
Open Research Online
The Open University’s repository of research publications
and other research outputs

Combinatorial designs and their automorphism groups
Thesis
How to cite:

Lovegrove, Graham John (2009). Combinatorial designs and their automorphism groups. PhD thesis The
Open University.

For guidance on citations see FAQs.

c© 2009 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


2

Combinatorial designs and their

automorphism groups

Graham John Lovegrove, M.A., MSc.

Thesis submitted for the degree of Doctor of Philosophy

Department of Mathematics and Statistics,

The Open University,

Walton Hall,

Milton Keynes, MK7 6AA,

United Kingdom.

November 2008.



ABSTRACT

This thesis concerns the automorphism groups of Steiner triple systems and

of cycle systems. Although most Steiner triple systems have trivial automorphism

groups [2], it is widely known that for every abstract group, there exists a Steiner

triple system whose automorphism is isomorphic to that group [16].

The well-known Bose construction [4] for Steiner triple systems, which has

a number of variants, has a particularly nice structure, which makes it possible

to say much about the automorphism group, and in the case of the construe-

tion based on an Abelian group, to derive the full automorphism group. The

thesis contains a full analysis of these matters. Some of these results have been

published by the author in [14]. The thesis also proves new results concerning

the automorphism group for Steiner triple systems constructed using the tripling

construction.

An m-cycle system is a decomposition of a complete graph into cycles of length

m. A Steiner triple system is thus a 3-cycle system. The thesis proves the result

that for all m > 3, and for each abstract finite group, there exists an m-cycle

system whose automorphism group is isomorphic to that group.
,

In addition, the thesis contains a collection of new results concerning the con-

jecture by Fiiredi that every Steiner triple system is decomposable into triangles.

Although this conjecture is expected to remain open for some time, it is possi-

ble to prove it for a number of standard constructions. It is further shown that

for sufficiently large 11, the number of Steiner triple systems of order 11 that are

decomposable into triangles is at least vv2 (-i4 -0(1)) .
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Chapter 1

Introduction

This thesis is primarily concerned with the automorphism groups of two types of

combinatorial design, namely Steiner triple systems, and cycle systems.

A Steiner triple system of order v, D = STS(v), is an ordered pair (V, B)

where V is a set of elements or points, of cardinality v, and B is a collection

of 3-element subsets of V, called blocks or triples which collectively have the

property that every 2-element subset of V is contained in exactly one block. It

is well-known that such systems exist if and only if v - 1,3 (mod 6), a fact first

proved by Kirkman in 1847 [13].

An m-cycle system of order n" m > 2 is a decomposition of the complete graph

on ti vertices into cycles of length m. Thus a 3-cycle system is a Steiner triple

system. A necessary condition for the existence of an m-cycle system of order n is

that n is odd and ni divides n(n -1)/2. Such a value of ti is called 'm-admissible.

The question of cycle-system existence has been settled for all m-admissible n

when m ::; 50 or a prime power, for all even m with n = 1 (mod 2m), and all odd

m with ri - m (mod 2m) ([7], page 266).

L. Babai [2] has proved that almost all Steiner triple systems have trivial
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automorphism group, a result which is widely believed to be true for m-cycle

systems in general, although no similar results for m > 3 have been reported to

date. On the other hand, E. Mendelsohn [16] has shown that for every abstract

finite group there exists a Steiner triple system whose full automorphism group

is isomorphic to that group.

Chapters 2 to 4 of this thesis concern some constructions for Steiner triple

systems for which the automorphism group can be directly evaluated.

Chapter 2 concerns the automorphism group of a Steiner triple system gener-

ated by the so-called Bose construction. Chapter 3 applies the results to specific

cases of the construction. Parts of both these chapters have been published in [14].

In Chapter 4, a number of results are derived concerning the standard tripling

construction for Steiner triple systems. Both these constructions are defined in

detail in the relevant chapters.

In Chapters 5 and 6, the results of Mendelsohn are extended to m-cycle sys-

tems. In Chapter 5 it is proved that for every abstract finite group there exists a

2m-cycle system whose automorphism group is isomorphic to that group. Chap-

ter 6 proves the corresponding result for odd cycle systems.

The final chapter of the thesis concerns a different aspect of Steiner triple

systems. A triangle is a set of three blocks of the form

{a,b,c}, {c,d,e}, {e,/,a}.

There is a conjecture [12] that it is possible to decompose every Steiner triple

system into triangles, with possibly one or two remainder blocks. Although this

conjecture remains unproved, it is known [17] that there exists an STS( v) that is

decomposable into triangles for every v = 1,3 (mod 6). In this chapter we firstly
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present a number of new triangle decompositions for well-known constructions of

Steiner triple systems. In the second part of this chapter we prove a lower bound

on the number of STS( v) which are decomposable into triangles, namely that for

sufficently large v, the number of STS(v) is at least of order vv2(i4-o(1». The best

result previously reported in this area is that for v - 1,19 (mod 72), the number

of decomposable STS( v)s tends towards infinity with v [12].
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Chapter 2

Bose construction

2.1 Bose construction

In 1939, Bose [4] gave a particularly elegant construction for STS( v) in the case

where v = 68 + 3. Bose's original construction was based on an Abelian group of

odd order. In this chapter however, we shall consider a more general formulation

of the construction, which is based on a symmetric idempotent Latin square.

A Latin square L = {L( i, j) : 1 :s: i :s: n, 1 :s: j :s: n} is an n x n array in which

each cell contains a single element from an n-set X, such that each element occurs

exactly once in each row and column [7], page 97. In this definition, the indexing

sets of the rows and columns can be different from each other and different from

X. We shall in this work assume for the most part that the rows and columns of

a Latin square are indexed by the same n-set X as the cells. Where it is necessary

to consider indexing sets different from X this will be stated.

A Latin square is symmetric if for all i, j EX, L( i, j)

idempotent if for all i EX, L( i, i) = i.

L(j, i), and is

We shall henceforth abbreviate the term symmetric idempotent Latin square
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to SILS. It is easy to see that SILSs only exist for odd values of n. This is because

by reason of idem potency, each element occurs in n-1 off-diagonal cells and so, by

reason of symmetry, occurs ~(n-1) times in themultiset {L(i,j) : i,j E X, i < j}.

Hence n is odd.

It will be convenient to assume that n > 1.

We now give the Bose construction. Take V = X X Z3, where Z3 denotes the

group of integers modulo 3, and let B be the collection of blocks:

{(x, 0), (x, 1), (x, 2)} : x E X,

{(x, 0), (y, 0), (z, I)} : x, y, z E X, x =I- y, z = L(x, y);

{(x, 1), (y, 1), (z. 2)} : x, y, z E X, x =I- y, z = L(x, y),

{(x, 2), (y, 2), (z, O)} : x, y, z E X, x =I- y, z = L(x, y).

Diagramatically the Bose construction can be represented as follows.

x y z : L(x, y)
· ..... • 0

Vertical
Blocks · ..... • 1

· ..... • 2

The n-set X

A Steiner triple system constructed in this way will be called a Bose design.
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The purpose of this chapter is to examine the full automorphism group of a

Steiner triple system, D, constructed by this method, in terms of the properties

of the SILS L.

An automorphism of the SILS L is a permutation of X that preserves the

SILS structure, i.e. if 1> is an automorphism of L and x, y E X then

L(1)(x),1>(y)) = 1>(L(x, V))· The set of automorphisms of L, denoted here by

Aut(L) naturally forms a group by the composition: (1).'Ij;) (x) = 1>('Ij;(x)) for

1>, 'Ij; E Aut(L), x EX.

An automorphism of a Steiner triple system D = (V, B) is a permutation

of the point set V that preserves blocks. This definition ensures that the map-

ping is a permutation of blocks, because if 1> is such an automorphism, and

{u,v,w},{u',v',w'} E Band {1>(u),1>(v),1>(w)} = {1>(u'),1>(v'),1>(w')}, then

{11, v, w} = {u', v', w'}, perhaps with some re-ordering, since the order of points

in a block is unimportant. We denote the group of all automorphisms of D as

Ant(D).

It is clear from the definition of the Bose design D that, if B E B, where
.'

B = {(x, i), (y,j), (z, k)}, then {(x, s+i), (y, s+ j), (z, s+k)} E B for any s E Z3;

also, that for any {J E Aut (L ),

{3(B) = {({3(x), 'i), ({3(y),j), ({3(z), k)} E B

Thus the bijection [{3, s] on V defined by

[{3, s](x, 'i) = ({3(x), s + 'i)
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clearly defines an automorphism of D.

Before proceeding, some further terminology and definitions are appropriate.

In the Bose construction, there is a natural distinction between two types of

block, those of the form {(x, 0), (x, 1), (x, 2)} and the remainder. We will need

to use this distinction in several parts of this thesis, and therefore, in analogy

with the usual diagrammatic representation of the Bose construction as given

for example in [18], page 114, the former will be referred to as vertical blocks,

and the remainder as non-vertical. Also of importance will be the signature of a

block. Defining the label of an element to be the Z3 component, the signature of

a block is the sum of the values of the labels of the block modulo 3. Observe that

the signature of a vertical block is zero, the signature of a non-vertical block is 1,

and that no block has signature 2.

2.2 Block signatures and automorphism type

In this section we use the concept of block signature to begin to classify the types

of automorphism which can exist in a Bose design D = (V,8) on a 8IL8 L, and

show that two particular types ~f automorphism exist only in the unique STS(9),

the Bose design on Z3'

Lemma 2.2.1. If E is a 3x 3 array of points of D such that the rows and columns

are all distinct blocks of D, then:

(a) all the rows of E have the same signature,

(b) all the columns of E have the same signature,
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(c) iJ all the rows (columns) oj E have signature 0, then all the columns (rows)

have signature 1.

Proof. Suppose that one row has signature 0, i.e. it is a vertical block. Then

since all rows and columns of E are distinct blocks of D, all the columns of E

must be non-vertical. This is because two vertical blocks having a common point

must be the same block, and so a row and a column each consisting of a vertical

block cannot be distinct. Hence the sum of the signatures of the columns is 0

modulo 3, and so the sum of the row signatures must be the same, and the other

rows have signature O.

Similarly, if one column has signature 0, then all rows are non-vertical, and

every column has signature O.

The third possibility is that all rows and columns have signature 1, and so

represent non-vertical blocks. o

The next two lemmas use this result to classify the automorphisms of D by

their actions on the vertical blocks of D.

Lemma 2.2.2. A member oj Aut(D) maps the vertical blocks oj D either all to

vertical blocks or all to non-vertical blocks.

Proof. Let cb be a member of Aut(D), and x, y, x =I=- y any two elements of X.

Apply Lemma 2.2.1 to the image under ¢ of the array:

(x,O) (x,l) (x,2)

(y,O) (y,l) (y,2)

(L(x, y), 1) (L(x, y), 2) (L(x, y), 0)
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We first note that since x -=1= y, the first two rows of this array are distinct.

Further, L(x, y) -=1= x, since the xth row of L has only one entry equal to x, namely

L(x, x). Similarly L(x, y) -=1= y, and we deduce that all rows of the array are dis-

tinct.

Suppose that under cp, the top row is mapped to a vertical (non-vertical) block.

Then by Lemma 2.2.1, the other rows are mapped similarly. Since the choice of

y is arbitrary, this shows that all vertical blocks are mapped in the same way by

cp. o

The above lemma allows the classification of automorphisms into the types

vertical and non-vertical, according to whether it maps all vertical blocks to ver-

tical blocks or non-vertical blocks.

We shall say that a vertical block is mapped evenly/oddly by an automorphism

if it is mapped to a vertical block, and the labels Z3 are permuted evenly/oddly.

Lemma 2.2.3. A vertical automorphism of D maps the vertical blocks of D either

all even-vertically or all odd-vertically.

Proof. Let cp be a vertical automorphism of D, and consider the image under cp

of the array of Lemma 2.2.2. Suppose that some row is mapped even-vertically,

and another odd-vertically. We shall consider only the values of the labels of the

individual elements, as defined above, so we can write the values for these two

rows as:

J j+1 j+2

'I, i+2 i+1

9



Since by Lemma 2.2.1 all the columns of the image array have signature 1, the

third row must have label values which are all 1 - i - j, which is not valid for a

block of D. o

Lemmas 2.2.2 and 2.2.3 enable us to classify an automorphism of D as even-

vertical, odd-vertical, or non-vertical according to whether it maps the vertical

blocks of D even-vertically, odd-vertically, or non-vertically.

The final result of this section shows that all the automorphisms of all but just

one Bose design are even-vertical, but first we need the following simple lemma:

Lemma 2.2.4. If for the SILS L on the n-set X, there exists a map

n : X ---+ {O, 1, 2} such that for all z; V E X with :T =I=- V,

a(x) + n(v) + n(L(.r, V)) = 1 (mod 3),

then n = 3.

Proof. Let the numbers of elements of X which map to 0, 1, and 2 under n be

mo, ml, and m2 respectively. Since L is idempotent, L( x, x) = x for all x EX,

so n(L(x,x)) = n(x) for all x E X.

Suppose that there exists x E X, such that n(x) = 0, i.e. mo 2: 1. In

the xth row of L there are precisely Tnl values of L(x, y) with n(L(x, V)) = 1.

These can only correspond to values of V with n(v) = 0, except V = x. Therefore

ml = mo -1.

By similar reasoning, we also obtain m2 = ml - 1, and mo = m2 - 1, if ml 2: 1

and m2 2: 1 respectively. This implies mo = mo - 3, so not all of the assumptions
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can be true. Hence (mo, mI, m2) = (0,1,2) or (1,0,2), or (2,1,0), i.e. n = 3. D

This lemma now enables us to prove the following result:

Theorem 2.2.1. If any element ¢ of Aut(D) is either odd-vertical, or non-

vertical, then n = 3, and D is the unique ST S(9).

