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Abstract 

Ontologies need to evolve to keep their domain representation adequate. 

However, the process of identifying new domain changes, and applying them 

to the ontology is tedious and time-consuming. 

Our hypothesis is that online ontologies can provide background knowledge 

to decrease user efforts during ontology evolution, by integrating new domain 

concepts through automated relation discovery and relevance assessment tech- 

niques, while resulting in ontologies of similar qualities to when the ontology 

engineers' knowledge is solely used. 

We propose, implement and evaluate solutions that exploit the conceptual 

connections and structure of online ontologies to first, automatically suggest 

new additions to the ontology in the form of concepts derived from domain 

data, and their corresponding connections to existing elements in the ontol- 

ogy; and second, to automatically evaluate the proposed changes in terms of 

relevance with respect to the ontology under evolution, by relying on a novel 

pattern-based technique for relevance assessment. We also present in this 

thesis various experiments to test the feasibility of each proposed approach 

separately, in addition to an overall evaluation that validates our hypothesis 

that user time during evolution is indeed decreased through the use of online 

ontologies, with comparable results to a fully manual ontology evolution. 
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Chapter 1 

Introduction 

The World Wide Web (Berners-Lee, 1999) was initially designed by placing 

humans as primary consumers of information. Thus, making sense of such 

information was solely dependent on users, who are able to find and interpret 

information based on their cognitive abilities. Recently, there was a push to- 

wards achieving more efficient and sophisticated information processing and 

access across the web. For example, instead of relying on keyword-based search 

engines on the web to find the required information, it would be favourable 

to supply more complex and adequate queries that can include for example 

finding researchers in a city working on related topics. In order to achieve 

this, it was identified that a more granular and structured representation of 

information at the data level is needed. Such a representation would allow a 

systematic and coherent interpretation of information using machine process- 
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able techniques. 

This idea of moving "from documents to data and information" (Shadbolt 

et al., 2006) is being concretised through extensive research and development 

performed under the umbrella of the Semantic Web (Berners-Lee et al., 2001). 

To provide the required semantics behind web documents, data is modelled 

in what is called a Semantic Web ontology. Ontologies are formal representa- 

tion of specific domains, and enable the modelling of a domain's conceptual 

entities with their corresponding relations (Gruber, 1993). They provide a well 

defined vocabulary to ensure that the modelled data connects in a coherent 

way not only within one ontology, but also with other ontologies across the 

web. Using such ontologies is a key requirement to a successful Semantic Web, 

for ensuring a seamless exchange of data with well defined meanings. It is at 

the ontology level where we specify for example that "student" is a concept 

of type "person", and that a "person" has a name, etc. Formally, an ontology 

is a set of statements, which we manipulate as a graph. Figure 1.1 shows a 

simplistic view of a part of an ontology in the academic domain, depicting 

how concepts can be connected through sub-class relations (i. e., isa relation), 

properties (e. g., a person has a name), and other named relations (e. g., a per- 

son attends an event). Such relations, which are also referred to as statements, 

are of the form < subject, relation, object >. 

With all the benefits introduced by the Semantic Web, we witness an in- 
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Figure 1.1: Example of a part of an ontology in the academic domain, showing 

the connections between the concepts in terms of subsumption relations (i. e., 

isa), named relations (e. g., attends) and properties (e. g., hasName). 

crease in the interest of representing existing domain data in the form of Se- 

mantic Web ontologies (Ding et al., 2007). However, using ontologies comes 

with the cost of keeping them up-to-date with the emerging entities from the 

modelled domain. Such entities, for example new concepts, should be appro- 

priately modelled in a timely manner within the ontology, to keep the domain 

representation as accurate as possible. This process is what we refer to as 

ontology evolution. 

Ontology evolution involves many tasks, including: (1) detecting the need 

for evolution based on domain data or usage; (2) suggesting ontology changes 

by relying on unstructured or structured knowledge sources; (3) validating 

ontology changes based on domain information or formal properties methods; 
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(4) assessing the evolution impact through usage analysis or formal criteria; 

and (5) managing changes that include ontology versioning mechanisms and 

recording such changes. With all the tasks to deal with, among which some 

are complex and cognitively challenging, ontology evolution is a tedious and 

time-consuming task. 

In this thesis, we focus on specific parts of the ontology evolution process. 

Our aim is to support users in (a) automatically identifying new elements 

to add to the ontology in the form of domain concepts and corresponding 

relations; and (b) automatically evaluating the relevance of the new proposed 

statements to add. Our hypothesis is that: 

Online ontologies can provide background knowledge to decrease 

the need for user involvement during ontology evolution, by inte- 

grating new domain concepts through automated relation discovery 

and relevance assessment techniques, while resulting in ontologies 

of similar qualities to when the ontology engineers' knowledge is 

solely used. 

Our target users in this research are ontology engineers, responsible for 

building and maintaining ontologies to use in specific environments. For ex- 

ample in the biology domain, where the user has to constantly translate biology 

related information and findings into ontology compatible entities. Another 

example can be in Linked Data scenarios, for example in the academic context 
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"http: //data. open. ac. uk" (Zablith et al., 2011), where the ontology needs 

to evolve to adequately encapsulate the university's conceptual data layer. Our 

aim is to decrease the time needed from the ontology engineer in such scenar- 

ios, while preserving the quality of the ontology under evolution, compared to 

when the user is required to perform the same tasks without relying on our 

proposed techniques. 

1.1 Thesis Contributions 

By focusing on finding a solution to solve the aforementioned challenge in 

ontology evolution, this thesis contributes to the following key aspects in the 

field: 

1. Devising a technique to automatically identify potential ontology changes 

by integrating new emerging concepts from external domain data, based 

on the background knowledge provided by existing structured sources 

(especially, online ontologies). 

2. Providing a novel approach to automatically assess the relevance of po- 

tential ontology changes by analysing the contexts of online ontologies 

from where they axe derived, versus the ontology under evolution. 

3. Putting together a methodology for evaluating and comparing the struc- 

tural differences between different evolution settings of the same ontol- 
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ogy, through empirical observations supported by metric-based assess- 

ment techniques. 

1.2 Problem and Research Questions 

Ontology evolution is a tedious and time-consuming process, especially at the 

levels of detecting and evaluating new domain entities to add to the ontol- 

ogy, the core focus of this thesis. It requires the user first to identify domain 

changes, i. e., new concepts in our case, and relate them to existing knowledge 

in the ontology. Second, it is expected that the user evolves the ontology 

by integrating only changes that are relevant to the ontology under evolu- 

tion. These prerequisites require the user to have a good understanding and 

expertise in the domain that the ontology represents, and how to model the 

changes appropriately in the ontology. In addition to those skills, the tasks of 

identifying domain changes and analysing which ones are worth to be added 

to ontology are cognitively challenging and time-consuming. With all these 

barriers, it is highly probable that ontologies are left outdated, making them 

unusable in their applied domains. 

This thesis aims to answer the following research question: 

How to support users in the process of ontology evolution? 

After investigating the tasks where user input is the most needed during 
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ontology evolution, we focus our research interests to answer the following 

sub-questions: 

1. How to assist users in identifying ontology change opportunities? One 

of the challenges of ontology evolution is to identify what is new in the 

domain, and to transform it into a candidate change of the ontology. 

To tackle this question, we aim to provide a technique to automatically 

detect new concepts that emerge in the domain. Moreover, we investigate 

how to resolve the appropriate relations that link such detected concepts 

to existing concepts in the ontology. 

2. How to assess the relevance of ontology changes? The problem with 

automatically identifying new ontology changes is that a substantial part 

of the changes might be irrelevant to add to the ontology. Hence the user 

will have to manually check a large number of changes, to decide whether 

or not they are worth to apply on the ontology. We focus in our research 

on devising a technique to automatically assess the relevance of ontology 

changes with respect to an ontology. This will serve as a support to 

users in the evaluation process of the changes to apply during ontology 

evolution. 

In addition, in order to substantiate the value of the proposed approaches, 

we need to realise them in a coherent and usable tool. While not a core research 

contribution, the realisation of such a tool provides the basis for the validation 
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and evaluation of the integration of the two proposed techniques, as well as, 

more generally, a reusable environment for the ontology evolution research. 

1.3 Methodology 

We begin our research by reviewing the existing works that tackle the various 

tasks involved in ontology evolution. This helps us highlight two gaps where 

user input is still highly needed, and define our research interests. We proceed 

with identifying our hypothesis, which lead to expanding and proposing our 

approaches to tackle the two gaps identified. Then we describe the implemen- 

tation of our proposed approaches in a reusable tool, in order to conduct an 

experiment to evaluate our approaches and support our hypothesis. 

1.3.1 Reviewing Existing Works and Identifying the Gaps 

in the Literature 

We begin our research by performing a literature review. Based on the analysis 

of various frameworks in ontology evolution, we identify the tasks involved in 

the ontology evolution process, and represent the tasks in an evolution cycle 

in the form of a diagram. Then we analyse existing works performed in each 

of the tasks. 

Our review highlights two major gaps in the literature, hampering the 
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evolution process. Firstly, the process of automatically identifying domain 

changes is mainly limited to the content of existing domain data (e. g., text 

corpora). We argue that such domain data do not contain a sufficiently rich 

source of domain background knowledge to resolve the needed additions to the 

ontology, as not all content and conceptual connections are explicitly elicited 

in the text. The second identified gap is that the evaluation of the relevance of 

changes with respect to the ontology under evolution is usually left to the user. 

Due to the substantial amount of ontology additions proposed by automated 

techniques, users will be left dealing with a new burden of checking a big 

amount of ontology changes. These two gaps form the core starting points of 

our research focus. 

1.3.2 Proposing our Research Approach 

We believe that online ontologies, with the appropriate techniques in process- 

ing them, can support a higher degree of automation for some of the tasks 

involved in ontology evolution. In this thesis, we focus on three of the evolu- 

tion tasks mentioned previously in the introduction. This includes detecting 

the need for ontology evolution from domain data (i. e., Task 1), suggesting 

ontology changes by relying on structured knowledge sources (i. e., Task 2) 

and validating ontology changes based on domain data (i. e., Task 3). 

We propose an approach to derive domain changes by reusing available 
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knowledge (mainly through online ontologies), in order to integrate new do- 

main entities (identified from existing domain data such as text documents) 

into the ontology under evolution. While ontology changes can include adding, 

removing and modifying existing entities (i. e., concepts, instances and rela 

tions), we focus our investigations on adding new concepts along with new 

relations to the ontology. We support this approach by an experiment that we 

conduct in the academic domain, to test and evaluate the use of the lexical 

database WordNet and online ontologies as background knowledge to link new 

domain entities identified from the text documents, to existing concepts in the 

ontology. The experiment helped us evaluate the correctness of the automat- 

ically generated relations that link the new domain concepts to existing ones 

in the ontology, and also observe how the relation discovery process can be 

improved based on the analysis of the results. 

Then we tackle the second gap we identified, for which we present and 

compare two approaches for identifying the relevance of statements (i. e., on- 

tology changes) with respect to an ontology. We propose using the contexts 

provided by online ontologies from where the statements are identified, and 

contrast them with the context of the ontology under evolution. Based on the 

analysis of various graph-based context examples, we identify structural pat- 

terns that give an indication of relevance of statements. We also conduct an 

evaluation, which we perform in three different domains showing the accuracy 
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of this approach. 

1.3.3 Implementing our Approaches 

After testing our techniques individually, we concretise our research inves- 

tigations in a coherent ontology evolution tool, in which we implement our 

techniques for assisting the user in finding and evaluating ontology changes in 

the form of statements to be added to the ontology. This tool proved to be 

essential in evaluating our proposed research approaches. 

1.3.4 Conducting an Overall Evaluation 

Finally we perform an overall evaluation of our approach, by comparing and 

contrasting three ontology evolution modes: manual, semi-automatic and un- 

supervised. We log the time taken by the experts, and the entities added to 

each ontology in the three modes. This enables us to get a direct indication 

of the impact of using online ontologies on the process of ontology evolution 

in terms of user time, and the resulting ontologies' characteristics. 

1.4 Overview of the Approach 

The starting point of our process is an ontology. We place the ontology under 

evolution at the centre of our approach, to serve as guide in the change discov- 

ery and evaluation process. Our assumption is that if a domain entity connects 
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to existing elements in the ontology, it can potentially be part of the evolution 

process. Next we give an overview of how we identify new domain entities 

from existing domain data such as text documents (Section 1.4.1). This is 

followed by a brief introduction to online ontologies, and how they can be ac- 

cessed to provide background knowledge to propose changes to the ontology in 

order to integrate the newly identified domain entities (Section 1.4.2). Then 

we present our approach on assessing the relevance of a change with respect to 

the ontology under evolution (Section 1.4.3). Thereafter we introduce Evolva, 

our ontology evolution tool which makes use of our proposed techniques, with 

the aim to decrease user input during the evolution process through a unified 

and integrated platform (Section 1.4.4). 

1.4.1 Discovering new Domain Entities 

The first task we investigate focuses on identifying new domain changes. Do- 

main information abundantly exist in various formats. This can be for example 

in the form of text documents accessible through the web or internally within 

an organisation, databases that have been used to store information in a struc- 

tured way, or simply a list of already identified terms or folksonomies. Hence 

one way to identify new domain entities is through the analysis of the con- 

tent of such sources, and contrasting it to the knowledge available within the 

ontology to evolve (an extended overview of methods for detecting the need 
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for change is discussed in Section 2.3.1). For example processing a corpus of 

text documents in a research institution highlights the presence of the terms 

"researcher" and "tutorial" (among others) from the following text snippet: 

The researcher is writing a proposal for a tutorial to be given at 

the conference. 

If we require to evolve the ontology modelled in Figure 1.1 based on this text 

snippet, a comparison of the identified terms from the text, with respect to 

existing elements in the ontology highlights that such terms (i. e., researcher 

and tutorial) are new. 

1.4.2 Using Online Ontologies for Automatic Change 

Discovery 

After identifying new terms from domain data, the next task is to integrate 

them in the ontology using the appropriate links to existing ontology concepts. 

In our example, how should the concepts "tutorial" and "researcher" be added 

to the ontology? Traditionally, the expert's knowledge in the domain is the 

main source of input at this level. Hence for a given term, experts would rely on 

their own knowledge of the domain to identify, in the ontology under evolution, 

elements related to the term, as well as the actual relations they share. This 

creates a bottleneck in the evolution process, hampering the integration of 

domain changes in a timely manner. 
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Recently various approaches have focused on the task of suggesting new 

ontology changes (more details are discussed in Section 2.3.2). In particular, 

some techniques investigated the use of the information residing in the text 

documents as a source of identifying links between domain concepts (Cimiano 

and Volker, 2005; Maynard et al., 2009). However, there are limitations in 

such approaches, due to the fact that not all background knowledge can be 

derived from within the text in focus. Moreover, it is very unlikely that obvious 

relations, e. g., specifying that researcher is of type person, can be found in text 

documents. While this is easy for a human to catch, further information should 

be provided in order to achieve this process automatically. 

To solve this issue, (Cimiano and Volker, 2005) propose using lexical data, 

bases (i. e., WordNet (Fellbaum, 1998)) to improve relation finding between 

concepts identified within text sources. We argue that lexical databases have 

limitations, and we propose using online ontologies as a source of identifying 

the relations between new concepts identified from the sources, and existing 

concepts in the ontology. 

Online ontologies are ontologies openly accessible through the web. Various 

tools have been developed for users to search and locate such ontologies (Ding 

et al., 2004; Oren et al., 2008). In particular, one tool that goes beyond the 

ontology search features, is Watson (d'Aquin and Motta, 2011), which provides 

also mechanisms to consume and reuse the knowledge directly from online 
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ontologies. Such features enable a direct exploitation of online ontologies to 

perform various tasks that proved very useful for achieving our goals. 

This source of background knowledge provides a natural, yet effective, con- 

stantly evolving body of interconnected conceptual entities. It serves as a sub- 

stantial solution to our task of linking new concepts to the existing entities in 

the ontology. For that, we propose using Scarlet (Sabou et al., 2008), a relation 

discovery engine that relies on Semantic Web ontologies to connect two terms. 

Figure 1.2 highlights the idea of how online ontologies (depicted in the cloud of 

the figure), provide knowledge to link "researcher" as a type of "person", and 

"tutorial" as a type of "event". The advantage is that such relations can be 

directly exploited, as they are already represented in an ontology-compatible 

format. 

1.4.3 Automatically Assessing the Relevance of State- 

ments 

The next critical task that we focus on in our research is helping the user in 

the selection process of relevant changes to take into account for evolving the 

ontology. The abundance of domain data available to process often results 

in having a significant number of new terms to add to the ontology, which 

means a considerable amount of new changes to apply to the ontology. This 

will create a new burden at the user level, who will have to go through a 
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Online Semantic Web Ontologies 

Figure 1.2: Online ontologies used as background knowledge to provide rela- 

tions between terms identified from domain data, and existing concepts in the 

ontology under evolution. 

big number of changes, and select only the ones that fit in the ontology. For 

example, consider the case where "birth" is identified as a new term from one 

of the domain data. Subsequently, an online ontology containing information 

about "birth", could result in adding it as a type of "event" to our ontology. 

How can we automatically identify that adding "tutorial" as an "event", is 

much more relevant than adding "birth" as an event to our ontology ill the 

academic context? 

We tackle this process by relying on the analysis of the context of the ontol- 
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ogy to evolve, with respect to the context of the online ontology from where the 

relation is derived. The context provides further information about the neigh- 

bouring entities of the statement (i. e., new change proposed), making it feasible 

to automatically analyse the situation in which the statement is used. Fig- 

ure 1.3 illustrates an example of possible surrounding entities (i. e., contexts) of 

the statements <Tutorial, subClass, Event> and <Birth, subClass, Event> 

(Contexts A and B respectively). The example clearly shows that Context A, 

where entities like "Workshop" and "Conference" exist, aligns better with the 

ontology under evolution, than Context B, which is mainly surrounded by 

other types of events e. g., "Wedding", "Death", etc. 

We propose a pattern-based relevance detection mechanism, which takes 

into account the structure of both ontologies including the shared concepts 

and their position with respect to the new change to add to the ontology. 

We define five relevance patterns, each supported by a confidence formula to 

reflect the degree of relevance of a change with respect to the ontology. For 

example, one of the patterns detects the presence of shared siblings between 

the two contexts, which makes the statement to add relevant to be part of the 

ontology. As we show later in this dissertation, our pattern-based technique 

outperforms an overlap-based mechanism that takes into account only the 

overlap between the contexts, without any structural analysis. 
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Online Semantic Web Ontologies 
ContextA ---- 

ontext B 
% 

Thing Name 

The Researcher is writing a 
proposal forato be 
given at the Event 

The staff celebrated the 
of their colleague's son 

Domain Data 

Person 

Workshop Student 

Ontology Under Evolution 

Figure 1.3: Illustration of the contexts derived from the surrounding elements 

in online ontologies for the statements <Tutorial, subClass, Event> (Context 

A) and <Birth, subClass, Event> (Context B). 

1.4.4 A Tool for Ontology Evolution 

After our investigations on decreasing user inputs at the levels of finding do- 

main changes, and assessing the relevance of such changes using ontological 

contexts, we implement our ideas in one integrated tool called Evolval. Evolva 

is a step-by-step tool that assists users in evolving ontologies. We implement 

it as part of the NeOn Toolkit2, an ontology engineering tool that supports 
lhttp: //evolva. kmi. open. ac. uk 
2http: //www. neon-toolkit. org 
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ontologies' life-cycles. 

Evolva enables users to select an ontology of interest and provide domain 

data including text corpora, list of terms and RSS feeds from where domain 

entities are automatically identified. The entities are then processed to spot 

new elements that do not exist in the ontology, in addition to filtering out 

terms that fall below certain quality criteria (e. g., term length). The entities 

are displayed within the interface for the user to check. Furthermore, Evolva 

provides users with a customisable access to background knowledge offered 

through WordNet and online ontologies, which are used to automatically link 

the new entities to the ontology as described earlier. The user is able to see the 

list of all proposed changes, along with the source from where they have been 

derived. At this level we integrate our work on the relevance assessment, based 

on which changes can be ranked in the interface. In addition, the user has the 

ability to visualise the contexts of the ontologies and how they match, to 

check how the relevance is calculated. This visualisation has also customisable 

parameters through the interface of Evolva. Finally the user will see the list 

of all approved changes, and has the option to add the changes to the source 

ontology directly, or create a new detached version. The new ontology can be 

directly accessible and ready to be used within the NeOn Toolkit. 

In brief, Evolva helps in bootstrapping the process of evolving ontologies 

by analysing existing domain data, and relying on online ontologies as source 
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of background knowledge. We show in our thesis how this can save ontology 

engineers a substantial amount of time in keeping the ontology up-to-date with 

respect to the domain. 

1.5 Structure of the Thesis 

In Chapter 2 we present a complete cycle of the tasks involved in ontology 

evolution. We use this cycle to review the existing works involved in each of the 

tasks. This state of the art helped us identify two major gaps in the literature. 

The first gap lies at the level of identifying new ontology changes, where the 

use of online ontologies to support this process is not well explored in the 

context of ontology evolution. The second gap is at the level of assessing the 

relevance of changes with respect to an ontology, which has been traditionally 

left for the user to do. 

We explore in Chapter 3 the use of online ontologies and WordNet as back- 

ground knowledge to identify ontology changes. We perform an experiment 

in the academic context to evaluate the feasibility of automatically generat- 

ing ontology changes. We discuss and analyse our results, based on which we 

observe initial room for improvements in our approach. 

Our work on assessing the relevance of changes with respect to the on- 

tology is presented in Chapter 4. We setup an experiment in three different 

domains, to evaluate our automated approach in relevance detection based on 
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the analysis of ontological contexts. The results show that our technique can 

be effectively used to rank the changes according to their relevance values, 

useful for supporting the user at the level of change evaluation. 

In Chapter 5 we discuss our ontology evolution tool Evolva. We first present 

the framework on top of which it is implemented, followed by its implementa- 

tion details as a plugin to the NeOn Toolkit. 

In Chapter 6 we present an evaluation of the impact of using online on- 

tologies in the process of ontology evolution. We perform the evaluation in 

the computing and IT services domain. We use the collected data to compare 

the performance in three different evolution scenarios: (1) a in fully manual 

mode where the evaluator is responsible for linking the identified concepts 

to the ontology, without relying on online ontologies; (2) a semi-automatic 

mode where online ontologies are used to identify and assess the relevance of 

ontology changes, which are then checked by the evaluator; and (3) an unsu- 

pervised mode where online ontologies are used to find ontology changes and 

assess their relevance without relying on user input and validation. Our main 

finding is that online ontologies can substantially decrease user time during 

the ontology evolution process, without having a major effect on the quality 

of the resulting ontology, compared to the user in fully manual mode. 

Finally we conclude our thesis with Chapter 7 by revisiting the research 

problems we investigated, and giving an overview of our proposed approaches 
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to solve them. We also discuss a vision related to the future directions in the 

field of ontology evolution, and the long term use and impact of Evolva on the 

production and maintenance side of ontologies' life-cycles. 
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Chapter 2 

State of the Art in Ontology 

Evolution 

Ontology evolution is not a simple process. It involves various tasks that fulfil 

specific requirements to achieve a successful evolution, reflecting the domain 

needs, with the aim to keep the ontology usable in its applied context. Such 

tasks range from the detection of the need for evolution, which can be derived 

for example from external data sources or usage patterns, to the management 

side of the evolution, which include recording changes applied to the ontology 

and handling various ontology versions. The chain of required tasks forms 

what we call the ontology evolution cycle. The extensive research done within 

each of these steps reflects the importance of this matter to reach a potential 

solution that supports the process of ontology evolution and maintenance. 
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In this chapter, we present an overview of the approaches involved in on- 

tology evolution. We analyse them in terms of their support to the main 

tasks required to perform a complete ontology evolution cycle. We start by 

describing the diagram of processes involved in the ontology evolution cycle 

illustrated in Figure 2.1 (Section 2.1). This is followed by discussing related 

work involved in ontology evolution frameworks (Section 2.2). Then we give 

an overview of existing approaches in each ontology evolution task, with an 

emphasis on the work performed within the scope of our research questions 

(Section 2.3). 

2.1 Ontology Evolution Cycle 

In this part, we present a complete ontology evolution cycle that we illustrate 

in Figure 2.1. This cycle is the result of the analysis of the various approaches 

and frameworks that contribute to the area of ontology evolution, and covers 

the tasks involved in ontology evolution. We extend the existing tasks in 

the literature to cover a more granular representation of the possible steps in 

ontology evolution. This helped in (1) highlighting what is required to evolve 

an ontology, and (2) identifying the tasks where online ontologies can provide 

background knowledge to the process to decrease user input. 

The starting point of the ontology evolution process is to identify what 

triggers the need for evolution (Task 1). For example, some works focus on 
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Figure 2.1: Ontology evolution cycle. 

deriving changes through the analysis of user behaviour (Alani et al., 2006; 

Stojanovic, 2004), while others rely on data (e. g., text, or documents' annota- 

tions) to trigger the process (Bloehdorn et al., 2006; Cimiano and Volker, 2005; 

Maynard et al., 2009,2007; Novacek et al., 2007; Ottens et al., 2007; Velardi 

et al., 2001). After identifying the need for changing the ontology, changes 

are represented and suggested to be applied to the ontology (Task 2). Some 

approaches handle this task by relying on unstructured knowledge (e. g., text 

documents by applying textual patterns to a corpus content representing the 
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domain) (Cimiano and Volker, 2005; Maynard et al., 2009), while structured 

data sources are also used at this level, such as lexical databases (also proposed 

as extensions in (Cimiano and Volker, 2005; Maynard et al., 2009)), to refine 

the appropriate changes. The following step of the evolution cycle is validat- 

ing the changes (Task 3). For that, there exist approaches that handle both 

a formal validation of changes making sure the ontology is logically consistent 

as per specified constraints (Carroll et al., 2004; Flouris et al., 2006; Haase 

et al., 2005; Huang et al., 2005; Ji et al., 2009; Schlobach and Cornet, 2003; 

Sirin et al., 2007), and a domain validation of changes taking into account the 

contextual information available (Cimiano and Volker, 2005; d'Aquin, 2009; 

Maynard et al., 2009; Sabou et al., 2009). After validating the changes, the 

impact of applying such changes to the ontology is measured (Task 4). In 

the state of the art, some approaches are based on a formal evaluation to 

assess the effect of a change on the ontology (Haase and Stojanovic, 2005; 

Palmisano et al., 2008; Pammer et al., 2009), while others measure the effect 

of such a change at the application and usage levels (Kondylakis et al., 2009; 

Lei et al., 2006; Liang et al., 2006; Wang et al., 2008), based for example on 

the ability to answer specified queries. The final step is the management of the 

changes of the ontology over time (Task 5), which is done through recording 

changes (Klein, 2004; Maedche et al., 2002; Noy et al., 2006,2004; Rogozan and 

Paquette, 2005), implementing them and keeping track of the various versions 
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of the ontology (Klein and Fensel, 2001; Obst and Chan, 2005). 

