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ABSTRACT 

The current model for cancer development envisions cells undergoing a series of genetic 

mutations and/or alterations which result in their inability to respond normally to 

intracellular and extracellular signals that control proliferation, differentiation and 

death. The number of required genetic alterations varies for different types of cancer 

and it is likely that further changes occur during its progression to increased 

malignancy. 

Thus, cancer is not a static disease but during the development and progression of 

tumour, multiple changes occur in two kinds of genes: oncogenes and tumour 

suppressor genes. 

Oncogene-products can be classified as growth factors, growth factor receptors, 

Ras oncoproteins, cytoplasmic protein kinases, transcription factors, anti-apoptotic 

proteins. 

In particular, the ras oncogene family includes three members: N-ras, K-ras, H- 

ras. In non-transformed cells, Ras protein, belonging to G-protein family, transduces 

growth signals from external to the internal environment. In fact, when activated, Ras 

exchanges GDP with GTP and this allosteric change allows binding of Ras effector 

molecules and transduction of signalling cascades. Ras activity is required for cell cycle 

progression. 

In cancer it has been observed that this oncogene is constitutively activated by 

mutations and induces the cell to enter into cell-cycle also in the absence of growth 

signals. 



Among the transcription factors, a gene involved in many tumours is myc. This 

transcription factor plays a key role in cell proliferation as its target proteins include 

many positive regulators of the cell-cycle. In tumour cells the protein product of this 

oncogene is overexpressed. 

The cooperation between multiple oncogenes and/or loss of tumour suppressors 

from different functional classes is necessary for transformation to proceed. 

In fact, it was observed that, although overexpression of a single oncogene does 

not transform wild-type mouse embryonic fibroblasts, combinations of myc and H- 

ras VA 2, can induce cellular transformation and the cells expressing both oncogenes 

displayed a marked proliferative advantage. 

In thyroid, neoplastic transformation generates several different histotypes of 

tumours, ranging from poorly aggressive and well-differentiated, to highly malignant 

and undifferentiated anaplastic cancers. 

The aim of my thesis was to study the tumorigenesis induced by oncogenes and 

the oncogene cooperation in vivo during the gradual passage from a poorly aggressive to 

a much more aggressive tumour. 

To this end a mouse model expressing the two oncogenes H-rasvAL12 and c-myc 

(referred as ras and myc) in a tissue-specific as well as in a conditional manner was 

generated. 

For this purpose, the coding sequences of the two oncogenes were fused in a 

bicistronic construct and an IRES (Internal Ribosome Entry Sequence or Site) was 

inserted between them, to ensure the expression of the second oncogene. The construct 

was inserted under the control of the promoter of the ubiquitously expressed genes 

ROSA26 and Eefl al. 



In order to express these oncogenes in a tissue-specific manner, the transcription 

of the two oncogenes is prevented by a STOP sequence flanked by two LoxP sites. Such 

a STOP sequence can be removed by Cre recombinase protein. 

The transgenic mice were crossed with mice expressing Cre in a tissue-specific 

manner. Two strains of transgenic mice expressing Cre in thyroid cells were used: 

1. transgenic mice for TgCre, in which Cre is expressed under the control of Tg promoter 

after the development of the thyroid; 

2. Pax8Cre, in which the Cre sequence is inserted in the Pax8 locus and is expressed 

during the early stages of the thyroid development. 

In such a manner the oncogenes were expressed only in thyroid cells, but were 

still inactive. 

In particular, ras was fused to the mutated ligand binding domain of the estradiol 

receptor that is sensitive to tamoxifen and not to endogenous estradiol; while myc was 

fused to the mutated ligand binding domain of the progesterone receptor (hPR891) that 

is sensitive to RU486 and not to endogenous progesterone. 

With these fused oncogenes it is possible to activate only Ras (with tamoxifen) or 

only Myc (with RU486) or both (providing both tamoxifen and RU486). 

Moreover the activity of two oncogenes might be used to immortalize mouse cell 

lines in culture. 
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CHAPTER 1 

INTRODUCTION 

1.1 Neoplasms and oncogenes 

Neoplasm's, which literally means "new growths", can develop from normal cells 

of many tissues. Consequently, there are a wide variety of tumours differing with 

respect to their origin, growth and prognosis. 

The most important biological distinction between tumours is that between 

benign and malignant neoplasms, only the latter is referred to as cancer. While the 

former remains confined to the site of its formation, the malignant one is capable of 

invading and destroying adjacent tissues as well as distant organs. 

Studies on genes capable of inducing malignant transformation in normal cells, 

have led to the identification of proto-oncogenes, many of which are involved in the 

normal transmission of growth-promoting signals from the cell surface to the nucleus 

or are transcription factors and tumour suppressor genes, i. e. normal cellular genes that 

suppress malignant transformation. 

Proto-oncogenes are a group of normal cell genes, functioning in a number of 

features of cell growth and differentiation that, if mutated, may acquire transforming 

activity. This kind of genes can be activated, to undergo a neoplastic transformation, by 

different mechanisms: insertional mutagenesis, chromosome translocation, gene 

amplification, point mutation. 
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1.2 The thyroid gland 

The thyroid gland, a component of the endocrine system, derives its name from 

the Greek word `thyreos' meaning ̀ shield'and ̀ eidos' meaning ̀ form'. In humans, the 

thyroid gland is located in front of the trachea, in the lower neck. 

The thyroid gland, in all vertebrates, is responsible for producing thyroid 

hormones, known for their role in regulating metabolism in adults and required for 

many developmental processes. 

The human thyroid gland is a brownish-red organ, in most cases having two lobes 

connected by an isthmus; normally weighs ' about 28g and consists of cuboidal cells 

arranged to form epithelial follicles, supported by connective tissue that forms a 

framework for the entire gland. In the normal thyroid gland, the follicles are usually 

filled with a colloidal substance containing the protein thyroglobulin (Tg) in high 

concentration. The thyroid hormones thyroxine (or tetra-idothyronine, T4) and 

triiodothyronine (T3) are covalently bound to Tg, as a results of a biochemical process 

involving several components of the thyroid cells machinery. Tg is eventually taken up 

by the follicular cells and proteolytically degraded in order to allow release of free T3 

and T4 into the bloodstream. 

Thyroglobulin is first detected at E16.5 in mouse development. At this stage also 

other genes specific of thyroid follicular cells, such as the thyroperoxidase (TPO), TSH 

receptor (TSHR) and the sodium (Na+)/iodine (1) symporter (NIS) are expressed. TPO 

drives iodide oxidation, its incorporation in tyrosine residues of the Tg molecule and 

catalyzes the coupling of iodinated tyrosine residues, to form T4 or T3. TSHR, a 

member of the glycoprotein G protein-coupled-receptor family able to respond to TSH, 

is secreted by the pituitary thyrotrophs and all steps in the formation and release of 

thyroid hormones are stimulated by TSH. NIS, present in the basolateral membrane of 

the thyroid cell, is responsible for the transport of iodide by an active process, in which 
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the downhill transport of two Na' ions results in the entry of one iodide atom against 

an electrochemical gradient. Their expression is governed by at least four transcription 

factors whose coexpression is a distinctive feature of the thyroid anlage. These genes 

involved at early stages of the thyroid morphogenesis are Titfl/Nkx2.1, Foxe], Pax8 

and Hhex. They form a network of reciprocal cross-interactions changing as the thyroid 

primordium progresses from one developmental stage to another (Parlato et al., 2004). 

In more detail, Titfl/Nkx2.1 is a homeodomain-containing transcription factor 

member of the Nkx2 family. In thyroid it is detectable around E9.5 but two additional 

domains of expression are the lung and restricted areas of the brain (Kimura et al., 

1996; Lazzaro et al., 1991). This protein was initially identified for its ability to bind to 

specific DNA sequences present in the thyroglobulin and thyroid peroxidase gene 

promoters. The thyroid anlage is comparable in wild type and Nkx2.1-/- embryos up to 

E9. However, already at E10.5 the thyroid primordium shows a reduced expression of 

Pax8, Foxel and Hhex and appears much smaller compared to wild type (Parlato et al., 

2004). Subsequently, thyroid cells disappear through apoptosis, which ultimately leads 

to the loss of primordial cells and absence of thyroid by E12-13 (Kimura et al., 1999). 

Moreover, embryos homozygous for a targeted disruption of the Titfl/Nkx2.1 locus 

develop and are born but die at birth due also to respiratory insufficiency, caused by 

severely hypoplastic lungs (Kimura et al., 1999). Hence, Nkx2.1 seems to act as a 

survival factor for developing thyroid progenitor. 

Pax8 (paired box gene 8) is a member of a family of transcription factors 

characterized by the presence of a DNA binding domain called paired domain. During 

embryonic life, Pax8 is not only detected in the endodermal cells of the developing 

thyroid since E8.5 (Plachov et al., 1990) but also in the myelencephalon and in the 

kidneys. This factor recognizes and binds to specific sequences present in both Tg and 

TPO promoters and directly interacts with Nkx2.1 in differentiated thyroid follicular 
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cells. This interaction could be relevant in the expression of thyroid-specific genes. 

Pax8-/- embryos show a morphologically normal thyroid anlage. The thyroid bud 

evaginates from the endoderm and migrates into the mesenchyme. The absence of Pax8 

causes that by E10.5 the thyroid primordium appears hypoplastic and negative for the 

expression of Foxel and Hhex (Parlato et al., 2004). At El 1.5, the follicular cells are 

essentially undetectable. Pax8-/- mice are born with a low body weight, die within 2-3 

weeks of birth and present a rudimentary gland, composed almost completely of 

calcitonin-producing C cells (Mansouri et al., 1998). According to these observations 

also Pax8 is required for the survival of thyroid cell precursors. 

Foxel (formerly called TTF-2 for thyroid transcription factor-2) is a transcription 

factor member of the winged helix/forkhead family. At early stage of embryogenesis, 

Foxel mRNA is expressed in the endodermal layer of the foregut, in the thyroid anlage 

and in the ectoderm that will give rise to the anterior pituitary (Zannini et al., 1997). 

Homozygous Foxel-/- mice are born at the expected ratio but die within 48 h after 

birth (De Felice, et al., 1998). Analysis of these mutant mice shows that in the absence 

of this factor the specification of the thyroid anlage is correct. However, the migration 

of thyroid precursor cells is impaired: in E9.5 Foxe] null embryos, thyroid precursor 

cells are still on the floor of the pharynx, whereas in wild type embryos they are 

detached from the pharynx cavity and begin to descend (De Felice et al., 1998). E10- 

Foxel-/- mutant mice exhibit either a small thyroid remnant still attached to the 

pharyngeal floor or no thyroid gland at all, while in wild type embryos it is already 

descending towards its final location. At later stages, Foxe] null thyroid cells either 

disappear or form an ectopic small thyroid remnant able to synthesize Tg (De Felice et 

al., 1998). These data indicate that Foxel, in addition to cooperation in the control of 

the survival of thyroid cells, is specifically involved in the migration of the thyrocytes. 
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Hhex (formerly known as Hex for hematopoietically expressed homeobox or Prh 

for proline-rich homeobox) is a homeodomain-containing transcription factor, first 

identified in multipotent hematopoietic cells and widely expressed in early 

organogenesis. For this reason, Hhex null embryos show multiple malformations and 

are not viable after E15.5. Moreover, in Hhex null embryos at E9, the thyroid anlage is 

present and the expressions of Nkx2.1, Pax8 and Foxel are not affected. In these 

mutants at a later stage (E10), the thyroid primordium is represented only by a few 

nonmigrating cells which do not express Nkx2.1, Pax8 or Foxel mRNA. At later 

stages, the primordium disappears. These data strongly suggest that Hhex is involved 

in the survival of already determined thyroid precursors. Because Hhex is required to 

maintain Nkx2.1, Pax8 and Foxel expression in the developing thyroid, the thyroid 

phenotype displayed by Hhex-/- embryos might be due to the absence of these factors 

(Parlato et al., 2004). 

Pendrin, a second protein involved in iodide transport, is the product of the PDS 

gene, responsible for the autosomal recessive disorder, Pendred's syndrome. This is a 

long-recognized inherited condition in which sensorineural hearing loss is combined 

with varying degrees of impaired thyroid hormone synthesis, leading to goiter. Pendrin 

is a transmembrane protein, a member of the sulfate transport protein family. Pendrin is 

expressed in the apical border of the thyroid cell, the inner ear, and the kidney (Heller 

N 1999), Mutations in pendrin cause an inner ear malformation, although not all 

patients have goiter. It is postulated that pendrin is required for iodide transport across 

the apical membrane of the thyrocyte into the follicular lumen, where it is then 

oxidized and coupled to tyrosine in Tg (Porra et al., 2002). 
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A schematic illustration of a thyroid follicular cell is depicted in figure 1. 
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Figure 1. Schematic illustration of a follicular cell showing the key aspects of thyroid iodine transport and 

thyroid hormone synthesis. Sodium-iodide symporter (NIS); triiodothyronine (T3); thyroxine (T4); 

thyroglobulin (Tg); thyroid peroxidise (TPO); thyrotropin receptor (TSHR). Modified from (Spitzweg et at., 

2000). 
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Although the thyroid gland constitutes about 0.5 percent of the total human body 

weight, it holds about 25 percent of the total iodine in the body, obtained from food 

and water in diet. Iodine usually circulates in the blood as an inorganic iodide and is 

concentrated in the thyroid to as much as 500 times the iodide level of the blood. 

The amounts of T3 and T4 secreted by the thyroid are controlled by the thyroid- 

stimulating hormone (TSH) of the pituitary gland and TSH, in turn, is regulated by 

thyroid-stimulating hormone releasing factor (TRF), secreted by the hypothalamus. 

The functions of the thyroid gland include regulation of normal body growth in 

infancy and childhood, regulation of metabolism, regulation of body temperature, 

maintenance of skeletal maturation and regulation of protein, fat and carbohydrate 

metabolism. These functions are dependent upon the levels of T4 in the serum. 

1.2.1 Thyroid tumours and their molecular mechanisms 

In thyroid, neoplastic transformation generates several different histotypes of 

tumours, ranging from poorly aggressive and well differentiated, such as papillary 

thyroid carcinoma and follicular, thyroid carcinoma, to highly malignant and 

undifferentiated anaplastic cancers. 

Many oncogenes are implicated in this carcinogenetic process and among them 

also the ras oncogene (Gimm, 2001) (Tables I and 2). 
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Overview of Sens implicated in the pathogenesis of thyroid cardnoma 

Histological type Gene Comment 

Papillary (PTC) RETlPTC Rearrangements are found in up to 40% (regional differences exist) 
At least eight rearrangements 
RET/PTC! most common in aal-irradiated PTC and late post-Chcmobyt PTC. RET'PTC-1 most 
common in early postoChemobyl ITC 

IRK Rearrangements may also be quite common 
At least three rearrangements 

P33 Involved in the dedifferentiation process 
PTEN Undcrexpressed (cytoplasmic rather than nuclear expression), almost never mutations 
ras Mutations may be early event in oncogencsic 
AMET May be overexpreased sithout mutat ions 
p16 May be mutated, methylation found in 33% 
e-erbB-2 Expressed in ahnet 30% (cytoplasmic and nuclear expression) 
`mrDNA' Somatic mitochondria( DNA mutations identified 

Follicular (FTC) P53 Involved in the dedifferentiation process 
ras Mutations early event in oncogenesis and seemingly more common in tumo rt with metastases 
PPARy Seemingly only rearranged in cancers, not in adenomas 
PTEN Underexpressed. almost never mutations 

Undifferentiated (UTC) p53 Overexpressed, often mutated 
ß-Carenin Mutations found in 61%. nuclear localisation 
PTEN Very low levels of expression, high frequency of LOU 

Mcdufs y (iMfCC) RIET Cermiine misscnse mutations in >95% of hereditary cases 
Somatic missense mutations in about 30-50% in sporadic cases 

e-erb8-2 Expressed in seemingly 100% (restricted to cytoplasm) 

Table 1. Genes involved In thyroid carcinoma (Gimm, 2001). 
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Table 2. Mutation of genes involved in thyroid carcinoma (Gimm, 2001). 
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Constitutive activation of all the members of ras family, observed in the full 

range of thyroid malignancies (Sherman, 2003), suggests that it could be an early event 

(Garcia-Rostan et al., 2003) and its different frequencies depend on the tumour type 

(Table 3) (Tallini, 2002). 
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Table 3. Molecular alteration in thyroid tumours (Tallinl, 2002). 
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Among the most common mutations in ras, there is the substitution of glycine. 

with valine at position 12 in the first exon. The FRTL-5 cell line was transfected to 

stably express a constitutively active form of cellular ras carrying the mutation 

HRasv12 A loss of differentiation of these cells was observed concomitantly with high 

levels of the protein, demonstrating the association between the ras oncogene and the 

most aggressive cancer of the thyroid gland showing no expression of the differentiated 

phenotype (De Vita et al., 2005). 

As in many tumours, an increase in the levels of c-Myc has been found also in 

thyroid neoplasms including many thyroid carcinoma cell lines; the highest being in 

the more malignant, undifferentiated cell lines. Moreover, a block of c-Myc protein 

synthesis could inhibit the growth rate of the thyroid carcinoma cell lines, indicating 

that c-myc overexpression plays a critical role in the growth of thyroid cancer cells. 

These findings support the hypothesis that this proto-oncogene might be involved in 

thyroid neoplastic progression (Cerutti et al., 1996). 

1.3 The ras proto-oncogene 

1.3.1 The ras history 

The first studies on the ras proto-oncogene date back to the beginning of the ̀ 60s, 

when some retroviruses, carrying murine leukaemia, were identified to induce 

sarcomas in rodents, thus leading to the acronym "ras" for rat sarcoma. 

Later, these tumorigenic sequences derived from the rat genome and the cellular 

homologues of the well-characterized retroviral oncogenes were found related to the 

human oncogenes. The nucleoti de sequences of the H-ras and K-ras were published in 

1982 and later those of N-ras. In the following years, more light was shed on their 
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activity, function, structure and mutation as depicted in figure 2, (Malumbres and 

Barbacid, 2003). 

Tod- A -' -- W* of RAS 

. 
"ji, 41 

uý ýý ýIn r .:. 
4ý 

ýJ 
. 

Figure 2. The ras history (Malumbres and Barbacid, 2003). 

1.3.2 The ras family 

In mammalians, the Ras family includes four isoforms tightly related among 

them. H-Ras, K-Ras4a, K-Ras4b and N-Ras. The H-, K- and N-ras genes are expressed 

in each tissue and cell type with a varying pattern depending on the organ, embryonic 

developmental stage and postnatal differentiation. All the three genes encode very 

similar products, the p21 proteins, which could be required in different amounts at 

different times in a tissue-specific manner (Leon et al., 1987). 

The Ras family proteins undergo a series of post-translational modifications at 

the level of C-terminal region, to make it more hydrophobic. The three proteins share 

the same sequence for the first 85 residues at the N-terminal region and have a 90% 

degree of homology in the following 80 residues. The last 24 residues of the proteins 

exhibit significant sequence divergence. This hypervariable region (HVR), with about 

10-15% conservation among the three isoforms, is composed of two domains: the 

membrane-targeting domain and the linker domain. The first one is divided in two 

subdomains: the C-terminal CAAX motif (C=cysteine, A=aliphatic amino acid, 
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X=serine or methionine) and the signal sequence. The cysteine of the CAAX sequence 

is famesylated and then, after the proteolysis of the AAX sequence, 

carboxylmethylated. The second signal sequence consists of a polybasic stretch of six 

lysine residues (175-180) in K-Ras or palmitoylation of different cysteine residues in 

H- and N-Ras (Figs. 3 and 4). 

1 85 165 188/189 

Lipid modification 

H-Ras HKLRKLNPPDESGPGCMSC CVLS Farnesyl, palmitate 
N-Ras YRMKKLNSSDDGTQGCMGLPCVVM Farnesyl, palmitate 
K-Ras4A YRLKKISKEEKTGCVKIKCIIM Farnesyl, palmitate 
K-Ras4B HKEKMSKDGF1KKFr: KI SKTKCVIM Farnesyl 

Linker domain Membrane-targeting 
domain 

Figure 3. Ras hypervariable regions. The diagram shows the degree of sequence conservation between 

isoforms along the Ras protein; all of the effector, exchange factor and nucleotide-binding sites in the N- 

terminal conserved domains. The hypervariable region (HVR) is the only region of significant divergence 

between the Ras proteins and exhibits <10-15% sequence identity between any two isoforms. The HVR can 

be divided into two domains: the membrane-targeting domain and the linker domain. The membrane- 

targeting domain is made of the C-terminal CAAX motif, common to all Ras proteins, plus second signal 

sequences: cysteine palmitoylation sites (shown in red) in H-Ras, N-Ras and K-Ras4A or a polybasic domain 

in K-Ras4B (shown in red and underlined) (Prior and Hancock, 2001). 

Newly synthesized Ras is a cytosolic protein and needs post-translational 

modifications to reach its final localization in the plasma membrane and to exert its 

function. 

For H- and N-Ras, a farnesyltransferase catalyses the transfer of the 15-carbon 

isoprenoid chain from farnesyl pyrophosphate to a cysteine residue at the carboxyl 
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terminus and through its famesyl group, Ras associates with the intracellular 

membranes (Fig. 4). 

The three amino acids (AAX) at the carboxyl terminus are removed by an 

endopeptidase and the new carboxyl terminus is then methylated. Following the 

addition of two palmitoylated long-chain fatty acid groups, the final processing step 

consists in its transportation to the plasma membrane. 

Plasma membrane 

PP F 
000 IOOOO 0000 

PAS '' _z SH 
RAS Cý M"' 

AAX 

FTIs 
d 

FPP Palmitoyl Palmitoykransterose 
CcAA 

Rase. b 
CAAX 
endoPeptida :-c ýx Methykranstera - Me 

RAS Cý RAS RAS 

FFF 

MMcrosomal membrane 

Figure 4. Post-translation processing of Ras proteins. Farnesy I trans ferase (FTase); farnesyl pyrophosphate 

(FPP); farnesyl group (F); palmitoyl long-chain fatty acid groups (P) (Downward, 2003). 

Instead, K-Ras does not become palmitoylated and its movement towards the 

plasma membrane is promoted by an interaction between the negatively charged lipid 

and a group of lysine residues in its carboxyl terminus. 

Since the three isoforms differ among themselves for the different post- 

translational modifications that confer different membrane anchors to the mature 

proteins, it seems possible that they have different functions because of their 

localization on the plasma membrane (Downward, 2003; Matallanas et al., 2003; Prior 

and Hancock, 2001). 
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In particular, the human H-ras gene is located on the minus strand p 15.5 band of 

the chromosome 11 and consists of seven exons with the first as well as the last 

untranslated. The transcript encodes for a 189 as long protein. 

1.3.3 Molecular mechanisms of Ras activity 

The H-ras proto-oncogene encodes a 21 KD polypeptide (188 aa), p21, which is 

a monomeric GTPase involved in signal transduction between external and cellular 

environment. Because of the wide range of external signals, it plays a key role in 

regulating cellular proliferation and differentiation (Campbell and Der, 2004). 

Ras proteins exist in equilibrium between an active and an inactive state. The 

inactive state is characterized by a conformation that allows binding of GDP. After an 

external stimulus, a conformational change of the protein, followed by the exchange of 

GDP for GTP, results in its activation. Its intrinsic GTPase activity catalyses the 

hydrolysis of GTP returning the active Ras protein to the inactive GDP-bound state 

(Barbacid, 1987) as schematically shown in figure 5. 
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Figure 5. Ras upstream and downstream signaling. Extracellular stimuli signal through cell surface plasma 

membrane receptors, for example, RTKs. Through a variety of adaptor proteins, these signals cause guanine 

nucleotide exchange factors to replace the GDP-bound to inactive Ras with GTP. GAPS trigger the hydrolysis 

of GTP back to the inactive GDP-bound form. GTP-bound Ras binds to a plethora of downstream effector 

molecules to stimulate intracellular signaling of several pathways. Activation of these pathways and others 

cause changes in many mechanisms leading to transformation, invasion and metastasis (Campbell and Der, 

2004). 

The H-Ras protein, localized at the level of the inner face of the plasma 

membrane, carries out its function through the acivities of two distinct families of 

proteins: Guanine nucleotide Exchange Factors (GEFs) and GTPase Activating 

proteins (GAPs). The GEFs facilitate the activation, whereas the GAPs the return of 

Ras back to the inactive state (Fig. 6). The balance between these proteins determines 

the activation state of Ras. 
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Figure 6. Signaling upstream of Ras. GTPase activating proteins (GAPs); guanine nucleotide exchange 

factors (GEFs); (Downward, 2003). 

Considering that an aberrant function of Ras proteins results in their deregulated 

GDP/GTP cycle, GAPs may represent putative tumour suppressor genes while GEFs or 

guanine nucleotide dissociation stimulators (GDSs) may be putative oncogenes. In this 

context, one can hypothesize that an elevation of Ras-GTP levels could be due to either 

inhibition of GAP activity or stimulation of GDS activity. 

Mechanisms by which GAPs are downregulated could be due to its own 

phosphorylation or the phosphorylation of two GAP-associated phosphoproteins p62 

and p190. Another mechanism by which GAP activity may be regulated is because 

certainly mitogenically stimulated lipids may interact with p120 GAP or with its 

opposite GTPase inhibiting protein (Kazlauskas et al., 1990, Li et al., 1992; Medema et 

al., 1993, Tsai et al., 1990). 

As regards GDSs, the best studied activation mechanism involves the assembly of 

complexes of activated, autophosphorylated growth-factor-receptor tyrosine kinases 

with the Son of Sevenless (SOS) GEF through the adaptor protein GRB2 resulting in 

the recruitment of SOS to the plasma membrane, where Ras is located (Downward, 

2003). 

Among the GEF family, SOS, the most studied and first identified in Drosophila, 

was cloned for one human and two murine homologs. SOS exerts its function 

downstream of a receptor tyrosine kinase. Its localization at the level of plasma 
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membrane is provided by its capability to interact with phosphatidylinositol 4,5- 

bisphosphate (PIP2). In addition, in the central region, SOS has a GEF domain required 

for its catalytic activity and a GRB2-binding site in its carboxyl end (Takai et al., 

2001). 