Proof. In both cases, the proof relies on constructing a suitable map

a :X -+ {O, 1, 2}, and invoking Lemma 2.2.4. We prove the result for odd-vertical

automorphisms first. Suppose n >3, and that an automorphism ¢ acts oddly on

all vertical blocks. It is evident that for any vertical block {(x, 0), (x,I), (x,2)},

the odd-vertical automorphism ¢ will leave one label unchanged, e.g. if

cp: {(x, 0), (x,I), (x,2)} -+ {(y, 0), (y,2), (y, I)}

for some y EX, then 0 is fixed in this case,

Of course, the label fixed by ¢ will not necessarily be the same for every

vertical block. Suppose now that for the vertical block {(x, 0), (x, 1), (x, 2)}, the

label i is fixed by cp. Then it is easily checked that the labels of the images of

(x,O), (x,I), (x,2) are 2i, 2i + 2, 2i + 1 respectively. We shall now set a(x) = i.

Then a is defined on X, and a: X -+ Z3.

It remains to prove that for any x, y EX, x =J- y, a(x) + a(y) +a(L(x, y)) - 1

(mod 3) and invoke Lemma 2.2.4.

Put z = L(x, y), a(x) = i, a(y) = j, a(z) = k, then the labels of the image

under ¢ of the array:
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(x,O) (x,l) (x,2)

(y,O) (y,l) (y,2)

(z,l) (z,2) (z,O)

are:

2i 2i + 2 2i + 1

2j 2j + 2 2j + 1

2k+ 2 2k + 1 2k,

and since the columns represent non-vertical blocks, we conclude that

2i + 2j + 2k + 2 1 (mod 3), so

i+ j + k = a(x) + a(y) + a(L(x, y)) == 1 (mod 3),

as required.

We will now prove the non-vertical case. If ¢ is non-vertical, then the im-

age under ¢ of each vertical block is a non-vertical block. Also, since ¢ is an

automorphism, each vertical block is the image of a non-vertical block, so ex-

actly n non-vertical blocks are mapped to vertical blocks by cP, and the remaining

non-vertical blocks are mapped.to non-vertical blocks.

To prove the required result, we are again going to construct a suitable map

a that satisfies the conditions of Lemma 2.2.4. We shall only be concerned with

the labels in the images of vertical blocks under cP in each case.

Consider any vertical block {(x, 0), (z; 1), (x, 2)}. The label multiset of its

image under cP is {i, i, i + I} for some i E Z3. We shall choose for our map a the

label in the pre-image that maps to the non-repeated label in the image of cP. In

other words, if the label j is mapped to the non-repeated label i + 1, then set
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a(x) = j. Now in order for Q' to satisfy the conditions of the lemma, we must

show that for any x, yE X, x =I- y, a(x) + a(y) + a(L(x, y)) - 1 (mod 3).

We shall again examine the labels of the image under ¢ of the array:

(x,O) (x,l) (x,2)

(y,O) (y,l) (y,2)

(z,l) (z,2) (z,O),

where again z = L(x, y). The image of this array will have non-vertical blocks as

rows, but its columns may be either all vertical blocks or all non-vertical blocks,

by Lemma 2.2.1.

In the vertical case, the labels of the columns will sum to zero, and in the

non-vertical case, the labels of the columns will sum to 1.

There are three cases to consider. The first is that the mapping is of the form:

(x,O) (x,l) (x,2) 'l 'l i+1

(y,O) (y,l) (y,2) -+ J J j+1

(z,l) (z,2) (z,O) k k k + 1,

or any permutation of the colur~ms of the array of labels on the right.

The second case is of the form:

(x,O) (x,l) (x,2) i+1 i 'l

(y,O) (y,l) (y,2) -+ J j+1 J

(z,l) (z,2) (z,O) k k k+ 1,

or any permutation of the columns on the right.
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The third case is of the form:

(x,O) (x,1) (x,2) i + 1 't 't

(y,O) (y,1) (y,2) --+ j+1 J J

(z,1) (z,2) (z,O) k k+1 k,

or any permutation of the rows and columns on the right.

Since the image array must have columns which are either all vertical blocks

or all non-vertical blocks, the the sums of the labels in the columns must be either

all ° or all 1 (mod 3).

In the first of these cases, the sum of each column is i+ j + k modulo 3, and

so each column is vertical if i+ j +k - ° (mod 3), and non-vertical if i+ j +k 1

(mod 3).

In the second case, the sum of each column is i + j + k + 1 modulo 3, so each

column is vertical if i + j + k = 2 modulo 3, and non-vertical if i + j + k - 1

(mod 3).

However in the final case, the column sums are different, and so this arrange-

ment of labels cannot occur.

We now calculate a for the two valid cases. In the first case, we have:

a(x) - 2+A

a(y) 2+A

a(z) - 0+ A

where choice of A E {a, 1, 2} serves to permute the columns of the label array. So
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we can write:

cx(x) + cx(y) + cx(L(x, y)) = cx(x) + cx(y) + o{z) = 4 + 3), _ 1 (mod 3),

and the first case is proved.

In the second case, we have the six possibilities given by the columns below:

cx(x) - 0, 1, 1, 2, 2, °cx(y) 1, 0, 2, 1, 0, 2
O'(z) 0, 0, 1, 1, 2, 2.

In each case,

cx(x) + cx(y) + o(L(x, y)) = cx(x) + cx(y) + cx(z) = 1 (mod 3),

and so the result is proved. o

Corollary 2.2.1. The full automorphism group Aut(D) is the group of even-

vertical automorphisms of D, unless D is the unique STS(9).

2.3 Standard automorphisms

We shall call an automorphism of D standard if it is even-vertical and subjects

the labels of every vertical block to the same even permutation (which can equally

well be represented as a translation by an element of Z3). A group of automor-

phisms is standard if all of its members are standard. An automorphism/group

of automorphisms is non-standard if it is not standard. The distinction is impor-

tant, because for most Bose designs D, the full automorphism group is standard.
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Of course the automorphisms of L induce automorphisms of the Bose design on

L, as noted in Section 2.1.

Lemma 2.3.1. The (sub}group of standard automorphisms of Aut(D) is isomor-

phic to Aut(L) x Z3.

Proof. The labels of every vertical block are permuted in the same way. We

represent the standard automorphism <I> by:

<I> : {(x, 0) (x,l) (x, 2)} ~ {('l/1(x), k) ('l/1(x), 1+ k) ('l/1(x),2 + k)}

for some k E Z3, and permutation 'l/1of X. If x, Y E X, xi=- y, and z = L(x, y),

then

{(x,O) (x, I) (x,2)} {('l/1(x), k) ('l/1(x), 1+ k) ('l/1(x),2 + k)}
<I>:{(y,O) (y,l) (y,2)} ~ (('l/1(y), k) ('l/1(y),l+k) ('l/1(y), 2 + k)}

{(z,l) (z,2) (2,0)} {('l/1(z),l + k) ('l/1(z),2 + k) ('l/1(z), k)}

Also, 1/J(L(x, x)) = 'I/;(x) = L('l/;(x), 'l/;(x)). Hence we have

'l/;(L(x, Y1J = 'l/;(z) = L('l/;(x), 'l/1(y)),

and so '1/; is an automorphism of L. Hence any standard automorphism of D is

a member of Aut(L) x Z3. Clearly any element of Aut(L) x Z3 is a standard

automorphism, and so the result follows. D
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2.4 Example

We illustrate the results of the previous sections with the simplest example, the

unique STS(9), which is isomorphic to the Bose construction on the SILS

021
210
1 0 2,

and has the 12 blocks:

{(O,O)(O, 1)(O,2)},{(1,0)(l, 1)(l,2)},{(2,O)(2, 1)(2,2)}

{(O,O)(1,0)(2, 1)},{(0, 1)(1, 1)(2,2)},{(0,2)(1,2)(2,0)}

{(l,O)(2,0)(0, 1)},{(1, 1)(2,l)(0,2)},{(1,2)(2,2)(0,0)}

{(2, 0)(0, 0)(1, I)}, {(2, 1)(0, 1)(1,2)}, {(2, 2)(0, 2)(1, O)}

which can be more compactly represented as the rows, columns, and all diagonals

of the array:

(0,0) (1,0) (2,1)
(0,1) (1,1) (2,2)
(0,2) (1,2) (2,0),

where the columns are the vertical blocks. The automorphisms of the STS(9)

provide examples of all the automorphism types identified for the Bose construc-

tion:

i even-vertical and standard,
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ii even-vertical and non-standard,

iii odd-vertical,

iv non-vertical.

i The automorphism:

(0,0) (1,0) (2,1)
(0,1) (1,1) (2,2)
(0,2) (1,2) (2,0)

(0,1) (1,1) (2,2)
-+ (0,2) (1,2) (2,0)

(0,0) (1,0) (2,1),

is even-vertical and standard because the labels of the vertical blocks are

all permuted in the same way.

ii The automorphism:

(0,0) (1,0) (2,1) (0,0) (1,1) (2,0)
(0,1) (1,1) (2,2) -+ (0,1) (1,2) (2,1)
(0,2) (1,2) (2,0) (0,2) (1,0) (2,2),

is even-vertical and non-standard because the labels are not permuted in

the same way for all vertical blocks.

iii The automorphism:

(0,0) (1,0) (2,1) (0,0) (1,0) (2,1)
(0,1) (1,1) (2,2) -+ (0,2) (1,2) (2,0)
(0,2) (1,2) (2,0) (0,1) (1,1) (2,2),

is odd-vertical because the permutation of the labels is odd,
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iv The automorphism:

(0,0) (1, 0) (2,1) (0,0) (0,1) (0,2)

(0,1) (1, 1) (2,2) ---t (1,0) (1,1) (1,2)

(0,2) (1,2) (2,0) (2,1) (2,2) (2,0),

is non-vertical since vertical blocks are not mapped to vertical blocks.

As has been proved in Section 2.2, the STS(9) is the only Bose design which

admits odd or non-vertical automorphisms.

We shall derive the full automorphism group of this design as part of a more

general result in the next chapter.

2.5 Full automorphism group

In Section 2.2 we proved that, except in the case of the STS(9), all automor-

phisms of designs made with the Bose construction are even-vertical. In this

section we shall find a characterisation of this automorphism group in the most

general terms.

We first of all note that by Corollary 2.2.1, we need only to characterise the

group of even vertical automorphisms of D.

An even vertical automorphism ¢ of D will not necessarily permute the labels

of all vertical blocks in the same way. Accordingly, we must represent ¢ as a pair

('lj;, K), where 'lj; is a permutation of X, and K : X ---t Z3, and the operation of ¢ is

such that if (x, a) is a point of D, x E X, a E Z3, then ¢(x, a) = ('lj;(x), a+ K(X)).
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The next few results establish conditions on K and 'IjJ.

Lemma 2.5.1. If cP = Ctf;, K) is an even vertical automorphism of D, then for

x, y EX,

K(X) + K(Y) + K(L(x, y)) = 0,

Proof. The result holds trivially if x = y, since L is idempotent. Now assume

that x =J. y. Since cp is even vertical, it maps vertical blocks to vertical blocks and

non-vertical blocks to non-vertical blocks.

Hence the image of {(x, 0) (y,O) (L(x, y), I)} is non-vertical and therefore has

signature 1. The image of this block under cp is:

{('IjJ(x), K(X)) ('IjJ(y), K(Y)) ('IjJ(L(x, y)), 1+ K(L(x, y)))},

so

K(X) + K(Y) + 1 + K(L(x, y)) = 1,

and the result follows o

If K is constant on X, then the automorphism cp is standard, and we know

from Lemma 2.3.1 that 'IjJ is an automorphism of L. If K is not constant on X,

then cp is non-standard.

Lemma 2.5.2. If cp = (,~),K) is a non-standard automorphism of D, then the set

of values {K(X) : x E X)} partitions X into 3 equal parts.

Proof. Observe first that if K(XO) =J. K(YO), then K(L(xo, Yo)) =J. K(XO), and

K(L(xo, Yo)) i= K(YO) by Lemma 2.5.1, so K takes all values of Z3.
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Put Zo = L(xo, Yo), and let y vary through {y : K(Y) = K(YO)}' Then since

K(XO) + K(y) + K(L(xo, y)) = 0 in Z3, we have K(L(xo, y)) = K(ZO)' Therefore the

number of Z = L(xo, y) for which K(Z) = K(ZO) must be at least as large as the

number of y for which K(Y) = K(YO)'

Also, since K(XO) + K(YO) + K(ZO) = 0 in Z3, we have K(YO) = K(L(xo, zo)),

so we may exchange Yo and zo in the above argument to show that there are at

least as many y for which K(Y) = K(YO) as Z for which K(Z) = K(ZO)' Therefore

I{y : K(Y) = K(Yo)}1 = I{z : K(Z) = K(zo)}l, and similarly both are equal to

I{z : K(Z) = K(zo)}l· 0

This partitioning of X by K consequently causes a partitioning of L into

subarrays. Let Xi = {x EX: K(X) = i}, i = 0, 1,2.

Lemma 2.5.3. If ¢ = ('l/J, K) is a non-standard automorphism of D, then for

each i, j E Z3, L restricted to TOWS indexed by Xi and columns indexed by Xj is a

Latin sub-square of L with rows indexed by Xi, columns indexed by Xj, and cell

values in X2i+2j. It is a sub SILS of L if i = j.

