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Abstract Recently developed toy models for the mean-field games of corruption and
botnet defence in cyber-security with three or four states of agents are extended to a
more general mean-field-game model with 2d states, d ∈ N. In order to tackle new
technical difficulties arising from a larger state-space we introduce new asymptotic
regimes, namely small discount and small interaction asymptotics. Moreover, the link
between stationary and time-dependent solutions is established rigorously leading to
a performance of the turnpike theory in a mean-field-game setting.
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1 Introduction

Toymodels for themean-field games of corruption andbotnet defense in cyber-security
were developed in Kolokoltsov and Malafeyev (2015) and Kolokoltsov and Bensous-
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san (2015). These were games with three and four states of the agents respectively.
Here we develop a more general mean-field-game model with 2d states, d ∈ N,
that extends the models of Kolokoltsov and Malafeyev (2015) and Kolokoltsov and
Bensoussan (2015). In order to tackle new technical difficulties arising from a larger
state-space we introduce new asymptotic regimes, small discount and small interac-
tion asymptotics. Hence the properties that we obtain for the new model do not cover
more precise results of Kolokoltsov and Malafeyev (2015) and Kolokoltsov and Ben-
soussan (2015) (with the full classification of the bifurcation points), but capture their
main qualitative and quantitative features and provide regular solutions away from the
points of bifurcations. Apart from new modeling, this paper contributes to one of the
key questions in the modern study of mean-field games, namely, what is the precise
link between stationary and time -dependent solutions. This problem is sorted out here
for a concrete model, but the method can be definitely used in more general situations.

On the one hand, our model is a performance of the general pressure-and-
resistance-game framework of Kolokoltsov (2014) and the nonlinear Markov battles
of Kolokoltsov (2012), and on the other hand, it represents a simple example of mean-
field- and evolutionary-game modeling of networks. Initiating the development of the
latter, we stress already here that two-dimensional arrays of states arise naturally in
many situations, one of the dimensions being controlled mostly by the decision of
agents (say, the level of tax evasion in the context of inspection games) and the other
one by a principal (major player) or evolutionary interactions (say, the level of agents
in bureaucratic staircase, the type of a computer virus used by botnet herder, etc).

We shall dwell upon two basic interpretations of our model: corrupted bureaucrats
playing against the principal (say, governmental representative, also referred in litera-
ture as benevolent dictator) or computer owners playing against a botnet herder (which
then takes the role of the principal), which tries to infect the computers with viruses.
Other interpretations can be done, for instance, in the framework of the inspection
games (inspector and tax payers) or of the disease spreading in epidemiology (among
animals or humans), or the defense against a biological weapon. Herewe shall keep the
principal in the background concentrating on the behavior of small players (corrupted
bureaucrats or computer owners), which we shall refer to as agents or players.

The paper is organized as follows. In the next section we introduce our model
specifying in this context the basic notions of the mean-field-game (MFG) consis-
tency problem in its dynamic and stationary versions. We also introduce our basic
asymptotic regimes of fast execution of personal decision, small discounting and small
interactions.

In Sect. 3we calculate explicitly all non-degenerate solutions of the stationaryMFG
problem in our chosen asymptotic regimes showing also that all these solutions are
stable points of the corresponding dynamics. The main technical tool here presents
the method of stability of dynamical systems around an equilibrium.

Section 4 contains ourmain result that shows how from a stationary solution one can
construct a class of full time-dependent solutions of the forward–backward system of
MFG equations satisfying the so-called turnpike property around the stationary one,
that is, the solutions with a large horizon spend most of the time near a stationary
solution, apart from small times near the initial and end points. According to Basna
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et al. (2014), solutions to MFG equations represent symmetric ε-Nash equilibria for
the corresponding N -player game with a finite state space.

We complete this introductory section with short bibliographical notes on closely
related papers.

Analysis of the spread of corruption in bureaucracy is a well recognized area of
the application of game theory, which attracted attention of many researchers. General
surveys can be found in Aidt (2009), Jain (2001), Levin and Tsirik (1998).More recent
literature is reviewed in Kolokoltsov andMalafeyev (2015) and Katsikas et al. (2016),
see also Malafeyev et al. (2014), Alferov et al. (2015) for electric and engineering
interpretations of corruption games.

The use of game theory inmodeling attacker-defender has been extensively adopted
in the computer security domain recently, see Bensoussan et al. (2010), Li et al. (2009)
and Lye and Wing (2005) and bibliography there for more details.

Mean-field games present a quickly developing area of the game theory. Their
study was initiated by Lasry and Lions (2006) and Huang et al. (2006) and has been
quickly developing since then, see Bardi et al. (2013), Bensoussan et al. (2013), Gomes
and Saude (2014), Caines (2014) for recent surveys, and Cardaliaguet et al. (2013),
Carmona and Delarue (2013), Gomes and Saude (2014) specifically for long-time
behavior, probabilistic interpretation and finite-state games.

2 The model

We assume that any agent in the group of N agents has 2d states: i I and i S, where
i ∈ {1, . . . , d} is referred to as a strategy. In the first interpretation the letters S or
I designate the senior or initial position of a bureaucrat in the hierarchical staircase
and i designates the level or type of corruptive behavior (say, the level of bribes one
asks from customers or, more generally, the level of illegal profit he/she aims at). In
the literature on corruption the state I is often denoted by R and is referred to as
the reserved state. It is interpreted as a job of the lowest salary given to the not trust-
worthy bureaucrats. In the second interpretation the letters S or I designate susceptible
or infected states of computers and i denotes the level or the type of defense system
available on the market.

We assume that the choice of a strategy depends exclusively on the decision of an
agent. The control parameter u of each player may have d values denoting the strategy
the agent prefers at a moment. As long as this coincides with the current strategy, the
updating of a strategy does not occur. Once the decision to change i to j is made,
the actual updating is supposed to occur with a certain rate λ. Following Kolokoltsov
and Bensoussan (2015), we shall be mostly interested in the asymptotic regime of fast
execution of individual decisions, that is, λ → ∞.

The change between S and I may have two causes: the action of the principal
(pressure game component) and of the peers (evolutionary component). In the first
interpretation the principal can promote the bureaucrats from the initial to the senior
position or degrade them to the reserved initial position,whenever their illegal behavior
is discovered. The peers can also take part in this process contributing to the degrading
of corrupted bureaucrats, for instance, when they trespass certain social norms. In the
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second interpretation the principal, the botnet herder, infects computers with the virus
by direct attacks turning S to I , and the virus then spreads through the network of
computers by a pairwise interaction. The recovery change from I to S is due to some
system of repairs which can be different in different protection levels i .