Stimulation of GDS activity could account for mechanisms such as its own 

phosphorylation (Gulbins et al., 1993) or membrane association. In the latter case the 

Grb2-SOS complex acts as an adaptor molecule by providing link between the 

phosphorylated tyrosine receptor kinase and the membrane-bound Ras and increases 

the concentration of SOS at the plasma membrane to promote the activation of Ras 

protein (Fig. 7). 

v 
RTK 

coP 

Figure 7. Grb2 mediates the translocation of SOS to the plasma membrane. Present evidence suggests that 

SOS activation of Ras protein is triggered by the translocation of the Grb2/SOS complex to the plasma 

membrane during the mitogenic stimulation via receptor tyrosine kinases (Khosravi-Far and Der, 1994). 
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1.3.4 The ras pathways 

Ras is one of the proteins implicated in the transmission of extracellular stimuli 

from external environment to cellular environment by a signaling cascade that converts 

fast signals into long-term responses. When activated by a receptor tyrosine kinase, 

Ras in turn activates many proteins present in different pathways downstream. Among 

the most intensively studied mammalian pathways of Ras, is the MAP-kinase cascade 

involving three serine-threonine kinase referred as MAP-kinase kinase kinase, MAP- 

kinase kinase and MAP-kinase. 

The first effector of this cascade is the protein serine/threonine kinase Raf, which, 

when activated, phosphorylates and activates mitogen-activated protein kinases 

(MAPKs) extracellular signal-regulated kinases 1 and 2, ERK1 and ERK2. Their 

substrates are cytosolic and nuclear proteins. In the latter case, they act on ETS family 

transcription factors such as ELK1, which regulates Fos expression and c-Jun 

phosphorylation, leading to activation of the AP1 transcription factor made by FOS- 

JUN heterodimers. As a result, key cell cycle regulatory proteins are expressed (Fig. 8). 
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Figure 8. Signaling downstream of Ras proteins: activation of the ERK MAPK cascade (Der et aL, 2007). 

A second well-studied pathway involves the phosphatidylinositol 3-kinases 

(PI3Ks) as effector, whose action regulates cell survival. 

When activated by the fry complex of the G protein, this kinase leads the 

phosphatidylinositol phosphorylation at one or two residues. The resulting 

phosphorylated forms of this membrane lipid act as an anchor bringing downstream 

effectors of the cascade (such as AKT involved in cell survival regulation) to the inner 

face of the plasmatic membrane (Fig. 9). 
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Figure 9. Signaling downstream of Ras proteins. In its active state, Ras interacts with several families of 

effector proteins (Downward, 2003). 

1.3.5 The ras oncogene 

From the figure 9, it is easy to understand how an aberrant Ras function can 

promote a malignant transformation. 

ras genes can acquire transforming properties by qualitative and quantitative 

mechanisms. However, the neoplastic properties induced by highly overexpressed ras 

proto-oncogenes are weaker than those induced by their mutated alleles. 

The most frequent mutations, rendering the Ras proteins constitutively active, 

occur in codons 12,13 (affecting the guanosine triphosphate (GTP)-binding domain in 

exon 1) or 61 (affecting the GTPase domain in exon 2) of one of the three ras genes. 

These mutations are known to confer transforming properties to ras genes and reverse 

the normal equilibrium between the active and inactive forms, stabilizing Ras proteins 

in their active state (Barbacid, 1987), as it is depicted in figure 10. 
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Figure 1Q Current model of mechanism of action of normal and transforming ras proteins. 

a) mutations that inhibit the intrinsic GTPase activity; 

b) mutations that increase the exchange rate between GDP and GTP; 

c) mutations that induce a constitutively active conformational change that does not require binding of 

guanine nucleotides (Barbacid, 1987). 

The ras gene mutations are found in a variety of tumour types, such as 

adenocarcinomas of the pancreas, colon and lung, thyroid tumours and myeloid 

leukaemia, with different incidence (Bos, 1989) as in table 4. 

I 
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Table 4. Incidence of ras mutations In human cancer (Bos, 1989). 

1.3.6 Molecular mechanisms of Ras activity in thyroid cancerogenesis 

Tumours of the follicular epithelium of the human thyroid gland represent a 

multi-stage model of epithelial tumorigenesis proceeding from follicular adenomas. 

The follicular adenomas are divided into two groups: microfollicular and 

macrofollicular types. They are benign neoplasms, slowly progressive and well- 

differentiated, affecting young age groups. Undifferentiated or anaplastic thyroid 
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carcinoma is a rare tumour with a poor prognosis, highly malignant, occurring in the 

elderly, through differentiated carcinoma (Fig. 11). 

Follicular Follicular 
adenoma carcinoma 

Normal follicular Undiferentiated 
epithelium carcinoma 

Papillary carcinoma, ' 

Figure 11. Tumours of the follicular epithelium of the human thyroid gland (Lemoine et al., 1989). 

Some studies (tables 5,6 and 7) indicate that active ras oncogenes (the 

predominant mutation being a valine for glycine substitution in codon 12 of H-ras) are 

found in all stages of human thyroid tumorigenesis and their activation by mutation 

occurs at an early stage of neoplastic progression (Fusco et al., 1987b; Hashimoto et 

al., 1990; Lemoine et al., 1988; Lemoine et al., 1989; Namba et al., 1990; Suarez et at., 

1988). 

Activated ras oncogenes in human thyroid a4enomat 

Case No. 
Age and 

sex Histological type 
Neogene position rrturared 
and amino acid subsgfuted 

Trarufecrion 
assay 

1 ü! F Macrofollicular n. d. 
2 55 F Macrofollicul-ar - mtl. 
3 40 F Macrofollicul. ar n. d. 
4 35 F Macrofollicular n. d. 
5 36 F Macrofollicular - n. d. 
6 29 F Macrofollicular n. d. 
1 33 F Macrofollicular - n. d. 
8 46 F Macrofollicuiar -- n-d. 
9 30 F Microfollicalar - 10 31 F Microtollicdlar N-ras, 61 CAA -+ CGA (gin -" arg) + (N-ras) 

11 42 F Microtollicular - 12 56 F Microfollicular Ki-ras, 12 GOT AGT (g1y -" 5er) -- 
13 42 F Microfollicular - 14 55 F Microfollicular - 15 44 F Microrollicular - 16 55 F Microfolliculir 1$. r4s, 61 CAA -. CC"A (gin -Arg) -i- (N-ras) 
17 13 F Microfollicular' .. 18 38 F Microfollicular Ha-ras, 61 CAG -" COG (gin "+ six) +I ha"rasi 
19 53 F Microfollicutar Ha-ras. 61 CAG --. CGG (gin feu) + (Hi-ras) 
24 16 NI -" Microfollicular -- - 
21 48 F Microfollicular N-ras, 61 CAA " CGA (gin -+ arg) + (N-ras) 
22 42 F n-licrofollicalar Ha-ras, 12 GGC -" GTC (gly - val) +, 043-rast 
23 33 F Microfolficalar . - n d. 
24 49 F Microfollicular ?4 ras, 12 GGT --" TGT (sly -" cys) n. d. 

Mutations cxpresscd as amino acid substitution produced in ras protein: 
gin - glutamine; a rg - arginine; gly - Blycinc; Set - serine; val - valine; cyst - cysteine: IN - Icucir. C; 
AV - apartate; lys - lysine. 
Transfcction assay; ad.. not done; +/- positive, /negatve assay; (identity of acti4ated oncogent) 

Table S. Activated ras oncogenes in human thyroid adenomas (Lemoine et al., 1989). 
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Activated ras orc1)gene4 in human thyroid c rcinomas 

Cast No. 
Age and 

sex Histofogicat type 
Onrogene Position muttued 
and anno acid swbstiratrd 

Transfh: t16n 
'Asap 

1 51 F Diffarentiated, follicular - ed 
2 39 F Dil1Brrntia1od, follicular "& 
3 79 F Di}rerentiatcd, follicular - nd 
4 70 M Ddferendated, follicular Ha-ras. 12 ()GC -' CAC Igly -ý asp) n. d. 
5-- 78' F Dillerentiated, FoUtcular n. a 
6 36 F D[R'creatiated, follicular Ha-ras, 61 CAG -+CGG I81n -* argl a d. 
7 41 F Dtffcrentiated, follicular Heras, 61 CAC +CGG (gtp -ý arg) w CA 
3 36 M Dzf(rentialed. follicular 11.6- 
9 66 F Ditft en: iated, follicular N-rat, 61 CAA -. C TA Ion -. lein n, 1. 

14 74 F- "'"DiFerenaatcd, Follicular - at 
11 74Z F Undifferentiated(anaplast[c) Ki-ras. 12GCT-AGT(gJyý aerº nd 
12 46 F Undd£orentuted(anaplas(ic) Ki-ras, 12GCT.. TGT(gly -mot - IKº-rus) 
13 61 M Undi einIÜlled Itnapls 1k) - He-Fos. 12 QC, C -. GTC tgly -" va]) titt-rns! 
la 46 M UnditTetentiated (anaplastic) Ha-raY. 61 CAG .. 4AG igin - lys) + Hrra r 
15 72 Sf Undifferentiated (anaplastic) 
16 75 F Undiffcnnnated tanaplastic) - nd 
17 62 M Undi ferentiated lanaplastic) - n. J. 
I8 33 F Undifferentiated (anaplasne) - 0.1 
19 39 F Undifferentiated (anaplastic) M1-ras. 11 OCT -+ CAT Igly -. asp) n ,1 20 62 F Undifferentiated (anaplastic) laa-ras, 12 CGC -+ TGC (gly - eys) n. d. 

Table 6. Activated ras oncogenes in human thyroid carcinomas (Lemoine et al., 1989). 

Activated ras oncagenes in human thyroid tumours* 

Oncogene/position irn'olred 
Of cases With Cases with mutant rast 

mutant ras uncopenes total cases tested Ma-ras N-ras Ki-ras 

ADENOMIS 
Macrofollicular- 0 018 
Microfullicular 50 8J16 H1I val (1) N, = cys (1) R cer(1) 

Hes arg (1) N®1 arg (3) 
H6, leu (1) 

CARCINOMAS 
Follicular 53 8/15 Hi2 asp (t) Kt1 scr (1) 

H61 arg (4) N6, arg (1) 
N,,, leu (1) 

Undifferentiated 60 6110 H, i Val ()) N12 asp il) K1= ser (1) 
(Anaplastic) }ilr cvt (lj Ks cvs (1) 

Hsi lys (1) 

*Cumulative results of this study tocether with results published in . cmolnc er at. (l S ). Cancer Research, 48,4459-4463. 

Table 7. Activated ras oncogenes in human thyroid tumours (Lemoine et al., 1989). 

Moreover, the mutation status of ras, is associated with poor prognosis. Among 

the patients of thyroid carcinoma, 74.3% die of ras mutated tumours with respect to 

31.9% of those having tumours without mutations (Fig. 12) (Garcia-Rostan et al., 

2003). 
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Figure 12. Survival of patients with thyroid carcinoma dichotomized according to the presence of activating 

H-, K. or N-ras mutations (RAS); dead of disease (DOD) (Garcia-Rostan et aL, 2003). 

1.4 The c-myc proto-oncogene 

1.4.1 The c-myc history 

The c-myc proto-oncogene was first described in 1982 as the cellular homologue 

to the transforming sequences of the avian myelocytomatosis retrovirus (Dalla-Favera 

et al., 1982b; Vennstrom et al., 1982). Oncogenic c-Myc is a key transforming agent in 

the etiology of human Burkitt's lymphoma. c-myc expression is altered in a wide 

variety of human tumours, which usually consists in an overexpression of the proto- 

oncogene leading to'the repression or activation of several genes. In particular, many 

activated genes are those involved in cell growth, cell cycle (ODC) and cell 

proliferation, such as cyclins D1, D2 and CDK4. The genes that are silenced control 

processes such as inhibition of cell cycle (CDK inhibitors p21 and p15INK4A) or 

apoptosis. They also have a role in regulation of cell adhesion and structure formation 

i. e. they encode extracellular matrix proteins and cytoskeletal proteins such as ßl- 

integrin or N-cadherin) (Brenner et al., 2005; Coller et al., 2000; Dang et al., 2006; 

Guo et al., 2000; Levens, 2003; Löscher and Eisenman, 1990; Menssen and 

Hermeking, 2002). 
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1.4.2 The myc family 

The c-myc gene belongs to the myc family of proto-oncogenes including two 

other evolutionarily conserved members: N- and L-myc, with strong homology to c- 

myc. Each of the three mammalian myc family genes has the same characteristic three- 

exon structure with the major polypeptide open reading frame residing in the second 

and third exons. The first exon is not conserved. 

The three members of the myc gene family are differentially expressed during the 

embryonic development (Facchini and Penn, 1998; Marcu et al., 1992; Patel et al., 

2004; Ramsay et al., 1984). In mouse embryos, by in situ hybridization, the c-myc was 

shown to be preferentially expressed in endodermal and mesodermal tissues, while 

organs developing from ectoderm revealed low levels of c-myc RNAs (Pfeifer-Ohlsson 

et al., 1985; Schmid et al., 1989). c-myc expression varied with age in mice in a tissue- 

specific manner, with highest levels of expression in newborn and old animals. N- and 

L-myc expression was high in a more restricted set of perinatal and newborn tissues 

(Semsei et al., 1989). 

Elevated c-myc expression has been associated with a wide variety of 

malignancies. On the other hand, N-myc is expressed in tumours such as 

neuroblastomas or retinoblastomas. L-myc expression is restricted to small cell lung 

carcinomas (SCLC) (Marcu et al., 1992). 

In particular, the c-myc human gene is located on chromosome 8 and consists of 

three exons: a long, untranslated exon (exon I) and the two exons encompassing the 

protein coding sequences (exons 11 and III). The c-myc proto-oncogene encodes a 

transcription factor; which regulates the expression of many genes involved in the 

control of cell proliferation, differentiation and apoptosis (Askew et at., 1991; Cole, 

1986; Evan et al., 1992; Spencer and Groudine, 1991). In fact, gene-targeting 

approaches have demonstrated that c-Myc function is critical for cell proliferation and 
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murine development. The c-myc expression seems to be necessary and sufficient for 

the entry of the cells into the S phase of the cell cycle (Hanson et al., 1994). Moreover, 

c-Myc-deficient mice die at embryonic day (E) 9.5 to 10.5 and are developmentally 

retarded (Davis et al., 1993). 

Multiple transcription start sites exist within the gene, giving rise to four 

transcripts (P0, P1, P2 and P3 of -3.1,2.4,2.25 and 2.0 kb respectively). P1 and P2 are 

the two most commonly used promoters and the mRNA transcripts initiated by them, 

have the capacity to encode the two major species of human c-Myc protein: Mycl (66 

KD protein) and Myc2 (64 KD protein) (Fig. 13). 
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Figure 13. Schematic representation of the human c-myc gene and the two resultant protein products, c-Mycl 

and c-Myc2 (Birnie, 1996). 

Both proteins have relatively a short half-life (25-30 minutes) (Facchini and 

Penn, 1998, Hann and Eisenman, 1984), thus suggesting that the products of c-myc are 

regulatory rather than structural elements in the cell. 

Myc proteins are rapidly degraded by ubiquitin-mediated proteolysis. In 

particular, two elements govern the Myc stability: an Nu-terminal element (degron), 

overlapping the Myc transactivation domain (TAD), is essential for Myc destruction 
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and a C-terminal element stabilizes Myc. Mutations within the Myc degron can 

determine cancer as a consequence of the protein stabilization and activation (Flinn et 

al., 1998; Salghetti et al., 1999). However, these controls, preventing its accumulation 

in normal cells, are lost in cancer cells, resulting in aberrantly high levels of Myc 

proteins. The strong selection for Myc overexpression in tumours appears to reflect its 

ability to provide constitutive signals that promote proliferation and angiogenesis. 

The relative abundance of Myc2 vs. Mycl protein varies among tissues and cell 

lines, with Myc2 species being the major isoform in most cases. 

The Mycl protein arises from an upstream non-AUG translational start site and 

thus contains an amino-terminal extension of 14 amino acids (aa) as compared to the 

Myc2 protein. Probably, Mycl protein has a growth inhibitory role, while Myc2 has a 

growth stimulatory function (Hann S. R. et al., 1994; Hann et al., 1992) and they are 

differentially synthesized during cell growth, as at high cell density, the activation of 

the normally inefficient non-AUG initiation results in predominance of the Mycl 

protein. 

1.4.3 Molecular mechanisms of c-myc activity 

The product of the c-myc proto-oncogene is a highly conserved nuclear 

phosphoprotein, functioning as a transcription factor, a region encoded in the third 

exon directing the translocation of polypeptides to the nucleus (NLS) (Eisenman et al., 

1985; Hann and Eisenman, 1984; Stone et al., 1987) 

The Myc2 protein is 439 as long. Its amino terminus region probably regulates 

the protein-DNA interaction (Kato et at., 1992) and is capable of transcriptional 

activation (Kato et al., 1990). The carboxyl-terminal region (85 aa) shares significant 

sequence similarity with two classes of transcription factors: the basic region helix- 
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loop-helix (bHLH) and basic region leucine zipper (bZip) proteins, both having basic 

regions adjacent to their dimecization domains (Facchini and Penn, 1998) (Fig. 14). 
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Figure 14. c-Myc protein structure, function and binding proteins (Facchini and Penn, 1998). 

Many of the bHLH proteins exhibiting nuclear localization are DNA-binding 

proteins and function as transcriptional regulators (Blackwood and Eisenman, 1991). 

Moreover the HLH-Zip motif is responsible for specific heterodimeric formation 

between Myc and its binding partner, Max (Myc-associated factor "x"), which was 

identified during screening of a complementary DNA expression library. 

Like Myc, also Max exhibits a basic region followed by HLH and Zip regions. 

By alternative splicing, max mRNAs encode 151- and 160-aa polypeptides containing 

the basic HLH-Zip domain and can oligomerize with Myc. Myc and Max can bind to 

each other by these two regions (HLH and Zip). Moreover, the integrity of these 
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regions in Myc is necessary for its binding with Max and the bond between the cMyc- 

Max complex and the DNA. 

As a transcriptional regulator, c-Myc/Max complex specifically binds to the E 

box myc site sequence (EMS) "CACGTG" (Kato et al., 1992) as assessed by 

electrophoretic mobility shift assay (Blackwood and Eisenman, 1991) (Fig. 15) and this 

E-box is conserved among different species (Fernandez P. C. et al., 2003). 

activation 
NA POL 

TATA 10-4 Target Gene 

Figure 15. The c-Myc/Max heterodimer and its bond to the E box 5'-cacgtg-3' (Eisenman, 2001). 

After binding to chromatin, Myc is involved in translating mitogenic stimuli into 

chromatin modifications (Amati et al., 2001; Grandori et al., 2000; McMahon et al., 

1998). It induces histone H4 acetylation (near E-box site) by recruitment of 

TRansactivation/tRansformation Associated Protein (TRRAP), its interaction with Myc 

is depicted in figures 16 and 17 and described in the "1.4.4 The c-myc pathways" 

paragraph. This complex, capable of acetylating proteins involved in transcription, is 

known to acetylate Myc, leading to a dramatic increase in protein stability (from 41 to 

132 min). Following acetylation at lysines 323 and 417, that alters its rate of 

degradation, Myc protein is stabilized (Frank et al., 2001; Patel et al., 2004) and the 

Myc-targeted genes transcriptionally activated. Myc regulates cyclin D2 by a similar 

mechanism (Bouchard et al., 2001) (Figs. 16 and 17). 
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Figure 16. Functional domains of human c-Myc protein, trans-activation domain (TAD); Myc box I (MBI); 

Myc box II (MBII); signal of nuclear localization (NLS); basic region (b); helix-loop-helix (HLH); leucine 

zipper domain (LZ); amino-terminal domain (NTD); carboxy-terminal domain (CTD) (Stella Pelengaris, 

2002). 
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Figure 17. Myc-Max and Mad-Max complexes regulate gene activation through chromatin remodelling 

(Pelengaris et al., 2002). 

1.4.4 The c-myc pathways 

Several genes activated by Myc, are identified. One or more nuclear proteins are 

able to associate with the c-Myc N terminus to exert this activation. These proteins or 

cofactors interact with conserved blocks of approximately 20 as referred to as Myc- 

boxes I and II (MbI and MbII). Deletion mutants of these two regions are unable to 
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maintain H4 acetylation (Frank et at., 2001) and are inactive in cellular transformation 

(Brough et at., 1995; Stone et al., 1987). 

In particular, the novel and essential TRRAP cofactor, has been isolated and its 

association with c-Myc is found to be MbII-dependent (Brough et al., 1995). Since its 

mutants and antisense TRRAP RNA act as dominant inhibitors in transformation 

assays, it is possible to conclude that the TRRAP cofactor is rate limiting in Myc- 

dependent transformation (McMahon et al., 1998). This new nuclear factor interacting. 

with MbII possesses histone acetylase (HAT) activity, which presumably modifies 

nucleosomal packaging to facilitate transcription at specific chromosomal targets. 

TRRAP pre-exists in a complex with hGCN5 in mammalian cells and seems to mediate 

the recruitment of hGCN5 to Myc. Indeed the c-Myc N- terminus, in particular its wild 

type MbII sequence, has been shown to interact with hGCN5, the human nuclear 

cofactor with well-documented HAT activity. The recruitment of the TRRAP-hGCN5 

complex may be essential for c-Myc biological activity (McMahon et al., 2000). 

However, other genes that are transcriptionally silenced by c-Myc, have been 

identified. They are mainly involved in expression of cell cycle/growth arrest and their 

suppression can be exerted in different ways. c-Myc is able to bind different proteins at 

its C terminus domain apart from Max (Fig. 18). By interacting with transcription 

factors (YY-1 (Ping Yang-1), TFII-I or Miz-1), c-Myc can repress some genes having 

the transcriptional initiator (Inr) element in their promoter. Particularly Miz-1 is a zinc- 

finger protein playing a major role in controlling the expression of genes, Inr- 

containing promoter and is involved in cell-cycle arrest, inducing G1 arrest. These 

genes are repressed by c-Myc (in a c-Myc dependent manner) (Li et at., 1994; Peukert 

et al., 1997). 
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Figure 18. c-Myc interacting proteins (Dang, 1999). 

Miz-1 stimulates the expression of the cyclin-dependent kinase (Cdk) inhibitor 

p15INK4b by interaction with p300 as a co-activator and leads to its nuclear localization 

and functions as a complex with c-Myc, which in turn recruits Max, resulting in a 

trimeric Miz-1-c-Myc-Max complex. Moreover, c-Myc-binding surface on Miz-1 

overlaps with its transcriptional activation and p300-binding domain. Thus, the 

transcriptional activation by Miz-1 is inhibited by c-Myc interfering with the formation 

of a Miz-1 - p300 complex (Staller et al., 2001). 

Alternatively, repression by c-Myc can occur through an Inr-independent 

mechanism, such as by interaction with proteins like Spi, as in the case of 

p21(W'°'FI/CIPI) (Gartel et al., 2001), or Smad, as in the model in which p15R''x4b is 

silenced following the binding between c-Myc and the Smad complex (Seoane et al., 

2001). Moreover, the Myc/Max complex can directly interact with the Inr element of 

many genes to interfere with their repression rather than with their expression (Gartel 

and Shchors, 2003). 
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1.4.5 c-myc: between cell cycle and apoptosis 

Cellular life is governed by complex signals, culminating in the decision to 

progress through cell cycle, exit into quiescence or undergo apoptosis. Myc not only 

plays a role in entry into the cell cycle, transactivation or transrepression of different 

classes of genes but also is essential for another important aspect of cell life: the 

programmed cell death or apoptosis. 

Under certain conditions (such as serum deprivation or growth factor 

withdrawal), an inappropriate expression (overexpression) of Myc resulted in cell death 

by apoptosis through cytochrome c release from mitochondria to cytosol and 

consequently activation of caspases in fibroblasts and myeloid cells (Fig. 19) (Chang et 

at., 2000; Conzen et at., 2000; Juin et at., 1999; Packharn and Cleveland, 1994; 

Thompson, 1998). This behaviour could safeguard cells from cancer as it eliminates 

cells that accumulate high levels of this oncoprotein. 

Apoptosis is known to be a function of myc separable from transactivation and 

induction of cell cycle but it correlates with transrepression. Between the two 

evolutionarily conserved regions, MbI and MbH, just the latter is required for 

transcriptional repression and plays a critical role in Myc-induced apoptosis. Even a 

reduced transrepression in mutant form of the phosphoprotein correlates with a 

diminished ability in accelerating apoptosis caused by reduced ability to release of 

cytochrome c (Conzen et al., 2000). 

Some anti-apoptotic genes such as Bc12, when expressed in cells ectopically 

expressing myc, block c-Myc-induced apoptosis (Wagner et al., 1993). However, other 

genes, capable of transforming cells and providing protection from apoptosis, such as 

H-Rai'2, enhanced or unblocked apoptosis rather than suppressing it in serum- 

deprived fibroblasts (Kauffmann-Zeh et at., 1997; Kennedy et al., 1997). 
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Figure 19. Pathways involving c-MYC and apoptosis (Pelengaris et al., 2002). 

1.4.6 The c-myc oncogene 

The c-myc oncogene is among the most frequently overexpressed genes in human 

cancer (Nesbit et al., 1999). 

As proto-oncogene, myc family genes can be activated to become an oncogene in 

different ways. It could be the target for insertional mutagenesis due to retroviral 

integration between exons 1 and 2 in bursal lymphomas. This is usually followed by 

deletion of the 5' portion of the provirus and expression of the normal Myc protein, 

enhanced by the 3' LTR of the virus (Li et al., 1984; Steffen, 1984). 

A second activation of the same proto-oncogene could be the abnormal 

constitutive expression of its unaltered coding sequence due to a translocation as in 

Burkitt's lymphoma, between the myc locus and the immunoglobulin gene loci. Such a 
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translocation results in a loss of the normal gene regulation, leading to constitutive c- 

myc expression (Adams et al., 1983; Dalla-Favera et al., 1982a; Marcu et al., 1983). 

Another mechanism for increasing gene expression is DNA amplification, 

resulting in an increase in the number of templates available. In particular, 

amplification of c-myc has been observed in different neoplasms (Alitalo et al., 1983; 

Escot et al., 1986). Other mechanisms involved in Myc-induced carcinogenesis, are 

overexpression, point mutations and increased protein stability. Protein stability is 

determined by gene amplification of the coding region determinant binding protein, 

CRD-BP, involved in posttranscriptional regulation of c-Myc mRNA (Vita and 

Henriksson, 2006). 