PTOOj. If x, yE X, K(X) = i and K(Y) = i, then since K(X)+K(Y)+K(L(x, y)) = 0,

K(L(x, y)) = 2i + 2j. Since L is, a Latin square, we know that no row or column

of this restricted array contains any value more than once, but since every entry

Z = L(x, y) satisfies K(Z) = 2i + 2j, each value must occur exactly once, which

proves that the restricted array is a Latin square. If i = i, the restricted array

also inherits the symmetry and idempotency properties of L, and so is therefore

also a SILS. This is illustrated in the figure below. 0
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Xo X2 Xl
X2 Xl Xo
Xl Xo X2

We now look at the relationship between 'Ij; and r: for a non-standard auto-

morphism ¢ = ('1/), x;). Suppose x;(x) = ° and x;(y) = 1 for some x, y E X. Put

Z = L(x, y). Then x;(z) = 2 by Lemma 2.5.1, and ¢ maps the non-vertical block

{ (.r, 0) (y, 0) (z, 1)} to

{('l/J(X),O) ('l/J(y),1) ('l/J(z),O)},

and so we conclude that 'l/J(y) = L('l/J(x), 'l/J(z)). Thus we can state the following

characterisation of even-vertical automorphisms:

Theorem 2.5.1. The mapping ¢ = ('Ij;,x;) : (x, i) -+ ('Ij;(x), i + x;(x)) of points of

D with'lj; a permutation of X aud r: : X -+ Z3, is an even-vertical automorphism

of D if and only if for every x, y E X the following conditions are both satisfied:

i) x;(x) + x;(y) + x;(L(x, y)) = 0.

ii) For z = L(x, y):

(a) if x;(x) = x;(y) then 'Ij;(z) = L('Ij;(x), 'Ij;(y)), and

(b) if x;(x) = x;(y) + 1 then 'Ij;(x) = L('Ij;(y), 'Ij;(z)).
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Proof. First the necessity. If ¢ is an even-vertical automorphism then i) is true

by Lemma 2.5.1. Also, if ¢ is standard then A;(X) = A;(Y) for all X, y E X, and

iia) is true. If ¢ is non-standard then for all x, y E X where A;(X) = A;(y), iia) is

true, and if l1;(x) =1= A;(Y), then either A;(X) = A;(Y) + 1 or A;(X) = A;(Y) + 1 and iib)

is true by the argument above.

Secondly, sufficiency. We have to show that if these conditions are satisfied,

then ¢ is an automorphism of D.

1. For a vertical block {(x, 0) (x, 1) (x, 2n, ¢ maps this to the vertical block

{( ~(x), 0+ A;(X)) (~(x), 1+ K(X)) (~(x), 2+ K(X) n, which is again a vertical

block.

2. If {(x,i) (y,i) (z,i + In, with z = L(x,y), is a non-vertical block and

11;(.7:) = I1;(Y), then condition i) gives us that l1;(z) = I1;(Y) also. Hence ¢

maps the block to {(~(x),i + K(Y)) ('l/J(y),i + A;(Y)) (~(z),i + 1 + A;(y))},

which is again a non-vertical block since ~(z) = L(~(x), ~(y)) by condition

iia) .

3. If {(x,i) (y,i) (z,i + In, with z = L(x,y), is a non-vertical block and

11;(.7:) = A;(Y) + 1, then condition i) gives us that K(Z) = I1;(Y) + 2. Hence ¢

maps the block to ((~(x), i+ 1 + A;(Y)) (~(y), i+ K(Y)) (~(Z), i + K(Y)n.

Condition iib) gives us ~(x) = L(~(y), ~(z)), and so the image is also a

non-vertical block of D.

o

If ¢ is a non-standard automorphism of D, then Theorem 2.5.1 shows that

L has special properties. The next chapter will deal with special types of Latin
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square that will in some cases possess such properties. However, here we shall

deal with the topic in a general way.

Firstly however, we need a further definition concerning Latin squares. Let

M be a m x m Latin square with symbols on the m-set X2, with rows indexed

by the m-set Xo, and columns indexed by the m-set Xl. Let

T = {(Xo, Xl, X2) : M(xo, Xl) = X2}. Let (a, b, c) be any permutation of (0,1,2).

The (a,b,c)-conjugate of M, M(a,b,c) has rows indexed by Xa, columns indexed

by Xb, and symbols by Xc, and is defined by M(a,b,c) (xa, Xb) = x; for each

(xo, XI, X2) E T, [7], page 97.

In particular, M(0,1,2) = M, and M(1,0,2) is the transpose of M.

The following construction provides an example of a design with a non-

standard automorphism.

Let n = 3m, and X = Xo U Xl U X2, with Xa = {Xa,l, Xa,21 ... 1 Xa,m} for

a = 0, L 2. Let Lo, LI, L2 each be a m x m SILS, where La has rows, columns and

symbols indexed by Xa· Let M be an m x m Latin square with rows indexed by

Xo, columns indexed by Xl, and symbols by X2. We define the 3m x 3m SILS L

by the figure below:

Xo

X C Lo M(0,1,2) NJ(0,2,1)

M LI M1 (1,0,2) (1,2,0)

" .1\1(2,0,1) M(2,1,0) L2

X

X

This is symmetric because the La, a = 0,1,2, are symmetric, and because,
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for any permutation (a, b, c) of (0,1,2):

Also, L is idempotent because the La are.

Moreover L possesses the property that for any permutation (a, b, c) of (0,1,2),

if Xc,k = L(Xa,i, Xb,j), then Xa,i = L(Xb,j, Xc,k) and Xb,j = L(Xa,i, Xc,k), since

and

We shall refer to this as Property (*).

Now let 7 be any function {O,1, 2} --t Z3 such that 7(0) + 7(1) + 7(2) = 0,

then the mapping on D defined by

is an even-vertical automorphism of D by Theorem 2.5.1. If 7 is constant, then

the cPT is standard, otherwise it is non-standard. Now the group of possible 7 is

isomorphic to Z3 x Z3 since the value of 7 on any two elements of Z3 can be chosen

independently. Therefore the group of even-vertical automorphisms generated by

all cPT is also isomorphic to Z3 x Z3. This is not necessarily the full automorphism

group of D, since L may have further automorphisms.
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Chapter 3

Bose designs from special Latin

squares

This chapter deals with the automorphism groups of Bose designs based on two

types of Latin square: firstly where the SILS is provided by another Steiner

triple system, and secondly where the SILS is derived from an Abelian group.

The previous chapter has provided an analysis of the automorphism groups at

the most general level. This chapter will focus mainly on the conditions for the

automorphism group to have non-standard automorphisms.

3.1 Bose designs on Steiner triple systems

A Steiner triple system T = (U, A) with point set U and block set A can be

interpreted as a special type of SILS, with the extra property that, if {x, y, z} is

in A, then L(x, y) = z, L(y, z) = x, and L(x, z) = y, since every pair of points

occurs in exactly one block. This is similar to the Property (*) mentioned in

Section 2.5. For a Steiner triple system T = (U, A), the Bose design based on T,
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D = (V, B), has as point set:

V = {(x,i): x E U,i E Z3},

and block set:

B = { {(x,D) (x,l) (x,2)}: x E U} U

{ {(x, i) (y,i) (z, i+ I)},

{(x, i) (z, i) (y, i + I)},

{(y,i) (z,i) (x,i+l)}: {x,y,z} E A, i E Z3}.

We can immediately cite Lemma 2.3.1 to give:

Lemma 3.1.1. The group of standard automorphisms of the Bose design

D = (V, B) obtained [rom the Steiner triple system T is isomorphic to Ant(T) x Z3

where Aut(T) is the automorphism group of T.

A major point of interest is to determine which designs give rise to non-

standard automorphisms.

Referring to Theorem 2.5.1, we see that if 1/Jis any automorphism of T, and

K,is any mapping K, : U --+ Z3 satisfying K,(x) + K,(y) + K,(z) = D for every block

{x,y,z} in A, then ¢ = (1/J,K,)is an even-vertical automorphism of D, which is

non-standard if r: is not constant on U.

Existence of a non-standard automorphism of D therefore implies via Lemma

2.5.2 that lUI is divisible by 3, with U = Wo UWI UW2, IWql = I~I. From Lemma

2.5.3 we have that the blocks of T are of 4 types:

i) Co = { {x, y, z}: x, y, z E Wo},
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ii) Cl = {{X,y,Z}: x,y,z E Wd,

iii) C2 = { {x, y, z}: x, y, Z E W2},

iv) CO,I,2 = { {x,y,z}: x E Wo, yE WI, Z E W2}.

Further, each pair Sq = (Wq, Cq) is a Steiner triple subsystem of T, and Lemma

2.5.3 shows that the blocks CO,I,2 form a Latin square. It also follows that

lUI - 3 or 9 (mod 18). We can therefore state the following:

Theorem 3.1.1. The Bose Steiner triple system D constructed on the Steiner

triple system T = (U, A) has a non-standard automorphism if and only if

lUI = 3m with rn - 1 or3 (mod 6); U = WOUWI UW2, IWql = rn for q = 0, 1,2,

and there exist Steiner triple systems Sq = (Wq,Cq), q = 0,1,2 and an m x m

Latin square M with rows indexed by Wo, columns indexed by WI, and symbols

indexed by W2 such that:

A = Co U Cl U C2 U { {z, y, z} : x E Wo, yEW!, Z E W2, Z = M (z. y) }

Proo]. The necessity part of the proof is furnished by the argument above.

The sufficiency is provided by the mapping ¢ which is defined on U by

¢(x, i) = (x, i+K:(x)), where K:(x) = q if x E Wq. The map ¢ is clearly one-to-one.

To show that it is an automorphism of D, we must prove it maps blocks of D

to blocks of D. For a vertical block {(wq,O) (wq,l) (wq,2)}, with Wq E Wq, the

image under ¢ is {(Wq, q) (Wq, 1+q) (wq: 2+q)}, which is the same vertical block.

Now consider non-vertical blocks, which are of two types:

a) Firstly blocks of the form {(Xq, i) (Yq, i) (Zq, i + 1)}, derived from a block

{Xq, yq, Zq} of the subsystem Sq of T. This is mapped by ¢ to

{(Xq, q + i) (Yq, q + i) (Zq, q + i+ 1)}, which is again a non-vertical block.
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b) Secondly blocks derived from blocks of T of the form {xo, Yb Z2}, where

Xo E Wo, YI E WI, Z2 E W2, and Z2 = M(xo, YI). For each such block and

each i E Z3 there are three blocks of D, namely: {(xo, i) (y}, i) (Z2, i+ In,

{(.ro,i+ 1) (YI,i) (z2,in, and {(xo,i) (Y},i+ 1) (z2,in. The map ¢ takes

these blocks to: {(xo,i) (YI,i+l) (z2,in, {(xo,i+l) (YI,i+l) (z2,i+2n,

and {(xo, i) (YI, i+2) (Z2, i+2n respectively. These are again non-vertical

blocks.

The automorphism ¢ is non-standard, because K is not constant on U. 0

A special case of the construction in Theorem 3.1.1 is the tripling construction.

In the language of Theorem 3.1.1, the tripling construdtion sets all of So, SI, S2

isomorphic to the same Steiner triple system S = (W, C) of order m, with M

being the SILS which is derived from the same system. We represent the point

set of T as U = {(x, q): x E W, q E Z3}. The block set is:

A = {{(x, 0) (y,O) (z, On,

{(x, I) (y,l) (z, In, {(x,2) (y,2) (z,2n,

{(x,O) (y,l) (z,2n, {(x, 1) (y,2) (z, on,

{(x,2) (y, 0) (~, In, {(x, 0) (y,2) (z, In,

{(x,2) (y,l) (a.Ol}, {(x,l) (y,O) (z,2), }: {x,y,z} EC}U

{{ (x, 0) (x,I) (.r,2) }: x E W}.

This may be more succinctly represented as:

A = {{(x, i) (y,i + j) (z, i+ 2jn: {x,y, z} E C, i,j E Z3}U

{{(x,O) (x, I) (x,2) }: x E W}.

If 'l/J is an automorphism of the STS T obtained from S by the tripling con-
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struction, we assert that the maps <Pr,s, for any r, s E Z3, defined by

<Pr,s: ((X, i), k) -+ ('!jJ(x, i), k + r + is),

for x E W, i, k E Z3, are automorphisms of the Bose design D = (V,8) on T.

Firstly, <Pr,s is one-to-one on V because if

Ct/J(x, i), k + T + is) = Ct/J(y,j), k' + T + js),

then x = y and i = j because 't/Jis one-to-one on U, and so k = k' also ..

Secondly, <Pr,s maps blocks to blocks. Considering the vertical block:

<Pr,s: {((x,i),O), ((x,i),l), ((x,i),2))-+

{('!jJ(x,i),r+is), ('!jJ(x,i),l+T+is), ('!jJ(x,i),2+r+is)},

which is again a vertical block.

Now consider non-vertical blocks:

<Pr,s: {((x,i),k), ((y,i+j),k), ((z,i+2j),k+1))-+

{('!jJ(x, i), k+r+is), ('!jJ(y, i+ j), k+r+is+ js), ('!jJ(z, i+2j), k+ 1+r+is+2js)},

which is a non-vertical block because it has signature 1, and:

<Pr,s: {((x,O),k), ((x,l),k), ((x,'2),k+1))-+

{(7/J(x, 0), k + r), (7/J(x, 1), k + r + S), (7/J(X, 2), k + 1 + r + 2s)}, also a

non-vertical block.

The <Pr,s are distinct because r + is = T' + is' for all i E Z3 if and only if r = r'

and s = Si.

We have therefore shown that the Steiner triple system D = (V,8) constructed

on the tripled design T = (U, A) using the Bose construction has a group r of

even-vertical automorphisms that is isomorphic to Aut(T) x Z3 x Z3, where Aut(T)
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is the automorphism group of T. The group r contains both standard and non-

standard automorphisms, but is not necessarily the full automorphism group of

the Bose design.

3.2 Bose designs on Abelian groups

If e is an Abelian group of odd order with the group operation written additively,

then for x, yE e,
L(x, y) = (x + y)/2

defines a SILS on the elements of e.
In this section, we shall deduce the full automorphism group of the Bose

design D constructed from this special type of SILS in terms of the group G and

its automorphisms, building on the results of the previous chapter.

3.2.1 Conditions for Aut(D) to be non-standard.

We shall say that an even-vertical automorphism ¢> of D acts standardly on x E G

if ¢> permutes the labels of the vertical block on x in the same way as it permutes

the labels of the vertical block on the zero element of e. We shall say that ¢> of

D acts non-standardly on x if it does not act standardly.

Theorem 3.2.1. If Ant(D) is non-standard, then all elements of G are of order

either 3 or 9, and so e is isomorphic to a direct sum of copies of Z3 and/or Z9.

