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1 Introduction

Vector Autoregressions (VARs) are linear multivariate time-series models able to capture

the joint dynamics of multiple time series. The pioneering work of Sims (1980) proposed

to replace the large-scale macroeconomic models popular in the 1960s with VARs, and

suggested that Bayesian methods could have improved upon frequentist ones in estim-

ating the model coefficients. Bayesian VARs (BVARs) with macroeconomic variables

were first employed in forecasting by Litterman (1979) and Doan et al. (1984). Since

then, VARs and BVARs have been a standard macroeconometric tool routinely used by

scholars and policy makers for structural analysis, forecasting and scenario analysis in

an ever growing number of applications.

The aim of this article is to review key ideas and contributions in the BVAR literat-

ure, and to provide a brief introduction to estimation methods for BVARs in Economics,

and review selected applications such as forecasting, structural identification and scen-

ario analysis. An exhaustive survey of the literature is beyond the scope of this article

due to space limitations. Readers are referred to a number of monographs and more

detailed surveys available on different topics in the BVARs literature.1

Differently from frequentist statistics, Bayesian inference treats the VAR parameters

as random variables, and provides a framework to update probability distributions about

the unobserved parameters conditional on the observed data. By providing such a

framework, the Bayesian approach allows to incorporate prior information about the

model parameters into post-sample probability statements. The ‘prior’ distributions

1Several books provide excellent in-depth treatments of Bayesian inference. Among others, Zellner
(1971), Gelman et al. (2003), Koop (2003) and Geweke (2005). Canova (2007) provides a book treatment
of VARs and BVARs in the context of the methods for applied macroeconomic research. Several recent
articles survey the literature on BVARs. Del Negro and Schorfheide (2011) have a deep and insightful
discussion of BVAR with a broader focus on Bayesian macroeconometrics and DSGE models. Koop
and Korobilis (2010) propose a discussion of Bayesian multivariate time series models with an in-
depth discussion of time-varying parameters and stochastic volatility models. Geweke and Whiteman
(2006a) and Karlsson (2013b) provide a detailed survey with a focus on forecasting with Bayesian
Vector Autoregression. Ciccarelli and Rebucci (2003) survey BVARs in forecasting analysis with Euro
Area data. Canova and Ciccarelli (2013) discuss panel Bayesian VARs, a topic that is not discussed
in this article. Finally, the reader is referred to Timmermann (2006) for an in-depth discussion on
model averaging and forecast combination, a natural extension of the Bayesian framework. Dieppe
et al. (2016) have developed the ready-to-use BEAR toolbox that implements many of the methods
described in this article.
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about the location of the model parameters summarise pre-sample information available

from a variety of sources, such as other macro o micro datasets, theoretical models, other

macroeconomic phenomena, or introspection.

In the absence of pre-sample information, Bayesian VAR inference can be thought

of as adopting ‘non-informative’ (or ‘diffuse’ or ‘flat’) priors, that express complete

ignorance about the model parameters, in the light of the sample evidence summarised

by the likelihood function (i.e. the probability density function of the data as a function

of the parameters). Often, in such a case, Bayesian probability statements about the

unknown parameters (conditional on the data) are very similar to classical confidence

statements about the probability of random intervals around the true parameters value.

For example, for a VAR with Gaussian errors and a flat prior on the model coefficients,

the posterior distribution is centred at the maximum likelihood estimator (MLE), with

variance given by the variance-covariance matrix of the residuals. Section 2 discusses

inference in BVARs and ‘non-informative’ priors.

While non-informative priors can provide a useful benchmark, in empirical work with

macroeconomic and financial variables informative priors are often adopted. In scientific

data analysis, priors on the model coefficients do not incorporate the investigator’s ‘sub-

jective’ beliefs, instead, they summarise stylised representations of the data generating

process. Conditional on a model, these widely held standardised priors aim at mak-

ing the likelihood-based description of the data useful to investigators with potentially

diverse prior beliefs (Sims, 2010b).2

The most commonly adopted macroeconomic priors for VARs are the the so-called

‘Minnesota’ priors (Litterman, 1980). They express the belief that an independent

random-walk model for each variable in the system is a reasonable ‘centre’ for the be-

liefs about their time series behaviour. While not motivated by economic theory, they

are computationally convenient priors, meant to capture commonly held beliefs about

how economic time series behave. Minnesota priors can be cast in the form of a Normal-

2Bayesian priors can often be interpreted as frequentist penalised regressions (see, for example,
De Mol et al., 2008). A Gaussian prior for the regression coefficients, for example, can be thought of as
a Ridge penalised regression. Having a double exponential (Laplace) prior on the coefficients is instead
equivalent to a Lasso regularisation problem.
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Inverse-Wishart (NIW) prior, which is the conjugate prior for the likelihood of a VAR

with normally distributed disturbances (see Kadiyala and Karlsson, 1997). Conjug-

ate priors are such that the posterior distribution belongs to the same family as the

prior probability distribution. Hence, they allow for analytical tractability of the pos-

terior, and computational speed. Because the data is incorporated into the posterior

distribution only through the sufficient statistics, formulas for updating the prior into

the posterior are in this case conveniently simple. It is often useful to think of the

parameters of a prior distribution – known as ‘hyperparameters’ – as corresponding to

having observed a certain number of ‘dummy’ or ‘pseudo-’ observations with properties

specified by the prior beliefs on the VAR parameters. Minnesota priors can be formu-

lated in terms of artificial data featuring pseudo observations for each of the regression

coefficients, and that directly assert the prior on them.

Dummy observations can also implement prior beliefs about relations among the

VAR coefficients, such as e.g. co-integration among variables. In this case, commonly

used priors are formulated directly as linear joint stochastic restrictions among the coef-

ficients.3 This is, for example, the case of the ‘single-unit root’ prior, that is centred on

a region of the VAR parameter space where either there is no intercept and the system

contains at least one unit root, or the system is stationary and close to its steady state at

the beginning of the sample (Sims, 1993).4 Another instance in which dummy observa-

tions are used to establish relations among several coefficients is the ‘sum-of-coefficients’

prior, that incorporates the widely shared prior beliefs that economic variables can be

represented by a process with unit roots and weak cross-sectional linkages (Litterman,

1979).5 Section 3 discusses some of the priors commonly adopted in the economic liter-

3In principle, dummy observations can also implement prior beliefs about nonlinear functions of
the parameters (a short discussion on this is in Sims, 2005b).

4Such a prior is adopted to capture the belief that it is not plausible to assume that initial transients
can explain a large part of observed long-run variation in economic time series. Since in a sample of
given size there is no information on the behaviour of time series at frequencies longer than the sample
size, the prior assumptions implicitly or explicitly elicited in the analysis will inform results. This is a
clear example, in the inference in VARs, of an issue for which Bayesian inference provides a framework
to make prior information explicit and available to scientific discussion on the inference in VAR models.

5Several sets of pseudo-observations can be adopted at the same time. In fact, successive dummy
observations modify the prior distribution as if they reflected successive observations of functions of the
VAR parameters, affected by stochastic disturbances.
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ature.

The hyperparameters can be either fixed using prior information (and sometimes

‘unorthodoxly’ using sample information), or associated to hyperprior distributions that

express beliefs about their values. A Bayesian model with more than one level of priors

is called a hierarchical Bayes model. In empirical macroeconomic modelling, the hyper-

parameters associated with the informativeness of the prior beliefs (i.e. the tightness

of the prior distribution) are usually left to the investigator’s judgement. In order to

select a value for these hyperparameters, the VAR literature has adopted mostly heur-

istic methodologies that minimise pre-specified loss functions over a pre-sample (e.g.

the out-of-sample mean squared forecast error in Litterman, 1979, or the in-sample fit

in Bańbura et al., 2010). Conversely, Giannone et al. (2015) specify hyperprior dis-

tributions and choose the hyperparameters that maximise their posterior probability

distribution conditional on the data. Section 4 discusses hierarchical modelling and

common approaches to choose hyperparameters not specified by prior information.

BVARs have been applied to an increasingly large number of empirical problems.

Forecasting, however, has featured predominantly in the development of BVARs. In this

context, BVARs with informative priors have often proved to be superior tools compared

to standard frequentist/flat-prior VARs. VARs are highly parametrised autoregressive

models, whose number of parameters grows with the square of the number of variables

times the number of lags included. Given the limited length of standard macroeco-

nomic datasets – that usually involve monthly, quarterly, or even annual observations

–, such overparametrisation makes the estimation of VARs impossible with standard

(frequentist) techniques, already for relatively small sets of variables. This is known in

the literature as the ‘curse of dimensionality’. BVARs efficiently deal with the problem

of over-parametrisation through the use of prior information about the model coeffi-

cients. The general idea is to use informative priors that shrink the unrestricted model

towards a parsimonious näıve benchmark, thereby reducing parameter uncertainty, and

improving forecast accuracy. Section 5 discusses forecasting with BVARs.

Another important area of application is the study of causal relationships among eco-

nomic variables with Structural (B)VARs (Sims and Zha, 1998). It is common practice
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to present results from SVARs in the form of impulse response functions – i.e. causal

responses over time of a given variable of interest to an ‘identified’ economic shock – to-

gether with bands that characterise the shape of the posterior distribution of the model

(see Sims and Zha, 1999).6 Section 7 reviews Bayesian techiniques in SVARs.

The application of Bayesian techniques to ‘big data’ problems is one of the most

active frontiers in the BVAR literature. Indeed, because they can efficiently deal with

parameters proliferation, large BVARs are valuable tools to handle empirical analysis

in data-rich environments (Bańbura et al., 2010). Important applications in this case

also concern forecasting and structural analysis, where large-information BVARs can

efficiently address issues related to misspecification and non-fundamentalness. De Mol

et al. (2008) have discussed the connection between BVARs and factor models, another

popular way to handle large datatsets. We review large BVARs in Section 8.

Finally, in Section 9 we discuss Bayesian inference in VAR models that relax the

assumption of fixed coefficients in order to capture changes in the time series dynamics

of macroeconomic and financial variables, such as VARs with autoregressive coefficients,

threshold and Markov switching VARs.

2 Inference in BVARs

Vector Autoregressions (VARs) are linear stochastic models that describe the joint dy-

namics of multiple time series. Let yt be an n × 1 random vector that takes values in

Rn. The evolution of yt – the endogenous variables – is described by a system of p-th

order difference equations – the VAR(p):

yt = A1yt−1 + . . .+ Apyt−p + c+ ut . (1)

6An extreme version of lack of sample information arises in this context. In fact Structural VARs can
be parametrised in terms of reduced form VARs that capture the joint dynamics of economic variables,
and an ‘impact matrix’ describing the casual connection between stochastic disturbances and economic
variables. This matrix is not uniquely identified by sample information and hence the investigator has
to elicit prior beliefs on it (see Sims and Zha, 1998; Baumeister and Hamilton, 2015).
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In Eq. (1), Aj, j = 1, . . . , p are n × n matrices of autoregressive coefficients, c is

a vector of n intercepts, and ut is an n-dimensional vector of one-step-ahead fore-

cast errors, or reduced-form innovations. The vector of stochastic innovations, ut,

an independent and identically distributed random variable for each t. The distribu-

tion from which ut is drawn determines the distribution of yt, conditional on its past

y1−p:t−1 ≡ {y1−p, . . . , y0, . . . , yt−2, yt−1}. The standard assumption in the macroecono-

metric literature is that errors are Gaussian

ut ∼ i.i.d. N (0,Σ) . (2)

This implies that also the conditional distribution of yt is Normal.7,8

Bayesian inference on the model in Eq. (1) amounts to updating prior beliefs about

the VAR parameters, that are seen as stochastic variables, after having observed a

sample y1−p:t ≡ {y1−p, . . . , y0, . . . , yt−2, yt}. Prior beliefs about the VAR coefficients are

summarised by a probability density function (p.d.f.), and updated using Bayes’ Law

p(A,Σ|y1−p:t) =
p(A,Σ)p(y1−p:t|A,Σ)

p(y1−p:t)
∝ p(A,Σ)p(y1−p:t|A,Σ) , (3)

where we define A ≡ [A1, . . . , Ap, c]
′ as a k × n matrix, with k = np + 1. The joint

posterior distribution of the VAR(p) coefficients p(A,Σ|y1−p:t) incorporates the inform-

ation contained in the prior distribution p(A,Σ) – summarising the initial information

about the model parameters –, and the sample information summarised by p(y1−p:t|A,Σ).