Moreover, all the different posttranslational modifications of Myc protein, 

involving phosphorylation, acetylation and ubiquitinylation are involved in the 

regulation of Myc stability (Vervoorts et al., 2006; Westermarck and Hahn, 2008). The 

frequency of the most common Myc alterations observed in human tumours is 

summarized in table 8. 
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Summaq of Mye 1 eputation in bummnmorns 

Tumor type Frequency otMw abeaalions 

Hanaiobgrcal oa690ancOCS 
Baau Iyn 41oc, r c kukcmia c 4tyr rearnnbenunt/ampbfication (47-52%) 

Burtitt's lymphoo a ci tnns{oceuon (100%) 
c. M over pression (91%) 

Diffuse bugs cell l}mtphana c 4fvc rearm ngementhrimlocation (6-16%) 
c4(w ovctexpmssion(10'k) 

Multiple myek nan nNyc trsaskcntion (15%) 
Pmwry plauss cell leukemia c. Alpc searnmgement (13 i') 

Sohl tom on 
Atvpwal asninoid lung cancer c3fwrwnplficuion (17%) 
Blaikrcancer c. l mnp6fication(33%) 
Breast cancer c. Kw amplification (9-48%) 

c+W OYerexpre lion (4%) 

M)'CNoverexpcesaion (25%) 
CRI)-BP arop46ewhoa(1S%)' 

Cernx caeca c, lrfic anplification (29%) 

Cdoa c2nccr c-Mw wnph fication (17%) 
"Wir o. erexpnessioo (67%) 

Cnsmc caoc« c-Mw ampLfic tion (15-30%) 
c-Mycovacxpreuion (47%) 

C8oblaU ina M)CNamplificotiox(<5%) 
c ! wr/AI}C1ti%Gd! )ro%+erexpreuion(37 78%) 

Hepato"llulu arciooma c. Afvr amph&'aüon (33%) 
Large cell neuoeodoai e carcinoma - c3fw amplification (23%) 
M. kdkbI oina c4brJMYCN amplification (545%) 

c Mw c erexpressioo (31`%) 
Mk W overe pression (68%) 

M4anon; modular c. Af)r nmphficaion (61%) 
Melanin. cuperütial spteadutg c-Mw amplification (28%) 
Newwobla &soms Ä: YCN amplification (25.10%) 

Oesophalteal "moue cell carcinoma c. ftir amnpli fit atioo (10-30%) 
c 
Kvc 

amplification (7-78%) 

Onnae cancR c-Mw a nplifcation (40%) 
c-M werexprasioo (44%) 
LMlr ampltfiatios (13%) 
LAl? r averexpression (40%) 

Prostate caeca c, A! )r amplification (30-50%) 
c. Myc overexpreuton (70%) 

Renal clear cell cwncoa c 1f)r omphfication (8%) 
Reunobiwana AfYCNampfificataa (10-20%) 
Rba dote aarcana Af)'CNumlificvuos(33.67%) 

Small CCU luau CMMWMs aMyr amphficuiaº (: AYPa) 
LM%Vc smolfiwuoe (13%) 
MI CN ampIifievtas (10%) 

7110 major Zcsdic ab-AIOas of Afyc is human tumor include gene amplibcAioo is solid tumors and chromosome tmnslocation in lymphoma amd leukemia. 
64iraaon of the Ms. c gent has also bees eeported in some lymphomas, 

8 CRILBP c. yc mRNA cUabdii protzen, associated with &tyc protein ztabilizataa. 

Table S. myc activation mechanisms (Marina Vita, 2006). 

1.4.7 The c-myc oncogene in thyroid 

Different studies have led to discordant conclusions concerning the role of Myc 

in thyroid carcinogenesis. The c-myc expression level was compared between normal 

and tumorigenic thyroid cells. There is a higher amount of c-myc mRNA in adenoma 

cells as compared to the normal ones. Moreover, in normal thyroid cells, c-myc mRNA 
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is visible just after TSH stimulation in a time-dependent manner (Yamashita et al., 

1986). 

However, further studies confirmed that c-myc proto-oncogene expression occurs 

in benign cancer as well as in normal thyrocytes (Burman et al., 1987). Moreover, high 

levels of c-myc and c-fos transcripts were observed in thyroid carcinomas with 

unfavourable prognosis (Table 9) (Hashimoto et al., 1990, Terrier et al., 1988; Wyllie 

et al., 1989; Yamashita et al., 1986). 

Expression of c-nnc and c fi)s proto-oncogenes in human 
thyroid carcinomas 

No. of patients with 
elevated levels of c-onc 
RNAa/No. of patients 

anal ti"_ed 
nlstviogtcat type of 
thproid specimens 

Carcinomas 
Follicular well differentiated 
Follicular moderately differentiated 
Papillary 
Anaplastic 
Medullary 
Total 

Benign tissues 
Adenoma 
Graves' disease 

c-myc RNA c-fos RNA 

011 I'll 
46 36 
6'13 

l 
7.13 

l I I' l 
2/2 ' 212 

13; 23 14; 23 

1/22 20J22 
1 , 13 0/3 

Normal thyroid tissues 2/8 2/8 

'Elevated levels of c-nnvc and c-fos transcripts corresponding to 
>_ 3 fold the levels found in normal human tissues and cells (thyroid, 
lymphocytes). 

Table 9. Activated c-myc and c-fos oncogenes in human thyroid tumours (Terrier P, 1988). 

1.5 Oncogenes and cancer development 

According to the current model for cancer development envisions, cells undergo a 

series of genetic mutations and/or alterations, which result in their inability to respond 
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normally to intracellular and extracellular signals that control proliferation, 

differentiation and death. The number of required genetic alterations varies for 

different types of cancer and it is likely that further changes occur during its 

progression toward increased malignancy. 

The co-operation between multiple oncogenes and/or loss of tumour suppressors 

from different functional classes and altered expression of cancer-associated molecules 

(Bergers et al., 1998) is a necessary path for transformation to proceed. In fact, it was 

observed that, although over-expression of a single oncogene does not transform wild 

type mouse embryonic fibroblasts, combinations of myc and H-ras V12, could induce 

cellular transformation resulting in a marked proliferative advantage (Land et al., 

1983b). 

Transformation of cultured cells is itself a multistep process: rodent cells require 

at least two introduced genetic changes before they acquire tumorigenic competence 

(Fusco et al., 1987a). 

From observations on human cancers and animal models, it appears that tumour 

development goes ahead via a process formally analogous to Darwinian evolution, in 

which a succession of genetic changes, each conferring one or another type of growth 

advantage, leads to the progressive conversion of normal human cells into cancer cells. 

A powerful system to investigate tumorigenesis has resulted from the ability to 

manipulate the mouse germ line through the introduction of new genetic information 

(Hanahan, 1989) and through the targeted disruption of existing genes by homologous 

recombination (Capecchi, 1989; Zimmer, 1992). In addition, the colorectal tumours 

provide an excellent system for the search and study of the genetic alterations involved 

in the development of a common human neoplasm. Its salient features include the fact 

that mutation in at least four to five genes are required for the formation of a malignant 

form and few changes suffice for benign tumorigenesis. One important type of somatic 

1 46 



alteration identified in colorectal tumour is ras gene mutation. In addition to somatic 

alteration by point mutation, oncogenes may be activated by amplification, although, 

only in few cases, as observed in karyotypic analyses. These cases include 'examples of 

c-myc (Alitalo et al., 1983; Fearon and Vogelstein, 1990; Rothberg et al., 1985; Stewart 

et al., 1986). 

1.5.1 ras and myc co-operation 

The aim of this work is to study the multistep process of the thyroid 

tumorigenesis due to the oncogenic interaction. In particular, the work focuses on the 

interaction between two oncogenes: Hras and c-myc. 

In transforming primary cells, nuclear oncogene such as myc is known to 

cooperate with those genes acting in the cytoplasm such as ras. The first type belongs 

to the immortalizing genes, whereas the second one to the transforming oncogenes. 

It was proposed that the myc gene leads to the establishment of rodent cell lines, 

considering that it does not induce any morphological or proliferative changes in 3T3 

cells or in primary rat embryo fibroblasts. Hence the changes caused by the myc gene 

alone in in vitro transformed cells are not sufficient to generate neoplastic lesions and 

that additional changes are necessary (Palmieri et at., 1983). 

Introduction of the ras and myc oncogenes simultaneously through retroviral 

vectors, into midgestation mouse embryos, led to the formation of malignant tumours 

in a great variety of tissues (Table. 10). To asses the transforming potential of the ras 

and myc oncogenes in the developing embryo, embryos were exposed to ras or myc 

single infection or to their simultaneous introduction. Only when jointly infected, the 

oncogenes induced a wide spectrum of neoplasms, the majority of which were 

malignant or premalignant. These results indicate that many cells of the developing 

embryo are highly susceptible to the combined expression of both oncogenes and are 
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consistent with the hypothesis that the ras and myc oncogenes act synergistically in 

vivo in cellular transformation (Compere et al., 1989). In addition, rat embryo 

fibroblasts were found to have tumorigenic conversion following the ras-plus-myc 

cotransfection. They observed that a ras oncogene was not able to force an REF to 

expand into a tumorigenic clone when this gene was expressed at low levels within a 

cell growing in the presence of adjacent normal cells and required a collaborating 

oncogene like myc to achieve this result. Moreover, also a DNA clone that induced 

high levels of myc expression was able to immortalize cells and to cooperate with ras 

more efficiently than clones with lower expression levels of a myc protein (Land et al., 

1986). 

Summary of histologic analysis of lesions after ras/myc 
double infection 

No. observed 
Benign (all skin) 

Surface epithelial hyperplasia with severe 
dysplasia, premalignant 9 

Mixed appendage tumor 2 
Mesenchymal proliferation 1 

Malignant 
Brain 

Neoplasm exhibiting prominent 
angiocentric pattern and epithelial 
papillary configurations (consistent 
with meningeal origin) 6 

Primitive neoplasm (? neural, 
lymphoid, germ cell origin) 1 

Skin 
Squamous cell carcinoma 3 

Kidney 
Malignant neoplasm replacing renal 

medulla 1 
Spindle cell neoplasms in heart, skin, and 

subcutaneous tissue, chest wall (poorly 
differentiated carcinomas, high grade 
sarcomas) 7 

Table 10. Summary of histologic analysis of lesions after ras/myc double infection (Compere et al., 1989). 

It is known that specific combinations of oncogenes can transform, whereas the 

same oncogenes are impotent individually. In particular, the ras and myc oncogenes 
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collaborate in transformation of primary cells (Weinberg, 1989). When alone, these 

two oncogenes were unable to induce foci formation in rat embryo fibroblasts, whereas 

in combination, they achieved the formation of quickly growing foci with altered 

phenotype. Moreover, these cells were tumorigenic when introduced into the nude 

mice (Land et al., 1983b). 

It is also noteworthy that the functional domains of c-Myc protein required for c- 

Ha-Ras cotransformation of rat embryo fibroblasts overlap with those regulating its 

own autosuppression during transcription (Fig. 20) (Penn et al., 1990; Stone et al., 

1987). 
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Structural and functional domains of human e-myc protein. Secondary-structure predictions based on amino acid sequence 
information suggest that the 439-amino-acid nuclear phosphoprotein may be composed of an a-helix-ß-sheet domain (amino acids 1 to 203) 
and a predominantly a-helical domain at the carboxyl end (amino acids 238 to 439) which are separated by a less-structured hinge region 
(amino acids 204 to 237). Additional structural motifs include a highly acidic domain ( B ), a basic region (®), a helix-loop-helix domain 
I tim ), and a leucine zipper ( C] ). Regions most highly conserved among the members of the myc gene family ( ®1 are also indicated. The 
functionally essential domains of c-myc identified to date arc represented by the solid black boxes in the specified schematic diagrams and 
map as follows: autosuppression, residues 106 to 143 and 333 to 433; cooperation with ras oncogenes in rat embryo fibroblasts, residues 106 
to 143 and 353 to 433; nuclear localization. residues 320 to 328 and 364 to 374; and nonspecific DNA binding, residues 290 to 318.11/I11, Bonder 
of exon H. and exon III-encoded sequences. 

Figure 20. Structural and functional domains of human c-Myc protein (Penn et &L, 1990). 

In thyroid cell lines, as well as in fibroblasts and other tissues, more than one step 

is required for the complete transformation of cells to achieve the fully malignant 

phenotype (Table 11) (Fusco et al., 1987a) 
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Transformation markers of PC C13 cells after 
interaction with two different oncogenes 

Colony- Latency 
Cell type 

forming Tumor 
period Histology 

efficiency incidence 
(alks) 

(%) 

PC Cl 30 015 
PC-HaMSV 0 0/4 
PC-myc 0 0/5 
PC-myc + HaMSV 1-2 4/4 3-4 Carcinoma 
PC-HaMSV + myc 1-2 414 4-5 Carcinoma 
PC-Homer 6+ HaMSV 0 0/4 

a PC-HaMSV. PC Cl 3 cells infected with HaMSV; PC-myc, PC Cl 3 cells 
transfected with the pMCGMI plasmid bearing the human c-myc gene; 
PC-myc + HaMSV, PC-myc subsequently infected with HaMSV: PC- 
HaMSV + myc, PC-HaMSV subsequently transfected with pMCGM1; PC- 
Homer 6+ HaMSV, PC Cl 3 transfected with the vector Homer 6 and then 
infected with HaMSV- 

b Colony-forming efficiency was measured in agar as indicated in Table 2, 
footnote a. 

c Tumorigenicity was assayed by injecting 2x 106 cells into athymic nude 
mice. Number of animals with tumorstnumber of animals tested. 

Table 11. Transformation markers of cells from rat thyroid gland after interaction with two different 

oncogenes (Fusco et al., 1987a). 

One aspect of their collaboration is the ability of Ras to stabilize Myc protein by 

inhibiting its proteosome-dependent degradation. Sears et al. (1999) observed an 

increase in the level of Myc protein following a growth stimulation of the cells. Since 

Ras activation is the main event following' mitogenic stimulation, they hypothesized 

that Ras and its pathway were involved in the increase of Myc. Their experiments 

demonstrated that the expression of an activated form of H-ras gene contributed to the 

Myc stabilization and, in contrast a dominant negative mutant form of H-ras gene led 

to a dramatic decrease in the level of Myc in serum-stimulated cells. The 

Ras/Raf/MAPK pathway might be involved in Myc protein stabilization through the 

inhibition of the proteosome-mediated proteolysis, since either the MAPK inhibitor or 

the dominant negative mutant form of H-ras gene did not affect the myc RNA levels, 

induced by serum stimulation (Sears et al., 1999). 

In order to understand how the pathways, downstream these two proteins, interact 

to drive cell growth, Sears et al (1999) focused their attention on the two 
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phosphorylation sites located in the N-terminal domain of Myc: Thr 58 and Ser 62, 

which are regulated by mitogen stimulation. 

It was observed that the Ser 62 phosphorylation is required for the stabilization of 

Myc and is mediated by ERK kinase; whereas Thr 58 phosphorylation, following that 

of Ser 62, controls the c-Myc ubiquitin-mediated degradation and the glycogen 

ynthase kinase (GSK-3, whose activity is held check by that of the AKT) plays a 

crucial role in such a phosphorylation event. 

Thus, Ras activation elicits two responses: a direct effect of ERK on Myc protein 

stabilization and an indirect effect on GSK-3, on which depend ubiquitination and 

degradation (Sears et al., 1999) (Fig. 21). 

Growth Stimulatory Signals 

Ras 

Myc RaUMEK 

ERK 

P13KlNct 
Myc -P 

GSK-3 

Myc 5" 

Ubiquitin 

Proteasome 

Pathways controlling Myc phosphorylation and ac- 
cumulation. 

Figure 21. Pathways controlling Myc phosphorylation and accumulation (Sears et aL, 2000).. 
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1.6 Aim of the Ph. D. project and experimental strategy 

The aim of this Ph. D. project is to study the molecular basis of thyroid 

cancerogenesis induced by oncogenes and their interaction by synchronous activation. 

Three were the main steps of this work: 

1. To generate an oncogenic construct suitable for creating a transgenic mouse strain. 

A novel conditional onco-mouse expressing two oncogenes, c-myc and H-rasY12, 

in a tissue-specific as well as in a conditional manner, would be useful for such a study. 

We have focused on two oncogenes: H-rasv12 and c-myc. To induce' their 

combined action in the same cell, we generated a targeting construct containing the 

inducible alleles of the oncogenes, cited above. Each oncogene was fused to 'a mutated 

Ligand Binding Domain (LBD) of a steroid receptor. In particular, chimeric alleles of 

H-rasv12 (fused to the mutated LBD of the Estradiol Receptor -ER-) and c-myc (fused 

to the mutated LBD of the Progesterone Receptor -PR-) were used. In such a manner, 

the chimeric gene product would be post-translationally and temporally regulated by 

the administration of the cognate ligand. Just after addition of the corresponding drug, 

the protein would change its conformation and become activated to exert its function. 

In both cases, it was used as a mutagenized LBD which permits the binding of 

synthetic drugs like tamoxifene (Juin et al., 1999) and mifepristone or RU486 

(Kellendonk et al., 1996), but not that of the natural' ligands such as estradiol and 

progesterone respectively. Since the inducer drugs differ between them, it would be 

possible to activate only ER-Rasv12 (with tamoxifene for the in vivo or 40HT for the in 

vitro system, respectively) or only c-Myc-PR with RU486 or both simultaneously in 

the presence of two drugs: tamoxifene (or 40HT) and RU486. 

To allow that the two oncogenes are expressed simultaneously and to work on 

oncogene cooperation, in order to induce tumorigenesis, a bicistronic construct was 

made in which, an Internal Ribosome Entry Sequence (IRES) was inserted between the 
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sequences encoding the two oncogenes, to allow the translation of two consecutive 

open reading frames from the same messenger RNA. 

The IRES mechanism involves the formation of a complex structural element in 

the 5'-untranslated region of the mRNA. IRESs were first discovered in picornavirus 

RNAs but there are now many examples of cellular mRNAs containing IRESs. In 

general, these have been identified in genes whose function is associated with cellular 

processes such as cell growth or cell death, cell cycle or apoptosis. 

It seems that cellular IRESs are required to maintain the expression of critical 

proteins when cap-dependent translation is reduced. 

The capacity of different IRESs to induce efficiently, high levels of exogenous 

cDNA expression, changes based on the cell type. Among the different IRESs or the 

different approaches for co-expressing two genes, the encephalomyocarditis virus 

(EMCV) IRES induces high levels of DNA translation (Ghattas et al., 1991). However, 

even its activity differs dramatically according to the cell line or tissue used (Borman et 

al., 1997). It has emerged from studies on site-directed mutagenesis, that a specific 

region of EMCV comprising nucleotides between 403 and 811, is required for efficient 

translation and that a region 400 nucleotides upstream of the initiation codon assumes a 

stem-loop structure. Moreover, a 57 KD cellular protein has been found to interact with 

this stem-loop structure (Jang and Wimmer, 1990). On the basis of these observations, 

it is possible to explain the different activities in different cell lines assuming that cell 

type-specific and spatiotemporally controlled trans-acting factors might exist, 

interacting with that region. Such proteins could be involved in the positive or negative 

control of the IRES-mediated translation based on the accessibility of this structure 

(Creancier et al., 2001). 

IRES-mediated bicistronic expression is successful in vivo (Fenske et at., 2004; 

Mountford and Smith, 1995; Vincent and Robertson, 2003). 

53 



A powerful approach for a tissue-specific and at a chosen time expression of the 

oncogenes is the Cre-loxP strategy (Brenner et al., 2005), in which P1 bacteriophage 

Cre recombinase (yclization recombination) is a 38 KD protein recognizing and 

mediating site-specific recombination between two loxP (locus of crossing [x-ing]-over 

of bacteriophage P1) sequences. LoxP sequence (34bp) consists of two 13 bp inverted 

repeats interrupted by an eight nonpalindromic sequence which dictates the orientation 

of the entire sequence. The Cre protein acts on two loxP sequences on the basis of their 

orientation. This Cre/loxP system can be used to make gene insertion or replacement, 

large genomic deletion or inversion or chromosomal translocation. 

Sometimes it would be useful that the transcription of the target gene does not 

occur until it becomes necessary to study its function or its effects (in case of 

integration in the genome of additional copies of a target gene). This is possible using a 

STOP sequence upstream of the target gene, flanked by two loxP sequences. After the 

Cre action, the floxed STOP cassette can be removed and the target gene can be 

transcribed. 

The Cre/loxP recombination system requires two mouse strains: the first one 

harbouring a loxP-flanked segment of a target gene and the second one expressing Cre 

recombinase in specific cell types. After crossing these two mouse strains, the 

modification of the loxP-flanked target gene is restricted in a spatial and temporal 

manner according to the pattern of Cre expression in the particular strain, used. 

This kind of construct, in which the target proteins are regulated after translation 

by the corresponding drugs and containing a STOP cassette preceding the oncogenic 

coding sequences, will allow us to generate mice in which the activity of oncogenes is 

tightly controlled in a spatio-temporal manner. 
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2. To evaluate the expression of the construct and its biological effects in thyroid cell 

lines. 

To test the effects of these two oncogenes in cell systems, the bicistronic cassette 

was cloned under the control of EF 1a promoter into a eukaryotic expression vector. 

The construct was transfected in a thyroid cell line. Different assays were 

performed on the positive selected clones in order to verify the expected co-operation 

between the two oncogenes. The main purpose was to assess the ability of the targeting 

vector to induce TSH-independent growth of thyroid cells or induce their 

dedifferentiation. V 

3. To evaluate the expression of the construct and its biological effects in transgenic 

mice. 

The transgenic construct was used as targeting vector to modify, by homologous 

recombination, Embryonic Stem (ES) cells to generate a mouse model. 

To obtain a flexible model carrying the oncogenes in any tissue, a targeting 

vector was designed carrying the two oncogenes inserted into ROSA26 locus, which is 

ubiquitously expressed throughout mouse development and adulthood. ROSA26 is the 

acronym for the complete noun Reverse Orientation Splice Acceptor. It maps to mouse 

chromosome 6 and displays ubiquitous expression during embryonic development 

(starting at the morula-blastocyst stage) and in adult. Both DNA strands of the genomic 

region are transcribed producing three different transcripts, two noncoding and one 

coding. Two of the transcripts with a sense-antisense relationship share the sequence of 

the exon 3. Following a gene insertion, usually into the first intron of the locus, the 

antisense transcript is the only one present in the mutant mice and the loss of the two 

noncoding transcripts does not give any abnormal phenotype (Friedrich and Soriano, 

1991; Vooijs et al., 2001; Zambrowicz et al., 1997). 
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A second locus, broadly expressed 'throughout mouse development and 

adulthood, is the Eeflal (Eukaryotic translation elongation factor 1 alpha 1). Eeflal is 

located on chromosome 9 in mouse. This cytoplasmic protein promotes the GTP- 

dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein 

biosynthesis. Thus, it belongs to the GTP-binding elongation factor family and is 

ubiquitously expressed during embryonic development and adulthood. 

In both these cases, the transgenic sequence was placed downstream to a splice 

acceptor site and targeted into the first intron between exons 1 and 2 of ROSA26 locus 

or between the first intron and the second exon of Eeflal. 

Mice harbouring the targeting vector, integrated into the two loci mentioned 

above, were then mated with mice expressing CRE to allow the Cre/loxP 

recombination. 
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CHAPTER 2 

MATERIALS AND METHODS 

Part A: Molecular Biology 

A. 1 Plasmid Manipulation 

A. 1.1 Digestion with restriction enzymes, de-phosphorylation reaction, 

Klenow reaction 

In this work many plasmids have been' generated or modified to obtain the 

constructs and the targeting vectors of interest described below. 

In general: 

for qualitative analysis, 500 ng of DNA were digested; for quantitative 

preparations, 2 µg of sample were used. All the restriction enzymes were from New 

England Biolabs or Roche, and the reactions were performed in the appropriate buffers, 

supplied by the manufacturer. The separation of the resulting fragments was achieved 

by agarose gel electrophoresis. 

After enzymatic digestion, the 5'-phosphate group was removed in order to avoid 

self-ligation and circularization of plasmid DNA. The de-phosphorylation reaction of 

500 to 2000 ng DNA was carried out with 5 Units calf intestinal alkaline phosphatase 

(CIP) (New England Biolabs) for Ih at 37°C in a final volume of 50 µl. The modified 

DNA was then extracted with phenol-chloroform. 

The sticky plasmid ends were made blunt by Klenow reaction, which was set up 

in a final volume of 50 µl with 20 µl digested DNA, 5 Units of Klenow enzyme, 100 

µM dNTPs in 1X reaction Buffer and carried out at 16°C for 20 minutes. 
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A. 1.2 Purification of DNA 

After each enzymatic reaction, the DNA was purified by 

phenol: chloroform: isoamyl alcohol (PCI) (25: 24: 1) extraction before proceeding to 

the next step of cloning. 

An equal volume of PCI was added to the DNA sample, mixed well to form an 

emulsion and centrifuged at 12000 g for 15 minutes at room temperature (RT). 

The aqueous phase was saved and 0. I volume of 3M Sodium acetate (pH 6) and 

2.5 volumes of absolute ethanol were added to the same and left at -20°C for 20 

minutes. The sample was then centrifuged at 12000 g for 15 minutes at 4°C; the DNA 

pellet obtained, was washed with 70% ethanol and suspended in appropriate amount of 

mQ water. 

A. 1.3 Agarose gel electrophoresis 

Depending on the size of the DNA fragments to be resolved, gels of different 

concentrations were cast in TBE buffer (45 mM Tris-Borate pH 7.5,1 mM EDTA) 

using the fluorescent dye ethidium bromide, at a concentration of 0.5 µg/ml. The 

fragment of interest was detected corresponding to the molecular weight of the DNA 

ladder-marker. 