Proof. We assume that lei;::: 3. Suppose that ¢> is an automorphism of D, which
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acts non-standardly on x E C. Consider the array

(0,0) (0,1) (0,2)

(x,2) (x,O) (x,l)

(-x,2) (-x,O) (-x,l)

Since the composition of ¢ with a translation T : (x, i) ---+ (x, i + k) for some

k E Z3 still acts non-standardly on x, we may assume that the top row maps

to (u,O), (u,l), (u,2) for some u E C. Then the next row maps to either

(v,O), (v,l), (v,2) or (v, 1), (v,2), (v,O) for some v E C, in which case the third

row maps to either (w, 1), (w,2), (w,O) or (w,O), (w,l), (w,2) respectively for

some w E C. There is no loss of generality, because x can be renamed -x or

vice-versa, in assuming the former in each case. So the above array maps to

(u,O) (u,l) (u,2)

(v,O) (v,l) (v,2)

(w,l) (w,2) (w,O)

Hence u + v = 2w.

Suppose 3x =I- 0. Then, by considering the blocks

{(3x,1), (-x, 1), (x,2)} and {( -3x, 0), (x,O), (-x, 1)}, it follows that (3x,1)

maps to ((v + w)/2, 1), and (-3x, 0) maps to (2v - w, 0). Now from the block

{(9x,0), (-3x,0), (3x, 1)} it is deduced that (9x,0) maps to (2w-v,0) = (u,O).

Hence 9x = 0, i.e. all elements of C on which ¢ acts non-standardly have order

either 3 or 9.

We have yet to show that all non-zero elements of C have order 3 or 9. Observe
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that for x, y, Z E C, and x + y = 2z, and any even-vertical automorphism ¢ of

AutD, ¢either applies the same permutation of the labels to the vertical blocks on

all three of x, y, z, or different permutations to each. This is because ¢ preserves

signatures, and so ¢ either shifts all the labels of any non-vertical block containing

z; y and Z by the same value, or all by different values.

Suppose that ¢ acts non-standardly on x and standardly on y =1= 0, that is, the

permutations applied to the labels on the vertical blocks on x and yare different.

Consider the block {(x, 0), (y,O), (X~Y, I)}. Then the permutation applied to the

vertical block on X~y is different to both of them. So ¢ also acts non-standardly

on x~y. Thus 9( X~Y) = 0, giving 9y = 0, i.e. all elements, other than the identity,

have order either 3 or 9. 0

3.2.2 Group of standard automorphisms.

The full automorphism group of every Bose design except for those designs con-

structed from copies of Z3 and/or Zg is therefore standard. The remaining auto-

morphism groups possess standard subgroups. The result proved in this section

provides the structure for all standard automorphism groups. First of all however,

it is necessary to visit a group construct.

A semidirect product K Xo H is formed from two groups K, H, and a homo-

morphism () : H --+ Aut(K), with the binary operation

A prime example of a semidirect product is the product N H of a normal sub-

group N and another subgroup H of some containing group r, such that

NnH = {I}. The set NH is a subgroup of r because: n1h1n2h2 = nl (hln2hl1)hlh2.
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Since N is normal in r, the element h1n2hl1 is an element of N, so

n1 (h1n2hl1) E N, and of course h1h2 E H, so 'n1hl'n2h2 E N H. Also, if

n1h1 = n2h2' then n21n1 = h2hl1 E N n H = {I}, so n1 = n2 and hI = h2'

and every element of NH has a unique expression in terms of Nand H.

The map (h : n -t hnh -1 is an automorphism of N (an inner automorphism),

and the map e : h -t ¢h is a homomorphism e : H -t Aut(N).

If H ~ Aut(K), with e the identity, then the semidirect product is called the

Holomorph of K, denoted by Hol(K) (see [15] page 461).

Theorem 3.2.2. The group of standard automorphisms of D is isomorphic to

Hol(G) X Z3, and so is of order 3IGIIAut(G)I.

Proof. If 9 E G, D E Aut(G), and s is an element of Z3, then consider the map

[g, 0:, 8] of elements of D defined by [g, 0:, 8] : (x, i) -t (g + o:(x), i + 8). The

map [g, D, s] is clearly a permutation of the points of D. It maps vertical blocks

to vertical blocks, and also non-vertical blocks to non-vertical blocks, because if

X, y, z E G, and x + y = 2z, then

(g +D(X)) + (g +D(Y)) = 2g +D(X + y) = 2(g + D(Z)),
,.

and because even permutations of the labels preserve blocks. So [g, D, s] is an

element of Aut(D), and is standard. Moreover the mapping (g, D, s) f-+ [g, D, s]

is a one-to-one map of the set G x Aut(G) X Z3 into Ant(D). This is because

if (gl + Dl(X), i + SI) = (g2 + D2(X), i+ S2) for all x E G, then 81 = S2, and

gl +D1(0) = g2+D2(0). Thus since D1(0) = D2(0) = 0, gl = gl and D1(X) = D2(X)

for all x E G, so D1 = D2 also.

The mapping is also a group homomorphism Hol{G) x Z3 -t Aut{D) because
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for any element (x, i) of D,

[gl, aI, 81](g2 + a2(x), i+ 82)

(gl + al(g2) + ala2(x), i+ 81 + 82)

[gl +a1(g2),ala2,81 +82](X,i)

We show that this is a mapping onto to the subgroup comprising the standard

automorphisms of D by constructing a corresponding triple (g, a, 8) for any given

standard automorphism.

Suppose ¢ is a standard automorphism of D. We can represent ¢ as'

¢ : (x, i) -+ (¢c(x), i + 8) for a fixed s E Z3 and a permutation ¢c of G.

We assert that the required triple is [¢c(O), <1>, 8] where the map <I> : G -+ G

is given by <I>(x)= ¢c(x) - ¢c(O).

That the map <I> : x I---t ¢c(x) - ¢c(O) is an automorphism of G follows from

the identity

¢( {(x, 0), (y,O), (z, I)}) = ((¢c(X), 8), (¢c(y),8), (¢c(z),l + 8)}

for mapping of non-vertical blocks, applied to the blocks

{(x,O), (-x, 0), (0, I)}

{(y,O), (0, 0), (~y, I)}

{(x+y,O), (-x,O), (!y,l)}
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which implies the identities

cPa(X) + cPa( -X) - 2cPa(O)

cPa(Y) + cPa(O)
1

- 2cPa( 2Y)

¢a(x + y) + ¢a( -x)
1

- 2¢a(2Y)

which implies

¢a(X + y) = cPa(x) + cPa(y) - cPa(O).

Therefore <I>(x + y) = <I>(x) + <I>(y), and <I> is an automorphism of C. Clearly

[¢a(O), <1>, 8] = cP, and we have the required isomorphism. o

3.2.3 Non-standard automorphisms

As has been proved Section 3.2.1, non-standard automorphisms are only possessed

by Bose designs constructed from groups G is of the form Z'3 EBZg, n + m =I=- O.

The non-standard and standard automorphisms of a Bose design together also

form an automorphism group, which is the whole automorphism group unless

C = Z3' We now derive the structure for this group.

Lemma 3.2.1. If x, yE Z3, then

(-2y + (-2)Y = (_2)x+y + 1 (mod 9)

Proof. There are only nine cases to check, seven of which are trivial. 0

We can represent any even-vertical automorphism ¢ of D as a pair of maps

('I/J, K,), 'I/J : G ---t C, K, : C ---t Z3, where '!j; is a permutation of C, and if (x, i) is
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any point of D,

¢ : (x, i) 1--+ (4J(x), i + I'\:(x))

The next lemma characterises I'\: as a map of groups, and proves identities neces-

sary for the characterisation of the automorphism group.

Lemma 3.2.2. IfG is of the form Z'3(fJZg, and ¢= (4J,I'\:) is any even-vertical

automorphism of D, then the following are true:

(a) If x, y, Z E G,and if x + y = 2z, then I'\:(x) + I'\:(y) + I'\:(z) 0 (mod 3),

(b) The map G -+ Z3 defined by x 1--+ I'\:(x) - 1'\:(0)is a homomorphism,

(c) If z. y, Z E G,and x + y = 2z, then

(d) If X,:ti, z E G,and x + y = 2z, then

(_2)K(X) + (-2)"'(Y) + (_2)1+K(Z) = 0 (mod 9)

Proof. (a) This was established for any SILS in Lemma 2.5.1.

(b) We have to show that I'\:(x + y) - 1'\:(0)= I'\:(x) - 1'\:(0)+ I'\:(y) - 1'\:(0)for any

x, yE G, i.e. I'\:(x + y) + 1'\:(0)= I'\:(x) + I'\:(y). But, putting x + y = 2z, we

have from (a) by writing x + y = 2z = (x + y) + 0,

I'\:(x) + I'\:(y) + I'\:(z) - 0

and the result follows.
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(c) Observe from (a) that K:(x), K:(y), K:(z) are either all the same or all differ-

ent. Consider the mapping of the block {(x, i), (y, 'i), (z, i + I)} by Ct/J,K:)

to the block {'lj;(x),i + K:(x)), ('lj;(y),i + K:(y)), ('lj;(z),i + 1+ K:(z))}. If

K:(x), K:(Y), K:(z) are all the same, then '!j;(x) + '!j;(y) = 2'!j)(z), and hence

'lj;(x)+'lj;(y)+(-2)'lj;(z) = 0. If they are all different, then suppose without

loss of generality that K:(x) = 1+K:(z), and K:(y) = 2+K:(z), then the image

of {(x, z ), (y, 'i), (z, i + I)} is

{('l/)(x), i + 1+ K:(z)), ('t/J(y), i + 2 + K:(z)), ('t/J(z), 'i + 1+ K:(z))}

and so '!j)(x) + '!j)(z) = 2'!j)(y), or '!j)(x) + (-2)'!j)(y) + '!j)(z) = 0, so

and the required result follows.

(d) It is only necessary to use (a), and to check the three cases where K:(x),

K:(y), K:(z) are: all the same, an even permutation of (0,1,2), and an odd

permutation of the same.

D

The previous two lemmas provide the material to identify the group of all

even-vertical automorphisms of D. In the following theorem we denote the group

of homomorphisms from G to Z3 by Hom (G, Z3), where for aI, a2 E H om( G, Z3),

we define al + a2 by (al + a2)(g) = al(g) + a2(g) for all g E G.

Theorem 3.2.3. If ¢ = ('lj;, /1:) is an even-vertical automorphism of D, then the

map x 1---+ (_2)K(X\~)(x) - '~)(O)) is an automorphism of G. The group of even-
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vertical automorphisms oj D is isomorphic to a group on

Z3 x C x Hom(C, Z3) x Aut(C), by the map

so that all even-vertical automorphisms ¢ = ('t/J,I1;) oj D can be expressed in the

form

l1;(x) = s + h(x), 'Ij;(x) = 9 + (-2tK(x)a(x);

sE Z3, b « Hom(C, Z3), 9 E C, a E Aut(C).

Proof. That the map x f--t (-2)K(X)Cl/J(x) - '1,/;(0))is a group homomorphism uses

Lemma 3.2.2 parts (c) and (d). Writing a(x) = (_2)K(X)('Ij;(x) - 'Ij;(0)), (c) and

(d) imply that if x + y = 2z (including x = y = z), then

a(x) + a(y) - 2a(z) = (_2)K(X)'Ij;(X) + (_2)K(Y)'Ij;(y) + (_2)1+K(Z)'Ij;(Z)

- 'Ij;(0)(( _2)K(X) + (_2)K(Y) + (_2)1+K(z»)

=0.

So, in the same way as for Lemma" 3.2.2, we can write:

a(2x) + a(2y)

2a(x)

2a(y)

- 2a(x + y)

a(2x)

a(2y)

+ a(O)

+ o'(O)

Since a(O) = 0, the sum of these three equations yields a(x) + a(y) = a(x + y)

for all x, y E C, and so a is a group homomorphism on G. To show that a is

one-to-one it is sufficient to show that a(x) = 0 iff x = 0, since a is a group
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homomorphism. However from its definition, a(x) = 0 iff 'lj;(x) = 'lj;(0), so x = 0

since 4) is one-to-one on G.

The above establishes the mapping from Aut(D) to the Cartesian product

Z3 x G x Hom(G, Z3) x Aut(G). The map is one-to-one because the first three

components of the image determine 'lj;(0) and K, whilst these and the fourth

component are sufficient to determine 'lj;.

We next show that the map is onto. We shall show that if 8 E Z3,

h E Hom(G, Z3), a E Aut(G), and 9 E G, then ('lj;,K), where w : G 1-+ G is

defined as 'lj;(x) = g+ (-2)-II:(x)a(x), and K : G 1-+ Z3 is defined as K(X) = 8+h(x),

is an automorphism of D. Firstly we assert that ('lj;,K) maps blocks to blocks.

Clearly it maps vertical blocks to vertical blocks, so in the following we have only

to consider non-vertical blocks.

Observe that if x, y, Z E G such that x + y = 2z, then

K(X) + K(Y) + K(Z) = 0

since the left-hand side is equal to

38 + h(x) + h(y) + h(z) = 'h(x + y) - 2h(z) = h(x + y - 2z) = 0,

since h E Hom(G, Z3). Also,
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since the left-hand side is equal to

ex(x) + ex(y) - 2ex(z) + ((-2)'*) + (_2)II:(Y) + (_2)1+II:(z»)g

- 0 + ((-2t(x) + (-2)II:(Y) + (_2)1+II:(z»)g, since exE Aut(G)

(1+ (-2t(x)+II:(y) + (_2)1+II:(z»)g,

(2 + (-2t(x)+II:(Y)+1+II:(z»)g,

(2 + (_2)3s+3h(z)+1)g

- o.

by Lemma 3.2.1

again by Lemma 3.2.1,

The first of these relationships once again shows that 11:( x), l1:(y), 11:( z) are either

all the same or all different. If they are all the same, the second relationship gives

'lj;(x) + 'lj;(y) = 2'lj;(z), and so ('1J, 11:) maps the block {(x, i), (y, i), (z, i+ I)} to the

block

{(?j;(x), i+ l1:(x)), ('I/J(y), i+ l1:(x)), (?j;(z), 1+ i+ l1:(x))}.