Viewed as a function of the parameters, the sample information is the likelihood func-

tion.9 The posterior distribution summarises the entire information available, and is

7While the assumption of normally distributed errors makes the posterior p.d.f. tractable, modern
computational methods permit straightforward characterisation of posterior distributions obtained un-
der different assumptions. Among others, Chiu et al. (2017) and Panagiotelis and Smith (2008) depart
from the normality assumption and allow for t-distributed errors.

8It is interesting to observe that in large samples, and under certain regularity conditions, the like-
lihood function converges to a Gaussian distribution, with mean at the maximum likelihood estimator
(MLE) and covariance matrix given by the usual MLE estimator for the covariance matrix. This implies
that conditioning on the MLE and using its asymptotic Gaussian distribution is, approximately in large
samples, as good as conditioning on all the data (see discussion in Sims, 2010b).

9The marginal p.d.f. for the observations, denoted as p(y1−p:t), is a normalising constant and as
such can be dropped when making inference about the model parameters.
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used to conduct inference on the VAR parameters.

Given the autoregressive structure of the model, and the i.i.d. innovations, the

(conditional) likelihood function of the sample observations y1:T – conditional on A, Σ

and on the first p observations y1−p:0 –, can be written as the product of the conditional

distribution of each observation

p (y1:T |A,Σ, y1−p:0) =
T∏
t=1

p (yt|A,Σ, yt−p:t−1) . (4)

Under the assumption of Gaussian errors, the conditional likelihood of the VAR in Eq.

(1) is

p (y1:T |A,Σ, y1−p:0) =
T∏
t=1

1

(2π)n/2
|Σ|−1 exp

{
−1

2
(yt − A′xt)′Σ−1 (yt − A′xt)

}
, (5)

where x′t ≡
[
y′t−1 . . . y′t−p 1

]
.

The likelihood in Eq. (5) can be written in compact form, by using the seemingly

unrelated regression (SUR) representation of the VAR

y = xA+ u, (6)

where the T × n matrices y and u and the T × k matrix x are defined as

y =


y′1
...

y′T

 , x =


x′1
...

x′T

 , u =


u′1
...

u′T

 . (7)

Using this notation and standard properties of the trace operator, the conditional like-

lihood function can be equivalently expressed as

p (y1:T |A,Σ, y1−p:0) =
1

(2π)Tn/2
|Σ|−T/2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
tr
[
Σ−1(A− Â)′x′x(A− Â)

]}
, (8)
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where Â is the maximum-likelihood estimator (MLE) of A, and Ŝ the matrix of sums

of squared residuals, i.e.

Â = (x′x)−1x′y, Ŝ = (y − xÂ)′(y − xÂ). (9)

The likelihood can also be written in terms of the vectorised representation of the VAR

y = (In ⊗ x)α + u, u ∼ (0,Σ⊗ IT ) , (10)

where y ≡ vec(y) and u ≡ vec(u) are Tn× 1 vectors, and α ≡ vec(A) is nk× 1. In this

vectorised notation the likelihood function is written as

p (y1:T |A,Σ, y1−p:0) =
1

(2π)Tn/2
|Σ|−T/2 exp

{
−1

2
tr
[
Σ−1Ŝ

]}
× exp

{
−1

2
(α− α̂)′[Σ−1 ⊗ (x′x)](α− α̂)

}
, (11)

where, consistently, α̂ ≡ vec(Â) is nk × 1. Detailed derivations for the multivariate

Gaussian linear regression model can be found in Zellner (1971).

Given the likelihood function, Eq. (3) is used to update the prior information re-

garding the VAR parameters. An interesting case arises when we assume the absence of

any information on the location of the model parameters. This setting can be formalised

by assuming that α and Σ are independently distributed, i.e.,

p(α,Σ) = p(α)p(Σ), (12)

with prior p.d.f.

p(α) ∝ const.,

p(Σ) ∝ |Σ|−(n+1)/2 . (13)

These priors are known as diffuse or Jeffreys’ prior (Geisser, 1965; Tiao and Zellner,

1964). Jeffreys priors are proportional to the square root of the determinant of the
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Fisher information matrix, and are derived from the Jeffreys’ ‘invariance principle’,

meaning that the prior is invariant to re-parameterization (see Zellner, 1971).10

Given this set of priors, it is straightforward to derive the posterior distribution of

the VAR parameters as

p (A,Σ|y1:T ) ∝

|Σ|−(T+n+1)/2 exp

{
−1

2
tr
(
Σ−1 ⊗ IT

)
[y − (In ⊗ x) α̂]′ [y − (In ⊗ x) α̂]

}
× exp

{
−1

2
(α− α̂)′

(
Σ−1 ⊗ x′x

)
(α− α̂)

}
, (14)

where the proportionality factor has been dropped for convenience.

From the joint posterior in Eq. (14) one can readily deduce the form of the posterior

for α, conditional on Σ and the observed sample. Also, the posterior can be integrated

over α to obtain the marginal posterior for Σ. Therefore, it is possible to conveniently

write the posterior distribution of the parameters as

p(α,Σ|y1:T ) = p(α|Σ, y1:T )p(Σ|y1:T ) (15)

where

Σ|y ∼ IW
(

(y − xÂ)′(y − xÂ), T − k
)

(16)

α|Σ, y ∼ N
(
α̂,Σ⊗ (x′x)−1

)
. (17)

Hence, given the diffuse priors on α and Σ, the posterior for the autoregressive coeffi-

10‘Non-informative’ or ‘flat’ priors are designed to extract the maximum amount of expected inform-
ation from the data. They maximise the difference (measured by Kullback-Leibler distance) between
the posterior and the prior when the number of samples drawn goes to infinity. Jeffreys priors for
VARs are ‘improper’, in the sense that they do not integrate to one over the parameter space. Hence,
they cannot be thought of as well specified p.d.f. distributions. However, they can be obtained as
degenerate limit of the Normal-Inverse-Wishart conjugate distribution, and their posterior is proper.
For an in-depth discussion on non-informative priors in multi-parameter settings see Zellner (1971) and
Bernardo and Smith (2009).
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cients is centred at the MLE, with posterior variance Σ⊗(x′x)−1.11 Interestingly, in this

standard normal multivariate linear regression model, Bayesian probability statements

about the parameters (given the data) have the same form as the frequentist pre-sample

probability statements about the parameters’ estimator (see also Sims, 2010b). This is

a more general property, in fact, Kwan (1998) has shown that, under widely applicable

regularity conditions, an estimator α̂T for which

√
T (α̂T − α)|α D−−−→

T→∞
N (0,Σ)

allows, with high accuracy, to approximate the distribution of
√
T (α− α̂T )|α̂ as N (0,Σ)

in large samples. Hence, it is often possible to interpret (1− ρ) approximate confidence

sets generated from the frequentist asymptotic approximate distribution as if they were

sets in the parameter space with posterior probability (1− ρ).

In potentially misspecified models for which linear regression coefficients are the ob-

ject of interest, Müller (2013) proposes to adopt an artificial Gaussian posterior centred

at the MLE but with a sandwich estimator for the covariance matrix. In fact, in the

case of a misspecified model, the shape of the likelihood (the posterior) is asymptotically

Gaussian and centred at the MLE, but of a different variance than the asymptotically

normal sampling distribution of the MLE. This argument can be seen as a ‘flipping’ of

the frequentist asymptotic statement that supports the use of a sandwich estimator for

the covariance matrix in misspecified models, in line with the results in Kwan (1998).12

An important case in which frequentist pre-sample probability statements and Baye-

sian post-sample probability statements about parameters diverge, is the case of time-

11The marginal posterior distribution of the k × n matrix A is matricvariate t

A|y ∝ |(y − xÂ)′(y − xÂ) + (A− Â)′x′x(A− Â)|−T/2 (18)

(see Kadiyala and Karlsson, 1997).
12Müller (2013) shows that a Bayesian decision-maker can justify using OLS with a sandwich co-

variance matrix when the probability limit of the OLS estimator is the object of interest, despite
the fact that the linear regression model is known not to be the true model (see discussion in Sims,
2010b). Miranda-Agrippino and Ricco (2017) use this intuition to construct coverage bands for im-
pulse responses estimated with Bayesian Local Projections (BLP). This method can be thought of as
a generalisation of BVARs that estimates a different model for different forecast horizons – as in direct
forecasts – and hence induces autocorrelation in the reduced-form residuals that violate the the i.i.d.
assumption in Eq. (2).
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series regression models with unit roots. In such cases, while the frequentist distribution

of the estimator is skewed asymptotically, the likelihood, and hence the posterior p.d.f.,

remain unaffected (see Sims and Uhlig, 1991; Kim, 1994).

3 Informative Priors for Reduced-Form VARs

Informative prior probability distributions incorporate information about the VAR para-

meters that is available before some sample is observed. Such prior information can be

contained in samples of past data – from the same or a related system –, or can be

elicited from introspection, casual observation, and theoretical models. The first case

is sometimes referred to as a ‘data-based’ prior, while the second as a ‘nondata-based’

prior.

An important case arises when the prior probability distribution yields a posterior

distribution for the parameters in the same family as the prior p.d.f. In this case the

prior is called a natural conjugate prior for the likelihood function (Raiffa and Schlaifer,

1961). In general, it has been shown that exponential distributions are the only class of

distributions that admit a natural conjugate prior, due to these having a fixed number

of sufficient statistics that does not increase as the sample size T increases (see e.g.

Gelman et al., 2013). Because the data is incorporated into the posterior distribution

only through the sufficient statistics, formulas for updating the prior into the posterior

are in these cases conveniently simple.

Prior distributions can be expressed in terms of coefficients, known as hyperparamet-

ers, whose functions are sufficient statistics for the model parameters. It is often useful

to think of the hyperparameters of a conjugate prior distribution as corresponding to

having observed a certain number of pseudo-observations with properties specified by

the priors on the parameters. In general, for nearly all conjugate prior distributions,

the hyperparameters can be interpreted in terms of ‘dummy’ or pseudo-observations.

The basic idea is to add to the observed sample extra ‘data’ that express prior beliefs

about the hyperparameters. The prior then takes the form of the likelihood function of

these dummy observations. Hyperparameters can be either fixed using prior informa-
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tion, or associated to hyperprior distributions that express beliefs about their values. A

Bayesian model with more than one level of priors is called a hierarchical Bayes model.

In this section we review some of the most commonly used priors for VARs with mac-

roeconomic and financial variables, while we discuss the choice of the hyperpriors and

hierarchical modelling in Section 4.