With the cycle in place, we identify that using online ontologies as back- 

ground knowledge can clearly help at the level of suggesting changes and val- 

idating changes tasks. This will form the main focus of our work, targeting 

our research questions. 

2.2 Ontology Evolution Frameworks 

Various works in the field include an ontology evolution. Table 2.1 maps our 

evolution cycle, the frameworks that we discuss next in this section. 

Table 2.1: Relations between tasks of the ontology evolution cycle and com- 

ponents of existing ontology evolution framework 

Ref. Work Detecting Suggesting Validating Assessing Managing 

Need for Changes Changes Impact Changes 

Evolution 

Stojanovic Change Representation Semantics of Propagation Implementation 

(2004) capturing change/Valid. of changes 

Klein and Noy Data transfor- Consistency Update 

(2003) nation Verif. /approval 

Noy et al. Examining Auditing Accept/reject 

(2006) changes Recording 

Vrandecic et al. Local changes Revision Local adapta- 

(2005) tion 

In her thesis (Stojanovic, 2004), Stojanovic proposed a framework for on- 
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tology evolution. The framework is a six phase cyclic process starting with 

the change capturing phase where changes to be applied to the ontology are 

identified. This is followed by the representation phase where the changes 

are represented following a specific model that the author name as the "evo- 

lution ontology". The third phase is the semantics of change phase, during 

which syntactic and semantic inconsistencies that could arise as a result of 

the changes are addressed (Tamma and Bench-Capon, 2001). A syntactic 

inconsistency covers cases such as violating constraints or using entities and 

concepts that have not been defined in the ontology. A semantic inconsistency 

is when an entity's meaning changes during the evolution process (Tamma and 

Bench-Capon, 2001). The fourth phase is the implementation of change phase 

coupled with user interaction for approving or cancelling changes. Change 

propagation is the fifth phase, allowing the update of outdated instances as 

well as recursively reflecting changes in referenced ontologies in the case of 

interconnected ontologies. The final phase is the validation phase where it is 

insured that the performed changes led to a valid (or desirable) result, and 

allows the user to undo such changes if this is not the case. 

As discussed later in this chapter, this approach defines what is called 

usage-driven change discovery (i. e., derived from user behaviour), data-driven 

discovery (i. e., derived from the ontology's instances) and structure-driven 

change discovery where changes are derived from the analysis on the ontology's 
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structure. Hence we observe that this evolution framework treats the ontology 

as a closed entity by initiating the evolution from the analysis performed on 

the ontology itself, without opening it to external domain data that exist in 

the form of text corpora or other form of data repositories. 

In (Klein and Noy, 2003), the authors present a framework to support 

users when an ontology evolves from one version to another. The framework 

is component-based, and targets the following ontology evolution tasks: Data 

transformation, where data in the old ontology version are transformed into 

a format compatible with the new ontology version; ontology update where 

changes are propagated to the ontology under evolution; the third task deals 

with consistent reasoning to keep the ontology under evolution consistent; the 

final task is verification and approval where ontology developers perform final 

checks. The focus in this approach is mainly on the versioning side of the 

ontology, as an effect of the evolution. 

(Noy et al., 2006) describe a framework for ontology evolution in collabo- 

rative environments. The framework is scenario-based and consists of various 

Proteges plugins. It includes the following tasks: examining changes between 

ontology versions, presented for example in the form of a table; accepting 

and rejecting changes helpful in curated ontology evolution, where changes 

are approved or rejected with the change action recorded; providing auditing 

lhttp: //protege. stantord. edu 
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information where authors' information (e. g., time of change, number of con- 

cepts changed) are compiled. The framework in this case serves as a means 

to manage collaborative changes to be performed on an ontology, where the 

source of changes come from the ontology curators. 

DILIGENT (Vrandecic et al., 2005) is a decentralised user-centric method- 

ology proposing an ontology engineering process targeting "user-driven" on- 

tology evolution, rather than its initial design. At a glance, the process starts 

by having a core ontology collaboratively built by users. After the building 

step, the ontology will be locally adapted without changing the core ontology. 

A board of users will then analyse the local changes, in order to come up with 

the changes that need to be incorporated in the shared ontology. The requests 

of changes are supported by arguments using an argumentation framework in 

order to come up with a balanced decision reflecting all the evolution requests. 

The changes are revised by the board of knowledge experts in order to main- 

tain compatibility between different versions. The evolution of the ontology is 

a result of the decided changes to apply. Finally the shared evolved ontology 

is locally adapted at the different involved locations. 

2.3 Ontology Evolution Tasks 

In this section we discuss the approaches that deal with the core ontology 

evolution tasks derived from the cycle in Figure 2.1. Based on our research 
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focus, we place special attention on the tasks of (1) detecting the need of 

change from data sources, (2) suggesting changes by relying on structured 

knowledge and (3) validating changes by processing domain information. 

2.3.1 Detecting the Need for Evolution 

Ontology evolution starts with the detection of the need for evolution. Being 

used in various scenarios, an ontology can become obsolete due to changes that 

occur in the surrounding environment. This can be caused for example by 

changes in the underlying data (e. g., entities represented within the ontology, 

or external domain data), or changes in usage patterns (e. g., related to changes 

in user or application needs). 

2.3.1.1 Detecting the Need for Evolution from Data 

The need for evolution can be initiated from the analysis of existing data. 

While some approaches limit the data analysis to information available within 

the ontology, for example in (Stojanovic, 2004), other tools identify ontology 

changes by analysing external data sources including unstructured sources e. g. 

text documents (Bloehdorn et al., 2006; Cimiano and Volker, 2005; Maynard 

et al., 2009; Novacek et al., 2007; Ottens et al., 2007; Velardi et al., 2001) and 

metadata (Maynard et al., 2007), or structured data e. g. databases (Haase 

and Sure, 2004). (Stojanovic, 2004) defines the data-driven ontology evolu- 
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tion as the process of discovering ontology changes based on the analysis of 

the ontology's instances by relying for example on data mining techniques. 

Another type of change detection defined by Stojanovic is structure-driven, 

where the evolution is initiated based on the analysis performed on the ontol- 

ogy structure using a set of heuristics. For example, "if all subconcepts have 

the same property, the property may be moved to the parent concept", or "a 

concept with a single subconcept should be merged with its subconcept" (Sto- 

janovic, 2004). This type of evolution is also referred to as bottom-up ontology 

evolution (Stojanovic et al., 2002). 

The second data source for detecting the need for evolution can exist in the 

form of domain data, external to the ontology under evolution. Such more "tra- 

ditional" form of storing information about the domain, often contain valuable 

knowledge that should be encapsulated in the ontology itself. With respect 

to our work, we rely on such source of information to identify new domain 

concepts that can potentially be added to the ontology. (Bloehdorn et al., 

2006) based their work on the six phases ontology evolution process proposed 

by (Stojanovic, 2004). The authors identify that valuable information reside 

in databases and documents, but require better structuring and easy accessi- 

bility through the use of ontologies. Unlike (Stojanovic, 2004) who considers 

data-driven ontology evolution as the evolution triggered from the ontology's 

instances, they consider data-driven changes as changes happening in exter- 
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nal data sources such as the addition and deletion of documents in a corpus, 

as well as changes occurring in databases (Bloehdorn et al., 2006; Haase and 

Sure, 2004). Other tools that initiate ontology changes from text documents 

include the ontology learning tools Text20nto (Cimiano and Volker, 2005) 

and SPRAT (Semantic Pattern Recognition and Annotation Tool) (Maynard 

et al., 2009). Moreover, DINO (Laera et al., 2008; Novacek et al., 2007) is a 

framework for integrating ontologies which are learned from text, and Dynamo 

(Ottens et al., 2009) is a multi-agent system based approach that falls in this 

category of tools as well. We discuss in more details the processes involved 

within these tools in the next sections. 

2.3.1.2 Detecting the Need for Evolution from Usage 

In addition to using data analysis as a starting point for detecting the need for 

evolution, some approaches rely on the study of usage patterns to which the 

ontology is subject to. For example (Alani et al., 2006) propose that, based 

on what parts of the ontology are mostly used by applications, the ontology 

can shrink to better fit its purpose in the environment. In addition to appli- 

cation usage, user behaviour is studied to detect the need for evolution, which 

is called usage-driven ontology evolution (Stojanovic, 2004). In (Bloehdorn 

et al., 2006), a usage-log, which is a record kept of the interaction between 

the user and the ontology (e. g., user behaviour and contextual search history), 
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is used to analyse and detect the need for evolution. Such log can store in- 

formation about what has been queried, which elements in the ontology have 

been viewed by the user, etc, and used to derive usage preferences and suggest 

changes to the ontology. 

2.3.2 Suggesting Changes 

The task of detecting the need for ontology evolution is followed by suggesting 

the required changes. Various approaches derive changes by limiting their focus 

on the content available in unstructured documents (e. g., text documents). 

Other works rely on external structured knowledge sources (e. g., usage logs, 

lexical databases or online ontologies) to support ontology change suggestions. 

In this section, we discuss those two sets of approaches, by relating to the 

existing works performed in each area. 

2.3.2.1 Suggesting Changes by Relying on Unstructured Knowl- 

edge 

Text2Onto (Cimiano and Volker, 2005) derives ontology changes through pro- 

cessing text documents and extracting ontological entities. It is designed to 

overcome the limitations of existing tools in terms of domain dependency, lack 

of user interaction during the ontology learning process and running the learn- 

ing process from scratch whenever a change occurs in the corpus. Text2Onto 
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uses a Probabilistic Ontology Model (POM), proposing a model with a de- 

gree of certainty attached. This is coupled with data-driven change discovery 

that enables specific changes detection without processing all the documents 

again. In addition to the extraction of concepts and instances, Text20nto 

includes algorithms to extract various types of relations including "Instance- 

of", "Subclass-of", "Part-of" and other general relations. Such relations are 

inferred through a set of predefined patterns. This tool relies on the GATE 

framework (Cunningham et al., 2002) to process the text documents. 

Similar to Text20nto, SPRAT identifies ontology changes from text docu- 

ments (Maynard et al., 2009). It combines existing ontology based information 

extraction (OBIE) techniques, named entity recognition and relation extrac- 

tion from text. It provides additional patterns to refine the process of entity 

identification and relations between them, and to transform them into on- 

tological entities. SPRAT relies on lexico-syntactic patterns applied on text 

documents to identify terms and their corresponding relations. 

Furthermore, (Bloehdorn et al., 2006) propose an architecture applied in 

a digital library domain or other electronic repositories. They make use of 

ontology learning algorithms to extract document contents. 

Another tool developed with the aim to detect changes from text docu- 

ments and merging ontologies is DINO (Laera et al., 2008; Novacek et al., 

2007). DINO is a framework for integrating ontologies. Part of its processes 
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includes a semi automatic integration of learned ontologies with a master on- 

tology built by ontology designers. It relies on the use of ontology alignment, 

coupled with agent-negotiation techniques, to generate and select mappings 

between learned ontologies from text and the base ontology. In more details, 

Text2Onto is used to extract information from documents in the DINO frame- 

work. The learning algorithms of Text2Onto are customised through a user 

interface, and the confidence values of extracted terms are fed to an ontology 

alignment/negotiator wrapper (Novacek et al., 2007). The learned ontology 

representing new concepts, and the master ontology collaboratively developed 

by the knowledge experts are aligned, i. e. a set of mappings between the 

classes, entities and relations of the two ontologies are set using the alignment 

wrapper. The agreement of the semantics used is reached through negotia- 

tion using the negotiation wrapper. An axiom ontology, which contains the 

merging statements between the learned and the master ontology is created. 

Dynamo (Ottens et al., 2009) is another tool that falls in the category 

of exploiting external data sources for building ontologies. It consists of a 

multi-agent system for dynamic ontology construction from domain specific 

set of text documents. Dynamo relies on an adaptive multi-agent system 

architecture, within a framework where the ontology designer interacts with 

the system during the process of building the ontology. The system considers 

the extracted entities from text sources as separate agents, which are related 
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to other entities (agents) through a certain relationship. In other words, an 

ontology is treated as a multi-agent system. 

2.3.2.2 Suggesting Changes by Relying on Structured Knowledge 

Structured knowledge represents and defines conceptual information entities, 

connected through explicit relations. Such representation allows reusing knowl- 

edge entities with less effort compared to the unstructured knowledge sources. 

Structured sources can exist in different formats, including lexical databases 

and online ontologies. In this section we present approaches that make use of 

both, as support for suggesting ontology changes during ontology evolution. 

In (Maedche et al., 2002), the authors propose the use of lexical databases, 

e. g., WordNet (Fellbaum, 1998), to improve semantic bridging and similar- 

ity computation. WordNet is one of the major lexical databases used in the 

literature and provides a wealth of entities interconnected with subsumption 

links represented in the form of hyponyms and hypernyms, in addition to 

other types of relations including meronymy and holonymy links. WordNet is 

used to support various tasks including word sense disambiguation (Banerjee 

and Pedersen, 2002; Ide and Vronis, 1998; Li et al., 1995), information re- 

trieval (Li et al., 1995) and question answering (Clark et al., 2008; Pasca and 

Harabagiu, 2001). In addition to that, SPRAT (Maynard et al., 2009) and 

Text2Onto (Cimiano and Volker, 2005), which are textual pattern based tools 
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that support ontology learning, propose using WordNet as a means to improve 

finding connections with their pattern extraction mechanism. 

Online ontologies form a ready to reuse body of knowledge. They are used 

to perform a variety of tasks including for example ontology matching (Sabou 

et al., 2008) and development (Alani, 2006), question answering (Lopez et al., 

2009), folksonomy enrichment (Angeletou et al., 2008) and word sense disam- 

biguation (Gracia et al., 2009). This is mainly due to the increase of the avail- 

ability of online ontologies and the presence of tools, such as Watson (d'Aquin 

and Motta, 2011), Swoogle (Ding et al., 2005) and Sindice (Oren et al., 2008) 

that help in discovering and consuming them. 

In (Alani, 2006), some initial ideas for a methodology to build an ontol- 

ogy by reusing online ontologies are proposed. The author describes the steps 

needed within the process, and the required functionalities that would help 

achieving the target of building the ontology. The process starts with the on- 

tology engineer putting a list of terms that need to be in the ontology. Then, 

based on such terms, a search mechanism (e. g., based on Swoogle (Ding et al., 

2005)) is needed to find potential online ontologies that represent the terms. 

The next proposed step is ontology ranking, which is beneficial in case many 

ontologies are found online. Ranking can be based on different criteria, e. g., 

user ratings (Supekar, 2005), evaluation tests (Guarino and Welty, 2002) and 

concept representation (Alani and Brewster, 2005). This is followed by the seg- 
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mentation of the selected ontologies, to limit the knowledge to be reused from 

the ontology. The extracted segments are then compared and merged to form 

the needed ontology. Furthermore, the author (Alani, 2006) proposes using 

existing semi-automatic tools, such as the PROMPT suite (Noy and Musen, 

2003) and Chimeara (McGuinness et al., 2000), to generate the ontology that 

should be finally evaluated. In addition to that, the author presents a list of 

challenges, along with possible solutions, to build such a system and imple- 

ment the presented ideas: (1) Semantic Web tools available are not mature 

enough yet, questioning their reliability to be reused in such a system; (2) Not 

all Semantic Web ontologies generated are made available online. This may 

affect the availability of online ontologies accessible by the system; (3) large 

ontologies can provide big segments, resulting in a big messy ontology that is 

hard to clean by the user; (4) the quality of the online ontologies would affect 

the generated segments, hence affecting the overall quality of the resulting 

ontology. Also a segment of a good ontology does not necessarily preserve the 

quality of the source ontology. 

The raised questions are very relevant to our research, as we place the 

use of online ontologies at the core of our processes for change discovery and 

evaluation. We intend to show, through the study and evaluations performed 

in this research and related work (d'Aquin et al., 2008c), the increased maturity 

and the availability of Semantic Web tools and ontologies that support the 
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process of ontology evolution. In particular, we focus in our research on two 

solutions, which provide mechanisms to access and process online ontologies: 

Watson 2 (d'Aquin and Motta, 2011) is a gateway to online Semantic Web ontolo- 

gies. It (1) gathers semantic content available on the Web, (2) processes 

the content to identify indexes and useful metadata, and (3) implements 

queries to efficiently extract the collected data. Watson provides two 

core functionalities for ontology consumers: (1) a customisable search 

interface for end-users to search and locate online ontologies based on 

user specified keywords; (2) a set of APIs that make processing online 

ontologies possible directly within applications, for example to extract 

on the fly specific metadata, content or metrics from the online bodies 

of knowledge, or execute SPARQL queries directly from within the API. 

Such APIs have proved to be useful to build various Semantic Web based 

applications (d'Aquin et al., 2008c), including Scarlet (Sabou et al., 2008) 

that we discuss next. For our relevance assessment scenario in Chapter 4, 

we make use of the API for example to locate a concept in a specific on- 

line ontology, and implement a technique to extract the neighbouring 

concepts and relations up to certain depth (which will be used as part 

of the context of statements to compute the relevance). Implementation 

details used in our case are presented in further details in Chapter 5. 

2http: //watson. kmi, open. ac. uk 
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Scarlet 3 (Sabou et al., 2008) relies on the Watson API to explore online on- 

tologies, with the aim to identify potential relations between two con- 

cepts. The authors argue that the growth of the Semantic Web will 

directly benefit the task of ontology matching, as ontologies, in contrast 

to databases, provide explicit semantics and vocabularies between en- 

tities, which increase the performance of matching approaches (Sabou 

et al., 2008). The proposed matching technique identifies, at run time, 

the available online ontologies that provide information (e. g., using their 

labels or URI namespace) about the two terms, with potential relations 

that connect them. Two strategies are provided through this technique. 

The first strategy exploits the mappings from one ontology, while the 

second provides a mechanism to identify mappings spread across several 

ontologies. In our implementation and testings, as mentioned in Chap- 

ter 3, we focus on the relations between two concepts identified from one 

ontology. The first step of the matching process is Anchoring, to identify 

the online ontology where the concepts to relate occur. The second step 

involves the Ontology Selection to select the ontology in case multiple 

ontologies provide mapping information about the two concepts. The 

third step is the Derivation Rules, to set whether only direct relations 

are enough, or indirect with inference ones are preferred. The fourth 

lhttp: //scarlet. open. ac. uk 
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and final step is Combining Mappings, where a resolution of the cases 

where multiple or contradictory mappings are identified between the two 

concepts. We test and rely on Scarlet to identify statements that link 

new domain concepts to existing concepts in the ontology, leading to the 

identification of new changes to apply to the ontology. We present our 

results and analysis in Chapter 3. 

2.3.3 Validating Changes 

Detected changes to be added to the ontology are not always valid with respect 

to the ontology. The task of validating ontology changes is crucial for prevent- 

ing the evolution of the ontology to go into undesirable directions. Changes 

can be validated using domain-based and formal-based techniques. The first 

relies on existing domain data to evaluate whether the change aligns with 

the existing content of the ontology, in order to check whether the change 

is important to be performed. The latter makes sure that the change does 

not invalidate specified constraints, e. g., in terms of consistency or coherence, 

using formal techniques. 

2.3.3.1 Validating Changes Based on Domain Information 

Domain-based ontology changes validation uses existing domain data to eval- 

uate changes. This includes for example analysing text documents to check 
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the occurrences of a term to add to the ontology as a concept or instance. 

Text2Onto (Cimiano and Volker, 2005) assigns a degree of certainty about the 

learning process making it easier for the user to interact. For that, it relies 

on the statistical measures (e. g., TF-IDF) to derive the confidence of a term 

with respect to the corpus. SPRAT (Maynard et al., 2009) also uses TD-IDF 

to give an overview of the importance of concepts and instances proposed to 

be added to the ontology or used to create it. This has a downside as such 

statistical measures are dependent on the size of the corpus. Moreover, the as- 

sessment takes into account the number of occurrence of entities with respect 

to the corpus, without taking the ontology into consideration. 

In DINO (Novacek et al., 2007), the changes are sorted according to a rele- 

vance measure, leaving the choice of only presenting highly relevant changes to 

the users. Even though the authors present the need for a relevance measure of 

triples, the relevance relies on a string similarity measure between the entities 

in a triple, and a set of wanted or unwanted words specified by users. The 

drawback of this approach is that (1) it is expected that users manually create 

a list of words that reflect relevance, making it a tedious process to maintain, 

and (2) it does not take the ontology into consideration to check the relevance. 

In other words, this approach is purely based on matching the labels in the 

triple with the user defined sets, without performing any structural content 

analysis that the triple brings to the ontology. 
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Additional work has been done in checking the correctness of ontology 

statements. One approach measures the level of agreement and disagreement 

within online ontologies on how to represent specific statements (d'Aquin, 

2009). Another work checks the correctness of statements on the Seman- 

tic Web, allowing the prediction of how two concepts should be correctly 

linked (Sabou et al., 2009). Such work would be of valuable input in vali- 

dating changes in ontology evolution, as it could filter out those relations that 

are invalid and should not be added to the ontology in the first place. 

In our work, we identify that online ontologies can provide structured con- 

text in which a change is used. We show in Chapter 4 that when such a 

context is compared to the ontology under evolution, a relevance value reflect- 

ing the importance of a change with respect to the ontology can be deduced. 

Our experiments show that pattern-based techniques, perform better than 

overlap-based context comparisons. 

2.3.3.2 Validating Changes using Formal Properties Methods 

In this part we give a brief overview of existing approaches for validating ontol- 

ogy changes using formal properties. (Flouris et al., 2006) propose a framework 

for dealing with inconsistencies and ontology changes. Different levels of in- 

consistencies are identified within DL-based ontologies, and a formal theory of 

ontology change is studied within this work. Another relevant work in this cat- 
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egory is performed by (Haase et al., 2005), where the authors focus on handling 

inconsistencies of ontologies under evolution. A formal study is conducted 

to compare four approaches in handling inconsistent ontologies: (1) consis- 

tent ontology evolution (Haase and Stojanovic, 2005), where ontology changes 

are managed by fulfilling consistency conditions; (2) repairing inconsistencies, 

where inconsistencies are first detected, and subsequently repaired (Schlobach 

and Cornet, 2003); (3) reasoning in the presence of inconsistencies, which does 

not aim to repair inconsistencies, but keep reasoning and querying possible, 

even with the presence of inconsistencies (Huang et al., 2005); and (4) multi- 

version reasoning, where relations between different versions of an ontology 

are managed, and a study of compatibility, including inconsistency are dealt 

with (Huang and Stuckenschmidt, 2005). In (Haase et al., 2005), a framework 

is proposed to combine the four approaches. 

In addition to the theoretical work, different tools have emerged to handle 

ontology validation based on formal properties. For example RaDON (Ji et al., 

2009) is a tool for ontology consistency checking. It uses reasoning mechanisms 

to detect inconsistencies within an ontology or a network of ontologies, and 

supports repairing algorithms to come up with suggestions for resolving such 

inconsistencies. Pellet (Sirin et al., 2007) and Jena (Carroll et al., 2004) provide 

reasoning functionalities for inconsistency detection over ontologies. Jena is 

proposed to be used in DINO's reasoning and management wrapper (Novacek 
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et al., 2007). Such tools are valuable to the ontology evolution community, 

as they provide out of the box solutions to be reused in environments where 

ontologies are under constant changes, with a risk of becoming inconsistent. 

2.3.4 Assessing the Impact of the Evolution 

Following a change, an important task is to assess the impact of the evolution 

that resulted from this change. This task is responsible for measuring the 

effect of an evolution from the application and usage perspectives, as well as 

from the formal criteria perspective. The impact on application and usage 

determines whether the evolution would have an effect on the systems that 

rely on the ontology to perform their process; the formal criteria aim to give a 

quantifiable measure of the impact of a change by using formal properties as 

the basis of the approach. 

2.3.4.1 Assessing the Impact Based on Application and Usage 

While ontology evolution is crucial, one of its main objectives is to keep its 

usage within applications possible. For that, assessing the impact of the evolu- 

tion of an ontology on its dependent applications is important. This has been 

identified by (Liang et al., 2006), where one of the research questions is about 

"which methods are required to maintain the services of the deployed appli- 

cations while updating the underlying ontologies? " The proposed approach is 

69 



to make use of a log ontology to store and manage changes, and a prototype 

system that modifies incoming queries to the ontology based on the logged 

changes to ensure that queries would remain answerable. 

(Lei et al., 2006) target the issue of acquiring and keeping semantic meta- 

data in domains up-to-date. As part of this proposed approach, they create 

a set of mappings to link knowledge entities in data sources, to the domain 

ontology. This makes the domain ontology easily updatable whenever entities 

discovered from knowledge sources are mapped to ontology. However the main 

drawback in this approach lies at the level of the maintenance of the mappings, 

which should be manually updated and created. 

(Kondylakis et al., 2009) present an overview of existing work on ontology 

evolution in the data integration field. They identify that existing approaches 

do not take the evolution of mappings between the data sources and the ontol- 

ogy into account, when the corresponding ontology is highly dynamic. They 

argue that for the data integration application environment, they need a sys- 

tem that fulfils specific requirements. Some of the requirements relevant here 

are that (1) the system has to deal with changes at the ontology level, (2) data 

queries should relate to the evolution of the ontology, and (3) experts should 

be able to validate the mappings. 

(Wang et al., 2008) highlight the importance of managing the dependency 

between the ontology and its dependent applications. This would help in 
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preventing the occurrence of inconsistencies between the ontology and its ap- 

plications, when the ontology evolves. They propose a systematic way of 

propagating an ontology change on its application. In this case, they con- 

sider that the impact on the application is dependent on the range of ontology 

actions. (Wang et al., 2008) also propose having a registration server mech- 

anism to check the impact on the information system environment whenever 

an ontology change occurs. 