If l1:(x), l1:(y), l1:(z) are all different, then 1+ l1:(z) is equal either to l1:(x) or to l1:(y).

Without loss of generality suppose the former. Then l1:(y) = 1 + l1:(x), and the

second of the relationships proved above implies

Hence ?j;(x) + ?j;(z) + (-2)?j;(y) = 0 since (_2)II:(x) -I- 0, so ?j;(x) + ?j;(z) = 2?j;(y),

and (?j;, 11:) maps the block {(x, i), (y, i), (z, i+ I)} to the block

{(?j;(x), i+ l1:(x)), ('I/J(z), i+ l1:(x)), (?j;(y),1 + i+ l1:(x))}.
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Therefore (7/J, K) maps blocks to blocks.

Secondly we show that Ct/J, K) is one-to-one. This follows because if

(7/J,K)(X, i) = (7/J, K)(Y, j), then 7/J(x) = 7/J(y), i.e.

Since (-2) factors commute with ex,we have ex((-2)-fi:(x)x) = ex((-2)-fi:(Y)y), so

(-2)-fi:(x)x = (-2)-fi:(Y)y since n is one-to-one. Thus

However h(( -2Yx) = (-2Yh(x) = h(x) for any z E Z3, since (-2) is the identity

h(x - y) = h(( -2th(x-y)x - y) = h(O) = 0,

and so x = y. Also, since i+K(X) = j+K(y), i = j. Therefore (7/J,K) is one-to-one.

Thus C~},K) is an automorphism of D. o

The group H orn( C, Z3) is of order 3n+m, since for any such homomorphism

each generator of C = Z3n EBZgm maps to one of 0, 1, or 2. The group of

even-vertical automorphisms Z3 x C x H om( C, Z3) x Allt( C) is therefore of order

32n+3m+lIAlltCI for C = Zf EBZg, and is the full automorphism group except for

the special case C = Z3, due to the extra symmetry between C and the label set

Z3·
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3.2.4 Affine geometries, AG(n,3).

The STS(9) has a special automorphism group in the series of group-based Bose

constructions because it is also in another series of Steiner triple systems, the

affine geometries, AG(n,3). These have as their point set the groups Z;;, and for

blocks the triples {(gb .rh, 93) : gl =I 92, gl + g2 + g3 = O}. This works because the

equation ensures that exactly one block contains each pair, and no block contains

repeated points because if gl = g2, then g3 = - gl - g2 = - 2gl = gl.

The full automorphism group for these systems is readily found.

Theorem 3.2.4. The full automorphism group of the STS D = AG(n,3) is

isomorphic to Hal (Z;;) .

Proof. The proof is very similar to that of Theorem 3.2.2. Let H be the set of

all maps [g, a], 9 E Z;;, a E Aut(Z;;) defined by [g, a](x) = 9 + a(x). We shall

show that:

The [g, a] are distinct.

11 Each [g, a] is an automorphism of D.

iii Every automorphism of D is' a [9, a] for some 9 and a.

IV H is a group isomorphic to Hal (Z;;).

If [gl, al] = [92, <'X2],then 91+<'Xl(X) = 92+<'X2(X) for all x E Z;;. This implies

that 9l-g2 = al (x )-a2(x) for all x E Z;;. Hence gl-g2 = al (0)-a2(0) = 0,

since aI, a2 are group automorphisms. So gl = g2 and al (x) = a2 (x) for

all x E Z;;, so al = a2. Hence the [g,a] are distinct.
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ii Each [g, a] is clearly one-to-one because a is one-to-one, and maps blocks

to blocks because if x, y, z E Z~ and x + y + z = 0, then

[g, a](x) + [g, a](y) + [g, a](z) = 3g + a(x) + a(y) + a(z)

O+a(x+y+z)

nCO)

o.

Therefore [g, a] is an automorphism of D.

iii If ¢> is an automorphism of D, set <p(x) = ¢(x) - ¢(O). We assert that

<P is a group automorphism of Z~, and that [¢(O), <p] = ¢. The map <P

is clearly one-to-one because ¢ is. We have to show that for x, y E Z~,

<p(x) + <p(y) = <p(x + y). Firstly we show that <p( -:r) = -<p(x). Since

{-x, x, O} is a block, and <p(0) = 0, we have <p(-x) + <p(x) = O. Then,

since {x, y, -(x + y)} is a block, we have <p(x) + <p(y) + <p( -(x + y)) = 0,

so <I>(x)+ <p(y) = <p(x + y).

iv H has the same underlying ~~t Z~ x Aut(Z~) as Hol(Z~). We have to show

that H is a group with the same composition rule as Hoi (Z~). For x E Z~,

which is the composition rule for Hol(Z~). The inverse of [g, 0:] is [-o:-l(g), 0:-1],

since
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and

Hence H is isomorphic to Hol(Z3)'

o

3.2.5 Some examples

As an illustration of the results of this chapter, we will consider four STS(81)s,

and calculate the orders of their automorphism groups.

Let

GI = Z27,

and

Then the Bose constructions on GI, G2, and G3 are all of order 81, as is the affine

geometry on G4.

Before we can calculate the orders of the Bose designs we need to know

IAut(G)1 for G = Z'3, and G = Z3 X Zg. For the former, the result is well-known,

see for example [6] page 128, as the order of GL(n, Z3):

i=n-l

IAut(Z;)1 = II(3n - 3i)
i=O
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For C3 = Z3 X Zg, Aut(C) is readily seen to be the group of all 2 x 2 matrices of

form:

where a, b, C E {a, I, 2}, and d E {a, 1,2,3,4,5,6,7, 8}, and the determinant is

non-zero modulo 3. The order of this group is 108.

Consider first the Bose design on Cl. By Theorem 3.2.1, the automorphism

group of this design is standard, since the group has an element of order 27. The

order of the automorphism group of the design is then

3IZ271IAut(Z27)1 = 3·27 ·18 = 1458.

The design on C2 has an non-standard automorphism group of order

The design on C3 also has an non-standard automorphism group of order

Finally, the design on C4, being the affine geometry AC(4, 3), has by Theorem

3.2.4 the automorphism group Hol(C4), which has order
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Chapter 4

Tripling construction

4.1 Introduction

In Chapter 3, we introduced the following STS tripling construction which starts

with an STS S = (lV,C) of order v, and produces the STS T = (U, A) on the 3v

points {(x, i): x E lV,i E Z3} with block set:

A= {{(x,i),(y,i+j),(z,i+2j)}: {x,y,z} EC: i,j E Z3}U

{ {(x, 0), (x, 1), (x, 2)}: x E U}.

The object of this chapter is to discover as much as possible about the auto-

morphisms of STS formed with this construction.

First of all we shall define some terminology. In common with Chapter 2,

we shall call the Z3 component of any point of T the label. We now give names

to the various types of block. If x is a point of S, then a block of the form

{ (x, 0), (x, 1), (x, 2)} is called a vertical block. If {x, y, z} is a block of S, then a

47



block of T of the form {(x, i), (y, i), (z, i)} is called a horizontal block, and a block

of the form {(x, i), (y, j), (z, k)}, where i, j, k are all different is called a diagonal

block. We shall refer to the STS T as the tripling of S if it obtained from the

STS S by the tripling construction.

Theorem 4.1.1. Let S be any Steiner triple system with automorphism group

Aut(S), and T be the STS obtained by tripling S. Then T has an automorphism

group isomorphic to A-ut(S) x S3 (where S3 stands as usual for the symmetric
group on 3 points).

Proof Let 'ljJbe any automorphism of S, a any permutation of {O, 1, 2}, x E W,

{x,y,z} E C, and i E Z3. The map ('ljJ,a) : W x Z3 ---7 W X Z3 is one-one

on points of T because 'ljJand a are one-one, and therefore ('ljJ,a) is one-one on

blocks. To complete the proof that (1/), a) is an automorphism of T, we have to

show that the image of any block under ('ljJ,a) is also a block. Taking each type

of block in turn:

a) Vertical blocks:

Cl/J,a) : {(x, 0), (x,l), (x,2)} ---7 (('l/J(x), a(O)), (-l/)(x), a(l)), C¢(x), a(2))},

which is again a vertical block of T.

b) Horizontal blocks:

('ljJ,a) : {(x, i), (y, i), (z, i)} ---7 {('ljJ(x), a(i)), ('ljJ(y), a(i)), ('ljJ(z), a(i))},

which is again a horizontal block of T.
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c) Diagonal blocks:

(1/J,a): {(x,D), (y,l), (z,2)} --+ {(1/J(x),a(D)), (1/J(y),a(l)), (1/J(z),a(2))},

which is again a diagonal block of T.

D

Note that for any given automorphism in the last theorem the label of each

point of U is permuted in the same way as every other point. We shall call

automorphisms of T of this form standard automorphisms, in analogy with au-

tomorphisms of the same name in Chapter 2. Note that this is an extension of

the previous usage, because in that case, only even vertical automorphisms were

included. Of more interest is for what STS S this is not the full automorphism

group of the tripled system T.

4.2 The full automorphism group

We shall consider 3 x 3 matrices of points:

(a, io) (b, )0) (c, ko)

(d,il) (e,)l) (I,kl)

(r, i2) (s, )2) (t, k2),
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where all columns, rows, and diagonals are distinct blocks of T, twelve in all. We

shall call this a complete matrix of blocks. If {a, b, c} is a block of S, then

(a,O) (a,l) (a,2)

(b,O) (b,l) (b,2)

(c,O) (c,l) (c,2)

is a prime example of this. We shall repeatedly make use of the fact that the

image of any complete matrix of blocks of T under an automorphism of T is again

a complete matrix of blocks.

Lemma 4.2.1. The rows (resp. columns) of a complete matrix of blocks ofT are

either all vertical blocks, or all horizontal blocks, or all diagonal blocks.

Proof. We need only deal with rows. The argument for columns is identical.

Firstly, suppose the first row is a vertical block {(u, 0), (u, 1), (u, 2n in some

order. Then we have:

(u,i) (u,j) (u,k)

• (y,m).

(x,11). (z,p),

for some points x,y,z E W, m,n,p E Z3. Then {(u,i),(y,m),(z,pn and

{( u, k), (y, m), (x, nn are blocks of T which are derived from blocks {u, y, z} and

{u, y, x} of S. Since any pair of points of ~V occurs in exactly one block of S, we

deduce that x = z. Moreover, the bottom line of the matrix must be a vertical

block of T, since only vertical blocks of T contain repeated points of S. A similar

argument shows that the middle row is also a vertical block.

Next let the first row of this complete matrix of blocks be a horizontal block

{( u, i) (v, i) (w, in for some i E Z3. Again represent the middle element by
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(y, m). Then the full matrix must be of form:

(u, i)

(x,m)

(v, i)

(y,m)

(w,i)

(z,m)

(T, 2'£ + 2m) (s, 2'£ + 2m) (t, 2i + 2m),

for some x, z, T, S, t E W, because the labels must sum to zero modulo 3 in each

row, column and diagonal. Thus each row is a horizontal block, because all the

labels are the same.

Finally if the first row of this complete matrix of blocks is a diagonal block,

then all are diagonal blocks, since by the previous arguments, if one row is a

vertical (resp. horizontal) block then all are vertical (resp. horizontal) blocks. 0

An automorphism of T maps all vertical blocks to either all vertical blocks, all

horizontal blocks, or all diagonal blocks. This is because, for any pair of distinct

vertical blocks ((a,O), (a,l), (a,2)} and {(b, 0), (b,l), (b, 2)}, if c is the unique

point of W such that {a, b, c} is a block of S, then

(a,O), (a, I), (a,2)

(b,O), (b,l), (b,2)

(c,O), (c,l), (c,2)

is a complete matrix of blocks. Since the image of this matrix is also a complete

matrix of blocks, the blocks forming the rows of the image are all of the same

type by Lemma 4.2.1. Since the first two vertical blocks were chosen arbitrarily,

the automorphism maps all vertical blocks either all to vertical blocks, or all to

horizontal blocks, or all to diagonal blocks.

We shall name automorphisms that map vertical blocks to vertical blocks
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vertical automorphisms, automorphisms that map vertical blocks to horizontal

blocks horizontal automorphisms, and automorphisms that map vertical blocks

to diagonal blocks diagonal automorphisms. Also, we shall collectively call the

latter two non-vertical automorphisms.

The standard automorphisms that we met in the last section are a particular

type of vertical automorphism: those for which the permutation of the labels

is the same for every block. We shall call any vertical automorphism that is

not standard non-standard. The next question we shall tackle is whether non-

standard automorphisms of T exist. First of all we need the following lemma:

Lemma 4.2.2. If the rows of a complete matrix of blocks of T are all vertical

blocks, then the labels of the points in each row are either all even permutations

of {O, 1, 2}, or all odd permutations of the same. Moreover, either the labels of

all rows are the same permutation, or the permutations are all different.

Proof. We need only be concerned with the labels of each point. Suppose the

labels of the first row are the even permutation i i + 1 i + 2 of {O,1, 2}, and the

second row the odd permutation j j + 2 j + 1. Then since each column is a block,

the labels of each column must sum to zero modulo 3, the complete matrix of

labels must be:

'l i+1

j+2

i+2

j+1J

2i + 2j 2i + 2j 2i + 2j.

But the labels of the third row are not the labels of a vertical block, so this

cannot occur. Therefore the permutations of the rows must be of the same type,
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i.e either:

z i+1 i+2

J j+1 j+2

2i + 2j 2i + 2j + 1 2i + 2j + 2,

or

1- i+2 i + 1

J j+2 j+1

2i + 2j 2i + 2j + 2 2i + 2j + 1.