Let qi+ denote the recovery rates of upgrading from i I to i S and qi− the rates of
degrading (punishment or infection) from state i S to i I , which are independent of the
state of other agents (pressure component), and let βi j/N denote the rates at which
any agent in state i I can stimulate the degrading (punishment or infection) of another
agent from j S to j I (evolutionary component). For simplicity we ignore here the
possibility of upgrading changes from j S to j I due to the interaction with peers.

In the detailed description of our model its states are N -tuples {ω1, . . . , ωN } with
each ω j being one of i S or j I describing the positions of all N players of the game.
If each player l ∈ {1, . . . , N } has a strategy ut , the systems evolves according to
the continuous-time Markov chain with the transitions occurring at the rates specified
above. When the fees wi

I and wi
S for staying in the corresponding states per unit time

are specified together with the terminal payments gT (i I ), gT (i S) at each state at the
terminal time T , we are in the setting of a stochastic dynamic game of N players. In
the time-dependent mean-field game approach one is interested in the approximate
(for large N ) symmetric Nash equilibria of such game. Alternatively, in the stationary
mean-field game approach one is looking for the approximate stationary symmetric
Nash equilibria (with time independent controls) in an infinite-horizon version of this
game, where the cost can be taken either as an average per unit time, or, if discounting
is present, the total cost of the whole infinite-time game.

In a symmetric Nash equilibrium, all players are supposed to play the same strategy.
In this case players become indistinguishable, leading to a reduced description of the
game, where the state-space is the set Z2d+ of vectors

n = (n{i I }, n{i S}) = (n1I , . . . , nd I , n1S, . . . , ndS)

with coordinates presenting the number of agents in the corresponding states. Alter-
natively, in the normalized version, the state-space becomes the subset of the standard
simplex �N

2d in R2d consisting of vectors

x = (xI , xS) = (x1I , . . . , xd I , x1S, . . . , xdS) = n/N ,

with N = n1S + n1I + · · · + ndS + nd I the total number of agents. The functions
f on Z2d+ and F on �N

2d are supposed to be linked by the scaling transformation:
f (n) = F(n/N ).
Assuming that all players have the same strategy ucomt = {ucomt (i S), ucomt (i I )}, the

Markov chain introduced above reduces to the time-nonhomogeneous Markov chain
on Z2d+ or �N

2d , which can be described by its (time-dependent) generator. Omitting
the unchanged values in the arguments of F on the r.h.s., this generator writes down
as
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Lt
N f (n) = λn j I

∑

j,i

1(ucomt ( j I ) = i)[ f (n j I − 1, ni I + 1) − f (n)]

+ λn j I

∑

j,i

1(ucomt ( j S) = i)[ f (n j S − 1, ni S + 1) − f (n)]

+
∑

j

n j I q
+
j [ f (n j I − 1, n j S + 1) − f (n)]

+
∑

j

n j Sq
−
j [ f (n j S − 1, n j I + 1) − f (n)]

+ 1

N

∑

j,i

ni I n j Sβi j [ f (n j I − 1, n j S + 1) − f (n)],

for the Markov chain on Z2d+ , and as

Lt
N F(x) = λNx j I

∑

j,i

1(ucomt ( j I ) = i)[F(x − e j I /N + ei I /N ) − F(x)]

+ λNx j I
∑

j,i

1(ucomt ( j S) = i)[F(x − e j S/N + ei S/N ) − F(x)]

+ N
∑

j

x j I q
+
j [F(x − e j I /N + e j S/N ) − F(x)]

+ N
∑

j

x j Sq
−
j [F(x − e j S/N + e j I /N ) − F(x)]

+ N
∑

j,i

xi I x j Sβi j [F(x − e j I /N + e j S/N ) − F(x)],

for the Markov chain on �N
2d . Here and below 1(M) denotes the indicator function of

a set M and {e j I , ei S} is the standard orthonormal basis in R2d .

Remark 1 These generators can be considered as an alternative, analytic, definition
of our Markov evolution (depending on controls ut ) described above probabilistically
in terms of the transition rates.

We have written the generator of the Markov chain arising from common (sym-
metric) controls of the players. It is complicated enough. Of course, one could write
down also the generator of the Markov chain arising from different individual strate-
gies, which would look much more awkward. Any attempt to solve the game (say,
find Nash equilibria) working with concrete large N leads necessarily to tremendous
problems (even when numeric solutions are sought), which are commonly referred
to as the ‘curse of dimensionality’. The basic idea of the mean-field game approach
(or alternative approaches based on the law of large numbers) is to turn the curse of
dimensionality into the ‘blessing of dimensionality’ by passing to the limit N → ∞.
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With this idea in mind, assuming F is differentiable and expanding it in the Taylor
series one finds that, as N → ∞, the last generators tend to

Lt F(x) = λx j I
∑

j,i

1(ucomt ( j I ) = i)

[
∂F

∂xi I
− ∂F

∂x j I

]

+ λx j I
∑

j,i

1(ucomt ( j S) = i)

[
∂F

∂xi S
− ∂F

∂x j S

]

+
∑

j

x j I q
+
j

[
∂F

∂x j S
− ∂F

∂x j I

]
+

∑

j

x j Sq
−
j

[
∂F

∂x j I
− ∂F

∂x j S

]

+
∑

j,i

xi I x j Sβi j

[
∂F

∂x j I
− ∂F

∂x j S

]
.

This operator Lt is the first order partial differential operator, which therefore gen-
erates a deterministic Markov process, whose dynamics is given by the system of
characteristics arising from Lt :

ẋi I = λ
∑

j �=i

x j I1(ucom( j I ) = i) − λ
∑

j �=i

xi I1(ucom(i I ) = j)

+ xi Sq
i− − xi I q

i+ +
∑

j

xi Sx j Iβ j i ,

ẋi S = λ
∑

j �=i

x j S1(ucom( j S) = i) − λ
∑

j �=i

xi S1(ucom(i S) = j)

− xi Sq
i− + xi I q

i+ −
∑

j

xi Sx j Iβ j i , (1)

for all i = 1, . . . , d (of course all xi S, xi I are functions of time t).