The samples, prepared by adding 0.1 volume of lOX dye (0.5% bromophenol 

blue, 40% glycerol, 5.5mM Tris, 55 µM EDTA pH 7.5) were run on gels at 100V in 

0.5X TBE buffer and DNA was visualized on UV transilluminator. 
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A. 1.4 Isolation of DNA from agarose gel 

Following agarose gel electrophoresis, the DNA gel slices were excised under 

UV light. DNA was extracted from them by QIAquick Gel Extraction Kit (Qiagen) 

following the protocol supplied by the manufacturer. The gel was solubilized in the 

appropriate buffer, isopropyl alcohol was added and then loaded on a chromatographic 

column, which was washed with ethanol. The DNA was then eluted from the resin 

using 30 µl of mQ water. 

A. 1.5 Ligation reactions 

The ligation reactions with 400 Units T4 DNA Ligase in a volume of 10 td were 

generally set up as follows: 

X ng vector DNA :Y ng insert DNA = 1: 3 (on the basis of their dimension) 

and carried out 16°C over night. 

They were then purified with phenol-chloroform and the DNA pellet was 

dissolved in 10 0 of mQ water, out of which, 5µl were used for transformation of 

electro-competent XL1Blue E. co1i cells. The resulting clones- were analyzed by 

restriction digestion and sequencing. 

A. 1.6 Transformation of E. coli with plasmid DNA 

Ecoli XL1Blue cells were prepared for transformation as follows: cells were 

grown to mid-log phase (A60o=0.6) in 200 ml of Luria Broth (LB: 1% bactotryptone, 

1% NaCl and 0.5% Bacto-yeast extract) at 37°C with shaking. Cells were divided into 

four 50 ml tube, harvested by centrifugation at 3500 g at 4°C for 15 min, resuspended 
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into 25 ml (for each 50 ml of culture) of ice -cold 10% glycerol solution. This 

suspension was then centrifuged at 3500 g for 15 min at 4°C. The resulting pellet was 

resuspended in 25 ml (for each 50 ml of culture) of ice cold 10% glycerol solution. 

After further centrifugation, the pellet was resuspended in 5 ml (for each 50 ml of 

culture) of ice cold 10% glycerol solution and centrifuged again as above. Each final 

pellet was resuspended in I ml of 10% glycerol solution, aliquoted and stored at -80°C. 

For each transformation, DNA was added to 40 d of competent cells, incubated on ice 

for 5 min; then, cells were electroporated using gene pulser (Biorad) (25 µF, 1,7 kV, 

200 Ohm), and successively grown in 1 ml of LB for lh at 37°C. After plating on LB- 

agar containing appropriate antibiotics, the cells were incubated at 37°C overnight. 

A. 1.7 Isolation of plasmid DNA from E. coli 

Colonies picked up from plates were incubated in LB, supplemented with the 

appropriate antibiotic in a final concentration of 100 µg/ml, at 37°C overnight with 

shaking. 

Large-scale (maxi-preps) and little-scale (mini-preps) plasmidic DNA 

preparations were carried out using the Qiagen maxi and mini prep kits, respectively. 

Both procedures are based on the alkaline lysis method; following centrifugation, 

debris precipitate while plasmid DNA remains in solution. That solution is loaded on a 

column to purify isolated plasmid DNA. After the first centrifugation, the column is 

washed with ethanol 70% before DNA elution in 30-50 pl - of elution buffer or mQ 

water. 

Purified DNA was always quantified and checked by enzymatic digestion with 

appropriate enzymes. 

The concentration of isolated DNA was determined by spettrophotometry 
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according to the following formula: absorbance of one A260 unit indicates a DNA 

concentration of approximately 50 µg/ml. 

A. 1.8 pCEFL vector 

pCEFL vector is an eukaryotic expression vector containing the Eflal 

(eukaryotic elongation factor) promoter upstream of the multi cloning site (MCS). The 

vector carries two origins of replication: the fist one of Ecoli (ColE1) to permit its 

replication into bacteria and the second one of the virus SV40 in order to allow its 

replication into eukaryotic cells. 

Moreover, the vector contain two antibiotic resistance coding genes: the first one 

is a procariotic gene (Ampicillin), the second one is an eukaryotic gene (Neomycin), 

preceded by the SV40 promoter and followed by the SV40 polyA signal. 

A. 2 Western blot 

A. 2.1 Protein extraction, purification and quantification 

The cells were washed twice with PBS IX, covered with 60 µl of Lyses Buffer 

(50 mM Tris buffer pH 8.0,150 mM NaCl, 0,1% SDS, 1% Triton, 5 mM MgClz, 0,5% 

Deoxycholic Acid) supplemented with protease inhibitors (1X protease inhibitors 

Cocktail Sigma, 0.5 mM Na4P2O7,0.5 mM PMSF, 1 mM DTT, 50 mM NaF, 0.5 mM 

Na3VO4) and incubated at 4°C for 5-10 minutes. 

After centrifugation, the proteins were contained in the supernatant phase. 

The isolated proteins were quantified using BCA Protein Assay Kit by Pierce 

following the protocol supplied by the manufacturer. After the reduction of the Cu2+ 

ion, due to the presence of the proteins, the absorbance values at 562 nm (proportional 
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to the amount of proteins) were interpolated among the values of a standard curve 

made by known concentrations of Albumin (BSA). 

A. 2.2 Sodium Dodecyl Sulfate-PolyAcrylamide Gel Electrophoresis 

(SDS-PAGE), Protein transfer from gel to membrane and 

membrane blocking 

Proteins were separated by electrophoresis on denaturing acrylamide gel 

containing a polyacrylamide gradient ranging from 4% to 12%. The kit used was 

"NuPAGE Bis-Tris electrophoresis system kit" from Invitrogen following the 

protocol supplied by the manufacturer. 

About 30 pg of total proteins extracted were supplemented with NuPAGE LDS- 

sample buffer 1X (Invitrogen) and NuPAGE reducing agent 1X (Invitrogen) and heat 

treated before loading. 

The running buffer was MOPS SDS Running Buffer 1X (Invitrogen) 

supplemented with NuPAGE Antioxidant 1X (500 pl/200 ml) in the inner (cathode) 

buffer chamber. 

Gels were generally run at 200V for about 1 h. 

Proteins, separated on a gel, were transferred to a Polyvinylidene difluoride 

(PVDF, Immobilion''-P from Millipore) membrane by electroblotting. 

A sandwich composed by gel and membrane in touch, flanked by 3 mm 

Whatman paper and sponges, was placed into a transfer chamber within transfer buffer 

(20% Methanol, Towbin 1X composed of 25 mM Tris, 190 mM Glycine, 0,03% SDS). 

Transfer was generally run at 100V for about 1h and 30 minutes. 

To block every non-specific binding sites on the membrane, after transfer the 

membrane was incubated for 1 hour at room temperature with a solution containing 
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PBS (or TBS), 0,05% (or 0.1%) Tween 20 and 5% Non-Fat Dry Milk from Biorad. 

A. 2.3 Primary and Secondary antibodies 

A primary antibody has a specific epitope to recognize the protein of interest and 

was diluted in the blocking solution following the protocol supplied by the 

manufacturer. 

Primary antibody used according to manufacturer's instructions: 

" Anti-Ras clone RAS 10 monoclonal antibody was by Upstate Cell Signaling 

Solutions 

" Anti-c-Myc (9E10) monoclonal antibody was by Santa Cruz Biotechnology 

" Anti-phospho-p44/42 MAP Kinase polyclonal antibody was by Cell 

Signaling 

" Anti-p44/42 MAP Kinase polyclonal antibody was by Cell Signaling 

Anti-phospho-Akt (Ser473) polyclonal antibody was by Cell Signaling 

" Anti-Akt polyclonal antibody was by Cell Signaling 

" Anti-ß-Actin monoclonal antibody was by Sigma 

" Anti"Tubülin a monoclonal antibody was by Sigma 

" Rabbit polyclonal anti-Pax8, previously produced in our laboratory, was used 

at approximately 1 µg/ml. 

The membrane was dip into the antibody solution for 1h at room temperature or 

at 4°C overnight on an oscillating motion. 

After treatment, the membrane was washed with a solution containing PBS (or 

TBS) and Tween 20 0.05% (or 0.1%) to remove the exceeding antibody. 

Secondary antibody (ECLý Anti-mouse Ig Horseradish peroxidise-linked whole 

antibody (from sheep) or EM' Anti-rabbit Ig Horseradish peroxidise-linked whole 

63 



antibody (from donkey) Amersham Biosciences) were diluted in the blocking solution 

following the protocol supplied by the manufacturer. 

The membrane was dip into the antibody solution for 1h at room temperature on 

an oscillating motion. 

After treatment, the membrane was washed with a solution containing PBS (or 

TBS) and Tween 20 0.05% (or 0.1%) to remove the exceeding antibody. 

A. 2.4 Immune complexes detection 

The ECL Western Blotting detection reagents from Amersham Biosciences was 

used to detect the proteins of interest bound to a membrane by the detection of 

immobilized specific antigens conjugated to Horseradish Peroxidase (HRP) labelled 

antibody. 

The reaction solution was placed on the membrane for 1 minute at room 

temperature. The reaction consists in the oxidation of luminol carried out by the 

Horseradish Peroxidase (HRP) linked to secondary antibody. 

The emitted light is proportional to the amount of protein of interest and was 

detected by autoradiography or by ChemiDoc' XRS (Biorad). 

A. 2.5 Membrane stripping 

Membrane stripping is a treatment allowing the complete removal of primary and 

secondary antibodies from membrane. 

The membrane was dip into the stripping solution (62.5 mM Tris/HCl pH 6.8, 

2% SDS, 0.07% ß-Mercaptoethanol) and incubated at 50°C for 30 minutes. 

After treatment, the membrane' was washed with a solution containing PBS (or 

r 
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TBS) and Tween 20 0.05% (or 0.1%). 

A. 3 Processing of RNA 

A. 3.1 RNA extraction 

Total RNA was extracted from cells using the TRIzol Reagent (Invitrogen) 

following the protocol supplied by the manufacturer. 

The cells were washed twice with sterile PBS 1X, covered with 1 ml of TRIzol 

for each plate and incubated at room temperature for 5 minutes. After genomic DNA 

fragmentation, chloroform addiction and centrifugation, RNA was contained in the 

upper aqueous phase. RNA was isolated and precipitated by addiction of isopropyl 

alcohol and further centrifugation. The RNA pellet was washed with 75% ethanol, 

dried and resuspended in a proper amount of mQ water. 

RNA extraction from tissues, after complete mechanical disruption of the tissue, 

follows the protocol described above. 

The RNA quality was checked by electrophoresis in a denaturing gel (1% w/v 

agarose, MOPS buffer 1X (20 mM MOPS, 20 mM sodium acetate, 1 mM EDTA pH8), 

2.2M formaldehyde) following addition of loading buffer (50% glycerol, 1 mM EDTA 

pH8,0.25% bromophenol blue, 0.25% xylene cyanol FF, 0.1 ng BrEt) to each sample 

and heat denaturation. 

Electrophoresis was generally run at 100V in running buffer composed by MOPS 

ix. 

A. 3.2 RNA reverse transcription 

In order to obtain the cDNA synthesis, 1 µg of total RNA was used as template 
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for the synthesis of the first strand cDNA reverse starting from random examers, using 

the QuantiTect Reverse Transcription kit (Qiagen) according to manufacturer's 

instructions. 

A. 3.3 mRNA quantification 

RT-PCR amplifications were conducted using 12.5 µ1 of Power SYBR Green 

PCR master mix (Applied Biosystem), 0.5 pM of each primers a final volume of 25 µl. 

Thermocycling was performed using ABI Prism 7300 Real Time PCR System 

(Applied Biosystems Foster City, USA) initiated by a 10 min incubation at 95 C°, 

followed by 40 cycles (95 C°, 15 sec; 60C°, 1min). Each run was completed with a 

dissociation curve analysis to confirm the specificity of amplification and lack of 

primer dimers. Threshold cycle (Ct) values were determined by Applied Biosystems 

software and analyzed using MS Excel program. 

Reactions were carried out in triplicate and each one was internally normalized 

against the a-1 tubulin mRNA in each sample. 

The mathematical expression describing such PCR amplification process is: 

Q� =qx(1+k}" 

or in other words 

I 
(Eq. 2) 

where 

Q, = molecules number following n amplification cycles 
q= molecules number at the beginning of the reaction 
k= amplification process efficiency (k E [0 

-1ý 
n= reaction cycles number 

At a particular threshold cycle (a cycle chosen in the linear phase of the 

amplification) it becomes: 
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Qthreshold =qx (1 + k)' (Eq. 3) 

For the amplification of the same gene in two different samples 1 and 2, using the 

same Qthreshold the expression will be: 

q1 (I+k2f l 

q2 (1+k, T" 
(Eq. 

For each primer-pair, amplifications were carried out with different amount of 

each primer of the pair (300nM, 600nM and 900nM) in all the possible combinations. 

The best primer-pair was chosen on the basis of its dissociation curve and Ct value. 

Reactions for quantification of mRNAs were performed in the same conditions, 

using 10 ng cDNA for each template, in three independent samples (as technical 

triplicates). The expression of the genes of interest was normalized by the expression 

of a housekeeping gene (al-tubulin) measured under the same condition. 

Part B: Cell Culture 

B. 1 Cell lines maintaining, transfections and monitoring assays 

B. 1.1 HeLa, NIH3T3 and COS7 cell lines 

HeLa cells, NTH3T3 and COST cells were cultured in Dulbecco's modified 

Eagle's medium supplemented with 10% FBS, 1% penicillin/streptomycin and 4 mM 

glutamine and were maintained at 37°C in an atmosphere of humidified air containing 

5% Coe. 
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B. 1.2 FRTL-5 cell line 

FRTL-5 cells were cultured in Coon's modified F12 medium supplemented with 

5% Newborn Calf Serum (NCF), 1% penicillin/streptomycin and a 1X mix composed 

by 6 hormones: Thyroid Stimulating Hormon (TSH) 1 mU/mi (Sigma), Insulin 10 

mg/L (Sigma), Somatostatin 10 µg/L (Sigma), Transferrin 5 mg/L (Sigma), 

Hydrocortisol 3,7 µg/L (Sigma), Tripeptide gly-his-lys 20 µg/L (Sigma). 

B. 1.3 Cultures of mouse embryonic stem cells 

ES cells were grown according to standard conditions. After thawing, ES cells 

were routinely passed each two days. Cells were cultured on mitotically inactivated 

primary mouse embryonic fibroblasts (MEFs), carrying neomicin resistance, prepared 

and cultured by the ES facility at BIOGEM. The ES culture medium consisting of 

Dulbecco's modified Eagle's medium (DMEM) with 4500 mg/l D-glucose and L- 

glutamine, 15% foetal bovine serum-FBS tested for ES cells, 2 mM glutamine, 0.1 µ. M 

ß-mercaptoethanol, 1X non-essential amino acids, ' 50 mg/ml penicillin/streptomycin, 

1.2 mM Sodium Pyruvate and 1000 U/mI leukaemia inhibitory factor (LIF). 

The ES cells used for transfection were RI ES cells, derived from wild type 

SV129 mice strain and bought from Nagy Lab. 

B. 1.4 Splitting 

When cells were confluent it was necessary to dilute them. The plates were 

washed twice with phosphate-buffered saline PBS to eliminate the medium, were 

added with 1 ml of Trypsin-EDTA (2 ml for ES cells) and incubated at 37°C for 2-3 

minutes (8-10 minutes for ES cells). The cells were separated into single cells by 
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pipetting up and down. To stop the trypsin reaction, 5 ml of medium were added to 

each plates. The trypsinized cells were collected into a centrifuge tube, spinned down 

by centrifugation at 1000 g for 5 minutes and resuspended in a proper amount of 

medium on the basis of the desired dilution. 

B. 1.5 Freezing 

Each plate was washed twice with PBS and then the cells were incubated with 1 

ml of Trypsin-EDTA (2 ml for ES cells) for 2-3 minutes (10 minutes for ES cells) at 

37°C. The cells were centrifuged, resuspended in 1 ml freezing medium (90 % FBS or 

NCS, 10% dimethylsülfoxide -DMSO-) (50% ES-DMEM, 40% FBS, 10% 

dimethylsulfoxide -DMSO- for ES cells) and stored at -80°C or at -195°C into 2 vials. 

B. 1.6 Thawing 

The cells contained into freezing medium in each vial were diluted with 10 ml of 

37°C pre-heated culture medium, transferred into a centrifuge tube and spinned down 

by centrifugation at 1000 g for 5 minutes. The cells collected in a pellet were 

resuspended in 20 ml of culture medium and plated into two plates (or resuspended in 

10 ml of culture medium and plated on a dish with feeders for ES cells). The day after 

the medium was changed to remove floating dead cells. 

B. 1.7 Transient and stable transfection 

The cells were transiently transfected with 2 µg of plasmidic DNA carrying the 

coding sequence (CDS) of the oncogenes of interest (H-rast/ 12 and c-myc), subcloned 
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into the pCEFL vector downstream of the Eflal (eukaryotic elongation factor) 

promoter. 

One day before transfection, the cells were harvested by trypsinization, counted 

and then plated into 100 mm plate at a cell density of 20%. After cell adhesion, 

transfectinon was carried out by rising the cationic lipid FuGENE 6 Transfection 

Reagent (Roche) according to the manufacturer's instructions. The transfection 

solution was prepared mixing Dulbecco's modified Eagle's medium (DUEM), 

FuGENE and plasmidic DNA in a ratio of 20: 3: 1 gg respectively. After 40 minutes of 

incubation at room temperature, the transfection solution was diluted into the 

appropriate cell culture medium and distributed into the plates. 48h later the cells were 

collected and lysed to extract the proteins. 

Stable transfection was carried out following the procedure mentioned above, but 

48h after transfection the cells were maintained for two weeks in a selective medium 

(medium containing 400 pg/m1 of G418 antibiotic). In such a manner only the cells that 

express the gene providing the neomicyn resistance were able to grow and to form 

colonies. These colonies were isolated by picking up and transferred into one well of a 

clean 96-well dish to continue their culture individually. 

B. 1.8 ATPlite assay 

ATPlite assay was used for the quantitative evaluation of proliferation and 

cytotoxicity of cultured mammalian cells and it is based on the production of the light 

caused by the reaction of ATP with added luciferase and D-luciferin. 

The ATPlite procedure for 96-well microplate was as follow: 

" To lyse the cells and stabilize the ATP, 50 µl of mammalian cell lysis 

solution were added to 100 p1 of cell suspension per well and the plate 
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was shaked for 5 minutes in a orbital sheker at 700 rpm; 

" 50 µl of substrate solution were added to the wells and the plate was 

shaked for 5 minutes in a orbital sheker at 700 rpm; 

" The plate was dark adapted for 10 minutes before measuring the 

luminescence. 

B. 2 Electroporation of ES cells 

B. 2.1 DNA preparation 

30 µg of the targeting vector were linearized by enzymatic digestion with Asp EI 

(from Roche), at 37°C for 5 hours. The digested DNA was extracted with phenol- 

chloroform, precipitated with ethanol, and the pellet resuspended in 30 µl of sterile 

1mM Tris-HC1 pH 7.4/ 0.1 mM EDTA pH 8 

B. 2.2 Cells preparation 

Two to four 100 mm plates of ES cells (approximately 2-3 x 107 cells) were fed 

3-4 hours before harvesting. The cells were washed with phosphate-buffered saline 

PBS and single cell suspension was generated as follow: 2 ml of Trypsin/EDTA were 

added per plate and incubated at 37°C and 5% CO2 for 10 minutes. 5 ml of ES medium 

were added to each dish to stop the trypsin reaction. The separation into single cells 

was achieved by pipetting up and down. The cells counted and resuspended in an 

appropriate volume to obtain 10' cells. The cells were spinned down by centrifugation 

at 800 g for 5 minutes. The pellet was washed twice with 10 ml PBS to remove all 

serum to avoid altering the electroporation conditions. The ES cells were resuspended 

in 800 µl of ice cold PBS, the 30 µg of linear DNA, purified as described in the 

previous paragraph, were added to the cells. The solution (ES cells + DNA) was 
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transferred into electroporation cuvette and electroporated. The BioRad GenePulser 

was set at 250 V, 500µF and the time constants obtained ranged between 6 and 7. After 

the electroporation, the cells were incubated for 10 minutes at room temperature, then 

transferred into 40 ml of ES medium. The cells were cultured onto four 100 mm dishes 

pre-seeded with mitotically inactivated MEFs. The medium was changed the next day. 

The electroporated cells were grown in ES medium without selection agent for 48 

hours. 

B. 2.3 Selection 

After allowing the electroporated cells to grow for 48 hours, selection was 

started. ES selection medium contains Neomycin (400 pg/ml) in doses lethal to all ES 

cells except to those that express the gene providing the resistance. Selection was 

carried out for 5-6 days. 

B. 2.4 Picking Colonies 

The dish containing ES cells was washed once with PBS and then the cells were 

kept in PBS. Single colony was isolated under a microscope by aspiration with the tip 

of p20 pipette. The colony was placed into one well of a clean (no feeders) 96-well 

dish, containing 50 µl of trypsin and kept in ice until its complete filling. The colonies 

were trypsinized for 10 minutes at 37°C and 5% CO2. The colonies were mechanically 

dissociated by pipetting up and down. The reaction was stopped by adding 100 µl of 

ES cell medium (without antibiotics) to each well of the dish. The cell suspension was 

transferred into 96-well dish containing fresh MEFs. 
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Once the cells reached 70% confluence, they were splitted in three. Two third of 

the colture was plated into two 96-well dishes containing fresh MEFs. The remaining 

one third was plated into gelatin coated 96-well dish. After two days, the ES cells 

grown on MEFs were cryopreserved. The ES cells on gelatin were splitted in half and 

plated again on gelatin coated 96-well dish. Once they reached high confluence, they 

were lysed for DNA extraction and PCR analysis. 

B. 2.5 Freezing electroporated, ES cells ' 

Each well was washed twice with PBS and then the cells were incubated with 50 

µl of trypsin for 5' at 37°C. The cells were resuspended in 50 µ12X freezing medium 

(20% dimethylsulfoxide-DMSO, 45% FBS, 35% ES culture medium). 100 µl of 

mineral oil were put on the top of each well to prevent sublimation. 

The plates were placed at -80°C for two days and then stored at -195°C 

B. 2.6 Thawing electroporated ES cells 

The 96-well dish was placed into the incubator (37°C, 5% C02) and the lower 

aqueous phase was transferred into one well of a 24-well dish containing fresh MEFs. 

The colonies were expanded to freeze down several vials of cells. 

B. 2.7 DNA extraction from ES cells 
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The cells were washed twice with PBS and then each well was incubated with 50 

p1 of Lyses Buffer (10 mM Tris pH 7.5,10 mM EDTA pH 8,10 mM NaCl, 0.5% SDS 

with 1.0 mg/ml Proteinase K) over night at 60°C. The next morning, the DNA was 

extracted by adding ice cold absolute ethanol with 75 mM NaCl. After incubation for 

2-3 days at 4°C, the plates were inverted on paper towel to drain the liquid. The DNA 

was rinsed three times with cold 70% ethanol and was stored at 4°C in 70% ethanol. 

B. 2.8 Screening of the electroporated ES cells 

After a preliminary positive selection of electroporated ES cells by growth in a 

medium containing G418, a second screening on positive clones has been carried out 

by PCR. 

For the EeflalMycRas/Eeflal+ ES clones these PCR were performed using 

three primers in which one of them, the forward (FW 1) was complementary on the 5' 

arm of the targeting vector. One of the two reverse primers (Rev! ) annealed on the 3' 

arm of the targeting vector, while the second one (TransgLongR5 rev) annealed at the 

end of the splicing acceptor sequence (SA), on the construct. 

The PCR was set up so that in one reaction both the wild type and recombinant 

locus could be identified, using all the three primers in the same reaction. 

The primers used for the amplification were as follows: 

FW 1: 5' GGCAAACTGGGAAAGCGGTGTCGTGTGC 3' 

Rev1: 5' CCGAGAATTAGCTCCGCTCAAAACTCAAGG 3' 

TransgLongR5 rev: 5' CGGCCTCGACTCTACGATACCGTCGATCC 3' 

The annealing temperature was 63°C. 
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On the Eeflal allele, primers FW1 and Revl amplify a 1058 bp product specific 

for the wild type allele; whereas the primers FWI and TransgLongR5 rev amplify a 

1115 bp product specific for the transgenic allele. 

For the ROSA26MycRas/ROSA26+ ES clones these PCR were performed using 

four primers: two of them to amplify the wild-type allele (D3 fw and WT3 Rev 

annealing at the 5' and at the 3' arm of the targeting vector respectively and amplifying 

a 3800 bp product) and the other two for the transgenic one (LongD5 fw and 

TransgLongR5 rev annealing on the 5' arm of the targeting vector and on the construct 

at the end of the splicing acceptor sequence (SA) respectively, amplifying a 3650 bp 

product). 

The primers used for the amplification were as follows: 

D3 fw: 5' TGGACCCTTACCTTGACCCAGG 3' 

WT3 Rev: 5' GCCACATCCATAGTGGCTCATTAGG 3' 

LongD5 fw: 5' GGTCGTGTGGTTCGGTGTCTCTTTTCTGTTGG 3' 

TransgLongR5 rev: 5' CGGCCTCGACTCTACGATACCGTCGATCC 3' 

After the first step of DNA denaturation, the next two steps of each cicle, 

annealing and extension of both PCR, were carried out together at 68°C for 6 minutes. 

B. 2.9 Preparation of ES cells for blastocyst injection 

One vial of recombinant ES cells was thawed and cultured as described 

previously. On the day of injections, cells were fed two hours before harvesting by 

trypsinization. The single cell suspensions was plated onto a new dish (without MEFs) 

and placed into the incubator for 20 minutes to completely remove the MEFs. 

The medium containing the floating cells was collected and spinned at 1000 rpm 

for 5 minutes. The ES cells were counted and 106 cells were sent to BIOGEM 
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transgenic core facility to be processed for injection into blastocysts from C57BL/6 

females. The same facility also dealt with re-implantation of blastocysts into uteri of 

CDI pseudopregnant females. 

Part C: Animal husbandry 

C. 1 ROSA26c-myc PR-ER HrasV12 and Eeflalc-myc PR-ER-Hras "2 

mouse strains 

All procedures on animals were carried out in accordance with the "DECRETO 

LEGISLATIVO 27 gennaio 1992 n. 116", its application attachment "CIRCOLARE N. 