3.1 Natural Conjugate Normal-Inverse Wishart Priors

The Normal-Inverse Wishart (NIW) conjugate priors, part of the exponential family,

are commonly used prior distributions for (A,Σ) in VARs with Gaussian errors. These

assume a multivariate normal distribution for the regression coefficients, and an Inverse

Wishart specification for the covariance matrix of the error term, and can be written as

Σ ∼ IW(S, d) (19)

α|Σ ∼ N (α, Σ⊗ Ω) , (20)

where (S, d, α,Ω) are the priors’ hyperparameters. d and S denote, respectively, the de-

grees of freedom and the scale of the prior Inverse-Wishart distribution for the variance-

covariance matrix of the residuals. α is the prior mean of the VAR coefficients, and

Ω acts as a prior on the variance-covariance matrix of the dummy regressors.13 The

posterior distribution can be analytically derived and is given by

Σ|y ∼ IW(S, d) (21)

α|Σ,y ∼ N (α, Σ⊗ Ω), (22)

13The prior mean of the VAR coefficients is E[α] = α, for d > n , while the variance is Var[α] =
(d − n − 1)−1S ⊗ Ω, for d > n + 1. Setting d = max{n + 2, n + 2h − T} ensures that both the prior
variances of A and the posterior variances of the forecasts at T + h are defined.
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where

Ω = (Ω + x′x)−1, (23)

α ≡ vec(A) = vec
(

Ω
(

Ω−1A+ x′xÂ
))

, (24)

S = Â′x′xÂ+ A′Ω−1A+ S + (y − xÂ)′(y − xÂ)− A′(Ω−1 + x′x)A . (25)

Comparing Eqs. (16) - (17) to Eqs. (19) - (20), it is evident that informative priors

can be thought of as equivalent to having observed dummy observations (yd, xd) of size

Td, such that

S = (yd − xdA)′(yd − xdA), (26)

d = Td − k, (27)

α = vec(A) = vec
(
(x′dxd)

−1x′dyd
)
, (28)

Ω = (x′dxd)
−1 . (29)

This idea was first proposed for a classical estimator for stochastically restricted coef-

ficients by Theil (1963). Once a set of pseudo-observations able to match the wished

hyperparameters is found, the posterior can be equivalently estimated using the exten-

ded samples y∗ = [y′, y′d]
′, x∗ = [x′, x′d]

′ of size T∗ = T + Td obtaining

Σ|y ∼ IW (S∗, T∗ + d) (30)

α|Σ,y ∼ N
(
α∗, Σ⊗ (x′∗x∗)

−1
)
. (31)

Indeed, it is easy to verify that the posterior moments obtained with the starred vari-

ables coincide with those in Eqs. (21) - (22). The posterior estimator efficiently combines

sample and prior information using their precisions as weights in the spirit of the mixed

estimation of Theil and Goldberger (1961). Posterior inference can be conducted via

direct sampling.

Algorithm 1: Direct Monte Carlo Sampling from Posterior of VAR Para-
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meters.

For s = 1, . . . , nsim:

1. Draw Σ(s) from the Inverse-Wishart distribution Σ|y ∼ IW (S∗, T∗ + d).

2. Draw A(s) from the Normal distribution of A(s)|Σ(s),y ∼ N
(
α∗, Σ(s) ⊗ (x′∗x∗)

−1
)
.

When it is not possible to sample directly from the posterior distribution, as in this

case, Markov chain Monte Carlo (MCMC) algorithms are usually adopted (see e.g. Chib,

2001).14

An important feature of the NIW priors in Eqs. (19) - (20) is the Kronecker factor-

isation that appears in the Gaussian prior for α. As discussed in the previous section,

because the same set of regressors appears in each equation, homoskedastic VARs can

be written as SUR models. This symmetry across equations means that homoskedastic

VAR models have a Kronecker factorisation in the likelihood, which in turn implies

that estimation can be broken into n separate least-squares calculations, each only of

dimension np+ 1. The symmetry in the likelihood can be inherited by the posterior, if

the prior adopted also features a Kronecker structure as in Eq. (20). This is a desirable

property that guarantees tractability of the posterior p.d.f. and computational speed.

However, such a specification can result in unappealing restrictions and may not fit the

actual prior beliefs one has – see discussions in Kadiyala and Karlsson (1997), and Sims

and Zha (1998). In fact, it forces symmetry across equations, because the coefficients

of each equation have the same prior variance matrix (up to a scale factor given by the

elements of Σ). There may be situations in which theory suggests ‘asymmetric restric-

tions’ may be desirable instead, e.g. money neutrality implies that the money supply

14The key idea of MCMC algorithms is to construct a Markov chain for θ ≡ (A,Σ) which has the
posterior as its (unique) limiting stationary distribution, and such that random draws can be sampled
from the transition kernel p(θ(s+1)|θ(s)). Tierney (1994) and Geweke (2005) discuss the conditions for
the convergence of the chain to the posterior distribution when starting from an arbitrary point in the
parameter space. Typically, a large number of initial draws (known as burn-in sample) is discarded
to avoid including portions of the chain which have not yet converged to the posterior. Also, even if
convergent, the chain may move very slowly in the parameter space due to e.g. autocorrelation between
the draws, and a very large number of draws may be needed. See also Karlsson (2013a) for a discussion
on this point and on empirical diagnostic tests to assess the chain convergence. References include
Geweke (1999); Chib and Greenberg (1995); Geweke and Whiteman (2006b).
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does not Granger-cause real output.15 Also, the Kronecker structure implies that prior

beliefs must be correlated across the equations of the reduced form representation of the

VAR, with a correlation structure that is proportional to that of the disturbances.

3.2 Minnesota Prior

In macroeconomic and financial applications, the parameters of the NIW prior in Eq.

Eqs. (19) - (20) are often chosen so that prior expectations and variances of A coincide

with the so-called ‘Minnesota’ prior, that was originally proposed in Litterman (1980,

1986).16 The basic intuition behind this prior is that the behaviour of most macroeco-

nomic variables is well approximated by a random walk with drift. Hence, it ‘centres’

the distribution of the coefficients in A at a value that implies a random-walk behaviour

for all the elements in yt

yt = c+ yt−1 + ut. (32)

While not motivated by economic theory, these are computationally convenient priors,

meant to capture commonly held beliefs about how economic time series behave.

The Minnesota prior assumes the coefficients A1, . . . , Ap to be a priori independent

and normally distributed, with the following moments

E [(A`)ij|Σ] =

δi i = j, ` = 1

0 otherwise

Var [(A`)ij|Σ] =


λ21
f(`)

for i = j,∀`
λ21
f(`)

Σij
ω2
j

for i 6= j,∀`.
(33)

In Eq. (33), (A`)ij denotes the coefficient of variable j in equation i at lag `. δi is

15Such restrictions can be accommodated by replacing Eq. (19) with a truncated Normal distribu-
tion. In this case, however, posterior moments are not available analytically and must be evaluated
numerically, with consequential complications and loss of efficiency with respect to the MCMC al-
gorithm discussed above (see Hajivassiliou and Ruud, 1994; Kadiyala and Karlsson, 1997, for further
details).

16The original formulation of Litterman (1980)’s prior was of the form

α ∼ N (α,Γ),

where Γ ≡ diag([γ2
1
, . . . , γ2

n
]) is assumed to be fixed, known, and diagonal. Highfield (1992) and

Kadiyala and Karlsson (1997) observed that by modifying Litterman’s prior to make it symmetric
across equations in the form of a NIW prior, the posterior p.d.f. was tractable.
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usually set to 1 in accordance with Eq. (32).17 The prior also assumes that lags of other

variables are less informative than own lags, and that most recent lags of a variable

tend to be more informative than more distant lags. This intuition is formalised with

f(`). A common choice for this function is a harmonic lag decay – i.e. f(`) = `λ2 , a

special case of which is f(`) = ` –, where the severity of the lag decay is regulated by

the hyperparameter λ2. The factor Σij/ω
2
j accounts for the different scales of variables

i and j. The hyperparameters ω2
j are often fixed using sample information, for example

from univariate regressions of each variable onto its own lags.

Importantly, λ1 is a hyperparameter that controls the overall tightness of the random

walk prior. If λ1 = 0 the prior information dominates, and the VAR reduces to a vector

of univariate models. Conversely, as λ1 → ∞ the prior becomes less informative, and

the posterior mostly mirrors sample information. We discuss the choice of the free

hyperparameters in Section 4.

The Minnesota prior can be implemented using dummy observations. Priors on the

A coefficients are implemented via the following pseudo-observations

y
(1)
d =

 diag([δ1ω1, . . . , δnωn])/λ1

0n(p−1)×n

 ,
x

(1)
d =

[
Jp ⊗ diag([ω1, . . . , ωn])/λ1 0np×1

]
, (34)

where Jp = diag([1λ2 , 2λ2 , . . . , pλ2 ]) with geometric lag decay.18 To provide intuition on

how the prior is implemented using artificial observations, we consider the simplified

case of a n = 2, p = 2 VAR for the pseudo-observations . The first n rows of Eq. (34)

impose priors on A1; that is, on the coefficients of the first lag. In the n = 2, p = 2 case

17The random-walk assumption is taken for convenience and can be modified to accommodate the
characteristics of the series in yt. For stationary series, or variables that have been transformed to
achieve stationarity, Bańbura et al. (2010) centre the distribution around zero (i.e. δi = 0).

18Given the dummy observations in Eq. (34), the matrix Ω in Eq. (19) is diagonal and of the form

Ω
[k×k]

= ((x
(1)
d )′x

(1)
d )−1 = diag

([
λ21
ω2
1

, . . . ,
λ21
ω2
n

,
λ21

22λ2ω2
1

, . . . ,
λ21

22λ2ω2
n

, . . . ,
λ21

p2λ2ω2
1

, . . . ,
λ21

p2λ2ω2
n

, 0

])
.
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one obtains, δ1ω1

λ1
0

0 δ2ω2

λ1

 =

 ω1

λ1
0 0 0 0

0 ω2

λ1
0 0 0

A+

 (u
(1)
d )1,1 (u

(1)
d )2,1

(u
(1)
d )1,2 (u

(1)
d )2,2

 (35)

that implies, for example, the following equations for the elements (1, 1) and (1, 2) of A1

δ1ω1

λ1

=
ω1

λ1

(A1)1,1 + (u
(1)
d )1,1 =⇒ A1,11 ∼ N

(
δ1,

Σ1,1λ
2
1

ω2
1

)
,

0 =
ω1

λ1

A1,21 + (u
(1)
d )2,1 =⇒ A1,21 ∼ N

(
0,

Σ2,1λ
2
1

ω2
1

)
.

Similar restrictions are obtained for the elements the elements (2, 1) and (2, 2) of A1.

The following (n−1)p rows in Eq. (34) implement priors on the coefficients of the other

lags. In fact, we readily obtain 0 0

0 0

 =

 0 0 2λ2ω1

λ1
0 0

0 0 0 2λ2ω2

λ1
0

A+

 (u
(1)
d )1,1 (u

(1)
d )2,1

(u
(1)
d )1,2 (u

(1)
d )2,2

 (36)

which for example implies the following restriction for the element (1, 1) of A2

0 =
2λ2ω1

λ1

A2,11 + (u
(1)
d )1,1 =⇒ A2,11 ∼ N

(
0,

Σ1,1λ
2
1

22λ2ω2
1

)
.