Remark 2 We have sketched the derivation of system (1) as the dynamic law of large
numbers for the Markov chain specified by the generator Lt

N of our initial model. The
details of the rigorous derivation (showing that really the Markov chains converge
to the deterministic limit given by Eq. (1), not just the formal expressions for the
generators do) can be found e.g. in Kolokoltsov (2012) or (2014). Since system (1)
clearly describes the intuitive meaning of the rates of changes involved in the process,
in applied literature one usually writes down systems of this kind directly, without
explicit reference to the corresponding Markov chains.

As was already mentioned above, the optimal behavior of agents depends on the
payoffs in different states, terminal payoff and possibly costs for transitions. For sim-
plicity we shall ignore here the latter. Talking about corrupted agents it is natural to talk
about maximizing profit, while talking about infected computers it is natural to talk
about minimizing costs. To unify the exposition we shall deal with the minimization
of costs, which is equivalent to the maximization of their opposite values.
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Recall that wi
I and wi

S denote the costs per time-unit of staying in i I and i S
respectively. According to our interpretation of S as a better state, wi

S < wi
I for all i .

Given the evolution of the states x = x(s) of the whole system on a time interval
[t, T ], the individually optimal costs g(i I ) and g(i S) and individually optimal control
uinds (i I ) and uinds (i S) of an arbitrary agent can be found from the HJB equation

ġt (i I ) + λmin
u

d∑

j=1

1(u(i I ) = j)(gt ( j I ) − gt (i I )) + qi+(gt (i S) − gt (i I ))

+wi
I = 0,

ġt (i S) + λmin
u

d∑

j=1

1(u(i S) = j)(gt ( j S) − gt (i S)) + qi−(gt (i I ) − gt (i S))

+
d∑

j=1

β j i x j I (s)(gt (i I ) − gt (i S)) + wi
S = 0, (2)

which holds for all i and is complemented by the terminal condition gT (i I ), gT (i S).

Remark 3 Equation (2) is derived in a standard manner by the following argument.
Assuming g is differentiable in t and τ is small, one represents the value of the optimal
payoff gt (i I ) in the state i I using the optimality principle as

gt (i I ) = wi
I τ + min

u

[
qi+τgt+τ (i S) + τλ

∑

j

1(u(i I ) = j)gt+τ ( j I )

+
(
1 − qi+τ − λτ

∑

j

1(u(i I ) = j)

)
gt+τ (i I )

]
.

Expanding the last gt+τ in the Taylor series and cancelling first gt (i I ) and then τ

yields

ġt (i I ) + wi
I + qi+(gt+τ (i S) − gt (i I )) + λmin

u

×
∑

j

1(u(i I ) = j)(gt+τ ( j I ) − gt (i I )) = o(1),

with o(1) → 0, as τ → 0. Passing to the limit τ → 0 in this equation yields the first
equation of (2). The second one is obtained analogously.

The basic MFG consistency equation for a time interval [t, T ] can now be written
as ucoms = uinds .

Remark 4 The reasonability of this condition in the setting of the large number of
players is more or less obvious. And in fact in many situations it was proved rigorously
that its solutions represent the ε-Nash equilibrium for the correspondingMarkovmodel
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of N players, with ε → 0 as N → ∞, see e.g. Basna et al. (2014) for finite state
models considered here.

In this paper we shall mostly work with discounted payoff with the discounting
coefficient δ > 0, in which case the HJB equation for the discounted optimal payoff
e−tδgt of an individual player with any time horizon T writes down as (by putting
e−tδgt instead of gt in (2))

ġt (i I ) + λmin
u

d∑

j=1

1(u(i I ) = j)(gt ( j I ) − gt (i I )) + qi+(gt (i S) − gt (i I ))

+ wi
I = δgt (i I ),

ġt (i S) + λmin
u

d∑

j=1

1(u(i S) = j)(gt ( j S) − gt (i S)) + qi−(gt (i I ) − gt (i S))

+
d∑

j=1

β j i x j I (s)(gt (i I ) − gt (i S)) + wi
S = δgt (i S)

(3)

that hold for all i and is complemented by certain terminal conditions gT (i I ), gT (i S).
Notice that since this is an equation in a Euclidean spacewith Lipschitz coefficients,

it has a unique solution for s ≤ T and any given boundary condition g at time T and
any bounded measurable functions xi I (s).

For the discounted payoff the basic MFG consistency equation ucoms = uinds for
a time interval [t, T ] can be reformulated by saying that x, u, g solve the coupled
forward–backward system (1), (3), so that ucoms used in (1) coincide with the mini-
mizers in (3). The main objective of the paper is to provide a general class of solutions
of the discounted MFG consistency equation with stationary (time-independent) con-
trols ucom .

As a first step to this objective we shall analyse the fully stationary solutions, when
the evolution (1) is replaced by the corresponding fixed point condition:

λ
∑

j �=i

x j I1(ucom( j I ) = i) − λ
∑

j �=i

xi I 1(ucom(i I ) = j)

+ xi Sq
i− − xi I q

i+ +
∑

j

xi Sx j Iβ j i = 0,

λ
∑

j �=i

x j S1(ucom( j S) = i) − λ
∑

j �=i

xi S1(ucom(i S) = j)

− xi Sq
i− + xi I q

i+ −
∑

j

xi Sx j Iβ j i = 0. (4)

There are two standard stationary optimization problems naturally linked with a
dynamic one, one being the search for the average payoff for long period game, and
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another the search for discounted optimal payoff. The first is governed by the solutions
of HJB of the form (T − t)μ + g, (with g not depending on time), that is, linear in
time t . Then μ describes the optimal average payoff and g satisfies the stationary HJB
equation:

λmin
u

d∑

j=1

1(u(i I ) = j)(g( j I ) − g(i I )) + qi+(g(i S) − g(i I )) + wi
I = μ,

λmin
u

d∑

j=1

1(u(i S) = j)(g( j S) − g(i S)) + qi−(g(i I ) − g(i S))

+
d∑

j=1

β j i x j I (g(i I ) − g(i S)) + wi
S = μ. (5)

In the second problem, if the discounting coefficient is δ, the stationary discounted
optimal payoff g satisfies the stationary version of (3):

λmin
u

d∑

j=1

1(u(i I ) = j)(g( j I ) − g(i I )) + qi+(g(i S) − g(i I )) + wi
I = δg(i I ),

λmin
u

d∑

j=1

1(u(i S) = j)(g( j S) − g(i S)) + qi−(g(i I ) − g(i S))

+
d∑

j=1

β j i x j I (g(i I ) − g(i S)) + wi
S = δg(i S). (6)

In Kolokoltsov and Malafeyev (2015) and Kolokoltsov and Bensoussan (2015) we
concentrated on the first approach, and here we shall concentrate on the second one,
with a discounted payoff. The stationary MFG consistency condition is the coupled
system of Eqs. (4) and (6), so that the individually optimal stationary control uind

found from (6) coincides with the common stationary control ucom from (4).
For simplicity we shall be interested in non-degenerate controls uind characterized

by the condition that the minimum in (6) is always attained on a single value of u.