8,22 aprile 1994" and the "FELASA" guidelines. 

Several chimeras were obtained after blastocysts re-implantation. Chimeras were 

bred with wild type C57BL/6 females to ascertain contribution of recombinant ES cells 

to the germline. The recombinant strains were spread by crossing heterozygous animals 

to C57BIJ6 females. 

k 

C. 2 ROSA26c-myc PR ER HrasV12 or Eefl al c-myc PR ER- 

Hras`'12ITgCRE-ER or Pax8CRE mouse strains 

The mice harbouring c-myc-PR-ERHras1112-cassette under the control of 

ROSA26 or Eeflal promoter (R-Onc and E-Onc respectively) were crossed with 

TgCRE-ER transgenic mice or Pax8CRE heterozygous mice in order to obtain mice 

heterozygous for the oncogenic cassette and for cre alleles. The floxed neo cassette was 

removed from the targeting vector following the CRE recombinase action. 
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C. 3 Genotyping of mutant mice 

All the mouse strains were genotyped by polymerase chain reaction (PCR). 

On the day of weaning, the mice were numbered and DNA extracted from tail 

tips. The tail tips were incubated over night at 55°C in 750 p1 of lyses buffer (50 mM 

Tris pH 7.5,100 mM EDTA pH 8,100 mM NaCl, 1% SDS) and 1.0 mg/ml Proteinase 

K. 

The following day the DNA was extracted adding 0.3 volumes of 6M NaCl and 

precipitated with isopropanol. After washing with 70% ethanol, the DNA pellet was 

drain at room temperature and resuspended in 150-200 µ1 mQ H20. 

For both the transgenic mouse strains, the PCR was set up so that in the unique 

reaction both the wild type and recombinant locus could be identified, using three 

different primers in the same reaction: one common reverse primer (ROSARevWT3 

for the R-Onc mice or EeflaRev2 for the E-Onc mice) and two forward primers (one 

specific for ROSA26 -ROSA FW-. or Eeflal -Eefla FW2- wild-type allele and the 

other one specific for the transgenic cassette -ßglobin FW-) (for schematic 

representation see figures 101 and 103). 

The primers used for the amplification were as follows: 

ROSA FW: 5' CCATCTGTAATGGGATCTGATGCCC 3' (into the first intron 

of the ROSA26 gene) 

ROSARevWT3: 5' GCCACATCCATAGTGGCTCATTAGG 3' (into the first 

intron of the ROSA26 gene) 

ßglobin FW: 5' TAGGGCGAATTCGGATCC 3' (into the ßglobin intron 

sequence of the construct) 

Eefl a FW2: 5' CTAACTAGGGTGAGGCCATCCC 3' (into the first introri of 

the Eeflal gene) 
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EeflaRev2: 5' CTAAGAAGCCCGAGAATTAGCTCCGCTCA 3' (into the first 

intron of the Eeflal gene) 

The annealing temperature was 53°C. 

On the ROSA26 allele, primers ROSA FW and ROSARevWT3 amplify a 730 bp 

product specific for the wild type allele; whereas the primers ßglobin FW and 

ROSARevWT3 amplify a 530 bp product specific for the transgenic allele. 

On the Eeflal allele, primers Eefla FW2 and EeflaRev2 amplify a 398 bp 

product specific for the wild type allele; whereas the primers (3globin FW and 

EeflaRev2 amplify a 266 bp product specific for the transgenic allele. 

For of Pax8CRE alleles, genotyping was performed using one common forward 

primer (12) and two reverse primers: one specific for Pax8 wild type (E3) and the other 

specific forPax8null allele (Pax8cre) (CG), respectively. 

The following primers were used for the amplification: 

12: 5' TCTCCACTCCAACATGTCTGC 3' (into the intron 2) 

E3: 5' CCCTCCTAGTTGATTCAGCCC 3' (into the exon 3) 

CG: 5' AGCTGGCCCAAATGTTGCTGG 3' (into the cre gene) 

The annealing temperature was 61°C. 

Primers 12 and E3 amplify a 389 bp product specific for the wild type allele; 

whereas the primers E3 and CG amplify a 700 bp product specific for the mutated 

allele. 

TgCRE-ER transgene was identified using the following primers: 

K7: 5' AGTCCCTCACATCCTCAGGTT 3' (into the cre coding sequence) 

K8: 5' ATGCCAACCTCACATTTCTTG 3' (into the cre coding sequence) 

that amplify a 450 bp product specific for CRE. The annealing temperature was 

58°C. 
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PCR setup 

All PCR reactions were conducted using 100-500 ng of genomic DNA, IX PCR 

buffer (10 mM Tris-HC1 pH 8.3,50 mM KCI, 1.5 mM MgC12) 600 nM of common 

primer, 300 nM of each specific primer, 200 pM of each dNTP, and 0.5 units of Taq 

polymerase in a final volume of 25 µl. Reactions were performed with the following 

cycling parameters: 35 cycles of 94°C for 1 min, annealing ranging from 53 to 61°C 

(depending on the primers couple) for 1 min and 72°C for 1 min. 

C. 4 Mice treatments 

The E-Onc/TgCRE, R-Onc/TgCRE, E-Onc/PaxCRE and R-Onc/PaxCRE double 

heterozygous mice (see chapter 3 part C section C. 1.3) were treated at about two 

months of age with tamoxifene and RU486 to activate ER-Rasv12 and c-Myc-PR 

recombinant proteins respectively. , 

For tamoxifene the vehicle was composed by ethanol 96% and vegetal oil in a 

ratio 1: 9 to obtain a final concentration of 10 mg/ml of tamoxifene. The solution was 

then sonicated. 

RU486 was resuspended in the proper amount of PEG400 (Sigma), to obtain a 

final concentration of 25 mg/ml. 1-2 hours of constant temperature (45°C) was needed 

until the solution was completely homogeneous. 

The drugs were administrated to c-myc PR-ER HrasV12Icre double heterozygous 

mice by intraperitoneal injections. Each injection was performed at a dose of 1 mg/day 

of tamoxifene and 2.5 mg/day of RU486, repeated for 5 days, both together or one per 

week. 
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Part D: Hystological procedures 

D. 1 i-galactosidase staining 

The embryos were dipped into fixative solution (0.1 M phosphate buffer pH 7.6; 

0.2% glutaraldehyde; 5 mM EGTA; 2 mM MgC12) at room temperature, for a time 

depending on their size, after dissecting them free of their extraembryonic membranes. 

The fixed embryos were rinsed with a detergent solution (0.1 M phosphate buffer pH 

7.6; 2 mM MgCI2; 0.01% sodium deoxycholate; 0.02% NP-40). The samples were 

incubated at 30°C for at least 2 hours in the dark in the staining solution (0.1 M 

phosphate buffer pH 7.6; 2 mM MgC12; 0.01% sodium deoxycholate; 0.02% NP-40; 5 

mM potassium ferricyanide; 5 mM potassium ferrocyanide; 1 mg/ml X-gal in DMSO). 

D. 2 Immunohistochemistry 

Thyroids were fixed in 4% paraformaldehyde and dissected 5 pm thick. They 

were incubated 2-3 times in xylene for 10 minutes each, twice in 100% ethanol for 2 

minutes each and hydrated by placing in 95%, 70%, 50%, 30% ethanol for 2 minutes 

each. 

To inactivate the endogenous peroxidase, the sections were incubated for 20 

minutes in hydrogen peroxide and methanol in a ratio of 4 ml: 1 ml. Afterwards, the 

tissues were washed in running water for 20 minutes. Slides were placed twice in PBS 

for 5 minutes each and blocked with 10% serum from the species from which the 

secondary antibody was taken for 30 minutes at room temperature in a humidified 

chamber. Then, slides were incubated overnight at 4°C with primary antibody diluted 

in PBS from 1: 1000 to 1: 500. 

The slides were rinsed twice in PBS for 5 minutes each before incubating them 

with secondary antibody in a humidified chamber for 20 minutes and washed again 
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twice in PBS. 

To amplify and detect the signal, after removing the secondary antibody by 

washing in PBS, 2 drops Vectastain "A" and 2 drops Vectastain "B" were mixed in 10 

ml PBS 30-60 minutes before use and added to the sections for Ih at room temperature. 

The slides were washed with PBS and overlaid with fresh, filtered DAB solution (10 

mg DAB + 20 pl 38% H202 in 20 ml 0.1 M Tris pH 7.2). The reaction was stopped by 

washing in running water when a uniform brown color first becomes visible on the 

sections. 

The slides were left to dry by placing them in 30%, 50%, 70%, 95% ethanol and 

then mounted with Eukitt. 

D. 3 Histological staining 

Thyroids were fixed in 4% paraformaldehyde and dissected 5 pm thick. They 

were incubated 2-3 times in xylene for 10 minutes each, twice in 100% ethanol for 10 

minutes each and hydrated by placing in 95%, 80%, 50% ethanol for 5 minutes each. 

Staining was carried out as follows: 

" incubation in hematoxylin for 20 minutes, 

" washing in running water for 30 minutes, 

" incubation in eosin for, 1-2 minutes, 

" washing in distilled water for 5 minutes 

The slides were left to dry by placing them into 50%, 80%, 95% and 100% 

ethanol and then incubated in Xilene for 10 minutes and mounted with Eukitt. 
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Part E: Vectors assembling 

E. 1 The RasMyc vector: cloning strategy 

The cloning strategy of the RasMyc plasmid was according to the following 

scheme: 

1) Cloning of the plasmid SA-ßgeo-STOP composed of a splice acceptor site 

(SA), a ßgalactosidase-neomycin resistance (ßgeo) and a triple polyadenylation 

sequence (3xpA). The entire cassette was flanked by two LoxP sites. 

A fragment Bamffl-BamHI (containing 3xpA) was cut from pSAloxneotpA and 

cloned into pBS. In the EcoRV site of this plasmid, was then inserted a HindIII-XbaI 

fragment (containing ßgeo) excised from IRES-ßgeo and blunt ended by Klenow 

treatment. 

Then an oligonucleotide containing the LoxP sequence flanked by Spel and NotI 

restriction sites was cloned in the same sites of the construct (called ßgeo-STOP). 

A fragment PstI-HindlII (containing SA) was cut from pSAloxneotpA and cloned 

in pBS. 

An oligonucleotide containing the LoxP sequence flanked by Hind1II-Clal 

restriction sites was cloned in the same sites of this construct. Then a sequence 

containing restriction sites for Sall-PmeI was inserted upstream of SA. Finally, the 

SaII-SaII fragment was excised and cloned in the XhoI site of ßgeo-STOP plasmid to 

obtain the following construct, SA-ßgeo-STOP. 

This first cassette is depicted in figure 84 in chapter 3 part C section C. 1.1. 

2) Cloning of a plasmid (myc-PR) containing the sequence coding for the c-myc 

fused to the progesterone receptor (myc PR). 
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An 870 bp fragment contaning PR-polyA sequence was amplified by PCR (PCR- 

a) from pSG5-CrePR2 plamid. The 5' primer used for the amplification included a 20 

bp sequence corresponding to 3' end of c-myc. The 3' primer containing the AscI and 

Nod sites facilitated cloning. A BamHI-NotI fragment of 1320 bp containing the 

coding sequence of c-myc was excised from pcDNA3Myc and cloned into pBS (pBS 

myc). This construct was used as a template in a PCR reaction (PCR-b) to amplify a 

180 bp fragment coding the 3' end of c-myc sequence. 

Finally, the products of the two PCR reactions (PCR-a and PCR-b) were used as 

a template for a new PCR (PCR-c). The 5' primer of PCR-b reaction and the 3' primer 

of PCR-a reaction, were used as primers. The amplicon was cut StyI-NotI and inserted 

into the same sites of pBS myc. In such a manner, a plasmid containing the sequence 

coding for c-myc oncogene fused'to the PR (pBS myc-PR), was obtained. Figure 28 in 

chapter 3 part A section A. 1 is a schematic representation of the three PCR. 

The structure of the pBS myc-PR plasmid is drawn in figure 31 in chapter 3 part 

A section A. 1. 

3) Assembling a construct (ER-ras-myc-PR) containing H-rad"" fused to 

estrogen receptor (ER Ras°12), IKES, myc-PR (Fig. 39 in chapter 3 part A section A. 1). 

A 640 bp XhoI-BamHI fragment corresponding to ECMV-IRES excised from 

pIRES, was cloned into the same sites of pBS myc-PR. Then, the BamHI site 

downstream of IRES was disrupted and another BamHI site was inserted upstream to 

IKES. In this BamHI site of the plasmid BamHI-BamHI fragment of 1700 bp was 

cloned corresponding to the sequence coding ER-RasV12 excised from pCEFL ERT- 
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RAS to obtain ER-ras-myc-PR (RasMyc plasmid Fig. 39 in chapter 3 part A section 

A. 1). 

The 4500 bp Notl-Nod fragment, excised from pER-ras-myc-PR, was subcloned 

into pCEFL plasmid downstream of the strong EFla promoter (pCEFL-RasMyc Fig. 

42 in chapter 3 part A section A. 1). 

E. 2 The MycRas vector: cloning strategy 

The cloning strategy followed the scheme described below: 

1) Removal of the IRES from the IRES-myc-PR plasmid obtained in one of the 

previous subcloning steps. 

A 650 bp XhoI-BamHI fragment corresponding to ECMV-IRES was excised 

from 

a BlueScript plasmid containing the IRES and the myc-PR-polyA sequences 

(pBS IRES-myc-PR), that was obtained during the work, to obtain pBS myc-PR 

plasmid. After destroying the BamHI site, an oligonucleotide was subcloned in the 

same sites of pBS myc-PR 

A Munl-NotI fragment containing the polyA sequence, downstream of PR, was 

excised and a PCR reaction was performed to restore the 3' end of PR. 

The 5' primer used for the amplification included the Mud site, while the 3' 

primer containing the NotI site facilitated the cloning of the amplicon. The myc-PR- 

polyA plasmid was used as a template for the PCR. 

The MunI-Not! amplicon was cut and inserted in the same sites of pBS myc-PR. 

The structure of the myc-PR plasmid obtained and used for the following cloning 

is depicted in figure 31 in chapter 3 part A section A. 2. 
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2) Insertion of the IRES downstream of the Myc-PR fusion protein (Fig. 32 in 

chapter 3 part A section A. 2). 

A 650 bp EcoRI-NotI fragment corresponding to ECMV-IRES excised from 

pIRES, was cloned into the same sites of pBS myc-PR, to obtain pBS myc-PR-IRES. 

An Ascl site was inserted between the IRES and the Not! site. A Not! site was inserted 

upstream of the c-myc sequence to facilitate the next cloning (Fig. 43 chapter 3 part A 

section A. 2). 

3) Cloning of the H-RasV12 fused to estrogen receptor (ER RasV12) downstream of 

the last myc-PR-IRES plasmid, to obtain the vector drawn in figure 50 in chapter 3 part 

A section A. Z. 

Then, a BamHI-BamHI fragment containing the ER-Ras°12 sequence was 

subcloned into the BamHI site of pBS myc-PR-IRES, to obtain pBS-MycRas. 

Then, the 4500 bp NotI-NotI fragment, excised from pBS-MycRas, was 

subcloned into the NotI site into pCEFL vector (pCEFL-MycRas Figs. 50 and 54 in 

chapter 3 part A section A. 2), downstream of EF1a promoter to test the MycRas 

construct by cell transfection. 

In figures 22 to 26 are represented some fragments of sequences performed to 

verify the integrity of the plasmids obtained in this work. 
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Figure 22. Neo Fw sequence of the SA-ßgeo-MycRas-ßglobin intron pA plasmid. 
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Figure 23. Myc Rev sequence of the SA-ßgeo-MycRas-ßglobin intron pA plasmid. 
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Figure 25. Ras Rev sequence of the SA-ßgeo-MycRas-pglobin intron pA plasmid. 
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Figure 26. SA Rev sequence of ROSA26 targeting vector. 
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CHAPTER 3 

RESULTS 

Part A: The vectors 

The following figure (Fig. 27) is a scheme of all the clonings performed in this 

thesis work. 

I STEP A STEP B STEP C 

3 
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1 
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Figure 27. Schematic representation of the clonings: creation of the SA-ßgeo-STOP plasmid (STEP A); 

creation of the RasMyc plasmid (STEP B); creation of the pCEFLRasMyc plasmid (STEP B1); creation of 

the SA-ßgeo-RasMyc plasmid (STEP B2); creation of the MycRas plasmid (STEP C); creation of the 

pCEFLMycRas plasmid (STEP Cl); creation of the SA-ßgeo-MycRas plasmid (STEP C2). 
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A. 1 The RasMyc expression vector 

To prepare the vector, the following DNA fragments were used: 

" the human H-rasv12 fused to a tamoxifene-responsive mutant of the murine 

estrogen receptor Ligand Binding Domain (LBD), ER-Ras vi2, (De Vita et al., 2005); 

"a RU486 responsive mutant of the murine progesterone receptor, pSGS- 

CrePR2, (Kellendonk et al., 1996); 

0 the coding sequnce of human c-myc (pcDNA3Myc, kindly provided by R. Dalla 

Favera) 

0a mutated ECMV-IRES (AIRES, a commercial plasmid from DB Bioscience) 

As detailed in "Materials and Methods", the cloning strategy was according to the 

following scheme: 

Construction of a plasmid (myc-PR) containing the human c-myc coding 

sequence fused to the mutated LBD of the progesterone receptor (myc- 

PR). 

The PR-polyA fragment was amplified by three PCR (PCR-a, PCR-b and PCR-c) 

as depicted in the figure 28. 
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PCP-a sample: PR PA 

OLIGO A 

Last 10 bp of Myc 
NO STOP codon 

PCR-b sample: Myc 

OLIGO C 

OLIGO B 

-�-' Notl 
Mlul 

OLIGO D 

NO STOP codon 

Myc .-) 
Ecc57 I 

PCR-c sample: PCP-a product and PCR-b product 

OLIGO C 

Myc 

-U. c 57I 

OLIGO B- 

-' ' Mlul 
Notl 

Figure 28. PR-polyA fragment amplification by three PCR. 

To verify the structure of the construct, the myc-PR-polyA fragment (1100 bp) 

(Fig. 29), amplified by PCR, was eluted from agarose gel and sequenced before 

cloning into the pBS myc vector (Fig. 30). 

Figure 29. PCR product myc-PR-polyA fragment (1100 bp). Lane 1: 100 bp marker; lane 2: PCR product. 
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Figure 30. PCR-c product cloning into pBS myc. 

The structure of the pBS myc-PR plasmid is as in figure 31. 

AscI 

Myc-PR pA 

Figure 31. pBS myc-PR plasmid. c-Myc-Progesterone Receptor fusion protein (Myc-PR); polyadenylation 

sequence (pA); Ascl restriction site (AscI). 

2) Assembling a bicistronic construct (ER-ras-myc-PR) containing the human H- 

ras V12 fused to the LBD of the murine estrogen receptor (ER-RasV12), IRES, myc-PR 

(Fig. 39). 

The 640 bp XhoI-BamHI fragment corresponding to ECMV-IRES was cloned 

into pBS myc-PR (Fig. 32) (to obtain the pBS IRES-myc-PR plasmid). 
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Figure 32. ECMV-IRES cloning into pBS myc-PR. 

The plasmid was checked by analysis with the restriction enzymes KpnI, Xhol or 

BamHI, the results of which are shown in the following figures (33,34 and 35). On the 

left, is indicated the restriction enzyme fragment length obtained. 

Figure 33. MINI PREP of pBS IRES-myc-PR plasmid digested with KpnI. Lanes 1 and 10: 1 kb marker; lane 

2: uncut pBS IRES-myc-PR plasmid; lanes 3 to 9: 7 positive pBS IRES-myc-PR plasmid mini preps digested 

with Kpnl. 

93 



5854 bp - 

Figure 34. pBS IRES-myc-PR plasmid digested with Xhol. Lane 1: uncut pBS IRES-myc-PR plasmid; lane 2: 

a positive pBS IRES-myc-PR plasmid mini prep digested with XhoI; lane 3: 1 kb marker. 

5854 bp 
- 

Figure 35. pBS IRES-myc-PR plasmid digested with BamHI. Lane 1: 1 kb marker; lane 2: uncut pBS IRES- 

myc-PR plasmid; lane 3: a positive pBS IRES-myc-PR plasmid mini prep digested with BamHI. 

The second cloning consisted in the insertion of the ER-RasV12 coding sequence 

upstream of the IKES (Fig. 36) to obtain the RasMyc plasmid (Fig. 39). 
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Figure 36. ER-RasV12 cloning into pBS IRES-myc-PR. 

It was ascertained by analysis with the restriction enzymes DraIII or HindIIl and 

the results are shown in the figures 37 and 38. 

The resulting positive clones, whose bands obtained by restriction, are indicated 

on the left, were further confirmed by sequencing analysis. 

Figure 37. MINI PREP of RasMyc plasmid digested with DraIII. Lanes 1 and 18: 1 kb marker; lanes 2 and 8: 

uncut RasMyc plasmid; lanes 3,5,6,7,9,10,12,13 and 14: 9 positive RasMyc plasmid mini preps digested 

with DraIII; lanes 4,11,15,16 and 17: 5 negative RasMyc plasmid mini preps. 
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Figure 38. MINI PREP of RasMyc plasmid digested with HindIIl. Lane 1: 1 kb marker; lanes 2 to 5 and lane 

7: 5 negative RasMyc plasmid mini preps; lane 6: 1 positive RasMyc plasmid mini prep digested with 

HindIIl. 

The structure of the RasMyc plasmid is depicted below (Fig. 39). 

w ti w ti 

ER-Raste IRES Myc-PR pA 

Figure 39. RasMyc plasmid. Estrogen Receptor-HRasV12 fusion protein (ER-H-ras"2); Internal Ribosomal 

Entry Sequence (IRES); c-Myc-Progesterone Receptor fusion protein (Myc-PR); polyadenylation sequence 

(pA); Nod restriction site (Noll). 

3) A further cloning of the ER-ras-myc-PR sequences (RasMyc cassette) into 

pCEFL vector (Fig. 40) was done, to obtain the plasmid depicted in figure 42 (pCEFL- 

RasMyc plasmid. EFIa). 
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Figure 40. ER-ras-myc-PR (RasMyc cassette) cloning into pCEFL. 

After this cloning, the analysis by restriction enzyme KpnI, gave us the expected 

fragments (Fig. 41). 

uncut pCEFL-RasMyc plasmid; lanes 3,4,6,8 and 9: 5 negative pCEFL-RasMyc plasmid mini preps; 

lanes 5 and 7: 2 positive pCEFL-RasMyc plasmid mini preps digested with Kpnl. 
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Figure 41. MINI PREP of pCEFL-RasMyc plasmid digested with KpnI. Lanes 1 and 10: 1 kb marker; lane 2: 



protein (ER-H-rasV12 ); Internal Ribosomal Entry Sequence (IRES); c-Myc-Progesterone Receptor fusion 

protein (Myc-PR); polyadenylation sequence (pA). 

A. 2 The MycRas expression vector 

As observed in the in vitro experiments described subsequently, the amount of c- 

Myc-PR protein was low or undetectable in the systems analyzed. Moreover, since myc 

is overexpressed in cancer cells, the two oncogenes of the targeting construct were 

inverted to obtain the MycRas plasmid (Fig. 50) to have a more efficient cap- 

dependent translation of c-myc-PR. 

The cloning strategy, described in "Materials and Methods", was planned as 

follows: 

1) Removal of the IRES from the IRES-myc-PR plasmid obtained in one of the 

previous subcloning steps. 

The result was a plasmid containing the c-myc coding sequence fused to the PR 

without neither polyA sequence or IRES (pBS myc-PR). 

Insertion of the IRES downstream of the c-Myc-PR fusion protein (Fig. 43). 
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Figure 42. pCEFL-RasMyc plasmid. EF1a eukaryotic promoter (EF1u); Estrogen Receptor-HRasV12 fusion 



Figure 43. ECMV-IRES cloning into pBS myc-PR. 

The digestions of the myc-PR-IRES plasmid were carried out coupling EcoRV 

and Notl (Fig. 44) restriction enzymes or with Kpnl (Fig. 45). 

Figure 44. MINI PREP of myc-PR-IRES plasmid digested with EcoRV and NotI. Lane 1: 1 kb marker; lanes 

2 to 7: 6 positive Myc-PR-IRES plasmid mini preps digested with EcoRV and NotI. 

99 



Figure 45. MINI PREP of myc-PR-IRES plasmid digested with KpnI. Lanes 1 to 11: 11 positive Myc-PR- 

IRES plasmid mini preps digested with KpnI; lane 12: 1 kb marker. 

The plasmid obtained is, as represented below (Fig. 46). 

NatI AscI Notl 

11Ayc-PR IRES 

--hL-t - 
--I 

III 
Figure 46. myc-PR-IRES plasmid. c-Myc-Progesterone Receptor fusion protein (Myc-PR); Internal 

Ribosomal Entry Sequence (IRES); Nod restriction site (NotI); Ascl restriction site (AscI). 

3) Cloning of the H-rasV12 fused to estrogen receptor (ER-Ras"12) downstream of 

the last myc-PR-IRES plasmid (Fig. 47). 

Figure 47. ER-Ras"2 cloning into pBS myc-PR-IRES. 

100 



The MycRas plasmid was digested simultaneously with EcoRI and XhoI (Fig. 

48) and with other three restriction enzymes separately: Notl, BamHI and KpnI (Fig. 

49). The expected resulting bands are indicated in the figures below (Figs. 48 and 49). 

6700 bp 

1000 bp 
- 

Figure 48. MINI PREP of MycRas plasmid digested with EcoRI and XhoI. Lanes 1 and 18: 1 kb marker; 

lanes 2 to 5,7 to 9 and 12: 8 positive MycRas plasmid mini preps digested with EcoRI and XhoI; lanes 6,10, 

11,13 to 17: 8 negative MycRas plasmid mini preps. 

Figure 49. MINI PREP of MycRas plasmid digested with Not1, BamHI and KpnI. Lanes 1 and 8: 1 kb 

marker; lanes 2 and 3: 2 positive MycRas plasmid mini preps digested with Notl; lanes 4 and 5: 2 positive 

MycRas plasmid mini preps digested with BamHl; lanes 6 and 7: 2 positive MycRas plasmid mini preps 

digested with KpnI. 

