time (s)
8 [2 2 2 2 2 2 2 2] 510 4 11
8 [3 3 3 3 3 3 3 3] 9,840 181 231
8 [5 5 5 5 5 5 5 5] 488,280 2.8e+05 3.0e+05

10 [2 2 2 2 2 2 2 2 2 2] 2,046 19 39
10 [3 3 3 3 3 3 3 3 3 3] 88,572 9,839 11,297
10 [5 5 5 5 5 5 5 5 5 5] 12,207,030 1.8e+08 1.8e+08
10 [10 5 4 3 2 2 2 2 2 2] 76,460 7,403 10,160

Table 3: Predicted computation times to solve (EPP) for selected horizons and binning configura-
tions.

a retailer would require a policy determined on a single demand path, for us to rigorously study

policy performance with either static covariates or policy re-solving requires us to solve (EPP) over

each demand path. This implies that the computational limits bind more tightly when studying

performance than when implementing in practice.

7. Conclusion

As mentioned in the beginning, this work arose out of an engagement with Zara in which we ini-

tially adapted standard stochastic programming approaches for the dynamic procurement problem

they regularly face when introducing new apparel items. The data-driven approach described in

this paper has not yet been implemented at Zara, due to various exogenous time constraints and

resource allocation choices. As part of our ongoing relationship with that firm however, we hope to

leverage this work and learn more about related implementation aspects by helping them develop

an enhanced data-driven version of their current decision support system for dynamic procurement.

To that end, we note that for implementation purposes Zara and other retailers may need to further

specify the relatively generic formulation (EPP) in order to capture important features of their busi-

ness environment, such as supplier-specific quantity discount schemes and minimum order quantity

constraints. A wide range of such features may be captured using integer programming formulation

techniques (Bertsimas and Weismantel 2005), and we emphasize again that the results in Section

5 establish that the asymptotic optimality of the Residual Tree method continues to hold for any

resulting mixed integer programming formulation as long as it corresponds to bounded sets Qtj.

Finally, the Residual Tree method is a general data-driven method for solving multi-stage stochas-

tic programs, and as such may be valuable for other applications that employ stochastic pro-

gramming. Examples include financial options pricing, where historical prices and features such as

economic indicators and market factors abound; and energy utility management, where historical

demands and demographic and weather feature data are available (see Rios et al. 2015).
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Appendix A: Proof of Proposition 1

We proceed by first proving (A) that a feasible solution to problem (PP) is feasible in problem (PP2). Then

we prove (B) that an optimal solution to problem (PP2) is feasible in (PP). Because the objective functions

of the two problems are identical, it follows that the optimal solutions to the two problems and their objective

values must coincide. We show both reductions pathwise, for a fixed demand path d0 = {d01, . . . , d0T} and

fixed order decisions q = {q1j , . . . , qTj}. As a shorthand, we let Qt =
∑

j∈S

∑
1≤τ≤t−1:
τ=t−`j

qτj indicate the total

shipment received in period t given the demand path.

To prove claim (A), let the pair (I∗, l∗), where I∗ = {I∗1 , . . . , I∗T} and l∗ = {l∗1, . . . , l∗T}, denote a feasible

solution to (PP). Fix t and consider the sign of I∗t−1 +Qt−d0t. If I∗t−1 +Qt−d0t ≥ 0 then I∗t = I∗t−1 +Qt−d0t
by constraint (PPb) (which holds almost surely) and l∗t = 0 by constraint (PPc). Therefore constraint (PP2b)

holds on the given demand path for t. Furthermore, I∗t ≥ 0 so I∗t ∈ R+ and l∗t ≥ 0 so l∗t ∈ R+. Similarly, if

I∗t−1 +Qt−d0t < 0 then I∗t = 0 by constraint (PPb) and l∗t = d0t−I∗t−1−Qt by constraint (PPc) so constraint

(PP2b) holds and we have I∗t ≥ 0 and l∗t ≥ 0. Since this holds for all d0 and q, we have (A).