2.3.4.2 Assessing the Impact based on Formal Criteria 

Evaluating the impact of changes on ontologies has been evaluated in terms 

of assertional effects (Pammer et al., 2009). Assertional effects measure what 

is gained or lost after performing an ontology change. This work is meant to 

aid the user to have a quick overview of a change impact, in order to make a 

decision about whether the change should be applied or not, while preserving 

conceptual consistency. The work formally describes the assertional effects, 

and an implementation is supplied as a support for the users during ontology 

development (Pammer et al., 2010). 

Another approach proposes the evaluation of changes in ontology evolution 

using an impact function, which computes the cost involved in performing the 

change (Palmisano et al., 2008). This cost is aimed for agents using and 

changing the ontology, to make a better decision whether to apply the change 
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or not. The authors propose an approach to compute such costs without the 

use of reasoning, but by identifying the parts of the ontology that will be 

affected as a result of the change. The impact takes into consideration the 

number of axioms involved in the change, and the expressivity of the parts. 

In (Haase and Stojanovic, 2005), the authors present the notion of minimal 

impact, a concept dependent on user requirements. The idea is based on 

selecting and implementing the minimum number of ontology changes, that 

result in a "maximal consistent subontology". The authors define the concept 

of maximal consistent subontology, as the part of the ontology to which you 

can not add any axiom, without loosing its consistency. 

2.3.5 Managing Changes 

Modifying and evolving an ontology raise the need for managing the changes 

applied. Managing changes involves the tasks of recording the ontology changes, 

as well as generating and managing various ontology versions. This would help 

for example in retracting the ontology to a previous version when needed, or 

tracing back the origin of the source of entities within the ontology, as well as 

helping in scenarios where the ontology is built collaboratively. 
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2.3.5.1 Recording Changes 

Tracing ontology changes forms a substantial part in the research dealing with 

ontology evolution and versioning. Ontologies should not be treated as text 

documents while tracing their evolution, since structural and semantic changes 

are the important components to track. Recording changes requires a clear and 

well defined representation of ontology changes. For that, (Klein, 2004) defines 

what is called an "ontology of change operations", where a set of predefined 

ontology changes are represented in a unified way4. This helps is applying 

changes consistently in different scenarios. This ontology forms a core element 

in the evolution framework described in (Klein, 2004). 

Similarly, (Stojanovic, 2004) proposes an "evolution ontology", which is 

a meta-ontology for representing different types of changes that can be per- 

formed on an ontology. It is created in order to unify the representation of 

changes across the evolution environment. Elementary and composite changes 

are defined. The core concept in the evolution ontology is the "Change" con- 

cept. For example, adding a concept to an ontology is represented in the 

ontology as a sub-class of the concept "Change" as follows: 

AddConcept C AdditiveChange C ElementaryChange C Change 

The evolution ontology represents dependencies using the "causesChange" 

property, which enables to reverse the effects of the applied changes, and going 

'The complete list of change operations can be found in the Appendix B of (Klein, 2004). 
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back to a previous state of the ontology. 

A core feature of the framework presented by (Noy et al., 2006) is a change 

and annotation ontology (ChAO). This ontology enables tracking synchronous 

and asynchronous changes. Whenever a change is performed on the ontology 

using the framework tools (i. e., Protege and the change management plugins), 

an instance is created in ChAO to represent the change and its meta infor- 

mation including for example who preformed the change, the time the change 

was applied, and other relevant data. While if the ontology has evolved using 

other means and tools, the instances of ChAO are generated through a struc- 

tural diff between the two ontology versions. Recording such changes provides 

users with the ability to accept, reject or revise a change through the tool's 

interface. 

Moreover, it is proposed having an evolution log where all changes happen- 

ing to an ontology are recorded (Liang et al., 2006; Stojanovic, 2004). This 

could make tracing and rolling back changes easier. Ontologging (Maedche 

et al., 2002) is another example of evolution tracer tools. It also analyses the 

effects of changes performed on the ontology. Databases have been as well 

used in managing ontology evolutions, by storing in tables the changes of the 

ontology itself or the ontology's metadata level (Ceravolo et al., 2004). On- 

toAnalyzer is another tool that traces complex ontological changes (Rogozan 

and Paquette, 2005). The authors state that OntoAnalyzer has an advan- 
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tage over the KAON framework (Volz et al., 2003), which is able to handle 

only elementary changes. Comparing it to PromptDiff (Noy et al., 2004) and 

OntoView (Klein, Kiryakov, Ognyanov and Fensel, 2002), which identify the 

changes in different ontology versions without taking complex changes into ac- 

count, OntoAnalyzer allows the tracing of complex changes by keeping a log of 

the operations performed on the ontology. In Text2Onto (Cimiano and Volker, 

2005), a pointer is used to keep track of the data changes with their provenance 

from the text, giving users the ability to check the source of changes. 

2.3.5.2 Versioning 

(Klein and Fensel, 2001) define ontology versioning as "the ability to handle 

changes in ontologies by creating and managing different variants of it" . One 

of the aims is to the keep knowledge transfer interoperable among different on- 

tology versions (Klein, Fensel, Kiryakov and Ognyanov, 2002). (Klein, 2004) 

targets the management side of distributed ontologies. The author initiates 

some of the versioning ideas by drawing comparisons to versioning work done 

in the database field, based on which a wish list to be applied on versioning 

Semantic Web ontologies is deduced. He stated that dealing with ontology 

evolution raises the support of: Transforming data from the old ontology ver- 

sion to the new one; continuous data access even if the data has not yet been 

transferred from the old to new ontology version; propagating the changes to 
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remote ontologies; consistency between ontologies versions; and lastly users 

verification and approval (Klein, 2004). This helped in creating a component- 

based framework discussed in Section 2.2. Part of the outcome of this work 

includes OntoView (mentioned previously), which enables to store various on- 

tology versions on the web, and helps users in detecting relations between 

different ontology versions (Klein, Fensel, Kiryakov and Ognyanov, 2002). 

PromptDiff (Noy et al., 2004) is another ontology-versioning tool support- 

ing knowledge engineers in collaborative development environments. It tracks 

structural changes in ontologies and flags as well if a mapping should be up- 

dated when one of the mapped ontologies has changed. PromptDiff has an 

API to hook external applications for comparing ontologies, with the ability 

for the ontology editor to accept or reject the changes. 

(Obst and Chan, 2005) propose a generic ontology versioning framework. 

It draws on the idea of the minor/major ontology versions proposed in (Klein 

and Fensel, 2001), to fulfil what they call the monotonicity property, which 

ensures that the conceptualisations of versioned ontologies are not removed. 

Additional component properties are proposed, which serve as a starting point 

towards an object-oriented approach for building the versioning framework. 
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2.4 Discussion 

We presented in this chapter an ontology evolution cycle, covering the tasks 

involved in the evolution process. The literature review conducted in our work 

shows the extensive research done at the various levels of ontology evolution. 

With this in place, we identify two major gaps in the area of ontology evolution. 

Firstly, having analysed some of the tools that aim to help users in the 

process of ontology evolution, we realise that most of the approaches limit the 

integration of new knowledge entities from external sources to the informa- 

tion contained in the data source itself (e. g., text documents). Even though 

some approaches, for example Text2Onto (Cimiano and Volker, 2005) and 

SPRAT (Maynard et al., 2009), mention the use of WordNet for additional 

information, their main source of relations (particularly named relations) be- 

tween concepts is based on the lexical syntactic patterns found in texts (in the 

case where a corpus is used to evolve the ontology), without reusing existing 

knowledge available in the form of online ontologies. 

Secondly, another gap in the literature lies at the level of ontology change 

evaluation. Existing techniques for change evaluation are generally limited to 

checking the effect of the change in terms of consistency and impact. This is 

usually done through formal analysis and by measuring the cost of a change, 

as well as checking the logical consistency. However assessing the importance 

and relevance of a change to the ontology is not taken into account. While 
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statistical techniques that measure the importance of terms with respect to a 

corpus of documents are proposed using for example TF-IDF, the ontology in 

this case is not taken into consideration. 

We propose in our research to use online ontologies as background knowl- 

edge to decrease user input and time during the process of ontology evolution 

at two levels: first, online ontologies can help in discovering relations that link 

new entities identified from domain data to existing entities in the ontology 

under evolution (discussed in Chapter 3); second, they provide key elements 

(i. e., in terms of structure that we use as a context) to make the assessment 

of the relevance of statements with respect to the ontology in focus possible 

(discussed in Chapter 4). 
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Chapter 3 

Knowledge Reuse for Ontology 

Change Discovery 

In this chapter we focus on the task of supporting the user in identifying on- 

tology changes based on new emerging domain entities. This is the problem 

highlighted through our first research question: How to assist users in identi- 

fying ontology change opportunities? As mentioned in Chapter 2, new domain 

entities can be identified from existing domain data such as text documents. 

The discovery of such new entities triggers the need for evolution based on data 

(see Section 2.3.1.1). However, the specific problem we are solving here lies at 

the level of the generation of the appropriate ontology changes (i. e., the task 

of suggesting changes, see Chapter 2), to integrate the newly identified domain 

elements in the ontology under evolution, with the appropriate connections to 
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its existing entities. 

To achieve this task, we propose the reuse of available knowledge to identify 

new ontology changes, by discovering relations between new terms identified 

in external domain data (e. g., text corpus or list of terms) on one side, and, on 

the other side, existing concepts in the ontology. In this chapter, we exploit 

WordNet and online Semantic Web ontologies as background knowledge to 

resolve the possible relations. We perform an experiment within the academic 

context, in which we use news articles from the Knowledge Media Instituter, 

to evolve the AKT reference ontology2. We analyse and discuss the outcomes 

of the experiments, showing the feasibility of the approach and pointing out 

possible ways to better exploit external sources of knowledge to support the 

ontology evolution process. 

3.1 Background Knowledge Availability 

We have identified several potential sources of background knowledge to be 

used in our context. For example, lexical databases such as WordNet have 

been long used as a reference resource for establishing relations (e. g., sub- 

class or synonymy) between concepts. Because WordNet's dictionary can be 

downloaded and accessed locally by the system and because a variety of re- 
lhttp: //news. kmi. open. ac. uk 

'http: //www. aktors. org/publications/ontology 
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lation discovery techniques have been proposed and optimised, exploring this 

resource is generally fast. However some of the disadvantages of WordNet 

are that firstly it mainly provides sub-class relations. Secondly, the evolution 

of the content of WordNet is slow, compared to information made available 

through online ontologies that can be created and published by entities around 

the world. 

Online ontologies constitute another source of background knowledge 

which has been recently explored to support various tasks such as ontology 

matching (Sabou et al., 2008) and development (Alani, 2006). Unlike Word- 

Net, online ontologies provide a richer source of relations, where, in addition 

to subsumption relations, named relations can also be derived. Furthermore, 

given the fact that more ontologies are constantly made available online, this 

body of knowledge would expand at a faster rate than WordNet. 

Finally, the web itself has been recognised as a vast source of information 

that can be exploited for relation discovery through the use of so-called lexico- 

syntactic patterns (Cimiano et al., 2004; Hearst, 1992). Because they rely 

on unstructured, textual sources, these techniques are more likely to introduce 

noise than the previously mentioned techniques that rely on already formalised 

knowledge. Additionally, these techniques are time consuming given that they 

operate at web scale. 

It would be good to exploit and test all three sources of background knowl- 
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edge including the unstructured web documents. However we focus in our 

experiment on using WordNet and online ontologies. This is due to two main 

reasons: firstly, the web involves challenges at a different scale, such as process- 

ing unstructured online text documents to identify connections at the entities' 

level, which are out of the scope of our research interests. Secondly, we iden- 

tify a potential key contribution provided at the level of reusing the structure 

provided by the other sources (mainly through online ontologies), to evaluate 

the identified relations (see Chapter 4). 

3.2 Exploiting Structured Information Sources 

for Change Discovery 

The change discovery process starts by having a list of terms that can be iden- 

tified from domain data. We use text documents in this experiment to extract 

potential terms to add to the ontology. This can be achieved by using any ex- 

isting named entity recognition technique. For this experiment, we reused the 

one provided by the Text2Onto implementation (Cimiano and Volker, 2005). 

In this scenario, we focus on adding new elements at the schema level of the 

ontology under evolution. In other words, any term that already appears in the 

ontology under evolution as a concept should be ignored. For that we created 

a mechanism to detect existing terms to be filtered out, in order to generate 

82 



the list of new potential terms (e. g., [Researcher, Tutorial) in Figure 1.2). 

The list of new terms is used, along with the concepts available in the 

ontology under evolution (e. g., [Thing, Event, Person, Conference, Workshop] 

in Figure 1.2), to identify potential relations between them. Each new term 

is checked against all existing concepts in the ontology to find possible con- 

nections through WordNet and online ontologies (e. g., < Tutorial, subClass, 

Event > identified from an online ontology'). These connections are the ones 

which are potentially transformed into ontological changes to apply and evolve 

the ontology. 

In the remainder of this section, we present the techniques we use for our 

experiment to process WordNet and online ontologies, to discover relations 

between the new terms and existing ontology entities. 

3.2.1 Using WordNet for Relation Discovery 

In this experiment, we first used WordNet as the source of relation discovery 

between new terms and the ontological entities. We processed WordNet by 

first identifying the closest entity in the ontology to the newly identified term, 

with respect to similarity. Then we take the closest similar terms and find 

potential relations between them. To compute the similarity between terms, 

we used the Wu and Palmer similarity (Wu and Palmer, 1994) measure. This 

3Example of an online ontology containing this relation: http : //ww, if J. unizh. ch/ 

ddis/fileadmin/pdf/service_broker/iswc. daml 
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measure is computed according to the following formula: 

Sim C1, C2) - - N1+N2+ 2+2*N3 

where Cl and C2 are the concepts to check for similarity, Ni is the number 

of nodes on the path from Cl to the least common superconcept (C3) of Cl 

and C2, N2 is the number of nodes between C2 and C3, and N3 is the 

number of nodes on the path from C3 to the root (Wu and Palmer, 1994). For 

those terms that are most closely related to each other, we derive a relation 

by exploring WordNet's hierarchy. This will result in a relation between the 

terms, as well as an inference path which lead to its discovery. The relation 

path in our case is the list of relations that connect two concepts, taking into 

consideration the intermediary nodes that exist in between. 

Applying this measure on the new term Researcher, against the existing 

concepts Thing, Event, Person, Conference, Workshop, from our example in 

Figure 1.2, we get: Sim(Researcher, Person) = 0.83, while all the remain- 

ing similarities are of value zero. Based on this outcome, the connection be- 

tween Researcher and Person is checked, leading to < Researcher, sub - 

Class, Person > as a potential relation to use for integrating Researcher in 

the ontology. 
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3.2.2 Using Online Ontologies for Relation Discovery 

The new terms that could not be related to the ontology through WordNet 

are processed through the use of online ontologies. As briefly introduced in 

Chapter 1 and 2, we rely on the Scarlet relation discovery engine4 to derive 

relations from online ontologies. It is worth to note that we handle ontolo- 

gies at the level of individual statements, rather than as complete models. 

Thus we focus on knowledge reuse without taking care of the validation of the 

sources as a whole with respect to the base ontology. This would leave room 

for processing, even if partially, ontologies containing statements that contra- 

dict statements in the base ontology. Scarlet uses the Semantic Web gateway 

Watson (d'Aquin and Motta, 2011), and automatically selects and explores 

online ontologies to discover relations between two given concepts. For ex- 

ample, when relating the two previously mentioned concepts labeled Tutorial 

and Event, Scarlet 1) identifies online ontologies that can provide information 

about how these two concepts inter-relate and then 2) combines this infor- 

mation to infer their relation. (Sabou et al., 2008) describe two increasingly 

sophisticated strategies to identify and to exploit online ontologies for rela- 

tion discovery. Hereby, we rely on the first strategy that derives a relation 

between two concepts if this relation is defined within a single online ontology, 

e. g., stating that < Tutorial, subClass, Event >. Besides subsumption rela- 

4http: //scarlet. open. ac. uk 
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tions, Scarlet is also able to identify disjoint and named relations. All relations 

are obtained by using derivation rules which explore not only direct relations 

but also relations deduced by applying Subsumption reasoning within a given 

ontology. 

In more details, lets take for example the two concepts Lecturer and Em- 

ployee. Scarlet discovers through Watson anchor terms that exist in online 

ontologies, based on which relations are discovered. In this case, the SWRCS 

ontology provides the appropriate anchors, which are connected through this 

chain of relations: Lecturer C AcademicStaff C Employee, based on which a 

subsumption relation can be inferred between Lecturer and Employee. Note, 

that as in the case of WordNet, the derived relations are accompanied by a 

path of inferences that lead to them. 

Taken from (Sabou et al., 2008), Figure 3.1 depicts the strategy when one 

ontology is used for relation discovery. In the example, three ontologies are 

identified (Or, 02,03), which contain the concepts A' and B' corresponding 

to A and B. While Ol does not contain a relation between the anchor terms, 

02 and 03 provide a subsumption relation between the terms. 

In addition to the ability to retrieve direct relations between concepts, 

Scarlets provides the identification of inferred relations, as the one relating 

Lecturer to Employee. 

shttp: //ontobroker. semanticweb. org/ontologies/owrc-onto-2001-12-11. dam1 
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Figure 3.1: Scarlet relation discovery strategy used in our experiment. 

3.3 Relation Discovery Evaluation 

We performed an experimental evaluation of the proposed relation discovery 

process, with the goal to answer three main questions. Firstly, we wanted 

to get an insight into the efficiency, in particular in terms of precision, of 

the relation discovery relying on our two main background knowledge sources: 

WordNet and online ontologies. Secondly, we wished to understand the main 

reasons behind the incorrect relations, leading to ways for identifying these 

automatically. Tackling these issues would further increase the precision of 

the identified relations and bring us closer to a full automation of this task. 

Finally, as a preparation for implementing Evolva's algorithm for performing 

ontology changes, we also wanted to identify a few typical cases of relations to 

integrate into the ontology under evolution. 
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3.3.1 Evaluation Method 

To perform our evaluation, we start by collecting the data in the context of 

the Knowledge Media Institute (KMi) news systems, to evolve the ontology 

used to support the KMi Semantic Web portal? (i. e., the AKT Reference On- 

tology8). We generate the statements by extracting concepts from KMi news 

documents, and use WordNet and online ontologies as background knowledge 

to propose relations that link the extracted concepts, to the existing concept 

in the ontology. 

We pass the collected data for evaluation by three different users working 

in KMi. The selection was based on their knowledge about the KMi domain, 

enough the make a decision about the correctness of the statements in the 

domain. The users were asked to perform the task of an ontology engineers, 

with a high level of knowledge about the domain and conceptual connections. 

The guidelines were to, given a set of statements, decide whether the statement 

is correct by itself, and whether it's useful to be added to the ontology in 

focus. Users were given the list of statements, with the AKT ontology. The 

evaluation was conducted independently by each user, and the generated data 

are analysed to derive the experimental observations and error analysis. 
6http: //news. kmi. open. ac. uk 
7http: //kmi. open. ac. uk/technologies/name/the-kmi-semantic-web 
8http: //www. aktors. org/publications/ontology 
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3.3.2 Experimental Data 

We run our experiment in the academic context of the Knowledge Media Insti- 

tute news articles to evolve its relevant ontology. We relied on 20 documents 

from KMi's news repository9 as a source of potentially new information. We 

used Text2Onto's concepts extraction algorithm (Cimiano and Volker, 2005) 

and discovered 520 unique terms in these text documents. 

The chosen ontology that we wish to evolve is the AKT Reference On- 

tology10 that contains 256 concepts. The first part of the experiment is to 

perform a string matching between the extracted terms and the existing on- 

tology elements to identify the new terms that do not exist in the ontology. 

We rely on the Jaro distance metric similarity (Cohen et al., 2003) which takes 

into account the number and positions of the common characters between a 

term and an ontology concept label. This string similarity technique performs 

well on short strings, and offers a way to find a match between strings that 

are slightly different only because of typos or the use of different naming con- 

ventions. The newly discovered terms trigger the need for evolution based on 

data, the first task in the ontology evolution cycle (see Chapter 2). 

By using the Jaro matcher we identified that 21 of the extracted terms 

have exact correspondences within the base ontology and that 7 are closely 

matching to some concepts. Closely matching terms means that their Jaro 

9http: //newo. kmi. open. ac. uk 
'Ohttp: //www. aktors. org/publications/ontology 
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Table 3.1: Examples of relations derived by using WordNet. 

Extracted 

Term 

Ontology 

Concept 

Relation Relation 

Path 

Contact Person C contact C representative C negotiator 

C communicator C person 

Business Partnership C business C partnership 

Child Person C child C person 

similarity coefficient is above the similarity threshold, which we set to 0.92. 

3.3.3 Evaluation of the WordNet Based Relation Dis- 

covery 

Out of the 492 new terms, 162 have been related to concepts of the ontology 

thanks to the WordNet based relation discovery process. Some of these rela- 

tions were duplicates as they related the same pair of term and concept through 

different paths. For evaluation purposes, we eliminated duplicate relations and 

obtained 413 distinct relations. Table 3.1 shows examples of relations linking 

extracted terms to ontology concepts, along with the relation types and their 

path. 

We evaluated a sample of randomly selected 205 relations (i. e., half of the 

total) in three parallel evaluations performed by three evaluators. This man- 
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Table 3.2: Evaluation results for the relations derived from WordNet. 

Evaluator 1 Evaluator 2 Evaluator 3 Agreed by all 

Correct 107 137 132 76 

False 96 53 73 26 

Don't know 2 15 0 0 

Precision 53 % 73 % 65 % 75 % 

ual evaluation" helped us in identifying those relations which we considered 

correct or false, as well as those for which we could not decide on a correctness 

value ("Don't know"). Our results are shown in Table 3.2. We compute a 

precision value for each evaluator, however, because there was a considerable 

variation between these, we decided to also compute a precision value on the 

sample on which they all agreed. Even though, because of the rather high 

disagreement level between evaluators (more than 50%), we cannot draw a 

generally valid conclusion from these values. Nevertheless, they already give 

us an indication that, even in the worst case scenario, more than half of the 

obtained relations would be correct. Moreover, this experiment helped us to 

identify typical incorrect relations that could be filtered out automatically. 

These will be discussed in Section 3.3.6. 
1'To our knowledge, there were no benchmarks of similar experimental data against which 

our results could be compared. 
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3.3.4 Evaluation Results for Online Ontologies 

The Scarlet based relation discovery processed the 327 terms for which no 

relation has been found in WordNet. It identified 786 relations of different 

types (subsumption, disjointness, named relations) for 68 of these terms (see 

some examples in Table 3.3). Some of these relations were duplicates, as the 

same relation can often be derived from several online ontologies. Duplicate 

elimination led to 478 distinct relations. 

Table 3.3: Examples of relations discovered using online ontologies. 

Extracted 

Term 

Ontology 

Concept 

Relation Relation 

Path 

1 Funding Grant funding g; grant 

2 Region Event occurredIn region C place «-occurredIn- event 

3 Hour Duration C hour C duration 

4 Broker Person isOccupationOf broker -isOccupationOf- person 

5 Lecturer Book editor lecturer C academicStaff C employee 

C person-editor-book 

6 Innovation Event C innovation C activity C event 

For the evaluation, we randomly selected 240 of the distinct relations (i. e., 

50% of them). They were then evaluated in the same setting as the WordNet- 

based relations. Our results are shown in Table 3.4, where, as in the case of the 

WordNet-based relations, precision values were computed both individually 
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Table 3.4: Evaluation results for the relations derived from online ontologies. 

Evaluator 1 Evaluator 2 Evaluator 3 Agreed by all 

Correct 118 126 81 62 

False 96 56 57 17 

Don't know 11 47 102 8 

Precision 56 % 70% 59 % 79 % 

and for the jointly agreed relations. These values were in the same ranges 

as for WordNet. One particular issue we faced here was the evaluation of the 

named relations. These proved difficult because , unlike subsumption relations 

where the semantics are clearer to interpret, the names of the relations did not 

always make their meanings clear. This is evidently reflected by the increase of 

the number of "Don't Knows", especially for Evaluator 3. Moreover, different 

evaluators provided different interpretations for these and thus increased the 

disagreement levels. Moreover, named relations are harder to interpret as they 

are highly dependent on the purpose of the ontology. This made the task even 

more challenging for the evaluators, hence affecting their decisions. Therefore, 

again, we cannot provide a definitive conclusion of the performance of this 

particular algorithm. Nevertheless, each evaluator identified more correct than 

incorrect relations. 
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3.3.5 Observations on Integrating Relations into the On- 

tology under Evolution 

A particularity of the use of Scarlet is that different relations are derived from 

different online ontologies, reflecting various perspectives and subscribing to 

different design decisions. 

One side effect of exploring multiple knowledge sources is that the derived 

knowledge is sometimes redundant. Duplicates often appear when two or more 

ontologies state the same relation between two concepts. These are easy to 

eliminate for subsumption and disjoint relations, but become non-trivial for 

named relations. 

Another side effect is that we can derive contradictory relations between 

the same pair of concepts originating from different ontologies. For example, 

between Process and Event we found three different relations: "disjoint", 

"sub-class" and "super-class". Such a case is a clear indication that at least 

one of the relations should be discarded, as they cannot be all integrated 

into the ontology. We leave this matter to be resolved by using external 

consistency checking tools that can easily detect and provide solutions for 

such inconsistencies. 

As we mentioned previously, both our methods provide a relation as well 

as the inference path that is used to derive it. This makes the integration with 

the base ontology easier as more information is available. 
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An interesting situation arises when part of the path supporting the rela- 

tion contradicts the base ontology. For example, the second relation in the 

path relating Innovation to Event, Row 6 of Table 3.3, contradicts the base 

ontology where Event and Activity are siblings. This is a nice illustration of 

how the base ontology can be used as a context for checking the validity of a 

relation. Indeed, we could envision a mechanism that increases the confidence 

value for those paths which have a high correlation with the ontology (i. e., 

when they "agree" at least on some parts). 

In the process of matching a path to an ontology, we can encounter situ- 

ations where some elements of the path only have a partial syntactic match 

with the labels of some ontology concepts. Referring to Row 5 of Table 3.3, 

some of the terms in the relation path connecting Lecturer to Book partially 

map to labels in the subsumption hierarchy of the base ontology: 

LecturerlnAcademia C AcademicSta ff Member C 

HigherEducationalOrganizationEmployee C EducationalEmployee C 

Employee C Af filiatedPerson C Person 

While our Jaro based matcher could not identify a match between Lecturer 

and LecturerlnAcademia, this association can be done by taking into account 

the discovered path and the base ontology, therefore avoiding the addition of 
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already existing concepts, and giving further indications on the way to inte- 

grate the discovered relations. 