Similar restrictions obtain for the other elements of A2. Priors beliefs on the residual

covariance matrix Σ can instead implemented by the following block of dummies

y
(2)
d =

[
1λ3×1 ⊗ diag([ω1, . . . , ωn])

]
(37)

x
(2)
d =

[
0λ3n×np 0λ3n×1

]
. (38)

In the n = 2, p = 2 case, they correspond to appending to the VAR equations λ3
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replications of ω1 0

0 ω2

 =

 0 0 0 0 0

0 0 0 0 0

A+

 (u
(2)
d )1,1 (u

(2)
d )2,1

(u
(2)
d )1,2 (u

(2)
d )2,2

 . (39)

λ3 is the hyperparameter that determines the tightness of the prior on Σ. To understand

how this works, it is sufficient to consider that with λ3 artificial observations zi ∼

N (0, σ2
z), an estimator for the covariance is given by λ−1

3

∑λ3
i=1 z

2
i .

Finally, uninformative priors for the intercept are often implemented with the fol-

lowing set of pseudo-observations

y
(3)
d =

[
01×n

]
, x

(3)
d =

[
01×np ε

]
,

where ε is a hyperparameter usually set to a very small number.19

3.3 Priors for VAR with Unit Roots and Trends

Sims (1996, 2000) observed that flat-prior VARs, or more generally estimation meth-

ods that condition on initial values, tend to attribute an implausibly large share of

the variation in observed time series to deterministic – and hence entirely predictable

– components. The issue stems from the fact that ML and OLS estimators that con-

dition on the initial observations and treat them as non-stochastic do not apply any

penalisation to parameters values that imply that these observations are very distant

from the variables’ steady state (or their trend if non-stationary). As a consequence,

complex transient dynamics from the initial conditions to the steady state are treated

as plausible, and can explain an ‘implausibly’ large share of the low-frequency variation

of the data. This typically translates into poor out-of-sample forecasts. To understand

the intuition, consider the univariate model

yt = c+ ayt−1 + ut. (40)

19?? propose a set of artificial observations to account for seasonal patterns and potentially other
peaks in the spectral densities.
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Iterating Eq. (40) backward yields

yt =

[
aty0 +

t−1∑
j=0

ajc

]
+

[
t−1∑
j=0

ajut−j

]
, (41)

which, if |a| < 1, reduces to

yt =

[
at
(
y0 −

c

1− a

)
+

c

1− a

]
+

[
t−1∑
j=0

ajut−j

]
. (42)

The first term in square brackets in Eq. (41) is the deterministic component: the

evolution of yt from the initial conditions y0, absent any shocks. The second term

instead captures the stochastic evolution of yt due to the shocks realised between [0, t−1].

c/(1− a) in Eq. (42) is the unconditional mean of yt. If yt is close to non-stationary –

i.e. a ' 1 –, the MLE estimator of the unconditional mean of yt may be very far from

y0, and the ‘reversion to the mean’ from y0 is then used to fit the data (see Eq. 42).

One way to deal with this issue is to use the unconditional likelihood, by explicitly

incorporating the density of the initial observations in the inference. However, because

most macroeconomic time series are effectively nonstationary, it is not obvious how the

density of the initial observations should be specified.20 Another approach, following

Sims and Zha (1998); Sims (2000), is to instead specify priors that downplay the im-

portance of the initial observations, and hence reduce the explanatory power of the

deterministic component.

These types of priors, implemented through artificial observations, aim to reduce

the importance that the deterministic component has in explaining a large share of the

in-sample variation of the data, eventually improving forecasting performances out-of-

sample (see Sims, 1996; Sims and Zha, 1998, for a richer discussion on this point).21

20This approach requires the use of iterative nonlinear optimisation methods. The main issue with
this approach is that nonstationary models have no unconditional – viz. ergodic – distribution of the
initial conditions. Also, while near-nonstationary models may have an ergodic distribution, the time
required to arrive at the ergodic distribution from arbitrary initial conditions may be very long. For
this reason, using such a method requires strong beliefs about the stationarity of the model, which is
rarely the case in macroeconomics, and imposing the ergodic distribution on the first p observations
may be unreasonable (see Sims, 2005a).

21The treatment of unit root in Bayesian and frequentist inference has been hotly debated. Among
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The ‘co-persistence’ (or ‘one-unit-root’ or ‘dummy initial observation’) prior (Sims,

1993) reflects the belief that when all lagged yt’s are at some level ȳ0, yt tends to persist

at that level. It is implemented using the following artificial observation

y
(4)
d

[1×n]

=

[
ȳ0,1

λ4

, . . . ,
ȳ0,n

λ4

]
x

(4)
d

[1×k]

= [y
(4)
d , . . . , y

(4)
d , 1/λ4], (43)

where ȳ0,i, i = 1, . . . , n are the average of the initial values of each variable, and usually

set to be equal to the average of the first p observations in the sample. Writing down

the implied system of equations y
(4)
d = Ax

(4)
d + u

(4)
d one obtains the following stochastic

restriction on the VAR coefficients

[In − A(1)] ȳ0 − c = λ4u
(4)
d , (44)

where In − A(1) = (In − A1 − . . .− Ap). The hyperparameter λ4 controls the tightness

of this stochastic constraint. The prior is uninformative for λ4 → ∞. Conversely, as

λ4 → 0 the model tends to a form where either there is at least one explosive common

unit root and the constant c is equal to zero (ȳ0 is the eigenvector of the unit root), or

the VAR is stationary, c is different from zero, and the initial conditions are close to the

implied unconditional mean (ȳ0 = [In − A(1)]−1 c). In the stationary form, this prior

does not rule out cointegrated models. This prior induces prior correlation among all

the VAR coefficients in each equation, including the constant.22

The ‘sums-of-coefficients’ (or ‘no-cointegration’) prior (Doan et al., 1984), captures

the belief that when the average lagged values of a variable yj,t is at some level ȳ0,j,

then ȳ0,j is likely to be a good forecast of yj,t. It also implies that knowing the average

others, important contributions are Sims (1988, 1991), Sims and Uhlig (1991), Koop and Steel (1991),
Phillips (1991a,b), Uhlig (1994a,b), Müller and Elliott (2003); Jarociński and Marcet (2011, 2014). The
Journal of Applied Econometrics October/December 1991 Volume 6, Issue 4 has been entirely dedicated
to this debate.

22To put a heavier weight on the presence of a unit root, one could add to the observation in Eq.
(43) an additional artificial observation that enforces the belief that c = 0. Alternatively, one could
modify Eq. (43) to have a zero in place of λ−14 as the observation corresponding to the intercept. In
this case, the prior gives no plausibility to stationary models and, if used in isolation, allows for at least
a single unit root without any restriction on c. Hence, despite the presence of a unit root, it may not
necessarily reduce the importance of the deterministic component (see Sims, 2005a).
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of lagged values of variable j does not help in predicting a variable i 6= j. This prior is

implemented using n artificial observations, one for each variable in yt

y
(5)
d

[n×n]

= diag

([
ȳ0,1

λ5

, . . . ,
ȳ0,n

λ5

])
x

(5)
d

[n×k]

= [y
(5)
d , . . . , y

(5)
d , 0]. (45)

The prior implied by these dummy observations is centred at 1 for the sum of coefficients

on own lags for each variable, and at 0 for the sum of coefficients on other variables’ lags.

It also introduces correlation among the coefficients of each variable in each equation.

In fact, it is easy to show that equation by equation this priors implies the stochastic

constraint

[1− (A1)jj − . . .− (Ap)jj] ȳ0,j = λ5(u
(5)
d )j ∀j , (46)

where (A`)jj denotes the coefficient of variable j in equation j at lag `. The hyperpara-

meter λ5 controls the variance of these prior beliefs. As λ5 → ∞ the prior becomes

uninformative, while λ5 → 0 implies that each variable is an independent unit-root

process, and there are no co-integration relationships.23

The Bayesian analysis of cointegrated VARs is an active area of research, (a detailed

survey is in Koop et al. 2006).24 Giannone et al. (2016) elicit theory-based priors for

the long run of persistent variables which shrink towards a random walk those linear

combination of variables that are likely to have a unit root. Conversely, combinations

which are likely to be stationary (i.e. cointegrating relationships among variables) are

shrunk towards stationary processes. Operationally, this is achieved by rewriting the

23The sums-of-coefficients observations of Eq. (45) do not imply any restriction on the vector of
intercepts c, since the artificial observations loading on the constant are set to zero. Therefore, this
prior allows for a non-zero constant, and hence for a linearly trending drift. To assign smaller probability
to versions of the model in which deterministic transient components are much more important than
the error term in explaining the series variance, one has to add to Eq. (45) artificial observations that
favour c = 0 (see Sims, 2005a).

24Among many others, contributions to the treatment of cointegration in Bayesian VARs are in
Kleibergen and van Dijk (1994), Geweke (1996), Villani (2001), Kleibergen and Paap (2002), Strachan
and Inder (2004), Koop et al. (2011), Jochmann and Koop (2015).
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VAR in Eq. (1) as

∆yt = Πyt−1 + P1∆yt−1 + . . .+ Pp∆yt−p+1 + c+ ξt

= ΠF−1Fyt−1 + P1∆yt−1 + . . .+ Pp∆yt−p+1 + c+ ξt, (47)

where Π = A1 + . . . + Ap − In, Pj = −(Aj+1 + . . . + Ap), and F is any invertible n-

dimensional matrix. The problem is then specified as setting a prior for Π̃ ≡ ΠF−1,

conditional on a specific choice of F . F defines the relevant linear combinations of

the variables in yt which macroeconomic theory suggest to be a priori stationary or

otherwise.

Another alternative is in Villani (2009). Here the VAR is written as

yt = ρ0 + ρ1t+ ỹt, ỹt = A1ỹt−1 + . . .+ Apỹt−p + ut, ut ∼ i.i.d.N (0,Σ) (48)

where ρ0 and ρ1 are n×1 vectors. The first term, ρ0+ρ1t, captures a linear deterministic

trend of yt, whereas the law of motion of ỹt captures stochastic fluctuations around the

deterministic trend, which can be either stationary or non-stationary. This alternative

specification allows to separate beliefs about the deterministic trend component from

beliefs about the persistence of fluctuations around this trend. Let A = [A1, . . . , Ap]
′ and

ρ = [ρ′0, ρ
′
1]′. It can be shown that if the prior distribution of ρ conditional on A and Σ is

Normal, the (conditional) posterior distribution of ρ is also Normal (see also Del Negro

and Schorfheide, 2011, for details). Hence, posterior inference can be implemented via

Gibbs sampling.

3.4 Priors from Structural Models

DeJong et al. (1993), Ingram and Whiteman (1994), Del Negro and Schorfheide (2004)

have proposed the use of priors for VARs that are derived from Dynamic Stochastic

General Equilibrium (DSGE) models. This approach bridges VARs and DSGEs by

constructing families of prior distributions informed by the restrictions that a DSGE-

model implies on the VAR coefficients. This modelling approach is sometimes referred
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to as DSGE-VAR. Ingram and Whiteman (1994) derive prior information from the basic

stochastic growth model of King et al. (1988) and report that a BVAR based on the Real

Business Cycle model prior outperforms a BVAR with a Litterman prior in forecasting

real economic activity. Del Negro and Schorfheide (2004) extend and generalise this

approach, and show how to conduct policy simulations within this framework.

Schematically, the exercises can be thought of as follows. First, time-series are

simulated form a DSGE model. Second, a VAR is estimated from these simulated

data. Population moments of the simulated data computed from the DSGE model

solution are considered in place of sample moments. Since the DSGE model depends on

unknown structural parameters, hierarchical prior modelling is adopted by specifying

a distribution on the DSGE model parameters. A tightness parameter controls the

weight of the DSGE model prior relative to the weight of the actual sample. Finally,

Markov Chain Monte Carlo methods are used to generate draws from the joint posterior

distribution of the VAR and DSGE model parameters.