If i = i, then all the row permutations are the same in both cases, otherwise they

are all different. o

Suppose cb is a vertical automorphism of T. Then by Lemma 4.2.2, for any

block {a, b. c} of S, ¢ maps the complete matrix of blocks:

(a,O) (a, I) (a,2)

(b,O) (b,l) (b,2)

(c,O) (c,l) (c,2)

to another complete matrix of blocks, either:

(u, i)

(v,j)

(u,i+1)

(v,j+1)

(u,i+2)

(v,j+2)

(w, 2i + 2j) (w, 2i + 2j + 1) (w, 2i + 2j + 2),

or

(u, i)

(11,j)

(u,i+2)

(v,j+2)

(u,i + 1)

(v,j+1)

(w,2i+2j) (w,2i+2j+2) (w,2i+2j+1),
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for some block {u, v, w} of S, and i, j E Z3' The first form occurs where the

labels of the vertical blocks are always permuted evenly, and the second where

they are permuted oddly.

If i = j for every pair a, b, then <P is a standard automorphism.

We can represent any vertical automorphism of T, <p as a pair of maps ('l/J, T);

'l/J : W --7 W, T : W x Z3 --7 Z3 with some properties yet to be discovered. From

the three diagrams above we see that we can represent T as T = (J" + K, where (J"

is a fixed permutation of {O,1, 2}, and K : W --7 Z3. If <p is standard, then K is

constant on all of W. Furthermore, even if K is not constant on W, from these

diagrams we also deduce:

Lemma 4.2.3. 1fT has a non-standard vertical automorphism, then there exists

a non-constant map K : W --7 Z3 such that for {a, b, c} any block of S,

",(a) + K(b) + K(C) = 0.

This relation allows us to show that if T has non-standard vertical automor-

phisms, then S can itself be constructed from subsystems, in the same way as in

Theorem 3.1.1 we showed that the Bose design constructed from a Steiner triple

system has non-standard automorphisms only if the STS is itself constructable

from three subsystems that have equal orders, but are not necessarily isomorphic.

It is in fact the same construction. We shall prove:

Theorem 4.2.1. Let S = (W, C) be a Steiner triple system of order u, and let

T = (U, A) be the Steiner triple system of order 3v that is obtained from S by the

tripling construction. Then T has a non-standard vertical automorphism if and

only there exist disjoint subsets Xi; i = 0, 1,2 of W with W = Xo UXl UX2, and

IXol = IXII = IX21, such that each Xi forms a subsystem of S, and a Latin square

L, with rows, columns and entries indexed by Xo, XI, and X2 respectively. The
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blocks of S consist of" a) the blocks of each Xi, and b) the triples {Xo, Xl, X2},

with Xi E Xi; i = 0,1,2 such that X2 = L(xo, Xl).

Proof. We shall prove the necessity first. If T has a non-standard vertical auto-

morphism then according to Lemma 4.2.3, there exists a function K, : W -----+ Z3

such that, for {a, b, c} any block of S, K,(a) + K,(b) + K,(c) = 0 and K, is not con-

stant on W. We choose the elements of Xi to be the elements a of W such that

K,(a) = i. The Xi are all non-empty because K, is not constant on W.

The Xi are of equal size. To show this, choose any point Xo E Xo, and let

Xl run through all points of Xl. For each such pair xo, Xl there is a unique

block {xo Xl X2} of S, with X2 E X2 because of the condition satisfied by K,. So

IXII ::; IX21, and interchanging Xl and X2 yields IX21 < IXII. SO IXII = IX21,

and similarly we deduce IXol= IXII also.
The points of each Xi form a subsystem of S because, if X, Y E Xi, then

if Z E W is the unique point such that {x, y, z} is a block of S, then since

K,(x) = K,(Y) = i, and since K,(x) + K,(y) + K,(z) = 0 (mod 3), we have K,(z) = i

also, so z E Xi also.

The blocks {xo, XI, X2} of S with Xi E Xi, i = 0, 1,2 define a Latin square,
.'

because for each Xo E Xo and X2 E X2, there is exactly one block {xo, XI, X2},

with Xl E XI, so each X2 E X2 occurs exactly once in each row, and similarly

each X2 E X2 occurs exactly once in each column.

This concludes the necessity argument. To show sufficiency, if S is any Steiner

triple system constructed in this way, then we define the function K, by K,(a) = i

if a E Xi, and the automorphism ¢ as ¢(a, j) = (a, j + K,(a)). The automorphism

¢ of T is a non-standard vertical automorphism of T because K, is not constant

on W. o
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Next, we examine the conditions necessary for T to have horizontal automor-

phisms. We shall prove:

Theorem 4.2.2. Let S = (W, C) be a Steiner triple system of order v, and let

T = (U, A) be the Steiner triple system of order 3v that is obtained from S by the

tripling construction. 1fT has horizontal automorphisms, then S is itself obtained

from a Steiner triple system by the tripling construction.

Proof. Suppose ¢ is a horizontal automorphism of T. Let the sets Xi; i = 0, 1,2

be defined as a E Xi if the vertical block on a maps to a block with labels i.

Suppose first that Xo is not empty, and a E Xo, and let

¢: {(a,O) (a,l) (a,2)} ---t {(x,O) (y,O) (z,O)}. We extend this mapping to

construct the following diagram:

(a,O) (a, I) (a,2) (x,O) (y,O) (z,O)

(a', j) (a', j + 1) (a', j + 2) ¢ (x,l) (y,l) (z,l)---t

(a",2j) (a",2j + 1) (a",2j + 2) (x,2) (y,2) (z,2),

for some a', a" E W with {a, a', a"} E C and j E Z3 by adding extra rows on

the right-hand side to make three columns, each of which is a vertical block,

then applying the inverse of ¢ to produce second and third rows on the left also.

Observe that the right-hand side is a complete matrix of blocks, so the left-hand

side matrix is therefore one also, and that all of its rows are vertical because the

first was chosen to be, and so the other rows are vertical by Lemma 4.2.l.

This diagram establishes one-one mappings between the Xi since to every

a E Xo it associates a unique a' E Xl and a" E X2 (unique because ¢ is one-one).

We denote the mapping from Xo to Xl by 6, and the mapping from Xo to X2 by

6. We clearly could have started with a in any other Xi and achieved the same
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result.

The Xi are therefore all of size v/3. We assert that the Xi are isomorphic

subsystems of S, and that S is isomorphic to the tripling construction on Xo·

To prove that the Xi are subsystems of S, we show that if a, b E Xi, and

if {a, b, c} is the unique block of S containing a, b, then c E Xi also. Suppose

c E Xj. The diagram:

(a,O) (a,l) (a,2) (x, i) (y, i) (z, i)

(b,O) (b,l) (b,2) cp (u, i) (v, i) (w, i)-7

(c,O) (c,l) (c,2) (r,j) (s,j) (t, j),

is constructed as usual by taking the images of the vertical blocks on a, b, and c

under cp, which are horizontal blocks for some x, y, z, u, u, w, r, s, t E W. Since the

left hand side is a complete matrix of blocks, so is the right hand side. Since the

columns of the right-hand side are blocks, the labels of each column must sum to

zero modulo 3. Therefore j = i, and c E Xi also.

To show that S is isomorphic to the STS obtained by applying the tripling

construction to the subsystem on Xo, we have to show that the subsystems on

Xl and X 2 are isomorphic to that-on X 0, and that for any block {a, b, c} of X 0,

the triples:

{a, b, c}

{a,6(b),6(c)}

{a, 6(b), 6(c)}

{6(a), b,6 (c)}

{6 (a), b, 6(c)}

{6(a),6(b),c}

{6(a),6(b),c}
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are all blocks of S. This will be proved if we can show that

a b e

~l(a) ~l(b) ~l(C)

~2(a) ~2(b) ~2(C)

is a complete matrix of blocks, because firstly it would show that the subsystems

on the Xi are isomorphic because it implies that if {a, b, c} is a block of the

the subsystems on Xl and X2 respectively. Secondly, each triple we require to be

a block of S is either a row, column, or diagonal of this matrix. In order to show

this, if {o" b, c} is a block of the subsystem of S on Xo, we have a mapping of the

form

(a,O) (b,O) (e,O) ~ (u,O) (v,O) (w,O)

for some u, v, w E W. We can extend each column on the right-hand side and

map back using the inverse of cl> to give:

(a,O) (b,O) (e,O) (u,O) (v,O) (w,O)

(6 (a), j) (6(b),j) (6 (c), j) ¢ (u,l) (v,l) (w,l)-7

(6(a),2j) ('2(b),2j) (6(c),2j) (11,,2) (v,2) (w,2),

for some j E Z3. The left hand side is again a complete matrix of blocks

because the matrix on the right is one. In particular, each column, row and

diagonal on the left-hand side is a block of T. Since a, b, e are distinct, the points

of S given by the S-components of the points on the left-hand side are distinct

and form a complete matrix of blocks as required, because the S-components of

any block of T are either a single point or a block of S. Thus S is isomorphic
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to the STS obtained by applying the tripling construction to the subsystem on

Xo· o

Results for the case where T has diagonal automorphisms are not so neat.

Suppose cp : {(a, 0) (a, I) (a,2)} -+ {(x, i) (y, i + j) (z. i + 2j)} for some block

{x, y, z} of Sand i, j E Z3, j i= ° (the case j = ° corresponds to a horizontal

automorphism). By extending each column on the right-hand side to a vertical

block and mapping back via the inverse of cp, we obtain a diagram of the form

(a,O) (a,l) (a,2) (z, i) (y, i + j) (z,i+2j)

(a',k) (a',k+1) (a',k+2) ~ (x,i+1) (y,l+i+j) (z,1+i+2j)

(a",2k) (a", 2k + 1) (a", 2k + 2) (x,i+2) (y,2+i+j) (z,2+i+2j),

for some a', a" E W, where {a, a', a"} is also a block of S, and k E Z3. We can

reduce the number of cases to consider by composing cp with simple permutations

of the labels. Firstly, we eliminate i by adding 2i to all labels in the image of <b.

Secondly, we can use pre-composition with an automorphism that exchanges the

labels 1 and 2 and permutation of columns on both sides to reduce the cases to

be considered to j = 1, k = 0, j = 2, k = 0, j = 1, k = 1, and j = 2, k = 1, i.e.

(a,O) (a, I) (a,2) (x,O) (y,l) (z,2)

(a',O) (a', I) (a',2)
<I> (x, I) (y,2) (z,O)-+

(a",O) (a", I) (a",2) (x,2) (y,O) (z,l),

and
(a,O) (a,l) (a,2) (x,O) (y,l) (z,2)

(a', I) (a',2) (a',O) <I> (x, I) (y,2) (z,O)-+

(a",2) (a",O) (a", 1) (x,2) (y,O) (z,l).
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In the cases where k = 0, the inverse of <P is observed to be a horizontal auto-

morphism, and so by Theorem 4.2.2, 5 is itself isomorphic to a tripled STS. We

shall not be concerned any further with these cases.

In the other cases, for 5 to be isomorphic to a tripled STS, we need a non-

constant map K, from the points of 5 to Z3 such that for any block {a, b, c} of 5,

K,(a) + K,(b) + K,(c) = 0. However, no such natural mapping is apparent, and so

we cannot assert that 5 is isomorphic to a tripled STS. On the other hand, if we

take any STS (8, V) and apply the tripling construction twice, it is apparent that

this does have diagonal automorphisms. If a E V, i, j E Z3, then the mapping

(a, i, j) f---+ (a, i - j, j) is a diagonal automorphism. This can be seen from the

diagram

(a,O,O) (a,O,I) (a,0,2) (a,O,O) (a,2,1) (a,1,2)

(a,I,I) (a,1,2) (a,I,O) ~ (a,O,I) (a,2,2) (a,I,O)

(a,2,2) (a,2,0) (a,2,1) (a,0,2) (a,2,0) (a,1, 1).

However, returning to the general case, we can observe that the diagram

(a,O) (0,,1)

(a', 1) (a', 2)

(0:,2) (x,O) (y,1) (z,2)

(a', 0) ~ (x,l) (y,2) (z,O)

(a",2) (a",O) (a",1) (x,2) (y,O) (z,1).

defines a parallel class of 5, because, starting with any a E W, we can obtain

a unique block {a,a',a"} by using the diagram. We then expand the partial

parallel class by the same method using at each stage any point not yet included

in the class, until all the points are used up. The blocks obtained are pairwise

disjoint because otherwise any two non-disjoint blocks would correspond to the
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same vertical blocks on the right-hand side of the diagram. Therefore, IWI - 3

(mod 6).

Furthermore, the automorphism defines a natural Steiner triple system having

as its points the blocks of the parallel class. If a, b E Ware in different blocks

of the parallel class, and ¢(a, D) = (u,O), ¢(b,O) = (v, D), then the blocks of the

parallel class containing a and b respectively are {a, a', a"} and {b, b', b"} where

a', a" are defined by (a', 1) = ¢-l(U, 1), (a",2) = ¢-l(U, 2), and b', b" are defined

by (b', 1) = ¢-l(V, 1), (b',2) = ¢-l(V, 2). If W E W is the unique point such that

{u, v, w} is a block of S, then we define a third block of the parallel class by

{c,c',c"}, where (c,O) = ¢-l(W,O), (c',O) = ¢-l(W, 1) and (c",O) = ¢-1(w,2).

Thus every pair of distinct blocks of the parallel class occurs in a unique triple of

blocks defined in this way. In particular, I~I == 1 or 3 (mod 6), i.e. IWI == 3 or 9

(mod 18). Since the right-hand side of the diagram

(0,,0) (b,O) (e,O) (1J,,0) (v,O) (w,O)

(a', I) (b',I) (e', 1) ~ (u,l) (v, I) (w,l)

(a", 2) (b", 2) (c", 2) (u, 2) (v, 2) (w, 2).

is a complete matrix of blocks then so is the left-hand side also, and so the array

abc

a' b' c'

a" b" c"

of points of S is also a complete matrix of blocks.

This analysis enables us to state the final result.

Corollary 4.2.1. If the Steiner triple system T is constructed from the Steiner
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triple system 5 by the tripling construction, and if 5 is of order 1, 7, 13, or 15

(mod 18), then all automorphisms ofT are standard, and Aut(T) = Aut(5) x 53.