A final interesting observation relates to the appropriate abstraction level 

where a named relation should be added. We listed in Row 5 of Table 3.3 

a relation path where Lecturer inherits a named relation to Book from its 

superclass, Person. Because Person also exists in the base ontology, we think 

that it is more appropriate to add the relation to this concept rather than to 

the more specific concept. 

3.3.6 Error Analysis and Implications 

One of the main goals of this experiment was to identify typical errors and to 

envisage ways to avoid them. We hereby describe some of our observations. 

As already mentioned, in addition to the actual relation discovered between 

a new term and an ontology concept, our method also provides the path that 

lead to this relation, derived from WordNet or the external online ontology. 

Related to that, a straightforward observation was that there seem to be a 

correlation between the length of this path and the correctness of the relation, 

i. e. relations derived form longer paths are more likely to be incorrect. To ver- 

ify this intuition, we inspected groups of relations with different path lengths 

and for each computed the percentage of correct, false, un-ranked relations, 

as well as the relations on which an agreement was not reached. These re- 
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Table 3.5: Correlation between the length of the path and the correctness of 

a relation. 

Relation 

Path Length 

True False Don't Know No agreement 

1 33% 10% 0% 58% 

2 26% 8% 4% 64% 

3 30% 5% 5% 63% 

4 23% 10% 2% 67% 

5 20% 3% 9% 69% 

suits are shown in Table 3.5. As expected, we observe that the percentage of 

correct relations decreases for relations with longer paths (although, a similar 

observation cannot be derived for the incorrect relations). We also note that 

the percentages of relations which were not ranked and of those on which no 

agreement was reached are higher for relations established through a longer 

path. This indicates that relations generated from longer paths are more dif- 

ficult to interpret, and so, may be less suitable for automatic integration. We 

address this issue in our work by providing a customisable length threshold 

that the user can set, as suitable within the application. 

After further analysis of the sub-class relations generated through Word- 

Net, we discovered some of the limitations at the level of using the Wu and 
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Palmer technique. This is due to the reason that two terms might be highly 

similar (e. g., Stage and Year), however the connection between such terms is 

not a direct relationship. For example they might be siblings from a direct 

node, or even at a different level. Such cases make the interpretation and 

integration of sub-class relations within the ontology more complex. Hence we 

modify our implementation of this method to extract all relations that connect 

the terms through a direct sub-class relation, without going through the simi- 

larity measures. It is worth to note that there exist other types of relations in 

WordNet that we do not process in our approach. For example, antonyms and 

has-stuff can also be derived from WordNet, however they are less prominent 

than hypernym relations, and are harder to translate into conceptual relations 

at the ontology level. 

It became evident that relations established with abstract concepts or 

concepts that are poorly related to the base ontology have a low relevance. 

For example, several relations were derived for the Thing concept (e. g., < 

Lecturer, subClass, Thing >). While these relations cannot be considered in- 

correct, they are of little relevance for the domain ontology, as they would not 

contribute in making it evolve in a useful way. Furthermore, we also iden- 

tified a set of relations to concepts that are not relevant for the academic 

domain (e. g., death, doubt). While they sometimes lead to correct relations 

(e. g., < Death, subClass, Event >), these were rather irrelevant for the do- 

98 



main and thus should be avoided. We concluded that it would be beneficial 

to include a filtering step that eliminates, prior to the relation discovery step, 

those terms which are less relevant for the base ontology. Therefore, they 

should simply be discarded. 

To deal with this issue, we identify the need to provide users with the fol- 

lowing features: first, it should be possible for users to control the parts for 

the ontology to evolve. For example, it should be possible to ignore certain 

concepts that are not needed to relate to, or unfavourable to take into con- 

sideration. Second, having the possibility to check the new terms identified 

from the data sources can give users more control on what to consider for 

relation discovery and what to ignore. Thirdly, the ultimate solution would 

be to automatically assess the relevance of statements, and later allow users 

to check such relations before adding them to the ontology. Hence, instead 

of checking a big list of terms one by one to potentially add to the ontology, 

users can focus on checking statements that propose a relevant way of adding 

such terms to the ontology. 

3.4 Discussion 

In this chapter, we showed that reusing available structured knowledge can 

support the automation of the process of relation discovery. In our experi- 

ment, we explored the use of WordNet and online Semantic Web ontologies to 
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discover relations between new terms identified from domain data, and existing 

concepts in the ontology under evolution. 

While the experiment presented in this chapter has shown the feasibility 

of exploiting external background knowledge sources to automate, at least 

partially, the ontology evolution process, we identify different directions for 

improving relation discovery: 

" First a different combination of knowledge sources might lead to differ- 

ent results. Currently the linear approach used in this experiment, i. e., 

WordNet followed by online ontologies, limits the set of concepts found 

in WordNet to only sub-class relations, without any named relations that 

are detected through Scarlet. An alternative to this is to check WordNet 

in parallel to online ontologies, to enable discovering all types of relations 

that apply to concepts. 

" Second, online ontologies are dependent and directly affected with what 

is accessible through Watson. It might be useful to check the cover- 

age of ontologies crawled by Watson, with respect to other knowledge 

sources available online. For example, DBpedia (Bizer et al., 2009) was 

not available in Watson when the experiment was performed. DBpedia 

provides access to structured content extracted from Wikipedia12, and 

covers a wide selection of topics. While the processing time might be af- 
'2http: //www. wikipedia. org 
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fected with the presence of DBpedia in Watson, the richness of relations 

discovery would definitely increase. It will be interesting in the future to 

check the effect of having DBpedia as part of our background knowledge 

sources used in terms of time and quality of relations generated, and can 

be easily done as soon as Watson crawls the DBpedia content. This is 

considered one of the main advantages of using online ontologies, which 

would indirectly improve the relation discovery process whenever new 

ontologies are crawled by Watson. 

" Third, one element not considered at this level concerns the computa- 

tional performance of our approach to ontology evolution. With the 

current settings performed in the experiment, accessing and processing 

online ontologies is time consuming as each relation is detected along 

with its path for one pair of terms at a time. We address this problem 

by creating a batch mechanism that processes the pair of terms in ad- 

vance, first checking if they appear together in the same ontology, get the 

related entities in a cached file and then resolve the path of the relation. 

While we take the majority of the discussed observations into consideration 

within our work and implementation, the most interesting and challenging 

question we get out of this experiment is: now that we have suggested relations 

linking new terms to existing concepts in the ontology, how do we validate them 

in terms of relevance? One of the main observations from our experiment is 
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that the base ontology itself can be used for validating the correctness and 

relevance of a relation. Indeed, an overlap between the statements in the path 

and the base ontology is an indication that the relation is likely to be correct, 

and, inversely, if contradictions exist between the path and the ontology, the 

relation should be discarded. We propose in our next chapter a pattern-based 

technique, which takes into account structural situations that occur between 

the online ontology from where the relation is derived, and the ontology under 

evolution. Such patterns are used to detect the relevance of statements, along 

with a confidence value, with the aim to provide users support in the process 

of evaluating statements before applying them to the ontology. 

102 



Chapter 4 

Using Ontological Contexts to 

Assess the Relevance of 

Statements 

Our previous chapter highlights the need for automatically identifying ontol- 

ogy change requirements from domain data sources. Furthermore, as discussed 

in Chapter 2, we witness an increase in the availability of tools that automat- 

ically suggest new additions to be applied to ontologies in the form of state- 

ments (Cimiano and Volker, 2005; Maynard et al., 2009; Ottens et al., 2009). 

Nevertheless, although such tools support the automatic identification of on- 

tology changes, they have introduced a new burden on users: inspecting the 

quality of a large number of proposed statements, mainly in terms of relevance 
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with respect to the ontology. In this chapter we present our approach to answer 

our research question: How to assess the relevance of ontology changes? 

4.1 Statement Relevance with Respect to an 

Ontology 

There exist many tools that can be used to manage and preserve the consis- 

tency of an ontology after adding new statements (Ji et al., 2009; Sirin et al., 

2007). However, assessing the relevance of a statement with respect to an 

ontology is not a trivial task, and is usually left to the user. For example, 

introducing Concert as a type of Event in an academic related ontology might 

not result in any logical conflict to the ontology, but it does not constitute a 

valuable addition to the ontology, where events are mainly about conferences, 

seminars, workshops, etc. With the abundance of existing approaches that 

deal with the consistency of the ontology, we solely focus in our research on 

the relevance aspect of ontology changes. We propose and evaluate in this 

chapter an approach for automatically assessing the relevance of statements 

with respect to an ontology. 

We understand statement relevance with respect to an ontology as an indi- 

cation of how well it fits in the ontology. Relevance is a core subject of interest 

in various domains including Artificial Intelligence, Cognitive Science (Sper- 
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ber and Wilson, 1986; Sternberg, 1990) and Information Retrieval (Bruza and 

Huibers, 1996; Mizzaro, 1997). However, this problem is not very well explored 

in the domain of ontology evolution. As Wilson and Sperber noted in their 

work on relevance theory (Sperber and Wilson, 1986), two entities communi- 

cating and in exchange of knowledge, require a kind of agreement on the choice 

of context in which the conversation occurs. Moreover, they argue that "an 

input is relevant to an individual when it connects with background informa- 

tion he has available to yield conclusions that matter to him. " (Sperber and 

Wilson, 1986) 

Based on these key ideas, we present in this chapter an approach towards 

automatically assessing the relevance of statements with respect to an ontol- 

ogy. As identified by (Sperber and Wilson, 1986) that the context forms a key 

element in assessing the relevance of a piece of information, we define in our 

approach the context of a statement as the set of neighbouring concepts and 

relations of the statement in the ontology in which it is used, up to a certain 

depth. Online ontologies are also used at this level as the source of background 

knowledge, but in this case to generate such contexts. Our process starts by 

identifying the context of a statement, by exploiting the online ontology in 

which it appears (Section 4.2). This context is matched to the ontology to de- 

rive the shared concepts. We initially investigate a naive overlap approach that 

takes into account the number of shared concepts (Section 4.3). It is based on 
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the idea that the more shared concepts exist between the target ontology and 

the external online ontology defining the context of a statement, the more rel- 

evant a statement is. With the various limitations of this technique, we point 

out the need for a more sophisticated approach that takes into account not 

only the shared entities, but also the structure surrounding them. We accom- 

plish this by identifying a set of patterns (Section 4.4), where each pattern 

has specific application conditions and a confidence value. When a pattern 

occurs (i. e., when the application conditions can be fulfilled) at the intersec- 

tion area of the statement context and the target ontology, a certain degree 

of confidence can be calculated. We back our work by an experiment that 

we perform in three domains (Section 4.5), showing that the pattern-based 

technique outperforms the naive overlap approach in terms of precision and 

recall, and can be used to support users in the selection of relevant statements 

during the process of ontology evolution (Section 4.6). 

4.2 Overview of the Relevance Assessment Pro- 

cess 

The relevance assessment process (Figure 4.1) starts with identifying a con- 

text C for the statement s from its source online ontologies. Subsequently, 

the context C is matched to the target ontology (i. e., under evolution) Ot 
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Figure 4.1: Checking the relevance of statement s with respect to target on- 

tology Ot, where C is the context of the statement, and P,, is the pattern n 

applied. 

to identify shared concepts, which result from the intersection of the graphs 

C and Ot, and used for the relevance assessment. For now, we focus on the 

subsumption relations, as they are less ambiguous than the named ones, of 

which relevance and correctness are much harder to assess even by users (as 

mentioned in Chapter 3). 

107 



4.2.1 Identifying the Context of a Statement 

One way to assess whether a statement is relevant to a particular ontology is 

to rely on additional information provided by background knowledge sources. 

More specifically, we consider that such background knowledge can be given 

by the contexts in which this statement has been represented and applied. 

The main idea of our methodology is to explore the ontological contexts of 

statements-i. e., the contexts in which they are applied in other, external 

ontologies-to identify factors allowing to assess their relevance. Similarly to 

our approach in finding relations between terms (discussed in Chapter 3), and 

to other tools that exploit the open Semantic Web for performing a variety 

of tasks (d'Aquin et al., 2008b), our approach uses online ontologies as back- 

ground knowledge to provide contextual information for a statement. 

To find online ontologies in which the statement s appears, we use Scar- 

let, the relation discovery engine on the Semantic Web introduced in Chap- 

ter 3 (Sabou et al., 2008). We use the subject and object of s as input to 

Scarlet, which returns a list of relations that exist between the two entities, 

along with information about the source ontologies from where the relations 

have been identified. Once the online ontology is located, we use Watson to 

extract the needed elements from the specified ontology, forming the context 

of the relation. The extraction is performed based on a recursive function 

that exploits the links to subject and object up to a certain depth. More de- 
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tails about the implementation of the extraction procedure are discussed in 

Chapter 5. 

As a context example, Figure 4.2 shows the result of extracting the context 

of the statement < Project, has-funding, Grant > from the AKT ontology 

available online'. The extracted context is formed of elements linked up to 

depth 1. 

4.2.2 Matching the Statement Context with the Target 

Ontology 

The statement context is matched to the target ontology to detect their shared 

concepts. In our case, we consider the matching as a parameter, i. e., we 

do not impose any specific matching technique. In our implementation, we 

perform the matching between the concepts' names using the Jaro-Winkler 

string similarity metric (Cohen et al., 2003). We define the function e(G) to 

extract the set of nodes n1 that exist in the graph G. We use the matching to 

generate the intersection of the statement context and the target ontology: 

e(C) (1 e(Ot) = {ni I ni E e(C) A n;, E e(Ot)} 

In order to analyse the mappings between the statements' contexts and the 

ontology to evolve, we developed a tool to visualise such a mapping, clearly 

showing the intersection as well as the differences between the two graphs. 
lhttp: //www. mindawap. org/2004/SSSW04/aktive-portal-ontology-latent. owl 
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Figure 4.2: Example of ontological-context for the <Project, hasfunding, grant> 

statement. 

The mappings resulting from the process described above allow us to divide 

the elements of the context and the ontology into three groups: 1- entities that, 

are common to both C and Ot, 2- entities that are only present in C and 3- 

entities that are only present in Ot. Our visualisation displays a unique graph 

based on these three groups of elements, using different shapes and (. 010111-S to 

distinguish them. Entities frone the first group are merged and displayed in 
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green, and represented as star-shaped nodes. Entities from the second group 

are represented in red, with round-shaped nodes. Entities from the third group 

are represented in blue, with square-shaped nodes. 

The visualisation has customisable parameters that enable for example to 

only display the shared nodes with their connected entities up to a certain 

depth, and hide or show the target or online ontology. Figure 4.3 shows a 

visualisation of the context of < proposal, subClass, document > extracted 

from the online OntoSem ontology', and the SWRC target ontology'. 

4.3 Assessing Relevance Based on Overlap Anal- 

ysis 

We investigate a first naive approach based on the idea that the more overlap- 

ping the statement context and ontology are, the more relevant the statement 

is. The relevance confidence in this case is based on the ratio of the number 

of shared concepts, to the number of concepts in Ot, as calculated using the 

following formula: 

confoverlap(S, C) Ot) = 
le(c) n e(Ot) I 

le(Ot)I 
2http: //morpheus. ce. umbc. edu/aksl/ontosem. ow2 
3http: //kmi-webOS. open. ac. uk: 81/cache/6/98b/Scal/94b45/7e2998Ob0i/ 

dfc4e24088dffe85l 
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Figure 4.3: Visualisation of the overlap section between the OutoSeºu conºtext 

of < proposal, subClass, document > and the target SWRC ontology, where 

the star shaped nodes are shared, round nodes belong to the statement context, 

and square nodes belong to the target ontology. 

For example in Figure 4.3, with the string similarity threshold value of 0.96, 

there are 18 shared concepts between the context of < proposal, , SuibC'la,,, ti, 

document >, and the SWRC ontology that, includes 71 concepts. 'T'hus the 

confidence of the overlap in this case is 0.2535 (i. e., 71). 

However, the drawback of this approach is that it does not take into con- 

sideration how the ontological entities connect with each other, as it focuses 
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on the number of shared nodes only, without any additional analysis. As a 

side effect, all the statements used in the context will be treated with the 

same relevance confidence. With big ontologies that are not domain focussed 

such as OntoSem4 or Cyc5, it will cause the overlap technique to misjudge 

relevance. For example the statement < capture, subClass, event > is ex- 

tracted from OntoSem as well, but not relevant to add to the SWRC on- 

tology. However, it has the same confidence value as the relevant statement 

< proposal, subClass, document >. 

4.4 Pattern-Based Relevance Assessment 

Given the limitations of the naive overlap technique, a more sophisticated 

approach is needed, which takes into account not only the overlap at the level 

of entity names, but also the way these entities are structured, giving a better 

indication of how the context fits in the ontology. 

Relevance patterns are structural situations of interlinked nodes. When the 

surrounding entities in the matching graph around the statement s trigger such 

patterns, a degree of relevance can be identified. This lifts the problem of the 

overlap method that only matches the concepts' names, by providing further 

elements to analyse and hence a better relevance judgement. For example, a 

4http: //morpheus. ca. umbc. edu/akal/ontosem. owl 
5http: //www. cyc. com 
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shared concept that is a sibling of an entity in s has a better influence on the 

relevance of s, than a shared concept which is not related to the elements of 

s. We create relevance patterns to detect such conditions and help assessing 

relevance. A clear visualisation of the context and its intersection with the 

ontology (as shown in Figure 4.3) helped in identifying the relevance patterns 

that we present in this part. 

We discuss next how we identified the first relevance patterns (Section 4.4.1). 

Then we present the collection of our experimental data (Section 4.4.2) that 

helped in the discovery and evaluation of further relevance patterns. Then we 

show how we refined the generation of the statements' context (Section 4.4.3), 

and finally present the relevance patterns (Section 4.4.4). 

4.4.1 Identifying the First Relevance Patterns 

We started our investigations by the analysis of various graph examples. Using 

our visualisation tool, we generated a set of graphs showing how the context 

of relevant statements matched with the target ontology, and compared them 

to the matching of a set of graphs of irrelevant statements. For example, in the 

academic context, the graph of the relevant statement < deliverable, subClass, 

report > highlighted the presence of siblings to deliverable, which are shared 

with the target ontology. This led to the creation of the first pattern (Pat- 

tern 1 described later in this chapter), which detects the availability of sib- 
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lings shared with the target ontology. While the graph of the statement 

< player, subClass, person >, which is irrelevant to the academic context 

did not show similar connections with the target ontology. 

Another pattern that emerged from our analysed example is when the 

statement is introducing a new parent to the ontology, and this parent is 

the parent of other shared concepts (Pattern 5 described later). During the 

analysis of the examples, one thing that became clear is that we need to have 

more cases to look at, as there was obviously more patterns to discover. 

4.4.2 Gathering Experimental Data 

To refine and discover further relevance patterns, we needed a gold standard of 

statements assessed in terms of relevance that would serve as the basis of our 

analysis and tests. As such a gold standard does not exist yet, we created a 

set of statements evaluated by experts for relevance in three different domains: 

academic, music and fishery. A total of 12 experts were selected to evaluate 

the statements. We assign three different experts for each dataset, with two 

academic datasets, given the expertise and availability of our evaluators in this 

area, and one dataset for each of the music and fishery domains. The experts 

were chosen from KMi and other research institutions (including the Uni- 

7 versitad Politecnica de Madrid6, Karlsruhe Institute für Technology, among 

'http: //wvw. oeg-upm. net 
7http: //vww. kit. edu 
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others). The assignment of datasets was based on their topic of preference. 

Similarly to the previous experiment described in Chapter 3, the evaluators 

were asked to play the role of ontology engineers. 

Data collection of experts' evaluation was accomplished through a web in- 

terface, shown in Figure 4.4, and was conducted independently. It supplied 

experts with a visualisation of the target ontology, along with the options to 

select whether a statement is relevant, irrelevant or if relevance can not be 

judged from the given information ("Don't Know"), in addition to the possi- 

bility of leaving comments when needed. Experts were also given guidelines8 

describing the evaluation process, with some clarifications on what is meant 

by relevance supported by examples. 

We use the same technique presented in Chapter 3, to generate the set 

of statements to add to the ontologies of each domain. In this case we use 

online ontologies as a source of background knowledge, which link new concepts 

extracted from text to existing ones in the ontology in the form of statements. 

In the academic domain, we randomly pick 30 news articles published on 

the Knowledge Media Institute's website. For the fishery domain, we extract 

108 online web documents that include information about fishes and fishery 

stock. For the music domain, we extract 20 music blog pages that have on 

average seven blog post headers each. Table 4.1 lists the domains, the tar- 

8http: //evolva. kmi. open. ac. uk/experiments/statementrelevance/guidelines. 

php 
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Figure 4.4: Statement relevance evaluation web interface, showing the ontol- 

ogy to evolve on the left, the statement to evaluate on the right, with the 

assessment options. 

get ontology to evolve, the corpus used and the total number of statements 

suggested. 

We apply a filter on the generated statements to 1) select only the stthstnnp- 

tion relations (cf. Section 4.2), and 2) remove generic relations, as our previous 

investigations show that statements linked to generic terms (e. g. thing, object, 

etc. ) are mostly irrelevant (see Section 3.3.6). We generate random selec- 

tions of 100 statements in each domain to form the datasets for the experts to 

evaluate. 
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Table 4.1: Statements generation setup for relevance assessment evaluation. 

Domain Target Ontology Corpus Total s 

Academic SWRC: KMi_News: 251 
http: //kmi-webO5. open. ac. uk: 81/cache/6/ http: //news. kmi. opon, ac. uk/ 

98b/5cal/94b45/7c29980h0f/4fc4e24088dff0851 

Fishery Biosphere: Fishery_Website: 124 
http: //kmi-webD6. open. ac. uk: 8081/cupboard/ http: //fishon)ino. org/ 

ontology/ Experiment 1/biosphere? rdf 

Music Music: Music_Blog: 341 
http: //pingthesemanticwcb. com/ontology/ http: //blog. allmusic. com/ 

mo/musicontology. rdfs 

4.4.3 Statement Context Generation Revisited 

A first improvement we introduce, following the analysis of the naive overlap 

approach, concerns the context generation. Instead of dealing with the online 

ontology as a whole to define the context, we generate the context of the state- 

ment based on the surrounding entities of the statement up to a certain depth 

within the ontology. This will help in focussing the usage of the statement 

by analysing the close entities only. For that, we use context(s, 0, d) = C, a 

recursive function that generates a sub-graph, formed of nodes related through 

subsumption and other types of relations to the subject and object of s in 0, up 

to a depth d (set to 1 in our implementation). This function is similar to the 

Prompt ontology view extraction (Noy and Musen, 2004) or some ontology 

modularisation techniques (d'Aquin et al., 2009). The sub-graph generated 
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forms the context C of the statement in the specified ontology. 

4.4.4 The Set of Relevance Patterns 

The statement relevance evaluation based on expert users in concrete do- 

mains contributed to spotting further undetected relevant statements, which 

improved our selection and definition of patterns. 

Each pattern has specific application conditions, supported by a confidence 

value. Application conditions are defined in a way that makes the patterns 

mutually exclusive, to facilitate their performance analysis. Based on our 

analysed data, we identified five different patterns. At a glance, Pattern 1 

identifies direct shared siblings of the subject in s; Pattern 2 detects whether 

s introduces a new leaf to the ontology; Pattern 3 identifies shared ancestors 

of the object of s; and Pattern 4 detects shared siblings that occur at different 

levels of depth in the context and the target ontology. As per our analysis, 

shared ancestors (Pattern 3) gave better relevance indications then the other 

patterns, thus our application conditions are defined in a way to favour Pat- 

tern 3 over Patterns 1,2 and 4. The last pattern, Pattern 5, is applied when 

s introduces a new parent to the target ontology. 

Pattern 1: Direct Siblings. One core indication of relevance is when 

a new concept to add to the target ontology is surrounded by shared siblings 

between the statement context and target ontology. Shared siblings show that 
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the concept in focus is missing in the target ontology, giving the statement 

adding it a high relevance. Pattern 1 detects shared siblings of the introduced 

concept, shown in Figure 4.5, where the statement to assess is in the dashed 

oval, round and square nodes belong to the context and target ontology re- 

spectively, and star nodes are the ones shared by both. 

Figure 4.5: Pattern 1: Direct Siblings. 

This is illustrated in Figure 4.6, where the statement in focus is < tutorial, 

subClass, event > (in the dashed oval), in the context of the ISWC ontology9. 

This context shares with the SWRC target ontology the concepts i'Orkshop 

and conference. Those concepts show that the new concept tutorial is im- 

portant to add to the SWRC ontology. Application conditions: 

1.3 na I na E e(C) l e(Ot) A< na, subClass, object >ECU Ot 

2. -, 3 nb I nb E e(C) fl e(Ot) AC=< object, subClass, nb 

Condition 1 ensures that the subject of s has direct siblings, while Condition 2 
9http: //annotation. semanticweb. org/ontologies/iswc. owl 
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Figure 4.6: Pattern 1 detected on s=< tutorial, subclass, event >, C 

ISWC. owl and Ot = SWRC. owl. 

checks that there are no shared ancestors, thus giving priority to Pattern 3. 

The pattern confidence formula is: 

confei (s, C, 01) - 
IdSubC(object, c) n dSubC(object, O1)1 

IdSuibC(object, C)I -1 

where dSubC(n, G) = {xj I< xi, subClass, n>E G}, is a fnnetion to extract 

the set of direct sub-classes of a node in a graph. The confidence in this case 

is the ratio of the number of shared siblings (the numerator ill the co». f,,, 

formula), to the total number of siblings in the context of S. If we apply the 

formula on si =< tutorial, subClass, ci'rnt > in Figure . 1.6, the coiifid('IC(' 

is: 

confpi(si, ISWC, SWRC) _ 
{Workshop, Confcrcýiwc}j 

{Workshop, Copt fý rcn c, T of an al }-1I 

Even though Pattern 1 is one of the most intuitive patterns, it oeciirred on 

average only 11.25% of the statement cases (including relevant and irrelevrant ), 

in our four test datasets. 
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Pattern 2: New Leaf. As Pattern 1 relies on the shared siblings of the 

subject of s, it will fail when the object of s is a leaf in the target ontology, be- 

cause there will be no shared siblings in this case. This is where Pattern 2 (Fig- 

ure 4.7) called New Leaf comes in place, to detect the subject added as a new 

leaf to the target ontology. This pattern happened to be common in detecting 

1ý' 
. 