3.5 Priors for Model Selection

It is standard practice in VAR models to pre-select the relevant variables to be included

in the system (and with how many lags). This procedure may be thought of as having

dogmatic priors about which variables have non-zero coefficients in the system. The

challenge is in selecting among an expansive set of potential models. Indeed, for a VAR

with n endogenous variables, q additional potentially exogenous variables including a

constant, and p lags, there are 2(q+pn)n+n(n−1)/2 possible models.

Jarociński and Maćkowiak (2017) propose to select the variables to be included

in the system by systematically assessing the posterior probability of ‘Granger causal

priority’ (Sims, 2010a) in a BVAR with conjugate priors. Granger causal priority answers

questions of the form “Is variable z relevant for variable x, after controlling for other

variables in the system?” The authors provide a closed form expression for the posterior

probability of Granger causal priority, and suggest that variables associated with high

Granger causal priority probabilities can be omitted from a VAR with the variables of

25



interest.

Alternatively, one can adopt priors that support model selection and enforce sparsity.

A variety of techniques, including double exponential (Laplace) prior, spike-and-slab

prior, etc., have been adopted to handle this issue. Some recent theoretical and empirical

contributions on this topic are in Mitchell and Beauchamp (1988), George et al. (2008),

Korobilis (2013), Bhattacharya et al. (2015a), Griffin and Brown (2010, 2017), Giannone

et al. (2017), Huber and Feldkircher (2017).

4 Hyperpriors and Hierarchical Modelling

As seen in the previous section, the informativeness of prior beliefs on the VAR para-

meters often depends on a set of free hyperparameters. Let λ ≡ [λ1, λ2, . . .] denote the

vector collecting all the hyperparameters not fixed using (pre)sample information, and

θ denote all the VAR parameters, i.e. A and Σ. The prior distribution of θ is thus

effectively pλ(θ). Choosing a value for λ alters the tightness of the prior distribution,

and hence determines how strictly the prior is enforced on the data.

In order to set the informativeness of the prior distribution of the VAR coefficients,

the literature has initially used mostly heuristic methodologies. Litterman (1980) and

Doan et al. (1984), for example, choose a value for the hyperparameters that maximises

the out-of-sample forecasting performance over a pre-sample. Conversely, Bańbura et al.

(2010) propose to choose the shrinkage parameters that yield a desired in-sample fit,

in order to control for overfitting. Subsequent studies have then either used these as

‘default’ values, or adopted either one of these criteria. Robertson and Tallman (1999);

Wright (2009); Giannone et al. (2014) opt for the first, while e.g. Giannone et al. (2008);

Bloor and Matheson (2011); Carriero et al. (2009); Koop (2013) follow Bańbura et al.

(2010).

In VARs, Giannone et al. (2015) observe that, from a purely Bayesian perspective,

choosing λ is conceptually identical to conducting inference on any other unknown para-

meter of the model. Specifically, the model is interpreted as a hierarchical one (Berger,
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1985; Koop, 2003) and λ can be chosen as the maximiser of

p(λ|y) ∝
∫
p(y|θλ, y1−p:0)p(θ|λ)dθ · p(λ)

= p(y|λ, y1−p:0) · p(λ) . (49)

This method is also known in the literature as the Maximum Likelihood Type II (ML-

II) approach to prior selection (Berger, 1985; Canova, 2007). In Eq. (49), p(λ|y) is the

posterior distribution of λ conditional on the data, and p(λ) denotes a prior probability

density specified on the hyperparameters themselves, and also known as the hyperprior

distribution. In such hierarchical model, the prior distribution for the VAR coefficients

is treated as a conditional prior, that is pλ(θ) is replaced by p(θ|λ). In the case of a NIW

family of distributions, the prior structure becomes p(α|Σ, λ)p(Σ|λ)p(λ). p(y|λ, y1−p:0)

is the marginal likelihood (ML), and is obtained as the density of the data as a function

of λ, after integrating out all the VAR parameters. Conveniently, with conjugate priors

the ML is available in closed form.

Conversely, the joint posterior of α, Σ and λ is not available in closed form. However,

with NIW priors for θ, Giannone et al. (2015) set up the following Metropolis-Hasting

sampler for the joint distribution

Algorithm 2: MCMC Sampler for a VAR with Hierarchical Prior.

For s = 1, . . . , nsim:

1. Draw a candidate vector λ∗ from the random walk distribution λ∗ ∼ N (λs−1, κH−1),

where H is the Hessian of the negative of the log-posterior at the peak for λ, and

κ is a tuning constant. Choose

λ(s) =

λ
∗ with probability = min

{
1, p(y|λ∗)

p(y|λ(s−1))

}
λ(s−1) otherwise.

2. Draw Σ(s) form the full conditional posterior Σ|y, λ(s) in Eq. (21).

3. Draw A(s) from the full conditional posterior A(s)|y,Σ(s), λ(s) in Eq. (22).
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In a similar fashion, Belmonte et al. (2014) apply a hierarchical structure to time-

varying parameters (TVP) models and specify priors for Bayesian Lasso shrinkage para-

meters to determine whether coefficients in a forecasting model for inflation are zero,

constant, or time-varying in a data driven way.

Carriero et al. (2015a) evaluate the forecasting performance of BVARs where tight-

ness hyperparameters are chosen as the maximisers of Eq. (49) or rather set to default

values and find that the former route yields modest but statistically significant gains in

forecasting accuracy particularly at short horizons (see Section 5 for additional discus-

sions).

5 Forecasting with BVARs

Reduced form Bayesian Vector Autoregressions usually outperform VARs estimated

with frequentist techniques (or flat priors). Using the frequentist terminology, reason-

ably specified priors reduce estimated parameters variance and hence improve forecast

accuracy, at the cost of the introduction of relatively small biases. From a more Bayesian

perspective, the prior information that may not be apparent in short samples – as for

example the long-run properties of economic variables captured by the Minnesota priors

– helps in forming sharper posterior distributions for the VAR parameters, conditional

on an observed sample (see e.g. Todd, 1984, for an early treatment of forecasting with

BVARs).

5.1 Bayesian Forecasting

The fundamental object in Bayesian forecasting is the posterior predictive density.25

That is, the distribution of future data points yT+1:T+H = [y′T+1, . . . , y
′
T+H ]′, conditional

on past data y1−p:T . Choosing a particular forecast F – e.g. the mode or median of

the predictive distribution, alongside appropriate probability intervals –, is essentially a

decision problem, given a specified loss function L(·). The Bayesian decision corresponds

25The exposition in this section follows Karlsson (2013a). See also Geweke and Whiteman (2006b).
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to choosing the forecast that minimises the expected loss, conditional on past data

E[L(F , yT+1:T+H |y1−p:T )] =

∫
L(F , yT+1:T+H)p(yT+1:T+H |y1−p:T )dyT+1:T+H

. (50)

For a given loss function, the solution to the minimisation problem is a function of the

data, i.e. F(y1−p:T ). For example, with quadratic loss function L(F , yT+1:T+H |y1−p:T ) =

(F − yT+1:T+H)′(F − yT+1:T+H), the solution is the conditional expectation F(y1−p:T ) =

E[yT+1:T+H |y1−p:T ]. The predictive density is given by

p(yT+1:T+H |y1−p:T ) =

∫
p(yT+1:T+H |y1−p:T , θ)p(θ|y1−p:T )dθ, (51)

where θ is the vector collecting all the VAR parameters, i.e. A and Σ, p(θ|y1−p:T ) is the

posterior distribution of the parameters, and p(yT+1:T+H |y1−p:T , θ) is the likelihood of

future data. Eq. (51) highlights how Bayesian forecasts account for both the uncertainty

related to future events via p(yT+1:T+H |y1−p:T , θ), and that related to parameters values

via p(θ|y1−p:T ).

The posterior predictive density for h > 1 is not given by any standard density

function. However, if it is possible to sample directly from the posterior probability for

the parameters, Eq. (51) provides an easy way to generate draws from this predictive

density.

Algorithm 3: Sampling from the Posterior Predictive Density.

For s = 1, . . . , nsim:

1. Draw θ(s) from the posterior p(θ|y1−p:T ).

2. Generate u
(s)
T+1, . . . , u

(s)
T+H from the distribution of the errors and calculate recurs-

ively ỹ
(s)
T+1, . . . , ỹ

(s)
T+H from the VAR equations with parameters A(s).

The set
{
ỹ

(s)
T+1, . . . , ỹ

(s)
T+H

}nsim
s=1

is a sample of independent draws from the joint predictive

distribution.

Kadiyala and Karlsson (1993) analyse the forecasting performance of different priors

and find that those that induce correlation among the VAR coefficients, e.g. the sums-
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of-coefficient priors (Doan et al., 1984) and the co-persistence prior (Sims, 1993), tend

to do better.

Carriero et al. (2015a) conduct an extensive assessment of Bayesian VARs under

different specifications. Starting from a benchmark VAR in levels and with NIW, sums-

of-coefficients, and co-persistence priors, they evaluate (1) the effects of the optimal

choice of the tightness hyperparameters, (2) of the lag length, (3) of the relative merits

of modelling in levels or growth rates, (4) of direct, iterated and pseudo-iterated h-step-

ahead forecasts, and (5) and the treatment of the error variance Σ and (6) of cross-

variable shrinkage f(`). They find that simpler specifications tend to be very effective

and recommend the use of differenced data, long lag lengths, a Normal-Inverse Wishart

prior, and forecasts based on the posterior means of the parameters.26

5.2 Bayesian Model Averaging and Prediction Pools

Bayesian analysis offers a straightforward way to deal with model uncertainty. Consider

for instance the two competing models M1 and M2 with likelihood p(y|θ1,M1, y1−p:0)

and p(y|θ2,M2, y1−p:0) and prior probabilities p(θ1|M1) and p(θ2|M2) respectively.

Bayesian Model Averaging (BMA) obtains the marginalised (with respect to the models)

predictive distribution as

p(yT+1:T+H |y) = p(yT+1:T+H |y,M1)p(M1) + p(yT+1:T+H |y,M2)p(M2), (52)

where p(Mj) is the prior probability assigned to model Mj, and p(yT+1:T+H |y,Mj) is

the model’s marginal likelihood. Eq. (52) can be extended to allow for M different

models. This can be seen as a generalisation of the predictive distribution in Eq. (51)

where instead of conditioning on a single model, M different models are considered.

BMA was introduced in economic forecasting by the seminal work of Geweke (1999) and

its applications in the context of forecast combinations and pooling have been numerous.

Earlier reviews of BMA and forecast combinations are in Geweke and Whiteman (2006b)

26Carriero et al. (2015a) find that overall the differences between the iterated and direct forecasts are
small, but there are large gains from the direct forecast for some of the variables. This is presumably
because the direct forecast is more robust to misspecification.
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and Timmermann (2006).

Geweke and Amisano (2011, 2012) proposed Linear Optimal Prediction Pools which

dispense from the implicit assumption of one model in M1, . . . ,MM being true. One

important aspect of these pools is that prediction weights based on log scoring rules

will not converge asymptotically to either zero or 1, as is instead the case for posterior

probabilities in BMA.27 Del Negro et al. (2016) design Dynamic Prediction Pools as

a method to combine predictive densities to estimate time-varying model weights in

linear prediction pools.28 Billio et al. (2013) propose a general approach to combine

predictive densities using time-varying weights that nests static linear pools, the Markov-

switching weight specification of Waggoner and Zha (2012), and the dynamic linear pool

in Del Negro et al. (2016).