The final plasmid is shown in the following figure 50: 
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Figure 50. MycRas plasmid. c-Myc-Progesterone Receptor fusion protein (Myc-PR); Internal Ribosomal 

Entry Sequence (IRES); Estrogen Receptor-HRasV12 fusion protein (ER-H-rasV12); polyadenylation sequence 

(pA); Nod restriction site (Notl). 

A further cloning of the MycRas construct into pCEFL vector (Fig. 51). 

Figure 51. myc-PR-ER-ras (MycRas cassette) cloning into pCEFL. 

The analysis of this vector was carried out by digestion with KpnI or EcoRI 

restrictions enzymes (Figures 52 and 53). 
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Figure 52. MINI PREP of pCEFL-MycRas plasmid digested with KpnI. Lanes 1 and 19: 1 kb marker; lanes 2 

to 8,10 to 12 and 14 to 18: 15 negative pCEFL-MycRas plasmid; lanes 9 and 13: positive pCEFL-MycRas 

plasmid mini preps digested with KpnI. 

Figure 53. MINI PREP of pCEFL-MycRas plasmid digested with EcoRl. Lanes 1 and 5: 2 positive pCEFL- 

MycRas plasmid mini preps digested with EcoRI; lanes 2 to 4: 3 negative pCEFL-MycRas plasmid; lane 6: 1 

kb marker. 

The Eukaryotic expression vector carrying the MycRas bicistronic cassette is as 

follows (Fig. 54). 
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Figure 54. pCEFL-MycRas plasmid. EF1a eukaryotic promoter (EF1a); c-Myc-Progesterone Receptor fusion 

protein (Myc-PR); Internal Ribosomal Entry Sequence (IRES); Estrogen Receptor-HRasV12 fusion protein 

(ER-H-ras "2 ). 

Part B: Analysis of oncogenes expression 

B. 1 Transient transfections 

The bicistronic construct was tested in cell systems. 

To check the oncogene expression, the construct was tested by transient 

transfection into different cell lines like HeLa (human epithelial cells), NIH 3T3 

(mouse fibroblast cells), FRTL-5 (rat thyroid cells) and Cos? (monkey kidney cells). 

After transfection, 40H-tamoxifene and RU486 (to activate ER-RasV12 and c- 

Myc-PR respectively), were added to the medium. After 48 hours of treatment, the 

cells were harvested for extraction of total proteins, which were fractionated on SDS- 

PolyAcrylamide Gel and analyzed by western blot using antibodies against both 

proteins (ER-Ras`' 12 and c-Myc-PR). 

HeLa cells were transiently transfected, either with the pCEFL empty vector 

(CEFL), or with the pCEFL vector carrying the ER-RasV12 coding sequence 

downstream of the eukaryotic promoter (CEFL-Ras) as controls or with the same 

vector carrying the RasMyc construct (CEFL-RasMyc). Hormones were added as 

described above. 

The expressions of ER-RasV12and c-Myc-PR were analyzed by western blot 

(Figs. 55 and 56). 
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In HeLa cells transfected with CEFL-Ras, as expected, a band of about 60 KD 

corresponding to the ER-Rasv12 protein was clearly visible (Fig. 55). In addition, cells 

transfected with CEFL-RasMyc were seen to express ER-HRas`'12. However, the 

amount of the protein was lower when expressed by the bicistronic construct as 

compared to the same protein expressed by the CEFL-Ras vector (Fig. 55, lanes 6 to 

11). 

_+_+_+_+-+ 4OHT 

++----++ RU486 
123456769 10 11 

CEFL I CEFL-Ras CEFL-RasMyc 

60 KU. 
ER-HRosV12 

Figure 55. ER-RasV12 (ER-HRas'12) expression in transfected HeLa cells. Lane 1: un-transfected HeLa cells; 

lanes 2,3,4 and 5: HeLa cells transfected with pCEFL wild type vector; lanes 6 and 7: HeLa cells transfected 

with pCEFL-Ras vector; lanes 8,9,10 and 11: HeLa cells transfected with pCEFL-RasMyc vector. Kilo 

Dalton (KD); 40H-tamoxifene (4OHT); mifepristone (RU486). 

In western blot analysis of HeLa transfected either with the pCEFL empty vector 

(CEFL), or with the pCEFL vector carrying the c-Myc-PR coding sequence (CEFL- 

Myc) as controls or with the same vector carrying the RasMyc construct (CEFL- 

RasMyc) (Fig. 56), the c-Myc-PR band was detected in the extract of HeLa transfected 

with pCEFL-c-Myc-PR. However, no band corresponding to the expected 87 KD c- 

Myc-PR of the bicistronic construct was visible (Fig. 56, lanes 6 to 11). 

Thus, these results showed that there was a cap-dependent translation of ER- 

RasV12, whereas the cap-independent translation of the second cistron was not 

observed. This could be explained either by its complete absence or by its presence in 

such a low amount, almost below the threshold value of the system, to render it 

undetectable. 
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Figure 56. c-MycPR expression in transfected HeLa cells. Lane 1: un-transfected HeLa cells; lanes 2,3,4 and 

5: HeLa cells transfected with pCEFL wild type vector; lanes 6 and 7: HeLa cells transfected with pCEFL- 

Myc vector; lanes 8,9,10 and 11: HeLa cells transfected with pCEFL-RasMyc vector. Kilo Dalton (KD); 

40H-tamoxifene (4OHT); mifepristone (RU486). 

Given that the low efficiency of the IRES-dependent translation could depend on 

the cell line used, the construct was transiently transfected also in other cell lines, such 

as FRTL-5 and NIH3T3. The experiment was conducted in duplicate. 

The ER-RasV12 60 KD protein, translated in a cap-dependent fashion, was the 

unique protein detected after addition of the 40H-tamoxifene in both FRTL5 and 

NIH3T3 cell lines (Fig. 57). In fact, in the extracts from FRTL5 and NIH3T3 cells 

transfected with pCEFL-RasMyc, a band corresponding to the expected 87 KD c-Myc- 

PR was detected (Fig. 58). Thus, only the cap-dependent ER-HRasV12 translation was 

observed. 

106 



--+---+- 40HT 
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Figure 57. ER-RasV12 (ER-HRasv12) expression in transfected FRTL-5 and NIH-3T3 cells. Lanes 1 and 5: 

FRTL-5 and NIH-3T3 cells transfected with pCEFL wild type vector; lanes 2,3,4,6,7 and 8: FRTL-5 and 

NIH-3T3 cells transfected with pCEFL-RasMyc vector. Kilo Dalton (KD); 40H-tamoxifene (4OHT); 

mifepristone (RU486). 

+---+- 40 HT 

-+---+ RU486 
12345678 

[CEFLRaSMYC LLCEFLR8sMyc 

c-MYCPQ 
FRTL-5 

c-NIYCPR NIH-3T3 

Figure 58. c-Myc-PR expression in transfected FRTL-5 and NIH-3T3 cells. Lanes 1 and 5: FRTL-5 and NIH- 

3T3 cells transfected with pCEFL wild type vector; lanes 2,3,4,6,7 and 8: FRTL-5 and NIH-3T3 cells 

transfected with pCEFL-RasMyc vector. Kilo Dalton (KD); 40H-tamoxifene (4OHT); mifepristone (RU486). 

In addition, Cos7 cells were transfected with either the pCEFL empty vector 

(CEFL) or the pCEFL vector carrying the ER-RasV12 coding sequence (CEFL-Ras) or 

the c-Myc-PR coding sequence (CEFL-Myc) as controls or with the same vector 

carrying our construct (CEFL-RasMyc). The proteins were extracted and analyzed by 

western blot after cell treatment with 40H-tamoxifene and RU486 for 48 hours. 

Figure 59 indicates that the ER-Rasv12 protein was detected in control cells 

(transfected with CEFL-Ras) treated with 40H-tamoxifene or left untreated (lanes 6 
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and 7). Even in Cos7 cells transfected with the bicistronic construct (CEFL-RasMyc), 

the ER-Rasv12 was present in protein extracts also without 40H-tamoxifene addition, 

and its amount was found to increase after its complementary drug addition. 

+-+-+-+-+ 4OHT 

++++ RU486 
123456789 10 11 

CEFL I CEFL-Ras CEFL-RasMyc 

60 ko. ER-WRas1112 
J 

Figure 59. ER-RasV12 (ER-HRasV12) expression in transfected Cos7 cells. Lane 1: untransfected Cos7 cells; 

lanes 2,3,4 and 5: Cos7 cells transfected with pCEFL wild type vector; lanes 6 and 7: Cos7 cells transfected 

with pCEFL-Ras vector; lanes 8,9,10 and 11: Cos7 cells transfected with pCEFL-RasMyc vector. Kilo 

Dalton (KD); 40H-tamoxifene (4OHT); mifepristone (RU486). 

Figure 60 represents the western blot of the proteins extracted from Cos7 cells 

containing the pCEFL vector carrying the c-Myc-PR coding sequence (CEFL-Myc) 

and the bicistronic construct (CEFL-RasMyc). c-Myc-PR was detected in both 

transfections: with pCEFL-Myc and with pCEFL-RasMyc, regardless of the treatment 

(lanes 6 to 11). 

Thus, Cos7 cells transfected with pCEFL-RasMyc showed a cap-dependent ER- 

Ras"2 translation and IRES-dependent translation of c-Myc-PR was also observed. 

Even though, the amount of c-Myc-PR protein was low, it was possible to conclude 

that the bicistronic construct can work in Cos7 cells. This result could be explained 

assuming that the IRES activity was cell type-specific, presumably due to the reasons 

described previously. However, Cos7, are known to be the cells expressing transfected 

genes very efficiently; hence the absence of c-Myc-PR in other cell lines and its 

presence in Cos7 cells could be attributed to the transfection or expression efficiency of 

these cells. 
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Figure 60. c-Myc-PR expression in transfected Cos7 cells. Lane 1: untransfected Cos7 cells; lanes 2,3,4 and 

5: Cos7 cells transfected with pCEFL wild type vector; lanes 6 and 7: Cos7 cells transfected with pCEFL-Myc 

vector; lanes 8,9,10 and 11: Cos7 cells transfected with pCEFL-RasMyc vector. Kilo Dalton (KD); 40H- 

tamozifene (4OHT); mifepristone (RU486). 

B. 2 Stable transfections 

The c-Myc protein has been found overexpressed in the majority of the tumours 

in which it is involved. Therefore our aim was to obtain c-Myc-PR protein levels 

higher than that obtained with the RasMyc vector transiently transfected, to reach a 

suitable amount of protein able to co-operate with the second oncoprotein during its 

transforming activity. For this purpose, the MycRas vector was created inverting the 

two oncogenes up- and downstream of the IRES, to obtain a 5'cap-dependent c-Myc- 

PR translation. 

Based on the results obtained with the transient transfections of the RasMyc 

vector described in the previous paragraph, for the MycRas construct we decided to 

carry out a stable transfection. As compared to the transient transfections, in which 

only a small number of cells result transfected and in which the vector can insert 

randomly in different regions of the genome creating a pool of different cells, with 

stable transfection, it is possible to obtain a clone of selected cells fully identical and 

homogeneously transfected. 
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Since our aim was to study the carcinogenesis in thyroid, an in vitro cell system, 

as similar as possible to the gland of interest, was chosen. Thus, the FRTL-5 (Fischer 

at Thyroid Low serum 5%) considered to being the best line, served the purpose. 

These cells are rat thyroid immortalized cells obtained from primary cultures of Fischer 

rat thyroid glands. They maintain functional characteristics such as iodide uptake and 

thyroglobulin synthesis over prolonged periods of culture and are cultured in a medium 

containing approximately 5 percent calf serum supplemented with a mixture of 

hormones. The FRTL-5 cells were subjected to stable transfection with the MycRas 

construct and then to selection with G418, after which, 59 stable neomycin resistant 

clones were picked up and expanded separately. The expression of both chimeric 

proteins in the positively selected clones was checked by western blot analysis in the 

presence of either 40H-tamoxifene or RU486 or both or without them. 

Among the 59 G418 positively selected FRTL-5/MycRas clones, at least four 

were found to express both proteins, out of them two were expanded for further 

analyses (Figs. 61 and 62) and named as clone 4 (C14) and clone 7 (C17). A clone 

(C111) obtained from FRTL-5 cells stably transfected with pCEFL-ER-RasV12 vector 

(De Vita et al., 2005) was used as ER-Rasv12 positive control clone. This clone has 

been found to express high ER-RasVL2 levels conferring to the clone, the ability to grow 

in a TSH-independent manner when induced with 40H-tamoxifene. Moreover, the 

expression of some thyroid-specific genes including thyroglobulin was appreciably 

reduced in the same clone. 
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Figure 61. ER-RasV12 (ER-HRasV1) expression in 13 out of 59 FRTL-5/MycRas screened clones. Lanes 1 to 

13: clones 1 to 13. Kilo Dalton (KD); 40H-tamoxifene (4OHT); mifepristone (RU486). 

+++++++++++++ 4OHT 
+++++++++++++ RU486 
123456789 10111213 

87 Kb c-MYCPR 

60 KD c-MYC 

Figure 62. c-Myc-PR expression in 13 out of 59 FRTL-5/MycRas screened clones. Lanes 1 to 13: clones 1 to 

13. Kilo Dalton (1(D); 40H-tamoxifene (4OHT); mifepristone (RU486). 

The whole cell lysates of the two stable FRTL-5/MycRas clones (C14 and C17) 

were obtained and a 30 ggs of protein samples were resolved on a precast SDS-PAGE 

gel 

The ER-Ras`' 12 expression (the gene downstream of the IRES in the MycRas 

construct) was found to be higher in C14 than in C17 (Fig. 63) but about 30 fold lower 

than that of Cl 11, figure 64 lane 6 (C14 15 µg) and lane 2 (C111 0.5 µg). 
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Figure 63. ER-RasV12 (ER-HRasV12) expression in FRTL-5 C14 and C17. Lane 1: positive control for ER- 

RasV12 expression (Ras + ctr) (CI11); lanes 2,3,4 and 5: C14; lanes 6,7,8 and 9: C17. Kilo Dalton (KD); 40H- 

tamoxifene (4OHT); mifepristone (RU486). 

The ER-Ras" 12 protein appeared to be more stable and much more abundant after 

addition of 40H-tamoxifene, as shown previously (De Vita et al., 2005) and as 

observed for other ER-fusion proteins (Greulich and Erikson, 1998; Samuels et al., 

1993). 

++++++++- 40HT 

123456789 

c ill IC Cr 17 ý=60 

KD --E R-HRas112 

Figure 64. ER-Ras"Z (ER-HRasV12) expression in FRTL-5 C111, C14 and C17. Lane 1: C111 0,25 µg; lane 2: 

Cll l 0,5 µg; lane 3: C111 2 µg; lane 4: C111 4 µg; lane 5: C14 7 µg; lane 6: C14 15 µg; lane 7: C17 7 pg; lane 8: 

C17 15 µg; lane 9: negative control (-ctr) for ER-RasV12 expression (FRTL-5 wild type); Kilo Dalton (KD); 

4OH-tamoxifene (4OHT). 

Also the amount of the c-Myc-PR protein was found visibly higher in C14 (lanes 

2 to 5) as compared to that in C17 (lanes 6 to 9) (Fig. 65). In this case, the stability of c- 

Myc-PR protein was not found to increase by the addition of hormone. 
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Figure 65. c-Myc-PR expression in FRTL-5 C14 and C17. Lane 1: positive control for c-Myc-PR expression; 

lanes 2,3,4 and 5: C14; lanes 6,7,8 and 9: C17. Kilo Dalton (KD); 40H-tamoxifene (4OHT); mifepristone 

(RU486). 

By this initial analysis it was possible to observe the presence and hence the 

correct expression of the two exogenous oncoproteins. 

Since the ER-Ras"" protein results more abundant after 40H-tamoxifene 

addition, it is possible to speculate that the protein is stabilized and therefore activated 

by the drug. 

On the contrary, stabilization for the c-Myc-PR protein is not observed following 

drug addition. 

B. 2.1 Analysis of genes involved in thyroid differentiation 

Differentiated thyroid follicular cells are characterized by the expression of a 

variety of proteins that are unique for this cell type. The combined function of these 

genes results in the TSH-regulated synthesis of thyroid hormone. 
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In a cell system, genes typical of the differentiated status may result 

downregulated following oncogene activation, as it is already known for thyroid cells. 

As detailed in introduction, thyroid development and differentiation are regulated by at 

least three transcription factors such as Nkx2.1/Titfl, Foxel and the paired box factor 

Pax8, regulating the expression of genes such as thyroglobulin (Tg), thyroperoxidase 

(TPO), sodium (Na+)Iiodine (I) symporter (NIS), -TSH receptor (TSHr). These genes 

have been observed to be strongly downregulated after cell transformation depending 

on the amount of oncogene expressed. In particular, in a study, in which FRTL-5 cells 

were stably transfected with the pCEFL vector carrying the ER-RasV12 coding 

sequence, one of the G418 positively selected clones, called clone 11, expressed high 

levels of ER-Rasv12. After 40H-tamoxifene treatment, the levels of Tg, PaxS and Titfl 

resulted dramatically reduced in this clone (De Vita et al., ̀ 2005). Thus, we asked 

whether even our clone of interest, C14, after activation of oncoproteins and co- 

operation, was able to induce dedifferentiation in thyroid cells. To address this 

question, the levels of mRNA encoding the seven thyroid-specific proteins mentioned 

above, were analyzed by RealTime (RT) PCR in C14, C17 and Cll l (positive control) 

after all the different treatments. Moreover, other two genes such as thyroid oxidase 

(THOX) and pendrin PD, responsible for the Pendred syndrome (PDS) were also 

analyzed. THOX catalyzes the oxidative coupling of iodotyrosines to form the 

iodothyronines as thyroxine (T4) and triiodothyronine (T3) and pendrin encodes a 

putative apical porter of iodide. 

The three clones (C14, C17 and Cl11) were treated for different times: Oh, 12h, 

24h and 48h with 40H-tamoxifene or RU486 or both or ethanol (negative control), in 

which the hormones were dissolved. After each treatment, the proteins and the total 

RNA were extracted from each clone. The RNA was retrotranscribed into cDNA by 

using random hexamers and oligo dT in a reverse transcription reaction and analyzed. 
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As expected, in Cl ll all the genes were deregulated following the strong ER- 

Ras""' expression, except Pendrin that was markedly up-regulated (Fig. 66 violet bars 

vs purple bars). 

Cl11 4sh Tvs II 
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Figure 66. Real Time PCR Clll after 48h of treatment with 40H-tamoxifene (4OHT), ethanol as negative 

control (EtOH), 48 hours of treatment (48h). For each gene, values reported were the average of triplicates 

normalized for the expression of al-tubulin. That high HRasv12 levels lead to dedifferentiation has been 

observed before (De Vita et aL, 2005). 
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Figure 67 shows the expression of thyroid-specific genes in C14 treated for 48 

hours with the hormones. Thyroid gene expression did not show any change in C14 at 

different treatments with respect to their corresponding controls, even after 48 hours of 

treatment, except for thyroglobulin (Fig. 67), which reduced to after all treatments with 

respect to its control and this downregulation could be ascribed to the oncogenic 

activation. 

C1448h 
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Figure 67. Real Time PCR C14 after 48h of treatment with 40H-tamoxifene (4OHT), mifepristone (P), 40H- 

tamoxifene and mifepristone (TP), ethanol as control (EtOH). 

B. 2.2 Proliferation assays 

FRTL-5 cells are known to grow in the F12 coon's medium supplemented with 

5% newborn calf serum and six hormones: TSH, insulin, transferrin, somatostatin, the 
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tripeptide Glycyl-Hystidyl-Lysine and hydrocortisol. One of the features of these cells 

is that they are strictly dependent on the presence of TSH and insulin, added to the 

culture medium for proliferation and for the maintenance of the thyroid differentiated 

phenotype. 

Since activated oncogenes are known to deregulate cell growth by its induction 

even in the absence of hormone stimulation (De Vita et al., 2005), we asked whether 

the expression and the subsequent activation of the oncogenes carried by our 

bicistronic construct could make the FRTL-5 cells TSH- and/or insulin-independent for 

growth. 

To verify the ability of the bicistronic construct to induce TSH- or insulin- or 

THS and insulin-independent growth, two proliferation assays, like colony assay and 

ATPlite assay, were carried out in different conditions of growth and treatments; in 

order to measure-the proliferation rate of the clones of interest. 

B. 2.2.1 Colony assay 

In the colony assay, the FRTL-5 cells were transfected with pCEFL-MycRas 

plasmid to induce the expression of ER-Rasv12 and c-Myc-PR genes. Cells were also 

transfected with each oncogene alone and subcloned into pCEFL vector (pCEFL- 

ERRas, pCEFL-MycPR). Cells transfected with the empty pCEFL vector (pCEFL-wt) 

were used as negative control. Moreover, C111 (De Vita et al., 2005) and C14 obtained 

by stable'transfection of FRTL-5 with pCEFL-ER-Rasv12 and pCEFL-c-myc-PR-ER- 

Rasvl2 respectively were used as positive controls. 

After transfection, the cells were subjected to selection for G418 resistance, to 

allow only the transfected cells to grow and form colonies. Cells were cultered into 

different media, such as complete medium containing all the six hormones (6H) or 
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medium lacking either only TSH (5H-TSH) or only insulin (5H-INS) or both TSH and 

insulin (4H-TSH-INS). Each kind of medium was added with a drug: 40H-tamoxifene 

(40HT) or RU486 separately or both simultaneously and ethanol (the vehicle) as 

control, to activate the oncogenes. 

After two weeks of continuous neomycin selection, cells were checked for their 

ability to grow. The colonies formed, were fixed, stained with crystal violet and 

counted. 

Figures 68,69,70,71 and 72 show the results of this assay. 

For Cl11, as expected, numerous G418 resistant colonies were generated in the 

presence of TSH, whereas no colonies were scored in the absence of TSH (Fig. 68). 

The deprivation of insulin alone did not affect the growth of the cells. In the absence of 

TSH the addition of 40H-tamoxifene restored the growth demonstrating that the ER- 

HRasv12 chimeric oncogene was able to induce TSH-independent growth in the clone 

(Fig. 68 and 69). The activated oncogene allowed the growth of the cells even in the 

absence of both TSH and Insulin (Fig. 69). 

In the case of C14, in the absence of TSH, the addition of 40H-tamoxifene had a 

weak effect: in fact, the drug allows the growth of a small but significant number of 

colonies. However, the activation of ER-RasV12 did not sustain the growth in the 

absence of both TSH and insulin. The addition of RU486 did not change this scenario 

(Figs. 70,71,72 and table 12). Obviously, in the complete medium it was not possible 

to count the number of colonies and the difference, if any, between EtOH or drugs 

addition to the medium (data not shown). 

Finally, a colony assay with cells transiently transfected with the oncogenes, was 

performed. However no growth was observed with any kind of selecting medium or 

treatment, except for the complete medium (6H) in which the number of colonies 

observed was comprised between 30 (for cells transfected with pCEFL-ERRas, 
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pCEFL-MycPR or pCEFL-MycRas) and 130 (for cells transfected with pCEFL-wt) 

(table 12). Thus, neither alone or both together the oncogenes were able to induce 

TSH-independent growth, probably because the quantity of the two proteins in this 

system was too low to induce the expression of the transformed phenotype such as 

uncontrolled proliferation in medium lacking hormones. 

6H 
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+ 40HT 
0, ... 

i:..: 

5H-TSH 
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Figure 68. Colony assay Clii. Complete medium (614); medium lacking TSH (5H-TSH); 40H-tamoxifene 

(4OHT); ethanol (EtOH). 
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Figure 69. Colony assay C111. Medium lacking insulin (5H-INS); medium lacking TSH and insulin (4H-TSH- 

INS); 40H-tamoxifene (4OHT); ethanol (EtOH). 
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Figure 70. Colony assay C14. Medium lacking TSH (5H-TSH); 40H-tamoxifene (4OHT); mifepristone 

(RU486); ethanol (EtOH). 
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Figure 71. Colony assay C14. Medium lacking insulin (5H-INS); 40H-tamoxifene (4OHT); mifepristone 

(RU486); ethanol (EtOH). 
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Figure 72. Colony assay C14. Medium lacking TSH and insulin (5H-TSH-INS); 40H-tamoxifene (4OHT); 

mifepristone (RU486); ethanol (EtOH). 
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The results of the colony assay are summarized in the following table. 

Me ýa FRTL-5 tranfected by: 

and treatments 
pcm, 
we 

pcst. 
Ims 

pCUL. 
UycPR 

PCUI. 
tdywR.. 

04 
GTR 

all 
GTR 

6H+Nco '123, 39 79 52 co Co 

6H+Neo+40HT '116 40 85 51 0o 00 

6H+Neo+RU486 117 31 70 59 ao - 

6H+14eo+40HT+RU486 119 37 72 51 00 - 

SH(TSH)+Nco 0 0 0 0 29 0 

5H(TSH)+Neo+40HT 0 7 0 0 523 co 

5H(TSH)+Neo+RU486 0 0 0 0 47 - 

SH(TSH)+Neo+40HT+RU486 0 7 0 0 239 - 

5H(INS)+Neo 0 0 0 0 co co 

5H(INS)+Neo+4OHi' 0 7 0 0 co co 

SH(INS)+Neo+RU486 0 0 0 0 00 

5H(INS)+Neo+4OHT+RU486 0 13 0 0 0o - 

411(TSH-INS)+Nco 0 0 0 0 0 0 

4H(TSH-INS)+Neo+ 0 4 0 0 0 00 

4H(TSH-INS)+Neo+RU486 0 0 0 0 0 

4H(TS H-INS)+Nco+40M+RU4S6 0 4 0 0 0 - 

Table 12. Colony assay: number of colonies after two weeks of selection growth. C14 and Clll were used as 

positive controls. Medium lacking TSH (SH-TSH); medium lacking insulin (SH-INS); medium lacking TSH 

and insulin (SH-TSH-INS); 40H-tamozifene (40HT); mifepristone (RU486); ethanol (EtOH); G418 selection 

(NEO); Infinite (x); not done (-). 
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B. 2.2.2 ATPlite assay 

The results of colony assay were confirmed by ATPlite assay, a luminescence 

assay for the quantitative evaluation of proliferation and cytotoxicity of cultured 

mammalian cells. ATP is a marker for cell viability since it is present in all 

metabolically active cells and its concentration declines when the cells undergo 

necrosis or apoptosis. 