Proof. If 5 has order not equal to 3 or 9 (mod 18), then by Theorems 4.2.1 and

4.2.2 and the above reasoning, T can have neither non-standard vertical, nor

horizontal, nor diagonal automorphisms, and its automorphisms are all standard.

o

Finally, we provide an example. of an STS 5 which itself is not obtained by

tripling, but whose tripling T does possess a diagonal automorphism. Let (8, V)

be any STS, and choose {x, y, z} E B. We define 5 by modifying the STSobtained

from the tripling of (B, V), replacing the complete matrix of blocks

(x,O) (y,O) (z,O)

(x, I) (y,l) (z,l)

(x,2) (y,2) (z,2)

by the matrix

(x,2) (y,O) (z,O)

(x.: 0) (y,l) (z,l)

(z; I) (y,2) (z,2),

i.e. {(x, i-I), (y, i+ k), (z, i+ 2k)}, i, k E Z3 plus the vertical blocks. We define

the mapping ¢ on T, the tripling of 5, by (x, i,j) -+ (x, i - j,j), for x E V,

i, j E Z3· We show this is an automorphism of T. For any 'U E V,

(u, 0, 0) (u, 0,1) (u, 0, 2) (u, 0, 0) (u, 2,1) (u, 1,2)

(u,I,O) (u,I,I) (u,I,2) s, (u,I,O) (u,O,I) (u,2,2)

(u,2,0) (71,,2,1) (11,,2,2) (u,2,0) (u,I,I) (u,0,2).
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For any block {u, v, w} =1= {x, y, z} E B,

(u,O,O) (v,O,l) (w,0,2) (u,O,O) (v,2,1) (w,1,2)
(u, 1,0) (v,l,l) (w,1,2) 1> (u,l,O) (v, 0,1) (w,2,2)--t

(u, 2, 0) (v,2,1) (w, 2, 2) (u,2,0) (v, 1, 1) (w, 0,2)

for each j E Z3. For the block {x, y, z}, for each i, j, k E Z3,

(x,2,0) (y,O,l) (z,0,2)

(x, 0, 0) (y, 1, 1) (z, 1,2)

(x, 1,0) (y, 2,1) (z, 2,2)

(x, 2, 0) (y, 2,1) (z, 1,2)
1>
--t (x, 0, 0) (y, 0,1) (z, 2, 2)

(x, 1,0) (y, 1, 1) (z, 0, 2).

In each case, inspection shows that on both sides, each row, column, and diagonal

is a block of T. The mapping ¢ therefore preserves blocks, and since it is one-to-

one, it is an automorphism of T. Moreover, the first diagram shows that ¢ is a

diagonal automorphism of T when it is viewed as the tripling of S.
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Chapter 5

4-cycle and even-cycle systems

5.1 Introduction

An m-cycle system of order n is a decomposition of the complete graph on n

vertices, Kn, into cycles of length m. The order n is admissible if n is odd and

~n(n - 1) is divisible by m. Existence has been proved for ([7], page 266):

i) all admissible n for m ::; 50,

i) all admissible n for m a prime power,

iii) all n = 1 (mod 2m) for all m,

iv) n == m (mod 2m) for all odd m.

In this chapter we shall be almost exclusively interested in cycles of even length

2k. We shall denote such a system by 2kCS(n), or sometimes simply 2kCS.

For 2k-cycle systems there is an elegant construction, given 2k-cycle systems

of order 4kr + 1 and 4kr' + 1 respectively, for constructing a system of order

4k(r + r') + 1. We identify one point in each system to be a common point, and
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take as the cycles of the enlarged system the cycles of the original systems together

with the cycles of any decomposition of the complete bipartite graph K4kr,4kr' into

2k-cycles. We shall use this construction several times in this chapter.

5.2 4-cycle systems with given automorphism

group

In 1978, E. Mendelsohn [16] proved that for any finite abstract group r there

exists a Steiner triple system with full automorphism group isomorphic to r. If
Ifl = '"Y and a minimal generator set of r has size t/, then the order of the STS in

Mendelsohn's construction is at least 22"yv. In this chapter, it is proved that for any

given abstract group, I', there exists a 4-cycle system whose full automorphism

group is I', and moreover our construction yields a 4CS of sub-exponential order.

The result extends immediately to 2k-cycle systems if some existence criteria are

met. We shall prove in the final sections that these existence criteria are indeed

met, and thus that the corresponding result for 2k-cycle systems is true.

Following Mendelsohn, we shall use the result [9] of Frucht that for any given

abstract group r there exists a graph whose full automorphism group is r.
We first give the construction. Recall that the necessary and sufficient condi-

tions for the existence of a 4-cycle system of order v is that v 1 (mod 8). For

the construction we shall need the following building blocks:

a) an automorphism-free 4-CS(9) on the points {oo} U {I, 2, ... ,8}, which we

shall call T.

b) two different symmetric decompositions of Ks,s. The chosen decompositions

must be symmetric in the sense that if the 4-cycle ab' cd' is in thedecompo-
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sition, where the unprimed letters are vertices of one part and the primed

letters are vertices of the other part, then the 4-cycle a'bc' d is also in the

decomposition. Such decompositions obviously exist, e.g. for the first we

could choose:

(a, a', b, b') (a, d, b, d') (a, e', b, I') (a, g', b, h')

(e, a', d, b') (e, c', d, d') (e, e', d, 1') (e, g', d, h')

(e, a', I, b') (e, c', I, d') (e, e', I, 1') (e, g', f,h')

(g, a', h, b') (g, c', h, d') (g, e', h, 1') (g, g', h, h').

We require the two decompositions to be different only in the sense that

there is a pair of edges that belong to the same cycle in one decomposition

but not in the other, e.g. exchanging b with e and b' with c' is sufficient.

We shall call one decomposition the edge decomposition, and the other the

non-edge decomposition.

Construction 1

Take any graph G = (V, E) for which Aut(G) = r. We construct a 4-cycle

system S(G) of order 81VI + 1 on the set {oo} U {(v, i), v E V, i E {I, 2, ... ,8}}.

We can consider the edges of the complete graph on this set as all the edges in

the complete graphs on {oo} U'{(v,i),i E {1,2, ... ,8}} for v E V, and all the

edges of the complete bipartite graphs on the parts {(u, i), i E {I, 2, ... , 8}} and

{(v, 'i), i E {I, 2, ... ,8}} for all distinct 'U, u E V.

For each v E V, decompose the complete graph on {oo}U{ (v, i), i E {I, 2, ... ,8}}

with a copy of T. For each distinct 11., v E V, if (11., v) E E, decompose the com-

plete bipartite graph on {(11., i), i E {I, 2, ... , 8}} U {(v, i), i E {I, 2, ... , 8}}, with

a copy of the edge decomposition. Since the decompositions are symmetric, it

does not matter which way the parts are allocated. If (11., v) tJ. E, use the non-edge
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decomposition instead. Every edge is therefore in a unique 4-cycle, and S(G) is

a 4CS(8IVI + 1).

In order to complete the construction, we have to show that automorphism-

free 4CS(9)s exist.

Lemma 5.2.1. If the intersection of two subsystems of a 4GS has size greater

than one, then it is also a subsystem.

Proof. If a and b are points in the intersection, then the unique cycle (a, b, c, d)

containing the edge (a, b), must be a cycle of both subsystems. Therefore the

points of the intersection form a 4-cycle system. 0

Lemma 5.2.2. If the set of fixed points of any automorphism of a 4GS has size

greater than one, then it forms a subsystem.

Proof. If a and b are fixed points then the unique cycle containing the edge (a, b)

is fixed, so the other points in this cycle are also fixed. Thus the complete graph

on the fixed points is decomposed into 4-cycles. o

Lemma 5.2.3. If an automorphism of a 4GS(9) fixes more than one point, then

it is the identity.

Proof. By the previous Lemma, the set of fixed points is either a subsystem or of

order one. However a 4CS(9) has no proper subsystems, since otherwise, if the

subsystem has order n, then n is odd, n(n -1) = 0 (mod 8), and n < 9, for which

the only solution is n = 1. 0

Lemma 5.2.4. The 4GS(9) on the points {oo, a, b, c, d, e, f, g, h} with the follow-

ing cycles:

(00, a, g, b), (00, c, a, d), (00, e, b, I), (00, g, e, h), (a, b, c,j),
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(f,h,a,e), (g,h,b,d), (c,d,f,g), (c,e,d,h)

is automorphism-free.

Proof. Assume that there is a non-trivial automorphism. Then by Lemma 5.2.3,

it has no more than one fixed point. We note the cycles:

(c, e, d, h), (00, c, a, d), (f,h, a, e),

which we shall denote by A, B, C respectively. These cycles are the only ones in

this 4CS(9) where any alternate pairs of points, namely c, d and e, h are repeated.

Consequently any non-trivial automorphism must either swap c with d and e with

h or swap c, d with e, h. Thus the cycle A is fixed and either Band C are fixed or

they are swapped. If Band C are fixed, then the automorphism must exchange

e with h, c with d, 00 with a and a with .f. However, the last two exchanges are

inconsistent, and so the automorphism is trivial.

If Band C are exchanged, then a is fixed and 00 and f are also exchanged.

Considering also the cycles (c,d,f,g) and (oo,g,e,h) we see that 9 is also fixed,

and so the automorphism is again trivial. 0

Before the giving the main theorem, we first define some terminology for the

above construction. We shall call the 4CS on the inflated vertices the vertex

subsystems. A cycle (i.e. 4-cycle) of a Ks,s representing an edge (resp. non-edge)

of G shall be called an edge (resp. non-edge) cycle.

Theorem 5.2.1. The 4-cycle system S obtained from an abstract group r by

Construction 1 has full automorphism group r. Moreover, if If! = ,",(,then S

has no more than 16,",([og2'"'/+ 1 vertices if r is non-cyclic and 24'"'( + 1 vertices

otherwise.
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Proof. Firstly we show that the only 4CS(9) subsystems of S are the vertex

subsystems. Every point of S except the infinity point is in exactly one vertex

subsystem, and the infinity point is in all vertex subsystems. Suppose S contains

a 4CS(9), P, that is not a vertex subsystem. Then P intersects more than one

vertex subsystem. It cannot intersect any vertex subsystem in more than one

point, since otherwise by Lemma 5.2.1, it would be the whole vertex subsystem

because a 4CS(9) has no proper subsystems. Therefore any two points of P must

be in difference vertex subsystems. Therefore any edge of P is either in an edge

cycle or a non-edge cycle. However every edge cycle and every non-edge cycle

contains two points of the same vertex subsystem, contradicting our previous

assumption. Therefore the only 4CS(9) subsystems of S are vertex subsystems.

This implies that any automorphism of S maps one vertex subsystem onto

another. Moreover for any automorphism ¢ of S, if the image of the point (v, i) is

(u,j), 1L,V E V, {i,j E {I,2, ... ,8}}, then i = j because the 4CS(9) T of which

each vertex subsystem is a copy has no automorphisms other than the identity.

Thus we can put ¢((v, i)) = ('ljJ(v), i) where e is a 1-1 mapping V ---* V. Now

we show that 1/) is an automorphism of G. For any pair It, v E V, the edges

of S of form ((u, i), (v, j)), i, j E {I, 2, ... ,8} are either all in edge cycles or all

in non-edge cycles by construction, according as (u, v) is an edge of G or not.

Moreover since the edge decomposition and the non-edge decomposition differ

in at least one cycle, we can tell whether (u, v) is an edge of G by examining

the cycles containing these edges of S. If (1/" v) is an edge of G, then the edges

((u,i),(v,j)), i,j E {I,2, ... ,8} of S are in edge cycles, therefore the edges

(¢((u,i)),¢((v,j))) = (('ljJ(u),i),('ljJ(v),j)), i,j E {I,2, ... ,8} of S are also in

edge cycles of S, and so (1/)(11,), 1/)(v)) is an edge of G. Similarly if Cu, v) is not an
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edge of C, then neither is ('lj;(u), 'lj;(v)). Thus 'lj; is an automorphism of C.

Conversely, for any automorphism '~)of C we can define an automorphism ¢ of

S by ¢((v, i)) = ('lj;(v), i). We show that it is an automorphism of S. The mapping

¢ is clearly I-Ion S, and maps any vertex subsystem to another. We have

further to show that ¢maps edge decompositions to edge decompositions and non-

edge decompositions to non-edge decompositions. That the edges ((u, i), (v, j)),

i.] E {I, 2, ... , 8} of S are in edge cycles of S implies (u, v) is an edge of C.

But (u, v) is an edge of C implies ('lj;(u), 'lj;(v)) is an edge of C, and ('lj;(u), 'lj;(v))

is an edge of C implies the edges (¢((u, i)), ¢((v, j))) = (('lj;(u), i)), ('lj;(v), j)),

i, j E {I, 2, ... ,8} are in edge cycles of S. Similarly for non-edge cycles. Thus ¢

is an automorphism of S.

We have therefore a 1-1 correspondence between automorphisms of Sand

automorphisms of C. In order to show that we have an isomorphism of automor-

phism groups, we need to show that the composition of two automorphisms of C

gives rise to the composition of the corresponding automorphisms of S. If'lj;1 and

'lj;2 are automorphisms of C, and ¢1 (( v, i)) = ('lj;1(v), i), ¢2( (v, i)) = ('lj;2(v), i) for

all v E V, i E {I, 2, ... , 8}, then ¢2¢1 (( o, i)) = ¢2 (( '1/)1(v), i)) = ('1/)2'1/)1(v), i) for all

v E V, i E {I, 2, ... ,8}. Thus, since the identity on C maps to the identity on S,

we shown that our correspondence is an isomorphism of automorphism groups.

Further results of Frucht [9], [10] have shown that if [I'] = , and a minimal

generator set for r is of size u, then we may take the graph C to have 2,v vertices

if r is non-cyclic and 3, otherwise. Since the group (Z2)V is the smallest group

with v generators, v ~ l092, for any group. Thus it follows that 4CS S has no

more than 16,l092' + 1 vertices if r is non-cyclic and 24, + 1 otherwise. 0

Babai and Goodman [1] [3], among others, have proved results concerning
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the minimum order and numbers of edges for graphs with given automorphism

group, which may allow further reduction of the order of 4-cycle systems with

given automporphism group.