Amisano and Geweke (2017) suggest improvements to BMA which involve equal prior

weights but condition on full Bayesian predictive densities rather than on the posterior

modes for the estimated parameters. A generalisation of BMA is the Dynamic Model

Averaging/Selection (DMA/DMS) developed in Raftery et al. (2010), which allows for

the forecasting model to change over time, and for the coefficients in each of the models

considered to also be time dependent. Hwang (2017) uses DMA to introduce forecasting

using specification-switching VARs. Koop and Korobilis (2012) use the same method

to forecast inflation, and show it is superior to using a fixed model with time varying

coefficients. Aastveit et al. (2017) introduce combined density nowcasting with time-

varying model weights assigned each period in a real-time forecasting environment.

27The log score of model Mj at time t is

LS(y1−p:T ,Mj) =

t∑
τ=1

ln pτ (yτ |yτ−1,Mj).

LS(y1−p:T ,Mj) is a measure of Mj ’s forecasting accuracy. If Mj is subjective Bayesian (as opposed
to e.g. based on personal judgement) then LS(y1−p:T ,Mj) is the model’s marginal likelihood in the
sample y1−p:T (see e.g. Geweke and Amisano, 2012).

28Other relevant contributions on density forecast combination are Waggoner and Zha (2012);
Geweke and Amisano (2011); Hall and Mitchell (2007).
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6 Conditional Forecasts and Scenario Analysis

Forecasts that condition on a specific path for one of the variables, such as e.g. a

preferred path for the policy interest rate, are of particular interest to central banks.

Early treatment of such forecasts, also referred to as scenario analysis, is in Doan et al.

(1984), who note that a conditional forecast is equivalent to imposing restrictions on

the disturbances uT+1, . . . , ut+H . Waggoner and Zha (2012) suggest a way to compute

conditional forecasts which does not condition on specific parameters values (for example

the posterior means) and produces minimum squared forecast errors conditional on the

restrictions. Moreover, it yields posterior distributions for the parameters which are

consistent with the constrained paths. Let

RyT+1:T+H = r (53)

denote the desired restrictions on the future path of some of the variables in yt. These

can be rewritten as

R [E(yT+1:T+H |y, θ) + C ′uT+1:T+H)] = r , (54)

where

C =


C0 C1 · · · CH−1

0 C0 · · · CH−2

...
. . .

0 · · · 0 C0

 , (55)

and Cj are the coefficients of the MA representation with

C0 = In

Cj =

p∑
i=0

AiCj−i ∀j > 0 . (56)
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Rearranging Eq. (54) as

RC ′uT+1:T+H = r −RE(yT+1:T+H |y1−p:T , θ) , (57)

defining G ≡ RC ′ and g ≡ r − RE(yT+1:T+H |y1−p:T , θ), and noting that uT+1:T+H ∼

N (0, IH ⊗ Σ), one obtains the conditional distribution of uT+1:T+H as

uT+1:T+H |(GuT+1:T+H = g) ∼ N
(
ΣHG

′(GΣHG
′)−1g, ΣH − ΣHG

′(GΣHG
′)−1GΣH

)
.

(58)

which can be used to draw from the predictive distribution. In order to ensure consist-

ency of the posterior distribution with the restriction in Eq. (57), Waggoner and Zha

(2012) suggest treating yT+1:T+H as latent variables and simulating the joint posterior

of the parameters and the future observations using the following MCMC sampler.

Algorithm 4: MCMC Sampler for VAR with restrictions on yT+1:T+H.

Given restrictions as in Eq. (57), select starting values for A(0) and Σ(0) using e.g.

simulation on historical data. For s = 1, . . . , nsim:

1. Draw uT+1:T+H from the distribution in Eq. (58) and recursively calculate

y
(s)
T+h =

h−1∑
j=1

y
(s)′

T+h−jA
(s−1)
j +

p∑
j=h

y′T+h−jA
(s−1)
j + u

(s)′

T+h .

2. Augment y1−p:T with y
(s)
T+1:T+h and draw A(s) and Σ(s) from the full conditional

posteriors

Σ(s)|y1−p:T , y
(s)
T+1:T+h, A

(s−1),

A(s)|y1−p:T , y
(s)
T+1:T+h,Σ

(s),

using an appropriate sampling given the chosen VAR specification and priors.

3. Discard the parameters to obtain a draw
{
y

(s)
T+1, . . . , y

(s)
T+h

}
from the joint predict-

ive density consistent with the restrictions in Eq. (57).
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Jarociński (2010) suggests an efficient way to sample uT+1:T+H that reduces the

computational burden of the algorithm discussed above. An extension to this method

is in Andersson et al. (2010), who restrict the forecasts yT+1:T+H to be in a specified

region S ∈ RnH . This is a case of ‘soft’ restrictions, as opposed to those in Eq. (57).

Robertson et al. (2005) follow a different approach and propose exponential tilting as a

way to enforce moment conditions on the path of future yt. This is the approach also

implemented in Cogley et al. (2005). These methods are typically used in conjunction

with small VARs, and become quickly computationally cumbersome as the system’s

dimension increases.

Bańbura et al. (2015) propose instead a Kalman Filter-based algorithm to produce

conditional forecasts in large systems which admit a state-space representation such as

large Bayesian VARs and Factor Models. Intuitively, this method improves on com-

putational efficiency due to the recursive nature of filtering techniques which allow to

tackle the problem period by period.

Antolin-Diaz et al. (2018) propose a method to conduct ‘structural scenario analysis’

that can be supported by economic interpretation by choosing which structural shock

is responsible for the conditioning path.

7 Structural VARs

Reduced form VARs can capture the autocovariance properties of multiple time-series.

However, their ‘structural interpretation’ as the data generating process of the observed

data, and of their one-step-ahead forecast errors in terms of economically meaningful

shocks, requires additional identifying restrictions.

A VAR in structural form (SVAR) can be written as

B0yt = B1yt−1 + · · ·+Bpyt−p +Bc + et, et ∼ i.i.d.N (0, In) , (59)

where B0 is a matrix of contemporaneous (causal) relationships among the variables, and

et is a vector of structural shocks that are mutually uncorrelated and have an economic
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interpretation. All structural shocks are generally assumed to be of unitary variance.

This does not imply a loss of generality, however, since the diagonal elements of B0 are

unrestricted. In the structural representation, the coefficients have a direct behavioural

interpretation, and it is possible to provide a causal assessment of the effects of economic

shocks on variables – e.g. the effect of a monetary policy shock onto prices and output.

Premultiplying the SVAR in Eq. (59) by B−1
0 yields its reduced-form representation, i.e.

the VAR in Eq. (1). Comparing the two representations one obtains that Ai = B−1
0 Bi,

i = 1, . . . , p, and ut = B−1
0 et. The variance of the reduced form forecast errors, ut is

Σ = B−1
0 B−1′

0 . (60)

Since Σ is symmetric, it has only n(n+ 1)/2 independent parameters. This implies that

the data can provide information to uniquely identify only n(n + 1)/2 out of the n2

parameters in B0. In fact, given a positive definite matrix Σ, it is possible to write B0

as the product of the unique lower triangular Cholesky factor of Σ (Σ = ΣCholΣ
′
Chol)

times an orthogonal matrix Q

B0 = QΣChol . (61)

From this decomposition is clear that while ΣChol is uniquely determined for a given

Σ, the n(n − 1)/2 unrestricted parameters span the space of the O(n) group of n × n

orthogonal matrices. The central question in structural identification is how to recover

the elements of B0 given the variance-covariance matrix of the one-step-ahead forecast

errors, Σ. That is, how to choose Q out of the many possible n-dimensional orthogonal

matrices.29

From a Bayesian perspective, the issue is that since yt depends only on Σ and not on

its specific factorisation, the conditional distribution of the parameter Q does not get

29It is assumed that the information in the history of yt is sufficient to recover the structural shocks
et, i.e., that it is possible to write the structural shocks as a linear combination of the reduced form
innovations ut. In this case, it is said that the shocks are fundamental for yt. Departures from this
case are discussed in Section 8. Relevant references are provided therein.
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updated by the information provided in the data, i.e.

p(Q|Y,A,Σ) = p(Q|A,Σ) . (62)

For some regions of the parameter space, posterior inference will be determined purely

by prior beliefs even if the sample size is infinite, since the data are uninformative. This

is a standard property of Bayesian inference in partially identified models, as discussed

for example in Kadane (1975), Poirier (1998), and Moon and Schorfheide (2012).

Much of ingenuity and creativity in the SVAR literature has been devoted to provide

arguments – i.e. ‘identification schemes’ – about the appropriate choice of p(Q|A,Σ).30

These arguments translate into what can be viewed as Bayesian inference with dogmatic

prior beliefs – i.e. distributions with singularities – about the conditional distribution

of Q, given the reduced form parameters. For example, the commonly applied recursive

identification amounts, from a Bayesian perspective, to assuming with dogmatic cer-

tainty that all of the upper diagonal elements of B0 are zero, while we do not have

any information on the other values of B0. Equivalently, it assumes with certainty that

Q = In. Similarly, other commonly used identifications – e.g. long-run, medium-run,

sign restrictions, etc. – can be expressed in terms of probabilistic a priori statements

about the parameters in B0.

Once a B0 matrix is selected, dynamic causal effects of the identified structural

shocks on the variables in yt are usually summarised by the structural impulse response

functions (IRFs). In a VAR(p), they can be recursively calculated as

IRFh = ΘhB
−1
0 h = 0, . . . , H , (63)

where

Θh =
h∑
τ=1

Θh−τAτ h = 1, . . . , H , (64)

Θ0 = In, and Aτ are the reduced form autoregressive coefficients of Eq. (1) with

30A survey of the identification schemes proposed in the literature goes beyond the scope of this
article. A recent textbook treatment on the subject is in Kilian and Lütkepohl (2017).
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Aτ = 0 for τ > p. The (i, j) element of IRFh denotes the response of variable i

to shock j at horizon h. Uncertainty about dynamic responses to identified structural

shocks is typically reported in the Bayesian literature as point-wise coverage sets around

the posterior mean or median IRFs, at each horizon – i.e. as the appropriate quantiles

of the IRFs posterior distribution. For example, 68% coverage intervals are shown

as three lines plotting the posterior IRF mean, and two lines representing 16th and

84th percentiles. Such credible sets usually need to be interpreted as point-wise, i.e.

as credible sets for the response of a specific variable, to a specific shock, at a given

horizon. However, point-wise bands effectively ignore the existing correlation between

responses at different horizons. To account for the time (horizon) dependence, Sims and

Zha (1999) suggest to use the first principal components of the covariance matrix of the

IRFs.

Sims and Zha (1998) discuss a very general framework for Bayesian inference on the

structural representation in Eq. (59). Rewrite the SVAR as

yB0 = xB + e , (65)

where the T × n matrices y and e and the T × k matrix x are defined as

y =


y′1
...

y′T

 , x =


x′1
...

x′T

 , e =


e′1
...

e′T

 , (66)

and B = [B1, . . . , Bp, Bc]. The likelihood can be written as

p(y|B0, B) ∝ |B0|T exp
{
−1

2
tr [(yB0 − xB)′(yB0 − xB)]

}
, (67)

where |B0| is the determinant of B0 (and the Jacobian of the transformation of e in

y). Conditional on B0, the likelihood function is a normal distribution in B. Define

β ≡ vec(B) and β0 ≡ vec(B0). A prior for the SVAR coefficients can be conveniently
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factorised as

p(β0, β) = p(β|β0)p(β0), (68)

where p(β0) is the marginal distribution for β0, and can include singularities generated

by e.g. zero restrictions. The (conditional) prior for β can be chosen to be a normal

p.d.f.31

β|β0 ∼ N
(
β

0
, λ−1In ⊗ Γβ0

)
. (69)

The posterior distribution of β is hence of the standard form

β|β0,y ∼ N
(
β0, In ⊗ Γβ0

)
, (70)

where the posterior moments are updated as in the standard VAR with Normal-Inverse

Wishart priors (see e.g. Kadiyala and Karlsson, 1997). The posterior for β0 will depend

on the assumed prior.32

Baumeister and Hamilton (2015) apply a streamlined version of this framework to

provide analytical characterisation of the informative prior distributions for impulse-

response functions that are implicit in a commonly used algorithm for sign restrictions.