Figure 4.7: Pattern 2: New Leaf. 

relevant statements in the music domain, where many statements introduce 

new ontology levels, for example statements < duc't,, s-uibClass, perfo7°m, er> and 

< quartet, subClass, performer>1° link duet and quartet as sub-classes to pCr- 

former, an existing leaf in the target ontology, rß. 5 depicted in Figure 4.8. On 

average, this pattern occurred 10.25% of the eases ill 0111 tested statements. 

Application conditions: 

1. -D na I< na, subClass, object >EO, 

2. -3 nb I nb E e(C) fl e(Ot) AC< obj('r"t, 

loStatement contexts extracted frone: http: //macie j. janik/teat 
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Condition 1 ensures that the object of s does not have children (i. e., it's a leaf 

in the target ontology), and Condition 2 confirms that the object doesn't have 

common ancestors. With the absence of close relatives (i. e., shared parents, 

ancestors and siblings), the confidence of the new leaf pattern is based on 

the ratio of the overlap of the target ontology Ot cut to a specified depth d 

around the object of s and the context of s, to the cut of Ot. Thus the pattern 

confidence formula is: 

le(C) n e(context(s, Ot, d))l 
con fp2 (s, C, Ot) _ (e(context(s, Ot, d)) I 

For the example depicted in Figure 4.8, the confidence value is 0.5714 (i. e., 

4). 
7 

Pattern 3: Shared Ancestors. The Shared Ancestors pattern (Fig- 

ure 4.9) relies on the condition that the relevance of a statement with respect 

to a target ontology increases if the shared object in s has shared ancestors 

between the target ontology and the context in which it is used. This situation 

was very common in the fishery domain, where Pattern 3 applied to 50% of the 

statements identified. For example, for the statement < cod, subClass, fish >, 

fish has the ancestor animal in C", which is shared with the biosphere on- 

tology Ot. The example is visualised in Figure 4.10. This reflects a degree 

of common representations of animal species in online ontologies, where top 
"The context of the statement is derived from: http: //morpheus. ce. umbc. edu/aksl/ 

ontosem. owl 
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Figure 4.8: Pattern 2 detected on s=< duet,, subClass, per f orn ur>, C 

http: //maciej 
. janik/test and Ot = MusicOntolog; y. 

levels in many ontologies tend to be more aligned than in the other domains. 

On average this pattern occurred in 20% of our analysed statements datasets. 

Application condition: 

1.3 no, I nQ E e(C) f1 e(Ot) AC=< object, subClass, n,, > 

The pattern confidence formula is: 
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Figure 4.9: Pattern 3: Shared Ancestors. 

confp3(s, C, Ot)-_ 
laSupC(object, C)fle(Ot)I 

I aSupC(object, C) I 

based on the ratio of shared ancestors of the object of s, to the total number 

of ancestors of object in C. aSupC(n, G) = {xi IG=< xi, superClass, it >I 

extracts all the (direct and inferred) super-classes of a node n in a graph 

G. In the case of s3 =< cod, subClass, fish >, visualised in Figure 4.10, 

the shared ancestors are {Vertebrate, Animal}, which number is equal to the 

total number of superclasses of fish in the context. Hence the confidence in 

this case is: 

confp3(s3 OntoSem, Biosphere) -I 
{Vertc°brate, Animal} 
{Vertebrate, Animal 

Pattern 4. Granularity Mismatch. As ontologies are used in different 

application contexts, design decisions such as the level of granularity often 

vary from an ontology to another. This affects the performance of Pattern 1, 

which checks only the direct shared siblings of the ,, ubjcct in s. 1'attern 4 

(Figure 4.11), called Granularity Mismatch, identifies such situations. With 

the highest occurrence of 41.75% of the cases, this pattern shows that granii- 
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Figure 4.10: Pattern 3 detected on s=< cod, scibClass, fish >, C= http: 

//morpheus. cs. umbc. edu/aks 1/ontosem. owl and O, - Biosph. erre Ontology. 

larity differences in concept representation when designing ontologies is it very 

common case. With our tests performed on the datasets, we have set this 

pattern to be applied as a last resort if Patterns 1,2, and 3 are not detected. 

Application conditions: 

1. -3 na I na E e(C) f1 e(Ot) A< na, subClasti, ob jeecct >ECU Ot 

2.3no,, nb171a E e(C)(le(Or)Anb E e(C)Oc(Ot)A(nn. n E a. SILpC(rt, 
(,, 

(')Vnni, E 
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Figure 4.11: Pattern 4: Granularity Mismatch. 

aSupC(na, Ot)) A object E aSupC(na, c) f1 aSupC(na, Ot) 

1 -3 na I na E e(C) fl e(Ot) A< object,, subClass, na >EC 

where Condition 1 is for ruling out the presence of Pattern 1, and Condition 2 

checks for the presence of shared siblings (including the inferred ones) that 

fall at different levels in depth than subject of s with respect to the object of s 

through a non-shared concept (i. e., a concept in the syninietric difference of C 

and Ot denoted by the symbol e). Condition 3 rules out the presence of shared 

ancestors, for which Pattern 3 should be applied. This pattern, confidence is: 

confp4 (s, C, Ot) _ 
IaSubC(object, C) fl aSubC(object, Ot)I 

I aSubC(object, C) I 

which takes the ratio of all the shared sub-classes of object in C and 0,, to 

the total number of all sub-classes of object in C. The function aSrcbC(n. (; ) 

extracts all (direct and inferred) sieb-classes of a concept n in C. Figure 4.12 

shows an example in the food domain, where concepts are modelled at clif- 
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ferent granularity levels. In the target SmartPoduct food ontology12, the 

concept sauces is defined as type of food, while in the online context de- 

rived from the ontosem ontology, sauces is a type of preparedFood, which 

is a type of food. In this case, Pattern 4 applies on the statement s3 = 

< broth, subClass, food >, due to the shared sub-classes of food: sauces, 

pasta and soup. The confidence in this example is 0.375 (i. e., 

Pattern 5. New Parent. In cases where s links subject to object through 

a super-class relation, i. e. s is introducing object as a new parent to the 

ontology, Pattern 5 is applied (Figure 4.13). There is indication of relevance 

in this case if object is a parent of other shared concepts between the statement 

context and the target ontology. The application condition of this pattern is 

solely limited to checking whether the type of relationship linking subject to 

object is super-class. The pattern confidence is based on the following formula: 

confP5 (s, C, Ot) _ 
IaSubC(subject, C) fl e(Ot) 

laSubC(subject, C)J 

The numerator in the fraction detects the number of shared concepts between 

C and Ot that are children of subject in C. 

In the datasets, the number of statements discovered with super-class re- 

lations is much lower than the sub-class relations. On average, only 16.75% of 

the total number of statements are super-classes. Furthermore, the percentage 
12The ontology is available at: http: //projects. kmi. open. ac. uk/emartproducts/ 

ontologies/food. owl 
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Figure 4.12: Pattern 4 detected on s=< broth, subClass, food >, C= http: 

//morpheus. cs. umbc. edu/aksl/ontosem. owl and 0, = http: //projects. 

kmi. open. ac. uk/smartproducts/ontologies/food. owl. 

of relevance judgment correctness of this pattern is high in the four (1atasets. 

Thus one pattern dealing with super-cI ass relations proved to be enough for 

our domains. Figure 4.14 shows an example ill which w(' : are introducing . staff 

as a superClass of lecturer to the SWRC ontology. In this context, staff'' is 

a superClass of other shared concepts adnainistrativc-staff; iuaking it relevant 

to be added. 
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Figure 4.13: Pattern 5: New Parent. 

4.5 Evaluation of Relevance Assessment 

In order to evaluate the discussed approaches, we analyse and compare the 

performance of the naive overlap approach, versus the pattern-based approach. 

We use the experts' statements evaluation datasets in the three domains as 

the basis of our evaluation, which we present in this section. 

4.5.1 Experiment Measures 

Statement relevance being in many cases subjective, we made sure that each 

statement is evaluated independently by three experts per domain, having iii 

total 12 experts for the four datasets. To get an idea of the level of agreeiuent 

between the experts, we employ in this case the use of coefficient Kappa (Co- 

hen, 1960), an agreement calculator that takes the element, of chance into 

account. Given that the original Kappa was initially designed to take uuly 

two evaluators into account, we use the nniltiraters Kappa version, where 

evaluators are not forced to assign a certain number of cases to each c'vallia- 
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Figure 4.14: Pattern 5 detected on s= <staff, szuperClas, s, lecturer >, C= 

http: //www. atl. external. lmco. com/projects/ontology/ontologies/ 

comsci/csB. rdf and Ot = SWRC Ontology. 

Lion category, i. e., the free-marginal multirater Kappa measure, in addition to 

the overall agreement levels (Randolph, 2005). We rely on the online Kappa 

calculator (Randolph, 2008) to compute the agreement levels across the four 

datasets. The results are presented in Table 4.2. 

The formulas for calculating the overall agreement and the free-inýarginal 

Kappa can be found in (Randolph, 2005). As the numbers show, we can 

see a higher level of agreement in the academic domriili, than the nnisic and 

fishery ones. Given that most of our evaluators are academics, with ýI degree 

of knowledge in music and fishery, this reflects in our scenario that there's a 
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Table 4.2: Agreement levels between experts evaluating relevance of state- 

ments across the datasets. 

Measure Academic-1 Academic-2 Fishery Music 

Overall Agreement 0.74 0.76 0.51 0.66 

Ree Marginal Kappa 0.61 0.64 0.27 0.49 

higher consensus over the notion of relevance, when the domain tends to be 

rather more generic than specialised. 

Based on the intuition that "relevance is not just an all-or-none matter but 

a matter of degree" (Sperber and Wilson, 1986), we use a measure to assess 

the overall relevance of each statement. To achieve this, we assign a score for 

each answer type from the experts: 1 for relevant, 0.5 for don't know and 0 

for irrelevant (cf. Section 4.4.2). We use the sum of these values as an overall 

relevance score: 

3 

overallT,, (s, d) _E score(ei, s, d) 

where overallre, (s, d) is a function that returns the overall relevance score of a 

statement s in a dataset d, and score(ei, s, d) is the score given by expert e; to 

s in d. For example, if the evaluation of a statement s in d is relevant, relevant 

and don't know by experts Ad, Bd and Cd respectively, the overall relevance 

value of s is 2.5. We set two thresholds to handle the overall relevance measure 

outcome: a relevance threshold sets the limit above which s is considered 
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relevant and an irrelevant threshold below which s is irrelevant. If the overall 

relevance value falls between the two thresholds, the relevance can not be 

determined in this case, as the experts are undecided. 

Concerning the naive overlap and pattern-based algorithms output, a thresh- 

old is set to determine the relevance based on the confidence value for each 

algorithm, i. e., when the overlap or a pattern is applied with a confidence 

degree higher than the specified threshold, the corresponding statement is 

classified as relevant, otherwise it is irrelevant. Given the different ways that 

each pattern calculates confidence, we use a separate threshold for each pat- 

tern (displayed in Table 4.313). As the goal of this experiment is to check the 

feasibility of the pattern-based approach, we empirically set the combination 

of thresholds that resulted with the highest performance. 

One of the downsides of having a threshold set empirically, is the difficulty 

in replicating this method in a new domain. At this level of our testings, we 

demonstrated that it is feasible to determine the thresholds which lead to the 

highest average F-measures. One potential solution to apply this approach in a 

new domain, as we discuss at the end of this chapter, is to create an automatic 

way of threshold detection. Another solution is to assign one threshold to 

all the patterns, and provide a user customisable weight for each pattern, 

which can be changed based on the user preference in the applied domain. 

13This is a corrected version of the thresholds used in (Zablith et al., 2010) 
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Table 4.3: Employed thresholds selected empirically to provide the highest 

average relevance and irrelevance F-measure in each dataset. 

Threshold Academic-1 Academic-2 Fishery Music 

User Relevance 2 2 2 2 

User Irrelevance 1 1 1 1 

Overlap 0.2 0.29 0.4 0.05 

Pattern 1 0.2 0.1 1 0.08 

Pattern 2 1 1 0 0 

Pattern 3 1 0.4 0.05 0 

Pattern 4 1 0.01 0.03 1 

Pattern 5 0.8 1 0.5 1 

We implement and apply the latter solution in our tool that we discuss in 

Chapter 5, which we also evaluate in Chapter 6. 

We use Precision, Recall and F-measure to evaluate the performance of 

the relevance algorithms. We define 4 sets RELed, IRRe, RELad and IRRE, 

where: RELed is the set of all statements evaluated as relevant by the experts 

in dataset d; IRF d the set of irrelevant statements as judged by experts in d; 

RELad and IRR0d the sets of relevant and irrelevant statements respectively, 

as classified by the algorithm a (i. e., pattern or overlap), in dataset d. We use 

the following formulas: 
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RELedf1REL dp RELedf1REL d 
rei(ded) -p RELad 1N'el(d, a) - IREL ed 

where Prei (d, a) and Rrej(d, a) compute the precision and recall of relevance 

respectively, in dataset d as judged by algorithm a. We use the usual F- 

measure computation based on precision and recall. In the case of irrelevance, 

the formulas are similar to the ones of relevance, but replaced with sets related 

to irrelevance (i. e., IRRed and IRRE). 

4.5.2 Results 

The main conclusion of our experiment, as shown in Table 4.4, is that the 

pattern-based approach performs better than the naive overlap approach. By 

simply comparing the precision and recall in each dataset, patterns are able 

to identify more correct relevant statements as classified by experts, with a 

better precision than then overlap approach. Overall, the overlap relevance 

F-measure is in the range of [7.41%, 58.06%], while the range is higher for 

the pattern-based relevance F-measure [43.75%, 69.05%]. In terms of irrele- 

vance, the range is [60.87%, 85.71%] for the overlap approach, compared to the 

[74.74%, 92.48%] F-measure range using the pattern-based irrelevance detec- 

tion. This is mainly due to the presence of large ontologies online that tend to 

highly overlap with target ontologies in general, and the fact that the overlap 

technique treats all statements coming from such ontologies equally, leading 

to lower precision and recall. 
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Table 4.4: Evaluation results for relevance assessment. 

Overlap Patterns 

Relevance Irrelevance Relevance Irrelevance 

Statements 18 82 13 87 

Precision 05.56% 83.72% 46.15% 91.95% 
Academic-1 

Recall 11.11% 87.80% 66.67% 93.02% 

F-measure 07.41% 85.71% 54.52% 92.48% 

Statements 15 85 16 84 

Precision 26.67% 81.18% 43.75% 90.00% 
Academic-2 

Recall 25.00% 86.25% 43.75% 85.71% 

F-measure 25.81% 83.64% 43.75% 87.809? o 

Statements 57 43 59 41 

Precision 47.37% 74.42% 55.39% 90.24% 
Fishery 

Recall 75.00% 55.17% 91.67% 63.79% 

F-measure 58.06% 63.36% 69.05% 74.74% 

Statements 57 43 35 65 

Precision 29.82% 81.40% 42.86% 83.08% 
Music 

Recall 73.91% 48.61% 65.22% 75.00% 

F-measure 42.49% 60.87% 51.73% 78.83% 
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Note that, in the context of validating changes for ontology evolution, iden- 

tifying irrelevant statements is equally important as identifying relevant ones. 

Moreover, our experiment shows that in most datasets, the proportion of irrel- 

evant statements is higher than the one of relevant statements. Thus having a 

high precision and recall on the bigger portion of the datasets (formed of irrel- 

evant statements) reflect that the pattern-based approach would successfully 

act as a filter of irrelevant statements, reducing the workload on the user in 

the process of statement selection during ontology evolution. 

To put the results in perspective, we rank the outcomes based on the 

confidence values of the overlap and pattern-based approaches, and compare 

them to the randomly ordered statements generated initially during relation 

discovery (see example in Figure 4.15). Due to the pattern specific threshold 

and confidence calculations, a direct ranking based on the confidence is not 

possible. Thus we normalise the pattern-based confidence values to a target 

unified threshold of 0.5, based on which we perform the ranking. As Figure 4.15 

shows, the ranking based on the pattern technique groups relevant statements 

more towards the top of the list, meaning that ontology engineers could more 

confidently select most of the top statements, while safely discard most of the 

lower ranked ones. One interesting feature to test, which is beyond our research 

plans, is to investigate how these results would combine with other statement 

evaluation techniques (i. e., based on consistency checking, impact evaluation, 
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etc). In particular, integrating consistency checking features per statement 

before being added to the ontology can assist the user in the statement selection 

process. We foresee a potential way to achieve this is by checking each proposed 

statement against existing statements in the ontology. Furthermore, it will be 

required to check the consistency of the statements to add among themselves, 

to ensure the consistency preservation of the ontology under evolution, when 

multiple statements are considered for addition. However we believe that 

doing such checks individually would be an expensive process, especially if 

the amount of changes to apply is substantial. Hence an alternative would be 

to check the consistency of the ontology after evolution, which can be easily 

done by off-the-shelf consistency checking tools. Such tools usually provide 

inconsistency justification features, by identifying the set of axioms causing 

the inconsistency and making it easier for ontology engineers to resolve it (Ji 

et al., 2009). 

4.6 Discussion 

We presented in this chapter an approach towards the automatic assessment 

of the relevance of statements with respect to ontologies. This approach is 

based on the analysis of the context in which the statement occurs, and how 

it compares to the considered ontology. A set of relevance patterns in the 

graph merging the context with the ontology are identified, with the aim to 
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Relevant s 
Irrelevant s 
Don't know s 

Figure 4.15: Visualised ranking of 100 statements in the fishery domain, couº- 

paring the results of the random order on the left, overlap approach in the 

middle and pattern-based approach on the right side of the figure. 
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provide indications of the level of relevance of the statement, by showing how 

the context fits in the ontology. 

This experiment shows a potential in assessing the relevance of statements 

with respect to an ontology, a task which was traditionally left for the user to 

perform. Exploiting the structure of online ontologies and of the ontology un- 

der evolution were key for obtaining the improvement over a solution based on 

a pure matching technique. In addition, our experiment reflects the subjective 

nature of relevance, observed from the level of disagreement between the eval- 

uators. Even though the evaluation of our approach shows promising results, 

we identify potential improvements that could be applied to our methodology. 

Firstly, we are aware that the relevance patterns identified are not exhaustive, 

and that further data analysis applied in different domains would highlight 

additional patterns. Moreover, we design our approach to have mutually ex- 

clusive patterns. A modification can be done at this level to check whether a 

combination of patterns would have any effect on the performance. Secondly, 

instead of using the first online ontology returned by Scarlet as the statement 

context, an alternative method is to select the context that returns the highest 

relevance confidence. In addition to that, the current way thresholds are set 

is empirical. An interesting study would be in the direction of investigating a 

methodology to automatically identify the optimal set of thresholds applica- 

ble in a domain. One potential way to do so is to take the set of statements 
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that have been lately added to the ontology under evolution as a base case 

of the threshold values calculation. The idea is based on the fact that such 

statements are already assessed relevant by the user who added, or approved 

the addition of the statements to the ontology. 

The outcome of this work is integrated in our ontology evolution tool 

Evolva, which we discuss in the following Chapter 5. However, it is worth 

to note that this work can be used in other application environments, for ex- 

ample, within the Watson plugin for the NeOn Toolkit14. This plugin supplies 

ontology developers with the ability to check online statements that relate to 

a specific concept. This is achieved by the user selecting the concept in the on- 

tology, then searching through Watson to get the list of potential statements. 

Currently, the user has to scan through all the relations in order to select the 

appropriate ones to add. Having our work integrated in Watson would give 

the ability to rank the results based on relevance, helping users by scanning 

through the most relevant ones first. In addition to the evaluation conducted 

in this chapter, we put our approach to the test within an evolution scenario 

that we discuss in Chapter 6. 

14http: //vww. neon-toolkit. org 
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Chapter 5 

Evolva 

With the aim to support users in the process of ontology evolution, we apply 

our research outcomes within one unified ontology evolution tool: Evolval. 

This tool presents a solution to evolve an ontology starting from external data 

sources, by giving the user a degree of control during the evolution steps. In 

addition to providing users the ability to directly reuse our research solutions, 

Evolva played a key role in the evaluation of our proposed approaches in this 

thesis. This tool enabled us to evolve an ontology over a month period, in 

order to collect data for analysis and evaluation. Furthermore, Evolva provided 

an interface with customisable parameters, which enabled us to easily setup 

different evolution modes (i. e., manual, semi-automatic and unsupervised) that 

we test, evaluate and present in Chapter 6. 

lhttp: //evolva. kmi. open. ac. uk 
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One of the key features of Evolva, is that it uses customisable sources 

of background knowledge, to automate part of its processes at the level of 

change discovery and evaluation. We discuss in this chapter the evolution 

framework based on which Evolva is designed (Section 5.1). Then, we present 

the interface of Evolva (Section 5.2), followed by the implementation details 

within the NeOn Toolkit2 (Section 5.3). 

5.1 Evolution Framework 

The framework on which Evolva is based went through different iterations 

during our research. It is formed of five components, to handle the discovery 

of domain information from external data sources, and support users in the 

process of the identification and validation of ontological changes to apply to 

the ontology. This framework is an instantiation of the complete evolution 

cycle discussed in Chapter 2. 

5.1.1 Information discovery 

Detecting the need for evolution (the first step of the evolution cycle in Fig- 

ure 2.1), is applied through the information discovery component by contrast- 

ing existing knowledge in the ontology to information available in external 

domain and application specific sources, such as text corpora, databases or 
2http: //www. neon-toolkit. org 
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Figure 5.1: Ontology evolution framework. 

other ontologies. 

The framework is designed to handle unstructured sources including text 

documents, a list of raw terms or folksonomy entities. Text documents require 

certain processing techniques such as information extraction (e. g., using Gate's 

ANNIE component (Cunningham et al., 2002)), or ontology learning mech- 

anisms (Cimiano and Volker, 2005) and named entity recognition (Maynard 

et al., 2008; Zhu et al., 2005). External ontologies and databases present a more 

structured source of information, where concepts, relations and instances are 

explicitly encoded in a well-defined structure. However, a translation should 

be applied on exploited ontologies to ensure language compatibility with the 

base ontology under evolution. In the case of databases, a transforumnt ion 
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should be performed to encapsulate the database schema and entities in an 

ontology compatible language (Tirmizi et al., 2008). 

5.1.2 Data validation 

The information discovery component is likely to introduce a lot of noise in the 

generated data. This includes for example one or two letter words identified 

as terms, or terms that include unrecognised characters due to differences in 

the text encodings. One way to validate discovered information is by applying 

a set of heuristic rules. Ontologies and databases do not need this kind of low 

level quality check as the content structure is more trusted. 

Another level of validation is the identification of entities that already 

exist in the ontology for example in the form of concepts. The data validation 

component is responsible for cleaning and identifying entities worth passing to 

the ontological changes component for further processing. 

5.1.3 Ontological changes 

This component is the core component in which we apply the core outcomes of 

our research: the relation discovery step that identifies links between the new 

terms and existing entities in the ontology (discussed in Chapter 3), and the 

quality check that includes the relevance assessment of statements (discussed 

in Chapter 4). In terms of the evolution cycle, this component covers the 

145 



suggesting changes and validating changes steps. 

The validated entities are passed to the relation discovery process, for re- 

solving the links to existing knowledge in the ontology. This process relies on 

the various sources of background knowledge, and outputs the list of possible 

relations linking new entities to existing ones in the ontology. 

The list of relations is then passed for quality check, in which relations are 

assessed in terms of relevance with respect to the ontology. Another potential 

way of validating the relations can be at the level of impact for example in 

terms of cost (Palmisano et al., 2008) or assertional effect (Pammer et al., 

2010) of the relations on the ontology. It is worth to note that in the frame- 

work, quality checking is different from consistency checking, which occurs 

after applying changes to the ontology. 

Checked relations are then passed to the performing changes step that 

integrates the new changes into the ontology to produce a new evolved version. 

5.1.4 Evolution validation 

Performing ontological changes could generate some problems such as con- 

flicting statements, data duplication and time related inconsistencies. The 

evolution validation component deals with these issues in order to produce an 

approved ontology in a reusable state. The consistency checking process evalu- 

ates the consistency of the new generated ontology, with an attempt to propose 
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changes to be fixed in case of inconsistencies. This is part of the validating 

changes step using formal properties of the ontology evolution cycle (Flouris 

et al., 2006; Haase et al., 2005; Ji et al., 2009). The temporal reasoning pro- 

cess detects whether statements are temporally incorrect in the ontology, with 

respect to the data sources. For example the job status of a person in a certain 

company might change with time, and this should be captured correctly from 

the data sources into the ontology. The duplication check is an additional 

check of the occurrence of duplicates (e. g., car and automobile) resulting from 

the evolution. 

5.1.5 Evolution management 

The approved ontology is passed to the evolution management component, 

part of the managing changes step in the evolution cycle. In this component, 

the changes performed on the ontology are recorded to ensure functionalities 

such as tracing or rolling back changes (Maedche et al., 2002; Noy et al., 2004; 

Rogozan and Paquette, 2005). The changes should be propagated to depen- 

dent ontologies and applications. Administrator control is supplied for moni- 

toring purposes, setting the evolution parameters and resolving any additional 

problem that might arise. 
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5.2 The Interface of Evolva 

The interface of Evolva is sequential, with the ability for users to come back 

to previous steps and perform changes to their selected options. The de- 

scribed framework is not the architecture of our evolution tool (i. e., not all 

the framework components are implemented as part of the tool). However, 

Evolva follows an instantiation of our proposed framework. Figure 5.2 shows 

a screenshot of Evolva, where the steps required are depicted within the sepa- 

rating bars. The plugin has a generic preferences setting window to specify the 
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Figure 5.2: A screenshot of Evolva. 

148 



parameters of the path to the WordNet dictionary, and whether an automatic 

evolution is needed without having the user to stop and validate each step. 

In addition to the generic preferences settings, each step has its own specific 

customisable parameters where applicable. The motive behind this design is 

to have task specific settings that users can change, and directly check the 

effect of the settings before moving to the next step in the process. 