This assay was carried out on three clones: the parental line FRTL-5, in ClI l 

(ER-RAS FRTL-5) (De Vita et al., 2005) and in C14 (MYC-RAS-FRTL-5). The cells 

were grown in complete medium (6H) and medium deprived of TSH (5H) (each one 

supplemented with either 40HT or RU486 or both; ethanol as negative control). The 

cells were maintained in-culture for 6 days. Every two days (T2gg, T4gg, T6gg, ) an 

aliquot of cells was harvested and ATP was measured and expressed as fold increase 

relative to time 0 (TO). 

The wild type FRTL-5 cells were able to grow in the complete medium but not in 

the medium lacking the TSH hormone; the addition of the drugs did not interfere 

appreciably with the growth of the cells (Fig. 73). 
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Figure 73. ATPlite Assay on FRTL-5 cells. Complete medium (6H); medium lacking TSH (5H); 40H- 

tamoxifene (4OHT); mifepristone (RU486); ethanol (EtOH); no drugs (/); time 0 (TO); time 2 days (T2gg); 

time 4 days (T4gg); time 6 days (T6gg). 

By the same ATP analysis on the stable Cl 11, as previously observed (De Vita et 

al., 2005), the activation of ER-RasV12 with 40H-tamoxifene in 5H medium was 

followed by an increased proliferation rate of the clone after four days (Fig. 74). 
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Figure 74. ATPlite Assay on C111 (ER-RAS FRTL-5). Complete medium (6H); medium lacking TSH (5H); 

40H-tamoxifene (4OHT); mifepristone (RU486); ethanol (EtOH); no drugs (/). time 0 (TO); time 2 days 

(T2gg); time 4 days (T4gg); time 6 days (T6gg). 

The proliferation ability of C14 grown in both media 6H and 5H can be observed 

in figure 74. In the medium lacking the TSH hormone, its behaviour was more similar 

to that of wild type FRTL-5 cells than that observed for ClI I (compare Figs. 73,74 

and 75) in the same culture conditions. According to the colony assay results, C14 grew 

normally for six days in 6H medium. After two days of culture in 5H medium its 

proliferation was strongly reduced and showed only a slight induction (at time four 

day) when treated with 40H-tamoxifene alone or with 40H-tamoxifene and RU486 

respectively to activate the oncogenes (Fig. 75). 

Moreover, it is noteworthy that the basal proliferation activity in 6H medium of 

this clone was higher than that of FRTL-5 or ClI I starting from the fourth day of 

culture. In fact, at time 4 days the fold inductions were about 60 and 20 for C14 and 

FRTL-5 or C111 respectively; after 6 days the fold induction observed reached 140 in 

C14, while it was only 50 in FRTL-5 or Cl l1 (compare Figs. 73,74 and 75). 
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Figure 75. ATPlite Assay on C14 (MYC-RAS FRTL-5). Complete medium (6H); medium lacking TSH (5H); 

40H-tamoxifene (4OHT); mifepristone (RU486); ethanol (EtOH); no drugs (/). time 0 (TO); time 2 days 

(T2gg); time 4 days (T4gg); time 6 days (T6gg). These data were obtained by the average of triplicates and 

were normalized for the proliferation rate at time 0. 

B. 2.3 The ERK protein phosphorylation 

As described in the chapter "Introduction", among the many pathways triggered 

by HRas, the most deeply studied is the MAP-kinase cascade in which the first effector 

is the protein serine/threonine kinase Raf (a MAP-kinase). Through other MAP-kinase, 

or MEK, that specifically phosphorylates threonine and tyrosine residues, the signal 

reaches the last MAP-kinase of the cascade, the ERK protein, before activating 

transcription factors. Thus, the phosphorylation of ERK can be studied as a tool to 

confirm if ER-Rasv12 is active. 

In order to verify the activation by phosphorylation of the ERK protein in our 

system, parental FRTL-5 cell line, Cli I (ER-RAS FRTL-5) and C14 (MYC-RAS- 

FRTL-5) were cultured in 6H medium supplemented with either 4OHT or RU486 or 
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both or ethanol as negative control. After two days, proteins were extracted and 

analyzed by western blot. 

A constant and increased level of the phosphorylated ERK protein in FRTL-5 

cells, Cl ll and C14 was detected after two days with respect to time 0 (Figs. 76,77 and 

78). 

The amount of total protein loaded was visualized by the ß-actin level. 
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Figure 76. Western Blot on FRTL-5 protein extract. Lane 1: extract at time 0 (0h); lanes 2,3,4 and 5 extract 

at time 2 days (2 days); Kilo Dalton (1(D); 40H-tamoxifene (4OHT); mifepristone (RU486); anti-phospho- 

p44/42 MAP Kinase antibody (P-ERK); anti-ß-actin antibody (actin). 

Despite the clone (Cli i or C14) or the treatments (4OHT or RU486 or both) the 

same trend was reflected for the ERK protein phosphorylation as observed in the 

parental cell line (Figs. 77 and 78). 

From these results, it could be deduced that this phosphorylation course was not 

due to the real ERK induction, following ER-Rasv12 activation, but due to its basal 

phosphorylation in two days of culture even into the parental cell line (Fig. 76). 
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Figure 77. Western Blot on C111 (ER-Ras FRTL-5) protein extract. Lane 1: extract at time 0 (0h); lanes 2,3, 

4 and 5 extract at time 2 days (2 days); Kilo Dalton (KD); 40H-tamoxifene (4OHT); mifepristone (RU486); 

anti-phospho-p44/42 MAP Kinase antibody (P-ERK); anti-ß-actin antibody (actin). 
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Figure 78. Western Blot on C14 (MYC-RAS FRTL-5) protein extract. Lane 1: extract at time 0 (0h); lanes 2, 

3,4 and 5 extract at time 2 days (2 days); Kilo Dalton (KD); 40H-tamoxifene (4OHT); mifepristone (RU486); 

anti-phospho-p44/42 MAP Kinase antibody (P-ERK); anti-ß-actin antibody (actin). 

On comparison of the ERK phosphorylation blottings with the ATPlite assay 

graphs, it was possible to speculate that the increase of the ERK phosphorylation and 
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probably its accumulation in a couple of days could be useful for cell proliferation 

during the first four days. In fact, a six fold and a twelve fold inductions of 

proliferation were observed after two and four days of culture respectively. 

B. 2.4 Analysis of H-ras and c-myc target genes 

HRas and c-Myc proteins belong to different networks of proteins, which upon 

stimulation, are able to interact among them and to determine a long-term effect at the 

end of the cascade by activation of many effectors. To check if also in our cells these 

two proteins were active after addition of drugs, it was necessary to verify the 

induction of proteins involved in their pathways. 

In order to analyze the behaviour of the genes downstream of HRas and c-Myc, 

after a time-course of treatment with 40H-tamoxifene and/or RU486, two genes were 

chosen for RT-PCR analysis such as c-fos and ornithine decarboxylase (ODC). 

c-fos, a component of the activating protein-1 (AP-1) family of transcription 

factors including also c-Jun family members, is the last gene up-regulated at the end of 

the MAPK cascade, following HRas induction; while ODC, a rate-limiting enzyme of 

polyamine biosynthesis, has been accepted as c-Myc target gene in the literature since 

1993 (Bello-Fernandez et al., 1993). c-fos and ODC were analyzed in C14 and, as 

control, in FRTL-5 as control and Clll during a time course treatment with 40H- 

tamoxifene and/or RU486. 

In parental cell line both genes, c-fos and ODC, showed the same trend with a 

gene expression increasing at 24h and going back to basal levels after 48h (Figs. 79 

and 80). 
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Figure 79. FRTL-5 c-fos expression. 40H-tamoxifene (4OHT); mifepristone (P); 40H-tamoxifene and 

mifepristone (TP); ethanol (EtOH). 
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Figure 80. FRTL-5 ODC expression. 4OH-tamoxifene (4OHT); mifepristone (P); 40H-tamoxifene and 

mifepristone (TP); ethanol (EtOH). 

132 



In C14, in the first two days an increase in ERK phosphorylation was observed 

(Fig. 78) but there was no corresponding high peak of c-fos mRNA after 48h (Fig. 81), 

confirming that the phosphorylation course was not due to the real ERK induction, 

following ER-RasV12 activation but due to an ERK activation independent of the HRas 

pathway. 

A mild increase of c-fos mRNA after 24h was observed despite the treatment 

(Fig. 81). 
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Figure 81. C14 c-fos expression. 40H-tamoxifene (4OHT); mifepristone (P); 40H-tamoxifene and 

mifepristone (TP); ethanol (EtOH). 

ODC expression in C14 followed the same time-course of c-fos (Fig. 82), without 

indicating any c-Myc activation. 
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Figure 82. C14 ODC expression. 40H-tamoxifene (4OHT); mifepristone (P); 40H-tamoxifene and 

mifepristone (TP); ethanol (EtOH). 

Part C: Studies in mice: conditional onco-mice 

C. 1 Generation of onco-mice 

To overcome the drawbacks coming from cell culture conditions, transgenic 

mouse strains, carrying conditional oncogenes spatio-temporally regulated, were 

generated in order to provide an experimental model of tumorigenesis working in 

physiological conditions. 

C. 1.1 The targeting vectors 

The two ER-ras-myc-PR and myc-PR-ER-ras bicistronic cassettes (Figs. 39 and 

50) already described in "Materials and Methods" Part E (sections E. 1 and E. 2) and in 

"Results" Part A (sections A. 1 and A. 2), were subcloned into the targeting vector 
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following the strategy detailed in "Materials and Methods" Part E (sections E. 3) and 

resumed below. 

1) Cloning the ER-ras-myc-PR cassette from the RasMyc plasmid into the SA- 

ßgeo-STOP plasmid (Fig. 83). 

Figure 83. ER-ras-myc-PR (RasMyc cassette) cloning into pBS SA-ßgeo-STOP. 

In the SA-ßgeo-STOP plasmid, a STOP cassette, composed of a promoterless 

ßgalactosidase-neomycin resistance fusion protein (Friedrich and Soriano, 1991) and 

including a triple polyadenylation signal from SV40 large antigen T (Zambrowicz et 

al., 1997) was assembled. This sequence is flanked by two directly repeated LoxP sites, 

so that it can be removed by Cre-mediated recombination. 

The BamHI-HindIII restriction, (Figs. 84 and 85), has allowed us to ascertain the 

presence of all the fragments subcloned into the SA-ßgeo-STOP plasmid. 
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Figure 84. SA-ßgeo-STOP plasmid. Splice acceptor (SA); LoxP site (LoxP); ßgalactosidase-neomycin 

resistance fusion protein (ßgeo); triple polyadenylation sequence (3xpA); PmeI restriction site (Pmel); Nod 

restriction site (Not». 
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Figure 85. MINI PREP of SA-ßgeo-STOP plasmid digested with Bam HI and HindIIl. Lane 1: 1 kb marker; 

lane 2: 1 positive SA-ßgeo-STOP plasmid digested with BamHI and HindIIl. 

The SA-ßgeo-RasMyc plasmid (Fig. 86) was digested with three different 

enzymes: Notl (Fig. 87), BamHI (Fig. 88) or HindIII (Fig. 89). 
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Figure 86. SA-ßgeo-RasMyc plasmid 
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Figure 87. MINI PREP of SA-ßgeo-RasMyc plasmid digested with Notf. Lanes 1 and 20: 1 kb marker; lanes 2 

to 19: 18 positive SA-ßgeo-RasMyc plasmid digested with Not1. 

Figure 88. MINI PREP of SA-ßgeo-RasMyc plasmid digested with BamHI. Lane 1: 1 kb marker; lanes 2 to 4, 

7 to 11,15 and 19: 10 positive SA-ßgeo-RasMyc plasmid digested with BamHI; lanes 5 and 6,12 to 14,16 to 

18 and 20: 9 positive SA-ßgeo-RasMyc plasmid digested with BamHI. 



2) Cloning the myc-PR-ER-ras cassette from the MycRas plasmid (Fig. 50) into 

the SA-ßgeo-STOP plasmid (Fig. 90). 

Figure 90. myc-PR-ER-ras (MycRas cassette) cloning into pBS SA-ßgeo-STOP. 

Then, the ßglobin intron poly A sequence was inserted downstream of ER-Ras 

(Fig. 91). Inclusion of an intron in a transgene construct could increase the gene 

expression, whereas a polyadenylation signal is required for the proper termination of 
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Figure 89. MINI PREP of SA-ßgeo-RasMyc plasmid digested with HindIIl. Lane 1: 1 kb marker; lanes 2 to 4, 

7,9 to 11,15 and 19: 9 positive SA-ßgeo-RasMyc plasmid digested with HindIII; lanes 5,6,8,12 to 14,16 to 

18 and 20: 10 negative SA-ßgeo-RasMyc plasmid digested with HindIIl. 
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transcription and stability of mRNA. In addition to these effects, poly A sequence can 

affect overall gene expression efficiency. 

Figure 91. SA-4geo-MycRas-ßglobin intron pA plasmid 

The integrity of the SA-ßgeo-MycRas-ßglobin intron pA plasmid was 

demonstrated through analysis with restriction enzymes HindIIl and BamHI separately 

(Fig. 93) and sequencing all the cloning junctions (as schematically represented in Fig. 

92) on both strands. Short pieces of some sequences are represented in figures 22,23, 

24,25 in "Materials and Methods" chapter. 

Figure 92. Schematic representation of some of the primers used for sequencing the SA-ßgeo-MycRas-ßglobin 

intron pA plasmid and their relative annealing position. 
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Figure 93. MINI PREP of SA-ßgeo-MycRas-pglobin intron pA plasmid digested with HindIII or BamHI. 

Lane 1: 1 kb marker; lane 2: 1 positive SA-ßgeo-MycRas-ßglobin intron pA plasmid digested with Hindill; 

lane3: 1 positive SA-ßgeo-MycRas-ßglobin intron pA plasmid digested with BamHI. 

In order to generate a mouse model carrying the oncogenes in all tissues and 

organs, two mouse strains were created through homologous recombination in ES cells, 

carrying the targeting vector into the two different loci ubiquitously expressed, 

ROSA26 or Eeflal, described in paragraph 1.6. 

However, the STOP cassette (described previously in this paragraph), placed 

before the ATG codon of the bicistronic sequence, allowed us to drive the expression 

of the bicistronic construct in a tissue-specific manner after its removal by Cre- 

mediated recombination. In particular, we wanted to observe the effects of the two 

oncogenes in thyroid. 

Each construct, (the SA-ßgeo-RasMyc plasmid and the SA-ßgeo-MycRas- 

ßglobin intron pA plasmid; figures 86 and 91), was subcloned between the arms of 

homology of ROSA26 and Eeflal loci, to obtain the RasMyc targeting vector and the 

MycRas targeting vector respectively. 

The schematic structure of the targeting vector used for the homologous 

recombination in ES cells is shown in figure 94. 

140 



74 in 

-5 d9m ONL7 IKES OýK2 pAX ARM 
ýý 

Figure 94. Targeting vector. Homology arm at 5' end (5'arm); splice acceptor (SA); LoxP site (LoxP); 

ßgalactosidase-neomycin resistance fusion protein (ßgeo); triple polyadenylation sequence (3xpA); first 

oncogene (ONC1); second oncogene (ONC2); polyadenylation sequence (pA); homology arm at 3' end 

(3'arm). 

Each targeting vector was sequenced and digested with BamHI, Spei or Kpnl 

restriction enzymes (Figs. 95,96,97) before electroporation in ES cells. Figure 26, in 

"Materials and Methods" chapter, is part of the sequence obtained using the SA Rev 

pnmer. 
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Figure 95. MINI PREP of targeting vector digested with BamHI. Lane 1: 1 kb marker; lanes 2,3,6,9, and 11 

to 13: 7 negative targeting vector mini preps; lanes 4,5,7,8 and 10: 5 positive targeting vector mini preps 

digested with BamHI. 
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C. 1.2 ES cells electroporation and screening 

The MycRas targeting vector was electoporated into RI Embryonic Stem (ES) 

cells, following the protocol described in "Materials and Methods". 

The electroporated cells were fed with a medium containing the antibiotic G418. 

Because of the neomycin resistance carried by the vector, it was possible to select only 
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Figure 96. MINI PREP of targeting vector digested with Spel. Lane 1: 1 kb marker; lanes 2, J, 4, i, anti iu: 3 

negative targeting vector mini preps; lanes 5,6,8,9 and 11: 5 positive targeting vector mini preps digested 

with Spel. 

Figure 97. MINI PREP of targeting vector digested with KpnI. Lane 1: 1 kb marker; lanes 2 to 6,9, and 12: 7 

negative targeting vector mini preps; lanes 7,8,10,11 and 13: 5 positive targeting vector mini preps digested 

with KpnI. 



the clones in which the recombination had occurred. The expression of Neomycin 

promoterless cassette, driven by an endogenous promoter, did not ascertain that the 

targeting vector integration was a homologous recombination. Thus, to verify that the 

recombination event had occurred correctly, after this preliminary selection, the results 

were assessed by PCR. 

Thus, it was possible to distinguish the wild type and the recombinant allele in 

each clone, following the correct homologous recombination event, based on the size 

of the DNA fragments produced. The PCRs for the Eefla1MycRas/Eef1a1+ (or 

EeflalMycRas) ES clones and ROSA26MycRas/ROSA26+ (or ROSA26MycRas) ES 

clones were carried out as described in "Materials and Methods". The oligo primers 

chosen and the expected bands are drawn in the figures 98 and 99. 

wt wt Eef 1a1 Eef1a1 

5 ggse 3PA Myc-PQ IKES ER {feste 
ý1- 

1115 bp 

1058 bp 

Figure 98. EeflalMycRas ES clones PCR screening scheme. The common FW1 forward primer was used 

either in combination with the LongR5Rev reverse primer to amplify a 1115 bp long PCR product on the 

recombinant allele or in combination with the WT3Rev reverse primer to amplify a 1058 bp long PCR 

product on the wt allele. 
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Figure 99. ROSA26MycRas ES clones PCR screening scheme. The LongD5FW forward primer was used in 

combination with the LongR5Rev reverse primer to amplify a 3650 bp long PCR product on the recombinant 

allele; the D3FW forward primer was used in combination with the WT3Rev reverse primer to amplify a 

3800 bp long PCR product on the wt allele. 

EeflalMycRas ES clones and ROSA26MycRas ES clones, which were found 

resistant to neomycin were picked up, at least 20 in number for each type. Further, 

PCR screening analysis on the 20 selected clones, led to the identification of 17 clones 

positive for Eeflal locus for one type and only 3 for ROSA26 locus for the other 

(Figs. 100 and 101). 

mw 123456 

1115 bp 
1058 bp - ar*+ an, *W WO«M 

Figure 100. PCR screening EeflalMycRas ES clones. The 1058 bp PCR product corresponds to the wt allele; 

the 1115 bp PCR product corresponds to the recombinant allele; 100 bp molecular weight (mw). 
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Figure 101. PCR screening ROSA26MycRas ES clones. The 3800 bp PCR product corresponds to the wt 

allele; the 3652 bp PCR product corresponds to the recombinant allele; 100 bp molecular weight (mw). 

C. 1.3 Genotyping of conditional onco-mice 

Among the positive clones, one (for each locus) was chosen to be injected into 

the blastocyst picked up from a pregnant mouse. This blastocyst was then transplanted 

into the uterus of a substitute foster mother and several chimeras were obtained. In 

particular, 3 male chimeras with 100% and 1 chimera with 80% degree of chimerism 

were found after injection of EeflalMycRas ES cells and 2 male chimeras one with 

100% and the other one with 80% degree of chimerism after injection of 

ROSA26MycRas ES cells. These chimeras with highest degree of chimerism 

(evaluated by coat colour) were bred with C57/BL6 wild type females to ascertain 

contribution of the recombinant ES cells to the germline. By this crossing, agouti mice 

were obtained, which were genotyped to determine the germ line transmission, by 

polymerase chain reaction (PCR). The PCR was set up so that in the same reaction 

both the wild type and the recombinant locus could be identified using three different 

primers. 

The DNA was extracted from tail tips and analyzed by a triple-primer PCR 

method, with two forward primers and a common reverse primer to distinguish 

between the wild type and the recombinant allele; one of the two forward primers 

annealing on the wild type allele and the other one on the transgenic allele. On the 

basis of the size of the PCR products, it was possible to identify the homozygous wild 

type mice and the heterozygous mice for the targeting construct schematically 
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represented in figures 102 and 104 while the figures 103 and 105 show the respective 

PCR screening results. 

EeflatMycRas/Eeflal+ and ROSA26MycRas/ROSA26+ mice were thereafter 

referred to as E-Onc and R-Onc mice respectively. 

wt EdIW 

E. frrwz 

OEM" 
398 bp 

ý1- 

266 bp 
_ 

Figure 102. E-Onc mice PCR screening scheme. The common EeflaRev2 reverse primer was used either in 

combination with the ßglobinFW forward primer to amplify a 266 bp long PCR product on the recombinant 

allele or in combination with the EeflaFW2 forward primer to amplify a 398 bp long PCR product on the wt 

allele. 

mw 123456789 10 11 12 13 14 

3 98 bp - now rr .... `............................... 
266 bp - some ME"lomSa. ý. - -- 

Figure 103. PCR screening of E-Onc. The 398 bp PCR product corresponds to the wt allele; the 266 bp PCR 

product corresponds to the recombinant allele. Lanes 1 to 11: DNA samples extracted from tail tips; lane 12: 

positive control; lane 13: negative control; lane 14: blank; 100 bp molecular weight (mw). 
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Figure 104. R-Onc mice PCR screening scheme. The common ROSARevwt3 reverse primer was used either 

in combination with the ßglobinFW forward primer to amplify a 530 bp long PCR product on the 

recombinant allele or in combination with the ROSA FW forward primer to amplify a 730 bp long PCR 

product on the wt allele. 

mw 1234567 mw 
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Figure 105. PCR screening of R-Onc mice. The 730 bp PCR product corresponds to the wt allele; the 530 bp 

PCR product corresponds to the recombinant allele. Lanes 1 to 4: DNA samples extracted from tail tips; lane 

5: positive control; lane 6: negative control; lane 7: blank; 100 bp molecular weight (mw). 

The recombinant strains were spread by crossing heterozygous mice (E-Onc and 

R-Onc) with C57/BL6 wild type females. 

C. 1.4 Mouse strains expressing CRE 

The transgenic mice described in the previous paragraph, retained the neo gene 

and the triple polyA signal (encoded by the construct) into the recombinant locus to 

prevent the read through towards the bicistronic cassette. To allow the expression of 
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oncogenes in thyroid, it was necessary to generate mice in which CRE recombinase 

was expressed in thyroid follicular cells. 

In the laboratory two mouse strains expressing cre in thyroid were available: the 

first one expressed the recombinase under the control of the Pax8 promoter (a knock-in 

mouse strain) (Bouchard et at., 2004; Bouchard et al., 2002) and the second one under 

that of the thyroglobulin (Tg) promoter (a transgenic mouse strain). The main 

difference between Tgcre ER transgene and Pax8cre/Pax8+ was that the cre coding 

sequence under the Tg promoter is fused to the estrogen receptor to be sensitive after 

translation to the Tamoxifene addition (CRE-ER), while the Pax8cre was constitutively 

active after translation. Moreover, as detailed in introduction, the gene encoding for 

thyroglobulin during thyroid hormone production is expressed in thyroid of adult mice 

(E15). Whereas, Pax8 transcription factor is involved in stimulation of thyroid genes 

such as Tg and TPO by binding to their promoter and determining the differentiation. 

Its expression is observed in thyroid and kidney by E8.5. To test the CRE-specific 

expression, each one of these two mouse strains was mated with the ROSA26 mouse 

strain. This strain carried the fi-galactosidase (ß-gal) coding sequence into the 

ROSA26 locus. To prevent its ubiquitous transcription, the coding sequence cassette 

was preceded by a triple polyA signal flanked by two LoxP sites (Soriano, 1999). The 

polyA signal excision and the ß-gal transcription was possible due to the CRE 

expression. 

The cre specific expression was demonstrated by the following ß-galactosidase 

staining (Figs. 106 and 107). 
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Figure 106. CRE activity in adult thyroid of Tgcre-ER; ROSA26 mouse strain. a: Tgcre-ER: ROSA26 mouse 

thyroid not treated with Tamoxifene; b and c: Tgcre-ER: ROSA26 mouse thyroid after treatment with 

Tamoxifene. 
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Figure 107. CRE activity in embryo mouse of Pax8cre1Pax8+; ROSA26, Pax8+/Pax8+; ROSA26 and Pax8cre/+ 

mouse strain. a: CRE activity in the three mouse strains; b: pattern of Pax8 expression in embryo. 

Thus, both these two strains appeared to be amenable to allow a thyroid-restricted 

expression of oncogenes. 

The TgCRE-ER mice were genotyped by PCR. A 450 bp PCR product was 

obtained using two primers annealing into the cre sequence (Fig. 108). 

Pax8CRE/Pax8+ mice were genotyped, as described in the chapter "Materials 

and methods". The PCR reaction gives a 389 bp band for the wild type allele and a 

700 bp product for the mutated allele (Fig. 109). 
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Figure 108. PCR screening TgcCRE-ER mice. The 450 bp PCR product corresponds to the recombinant 

allele. Lanes 1 to 8: DNA samples extracted from tail tips; lane 9: positive control; lane 10: negative control; 

lane 11: blank; 100 bp molecular weight (mw). 
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Figure 109. PCR screening Pax8CRE/Pax8+ mice. The 389 bp PCR product corresponds to the wt allele; the 

700 bp PCR product corresponds to the recombinant allele. Lanes 1 to 12: DNA samples extracted from tail 

tips; lane 13: positive control; lane 14: negative control; lane 15: blank; 100 bp molecular weight (mw). 