Remark 5 (i) Non-degeneracy assumption is common in theMFGmodeling, since the
argmax of the control provides the coupling with the forward equation on the states,
where non-uniqueness creates a nontrivial question of choosing a representative. (ii)
In our case non-degeneracy is a very natural assumption of the ‘general position’. It is
equivalent to the assumption that, for a solution g, the minimum of g(i I ) is achieved
on only one i and the minimum of g( j S) is also achieved on only one j . Any ‘strange’
coincidence of two values of g can be removed by arbitrary weak changes in the
parameters of the model. (iii) If non-degeneracy is relaxed, we get of course much
more complicated solutions, with the support of the equilibrium distributed between
the states providing the minima of g(i I ) and g(i S).
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A new technical novelty as compared with Kolokoltsov and Bensoussan (2015)
and Kolokoltsov and Malafeyev (2015) will be systematic working in the asymptotic
regimes of small discount δ and small interaction coefficients βi j . This approach leads
to more or less explicit calculations of stationary MFG solutions and their further
justification.

Remark 6 In Kolokoltsov and Bensoussan (2015) and Kolokoltsov and Malafeyev
(2015) we managed to obtain explicit solutions to the models with three and four
states relying less strongly on the asymptotic approach [only ‘large λ’ regime was
already introduced in Kolokoltsov and Bensoussan (2015)]. Thus obtained solutions
were already complicated enough, but they told us what general features one could
expect in more general situations. Even if some explicit formulas would be possible in
the present case, they would be extremely lengthy without any clear insights revealed.
Searching for an appropriate small parameter is the most fundamental approach in all
natural sciences. Especially a nonlinearity is usually analysed as a small perturbation
to linear problems. In the same lines is our ‘small βi j assumption’. Large λ limit is also
very natural: why one should wait long time to execute one’s own decisions? Finally
our ‘small δ’ asymptotics means in practical terms that the planning horizon is not
very large, which is quite common for every day reasoning.

3 Stationary MFG problem

We start by identifying all possible stationary non-degenerate controls that can occur
as solutions of (6). Let [i(I ), k(S)] denote the following strategy: switch to strategy i
when in I and to k when in S, that is, u( j I ) = i and u( j S) = k for all j .

Proposition 3.1 Non-degenerate controls solving (6) could be only of the type
[i(I ), k(S)].
Proof Let i be the unique minimum point of g(i I ) and k the unique minimum point
of g(i S). Then the optimal strategy is [i(I ), k(S)]. ��

Let us consider first the control [i(I ), i(S)] denoting it by ûi :

ûi ( j S) = ûi ( j I ) = i, j = 1, . . . , d.

We shall refer to the control ûi as the one with the strategy i individually optimal.
The control ûi and the corresponding distribution x solve the stationary MFG

problem if they solve the corresponding HJB (6), that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi+(g(i S) − g(i I )) + wi
I = δg(i I ),

qi−(g(i I ) − g(i S)) +
∑

k

βki xk I (g(i I ) − g(i S)) + wi
S = δg(i S),

λ(g(i I ) − g( j I )) + q j
+(g( j S) − g( j I )) + w

j
I = δg( j I ), j �= i,

λ(g(i S) − g( j S)) + q j
−(g( j I ) − g( j S))

+
∑

k

βk j xk I (g( j I ) − g( j S)) + w
j
S = δg( j S), j �= i,

(7)
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where for all j �= i
g(i I ) ≤ g( j I ), g(i S) ≤ g( j S), (8)

and x is a fixed point of the evolution (4) with ucom = ûi , that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi Sq
i− − xi I q

i+ +
∑

j

xi Sx j Iβ j i + λ
∑

j �=i

x j I = 0,

− xi Sq
i− + xi I q

i+ −
∑

j

xi Sx j Iβ j i + λ
∑

j �=i

x j S = 0,

x j Sq
j
− − x j I q

j
+ +

∑

k

x j Sxk Iβk j − λx j I = 0, j �= i,

− x j Sq
j
− + x j I q

j
+ −

∑

k

x j Sxk Iβk j − λx j S = 0, j �= i.

(9)

This solution (ûi , x) is stable if x is a stable fixed point of the evolution (1) with
ucom = ûi , that is, of the evolution

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi I = xi Sq
i− − xi I q

i+ +
∑

j

xi Sx j Iβ j i + λ
∑

j �=i

x j I ,

ẋi S = −xi Sq
i− + xi I q

i+ −
∑

j

xi Sx j Iβ j i + λ
∑

j �=i

x j S,

ẋ j I = x j Sq
j
− − x j I q

j
+ +

∑

k

x j Sxk Iβk j − λx j I , j �= i,

ẋ j S = −x j Sq
j
− + x j I q

j
+ −

∑

k

x j Sxk Iβk j − λx j S, j �= i.

(10)

Adding together the last two equations of (9) we find that x j I = x j S = 0 for
j �= i , as one could expect. Consequently, the whole system (9) reduces to the single
equation

xi Sq
i− + xi Iβi i xi S − xi I q

i+ = 0,

which, for y = xi I , 1 − y = xi S , yields the quadratic equation

Q(y) = βi i y
2 + y(qi+ − βi i + qi−) − qi− = 0,

with the unique solution on the interval (0, 1):

x∗ = 1

2βi i

[
βi i − qi+ − qi− +

√
(βi i + qi−)2 + (qi+)2 − 2qi+(βi i − qi−)

]
. (11)

To analyze stability of the fixed point xi I = x∗, xi S = 1 − x∗ and x j I = x j S = 0
for j �= i , we introduce the variables y = xi I − x∗. In terms of y and x j I , x j S with
j �= i , system (10) rewrites as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ =
⎡

⎣1 − x∗ − y −
∑

j �=i

(x j I + x j S)

⎤

⎦

⎡

⎣q− +
∑

k �=i

xk I βki +(y+x∗)βi i

⎤

⎦ − (y + x∗)qi+ + λ
∑

j �=i

x j I ,

ẋ j I = x j S

⎡

⎣q j
− +

∑

k �=i

xk I βk j + (y + x∗)βi j

⎤

⎦ − x j I q
j
+ − λx j I , j �= i,

ẋ j S = −x j S

⎡

⎣q j
− +

∑

k �=i

xk I βk j + (y + x∗)βi j

⎤

⎦ + x j I q
j
+ − λx j S , j �= i.