5.2.1 Setting the Ontology to Evolve 

Starting with the base ontology step in the interface of Evolva, the user can 

specify which concepts to take into consideration during evolution. This is 

targeted for the cases where evolving only part of the ontology is needed. It is 

useful for example in situations where the ontology size is substantial, and the 

user is interested in evolving only part of the ontology. This also helps users 

to ignore generic terms in the ontology (e. g., Thing), which, as identified in 

the observations from our relation discovery experiment in Chapter 3, tend to 

generate irrelevant relations with respect to the base ontology. 

5.2.2 Specifying the Domain Data Sources 

In the data sources step, the user selects the domain data sources to process. 

The currently supported sources are text corpora, a list of terms, and RSS 

feeds. For a text corpus, the user selects a directory in which the text docu- 
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ments exist. In the case of a list of terms, the accepted input is in the form of a 

file, in which each term is on a separate line. For the RSS feed source, the URL 

of the feed should be entered. As RSS feeds are meant to evolve continuously, 

and the user not having control of the items to process, we implemented a 

caching mechanism that keeps track of the RSS items that have been already 

processed for evolution. Given the fact that RSS feeds sequentially publish 

new content whenever available in the domain, hooking Evolva to such feeds 

makes it easier to follow the evolution of the domain content, and evolve the 

ontology accordingly. 

5.2.3 Validating the Identified Terms 

The data validation step displays to the user the list of potential terms identi- 

fied from the data sources. The validation at this level includes the automatic 

detection of whether the term already exists as a concept in the ontology, or 

whether the length of the term falls below a threshold under which it should 

be considered as noise. Both validation methods are customisable from the 

interface by setting the similarity threshold between extracted terms and con- 

cept names in the ontology, and the minimum length of the term to take into 

consideration. Moreover, the user has the ability to manually identify terms 

that have to be ignored during the evolution process, a need we identified in 

our relation discovery experiment (Chapter 3). At this level, the validation of 

150 



terms is minimal. If time is not an issue, the user can keep the whole set of 

terms for the next step, where an additional more rigorous level of validation 

is performed, by taking the structure of the ontology into consideration. 

5.2.4 Identifying and Evaluating new Statements 

The relation discovery step is where the core outcomes of our research are 

implemented. This is where relations between the new concepts and existing 

concepts in the ontology are identified (based on our work presented in Chap- 

ter 3) and evaluated in terms of relevance (based on our proposed approach 

in Chapter 4). At this level, the user is presented with a list of relations that 

include the source entity, the relation type, the target entity, the option to 

use or discard, the relevance pattern that applies, the relevance confidence, 

the option to visualise the contexts based on which the relevance is assessed, 

the type of background knowledge used and the relation path. 

The relation discovery process is customisable. The user can specify the 

type of background knowledge to use including WordNet, online ontologies, or 

both. The maximal length of the relation to discover can also be set. This 

proved to be useful as a result of our experiment discussed in Chapter 3, which 

showed that the correctness and relevance of a relation decreases with the in- 

crease of its length. Another customisable parameter provides the option to 

discover relations between the new entities identified from the data source 
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among themselves, in addition to relations between new entities and existing 

concepts in the ontology. This is useful if the user aims to have a more complete 

taxonomical representation in the ontology using Evolva. To better illustrate 

the idea, suppose we are evolving an ontology that represent the animal do- 

main. The ontology includes the concept Animal and Evolva identifies in the 

data sources the terms Dog and Mammal. The following relations are discov- 

ered: < Dog, subClass, Animal > and < Mammal, subClass, Animal >. If 

the option to relate new entities among themselves is enabled, the following 

additional relation would be identified: < Dog, subClass, Mammal >, which 

if added to the ontology, will result in a more complete taxonomy. 

In addition to the background knowledge parameters, the validation of 

relations is customisable as well. Evolva provides the feature to automatically 

remove duplicate taxonomical relations. Moreover, it is possible to hide or 

show relations that have been previously ignored during evolution. This is 

done by keeping track of the choices of the user regarding what relations have 

not been applied to the ontology. This helps reducing the amount of relations 

to check during the evolution process. Other available options come at the 

level of relevance validation. It is possible to change the weight applied to each 

pattern's confidence value. This option comes as a result of our experiment 

in Chapter 4, where we saw that some of the patterns would act differently in 

different domains. Having customisable pattern related weights helps the users 
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to fine-tune the ranking of relations according to their relevance. Another set 

of options comes at the level of the context graph visualisation (see e. g., the 

small window displayed on top in Figure 5.2). For that, users can (1) display 

or hide the ontology under evolution, (2) display or hide the context of the 

relation derived from online ontologies, (3) limit the visualisation up to depth 

1 around the shared nodes, (4) display the shared nodes only (the green starred 

nodes), and (5) display or hide the ontology's named relations. 

5.2.5 Reviewing Changes and Applying them to the 

Ontology 

The last step in Evolva's interface is the ontology changes. At this level, the 

list of all changes to apply to the ontology is displayed based on the selected 

relations in the relation discovery step. This acts as a final check of changes, 

and gives the user the possibility to go back to the relation discovery step in 

case settings need to be modified, or missed relations need to be considered 

or discarded. After this step, the options of applying changes to the ontology 

itself, or to a new version are enabled at the bottom of Evolva's interface. 

If the user chooses to apply changes to the base ontology, the changes are 

applied on the initial ontology. In case the user chooses to apply changes to 

a new version, a new version detached will be created, and directly accessible 

within the ontology navigator window of the NeOn Toolkit (the left part in 
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Figure 5.2). A tag with the string pattern "_EvolvaEvolutionDate" is added 

at the end of the ontology URI, to help tracing back the different ontology 

versions. 

5.3 The Implementation of Evolva 

We implemented Evolva as a plugin for the NeOn Toolkit (d'Aquin et al., 

2008a). This helped in getting direct feedback whether our proposed ideas 

were feasible, and whether such ideas can concretise into usable solutions. 

The NeOn Toolkit provides a solution to handle the ontology engineering life- 

cycle, and various plugins have been implemented targeting different areas 

of the life-cycle (e. g., ontology development, consistency checking, modular- 

isation, etc. ). The toolkit is based on the Eclipse open source development 

platform (Budinsky et al., 2003). Eclipse provides the means for developing 

software projects as plugins that act as extension points to other plugins. In 

addition to Evolva supplying the toolkit with the feature for evolving ontolo- 

gies starting from external data sources, Evolva benefited from reusing other 

plugins' functionalities to achieve some of its framework requirements. For 

example, for consistency checking, the RaDON (Ji et al., 2009) plugin can be 

used to spot inconsistencies in an evolved ontology. Another plugin for change 

logging (Palma et al., 2009) records changes applied on the ontology, and al- 

lows users to confirm or discard changes after being applied. An additional 
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plugin offering relevant functionality for Evolva is the Gate Web Services3 plu- 

gin (discussed later). This plugin processes text documents to identify terms 

and named entities. 

5.3.1 Data Sources Processing and Validation 

In the initial versions of Evolva, we used the Text2Onto's extraction algo- 

rithms (Cimiano and Volker, 2005) to process text documents. However this 

proved to be a burden at the installation level, as various prerequisite tools 

and settings were required. This included for example a local access to Gate4, 

with specific parameters fetched from local files. 

During the investigation of alternative options available to process text 

documents, the Gate Web Services5 plugin for the NeOn Toolkit was released. 

This plugin offers a mechanism to process text documents and extract occur- 

ring terms through the TermRaider component. Being developed within the 

NeOn Toolkit, the plugin was easy to handle by exposing the needed java 

packages to be accessed by Evolva. As discussed previously, this is one of the 

advantages of the NeOn Toolkit: offering a unified environment where plugins 

can interact and share their functionalities. Having the Gate Web Services 

3http: //gate. ac. uk/projecta/aeon/vebaervices-plugin. html 
4http: //gate. ac. uk/download 
5Description and installation guidelines are available at: http: //gate. ac. uk/ 

projects/neon/Webservices-plugin. html 
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improved the installation of Evolva, as users do not have to install further 

applications to be able to run Evolva any more. 

When the user specifies a text corpus as a starting point, the corpus di- 

rectory is passed to the TermRaider component in Gate Web Services, which 

outputs the extraction results in a temporary file. Evolva processes the file to 

extract the terms, and visualises the results in the Data Validation section. In 

the case of an RSS feed selection, Evolva accesses the feed and processes its ex- 

isting items, and downloads the related files content to a temporary directory 

that is processed in a similar way as the text corpus. With the user having less 

control over the content of the RSS feed, Evolva keeps track of the items that 

have been processed through an ontology dependent caching mechanism. The 

caching is applied at the final step when the user applies the changes on the 

ontology. The terms list is an option supplied to users who already have a list 

of terms that they want to process. This proved to be useful for example to 

process a list of food ingredients, to evolve the taxonomy of a food ontology. 

In this case, the user supplies the terms in a plain ". txt" file in which each 

term is on one line. Evolva scans each line and selects the available term. The 

terms identified from the different data sources are stored in a dynamic list 

that contains term related information, for example notes whether the term 

exists in the ontology, or if it has been manually ignored by the user. 

In the Data Validation step, terms extracted from data sources are prepared 
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before the relation discovery step. At this level, terms are checked against 

the existing concepts in the ontology, for detecting if they already exist. This 

detection is based on the Jaro-Winkler (Cohen et al., 2003) string similarity to 

allow a similarity-based matching, rather than an exact matching (as discussed 

in Chapter 3). The customisable threshold allows users to control the degree of 

similarity needed. The higher the threshold, the stricter the similarity between 

terms would be. We use the concept's URI local name in the ontology under 

evolution, to match against the extracted terms. This implementation worked 

well in our scenarios (e. g., used in Chapter 6), where the concepts' URI local 

names contained the concepts' information. However, this can not be applied 

to ontologies where the concepts' information are stored for example as labels, 

rather than in the URI local names that can contain pure reference numbers. 

This implementation can be easily extended in the future to handle such cases. 

5.3.2 Relation Discovery 

The Relations Discovery step relies on WordNet and online ontologies to link 

new entities to existing ones in the ontology. We implement a WordNet based 

relation identification method by using the Java WordNet Library'. Given 

two terms, the method scans the WordNet dictionary to find a subsumption 

relation (i. e., linked through a hypernym or hyponym property) between the 

6http: //sourceforge. net/projects/jwordnet 
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two terms. The dictionary is included in the WordNet application. Evolva 

stores the path of the relation, with the gloss of the terms along the path. The 

path and the gloss help the user in the validation of the relation. For example 

suggesting the unusual relation < Bag, subClass, Person > is explained by 

the gloss of Bag being An ugly or ill-tempered woman. This method also allows 

the extraction of relations up to a user specified depth, set from the interface. 

To process online ontologies, Evolva relies on Scarlet that depends on the 

Watson gateway, as introduced in Chapter 3. Scarlet provides a java library8, 

and supports the functionality of identifying relations between two terms from 

online ontologies. The function accepts several parameters, including for ex- 

ample a filter based on specific relation types, the length of the path, and 

whether to identify relations that spread across several ontologies, or limit 

them to one. 

Since Scarlet is not designed to process many relations checking at once, 

the initial implementation using Scarlet proved to be very inefficient, as each 

pair of terms was checked for existing relation between them one at a time 

online and sequentially. To target this issue and allow processing more terms 

in one go, a new method was implemented within Scarlet to batch process a 
'WordNet can be downloaded from: http: //wordnet. princeton. edu/wordnet/ 

download 
'The Scarlet API can be downloaded from: http: //scarlet. open. ac. uk/download. 

php 

158 



source of terms, against a given target terms. This methods initially checks 

if the pair appears together in one ontology using Watson, if it does, post- 

process the ontology to find and extract the relation and its corresponding 

path. Similarly to WordNet, the path of the relation is used as a validation 

by the user. 

5.3.3 Statement Relevance Assessment 

Within Evolva, relations generated through online ontologies retain the source 

ontology from where the statement s is identified. For the relevance checking, 

we focus on relations coming from online ontologies, leaving the assessment of 

WordNet relations for the user. We rely on the Watson API9 to process online 

ontologies, and extract the entities that form the context used to analyse with 

respect to the ontology under evolution. 

The statement context is extracted by generating the set of elements sur- 

rounding the statement in a specific online ontology. This include super- 

classes, sub-classes and named relations connected to the Subject and Object of 

s. We implement a recursive function that iteratively extracts the elements of 

the online ontology up to a certain depth. We then pass the entities of s, along 

with the online ontology, to get the elements through the get-RelationType 

functions of the Watson API, where Relation Type can be the named relations 
9The Watson API can be downloaded from: http, //vatoon-kmi. open. ae. uk/WS-and- 

API. html 
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to and from the entity, sub-classes and super-classes. We collect the entities 

into a vector of strings, forming the context C that we use for the pattern 

identification, confidence calculation and context visualisation. 

We process the ontology 0 to evolve using the OWL API1° to extract 

the entities' identifiers, mainly based on the URI local names, which will be 

used to match against the entities in C. In our implementation, we match 

the strings using the Jaro-Winkler string similarity with a specified threshold, 

above which concepts will be considered similar. As mentioned in Chapter 4, 

relevance patterns occur when specific application conditions (i. e., structural 

forms) apply. We code the conditions in such a way to have one relevance 

pattern that applies for each statement. We develop a series of functions 

for detecting specific conditions. For example, in the case of Pattern 1, one 

condition is that the Subject of s needs to have shared direct siblings. For 

that, we develop a function that returns the number of siblings of a concept 

shared between C and O. Another example, used in Pattern 3, the condition is 

applied through a function that returns the number of shared concepts between 

C and 0, which are super-classes of Object in C and 0 respectively. We reuse 

these functions to code each pattern's application conditions. 

The relevance confidence values are implemented based on the formulas 

discussed in Chapter 4. Counters that keep track of shared entities are im- 

'°http: //owlapi. sourceforge. net 
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plemented and reused depending on the pattern applied. The weight (a value 

between [0,1] of the patterns, set through the Evolva parameters), is mul- 

tiplied with the corresponding pattern confidence and affect the ranking of 

statements. 

5.3.4 Context Visualisation 

For the generation of the context visualisation, we use the JUNG API". We 

developed a method that takes as input the context C and ontology 0. Based 

on the Jaro-Winkler matcher, we represent the shared entities as green star 

shaped nodes. This can be specified by the JUNG API, which provides cus- 

tomisable features in terms of colours, shapes and node connections. The nodes 

from the ontology are generated as blue squares, and the nodes from the state- 

ment context as red circles. In addition to colour and shape customisations, 

JUNG provides different graph layout implementations. We use the Karnada- 

Kawai "spring-embedder" layout (Kamada and Kawai, 1989), implemented as 

the "KKLayout" class in JUNG. When the user inspects the button to visu- 

alise the graph, the context is extracted on the fly through Watson, matched 

against entities in the ontology, and drawn in a separate window on top of the 

Evolva plugin. The graph includes zooming in and out functionalities, to focus 

on and inspect specific parts of the graph, in addition to selecting elements 

llhttp: //Juag. sourceforge. net 
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and dragging them to change their position in case the graph is cluttered. 

5.3.5 Changes Generation and Implementation 

The list of selected relations generated are converted into ontology axioms, 

using the OWL API. Such axioms are processed and passed to a function 

within the Evolva plugin, which applies the changes depending on the user 

selection. In case the user selects to apply the changes on the ontology itself, 

the function directs the axioms to be applied on the ontology model. In the 

other case where a new ontology version is needed, the function first creates a 

clone of the initial ontology, integrates the new axioms, and generates a new 

ontology having in its URI the Evolva tag, as well as the evolution date. The 

new ontology files are saved within the NeOn Toolkit workspace. 

5.4 Discussion 

In this chapter, we presented an overview of Evolva, a tool that assists users in 

the process of ontology evolution. Based on an evolution framework to handle 

evolution from external domain data, Evolva is implemented as a plugin to 

the NeOn Toolkit. Details about the installation and usage of the tool are 

available in Appendix A and on Evolva's website12. 

It is worth to note that the experiment we present in Chapter 6 helped us 
12http; //evolva. kmi. open. ac. uk 
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improve Evolva and introduce additional features. This is because, as part of 

the experiment, we evolved the ontology in a scenario spreading over several 

days. This provided the ability to spot glitches that were rather undetectable 

when running a one phase evolution based on one set of documents. 

For example, one of the things Evolva was missing is a caching mechanism 

to store unselected concepts and relations, so that they do not appear again to 

the user in the following versions. This is already implemented and added for 

the experiment, in addition to a feature that shows the progress of the relation 

discovery step, to give an insight of the status to the user. 

While we discussed in this chapter our framework and implementation 

details of Evolva, we identify at this level the following potential room for 

improvements: 

" Firstly, relation discovery within WordNet can be made faster. For ex- 

ample, instead of passing the newly identified terms along with existing 

ontology entities as pairs, a more efficient way is to get the related hyper- 

nyms and hyponyms of a new term from WordNet, then check against all 

existing terms in the ontology in one go. This would reduce the number 

of queries performed on WordNet, and improve processing time. 

9 Secondly, the process of handling online ontologies can be refined. Cur- 

rently, the graphs of statement contexts and their matching to the on- 

tology are generated on the fly. If the contexts are cached at the level 
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of relevance assessment during the pattern detection process, relevance 

graphs can be visualised in a much faster way. 

" Thirdly, another improvement can be introduced at the level of back- 

ground knowledge management and availability. It is feasible (by using 

Cupboard (d'Aquin and Lewen, 2009) for example) to provide users with 

a customisable space of online ontologies to be used as specialised back- 

ground knowledge sources. This is useful in domain specific ontology 

evolution, where it is hard to find publicly available ontologies. 

While such improvements are interesting to investigate, we keep them out of 

the scope of our work, as their impact will mainly be in terms of processing 

time and ontologies' availability online. 
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Chapter 6 

Evaluating the Impact of Using 

Online Ontologies as 

Background Knowledge for 

Ontology Evolution 

In this chapter, we focus on measuring the impact of using online ontolo- 

gies on (1) the user involvement time during ontology evolution, and (2) on 

the quality of the resulting evolved ontology. To realise that, we conduct an 

experiment within the computer and related services sector of the "Tenders 

Electronic Daily" (TED)1 portal, and use our ontology evolution tool Evolva 

lhttp: //ted. europa. eu 
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for processing the domain data and evolve the ontology. We compare the case 

where online ontologies are semi-automatically used to provide background 

knowledge to support the ontology evolution process, to the case where an ex- 

pert manually evolves the ontology based on his/her own knowledge about the 

domain, and to the case where the process is done in an entirely unsupervised 

manner. 

We analyse these results to support our claim that the use of online on- 

tologies in a semi-automatic process can reduce significantly the time required 

for ontology evolution, with a minimal impact on the quality of the result- 

ing ontology. Hence, with the right balance of user input and our proposed 

techniques, the use of online ontologies provides the best trade-off between 

quality and expert time, compared to the manual and unsupervised ontology 

evolution modes. 

In the next section we discuss the evaluation methodology. This is followed 

by the preparation of the ontology to evolve and the data used for our exper- 

iment (Section 6.2). In Section 6.3, we present the pilot experiments that we 

conducted. Then in Section 6.4 we analyse our results, which consist of the 

analysis of: (1) user time, (2) entities discovered and added to the ontologies, 

(3) the effect of using online ontologies for relevance checking, and (4) the on- 

tologies generated out of the three evolution modes, supported by evaluation 

metrics. 
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6.1 Evaluation Methodology 

In order to evaluate the added value of using online ontologies as a source of 

background knowledge for supporting users in the process of ontology evolu- 

tion, we mainly rely on an empirical methodology, coupled with metric sup- 

ported ontology analysis to evaluate the resulting ontologies. We derive some 

of our ideas from the empirical methods for artificial intelligence (Cohen, 1995). 

We start by the claim that 

the use of online ontologies through the Evolva tool can substan- 

tially decrease the effort required by users to evolve ontologies, 

with little negative effect on the quality of the resulting ontology 

compared to a manually evolved one. 

To check the feasibility of our claim, we setup an experiment that will serve 

as the basis our analysis. We start by preparing the ontology to evolve. Then, 

we collect the domain data to use for evolving the ontology. By relying on 

Evolva, we run the pilot experiments in three different ways: a manual, semi- 

automatic and unsupervised evolution modes. The main requirements needed 

for this evaluation were: (1) evaluators with ontology building knowledge, (2) 

knowledge in the computer and related services domain, and (3) running the 

experiment over a month period. Two evaluators from the Knowledge Me- 

dia Institute (KMi) that fulfilled the requirements were selected, one for the 

167 



manual evolution mode, and the other for the automatic mode. They ran 

the experiments independently. As in the previous experiments performed in 

Chapters 3 and 4, the evaluators were asked to perform the task as ontology 

engineers, who are required to keep the ontology up-to-date. The background 

information about the scenario were clearly agreed on: the ontology should 

evolve, to reflect the new emerging elements identified from new tenders docu- 

ments published over a period of 30 days in the computer and related services 

domain. For that, new concepts appearing in the documents should be added 

with the appropriate relations to existing ones in the ontology. For each mode, 

the evaluator was clearly aware of which features of Evolva they are allowed 

to use. I. e., the evaluator in manual mode was only allowed to use the "Data 

Discovery" component of Evolva to identify terms from documents, while the 

evaluator in semi-automatic mode was given the ability to use all the provided 

functionalities of Evolva, with the requirement to validate the proposed re- 

lations, and maintain the final structural state of the ontology. We log and 

analyse the resulting data, to highlight the impact of using online ontologies 

on the evolution process. 

6.2 Data Preparation 

We conduct our experiment in the computer and services domain of the "Ten- 

ders Electronic Daily" portal, where daily information is published about ten- 
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ders availability across Europe. We collect the tenders data related to this 

sector, published within the United Kingdom. We make use of the functional- 

ities provided by Evolva, which can be customised to extract information from 

the specified data sources. 

6.2.1 Initial Ontology 

After searching for an existing ontology describing software and computer 

components that we can use as a starting point for evolution, we could not 

find an appropriate one that fits out intentions: to represent hardware and 

software products to use for tenders in the UK. Hence we created our own ini- 

tial ontology, which includes basic representation of computer related devices, 

programming languages and software types 2. 

6.2.2 Domain Data Collection 

The TED portal provides RSS feeds access for automatic tenders update'. This 

source fits very well in our evolution scenario, where new domain information 

is published through the feeds daily. The RSS feed we used describes the 

availability of new tenders, documents and further information available in the 

computer and services industry within the UK4. With the extensive amount 
2http: //evolva. kmi. open. ac. uk/ontologies/tedcomponto. owl 
3http: //ted. europa. eu/TED/rss/ramFood. do 
4fsed: //ted. europa. eu/TED/ras/en/RSS_Comp_UK. xml 
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of data published daily, keeping up with domain changes and evolving the 

ontology accordingly is time-consuming and requires a lot of effort from the 

users. This is because users will have to go through the published documents 

daily, identify relevant new concepts to add, and find the appropriate changes 

to perform on the ontology. 

We use Evolva to extract the RSS feed items using its data sources com- 

ponent (Section 5.2.2). We ran the process daily over a period of 30 days. A 

total of 232 web documents were collected as a result, grouped into 21 sets of 

documents corresponding to 21 different days (no documents were published 

during certain days, especially over weekends). 

6.3 Pilot Experiments Design 

For our experiment, we setup three different ontology evolution modes: man- 

ual, semi-automatic, and unsupervised. The first focuses on measuring the 

effort required from an ontology engineer in evolving the ontology based on 

the list of terms identified from the RSS feed, without the support of online 

ontologies. The semi-automatic mode measures the effort required from an- 

other ontology engineer, who is assisted by the change discovery and evaluation 

features of Evolva. The unsupervised mode represents the case where online 

ontologies are employed without any user intervention. 
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6.3.1 Manual Mode 

In the manual mode, the expert is given the domain data collected in the 

form of web documents, and Evolva running within the NeOn Toolkit. This 

mode serves as the baseline against which the other modes will be compared. 

The task here is to manually integrate new concepts detected from the data 

in the ontology. To perform this, the expert is required to load the ontology 

within the NeOn Toolkit, and feed the data to Evolva in order to extract the 

list of terms identified. The support of Evolva here is at the level of (1) the 

identification of terms (i. e., the information discovery component), and (2) the 

selection of new terms that do not exist in the ontology, with noise cleaning 

based on the terms' length (i. e., the quality check component). This enabled 

us to run the three pilot experiments on the same set of terms. 

Evolva will return the list of terms to the expert, who will go through 

each term and check whether the term is relevant to be added to the ontology. 

In the case of relevance, the expert is required to add it to the ontology, 

with the appropriate relations to existing concepts in the ontology. Then a 

new ontology version will be saved by integrating new entities from the set of 

documents, resulting in having a sequence of ontology versions (i. e., 21 in total 

based on the number of document sets). Keeping a trace of all versions helped 

in identifying what has been added to each version. The time to perform 

this task is recorded for each ontology version, in addition to the number of 
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concepts and relations added at each level, with further details including for 

example what has been discarded. 

6.3.2 Semi-Automatic Mode 

The second experimental mode is semi-automatic. This is where the expert is 

supported by the use of online ontologies. Similarly to the manual mode, the 

expert will be using Evolva's features to process and clean the domain data 

to extract the available terms. However, in this case, the relations linking 

new concepts to the existing ones are left for Evolva to discover using online 

ontologies. Hence the focus of the expert here is on going through the identified 

statements that already connect the new terms to existing ones in the ontology, 

rather than checking each term detected from the domain data individually. 

In this mode, Evolva is customised to use online ontologies as the source 

of background knowledge. Online ontologies not only provide the feature of 

automatic relation discovery (discussed in Chapter 3), but also a mechanism 

for statement relevance assessment with respect to the ontology (discussed in 

Chapter 4). After identifying new concepts and linking them to the ontology, 

the expert will have the list of relations to check, with a ranking based on the 

confidence value of the statements' relevance. After being approved, relations 

are transformed into ontological changes, and applied on new ontology versions 

to create a sequence of ontologies as in the manual mode. 
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Throughout the process of using Evolva, the expert's time in validating 

relations is logged, along with what has been added and discarded in terms of 

concepts and relations during the evolution. This data is then compared to 

the other evolution modes. 

6.3.3 Unsupervised Mode 

The third evolution mode analysed is where there's no user intervention in 

the evolution steps. In this mode, only online ontologies are used to discover 

and assess the relevance of changes to add to the ontology, without the user 

validation. The aim of this scenario is to judge the importance of having the 

expert's supervision as part of the process. 