Both the conditional onco mice EeflalMycRas (E-Onc) and ROSA26MycRas 

(R-Onc) were crossed with TgCRE-ER transgene and Pax8CRE/Pax8+. In such a 

manner, four double transgenic mouse strains were generated: 

0 EeflalMycRas, TgCRE-ER (herein referred to as E-Onc/TgCRE) 

" ROSA26MycRas; TgCRE-ER (herein referred to as R-Onc/TgCRE) 

" EeflalMycRas; Pax8CRE/Pax8+ (herein referred to as E-Onc/PaxCRE) 

0 ROSA26MycRas; Pax8CRE/Pax8+ (herein referred to as R-Onc/PaxCRE) 

The CRE action, and the Tamoxifene administration in the case of TgCRE-ER 

transgene, ensured the removing of the STOP cassette from each construct and the 

oncogenic expression in the gland. 

After transcription and translation, the two oncoproteins c-Myc-PR and ER- 

Rasv12 were still inactive until the administration of either Tamoxifene (to activate ER- 
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RasV12) or RU486 (to activate c-Myc-PR) or both simultaneously, except for the 

TgCRE-ER mice already treated with Tamoxifene to activate Tgcre-ER. 

C. 1.5 Treatments with the hormones 

Some of the double heterozygous mice, those with R-Onc genotype and 

harbouring Tgcre ER transgene gene and those with E-Onc genotype and carrying 

Tgcre-ER transgene, were treated with Tamoxifene and with RU486 as in "Materials 

and Methods". For each heterozygous mouse treated, some control mice, wild type or 

heterozygous for just one of the two transgenes, belonging to the same litter, were also 

treated. 

At the beginning the two drugs were administrated simultaneously, but almost all 

of the transgenic mice died in a few days and the two vehicles had not the same effect. 

Therefore only one drug was administered per week (each one for 5 days) and the mice 

were found to be alive this way (table 13). 

Autopsy ý was performed on dead mice. They were found to have a liver 

containing white platelets similar to precipitate crystals and a rotten intestine. 

Simultaneous treatment 

Genotype Treated mice Died mice Survived mice 

-Onc/TgCRE 8 1 

-Onc 1 

Onc/TgCRE 

17 15 
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Single (Not simultaneous) treatment 

Genotype Treated mice Died mice Survived mice 

-Onc/TgCRE 

-Onc/TgCRE 15 15 

-OncJPaxCRE 1 1 

OncIPaxCRE 

-Onc 

-Onc 15 15 

gCRE 16 16 

axCRE 

17 1 16 

Table 13. Simultaneous or single transgenic mice treatments. 

C. 2 Phenotype of conditional onco-mice 

C. 2.1 Molecular phenotype 

To verify whether the thyroglobulin promoter in adult mice correctly drove the 

cre expression, the thyroid picked up from some treated mice was checked for the 

correct expression of the two oncogenes in the gland following the CRE action. The 

levels of mRNA encoding the two oncogenes after the Neomycin cassette excision (Fig. 

110) were measured by Real Time PCR. 
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Figure 110. Schematic representation of the CRE recombinase action. 

The expression of the oncogenes was analyzed in thyroids dissected from 

R. Onc/TgCRE mice treated with the drugs (Tamoxifene and RU486) in comparison 

with thyroids dissected from wild type mice belonging to the same litter of the R-onc 

mice. The wild type as well as mutant mice were treated with Tamoxifene and RU486 

The expression values were normalized for a-1 tubulin and plotted in a graph (Figs. 

111 and 112). The expression of the oncogenes was higher in untreated mice in 

comparison to that in wild type mice (Figs. 111 and 112). From these data, it was 

possible to deduce that in vivo the construct could function a little in a leaky manner. 

However, the expression of the two oncogenes of interest in treated double 

transgenic mice exceeded by about 500 fold that of wild type mice used as controls 

(Figs. 111 and 112) indicating the correct functioning of the CRE protein under the 

control of the thyroglobulin promoter in thyroid. The Real Time PCR carried out on the 

same samples obtained in a parallel retrotanscription reaction lacking the reverse 

transcriptase enzyme proved that the results obtained were not influenced by the 

presence of contaminant genomic DNA but just due to the real oncogenic expression 

(data not shown). However, between the two target genes of c-Myc and H-Ras, ODC 

and c-fos respectively, only c-fos appeared weakly up-regulated in these treated double 

transgenic R. Onc/TgCRE mice (Figs. 113 and 114). 
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Figure 111. Real Time PCR on mouse thyroids. Blue bar indicates human c-Myc-PR (h cMycPR) expression 

in R-Onc mouse; purple bar and yellow bar indicate human c-Myc-PR expression in wt mice; turquoise bar 

indicates human c-Myc-PR expression in R-Onc/TgCRE-ER mouse. Human c-Myc-PR (h cMycPR). 
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Figure 112. Real Time PCR on mouse thyroids. Blue bar indicates human ER-HrasV12 (h ERRasV12) 

expression in R-Onc mouse; purple bar and yellow bar indicate human ER-HrasV12 expression in wt mice; 

turquoise bar indicates human ER-HrasV12 expression in R-Onc/TgCRE-ER mouse. Human ER-HrasV12 (h 

ERRas"2). 
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Figure 113. Real Time PCR on mouse thyroids. Blue bar indicates mouse ODC (ODC) expression in R-Onc 

mouse; purple bar and yellow bar indicate mouse ODC expression in wt mice; turquoise bar indicates mouse 

ODC expression in R-Onc/TgCRE-ER mouse. Mouse ODC (ODC). 
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Figure 114. Real Time PCR on mouse thyroids. Blue bar indicates mouse c-fos (c-fos) expression in R-Onc 

mouse; purple bar and yellow bar indicate mouse c-fos expression in wt mice; turquoise bar indicates mouse 

c-fos expression in R-OncITgCRE-ER mouse. Mouse c-fos (cfos). 

C. 2.2 Histological phenotype 

After confirming that the oncogenes of interest were expressed in thyroid 

following the cre expression pattern, we asked whether their expression could have 

affected the histological phenotype of the gland. To address this question, the study of 

the microscopic features of thyroid gland was a useful tool to define some of the 

mechanisms underlying the oncogenes activation. 

In particular, in this case the mouse strains analyzed were: 

R-Onc/PaxCRE 

E-Onc/TgCRE 

R-Onc/TgCRE 

The figures 115 to 117 show histological sections of thyroid stained with 

haematoxylin/eosin. Control and mutant (double heterozygous) mice were treated with 

Tamoxifene and RU486 (as described in "Materials and Methods") and five months 

after treatments, the mice were sacrificed and thyroids picked up and fixed in 10% 

formalin. Paraffin embedded thyroid 5 µm sections were stained with 

haematoxylin/eosin. 
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In control as well as in mutant thyroids, the tissue was well organized in a 

follicular structure with the follicles appearing as a rim of flattened or cuboidal cells. 

Histologically the thyroids of mutant mice were indistinguishable from those of 

control. 
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Figure 115. Histological sections of adult thyroid glands stained with hematoxylin/eosin. At the top of each 

image, the corresponding mouse genotype it is mentioned. a: control mouse; b: mutant mouse. 

Magnification: 4x, lOx and 20x. 
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Figure 116. Histological sections of adult thyroid glands stained with hematoxylin/eosin. At the top of each 

image, the corresponding mouse genotype it is mentioned. a: control mouse; b and c: mutant mice. 

Magnification: 4x, 10a and 40x. 
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Figure 117. Histological sections of adult thyroid glands stained with hematoxylin/eosin. At the top of each 

image, the corresponding mouse genotype it is mentioned, a and b: control mice; c: mutant mouse. 

Magnification: 4x, 10x and 40x. 
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CHAPTER 4 

DISCUSSION 

Tumorigenesis has long been thought to be a multistep process. Neoplastic 

transformation requires numerous changes in the structure and function of cells. 

Malignant tumours usually arise from a protracted sequence of events in which each 

step creates an additional phenotypic aberration. For example, an emerging cancer cell 

might independently acquire the capabilities for extended proliferation, invasion of 

adjacent tissue and metastasis. Each step may be the manifestation of more than one 

new abnormality within the cancer cell. 

Prolongation of cellular life span is thought to be an early event in tumorigenesis 

and would itself create a greater risk of cumulative mutations. The accretion of genetic 

damage is likely to play a role in tumour progression explaining how the malfunction 

of several different genes might combine to produce the malignant phenotype. 

As demonstrated by several studies, colorectal tumours provide an excellent 

system for the study of genetic alterations involved in the development of a common 

human neoplasm. 

These tumours seem to arise as a result of the mutational activation of oncogenes 

coupled with the mutational inactivation of tumour suppressor genes. For the formätion 

of a malignant tumour mutations in at least four to five genes are necessary whereas 

few changes lead to benign tumorigenesis. Moreover, although the genetic alterations 

often occur according to a preferred sequence, the total accumulation of changes, rather 

than their order with respect to one another, is responsible for determining the biologic 

properties of the tumour (Fearon and Vogelstein, 1990). 
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From studies on Syrian hamster embryo (SHE) cells transfected with cloned 

DNA of the Harvey murine sarcoma virus (HaMSV), an oncogenic virus, it has been 

observed that this viral oncogene alone is insufficient to cause neoplastic 

transformation of normal or carcinogen-induced preneoplastic cells in culture. 

Following transfection with v-Ha-ras DNA, two steps are required for immortal, 

preneoplastic cells to become neoplastic, suggesting that, under certain conditions, for 

normal cells, three or more steps may be required for neoplastic progression 

(Thomassen et al., 1985). 

Beside viral oncogenes, cellular genetic sequences, homologous to retroviral 

oncogenes, were identified and were proposed to have a major role in neoplastic 

development of certain cells. 

The neoplastic transformation of primary rat embryonic fibroblasts and that of 

neonatal rat kidney cells has been shown to occur by two cooperating oncogenes, such 

as ras and myc or ras and the adenovirus Ela gene, whereas a single oncogene alone, 

could not lead to transformation (Land et al., 1983b; Ruley, 1983). In conditions in 

which either ras or myc alone had no obvious effect on the monolayer cultures, the two 

genes together could induce a dramatic alteration of the phenotype, allowing the 

growth of foci of morphologically altered cells. Moreover, these cotransfected cells 

were tumorigenic when introduced into nude mice (Land et al., 1983b). 

In contrast, preneoplastic rat cells (Land et al., 1983b; Ruley, 1983) or mouse 

NIH 3T3 cells (Land et al., 1983a) can be neoplastically transformed by the ras gene 

alone. Similar results have been reported by Newbold and Overell (Newbold, 1983) for 

the transformation of preneoplastic but not normal Syrian hamster dermal fibroblasts to 

anchorage independence by the ras gene. 

The observation of Land and Ruley that the myc and ras oncogenes can act 

cooperatively td induce the neoplastic transformation of normal cells was extended by 
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Thomassen also to the SHE cells. Since the ras oncogene can induce neoplastic 

transformation of immortalized cells, it is possible that myc oncogene induces 

immortality or establishment. Further studies are necessary to understand the function 

of myc oncogene activation also in other cellular systems. 

The same experiments were carried out on immortalized preneoplastic cells, 

derived from the normal cells. It was observed that in addition to the acquisition and 

expression of the ras oncogene, further changes were needed for their transformation. 

These results demonstrate the multistage nature of oncogene-induced 

transformation, suggesting that at least two or three steps are required for 

tumorigenesis of immortalized or normal cells (Thomassen et al., 1985). 

On the contrary, other studies reported tumorigenic conversion by ras acting 

alone. Spandidos et al. (1984) observed that the ras oncogene from the human T24 

bladder carcinoma cell line; carrying a substitution at amino acid position 12, alone 

could rescue early passage rodent cells from senescence as well as highly expressed 

normal ras proto-oncogene. The T24 oncogene, if transferred together with 

transcriptional enhancers; could also directly induce the malignant conversion of the 

same rodent cells (Spandidos and Wilkie, 1984). 

Also tumorigenic conversion of rat embryo fibroblasts (REFs) by single 

transfected oncogene appeared to require high levels of gene expression. Clonal 

populations carrying high levels of the Ras protein were selectively favoured during 

long-term culture and they manifested the ability to seed tumours when inoculated into 

appropriate hosts. The Ras expression levels, analyzed in REF cultures, cotransfected 

with both ras and myc oncogenes, were found to decrease during in vitro passages. 

These experiment demonstrated as in the presence of a myc oncogene, low expression 

levels of ýa ras oncogene were sufficient to trigger tumorigenicity. Without the 

collaboration of a myc oncogene, the ras oncogene is able to convert the normal 
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phenotype into tumorigenic phenotype only when expressed at higher levels (>10- 

fold). 

Furthermore, either distinct altered phenotypes or different capability to 

cooperate with ras, linked to different expression levels, were observed also for myc 

oncogene. The establishment of cell lines and the ability to cooperate with ras were in 

direct ratio to the myc expression levels (Land et al., 1986). 

All these results lead to the conclusion that there is a threshold below which 

expression of a single gene has little or no consequence without the collaboration of a 

second alteration. This seemed to be our case, in which the ER-Rasv12 level in thyroid 

cells transfected with the bicistronic construct (carrying both c-myc and HrasV12 coding 

sequences) was about thirty fold lower than in Clone 11 (C111). The latter was able to 

dedifferentiate, as demonstrated previously in our laboratory by De Vita et al. (2005). 

Although the use of cell lines has been of central importance in the development 

of cellular and molecular biology, their production is also linked to some problems. 

Transfection requires a large number of target cells to ensure that some cells of interest 

stably integrate the chosen DNA in a position suitable for expression. After 

transfection, the cells must be grown for long periods of time in culture, under selective 

pressure, to obtain sufficient numbers of cells expressing the gene of interest. 

Furthermore, the introduction of gene into cells can alter normal cellular physiology 

and different sites of gene integration lead to different behaviors and levels of 

expression of the introduced gene. Moreover, cell culture could induce selection of 

specific live cells to go through immortalization and can interfere with their 

differentiation when maintained separated from their original tissue source. 

For the above reasons, our studies were aimed at investigating oncogenic 

cooperation in vivo as well as in vitro. Transgenic mice facilitate and ensure the 

presence of a conditional oncogene in all of the cells of interest at a common 
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integration site. By creating cohorts of mice with well-timed onsets of predictable 

tumours, these transgenic models would seem to provide ideal experimental models of 

spontaneous tumorigenesis. However, these transgenes create tissues in which virtually 

all the cells are expressing an activated oncogene. Hence, the transgenic model fails to 

address one of the most important aspects of tumorigenesis, i. e., the interactions of 

transformants with their normal neighbors during the early stages of this process. 

The first step of this work was to create a bicistronic construct carrying Wasvlz 

and c-myc coding sequences that could be ubiquitously expressed and switched on and 

off in a reversible manner. Temporal and spatial control of gene -activity is a 

fundamental tool for regulated protein expression. The "OFF/ON' gene switches allow 

the expression of cytotoxic and dominant negative proteins; the ability to reverse the 

expression of the target gene and the study of "gain of function" and "loss of function 

phenotypes" (De Vita et al., 2005; Jain et al., 2002; Karlsson et al., 2003; Shachaf et 

al., 2008; Wu et al., 2007). 

Previously, a mouse strain with these characteristics was generated by Parmuit S. 

Jat et al. (1991). This strain harbours simian virus 40 (SV40) mutant strain tsA58 

thermolabile large tumor antigen (TAg) gene under the control of the mouse major 

histocompatibility complex H-2Kb promoter to direct the expression to a broad range of 

tissues. The mice and the cells derived from them were able to survive for long time 

only at the permissive temperatures. It is noteworthy that determination of the amount 

of TAg by Western blot showed a direct correlation between the amount of TAg 

present and the growth potential of the cells. Cells in which only small amounts of TAg 

were produced showed stringent growth regulation, while cultures expressing high 

levels of TAg showed poor growth regulation (Jat et al., 1991). 

Since the aim of this work was to investigate the multistep process of 

carcinogenesis as the epithelial carcinogenesis is, thyroid gland was chosen as a 
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suitable model for this purpose. In thyroid gland, the number and the nature of genes 

involved in the epithelial malignant transformation could be assayed and also the 

relationship between oncogene products and specific growth regulation pathways could 

be studied. In fact, thyroid neoplasias include a broad spectrum of tumours with 

different phenotypic characteristics and clinical behaviour, ranging from the highly 

differentiated benign adenomas through the slowly progressive, differentiated papillary 

and follicular carcinomas to the fatal anaplastic carcinomas (Hedinger et al., 1989). 

Moreover, a second characteristic of thyroid cell lines is that they retain typical 

biochemical markers such as thyroglobulin secretion and iodide concentration as well 

as a thyroid-specific combination of transcription factors as an index of their 

differentiated status. In addition, these cells depend on the presence of TSH for 

proliferation. Thus, their transformation and carcinogenesis can be related to their 

epithelial differentiation level. The expression of the transformed phenotype was seen 

to determine the block of the expression of the differentiation markers. (De Vita et al., 

2005; Fusco et at, 1982) 

Oncogenic mutations of Ras-family genes play an important role in malignant 

transformation. Their constitutive activation has been identified in tumors originating 

from the follicular epithelium of the thyroid gland, with variable frequencies, 

depending on the tumour type (Nikiforova et al., 2003; Tallini, 2002). RAS-activating 

mutations are associated with all types of thyroid malignancies, suggesting that they 

are an early event in thyroid tumorigenesis (Lemoine et al., 1989; Namba et al., 1990). 

Also other studies demonstrated as after introduction of the ras oncogene into rat 

thyroid cells (FRTL-5 cells), the cells were able to grow in an anchorage-independent 

manner and in the absence of the six growth factors (De Vita et al., 2005; Fusco et al., 

1987a). But not all thyroid cell lines behaved in the same manner. Some of them, such 

as PC cells, showed a fully transformed phenotype also after infection with both ras 
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and myc genes. They became hormone independent, grew in a semisolid medium, and 

were tumorigenic after injection into athymic mice. These results demonstrate that cell 

lines from rat thyroid gland are susceptible to one-step or two-step transformation upon 

infection with retroviruses bearing these two cooperating oncogenes ras and myc 

(Fusco et al., 1987a). Furthermore, the same authors observed also that the highest 

levels of myc were detected in the more malignant, undifferentiated thyroid cell lines. 

By blocking the synthesis of the Myc protein with an antisense oligonucleotide, they 

observed an inhibitory effect of the antisense oligonucleotide on growth of the cells 

and a significant reduction in their capability to grow on a semisolid medium. These 

results indicated that the myc overexpression is an important event in the process of 

transformation of thyroid cells and that its downregulation inhibits the proliferation of 

carcinoma thyroid cell lines (Cerutti et al., 1996). 

The experiments described above were conducted in order to test the targeting 

vector in different systems: in vitro and in vivo. 

In the first part of this work, we checked for the expression of proteins of the 

first construct (the ER-ras-myc-PR cassette) (Fig. 39 RasMyc plasmid) after transient 

transfections in different cell lines, such as HeLa, NIH3T3, FRTL-5 and Cos7 cells. 

The results showed that just in Cos7 cells, both proteins, the one upstream (ER-Rasv12) 

and the one downstream (c-MycPR) of the IRES, were detected. It could be supposed 

that in the other cell lines the IRES was not able to lead the second cistron translation. 

This result could be explained by the fact that the activity of IRES, in spite of its 

maximum efficiency, remains cell-type-dependent. Moreover, in Cos7 cells, besides c- 

MycPR expression, even the ER-Rasv12 amount was much more higher than the other 

cell lines (Figs. 55,57 and 59). It could be due to the fact that the same promoter 

(EFIa) can have different strength in different cell lines. 
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To induce tumorigenesis an overexpression of the c-Myc protein, was found 

necessary. Therefore another cloning strategy was planned to invert the two cistrons 

upstream and downstream of the IRES to create the myc-PR-ER-ras cassette (Fig. 50 

MycRas plasmid). This MycRas construct was tested by stable transfection in FRTL-5 

cells. By western blot, some clones were found expressing both oncogenes and the one 

with the highest ER-Rasv12 expression was chosen to work on. 

The following experiments were carried out in the same cell system (FRTL-5) in 

order to analyze the genes involved in thyroid differentiation after oncogenes 

activation. However, by Real Time PCR it was observed that any gene, which was 

involved in thyroid specificity maintenance, was affected. 

Moreover, on the basis of other experiments about contribution on proliferation, 

the concomitant activation of the two oncogenes seems to have some effect. Thus, even 

though we were able to reconfirm the data obtained in a previous work in which they 

discovered that high levels of ER-RasV12 expression induced cellular dedifferentiation 

and TSH independent growth (De Vita et al., 2005), it was not possible to observe any 

contribution of the c-MycPR protein. 

In our system the amount of the ER-Rasv12 was about thirty fold lower than that 

obtained in the experiments carried out by De Vita et al (2005). 

The Raf-MEK-ERK kinase cascade, relaying extracellular stimuli to the nucleus, 

is mostly studied as Ras effector Hence also the levels of ERK phosphorylation were 

analyzed in our in vitro system. In our analysis, even though the ERK phosphorylation 

resulted in a constant activation regardless of the treatment to activate ER-Rasv'2, the 

downstream accumulation of c-fos was not observed. These results could be explained 

assuming either that this weak ERK activation could remain under the threshold to be a 

critical determinant of the biological, response or that the observed ERK induction was 

not due to the Ras-Raf-MEK-ERK pathway. 
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Both the hypotheses would provide a relationship between the range of ERK 

activation and the appropriate ER-Rasv12 activation threshold, necessary to promote 

some biological effect. In fact, the magnitude of ERK activation is responsible for 

various outcomes. The dynamic range of ERK activation is known to be important for 

the determination of various cell fates, with drastically different phenotypes driven by 

the lower versus the higher range of activation. In order to control sensitivity of the 

cascade to stimulus and to provide a mechanism to allow adaptive behaviour of the 

cascade in chronic or complex signaling environments, the cells were able to develop a 

fine tuning system downstream of Ras. The Ras activation directly regulates the 

Impedes Mitogenic signal Propagation (IMP) acting as a steady-state resistor within the 

Raf-MEK-ERK kinase module negatively regulating ERK activation. The mechanism 

of inhibition appears to be through inactivation (preceded by the IMP 

autopolyubiquitination) of the Kinase Suppressor of Ras (KSR), the best characterized 

mammalian MAPK scaffold protein. KSR directly interacts with Raf-1, MEK1/2 and 

ERKI/2. Upon Ras activation, KSR translocates with MEKI/2 to the plasma 

membrane, bringing MEKI/2 in close proximity to its activator Raf-1 and downstream 

effectors ERK1/2. These interactions lead to the formation of Raf-MEK-ERK complex, 

thereby facilitating the activation of ERKI/2. By this way, it is possible to speculate 

how scaffolds could set the sensitivity of the system or even change the fundamental 

system output of the MAPK module. The relationship between the induction of Raf- 

MEK and the liberation of KSR provides a mechanism to tether MAPK mobilization to 

appropriate Ras activation threshold (Lin et at., 2009; Matheny et al., 2004; Matheny 

and White, 2009; Raman et al., 2007)r 

It has been demonstrated in the Aspergillus nidulans fungus that different levels 

of Ras regulate the order program of development (Som and Kolaparthi, 1994). 

Threshold levels of ERK activation, determined by different growth factors and 
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concentration of external stimuli, have been shown observed to drive various output 

and it could depend on the level and duration of activation of protein kinases (Ho et at., 

2005; Traverse et at., 1992). Moreover, the kinetics of ERK induction is dependent on 

the subcellular localization of both ERK and its upstream intermediates. In addition to 

the functionally distinct plasma membrane microdomains, Ras and/or MAPK signaling 

has been observed on endosomes, endoplasmic reticulum, Golgi apparatus. and 

mitocondria. This compartmentalized signaling could be accomplished by using 

distinct upstream pathways providing one explanation for the complexity of signaling 

outputs elaborated by individual signaling molecules (Mor and Philips, 2006). The 

amplitude of ERK activation could be modulated and might contribute to the 

generation of stimulus-specific biological responses. These stimuli could influence 

both the extent of activation and the localization (such as nuclear translocation and 

accumulation) of activated ERK in the same cell type, thus generating discrete 

phenotypic responses to distinct environmental stimuli (Whitehurst et al.,, 2004). 

Moreover, the specific cellular localization is also fundamental in imposing the 

sensitivity of the module to the activation (Harding et al., 2005). 

Regarding c-Myc, a similar hypothesis could be done from the results observed 

by Felsher et al (2008). On the basis of their work, a threshold level of Myc expression 

exists to maintain the tumour phenotype, and the switch from a gene expression 

program of proliferation to a state of proliferative arrest and apoptosis depends on it 

(Shachaf et al., 2008). Infact, many experiments have been conducted to show how the 

suppression of Myc overexpression is sufficient to induce sustained tumour regression, 

demonstrating that following Myc inactivation even highly genetically complex 

tumours variously undergo proliferative arrest, differentiation, and apoptosis becoming 

reversible. Even if the specific consequences of Myc inactivation appeared to depend 

both on the type of cancer as well as the constellation of genetic events unique to a 
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given tumour, oncogene-induced senescence seemed to be an important mechanism by 

which normal cells were restrained from malignant transformation in diverse tumour 

types including lymphoma, osteosarcoma, and hepatocellular carcinoma (Wu et al., 

2007). After prolonged Myc inactivation, some tumors exhibited a distinct propensity 

to relapse. However, subsequent reactivation of Myc did not always restore the cells' 

malignant properties but instead induced apoptosis. Thus, brief Myc inactivation 

appeared to cause epigenetic changes in tumour cells that render them insensitive to 

Myc-induced tumorigenesis (Arvanitis and Felsher, 2005,2006; Jain et al., 2002; 

Karisson et al., 2003). 

Under these circumstances, it seems that a Myc threshold level could be 

necessary to trigger tumorigenesis. 

One of the mechanisms adopted by the cell to nullify the growth advantage 

afforded by oncogenic activation is the coupling between tumour suppression and the 

program that drives cell proliferation. The Myc transcription factor is a prototypical 

example of this since Myc-induced apoptosis is a key intrinsic tumour suppressor 

mechanism that limits Myc's oncogenic potential. Hence, also the balance between 

apoptosis and proliferation is regulated by different amounts of the protein. Distinct 

threshold levels of Myc were observed to govern its output in vivo (Daniel J. Murphy, 

2008). 

Moreover, a correlation between the level of c-myc mRNA and the 

aggressiveness of the tumour was found, specifically in thyroid (Romano et al., 1993). 

It is also plausible to imagine that thyroid cells are able to activate an unknown 

mechanism that regulates the coexistence of these two oncogenic proteins and 

consequently of their target genes to prevent the tumour formation. 
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