Sign restrictions are a popular identification scheme, pioneered in a Bayesian framework

by Canova and De Nicolo (2002) and Uhlig (2005). The scheme selects sets of models

whose B0 comply with restrictions on the sign of the responses of variables of interests

over a given horizon. Bayesian SVARs with sign restrictions are typically estimated using

algorithms such as in Rubio-Ramı́rez et al. (2010), where a uniform (or Haar) prior is

assumed for the orthogonal matrix. Operationally, a n × n matrix X of independent

N (0, 1) values is generated, and decomposed using a QR decomposition where Q is the

orthogonal factor and R is upper triangular. The orthogonal matrix is used as candidate

rotation Q and the signs of the responses of variables at the horizons of interest are

assessed against the desired sign restrictions. Baumeister and Hamilton (2015) show that

this procedure implies informative distributions on the structural objects of interest. In

31As it is usually done in the literature, Sims and Zha (1998) suggest to preserve the Kronecker
structure of the likelihood to avoid the inversion of nk × nk matrices and gain computational speed.

32Canova and Pérez Forero (2015) provide a general procedure to estimate structural VARs also in
the case of overidentified systems where identification restrictions are of linear or of nonlinear form.
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fact, it implies that the impact of a one standard-deviation structural shock is regarded

(before seeing the data) as coming from a distribution with more mass around zero when

the number of variables n in the VAR is greater than 3 (and with more mass at large

values when n = 2). It also implies Cauchy priors for structural parameters such as

elasticities. The influence of these priors does not vanish even asymptotically, since the

data do not contain information about Q. In fact, as the sample size goes to infinity, the

height of the posterior distribution for the impact parameters is proportional to that of

the prior distribution for all the points in the parameter space for which the structural

coefficients satisfy the set restrictions that orthogonalise the true variance-covariance

matrix.

Giacomini and Kitagawa (2015) suggest the use of ‘ambiguous’ prior for the struc-

tural rotation matrix in order to account for the uncertainty about the structural para-

meters in all under-identified SVARs. The methodology consists in formally incorpor-

ating in the inference all classes of priors for the structural rotation matrix which are

consistent with the a priori ‘dogmatic’ restrictions. In a similar vein, Baumeister and

Hamilton (2017) discuss how to generalise priors on B0 to a less restrictive formulation

that incorporates uncertainty about the identifying assumptions themselves, and use

this approach to study the importance of shocks to oil supply and demand.

8 Large Bayesian VARs

The size of the VARs typically used in empirical applications ranges from three to a

dozen variables. VARs with larger sets of variables are impossible to estimate with

standard techniques, due the ‘curse of dimensionality’ induced by the densely paramet-

rised structure of the model.33 However, in many applications there may be concerns

about the omission of many potentially relevant economic indicators, that may affect

33The number of parameters to be estimated in an unrestricted VAR increases in the square of n, the
number of variables in yt. Even when mechanically feasible, that is, when the number of available data
points allows to produce point estimates for the parameters of interest, the tiny number of available
degrees of freedom implies that parameters are estimated with substantial degrees of uncertainty, and
typically yield very imprecise out-of-sample forecasts.
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both structural analysis and forecasting.34 Additionally, big datasets are increasingly

important in economics to study phenomena in a connected and globalised world, where

economic developments in one region can propagate and affect others.35

VARs involving tens or even hundreds of variables have become increasingly popular

following the work of Bańbura et al. (2010), that showed that standard macroeconomic

priors – Minnesota and sums-of-coefficients – with a careful setting of the tightness

parameters allowed to effectively incorporate very large sets of endogenous variables.

Indeed, a stream of papers have found large VARs to forecast well (see, e.g. Bańbura

et al. 2010, Carriero et al. 2015a, Carriero et al. 2009, Giannone et al. 2014 and Koop

2013).

Early examples of higher-dimensional VARs are Panel VARs, where small country-

specific VARs are interacted to allow for international spillovers (see e.g. Canova and

Ciccarelli, 2004, 2009). These models can be seen as large scale models that impose

more structure on the system of equations. Koop and Korobilis (2015) study methods

for high-dimensional panel VARs. In the study of international spillovers, an alternative

to Panel VARs are Global VARs (Pesaran et al., 2004). A Bayesian treatment to G-

VARs is in e.g. Cuaresma et al. (2016).

A recent development in this literature has been the inclusion of stochastic volat-

ility in Large BVAR models. Carriero et al. (2016a) assume a factor structure in the

stochastic volatility of macroeconomic and financial variables in Large BVARs. In Car-

riero et al. (2016b), stochastic volatility and asymmetric priors for large n are instead

handled using a triangularisation method which allows to simulate the conditional mean

coefficients of the VAR by drawing them equation by equation. Chan et al. (2017) pro-

pound composite likelihood methods for large BVARs with multivariate stochastic volat-

34A standard example of this has been the debate about the so called ‘price puzzle’ – positive
reaction of prices in response to a monetary tightening – that is often found in small scale VARs (see
for example Christiano et al., 1999). The literature has often connected such a puzzling result as an
artefact resulting from the omission of forward looking variables, like the commodity price index. In
fact, one of the first instances of VARs incorporating more than a few variables was the 19-variable
BVAR in Leeper et al. (1996) to study the effects of monetary policy shocks.

35Large datasets of macroeconomic and financial variables are increasingly common. For example,
in the US, the Federal Reserve Bank of St. Louis maintains the FRED-MD monthly database for well
over 100 macroeconomic variables from 1960 to the present (see McCracken and Ng, 2015), and several
other countries and economic areas have similarly sized datasets.
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ility which involve estimating large numbers of parsimonious sub-models and then taking

a weighted average across them. Koop et al. (2016) discuss large Bayesian VARMA.

Koop (2017) reviews the applications of big data in macroeconomics.

8.1 Bayesian VARs and Dynamic Factor Models

Research started with Bańbura et al. (2010) has shown that large BVARs are competitive

models in leading with large-n problems in empirical macroeconomics, along with factor

models (see e.g. Forni et al., 2000; Stock and Watson, 2002) and Factor-Augmented

VARs (FAVARs, see e.g. Bernanke et al., 2005). Indeed, Bayesian VARs are strictly

connected to factor models as shown by De Mol et al. (2008) and Bańbura et al. (2015).

The link can be better understood in terms of data that have been transformed to

achieve stationarity, ∆yt, and that have been standardised to have zero mean and unit

variance. A VAR in first differences can be written as

∆yt = Φ1∆yt−1 + · · ·+ Φp∆yt−p + vt. (71)

Imposing the requirement that the level of each variable yt must follow an independent

random walk process is equivalent to requiring its first difference ∆yt to follow an inde-

pendent white noise process. Hence, the prior on the autoregressive coefficients in Eq.

(71) can be characterised by the following first and second moments:

E [(Φ`)ij|Ψ] = 0, ∀` Var [(Φ`)ij|Ψ] =


λ21
f(`)

for i = j,∀`
λ21
f(`)

Σij
ω2
j

for i 6= j,∀`.
(72)

The covariance between coefficients at different lags is set to zero. Since the variables

have been rescaled to have the same variance, we can set Σ = σIn, where Σ = E[vtv
′
t].

Denote the eigenvalues of the variance-covariance matrix of the standardised data

by ζj, and the associated eigenvectors by νj, for j = 1, . . . , n, i.e.

[
1

T

T∑
t=1

∆yt∆y
′
t

]
νj = νjζj, (73)

41



where ν ′iνj = 1 if i = j and zero otherwise. We assume an ordering such that ζ1 ≥ ζ2 ≥

· · · ≥ ζn. The sample principal components of ∆yt are defined as

zt =

[
ν1√
ζ1

. . .
νn√
ζn

]′
yt ≡ W∆yt . (74)

The principal components transform correlated data, ∆yt, into linear combinations

which are cross-sectionally uncorrelated and have unit variance, i.e. T−1
∑T

t=1 ztz
′
t = In.

The principal components can be ordered according to their ability to explain the vari-

ability in the data, as the total variance explained by each principal component is equal

to ζj.

Rewrite the model in Eq. (71) in terms of the ordered principal components, as

∆yt = Φ1W
−1zt−1 + · · ·+ ΦpW

−1zt−p + vt . (75)

The priors that impose a uniform shrinkage on the parameters in Eq. (72) map into a

non-uniform shrinkage on the parameters in Eq. (75):

E
[
(Φ`W

−1)ij|Ψ
]

= 0, ∀` Var
[
(Φ`W

−1)ij|Ψ
]

=


λ21ζj
f(`)

for i = j,∀`
λ21ζj
f(`)

Ψij
ω2
j

for i 6= j,∀`.
(76)

Importantly, the prior variance for the coefficients on the j-th principal component is

proportional to its share of explained variance of the data ζj.

If the data are characterised by a factor structure, then, as n and T increase, ζj will

go to infinity at a rate n for j = 1, . . . , r where r is the number of common factors.

Conversely, ζr+1, . . . , ζn will grow at a slower rate, which cannot be faster than n/
√
T .

If λ1 is set such that it converges to zero a rate that is faster than that for the smaller

eigenvalues and slower than that for the largest eigenvalues, e.g. λ1 ∝
√
T
n

1
T %

, with

0 < % < 1/2, then λ1ζj will go to infinity for j = 1, . . . , r and the prior on the coefficients

associated with the first r principal components will become flat (see Bańbura et al.,

2015). Conversely, the coefficients related to the principal components associated with

the bounded eigenvalues will be shrunk to zero, since λ1ζj will go to zero for j > r.
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De Mol et al. (2008) show that, if the data are generated by a factor model and

λ1 is set according to the rate described above, the point forecasts obtained by using

shrinkage estimators converge to the unfeasible optimal forecasts that would be obtained

if the common factors were observed.

8.2 Large SVARs, non-fundamentalness

One of the open problems in SVARs is the potential ‘non-fundamentalness’ of structural

shocks for commonly employed VARs (a review on this issue is in Alessi et al. 2011).

Non-fundamentalness implies that the true structural shocks (i.e. et in Eq. 59) cannot

be retrieved from current and past forecast errors of the VARs of choice (see Hansen

and Sargent, 1980; Lippi and Reichlin, 1994). This situation arises when for example

the econometrician does not have all the information available to economic agents, such

as news about future policy actions. This is notoriously the case for fiscal shocks, as

explained in Leeper et al. (2013). In this case, economic agents’ expectations may not

be based only on the current and past yt, implying that the residuals of the reduced-

form model (i.e. ut in Eq. 1) are not the agents’ expectation/forecast errors. As

a consequence, the shocks of interest may not be retrieved from the forecast errors,

and may be non-fundamental. A possible solution is to allow for noninvertible moving

average (MA) components. A different strategy is to view non-fundamentalness as an

omitted variables problem. In this respect BVARs (and factor models) can offer a

solution to the incorporation of larger information sets. For example, Ellahie and Ricco

(2017) discuss the use of large BVARs to study the propagation of government purchases

shocks, while controlling for potential non-fundamentalness of shocks in small VARs.36

8.3 Forecasting in Data-Rich Environments

A research frontier is the application of Bayesian VARs to forecasting in data-rich envir-

onment, where the predictive content of large datasets (typically counting 100 or more

36Lütkepohl (2014) has observed that while large information techniques can be of help in dealing
with the problem, they are bound to distort the parameter estimates and also the estimated impulse
responses, hence results have to been taken with some caution.
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variables) is exploited to forecast variables of interest. A recent survey is in Bok et al.