In this unsupervised mode, we run the evolution on the same initial on- 

tology. We select the option in Evolva's preference pane to automatically 

evolve the ontology. In this case, the relation discovery step suggests changes, 

and evaluates them in terms of relevance. Then all statements with relevance 

greater than zero are added to the ontology. Similarly to the previous two 

modes, 21 ontology versions are created. 

6.4 Experiment Analysis 

In this section we focus on the analysis of the collected data from the three 

evolution modes, in order to assess the impact of the use of online ontologies 
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on ontology evolution. For this analysis, we are interested in (1) checking 

the amount of the overall time taken by the expert to evolve the ontology, 

(2) comparing what has been added to the ontologies in the three modes (3) 

measuring the effect of the automatic relevance assessment on the selection of 

statements to add and (4) comparing the final ontologies of the three modes 

based on our observations, supported by objective metrics. 

6.4.1 Time Performance 

The first impact of the use of online ontologies is on the time taken by the 

expert to evolve the ontology. The graph in Figure 6.1 plots the time taken by 

the second expert in the semi-automatic mode, versus the one in the manual 

mode to generate the ontologies. This shows that overall, the time spent by 

the expert supported by the use of online ontologies (i. e., in semi-automatic 

mode) is less than the time taken by the expert who is manually integrating 

the concepts in the ontology. 

The accumulated time taken by the expert in manual mode is 481 minutes 

(i. e., 8.02 hours), while it took 149 minutes for the expert in the semi-automatic 

mode to perform the evolution. However, we found that in some cases, mainly 

days 2 and 4, the timing is not very accurate. After further investigations, the 

expert in semi-automatic mode highlighted that at these two days, the process 

has been interrupted without stopping the time logging. Hence if we look at 
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Figure 6.1: Graph of the time in minutes spent by the expert in the semi- 

automatic mode (full line), versus the time of the second expert in manual 

mode (dashed line). 
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days 5 until 21, the values are more realistic. In this case, the accumulated 

time for the expert in manual mode will be 355 minutes, versus 41 minutes for 

the user in semi-automatic mode. So the time decrease factor would be 8.66 

l 41 . 
355) 

Another observation from the graph, is that the time spent in evolving the 

ontology in both modes tends to decrease with time. This is due to various 

factors, including that the experts were getting more used to the domain on- 

tology, making faster judgements whether an entity is worth adding to the 

ontology. Another reason is related to filtering out the set of already existing 

terms in the ontology. The more concepts are added to the ontology, the less 

terms the expert in manual mode has to check, as such terms will be auto- 

matically filtered out if they appear again in the set of documents. Another 

finding coming from the graph, is that the time in semi-automatic mode tends 

to drop faster than the manual time. This is mainly due to the reason that 

in the manual mode, the expert will have to check the terms one at a time, 

thinking about appropriate relations. In the semi-automatic mode, the expert 

can focus on checking relations, which already provide a degree of context on 

possible integrations with existing concepts in the ontology. This is also due to 

the fact that the expert in the semi-automatic process is supported by caching 

mechanism to hide statements that have been previously discarded. The time 

graph does not apply to the unsupervised mode, because there was no user 
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involvement in this case. 

Figure 6.2 shows the number of concepts added to each ontology version. 

This reflects that at the beginning (first two days), we see that more concepts 

are added manually, than semi-automatically and without user involvement. 

This is because the initial ontology contains gaps in the represented knowledge 

that the expert can easily identify. However online ontologies can extend the 

ontology only if they can connect to existing concepts in the ontology. 

One thing we were expecting from our experiment is that the noise gener- 

ated from the domain data sources (i. e., number of irrelevant terms proposed) 

would have a bigger effect on the expert time taken during manual mode, than 

on the expert time in the semi-automatic mode. This expectation is based on 

the idea that the more terms are identified from domain data, the more time 

the expert in manual mode will have to spend checking the terms. However the 

data proved us wrong. Contrary to our expectations, the noise has a similar 

effect on the user time in the semi-automatic mode. To check this observation, 

we calculate the ratio of concepts added to the concepts discovered from the 

data (i. e., Ratioc, 
cgpte -_ 

Concepts added to ontolo9y ). Figure 6.3 plots the 
Terms extracted from domain data 

ratio of the expert time, to the Ratioconcpt, for each ontology version. To a 

certain extent, we can see in the graph that there's a correlation between the 

two cases. This shows that irrelevant terms still have a significant impact on 

the user time in the semi-automatic mode, even if this impact is reduced in 
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comparison to the user in manual mode. 
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This is due to the fact that irrelevant teens will result in proposing more 

relations for the user to check. Even if these relations might be ranked lower 

by our relevance detection technique, the expert still haul to spend some time 

checking them. 

One limitation of our comparison is that we are comparing the tinies of 

two different experts, as other elements can contribute to the difference in 

times, such as user efficiency or experience. However, the reason of choosing 

1 
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Table 6.1: Comparison of the number of entities added to the final ontologies 

in the semi-automatic, manual and unsupervised modes 

Entity Type 

Added 

SemiAuto 

Mode 

Manual 

Mode 

Unsupervised 

Mode 

Concepts 84 104 1029 

Subsumption Relations 91 96 2090 

Named Relations 6 19 0 

two different experts is that we wanted to compare the performance of the 

evaluators working on the task from scratch. Because if we require the same 

expert to do one mode, then run the other mode at a later stage, he/she will 

already have an idea of potential concepts and relations that should be added 

to the ontology. Hence, this will favour the second run mode, producing a 

degree of bias and incomparable results. 

6.4.2 Entities Discovered and Added to the Ontology 

Rom the domain data accessed through the RSS feed, a total of 15,609 terms 

have been identified. From this set, Table 6.1 shows a summary of what has 

been added to the ontologies. A total of 84 concepts have been integrated 

in the semi-automatic mode through 97 relations (91 sub-class and 6 named 

relations), while a total of 104 concepts are integrated in the manual mode 
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through 115 relations (96 sub-class and 19 named relations), and 1029 con- 

cepts have been automatically integrated through 2090 subsumption relations 

in the unsupervised mode. There are no named relations added in the unsuper- 

vised mode because the relevance process is based only on sub-class relations, 

filtering out all named relations. One thing to take into account is the design 

perspectives that affected the decision of each expert (excluding the unsuper- 

vised mode), and subsequently what is added to the ontology. For example, 

at some point, we realised that the expert in the manual mode started adding 

concepts related to tenders and offers representation, while this is not the case 

for the semi-automatic mode, in which the expert considered this area irrele- 

vant, and focused on representing computer and related services products. 

6.4.3 Online Ontologies Used to Assess the Relevance 

of Statements 

As discussed in Chapter 4, we provided a technique, through the use of online 

ontologies, to support users in validating the statements to add to an ontology 

under evolution. This is mainly aimed to support users in semi-automatic 

mode, by automatically evaluating the relevance of statements based on the 

ontological context. Within Evolva, identified relations are ranked based on 

the relevance confidence calculation, hence placing the most relevant at the 

top of the list. Even though we performed an evaluation in Chapter 4, we 
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can provide additional evidence regarding the performance of our approach on 

evolving ontologies by processing sets of documents collected over several days. 

In this experiment, we log the application of relevance assessment, and what 

has been actually selected by the expert. This helps answering the following 

questions: (1) to what extend selected statements are chosen amongst the ones 

detected as relevant? And (2) by how much the user effort is decreased thanks 

to relevance detection? 

Table 6.2 reveals the tracing of the relevance detection in the semi-automatic 

mode. It compares the number of sub-class relations discovered, the number 

classified as relevant, the number selected by the expert, and the number of 

relations selected classified as relevant. The expert was advised to select relax 

tions from the whole set of the proposed statements. A relevant statement in 

this case is a statement to which a relevance pattern applies, with a confidence 

value greater than zero. 

The results in the table show that the system has classified 57% of the 

proposed subsumption relations as relevant. Moreover, 81% of the statements 

selected by the expert were classified as relevant. This means that if the 

expert was asked to focus only on the 57% supplied by the system, we would 

get 81% of the taxonomy results selected. Hence with the use of relevance 

assessment, we could decrease user effort by 43% in extending the taxonomy 

of the ontology, while keeping 81% of the relevant results. 
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Table 6.2: Number of Selected Relevant relations by the expert in senii- 

automatic mode, from the total Selected Relations, with the number of Rele- 

vant Relations detected by the tool, from the subsumption relations for each 

Evolution Day. 

Evolution 

Day 

Subsumption Rel. 

Discovered 

Relevant 

Relations 

Selected 

Relations 

Selected 

Relevant 

1 23 2 6 2 

2 48 13 4 4 

3 22 6 3 2 

4 37 19 7 6 

5 30 12 4 2 

6 4 0 1 0 

7 165 88 9 6 

8 15 8 3 3 

9 81 44 15 12 

10 60 35 0 0 

11 76 43 10 10 

12 112 69 4 4 

13 113 68 3 3 

14 74 41 1 1 

15 47 29 2 2 

16 86 52 2 1 

17 96 66 3 2 

18 129 75 1 1 

19 99 69 3 3 

20 89 60 7 7 

21 98 68 3 3 

Total 1504 857 91 74 

Average 57% Recall 81% 
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To check whether there's another potential threshold (other than zero) that 

could lead to a better selection of relevant relations, we gradually increment 

the threshold by 0.1, and check the effects on the numbers in the table above. 

We plot the values traced in the graph of Figure 6.4. 
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20% 
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Threshold 

Figure 6.4: Graph of the threshold values effect on the recall and user effort 

drop. 

We observe that once we increased the value of the threshold to 0.1, the 

user effort can be decreased by 66% (compared to 43% with a zero threshold), 

however the recall drops to 47% (compared to 81% with a, zero threshold). 

The more the threshold is increased, the less user effort is needed but with 

a high tradeoff with the recall. As in our scenario we focused on maximising 
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the number of relevant relations to identify (i. e., maximising the recall), the 

threshold of value zero offered the best trade-off in this case. In the situa- 

tion where time is favoured, the threshold increase to 0.1 would work well, 

decreasing the effort of users to 66%, with a 47% recall in this scenario. 

6.4.4 Observations and Analysis of the Resulting On- 

tologies 

In order to get a more understanding of the final ontologies generated in the 

different modes, we analyse the ontologies at two levels. We observe some of the 

key differences in the ontologies in terms of structure and design, and we apply 

a set of metrics and analyse to what extent they support our observations. 

We select the evaluation metrics from the ontology evaluation commu- 

nity, in addition to some measures that we feel appropriate to our scenario. 

(Gangemi et al., 2006) define three types of ontology evaluation measures: the 

structural dimension where the analysis of the ontology as a graph is consid- 

ered, the functional dimension where the usage and intended functionality of 

the ontology is considered, and finally the usability-profiling that takes the 

annotations that define ontology profiles and its metadata into consideration, 

to address the ontology's communication context. 

In our case, the selection of the metrics from the community is based on 

our goal: to get an insight of the major structural differences between the final 
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ontologies generated in the three different evolution modes. Hence we focus on 

the structural dimension of the ontology. Such measures are not to be taken 

as absolute indication of quality, but they are meant to provide a relative 

indication of differences between the three differently generated ontologies and 

check to what extent they support our initial observations. To compute and 

generate the metrics, we implemented our own ontology analysis component 

to work out the elements involved to apply the formulas. 

Observation 1 

At first glance, we realise that the ontologies produced in the three modes 

have all been added significantly more roots with respect to the original ontol- 

ogy (see Figure 6.5). In addition, we observe that the number of roots of the 

13 Program mingLanguage 
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A 

-ý IýMIY 
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Q Device 
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0 Manufacturer 

Figure 6.5: Concepts at the root level of the initial ontology. 

ontology in the manual mode (see Figure 6.6) is larger than the on(, created 

in the semi-automatic mode (see Figure 6.7). Moreover, the ontology gener- 

ated in the unsupervised mode has substantially more roots (see Figure 6.8) 

than the other two ontologies. This gives an indication that the expert iii 
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Figure 6.6: Concepts at the root level of the ontology created in the manual 

mode. 

manual mode created more branches touching other contexts than the one in 

semi-automatic mode, and the unsupervised node resulted in a more diverse 

ontology. For example, the expert in manual mode created a "Documentation" 

root class, which the expert in the senii-automatic mode considered irrelevant. 

However, in the unsupervised mode, there are concepts such as "Fluid" and 

"Identity" that would be classified by the experts as irrelevant to the ontology. 

Metrics Used 

Counting as roots the classes without parents in the ontology, we obtain 

ROOtS/, 
titial = 

4, ROOtSSemiAuto = 9, ROOtSJtJanual = 14 and Root 8Unsuperirised = 

41. The numbers support the observation of the increase in the number of 

i1ºv Package 

Documentation 

Licence 
Q Implementation 
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Figure 6.7: Concepts at the root level of the ontology created in the semi- 

automatic mode. 

roots. 

Observation 2 

Going deeper in the ontologies, we realise that the manually evolved on- 

tology has more hierarchical levels than the ontology generated in the semi- 

automatic mode. While the one produced in the unsupervised inode has def- 

initely more levels than both. In the latter case, it was harder to check as in 

some branches of the ontology the path to reach the end was too long. 

Metrics Used 

We make use of the average depth and maximal depth metrics (Gangenmi 

et al., 2006) to get a quantitative feedback for our observation. 

The average depth measure takes into account the number of 1)atlIti iii 

the ontology to get the average depth value based on this formlila: 
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Figure 6.8: Concepts at the root level of the ontology created in the unsuper- 

vised mode. 

AvgDepth = 
EP NiEP 

npcy 

"where Njep is the cardinality of each path j from the set of paths P in it graph 

g, and npcg is the cardinality of P" (Gangemi et al., 2006). Applying the mea- 

sure in our case, we get: AvgDepthjnitiat = 1.75, AVgDepthSe. 
mtAufo = 1.33, 

AvgDepthManual = 2.18 and AvgDepthl 1L9upervised = 5.75. This shows that, 

the semi-automatic ontology depth shrank on average compared to t he init. iýi1 

ontology. For the manual mode, we see that the average depth Kati slightly 

increased, however it highly increased in the unsupervised mode. AVhile the 
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ontology increased in size in the three modes (as reflected by the number of 

added entities in Table 6.1), the semi-automatic and manual modes did not 

focus on making the ontology more specific as the depth did not extend signif- 

icantly. But in the unsupervised mode, we see a considerable increase in the 

specificity level of the ontology. 

The maximal depth selects the longest path in the ontology. Its calcula- 

tion is based on the following formula: 

MaxDepth = N. jEpI`di3j(N; Ep >_ NNEP) 

"where NjEP and N=EP are the cardinalities of any path i or j from the 

set of paths P in a graph g" (Gangemi et al., 2006). In our experiment, 

MaxDepth j,, jtial = 3, MaxDepthsem1Auto = 3, MaxDepthManual =4 and 

MaxDepthunsu 
rviaed = 15. The values support our observation that the on- 

tology of the manual mode is deeper than the one evolved semi-automatically. 

This also shows how close the results of the semi-automatic and manual modes 

are, while the unsupervised mode extended the same taxonomy to a larger 

depth, confirming the above outcome. 

Observation 3 

After further investigations while checking the ontology branches, we realise 

that the taxonomy in the unsupervised ontology differs from the other two 

modes. Due to some classes having more than one parent in the ontology of 

the unsupervised mode, (e. g., "Computer" is at the same time a "Device", 
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"Individual", "Item", "Infrastructure", "Electronics" and "Products"), this 

created a rather complex structure to browse and analyse. In contrast, the 

other ontologies produced in the manual and semi-automatic modes have a 

tree shaped structure, with most concepts having one specific parent. We also 

realise that some concepts in the ontology produced in the semi-automatic 

mode have more than one parent, but were much fewer than the cases in the 

ontology of the unsupervised mode. 

" _I Thing [14,1271 

. Area 14.4] . Docwnentatlon 1S, SI 9anlsatlon 19,91 Pnon 16.61 . Technology ]6.661 

41PWICe 17,431 (Software 123,321 

r 

. Component 120,261 . Computer 17,101 . MOlk. tlon 16.61 

Figure 6.9: Summary view of the ontology evolved in the manual mode showing 

the 10 key concepts. 

Due to the size of the ontologies, especially the one evolved in an unsu- 

pervised way, we loaded a summary view of the evolved ontologics using the 

KC-Viz visualisation tool of the NeOn Toolkit (Perotii et al., 2008). We set 

the tool to get the 10 key concepts of the three evolved ontologies. Figure 6.9 
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shows the 10 key concepts of the ontology produced in the manual mode, where 

the first value next to the concept reflects the number of direct sub-classes, 

and the second value is the number inferred sub-classes. 

Figure 6.10 displays the summary view of the ontology evolved semi-auto- 

matically, by showing the 10 key concepts of the ontology. Figure 6.11 shows 

. owlmn8 (9.107 

. Device 131.441 gPtoqranmlnqtm9w9j$SoftwAm 16.6] +hudwu. 16,61 

. COmponem 14.4] +Computer (6.81 

9ar9Wntlun [26,321 "YWntM 110,111 "unlt 13,31 

A 

"Insmutbn 14.41 

Figure 6.10: Summary view of the ontology evolved in the semi-automatic 

mode showing the 10 key concepts. 

the summary view of the 10 key concepts of the ontology produced in the 

unsupervised mode. Indeed it is clear that, based on the high level views in 

Figures 6.9 and 6.10, the structures of the ontologies produced manually and 

semi-automatically are tree-shaped. However, the graph of the ontology of the 

unsupervised mode shown in Figure 6.11 reflects the fact that the ontology 

does not have a clearly defined structure. 

Metrics Used 

To support this view, we use the tangledness mewsure defined by (Gangenºi 

et al., 2005). This measure takes into consideration the concepts in the ontol- 
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Figure 6.11: Summary view of the ontology evolved in the unsupervised nio c 

showing the 10 key concepts, where the dotted arrows depict inferred sub-class 

relations. 

ogy which have more than one parent. The formula that we use: 

Tangledness = 

tEGAal, 
a2(isa(rn, a1)Aisa(m, a2)) 

nG 

"where tEGAa,, a2(isa(m, a, )Aisa(m, a2)) 
is the cardinality of the set of nodes with 

more than one outgoing isa are in g. " Note that we have inverted the fonuulra. 

given in (Gangemi et al., 2005), so that we can interpret it gis the ratio of' 

concepts with more than one parent to the total number of concepts in the 
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ontology. This means that when the tangledness value is zero, the ontology 

has a perfect tree structure, with all concepts having at most one parent, while 

when the value is closer to one means that most concepts within the ontology 

have more than one parent. 

Applying the formula to our ontologies, we get Tanglednesstnitiat = 0, 

Tanglednesssemtauto = 0.1, TanglednessMan, i=0, Tanglednessun, uper.,, t, ed = 

0.53. This shows that the initial ontology and the manually generated one are 

perfect tree structures, where no concepts have more than one parent. In the 

case of the semi-automatic one, there exist 11 out of 107 classes with more 

than one super-class. Having a closer look, we realise that three out of eleven 

classes (Bank, Hospital and College), have redundant classifications that can 

be inferred. For example, the statements < Bank, subClass, Company >, < 

Bank, subClass, Organisation > and < Company, subClass, Organisation > 

are all present in the ontology. While the formula treats this as a tangled case, 

< Bank, subClass, Organisation > is redundant and can be easily removed 

automatically. After removing such cases, we get Tanglednesssem; A�to = 0.07. 

In the case of the unsupervised mode, the measure shows that around 50% of 

the ontology concepts have more than one parents. This supports our observa- 

tion that the ontology is highly tangled, resulting with a rather complex and 

taxonomically confusing ontology structure. Applying a mechanism to detect 

most of the redundant cases for the ontology in the unsupervised mode, we 
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get Tanglednessunsujr, eed = 0.19, which is still high compared to the size 

of the ontology. The summary view of the ontology visualised in Figure 6.11 

shows the tangledness of the ontology, clearly visible among the key concepts 

in the ontology. We can deduce at this level that the manual mode kept a 

very clean and nice ontology structure, and that the semi-automatic mode 

achieved a very similar result, while the unsupervised mode resulted with a 

highly tangled ontology. 

Observation 4 

While it is clear that the most explored concepts in terms of sub-classes are 

related to "Device" in both semi-automatically and manually evolved ontolo- 

gies, it was harder to judge for the case of the unsupervised ontology. This is 

mainly due to the generic concepts being added (e. g., "Individual" and "En- 

tity"), with many sub concepts being attached to them. This is also confirmed 

by the key concepts view in Figure 6.11, where such generic concepts are among 

the key ones identified. With the presence of generic concepts, and adding 

many sub-classes at the same level, the ontology evolved in the unsupervised 

mode is wider than the other two ontologies. We can see that online ontologies 

play a positive role in the identification of granular (i. e., sub-classes) concepts 

in the semi-automatic evolution mode. With well explored concepts in online 

ontologies (e. g., organisation), it was easy to find corresponding sub concepts 

to integrate in the ontology evolved in the semi-automatic mode. This made 
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it easier to expand concepts using popular entities in online ontologies, than 

the user in manual mode having to make all the connections, hence resulting 

in the ontology evolved semi-automatically to be wider than the one manually 

evolved. While we can see that some of the specialised concepts (added manu- 

ally to the ontology) detected from the domain data (e. g., EDRMS - Electronic 

Document and Records Management System), were harder to find in online 

ontologies. With more ontologies being published on the web, we anticipate 

that the conceptual representation will keep increasing with time, which will 

enhance the relation discovery process. 

Metrics Used 

The breadth metrics fit our target at this level (Gangemi et al., 2005). 

The average breadth measure computes the average breadth per generation 

within the ontology, using this formula: 

L 

AvgBreadth =j 
NjEL 

fLCg 

"where NjEL is the cardinality of each generation j from the set of genera- 

tions L in a digraph g, and nLC9 is the cardinality of L. " In our experiment, 

AvgBreadthrnitja, l = 5.75, AvgBreadthse�+jA,, to = 26.75, AvgBreadth u4,,,, n! = 

25.4 and AvgBreadthUn,,, pe,., i, ed = 65.75. This confirms what we observed 

earlier (Observation 2) that the ontology produced semi-automatically is on 

average flatter than the ontology produced manually, while staying close to 

each other in terms of structure compared to the unsupervised ontology. 
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The maximal breadth selects the widest generation available in the on- 

tology: 

MaxBreadth = NjELjdi3j(NiEL > NiEL) 

"where NOEL and NNEL are the cardinalities of any generation i or j from the 

set of generations L. " MaxBreadthrnjttat = 9, MaxBreadthsemtiauto 

= 81, MaxBreadthMQ,, ua` = 36 and MaxBreadthu 8,, per�t, ed = 515. The val- 

ues show that the semi-automatic mode resulted in an ontology which is more 

expanded horizontally than the manually evolved ontology, also supporting 

our previous findings. 

Observation 5 

In terms of the relations that exist in the ontologies, we can clearly see 

from browsing the ontologies that more named relations have been added to 

the manually created ontology than the one of the semi-automatic mode. This 

is mainly due to the fact that the expert, relying on his background knowledge, 

tends to more easily find connections between concepts, than online ontologies, 

which in some cases, do not contain very granular relations. 

Metrics Used 

We rely on the relationship richness and inheritance richness met- 

rics (Tartir et al., 2005) to get an insight of the differences at the level of 

relations. The relationship richness is based on the (RR) formula: 

IPI RR = ISC, I + Ipf 
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which is the ratio of named relations (P) to the sum of sub-class relations 

(SC) and (P). This would give an idea of the richness of named relations with 

respect to all the relations in the ontology, showing the degree of diversity in 

relationships in the ontology. In the case of the initial ontology, RRlntitiai = 

1=0.05. Applying the formula on our ontolo ies we RR g get Semi 9uto = 1s+1 

1 
+7 = 0.06 for the semi-automatic mode, and RR, ýa. n, = 115+20 = 0.15 for 

the manual mode. The values show that in both modes, the number of sub- 

class relations added is significantly higher than the number of named relations. 

This also shows that the ontology evolved manually tends to be more diverse 

in terms of relations, than the ontology produced semi-automatically, as per 

our observation. In the case of unsupervised evolution, we cannot deduce the 

(RR) as selected relations do not include named relations (P = 0), leading to 

RRunauperviaed = 0" 

The second metric we employ is the inheritance richness measure showing 

the "average number of sub-classes per class" (Tartir et al., 2005) in the on- 

tology. This gives an indication whether the ontology tends to be more flat 

or vertical. The larger (IR) is, the more horizontal the ontology is. While 

the lower it is, the more vertical it is. The formula (IR) for the inheritance 

richness is: 

IR = 
Eclec IHC(CI, Ci)I 

Icl 

where "the number of sub-classes (Cl) for a class (C; ) is defined as jHC(Ci, C; ) I". 
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Applying this formula to our context, we get IRinitsat = 29 = 0.83, IRse+niftuto = 

.=1.03, IRManw. a = 115 = 0.91 and IRUnsupervieed = 2109 = 2. This .. TON 127 1052 

means that we have more sub-classes per class in the ontology generated semi- 

automatically than the one generated manually, while it is around the double 

in the unsupervised mode. This confirms as well our previous observations that 

the semi-automatically evolved ontology expanded slightly more horizontally 

that the ontology in the manual mode. 

Table 6.3: Metric-based values, applied to the initial and resulting ontologies 

in the three evolution modes. 

Measure 

Applied 

Initial 

Ontology 

SemiAuto 

Mode 

Manual 

Mode 

Unsupervised 

Mode 

Total Roots 4 9 14 41 

Average Depth 1.75 1.33 2.18 5.75 

Maximal Depth 3 3 4 15 

Tangledness 0 0.07 0 0.19 

Average Breadth 5.75 26.75 25.4 65.75 

Maximal Breadth 9 81 36 515 

Relationship Richness 0.05 0.06 0.15 0 

Inheritance Richness 0.83 1.03 0.91 2 

198 



Table 6.3 shows an aggregated view of the metrics used in our structural 

ontology analysis. Such metrics show that the ontology evolved in the semi- 

automatic mode did not diverge much from the ontology that evolved manu- 

ally. However, the ontology that evolved in the unsupervised mode expanded 

in an uncontrollable way. The graph in Figure 6.12 puts in perspective the 

average depth and breadth, tangledness and inheritance richness of the initial 

ontology, compared to the three ontologies of the different evolution modes. 