To prove claim (B), now let the pair (I∗, l∗), where I∗ = {I∗1 , . . . , I∗T} and l∗ = {l∗1, . . . , l∗T}, denote an optimal

solution to (PP2). We prove (B) via the following lemma.

Lemma EC.1. Let (I∗, l∗) be an optimal solution to problem (PP2) given the assumed demand path. Then

l∗t > 0 implies I∗t = 0 for all t∈ {1, . . . , T}.

(Proof of Lemma EC.1.) Suppose l∗τ ≥ ε and I∗τ ≥ ε for some τ ∈ {1, . . . , T} and some ε > 0. We contradict

the optimality of this solution by constructing an alternative solution (Î, l̂) with strictly lower cost. Our

construction of this alternative solution depends on τ .

If τ = T , then let

l̂t = l∗t , ∀t∈ {1, . . . , T − 1}

l̂T = l∗T − ε

Ît = I∗t , ∀t∈ {1, . . . , T − 1}

ÎT = I∗T − ε.

It is straight-forward to show that (Î, l̂) is feasible in (PP2). Furthermore, the cost of solution (I∗, l∗) less

the cost of (Î, l̂) is strictly positive:

bT

(
l∗T − l̂T

)
− v

(
I∗T − ÎT

)
= (bT − v)ε > 0.
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If τ < T , then let

l̂t = l∗t , ∀t∈ {1, . . . , T}\{τ, τ + 1}

l̂τ = l∗τ − ε

l̂τ+1 = l∗τ+1 + ε

Ît = I∗t , ∀t∈ {1, . . . , T}\{τ}

Îτ = I∗τ − ε.

Again, (Î, l̂) is feasible in (PP2). The cost of solution (I∗, l∗) less the cost of (Î, l̂) is strictly positive:

bτ

(
l∗τ − l̂τ

)
+ bτ+1

(
l∗τ+1− l̂τ+1

)
+hτ

(
I∗τ − Îτ

)
= (bτ − bτ+1)ε+hτε > 0,

by assumptions on the parameters stated in Sec. 3.2. Since this holds for all d0 and q, we have (B). �

Returning to claim (B), we fix t and consider two cases. First, suppose l∗t = 0. Then constraint (PP2b)

implies I∗t = I∗t−1 − d0t +Qt and the non-negativity of I∗t implies that I∗t = I∗t−1 − d0t +Qt ≥ 0. Therefore

(PPb) holds. Furthermore, I∗t−1− d0t +Qt ≥ 0 implies that
(
d0t− I∗t−1−Qt

)+
= 0 so (PPc) holds.

Second, suppose l∗t > 0. Lemma EC.1 then implies I∗t = 0, and constraint (PP2b) implies l∗t = d0t− I∗t−1−
Qt > 0 so (PPb) holds. Furthermore, d0t− I∗t−1−Qt > 0 implies that

(
I∗t−1 +Qt− d0t

)+
= 0 so (PPc) holds.

Appendix B: Residual Tree Algorithm (Lasso Regression version): High
Dimensional Data

In our demand model as described in Section 3.1, the demand in period t depends on anmt-dimensional vector

of covariates. Supposing that the decision-maker has access to a superset of rt >mt covariates (among which

the true mt covariates are unknown), then rt −mt of the covariates are irrelevant or redundant. Applying

least-squares regression (3) using all rt covariates is then problematic because of model misspecification and

the increased likelihood of ill-conditioned covariance of the design matrix. Thus, for this case, we propose

modifying Step 1 (a) of the Residual Tree Algorithm (Least-squares Regression version) by replacing the

least squares regression with Lasso regression as follows:

Step 1. (a)′ Lasso Regression. For each t∈ [1, . . . , T ], perform Lasso regularized regression on available data

on the n existing products:

min
αt∈R, βt∈Rmt

n∑
k=1

(dkt−αt−β>t xLassokt ) +λn||βt||1, (EC.1)

where λn > 0 is the regularization parameter, and || · ||1 denotes the L1 norm. Denote the solution

vector by (α̂Lassot , β̂Lassot ). We can thus construct n sample estimates for the new product by

using the estimated parameters and the residuals from the Lasso regression:

{d̂Lasso0t = α̂Lassot + β̂Lasso>t x̂0t + ε̂Lassokt }nk=1. (EC.2)

If histogram binning Step 1 (b) is employed after Lasso Step 1 (a)′, we have the following Bt samples

of constructed data:

{d̄Lasso0t (b) := α̂Lassot + β̂Lasso>t x̂0t + ε̄Lassobt }Bt
b=1, (EC.3)
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where ε̄Lassobt , b= 1, . . . ,Bt are the centres of the histogram bins for the residuals from Lasso regression

(EC.1), {ε̂Lassokt }nk=1.

The Residual Tree Algorithm (Lasso Regression version) is also asymptotically optimal. We defer the proof

to Appendix C.

Theorem EC.1. Assume (6) and λn/n = o(1). Then the optimal values of (EPP ) using Residual

Tree Algorithm (Lasso Regression version) converge to that of (PP ) as n→∞ and all cluster points of

{q̂11(n), . . . , q̂1S(n), Î1(n), l̂1(n)}n∈N are optimal first-stage solutions of (PP ).

Remark on the choice of the regularization parameter λn: If λn is too large, the resulting parameter

estimates (α̂Lassot , β̂Lassot ) will have large biases; whereas if λn is too small, the parameter estimates will retain

dimensions that should not be in the model as the penalization effect will be small. A sufficient condition for

asymptotic consistency of (α̂Lassot , β̂Lassot ) is λn/n= o(1), i.e. λn should decrease faster than the rate O(n)

[Knight and Fu (2000)], which is one of the assumptions we make for Theorem EC.1. In practice, for fixed

n, λn can be chosen via cross-validation; that is, we can tune λn over a grid of values based on some data

put aside for validation purposes (see Friedman et al. 2009 for further details).

Appendix C: Proofs of results in Section 5.

The proofs of Theorem 1 and Theorem EC.1 rely on the following three lemmas.

Lemma EC.2. The function f : RT (S+2)×Ξ0→ (−∞,∞] given by

f(q, I, l;D0,[1,T ]) =

T−1∑
t=1

htIt +

T∑
t=1

btlt +

T∑
t=1

S∑
j=1

ctjqtj − vIT , (EC.4)

where q = [q1j , . . . , qTj ]1≤j≤S, I = [I1, . . . , IT ], and l = [l1, . . . , lT ] may depend on the random vector D0,[1,T ] =

[D01, . . . ,D0T ], is lower semi-continuous in the first argument and has the lower compactness property of

Ioffe (1977).

Lemma EC.3. The following conditions hold for the stochastic optimization problem (PP): for every fea-

sible z ∈ RT (S+2), there is a uniformly bounded sequence yµ → z of non-anticipative, P0-a.s. continuous

functions yµ : Ξ0→RT (S+2) such that

lim sup
n→∞

EP̂n
f(yµ(D0,[1,T ]);D0,[1,T ])≤EP0

f(yµ(D0,[1,T ]);D0,[1,T ]), ∀ µ∈Z+ and (a)

lim sup
µ→∞

EP0
f(yµ(D0,[1,T ]);D0,[1,T ])≤EP0

f(z(D0,[1,T ]);D0,[1,T ]). (b)

Lemma EC.4. The stochastic demand model (1) is a time series model with uniform innovations, i.e. for

each t= 1, . . . , T , the demand is of the form

D0t|X0t = gt(D00,D01, . . . ,D0,t−1, ωt), (EC.5)

where D00 is a (non-random) constant, ω1, . . . , ωT are mutually independent random variables, with ωt uni-

formly distributed in the unit interval [0,1], and gt : Ξ01× . . .×Ξ0,t−1× [0,1]→Ξ0t.
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(Proof of Lemma EC.2.) Firstly, f(· ;D0,[1,T ]) is continuous for every D0,[1,T ] ∈ Ξ0 so it is lower semi-

continuous. Secondly, the function f : RT (S+2) ×Ξ0→ (−∞,∞] satisfies the lower compactness property of

Ioffe (1977) if there exists a non-decreasing real-valued function g on [0,+∞) and a real number b such that

f(z;D0,[1,T ])≥−g(||z||∞)− b, ∀ z∈RT (S+2), ∀ D0,[1,T ] ∈Ξ0.