(12)
Its linearized version around the fixed point zero is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẏ = (1 − x∗)

⎛

⎝
∑

k �=i

xk I βki + yβi i

⎞

⎠ −
⎡

⎣y +
∑

k �=i

(xk I + xkS)

⎤

⎦ (qi− + x∗βi i ) − yqi+ +
∑

k �=i

λxk I ,

ẋ j I = x j S(q j
− + x∗βi j ) − x j I q

j
+ − λx j I , j �= i,

ẋ j S = −x j S(q j
− + x∗βi j ) + x j I q

j
+ − λx j S , j �= i.

Since the equations for x j I , x j S contain neither y nor other variables, the eigenval-
ues of this linear system are

ξi = (1 − 2x∗)βi i − qi− − qi+,

and (d − 1) pairs of eigenvalues arising from (d − 1) systems

{
ẋ j I = x j S(q

j
− + x∗βi j ) − x j I q

j
+ − λx j I , j �= i,

ẋ j S = −x j S(q
j
− + x∗βi j ) + x j I q

j
+ − λx j S, j �= i,

that is

{
ξ
j
1 = −λ − (q j

+ + q j
− + x∗βi i )

ξ
j
2 = −λ.

These eigenvalues being always negative, the condition of stability is reduced to
the negativity of the first eigenvalue ξi :

2x∗ > 1 − qi+ + qi−
βi i

.

But this is true due to (11) implying that this fixed point is always stable (by the
Grobman–Hartman theorem).
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Next, the HJB equation (7) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi+(g(i S) − g(i I )) + wi
I = δg(i I ),

qi−(g(i I ) − g(i S)) + βi i x
∗(g(i I ) − g(i S)) + wi

S = δg(i S),

λ(g(i I ) − g( j I )) + q j
+(g( j S) − g( j I )) + w

j
I = δg( j I ), j �= i,

λ(g(i S) − g( j S)) + q j
−(g( j I ) − g( j S)) + βi j x

∗(g( j I ) − g( j S))

+ w
j
S = δg( j S), j �= i,

(13)

Subtracting the first equation from the second one yields

g(i I ) − g(i S) = wi
I − wi

S

qi− + qi+ + βi i x∗ + δ
. (14)

In particular, g(i I ) > g(i S) always, as expected. Next, by the first equation of (13),

δg(i I ) = wi
I − qi+(wi

I − wi
S)

qi− + qi+ + βi i x∗ + δ
. (15)

Consequently,

δg(i S) = wi
I − (qi+ + δ)(wi

I − wi
S)

qi− + qi+ + βi i x∗ + δ
= wi

S + (qi− + βi i x∗)(wi
I − wi

S)

qi− + qi+ + βi i x∗ + δ
. (16)

Subtracting the third equation of (13) from the fourth one yields

(λ + q j
+ + q j

− + βi i x
∗ + δ)(g( j I ) − g( j S)) − λ(g(i I ) − g(i S)) = wi

I − wi
S,

implying

g( j I ) − g( j S) = w
j
I − w

j
S + λ(g(i I ) − g(i S))

λ + q j
+ + q j

− + βi j x∗ + δ
= g(i I ) − g(i S)

+[(w j
I − w

j
S) − (g(i I ) − g(i S))(q j

+ + q j
−

+βi j x
∗ + δ)]λ−1 + O(λ−2). (17)

From the fourth equation of (13) it now follows that

(δ + λ)g( j I ) = w
j
I − q j

+(g( j I ) − g( j S)) + λg(i I ),

so that

g( j I ) = g(i I ) + [w j
I − q j

+(g(i I ) − g(i S)) − δg(i I )]λ−1 + O(λ−2). (18)
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Consequently,

g( j S) = g( j I ) − (g( j I ) − g( j S)) = g(i S) + [w j
S + (q j

− + βi i x
∗)

×(g(i I ) − g(i S)) − δg(i S)]λ−1 + O(λ−2). (19)

Thus conditions (8) in the main order in λ → ∞ become

w
j
I − q j

+(g(i I ) − g(i S)) − δg(i I ) ≥ 0,

w
j
S + (q j

− + βi i x
∗)(g(i I ) − g(i S)) − δg(i S) ≥ 0,

or equivalently

w
j
I − wi

I ≥ (q j
+ − qi+)(wi

I − wi
S)

qi− + qi+ + βi i x∗ + δ
,

w
j
S − wi

S ≥ [qi− − q j
− + (βi i − βi j )x∗](wi

I − wi
S)

qi− + qi+ + βi i x∗ + δ
. (20)

In the first order in small βi j this gets the simpler form, independent of x∗:

w
j
I − wi

I

wi
I − wi

S

≥ q j
+ − qi+

qi− + qi+ + δ
,

w
j
S − wi

S

wi
I − wi

S

≥ qi− − q j
−

qi− + qi+ + δ
. (21)

Conversely, if inequalities in (21) are strict, then (20) also hold with the strict
inequalities for sufficiently small βi j . Consequently (8) also hold with the strict
inequalities.

Summarizing, we proved the following.

Proposition 3.2 If (21) holds for all j �= i with the strict inequality, then for suffi-
ciently large λ and sufficiently small βi j there exists a unique solution to the stationary
MFG consistency problem (4) and (6) with the optimal control ûi , the stationary dis-
tribution is x Ii = x∗, x Si = 1 − x∗ with x∗ given by (11) and it is stable; the optimal
payoffs are given by (15), (16), (18), (19). Conversely, if for all sufficiently large λ

there exists a solution to the stationary MFG consistency problem (4) and (6) with the
optimal control ûi , then (20) holds.