We take the average depth and breadth metrics as they reflect more the overall 

shape of the ontology, hence reducing the anomalies created by certain ontol- 

ogy branches. We did not integrate the relationship richness in the graph as 

the unsupervised mode did not produce named relations during the evolution 

of the ontology. Indeed, the resulting graph shows that the characteristics of 

the ontologies evolved manually and semi-automatically are very close, clearly 

expanding the initial ontology. In contrast, the unsupervised evolution mode 

produced an ontology that increased in the four dimensions at a much higher 

scale, compared to the other two modes. 

6.5 Discussion 

In this chapter, we evaluated the impact of the use of online ontologies as 

background knowledge sources to support users in the process of ontology 

evolution. This evaluation puts the feasibility of our proposed approaches 
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Figure 6.12: Graph comparing the average depth and breadth, tangledness 

and inheritance richness metrics of the four ontologies. 

combined to the test. For that, we chose to study and analyse the evolution 

of an ontology in the computer and services domain. We collected the domain 

data, and setup an experiment to evolve an ontology in three different modes: 

a manual mode where no support is provided to the user to integrate new terms 

to the ontology; a semi-automatic mode where online ontologies are used to 

support the user during the evolution; and an unsupervised mode where no 

user input is involved. 

We recorded the time and logged all entities added to the ontology in the 
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three different modes, and used the data to get a direct feedback of the main 

differences between the evolved ontologies. The data representing the recorded 

time showed an overall decrease in the time spent by the expert using online 

ontologies, compared to the time spent by the expert in manual mode. 

With the challenges imposed to perform a reasonable ontology evaluation, 

we used a mix of empirical observations through browsing and visualising 

the ontologies, backed by a set of ontology evaluation metrics (focusing on the 

structural measures). This combination showed that the ontology that evolved 

semi-automatically did not diverge significantly from the one that evolved 

manually, while the one evolved in the unsupervised mode created a much more 

complex ontology. In other words, no major issues were introduced by the use 

of online ontologies in the semi-automatic evolution mode. While the use of 

online ontologies in the unsupervised mode lead to an explosion in adding new 

concepts to the ontology, due to the integration of some generic terms at some 

point during the evolution, leading to a more tangled and complex ontology. 

Our ontology analysis coupled with the time logging, therefore support our 

initial hypothesis: "the use of online ontologies through the Evolva tool can 

substantially decrease the effort required by users to evolve ontologies, with 

little negative effect on the quality of the resulting ontology compared to a 

manually evolved one. " 

201 



Chapter 7 

Conclusion 

This thesis had three main contributions to the field of ontology evolution. 

Firstly, we devised a technique to automatically identify potential ontology 

changes by integrating new emerging concepts from external domain data, 

based on the background knowledge provided by existing structured sources, 

discussed in Chapter 3. Secondly, we provided a novel approach to auto- 

matically assess the relevance of potential ontology changes by analysing the 

contexts of online ontologies from where they are derived, versus the ontology 

under evolution. This approach was presented and evaluated in Chapter 4. 

Thirdly, we put together a methodology for evaluating and comparing the 

structural differences between ontologies under evolution, through a combi- 

nation of empirical observations supported by metric based assessment tech- 

niques. This contribution came as a result of our work in Chapter 6, where we 
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employed this methodology as part of the overall evaluation of our proposed 

approaches using the Evolva tool described in Chapter 5. 

Next we recall our proposed approaches that answer the research questions 

raised in this dissertation. Then we discuss and identify potential ways of im- 

proving these approaches and overcoming some of their limitations, before we 

finally close with potential future directions in the field of ontology evolution. 

7.1 Approaches Revisited 

With ontology evolution being a tedious and time-consuming task, we aimed in 

this thesis to answer the following research question that we initially presented 

in Chapter 1: 

How to support users in the process of ontology evolution? 

Our literature review conducted around the tasks involved in the complete 

ontology evolution cycle (Chapter 2), highlights some of the gaps that are 

hampering the process of ontology evolution. Based on the existing gaps, we 

identify two sub-questions that we tackled along this thesis. 

One of the identified gaps raises the issue of identifying new domain changes, 

which connect appropriately with existing knowledge in the ontology. Hence 

the first sub-question that we deal with is: how to assist users in identifying 

ontology change opportunities? 
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We presented in Chapter 3 our approach based on the use of lexical data- 

bases and online ontologies, to automatically derive statements that link newly 

identified domain concepts to existing ontology concepts. Such new concepts 

can be derived from external domain data such as text corpora or RSS feeds. 

While lexical databases provide support in doing this task, they only partially 

fulfil the requirements, as the statements that can be explored are mainly sub- 

class relations, in addition to the fact that the knowledge does not get updated 

frequently. Distinctively, online ontologies provide a richer source of relations 

that can be of any type including subsumption, named and disjoint relations. 

With the use of Semantic Web gateways such as Watson, new knowledge be- 

comes available as soon as a new ontology is published and crawled by the 

gateway. The use of such tools to consume and reuse available knowledge on 

the web is a good sign towards the maturity of the existing Semantic Web 

tools. We devise a technique to process WordNet in order to find the list of 

sub-class relations to link new concepts to the ontology's concepts. In the case 

of online ontologies, we reuse the relation discovery engine Scarlet, to identify 

statements through Watson. In our tests, we process WordNet first, then on- 

line ontologies for concepts not found in WordNet. This resulted in limiting 

the relations of concepts found in WordNet to sub-class relations only. This 

issue can be addressed by giving the ontology engineer the choice of process- 

ing all concepts through both WordNet and online ontologies at the tool level. 
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Our evaluation proved the feasibility of using external sources as background 

knowledge to ontology evolution, with an average precision of 77%. With this 

approach in place, the user input at the level of identifying domain changes, 

and integrating these changes in the ontology is reduced. This validated the 

extent of our first contribution to provide a mechanism to automatically iden- 

tify potential ontology changes opportunities, starting from concepts detected 

in external data sources, supported by the background knowledge supplied by 

structured sources. 

Our experiment shows that automatically identifying ontology changes 

tends to generate a lot of statements, among which a good portion are ir- 

relevant to the ontology under evolution. This leads to the user having to do 

additional efforts at the level of evaluating the changes before adding them 

to the ontology. Hence our second research question is: how to assess the 

relevance of ontology changes? 

Our study, presented in Chapter 4, shows that the contexts supplied by 

online ontologies from which relations are derived can play a role in assessing 

the relevance of a statement with respect to an ontology. After further inves- 

tigations, we realise that relevance can be derived by performing an overlap 

between such contexts and the ontology under evolution. However, with the 

presence of large ontologies online (e. g., cyc') that can cover a wide range of 
lhttp: //www. cyc. com 
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contexts, the relevance calculation can be misleading. Hence we proposed a 

new pattern-based approach that takes into account the structure surrounding 

the new statement to add, with what is shared between the online ontology and 

the ontology under evolution. Each pattern has specific application conditions, 

and a corresponding confidence measure, based on which the new statements 

to add are ranked, enabling the users to focus on the top ranked relevant 

statements. Our experiment shows that our pattern-based relevance detection 

approach outperforms the overlap-based technique, in both detecting relevant 

and irrelevant statements. The F-measure of the overlap relevance tested on 

three different domains is in the range of [7.41%, 58.06%], compared to the 

higher [43.75%, 69.05%] F-measure range based on the pattern technique. In 

the case of irrelevance, the overlap F-measure range of [60.87%, 85.71%], is 

also lower than the pattern-based F-measure performance range of [74.74%, 

92.48%] across the three domains. The efficiency of our relevance approach 

is also supported by the overall evaluation we conducted in Chapter 6, which 

shows that user effort can be reduced by 43%, while preserving 81% of the rele- 

vant statements. This study reflects the potentials behind our second research 

contribution. 

In addition to finding approaches that tackle specific problems in ontology 

evolution, we considered in this dissertation the integration and realisation 

of our proposed approaches into a coherent and usable system, in order to 
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use the implemented system to perform an overall evaluation of our solutions 

and proposed techniques. In Chapter 5 we presented an ontology evolution 

framework to handle: (a) discovering information from external domain data, 

(b) validating the discovered information, (c) identifying the appropriate on- 

tology changes by relying on background knowledge sources, (d) validating 

the evolution and finally (e) managing it. On top of this generic framework, 

we built an ontology evolution tool, Evolva, in which we implement our key 

research outcomes. Evolva is available for download within the NeOn Toolkit. 

It enables users to load an ontology, and initiate the evolution starting from 

text corpora, RSS feeds, or a raw list of terms. The identified terms from the 

sources are then cleaned and the list of new terms that do not exist in the 

ontology is returned to the user. In the relation discovery component, Evolva 

identifies the appropriate relations that link the new concepts to existing ones 

in the ontology (based on our work in Chapter 3), and ranks the relations ac- 

cording to their relevance (based on our work in Chapter 4). The user has the 

option to check the statements, based on which a list of ontology changes is 

generated. The changes are then used to create a new version of the ontology, 

which is directly accessible within the NeOn Toolkit. 

In order to get an insight into the usability of Evolva, and of the over- 

all effectiveness of our approaches relying on the use of online ontologies as 

background knowledge for ontology evolution, we conduct an experiment pre- 
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sented in Chapter 6. We performed this experiment in the computing and 

related services domain over an ontology that we developed for the task, and 

collected data over a 30 day period from the RSS feed provided by the "EU 

Tenders Electronic Daily" (TED) portal. We setup three ontology evolution 

modes: manual in which the user is the only source of background knowledge, 

semi-automatic mode in which another user is assisted by online ontologies 

to identify and evaluate ontology changes, and unsupervised mode where the 

evolution is performed automatically without user input. We log and analyse 

the time taken by users in the process with and without using the online on- 

tologies as background knowledge, in addition to recording the elements added 

to the ontologies in the three modes. Furthermore, we analyse and compare 

the ontologies generated, supported by metric-based measures to get an idea 

of the key differences between the resulting ontologies. Our main conclusions 

out of our experiment are: 

" User time. We noticed a tremendous decrease in time (around 8 

times less) for the ontology engineer who relied on online ontologies, 

versus the other ontology engineer who is manually adding new elements 

to the ontology. 

9 Resulting ontologies. Based on our observations and ontology eval- 

uation metrics, we realised that the ontologies produced manually and 

semi-automatically are very close in terms of structure and quality fea- 
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tures. However, the ontology produced in the unsupervised mode is 

much more complex. This is mainly due to the fact that highly abstract 

concepts, which were added throughout the evolution stages, attracted 

many statements that created inappropriate connections between con- 

cepts at different levels of the ontology. 

Our findings support our initial hypothesis that the use of online ontologies can 

substantially reduce user efforts both at the levels of identifying new ontology 

changes and evaluating the changes, while producing results of comparable 

qualities to the manual approach. 

7.2 Discussion 

As proved by the experiments we performed throughout this thesis, our ap- 

proaches can contribute to assisting users in the process of ontology evolution. 

However, there are obviously some limitations and further room for improve- 

ments that we highlighted previously in different sections in the thesis. We 

revisit some of them which we believe can bring additional enhancements to 

our techniques: 

" Handling other types of ontology changes. We focus in our ap- 

proach on adding new elements to the ontology. However there exist 

other types of changes that occur during ontology evolution such as 
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deletion or modification of existing concepts. Different approaches can 

be introduced to handle such operations. For example, the work on 

belief revision applied on ontology evolution can pick up change sug- 

gestions based on new information that become available, while keeping 

the ontology consistent (Flouris, 2006). This could enable dealing with 

cases where the domain knowledge modelled in an ontology changes (e. g., 

Pluto ceasing to be classified as a main planet, but as a dwarf planet). 

Other approaches propose removing ontology elements based on usage 

analysis. The removal of parts in this case aims to increase efficiency 

by shrinking the ontology to a more "fit for purpose size" (Alani et al., 

2006). 

" Online ontologies availability. Our techniques heavily depend on 

what's available and accessible online in terms of structured knowledge. 

This is considered one of the strongest features, as our techniques will 

continuously improve with the constant increase of availability of on- 

line ontologies. However, this can be a drawback in certain situations, 

where for example very specialised domains do not have relevant ontolo- 

gies available online yet. A potential solution to tackle this limitation 

is by providing the users with the ability to specify their own private 

background knowledge sources by using Cupboard (d'Aquin and Lewen, 

2009) for example, in addition to the ones that can be available online. 
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" Tuning the relevance assessment technique. Even though we set 

the relevance pattern thresholds empirically in Chapter 4, we later proved 

in Chapter 6 that the technique still contributes, to a large extent, to 

decreasing user input when these thresholds are set to the default val- 

ues. However, for our technique to work optimally, the user will have 

to perform a high degree of tuning per domain where the ontology evo- 

lution is performed. A potential way to decrease this level of tuning 

is by devising an automatic threshold detection mechanism. This can 

be achieved for example by using the existing statements in the ontol- 

ogy as a base case of relevant statements, and computing the relevance 

thresholds accordingly. 

" Improving the efficiency of the process. Accessing and processing 

online ontologies are time consuming tasks. Our approaches can benefit 

from further optimisation techniques. For example, caching of ontologies 

can be used to improve the access times, when the same ontology is 

accessed repetitively. In addition, efficiency can be improved through 

introducing clustering mechanisms at the level of Watson, and limit the 

relation discovery and assessment processes to ontologies in the cluster 

relevant to the ontology under evolution. For example, when evolving an 

ontology in the music domain, Watson can respond with ontologies that 

are evaluated a priori as relevant to this domain, making the process of 
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retrieving and processing these ontologies faster and more efficient. 

7.3 Closing Notes and Future Directions 

We believe that research around the field of ontology evolution will continue to 

thrive. However, we foresee that the research directions will not only be limited 

to the tasks directly involved in the evolution process, but will also extend 

to further external areas. We discuss here some potential future research 

directions. 

" From ontology evolution to a meta-domain evolution. We foresee 

that ontology evolution will have an impact on the analysis of trends re- 

sulting from the evolution of domains. Instead of relying on the analysis 

of text documents, ontology evolution can enable the tracing of trends 

at a more granular level, based on the conceptual evolution of domains 

and their subsequent connections. For example, the evolution of the ad- 

vances in the computer and communication industry can be based on 

tracing what has been added in terms of concepts and relations to the 

ontology in focus, and at which period of time. This would enable a 

more structured analysis, which can make such tasks easier for example 

to businesses or news industries. 

" Supporting the knowledge backbone of smart systems. An addi- 
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tional angle to look at the evolution of knowledge is from the perspective 

of smart systems, which purpose is to solve task-based problems. For 

example, expert systems provide user support in specific domains, based 

on questions asked by end users. Such systems have to be frequently 

updated based on new facts that need to be fed into the knowledge base 

in the appropriate manner. This requires special techniques in capturing 

and modelling knowledge not only based on the data connections at the 

conceptual level, but also taking into account the facts and task-based 

requirements. 

. Long term use of Evolva and impact on Semantic Web knowl- 

edge availability. Another interesting direction to consider is the anal- 

ysis of the long term use of Evolva, and the evaluation of its impact on 

the vision of the Semantic Web. Having Evolva assisting users to rely on 

existing domain data to evolve ontologies by reusing available knowledge, 

could have an effect on at least two levels: firstly, it would contribute 

to disseminate more Semantic Web knowledge by moving from docu- 

ments to information and data; secondly, by reusing existing knowledge, 

it is contributing towards a coherent data integration mechanism. These 

two effects are part of the core requirements to achieve the aims of the 

Semantic Web (Shadbolt et al., 2006). One possibility to achieve this 

is by connecting Evolva to various domain related sources to evolve on- 
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tologies, and publishing the resulting ontologies online through Semantic 

Web gateways such as Watson. Having the ontologies as part of the on- 

line gateways creates the ability to monitor the growth of knowledge in 

the domain in focus with respect to other existing domains, hence hav- 

ing direct feedback on the potential impact created by Evolva. This can 

be achieved through the use of specific metrics such as cluster growth 

around concepts, or the absolute increase in published knowledge in a 

certain domain. Furthermore, a high level view of existing ontologies in 

the gateway could help highlighting the expansion in focus before and 

after the use of Evolva to evolve specific domain ontologies. 
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Appendix A 

Evolva User Manual 

In this appendix, we provide guidelines for installing and using Evolva in an 

applied scenario. 

A. 1 Installation 

As mentioned in Chapter 5, Evolva is implemented as a plugin for the NeOn 

Toolkit. Its installation is performed directly from within the toolkit. 

A. 1.1 Prerequisites 

To install Evolva, the following list of requirements are needed: 

- The NeOn Toolkit: The latest version of the NeOn Toolkit is available 

for download from the toolkit websitel. At the time of writing, Evolva 

lhttp: //neon-toolkit. org/wiki/Download 
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was running on the latest version of the NeOn Toolkit v2.52. The most 

up-to-date information about the toolkit compatibility can be found on 

Evolva's website3. 

- WorNet 2.0 (optional): Even though Evolva can run by relying only 

on online ontologies, the user has the option to use WordNet for the re- 

lation discovery process. If this is required, WordNet can be downloaded 

from the download section of its website4. We performed our tests on 

the dictionary version 2.0 of WordNet. 

Welcome 

O Help Contents 
S Search 
Dynamic Help 

Cheat Sheets... 

Check for Updates 

Figure Al: 
. 

Installing Evolva within the NeOn Toolkit. 

A. 1.2 Installation Steps 

After fulfilling the above prerequisites, Evolva can be installed following the 

below steps: 
'http: //neon-toolkit. org/wiki/Download/2.5 
3http: //evolva. kmi. open. ac. uk 
4http: //wordnet. princeton. edu/wordnet/download 

216 



1. After installing and launching the NeOn Toolkit, from the toolbar, the 

user should go to ' 'Help » Install New Software. 
.. '' (see Fig- 

ure A. 1). 

Available Software 

Check the item that you wish to install 1i. 

Work with: NeOn Todlot Update Site v2.5 - nap //neon-tO6k t. orq/pug ns/z3 AAAO--. 

Find more software by working with the 'AwaRable Software prahraear. 

typt h! ter text 

º JA Human-Ontology Interaction 
º J, 0 Knowledge Acquisition 
º 0.0 Managenxnt 
V 0-0 Ontology Dnumks 

mott- 

SiAlkct Deukct All ý. l item selected 

Details 

The Evolve plugin is an ontology evolution tool. wtwch evolves and extends ontdogies by identifying new ontological entities 
sw. 

E9 Show only the latest versions of available software Hide Items that ate already installed 

69 Croup items by category What Is yýeJpsE ) 

J9 Contact all update sites during install no find required software 

Back Nýrt > ýýý " Rr 

Figure A. 2: Selecting Evolva from the list of NeOn Toolkit plugins. 

2. Then the '' Neon Toolkit Update Site vX. X'' option should be se- 

lected, followed by choosing ` ̀ Evolva'' below the ` `Ontology Dyna- 

mics' ' heading (see Figure A. 2), and proceeding with the screen instruc- 

tions. The Gate Web Services plugin (required by Evolva's information 
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discovery step) will be automatically installed at this level. After the in- 

stallation is complete, the user will be asked to restart the NeOn Toolkit. 

3. It is possible to setup the generic Evolva preferences (optional) by go- 

ing to '' Neon Toolkit Preferences » Evolva Preferences' ' (see 

Figure A. 3). At this level, the path to the WordNet dictionary has to 

be specified. In addition, depending on the scenario, users can choose to 

have an automatic transition between the evolution steps after specifying 

the domain data. 

wnvp.. týe 

type New text Evolva Preferences 
GATE Web Services 

º General Evolve Preferences 

º Help 
Instill/update 

Wordlet (v2.0) Nome: mts/MO/wordnet-mac/2.01dkt ý ýýQwese 

NeOn Toolkit Preferences , -ý c Transition Ntwaen Evaltrton Seeps 
LNalw ir(a teens 
KC-Viz Preferences 
Language Preferences 
Ontology langwqe verse 
Reasoner Preferences 
Visualizer 

Team 

Figure A. 3: Generic Evolva preferences. 

A. 2 Use-case Scenario 

In this section we present Evolva applied in a specific scenario. Consider we 

need to evolve the academic related Semantic Web for Research Communities 
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(SWRC) ontology5, by identifying potential terms from the Knowledge Media 

Institute (KMi) news feeds. 

A. 2.1 Loading the Ontology and Starting Evolva 

The NeOn Toolkit provides the option to either import ontologies from the 

web, or load it from a file accessible locally from the system. After completing 

this task, the ontology can be accessed and browsed through the ontology 

navigator section (see Figure A. 4 (-A-)). After selecting the ontology, Evolva 

can be launched by pressing on the Evolva button in the toolbar (see Figure A. 4 

(-B-)). The view of Evolva will appear on the right window panel, and consists 

of five steps that we follow below. 

A. 2.2 Providing the Domain Data 

In the Ontology step (the first bar of Evolva's steps in Figure A. 4), the user 

has the option to select the concepts of the ontology to consider for evolution 

(i. e., the concepts which we want the new terms to potentially link to). For 

this scenario, we kept all the ontology concepts selected, and pressed on the 

Proceed button (see Figure A. 4 (-C-)). In the Data Sources step, we enter 

the KMi news RSS feed address, from where news items will be pulled (see 
5The ontology is available at: http: //ontoware. org/swrc/avrc/SWRCOWL/ewrc_ 

updated_vO. 7.1. owl 
6http: //nevs. kmi. open. ac. uk/rss 
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Figure A. 4: Starting Evolva and supplying domain data sources. 

Figure A. 4 (-D-)). In the case where a text corpus is needed, users should 

specify the folder location where the text documents are stored. In the case 

of terms file, users should enter the location of the file containing one terms 

on each line to take into account. The latter case is useful for example when 

users already have a list of terms identified by other entity extraction tools. 
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Proceed 

Terms List Validation Parameters 

Term Type Source Use Notes 
http Term Corpus g, 
Jun Term Corpus M 

ac Term Corpus Below Minimum Length 
ou Term Corpus Below Minimum Length 
organization Term Corpus Term Exists 
apo Term Corpus 
mon Term Corpus 
student Term Corpus Term Exists 
school Term Corpus 
game Term Corpus 

Figure A. 5: Snippet of identified terms from the KMi news RSS feed. 

A. 2.3 Validating Extracted Terms 

In the Data Validation step, the list of identified terms from the data sources 

is displayed. The automatic validation process based on the length of terms 

and whether the term already exist in the ontology, unselects the terms to 

avoid taking them to the next step (see Figure A. 5). In this scenario, we keep 

all the other terms selected. 

A. 2.4 Performing Relation Discovery 

After getting the list of terms, the relation discovery step is for identifying the 

potential relations that link the new terms, to existing concepts in the ontology. 

Figure A. 6 shows part of the list of relations in our scenario. For each relation, 

the user can check the following: the source concept (i. e., new concept retrieved 

from the data source), the relation type, the target concept (i. e., concept in the 

ontology), the option to select it, the relevance pattern detected, the relevance 
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Source Relation Target Use Pattern Cont. Context Back. Knowk Path 
tutor subclass person '71 3 1.0 G Scarlet http: / 
staff superClass lecturer S 1.0 G Scarlet http: / 
research superClass project S 0.8 G Scarlet http: / 
staff subClass person 1 O. S G Scarlet http: / 
technology superClass person -; 

V S 0.17 C Scarlet http: / 
technology superClass organization 5 0.17 C 

am 
Scarlet http 

staff subClass department 7 niic c-i., n..., I 
learning subClass event Graph View 
data subclass collection 
blog subClass collection 

FI( 

research subClass event 
school superClass university 
school 
game 

subClass 
subClass 

organization 
product 

game subclass event 
poster subclass document 
session subclass event 
award subClass event 
collaborate subclass event 
speaker subclass product 
speaker subclass person 
law subclass document 
tool subClass product 
online subclass event 
school re[To*studies-at student " 

school rclTa*orga torganizati iuüon employee - srr 

L Frý. 

Proceed ý. 

Figure A. 6: Example of potential relations that link new terms to existing 

concepts in the ontology. 

confidence, the option to visualise the graph by pressing the G button (e. g., the 

graph displayed on top in Figure A. 6), the background knowledge used (i. e., 

Scarlet for online ontologies or WordNet), and the relation path details. By 

default, online ontologies are selected as the source of background knowledge. 

However if WordNet is needed, the user can specify so in the Background 

Knowledge tab (see Figure A. 7), where also the maximum length of relations to 

discover can be set. The relations are ranked based on the relevance confidence 

value. The weight of patterns can be adjusted, as well as the settings for t he 
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led 
Relaöons Ust Background Knowledge WNOatlon 

r-ý Use Wor et 

Relation Maximum Depth: 10 

61 Use Scarlet (online Ortaopies) 

ft 4mw Maximum Depth: 4 

Discover relations between new tams within the text 

L Save and I4-run Reston Dehuh 

Figure A. 7: Background knowledge selection settings. 

graph visualisation in the validation tab (see Figure A. 8). After checking and 

confirming the relations, the user has to press proceed, and move to the next 

step. 

Cif Remove duplicate relatbns Sdect/Unsdect An Rdatwns 

(D 

[9 Show piowously discarded rtlatloos 
Run purem-based relevance 

pattern 1 weight (0-1): 

Pattern 2 weigh (0- U: 

Patt.. 3 weight (0- U: 

httem 4 weight (0-1): 

Pattern S weight (0-1): 

Pattern 6 weight (0- U: 

ReWame Threshold: 

Context graph vlsuallsadon settlngs: 

saw and Bevan a, 

1.0 

1. O 

1.0 

1.0 

1.0 

1.0 

0.0 
Display ontwogy 

(sý Display statement context 

19 Display shared nodes up-to depth 1 

n Display shared nodes only 
C Display ontolopys named relations 

Figure A. 8: Relevance assessment and graph visualisation settings. 
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A. 2.5 Applying Changes and Creating a New Ontology 

Version 

After approving the relations, the user will see the list of changes under the 

Ontology Changes tab, which is the last step or the process in Figure A. 4. 

After approving the changes, we press in our case on the Apply changes on 

a new version button, to create a new detached ontology version that will 

directly appear in the ontology navigation (Figure A. 9). This new version 

is ready to be used and modified further as needed within the toolkit. The 

other option is to apply the changes on the original ontology, depending on 

the scenario and user preference. 

ontology-07 
passes 

Q Document 

ºQ Publication 
Q Unpublished 

.Q Event 
ºQ Organization 

Person 
.p Product 

Protect 
Q Topic 

ºJ Object Properties 

.J Data Properties 

Annotation Properties 

. _J Datatypes 

J oasses 
Q Document 
.Q Publication 

p Unpublished 
p poster 

QEvent 
.M nrnanls, unnn 

Figure A. 9: New ontology version appearing in the navigator, and containing 

the new changes selected. 
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