Now

f(q, I, l;D0,[1,T ])≥−T (c∞S||q||∞+ (h∞ ∨ v)||I||∞+ b∞||l||∞), ∀ (q, I, l)∈RT (S+2), ∀ D0,[1,T ] ∈Ξ0,

where c∞ = max{c1j , . . . , cTj}1≤j≤S, h∞ = max{h1, . . . , hT−1} and b∞ = max{b1, . . . , bT}, thus f(· ; ·) satisfies

the lower compactness property of Ioffe (1977). �

(Proof of Lemma EC.3.) The condition (a) holds because by (6), P̂n converges to the sample average

measure as n goes to infinity, then by the Weak Law of Large Numbers (WLLN) on the sample average

measure.

For condition (b), let z = (q, I, l) ∈ RT (S+2) be an admissible policy to (PP). Consider, for µ ∈ Z+, the

function

yµ = z− 10

µ
,

where 10 is a vector with T (S+ 2) ones and a zero at the end (corresponding to the location of IT in the z

vector). Then

||yµ||∞ ≤ ||z||∞+ 1,

hence yµ is uniformly bounded for every z.

We also have, by elementary algebra,

f(yµ(D0,[1,T ]);D0,[1,T ]) = f(z(D0,[1,T ]);D0,[1,T ])−
C

µ
,

where C is the positive constant

C =

T−1∑
t=1

ht +

T∑
t=1

bt +

T∑
t=1

S∑
j=1

ctj ,

which is clearly dominated by f(z;D0,[1,T ]) for all µ∈Z+. Thus we have

EP f(yµ(D0,[1,T ]);D0,[1,T ])≤EP f(z(D0,[1,T ]);D0,[1,T ])

for all µ∈Z+, and (b) follows. �

(Proof of Lemma EC.4.) Given X0t = x0t, define the function

gt(D00, . . . ,D0,t−1, ωt) := αt +β>t x0t +F−1εt
(ωt), (EC.6)

where F−1εt
is the inverse cdf of the random error term εt in the demand model (2). We immediately have

D0t|(X0t = x0t) = gt(D00, . . . ,D0T , ωt), (EC.7)

which satisfies the definition of a time series model with uniform innovations. �
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Before proceeding with the proofs, let us first introduce some definitions.

Define the Lebesgue space Z(P0) :=L∞(Ξ0,F0,P0;RT (S+2)), and the set of (F0t)
T
t=1-adapted elements of

Z(P0)

N (P0) := {z∈Z(P0) | z contains an (F0t)
T
t=1 -adapted function}.

In other words, N (P0) is the set of feasible solutions (each of which are, technically speaking, equivalence

classes, as solutions that differ on sets of measure zero have equivalent objective values) of (PP).

Now consider the discretized demand space Ξ̂n. Let Ξ̂bt denote the b-th bin out of Bt(n) bins at time t.

Define, for each n∈Z+ and t= 1, . . . , T , the functions sn : Ξ0→Ξ0 and ψt,n : Ξt→R given by

sn(d0,[1,T ]) := d̄0,[1,T ](b), and

ψt,n(d0,t) :=
pbt

P(Ξ̂btt)
,

where b = [b1, . . . , bT ] is such that d0t belongs to the bt-th histogram bin Ξ̂btt at time t, and d̄0,[1,T ](b) =

[d̄01(b1), . . . , d̄0T (bT )], where d̄0t(·), t= 1, . . . , T are as defined in (5). In words, sn(·) maps a vector of demand

path for the new product to one of the demand paths defined by the Residual Tree by determining which

histogram bin each demand belongs to; and ψt,n(·) denotes the ratio of the empirical histogram measure of

a given demand path to the true measure of the histogram bins Ξ̂btt, t= 1, . . . , T . Thus, the closer sn(·) is to

the identity map, and the closer ψt,n(·) is to one, the better the Residual Tree approximation.