Remark 7 Notice that condition (21) states roughly that the losses arising from chang-
ing from i to j due to everyday fees are larger than the gains that may arise from the
better promotion climate in j as compared to i .

Let us turn to control [i(I ), k(S)] with k �= i denoting it by ûi,k :

ûi,k( j S) = k, ûi,k( j I ) = i, j = 1, . . . , d.
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The fixed point condition under ucom = ûi,k takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi Sq
i− − xi I q

i+ +
∑

j

xi Sx j Iβ j i + λ
∑

j �=i

x j I = 0

− xi Sq
i− + xi I q

i+ −
∑

j

xi Sx j Iβ j i − λxi S = 0

xkSq
k− − xk I q

k+ +
∑

j

xkSx j Iβ jk − λxk I = 0

− xkSq
i− + xk I q

k+ −
∑

j

xkSx j Iβ jk + λ
∑

j �=k

x j S = 0

xlSq
l− − xl I q

l+ +
∑

j

xlSx j Iβ jl − λxlS = 0

− xlSq
l− + xl I q

l+ −
∑

j

xlSx j Iβ jl − λxl I = 0,

(22)

where l �= i, k.
Adding the last two equations yields xl I + xlS = 0 and hence xl I = xlS = 0 for all

l �= i, k, as one could expect. Consequently, for indices i, k the system gets the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi Sq
i− − xi I q

i+ + xi Sxi Iβi i + xi Sxk Iβki + λxk I = 0

− xi Sq
i− + xi I q

i+ − xi Sxi Iβi i − xi Sxk Iβki − λxi S = 0

xkSq
k− − xk I q

k+ + xkSxk Iβkk + xkSxi Iβik − λxk I = 0

− xkSq
i− + xk I q

k+ − xkSxk Iβkk − xkSxi Iβik + λxi S = 0

(23)

Adding the first two equation (or the last two equations) yields xk I = xi S . Since
by normalization

xkS = 1 − xi S − xk I − xi I = 1 − xi I − 2xk I ,

we are left with two equations only:

{
xk I q

i− − xi I q
i+ + xk I xi Iβi i + x2k Iβki + λxk I = 0

(1 − xi I − 2xk I )(q
k− + xk Iβkk + xi Iβik) − (λ + qk+)xk I = 0.

(24)

From the first equation we obtain

xi I = λxk I + βki x2k I + qi−xk I
qi+ − xk Iβi i

= λxk I
qi+ − xk Iβi i

(1 + O(λ−1)).
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Hence xk I is of order 1/λ, and therefore

xi I = λxk I
qi+

(1 + O(λ−1)) ⇐⇒ xk I = xi I qi+
λ

(1 + O(λ−1)). (25)

In the major order in large λ asymptotics, the second equation of (24) yields

(1 − xi I )(q
k− + βik xi I ) − qi+xi I = 0

or for y = xi I

Q(y) = βik y
2 + y(qi+ − βik + qk−) − qk− = 0,

which is effectively the same equation as the one that appeared in the analysis of the
control [i(I ), i(S)]. It has the unique solution on the interval (0, 1):

x∗
i I = 1

2βik

[
βik − qi+ − qk− +

√
(βik + qk−)2 + (qi+)2 − 2qi+(βik − qk−)

]
. (26)

Let us note that for small βik it expands as

x∗
i I = qk−

qk− + qi+
+ O(β) = qk−

qk− + qi+
+ qk−qi+

(qk− + qi+)3
β + O(β2). (27)

Similar (a bit more lengthy) calculations, as for the control [i(I ), i(S)] show that
the obtained fixed point of evolution (1) is always stable. We omit the detail, as they
are the same as given in Kolokoltsov and Bensoussan (2015) for the case d = 2.

Let us turn to the HJB equation (7), which under control [i(I ), k(S)] takes the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi+(g(i S) − g(i I )) + wi
I = δg(i I ),

λ(g(kS) − g(i S)) + q̃ i−(g(i I ) − g(i S)) + wi
S = δg(i S),

λ(g(i I ) − g(k I )) + qk+(g(kS) − g(k I )) + wk
I = δg(k I ),

q̃k−(g(k I ) − g(kS)) + wk
S = δg(kS)

λ(g(i I ) − g( j I )) + q j
+(g( j S) − g( j I )) + w

j
I = δg( j I ), j �= i, k,

λ(g(kS) − g( j S)) + q̃ j
−(g( j I ) − g( j S)) + w

j
S = δg( j S), j �= i, k,

(28)

supplemented by the consistency condition

g(i I ) ≤ g( j I ), g(kS) ≤ g( j S), (29)

for all j , where we introduced the notation

q̃ j
− = q̃ j

−(i, k) = q j
− + βi j xi I + βk j xk I . (30)
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The first four equations do not depend on the rest of the system and can be solved
independently. To begin with, we use the first and the fourth equation to find

g(i S) = g(i I ) + δg(i I ) − wi
I

qi+
, g(k I ) = g(kS) + δg(kS) − wk

S

q̃k−
. (31)

Then the second and the third equations can be written as the system for the variables
g(kS) and g(i I ):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λg(kS) − (λ + δ)g(i I ) − (λ + δ + q̃i−)
δg(i I ) − wi

I

qi+
+ wi

S = 0

λg(i I ) − (λ + δ)g(kS) − (λ + δ + qk+)
δg(kS) − wk

S

q̃k−
+ wk

I = 0,

or simpler as

{
λqi+g(kS) − [λ(qi+ + δ) + δ(qi+ + q̃i− + δ)]g(i I ) = −wi

I (λ + δ + q̃i−) − wi
Sq

i+
[λ(q̃k− + δ) + δ(q̃k− + qk+ + δ)]g(kS) − λq̃k−g(i I ) = wk

I q̃
k− + wk

S(λ + δ + qk+).

(32)
Let us find the asymptotic behavior of the solution for large λ. To this end let us

write

g(i S) = g0(i S) + g1(i S)

λ
+ O(λ−2)

with similar notations for other values of g. Dividing (32) by λ and preserving only
the leading terms in λ we get the system

{
qi+g0(kS) − (qi+ + δ)g0(i I ) = −wi

I ,

(q̃k− + δ)g0(kS) − q̃k−g0(i I ) = wk
S .