(2017).

Bańbura et al. (2010) study the forecasting performance of large Bayesian VARs.

They find that while it increases with model size – provided that the shrinkage is appro-

priately chosen as a function of n –, most of the gains are in fact achieved by a 20-variable

VAR. Evaluation of the forecasting performance of medium and large Bayesian VARs is

also provided in Koop (2013). Carriero et al. (2011) evaluate the forecasting accuracy of

reduced-rank Bayesian VARs in large datasets. The reduced-rank model adopted has a

factor model underlying structure, with factors that evolve following a VAR. Koop and

Korobilis (2013) extend the framework to allow for time-varying parameters. Giannone

et al. (2017) argue in favour of dense representations of predictive models for economic

forecasting and use a ‘spike-and-slab’ prior that allows for both variable selection and

shrinkage.

BVARs are also a valuable tool for real-time forecasting and nowcasting with mixed-

frequency datasets. In fact, they can be cast in state-space form and filtering techniques

can be easily used to handle missing observations, data in real time, and data sampled

at different frequencies. Recent examples of these applications include Schorfheide and

Song (2015); Carriero et al. (2015b); Brave et al. (2016); Clark (2011); Giannone et al.

(2014); McCracken et al. (2015).

Koop et al. (2016) propose the use of Bayesian compressed VARs for high dimen-

sional forecasting problems, and find that these tend to outperform both factor models

and large VAR with prior shrinkage. More recently, Kastner and Huber (2017) develop

BVARs that can handle vast dimensional information set and also allow for changes in

the volatility of the error variance. This is done by assuming that the reduced-form resid-

uals have a factor stochastic volatility structure (which allows for conditional equation-

by-equation estimation) and by applying a Dirichlet-Laplace prior (Bhattacharya et al.,

2015b) to the VAR coefficients that heavily shrinks the coefficients towards zero while

still allowing for some non-zero parameters. Kastner and Huber (2017) provide MCMC-

based algorithms to sample from the posterior distributions and show that their proposed

model typically outperforms simpler nested alternatives in forecasting output, inflation
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and the interest rate.

9 Time-Varying Parameter, State-Dependent,

Stochastic Volatility VARs

Models that allow parameters to change over time are increasingly popular in empirical

research, in recognition of the fact that they can capture structural changes in the

economy. In fact, it seems to be a common belief that the properties of many (if not

most) macroeconomic time series have changed over time, and can change across regimes

or phases of the business cycle. Model parameters either change frequently and gradually

over time according to a multivariate autoregressive process – as in e.g. in Time-Varying

Parameters VARs (TVP-VARs) –, or they change abruptly and infrequently as in e.g.

Markov-switching or structural-break models.

9.1 Time-varying parameters VAR (TVP-VAR)

Time-varying parameters VARs differ from fixed-coefficient VARs in that they allow the

parameters of the model to vary over time, according to a specified law of motion.37

TVP-VARs often include also stochastic volatility (SV), which allows for time variation

in the variance of the stochastic disturbances.38 Doan et al. (1984) were first to show how

estimation of a TVP-VAR with Litterman priors could be conducted by casting the VAR

in state space form and using Kalman filtering techniques. This same specification is in

Sims (1993). Bayesian time varying parameter VARs have become popular in empirical

macroeconomics following the work of Cogley and Sargent (2002, 2005) and Primiceri

(2005) who provided the foundations for Bayesian inference in these models, and used

then innovations in MCMC algorithms to improve on their computational feasibility.

37Review articles are in Del Negro and Schorfheide (2011); Koop and Korobilis (2010); Lubik and
Matthes (2015).

38Stochastic volatility in Bayesian VARs was initially introduced in Uhlig (1997).
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The basic TVP-VAR is of the form

yt = A1,tyt−1 + . . .+ Ap,tyt−p + ct + ut , (77)

where the constant coefficients of Eq. (1) are replaced by the time-varying Aj,t. Eq.

(77) can be rewritten in compact form as

yt = xtAt + ut , (78)

where xt is defined as in Eq. (5), and At = [A1,t, . . . , Ap,t, ct]
′ are. It is common to

assume that the coefficients follow a random-walk process

αt = αt−1 + ςt ςt ∼ i.i.d. N (0,Υ) , (79)

where αt ≡ vec(At). The covariance matrix Υ is usually restricted to be diagonal, and

the innovations ςt to be uncorrelated with ut, with ut distributed as in Eq. (2). The law of

motion for αt in Eq. (79) – i.e. the state equation –, implies that αt+1|αt,Υ ∼ N (αt,Υ),

which can be used as a prior distribution for αt+1. Hence, the prior for all the states

(i.e. αt ∀t) is a product of normal distributions. For the initial vector of the VAR

coefficients Cogley and Sargent (2002, 2005) use a prior of the form α1 ∼ N (α1|0,Υ1|0),

where α1|0 and Υ1|0 are set by estimating a fixed-coefficient VAR with a flat prior on a

pre-sample.39 If the Gaussian prior for the states is complemented with IW priors for

both Σ and Υ, then sampling from the joint posterior is possible with a Gibbs sampling

algorithm

Algorithm 5: Gibbs Sampling from Posterior of TVP-VAR Parameters.

Select starting values for Σ(0) and Υ(0). For s = 1, . . . , nsim:

1. Draw α
(s)
T from the full conditional posterior

α
(s)
T |y1:T ,Σ

(s−1),Υ(s−1) ∼ N (αT |T ,ΥT |T )

39See also the discussion in Karlsson (2013a) for additional details on the specification of the prior
for αt.
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obtained from the Kalman filter. For t = T − 1, . . . , 1 draw α
(s)
t from the full

conditional posterior

α
(s)
t |y1:T ,Σ

(s−1),Υ(s−1) ∼ N (αt|T ,Υt|T )

obtained from a simulation smoother.

2. Draw Υ(s) from

Υ(s)|α(s)
1:T ∼ IW

(
SΥ +

T∑
t=1

[
α

(s)
t+1 − α

(s)
t

] [
α

(s)
t+1 − α

(s)
t

]′
, dΥ + T

)
.

3. Draw Σ(s) from

Σ(s)|y, α(s)
1:T ∼ IW

(
S +

T∑
t=1

[
y − (In ⊗ x)α

(s)
t

] [
y − (In ⊗ x)α

(s)
t

]′
, d+ T

)
.

When stochastic volatility is added to the framework, the VAR innovations are as-

sumed to be still normally distributed, but with variance that evolves over time (see

Cogley and Sargent, 2002, 2005; Primiceri, 2005)

ut ∼ N (0,Σt) , Σt = K−1Ξt(K
−1)′ , (80)

where K is a lower-triangular matrix with ones on the main diagonal, and Ξt a diagonal

matrix with elements evolving following a geometric random-walk process

ln(Ξt)j = ln(Ξt−1)j + ηj,t ηj,t ∼ i.i.d. N (0, σ2
η,j) . (81)

The prior distributions for Υ and σ2
η,j j = 1, . . . , n can be used to express beliefs about

the magnitude of the period-to-period drift in the VAR coefficients, and the changes in

the volatility of the VAR innovations respectively. In practice, these priors are chosen

to ensure that innovations to the parameters are small enough that the short- and

medium-run dynamics of yt are not swamped by the random-walk behaviour of At and
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Ξt. Primiceri (2005) extends the above TVP-VAR by also allowing the nonzero off-

diagonal elements of the contemporaneous covariance matrix K to evolve as random-

walk processes (i.e. K is replaced by Kt to allow for an arbitrary time-varying correlation

structure). A Gibbs sampler to draw from the posterior distribution of the parameters

is in Primiceri (2005).

9.2 Markov Switching, Threshold, and

Smooth Transition VARs

Contrary to the drifting coefficients models discussed in the previous section, Markov

switching (MS) VARs are designed to capture abrupt changes in the dynamics of yt.
40

These can be viewed as models that allow for at least one structural break to occur

within the sample, with the timing of the break being unknown. They are of the form

yt = A(st)xt + ut, ut ∼ N (0,Σ(st)), (82)

where xt is defined as in Eq. (5). The matrix of autoregressive coefficients A(st) and

the variance of the error term Σ(st) are a function of a discrete m-state Markov process

st with fixed transition probabilities

πij ≡ p(st = Si|st = Sj) for i, j ∈ [1, . . . ,m]. (83)

If πii = 1 for some i ∈ [1, . . . ,m], then Si is an absorbing state from which the system

is not allowed to move away. Suppose m = 2, and that both A(st) and Σ(st) change

simultaneously when switching from S1 to S2 and vice versa. If a NIW prior is specified

for A(st) and Σ(st), and π11 and π22 have independent Beta prior distributions, a Gibbs

sampler can be used to sample from the posterior (see e.g. Del Negro and Schorfheide,

2011).

A MS-VAR with non-recurrent states is called a ‘change-point’ model (see Chib,

40The book by Kim and Nelson (1999) is the standard reference for frequentist and Bayesian estim-
ation of Markov switching models.

48



1998; Bauwens and Rombouts, 2012). Generalising the specification to allow for more

states, with the appropriate transition probabilities, allows to adapt the change-point

model to the case of several structural breaks (see also Koop and Potter, 2007, 2009;

Liu et al., 2017, for models where the number of change-points is unknown). Important

extensions regard the transmission of structural shocks in the presence of structural

breaks and in a time-varying coefficient environment discussed in e.g. Sims and Zha

(2006) and Koop et al. (2011) who also allow for cointegration.

In threshold VARs (TVARs), the coefficients of the model change across regimes

when an observable variable exceeds a given threshold value. Bayesian inference in

TVAR models is discussed in detail in Geweke and Terui (1993) and Chen and Lee

(1995). A TVAR with two regimes can be written as

yt = Axt + Θ(τt−d − τ)A∗xt + ut, (84)

where A and A∗ are n×k matrices that collect the autoregressive coefficients of the two

regimes, Θ(·) is a Heaviside step function, i.e. a discontinuous function whose value is

zero for a negative argument, and one for a positive argument, τt−d is threshold variable

at lag d, and τ is a potentially unobserved threshold value. The system in Eq. (84)

can be easily generalised to allow for multiple regimes. TVARs have been applied to

several problems in the economic literature (see, for example Koop and Potter, 1999;

Ricco et al., 2016; Alessandri and Mumtaz, 2017).

If the coefficients gradually migrate to the new state(s), the model is called a smooth-

transition VAR (STVAR). A STVAR model with two regimes can be written as

yt = (1−G(wt;ϑ,w))Axt +G(wt;ϑ,w)A∗xt + ut, (85)

where A∗, A, and xt are defined as in Eq. (84). The function G(wt;ϑ,w) governs

the transition across states, and is a function of the observable variable wt, and of the
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parameters ϑ and w. In an exponential smooth-transition (EST) VAR, typically

G(wt;ϑ,w) =
1

1 + exp{−ϑ(wt − w)/σw}
(86)

where ϑ > 0 determines the speed of transition across regimes, w can be thought of as a

threshold value, and σw is the sample standard deviation of wt. The higher ϑ the more

abrupt the transition, the more the model collapses into a fixed threshold VAR. Among

others, Gefang and Strachan (2009) and Gefang (2012) apply Bayesian techniques to

estimate Smooth-transition VAR models.
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