Finally, let Nn(P) be the set of {(sn)−1(F0t)}-adapted elements of X(P0).

(Proof of Theorem 1). By Corollary 3.1. of Pennanen (2005), epi-convergence follows if our problem

satisfies the following two conditions:

• Condition 1 : the sequence {P̂n}∞n=1 of discretized measures is such that Nn(P)⊂N (P0) for all n∈Z+

and

sn(D0,[1,T ])
P→ D0,[1,T ], and (EC.8)

max
b∈Bt(n)

∣∣∣∣ pbt(n)

P (Ξ̂bt(n))
− 1

∣∣∣∣→ 0, ∀ 1≤ t≤ T, (EC.9)

as n tends to infinity.

• Condition 2 :

(a) The function f : RT (S+2)×Ξ0→ (−∞,∞] given by (EC.4) is lower semi-continuous in the first argument

and has the lower compactness property of Ioffe (1977).

(b) For every feasible z∈RT (S+2), there is a uniformly bounded sequence yµ→ z of non-anticipative, P -a.s.

continuous functions yµ : Ξ0→RT (S+2) such that

lim sup
n→∞

EP̂n
f(yµ(D0,[1,T ]);D0,[1,T ])≤EP f(yµ(D0,[1,T ]);D0,[1,T ]) ∀ µ∈Z+

lim sup
µ→∞

EP f(yµ(D0,[1,T ]);D0,[1,T ])≤EP f(z(D0,[1,T ]);D0,[1,T ]),

where f(·, ·) is the function defined in (EC.4).



ec6 e-companion to Ban, Gallien & Mersereau: New Product Procurement with the Residual Tree Method

In words, Condition 1 states necessary conditions on the data-driven estimate of the stochastic program

(PP). Specifically, (EC.8) is a statement regarding the asymptotic consistency of the data-driven estimate of

the demand process and (EC.9) is a statement regarding the consistency of the residual histogram tree. Sep-

arately, Theorem 2 of Pennanen (2009) shows that if the underlying stochasticity of a multi-stage stochastic

program is a time series model with uniform innovations as is the case with our problem by Lemma EC.4,

then the sequence (P̂n)∞n=1 satisfies Condition 1 if the following conditions hold for all t= 1, . . . , T :

C1. gt(D00, . . . ,D0,t−1, ·) is a bijection for every D0,[1,T ] ∈Ξ0, where gt(·) is the function defined in (EC.5)

of Lemma EC.4,

C2. gt(·) and the function (D01, . . . ,D0t) 7→ gt(D00, . . . ,D0,t−1, ·)−1(D0t) are Borel-measurable,

C3. gt(·) is P01× . . .×P0,t−1×ωt-almost-surely continuous, and

C4. ω̂t(n)→ ωt weakly as n→∞, where ω̂t(n) is the random variable with the discrete uniform distribution

Fε̂t(n)(ε̂t(n)), where ε̂t(n) is a random variable equal to εkt k= 1, . . . , n with probability 1/n (recall εkt’s

are the residuals from Step 1 (a) of the Residual Tree Algorithm (Least-squares Regression version)),

and Fε̂t(n)(·) denotes its cdf.

Below we show the conditions C1–C4 are satisfied by our problem.

PC1. By the model assumption, εt has an inverse cdf, so gt(D00, . . . ,D0T , ·) is a bijection for every D0,[1,T ] ∈

Ξ0.