(33)

Solving this system and using (31) to find the corresponding leading terms g0(i S),
g0(k I ) yields

g0(i S) = g0(kS) = 1

δ

q̃k−wi
I + qi+wk

S + δwk
S

q̃k− + qi+ + δ
,

g0(k I ) = g0(i I ) = 1

δ

q̃k−wi
I + qi+wk

S + δwi
I

q̃k− + qi+ + δ
.

(34)

The remarkable equations g0(i S) = g0(kS) and g0(k I ) = g0(i I ) arising from
the calculations have natural interpretation: for instantaneous execution of personal
decisions the discrimination between strategies i and j is not possible. Thus to get the
conditions ensuring (29) we have to look for the next order of expansion in λ.
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Keeping in (32) the terms of zero-order in 1/λ yields the system

{
qi+g1(kS) − (qi+ + δ)g1(i I ) = δ(qi+ + q̃i− + δ)g0(i I ) − wi

I (δ + q̃i−) − wi
Sq

i+
(q̃k− + δ)g1(kS) − q̃k−g1(i I ) = −δ(q̃k− + qk+ + δ)g0(kS) + wk

I q̃
k− + wk

S(δ + qk+).

(35)
Taking into account (34), conditions g(i I ) ≤ g(k I ) and g(kS) ≤ g(i S) turn to

q̃k−g1(i I ) ≤ g1(kS)(q̃k− + δ), qi+g1(kS) ≤ g1(i I )(qi+ + δ). (36)

Solving (35) we obtain

g1(kS)δ(q̃k− + qi+ + δ) = q̃k−[qi+wi
S + (qi+ + δ)wk

I + (q̃i− − q̃k− − qi+ − δ)wi
I ]

+ [qi+(qk+ − q̃k− − qi+) + δ(qk+ − qi+)]wk
S,

g1(i I )δ(q̃k− + qi+ + δ) = qi+[q̃k−wk
I + (q̃k− + δ)wi

S + (qk+ − qi+ − q̃k− − δ)wk
S]

+ [q̃k−(q̃i− − qi+ − q̃k−) + δ(q̃i− − q̃k−)]wi
I , (37)

We can now check the conditions (36). Remarkably enough the r.h.s and l.h.s. of
both inequalities always coincide for δ = 0, so that the actual condition arises from
comparing higher terms in δ. In the first order with respect to the expansion in small
δ conditions (36) turn out to take the following simple form

q̃k−(wk
I − wi

I ) + wk
S(q

k+ − qi+) ≥ 0, qi+(wi
S − wk

S) + wi
I (q̃

i− − q̃k−) ≥ 0. (38)

From the last two equations of (28) we can find g( j S) and g( j I ) for j �= i, k
yielding

g( j I ) = g(i I ) + 1

λ
[w j

I − δg(i I ) + q j
+(g(i I ) − g(kS))] + O(λ−2),

g( j S) = g(kS) + 1

λ
[w j

S − δg(kS) + q̃ j
−(g(i I ) − g(kS))] + O(λ−2). (39)

From these equationswe can derive the rest of the conditions (29), namely that g(i I ) ≤
g( j I ) for j �= k and g(kS) ≤ g( j S) for j �= i . In thefirst order in the small δ expansion
they become

q j
+(wi

I − wk
S) + w

j
I (q̃

k− + qi+) ≥ 0, q̃ j
−(wi

I − wk
S) + w

j
S(q̃

k− + qi+) ≥ 0. (40)

Since for small βi j , the difference q̃
j
− −q j

− is small, we proved the following result.

Proposition 3.3 Assume

q j
+(wi

I − wk
S) + w

j
I (q

k− + qi+) > 0, j �= k,

q j
−(wi

I − wk
S) + w

j
S(q

k− + qi+) > 0, j �= i,

qk−(wk
I − wi

I ) + wk
S(q

k+ − qi+) > 0, qi+(wi
S − wk

S) + wi
I (q

i− − qk−) > 0. (41)
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Then for sufficiently large λ, small δ and small βi j there exists a unique solution to
the stationary MFG consistency problem (4) and (6) with the optimal control ûi,k , the
stationary distribution is concentrated on strategies i and k with x∗

i I being given by
(26) or (27) up to terms of order O(λ−1), and it is stable; the optimal payoffs are
given by (34), (37), (39).

Conversely, if for all sufficiently large λ and small δ there exists a solution to the
stationary MFG consistency problem (4) and (6) with the optimal control ûi,k , then
(38) and (40) hold.

4 Main result

By the general result already mentioned above, see Basna et al. (2014), a solution of
MFG consistency problem constructed above and considered on a finite time horizon
will define an ε-Nash equilibrium for the corresponding game of finite number of play-
ers. However, solutions given by Propositions 3.2 and 3.3 work only when the initial
distribution and terminal payoff are exactly those given by the stationary solution. Of
course, it is natural to ask what happens for other initial conditions. Stability results
of Propositions 3.2 and 3.3 represent only a step in the right direction here, as they
ensure stability only under the assumption that all (or almost all) players use from the
very beginning the corresponding stationary control, which might not be the case. To
analyse the stability properly, we have to consider the full time-dependent problem.
For possibly time varying evolution x(t) of the distribution, the time-dependent HJB
equation for the discounted optimal payoff e−tδg of an individual player with any time
horizon T has form (3).

In order to have a solution with a stationary u we have to show that solving the
linear equation obtained from (3) by fixing this control will be consistent in the sense
that this control will actually give minimum in (3) in all times.

For definiteness, let us concentrate on the stationary control ûi , the corresponding
linear equation getting the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ġ(i I ) + qi+(g(i S) − g(i I )) + wi
I = δg(i I ),

ġ(i S) + qi−(g(i I ) − g(i S)) +
∑

k

βki xk I (t)(g(i I ) − g(i S)) + wi
S = δg(i S),

ġ( j I ) + λ(g(i I ) − g( j I )) + q j
+(g( j S) − g( j I )) + w

j
I = δg( j I ), j �= i,

ġ( j S) + λ(g(i S) − g( j S)) + q j
−(g( j I ) − g( j S))