PC2. The Borel-measurability of gt(·) and of the function (D00, . . . ,D0,t−1) 7→ gt(D00, . . . ,D0,t−1, ·)−1(D0t)

follows from the measurability of ωt and εt.

PC3. It is clear that the function gt(·) is continuous in all its arguments.

PC4. By Lemma 2 of Pennanen (2009), this is equivalent to (EC.8) and (EC.9) being satisfied. (EC.8)

is satisfied by the consistency of the least-squares regression model under the assumptions made in

Sec. 3.1 [see, for example, Chapter 4.4.1 of Greene (2011)], and (EC.9) is satisfied by the asymptotic

equivalence of the histogram distribution to the empirical distribution (spelled out in (6) of Step 2. of

Residual Tree Algorithm (Least-squares Regression version)), the latter of which is uniformly consistent

via the Glivenko-Cantelli Theorem. Note the conditions (EC.8) and (EC.9) hold even when there are

time-series components in the covariate vector which may need to be estimated from data in earlier

periods, which can be shown recursively from t= 1 because any time series covariate components are

themselves estimated via least-squares regression in a consistent manner.

Condition 2 concerns the structure of the original problem itself, and we have shown that our problem

satisfies these conditions by Lemmas EC.2 and EC.3. Thus our problem satisfies the assumptions of Corollary

3.1. of Pennanen (2005) and the conclusions follow. �

Proof of Theorem EC.1. It suffices to check that the map sLasson : Ξ0 7→Ξ0 defined by

sLasson (d0,[1,T ]) := d̄Lasso0,[1,T ](b),
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where b = [b1, . . . , bT ] is such that d0t belongs to the bt-th histogram bin Ξ̂btt at time t, d̄Lasso0,[1,T ](b) :=

[d̄Lasso01 (b1), . . . , d̄Lasso0T (bT )], where d̄Lasso0t (·), t = 1, . . . , T are as defined in (EC.3), converges to the identity

map as n→∞. Knight and Fu (2000) shows that this holds if λn/n= o(1), i.e. λn decreases faster than O(n)

rate. �

Appendix D: Standard Errors for Tables 1 and 2

This section provides standard errors corresponding to the tables of results in Sections 6.1 and 6.2.

Known coefficients Estimated coefficients Intercept-only
B n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000

1 1.28 0.61 0.40 1.24 0.64 0.40 1.15 0.59 0.39
2 0.53 0.26 0.20 0.52 0.26 0.20 0.58 0.31 0.21
3 0.30 0.16 0.11 0.30 0.16 0.11 0.39 0.20 0.14
5 0.15 0.08 0.06 0.17 0.08 0.06 0.22 0.11 0.08
10 0.07 0.03 0.02 0.07 0.03 0.02 0.10 0.04 0.04
25 0.04 0.01 0.01 0.05 0.01 0.01 0.13 0.06 0.05
50 0.05 0.01 0.00 0.06 0.01 0.00 0.13 0.06 0.05

Table EC.1: Standard errors for the performance ratio results presented in Table 1, estimated using
bootstrapping.

Known coefficients Estimated coefficients Ignoring static covariates Ignoring all covariates
B n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000 n= 50 n= 200 n= 1000

1 13.87 13.98 13.86 15.18 14.74 13.90 15.53 15.56 15.73 15.72 15.52 15.49
2 6.36 6.33 6.39 7.82 6.73 6.59 7.88 8.60 8.70 9.71 10.03 9.90
3 3.56 3.74 3.85 4.58 4.02 4.08 5.77 6.16 5.91 7.71 7.94 7.74
5 1.87 1.99 1.70 3.02 2.36 1.98 3.55 3.96 3.68 5.52 6.04 5.94
7 1.21 1.25 1.09 2.41 1.68 0.96 3.03 3.11 2.77 4.46 5.34 5.05
10 1.10 0.44 0.00 2.15 1.05 0.47 2.13 2.26 2.02 3.54 4.56 4.42

Table EC.2: Standard errors for the performance ratio results presented in Table 2, estimated using
bootstrapping.
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