+
∑

k

βk j xk I (t)(g( j I ) − g( j S)) + w
j
S = δg( j S), j �= i,

(42)
(the dependence of g on t is omitted for brevity) with the supplementary requirement
(8), but which has to hold now for time-dependent solution g.
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Theorem 4.1 Assume the strengthened form of (21) holds, that is

w
j
I − wi

I

wi
I − wi

S

>
q j
+ − qi+

qi− + qi+ + δ
,

w
j
S − wi

S

wi
I − wi

S

>
qi− − q j

−
qi− + qi+ + δ

(43)

for all j �= i . Assume moreover that

w
j
I − wi

I ≥ 0, w
j
S − wi

S ≥ 0, (44)

for all j �= i . Then for any λ > 0 and all sufficiently small βi j the following holds.
For any T > t , any initial distribution x(t) and any terminal values gT such that
gT ( j I ) − gT ( j S) ≥ 0 for all j , gT (i I ) − gT (i S) is sufficiently small and

gT (i I ) ≤ gT ( j I ) and gT (i S) ≤ gT ( j S), j �= i, (45)

there exists a unique solution to the discounted MFG consistency equation such that u
is stationary and equals ûi everywhere. Moreover, this solution is such that, for large
T − t , x(s) tends to the fixed point of Proposition 3.2 for s → T and gs stays near the
stationary solution of Proposition 3.2 almost all time apart from a small initial period
around t and some final period around T .

Remark 8 (i) The last property of our solution can be expressed by saying that the
stationary solution provides the so-called turnpike for the time-dependent solution,
see e.g. Kolokoltsov and Yang (2012) and Zaslavski (2006) for reviews in stochastic
and deterministic settings. (ii) Condition (44) is natural: having better fees in a non-
optimal state may create instability. In fact, with the terminal gT vanishing, it is seen
from (46) below, that if w

j
I − wi

I < 0, then the solution will be directly kicked of
the region g(i I ) ≤ g( j I ), so that the stability of this region would be destroyed. It is
an interesting question, what kind of solutions to the forward–backward system one
could construct whenever ifw j

I −wi
I < 0 occurs. (iii) Similar time-dependent class of

turnpike solutions can be constructed from the stationary control of Proposition 3.3.

Proof To show that startingwith the terminal condition belonging to the cone specified
by (45)we shall stay in this cone for all t ≤ T , it is sufficient to prove that on a boundary
point of this cone that can be achieved by the evolution the inverted tangent vector of
system (42) is not directed outside of the cone. This (more or less obvious) observation
is a performance of the general result of Bony, see e. g. Redheffer (1972). From (42)
we find that

ġ( j I ) − ġ(i I ) = (λ + δ)(g( j I ) − g(i I )) + q j
+(g( j I ) − g( j S))

− qi+(g(i I ) − g(i S)) − (w
j
I − wi

I ). (46)

Therefore, the condition for staying inside the cone (45) for a boundary point with
g( j I ) = g(i I ) reads out as ġ( j I ) − ġ(i I ) ≤ 0 or

(w
j
I − wi

I ) ≥ q j
+(g( j I ) − g( j S)) − qi+(g(i I ) − g(i S)). (47)
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Since g( j I ) = g(i I ),

0 ≤ g( j I ) − g( j S) ≤ g(i I ) − g(i S).

Therefore, if qi+ ≥ q j
+, the r.h.s. of (47) is non-positive and hence (47) holds by the

first assumption of (44). Hence we can assume further that qi+ < q j
+.

Again by

0 ≤ g( j I ) − g( j S) ≤ g(i I ) − g(i S),

a simpler sufficient condition for (47) is

(w
j
I − wi

I ) ≥ (q j
+ − qi+)(g(i I ) − g(i S)). (48)

Subtracting the first two equations of (42) we find that

ġ(i I ) − ġ(i S) = a(s)(g(i I ) − g(i S)) − (wi
I − wi

S)

with

a(t) = qi+ + qi− + δ +
∑

k

βki xk I (t).

Consequently,

gt (i I ) − gt (i S) = exp

{
−

∫ T

t
a(s) ds

}
(gT (i I ) − gT (i S))

+ (wi
I − wi

S)

∫ T

t
exp

{
−

∫ s

t
a(τ ) dτ

}
ds. (49)

Therefore, condition (48) will be fulfilled for all sufficiently small gT (i I ) − gT (i S)

whenever

(w
j
I − wi

I ) > (q j
+ − qi+)(wi

I − wi
S)

∫ T

t
exp

{
−

∫ s

t
a(τ ) dτ

}
ds. (50)

But since a(t) ≥ qi+ + qi− + δ, we have

exp

{
−

∫ s

t
a(τ ) dτ

}
≤ exp{−(s − t)(qi+ + qi− + δ)},

so that (48) holds if

w
j
I − wi

I

wi
I − wi

S

≥ q j
+ − qi+

qi+ + qi− + δ

(
1 − exp{−(T − t)(qi+ + qi− + δ)}

)
, (51)
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which is true under the first assumptions of (43), because qi+ < q j
+.

Similarly, to study a boundary point with g( j S) = g(i S) we find that

ġ( j S) − ġ(i S) = (λ + δ)(g( j S) − g(i S)) −
(
q j
− +

∑

k

βk j xk I

)
(g( j I ) − g( j S))

+
(
qi− +

∑

k

βki xk I

)
(g(i I ) − g(i S)) − (w

j
S − wi

S).

Therefore, the condition for staying inside the cone (45) for a boundary point with
g( j S) = g(i S) reads out as

(w
j
S − wi

S) ≥
(
qi− +

∑

k

βki xk I

)
(g(i I ) − g(i S))

−
(
q j
− +

∑

k

βk j xk I

)
(g( j I ) − g( j S)). (52)

Now 0 ≤ g(i I ) − g(i S) ≤ g( j I ) − g( j S), so that (52) is fulfilled if

(w
j
S − wi

S) ≥
(
qi− +

∑

k

βki xk I − q j
− −

∑

k

βk j xk I

)
(g(i I ) − g(i S)) (53)

for all times. Taking into account the requirement that all βi j are sufficiently small,
we find as above that it holds under the second assumptions of (43) and (44).

Similarly (but actually even simpler) one shows that the condition gt ( j I )−gt ( j S) ≥
0 remains valid for all times and all j .

The last statement of the theorem concerning x(s) follows from the observation that
the eigenvalues of the linearized evolution x(s) are negative and well separated from
zero implying the global stability of the fixed point of the evolution for sufficiently
small β. The last statement of the theorem concerning g(s) follows by similar stability
argument for the linear evolution (42) taking into account that away from the initial
point t , the trajectory x(t) stays arbitrary close to its fixed point. ��
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