5.3 Even-cycle systems

In this section we seek to generalise Theorem 5.2.1. Reviewing Construction 1,

and the proof of Theorem 5.2.1, we can extend the construction and the result

to all 2k-cycle systems if we have two different symmetric decompositions of

K4k,4k into 2k-cycles, and a 2kCS(4k + 1) that is automorphism-free and has no

subsystems. Theorems 5.3.2 and 5.3.1 provide the required existence results.

Theorem 5.3.1. For every k 2: 2, there exists a 2kCS(4k + 1) having trivial

automorphism group and with no proper subsystems.

Theorem 5.3.2. For each k 2: 2 there exists at least two different decompositions

oj K4k,4k into 2k-cycles which are symmetric in the sense that iJ the vertex sets oj

the parts oJ the K4k,4k are {O, 1, ... , (4k-l)} and {O', 1', ... , (4k-l)'} respectively,

then iJ the 2k-cycle (iQ, i~, ... ,i2~k_2'i~k-l) is in the decomposition, then so is also

the cycle (i~,iI, ... ,'i~k-2' i2k-I).

We shall prove these results in the following subsections. We can therefore

state our generalisation of Theorem 5.2.1:

Theorem 5.3.3. For every k 2: 2, and [or any abstract group r oj order "I,

there exists a 2k-cycle system Shaving [ull automorphism group isomorphic to

r. Moreover S has no more than 8k"llog2'Y + 1 vertices iJ r is non-cyclic and

12k"l + 1 vertices otherwise.
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5.3.1 Proof of Theorem 5.3.1

We give the next four lemmas for more general m-cycle systems before specialising

to even-cycle systems. Lemmas 5.3.1 and 5.3.2 trivially extend Lemmas 5.2.1 and

5.2.2.

Lemma 5.3.1. If two subsystems of a mCS(n) intersect in more than one point,

then their intersection is also a subsystem.

Lemma 5.3.2. If the set of fixed points of any automorphism of a mCS(n) has

size greater than one, then it forms a subsystem.

Lemma 5.3.3. A cyclic mCS(2m + 1) has no proper subsystems if m > 3.

Proof. A cyclic mCS(2m+ 1) has just one orbit, since there are just 2m+ 1 cycles.

Suppose there is a cyclic mCS(2m + 1) S with a proper subsystem. Let T be a

minimal subsystem of S of order t. Then m ::; t < 2m + 1 since T must contain

at least one cycle.

Since there is only one orbit, every cycle of S is a translate of every other

cycle, and so every cycle of S is in a translate of T. Since T is minimal, T does

not share any cycles with any of its translates, since otherwise, by Lemma 5.3.1

the intersection of two translates of T would be a smaller subsystem than T.

Every point of T is in precisely m cycles of S, and is in precisely (t - 1)/2

cycles of T and of each translate in which it occurs. Each point of T is in the

same number of translates of T. Let this number be r. Then m = r(t - 1)/2.

Putting t = 2q + 1, since t ~ m ~ 3, we have 2q + 1 ~ qr ~ 3, so either r = 1,

r = 2, or q = 1 and r = 3.

If r = 1, then T is the whole of S. If q = 1 and r = 3, then m = 3, and the

mCS(2m + 1) is the unique STS(7), and every 3-cycle is a proper subsystem.

72



If T = 2, then t = m + 1, but then m must be even since t must be odd to be

admissible. But t cannot be admissible because then m must divide ~(m + 1)m.

Therefore for m > 3 a cyclic mCS(2m + 1) has no proper subsystems.

o

We have already proved Theorem 5.3.1 for the case k = 2. To prove this for

k > 2, we shall modify a suitable construction for cyclic m-cycle systems. The

following, given by Buratti and Del Fra, [5J,will suffice:

Lemma 5.3.4. Let B = (b1, b2, ... ,bm) be the m-cycle defined by:

i( _l)i+l JOT i < T!!:.
2

i( -l)i f .> mor Z _ 2'

The translates of B (mod 2m + 1) generate a cyclic mCS(2m + 1).

We shall find it convenient in these constructions to number the positions in

the cycle from 1 to m, but the cycles themselves from ° to 2m. Cycle B has label

0. As an example, the following is the 6CS(13) constructed by this method:

(1, -2, -3,4, ::_5,6) , (2, -1, -2,5, -4, -6)

(3,0, -1,6, -3, -5) , (4,1,0, -6, -2, -4)

(5,2,1, -5, -1, -3) , (6,3,2, -4,0, -2)

(-6,4,3, -3, 1, -1) , (-5,5,4, -2,2,0)

(-4,6,5, -1,3,1) , (-3, -6,6,0,4,2)

(-2, -5, -6, 1,5,3) , (-1, -4, -5, 2, 6, 4)

(0, -3, -4,3, -6,5)

Observe that for sufficently large m, and 1 :=:; i < ~ - 2, and for ~ :=:;i :=:; m - 2,
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the difference between the ith and i + 2th entries of B is ±2. Consequently,

considering alternate positions in a cycle, the same pair of points occurs several

times in the system, for instance in the 6CS(13) example above, the points -3

and -5 occur in the third and fifth positions in the zeroth cycle, and in the

sixth and fourth positions in the fourth cycle. We can exploit this to produce a

different mCS(2m + 1) by exchanging the intervening points, i.e. in our example

exchanging the 4 in cycle 0 with the -1 in cycle 4. Each edge still occurs exactly

once in the new system, but the new system is no longer cyclic. We formalise this

in the following for the case of even cycles. Constructions for the cases k = 3, 4

are provided separately.

Construction 2

For any k > 4, take the 2kCS(4k + 1) constructed by Lemma 5.3.4. Put k = 2t

for k even and k = 2t + 1 for k odd. We shall call this cyclic 2kCS( 4k + 1) system

S, and will construct a new system which we shall call S'.

In the case of k = 2t we exchange the 2t + 2th point of the oth cycle with the

4t - 3th point of the 2t + 2th cycle. In the case of k = 2t + 1 we exchange the

2t + 4th point of the oth cycle with the (4t - l)th point of the 2t + 2th cycle.

Lemma 5.3.5. Construction 2 produces a 2kCS(4k + 1).

Proof. In order to show that S' is a 2kCS( 4k + 1) we must show that it is a

decomposition of K4k+1,4k+l into 2k-cycles. Since S' differs from the 2kCS( 4k + 1)

S in only two cycles we merely have to show that the two new cycles contain the

same edges as the originals, and that the points in each cycle are distinct.

We shall deal first with the case where k is even, k = 2t, t > 2. The 2t + Itk,

2t + 2tk, and 2t + 3th points of the oth cycle of the original system S are - (2t + 1),

2t + 2, and -(2t + 3) respectively, by reference to the expression for the points
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of the cycle B given in Lemma 5.3.4.

The 4t - 4th, 4t - 3th, and 4t - 2th points of the 2t + 2th cycle of 5 are ob-

tained by adding 2t + 2 to the corresponding points of of the oth cycle, and so

these are, (mod 8f + 1):

(4t - 4) + 2t + 2 6t - 2

- (4t - 3) + 2t + 2

4t - 2 + 2t + 2 = 6t

-(2t + 3),

-(2t - 5), and

-(2t + 1)

respectively. Noting from this that the 2t + 1th point of the o= cycle of 5 is equal

to the 4t - 2th point of the 2t + 2th cycle, and that the 2t + 3th point of the oth

cycle of 5 is equal to the 4t - 4th point of the 2t + 2th cycle, we conclude that if

the 2f + 2th of the oth cycle is exchanged with the 4f - 3th point of the 2f + 2th

cycle, the new cycles contain the same edges as before.

We must also be sure that the oth cycle of 5 does not contain the point

-(2t - 5), and that the 2t + 2th cycle does not contain the point 2t + 2. In the

first case this is because if -(2t - 5) were in the oth cycle, it would be the 2t _ 5th

point. But referring to Lemma 5.3.4, the 2t - 5th point of the cycle is 2t - 5. In

the second case, we observe that the 2t + 2th cycle of 5 contains the point 2t + 2

only if the oth cycle contains the point O. But this is not the case. Hence for the

case k = 2t, S' is a 2kCS(4k + 1).

Now we prove the case for k odd, k = 2t + 1, t 2: 2. We shall proceed as in

the even case. The 2t + 3th, 2t + 4th, and 2t + 5th points of the Oth cycle of the

original system 5 are -(2t + 3), 2t + 4, and -(2t + 5) respectively, by reference

to the expression for the points of the cycle B given in Lemma 5.3.4.

The 4f - 2th, 4t - 1"', and 4tth points of the 2t + 2th cycle of 5 are obtained
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by adding 2t + 2 to the corresponding points of of the oth cycle, and so these are,

(mod 8t + 5):

4t - 2 + 2t + 2 6t

-(4t-1)+2t+2

4t + 2t + 2 = 6t + 2

-(2t + 5),

-(2t - 3), and

-(2t + 3)

respectively. Noting from this that the 2t + 3th point of the oth cycle of 5 is equal

to the 4tth point of the 2t + 2th cycle, and that the 2t + 5th point of the oth cycle

of 5 is equal to the 4t - 2th point of the 2t + 2th cycle, we conclude that if the

2t + 2th point of the oth cycle is exchanged with the 4t + 1th point of the 2t + 2th

cycle, the new cycles contain the same edges.

We must show that the oth cycle of 5 does not already contain the point

-(2t - 3), and that the 2t + 2th cycle does not contain the point 2t + 4. In the

first case this is because if -(2t - 3) were in the oth cycle, it would be the 2t - 3th

point. But referring to Lemma 5.3.4, the 2t - 3th point of the cycle is 2t - 3. Also,

we observe that the 2t + 2th cycle of 5 contains the point 2t + 4 only if the oth

cycle contains the point (2t + 4) - (2t + 2) = 2. But this is not the case. Hence

5' is also a 2kCS(4k + 1) for k ,. 2t + 1, t ~ 2. 0

Lemma 5.3.6. For k > 4, the 2kC5(4k+ 1), 5' that is produced by Construction

2 has no proper subsystems.

Proof. Again, we put k = 2t, for k even and k = 2t + 1 for k odd. We shall

deal with the case k = 2t first. Any subsystem of 5' must contain either the oth

cycle or the 2t + 2th cycle, since otherwise the same subsystem would be present

in the orginal cyclic system 5, which has no proper subsystems by Lemma 5.3.3.

But if the subsystem contains either of these cycles it must contain both, since
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the cycles have two points in common, namely the neighbours of the exchanged

points, as seen in Lemma 5.3.5. But if a proper subsystem of S' contains both

cycles, then by restoring the exchanged points to their original places, we could

produce a proper subsystem of S, contradicting Lemma 5.3.3. Therefore S' has

no proper subsystems.

The proof for k = 2t + 1 proceeds in exactly the same way. o

We shall call a pair of alternate points in a cycle an alternate pair. For the

sake of clarity we show alternate pairs in square brackets, e.g. [a, b]. In order

to prove the 2kCS(4k + 1) S' has trivial automorphism group, we examine the

frequency of each possible alternate pair in S'. We shall find it convenient to do

this first for the cyclic system S. We need only look at the oth cycle of S. We

shall take the cases k = 2t and k = 2t + 1 separately.

Firstly, we take k = 2t. The oth cycle of Sis:

(1, -2,3, ... , -(2t - 2), 2t - 1, 2t, -(2t + 1), 2t + 2, -(2t + 3) ... , -(4t - 1), 4t),

where all points are (mod Sf + 1). Except for the alternate pairs [-(2t - 2), 2t],

[2t - 1, -(2t + 1)], [-(4t - 1),1], and [4t, -2], the absolute difference between

alternate pairs is 2. In a single cycle of S, there are therefore 4t - 4 alternate

pairs with difference 2, two with difference 4t, and one each with differences 4t - 2

and 4t + 2 respectively. The frequency of any alternate pair in S is equal to the

frequency of pairs with the same difference in a single cycle, so for instance the

alternate pair [1,3] occurs 4t - 4 times in S.

Now we consider S'. The only cycles of S' that are different from S are the

oth and 2t + 2th cycles, and these are:

(1, -2,3, ,2t, -(2t + 1), -(2t - 5), -(2t + 3), 2f + 4, ... ,4t), and

(2t + 3, 2t, , -(2t - 7), -(2t + 3), 2t + 2, -(2t + 1), -(2t - 3), -(2t - 1) ),
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where the exchanged points are show in bold. This has the effect of replacing the

alternate pairs [2t, 2t +2] and [2t+2, 2t +4] in the oth cycle by [2t, - (2t - 5)] and

[-(2t - 5), 2t + 4], and the pairs [-(2t - 7), -(2t - 5)] and [-(2t - 5), -(2t - 3)]

in the 2t + 2th cycle by [-(2t - 7), 2t + 2] and [2t+ 2, -(2t - 3)]. Thus alternate

pairs with differences 2 are replaced with cycles with differences 4t - 5, 4t - 1,

4t - 5, and 4t - 1. In particular we note that in S' the alternate pairs [2t, 2t + 2],

[2t + 2, 2t + 4], [-(2t - 7), -(2t - 5)] and [-(2t - 5), -(2t - 3)] each occur with

frequency 4t - 5 2: 7, whereas every other alternate pair with difference 2 occurs

with frequency 4t - 4, and no other alternate pair occurs with frequency more

than two.

Secondly we consider k = 2t + 1, t 2: 2. The oth cycle of Sis:

(1, -2,3, ... , 2t - 1, -2t, -(2t + 1), 2t + 2, -(2t + 3), 2t + 4, -(2t + 5), 2t + 6,

... ,-(4t+l),4t+2),

where all points are (mod 8t +5). Except for the alternate pairs [2t -1, -(2t+ 1)],

[-2t,2t + 2], [-(4t + 1),1], and [4t + 2, -2], the absolute difference between

alternate pairs is 2. In a single cycle of S, there are therefore 4t-2 alternate pairs

with difference 2, two pairs with difference 4t + 2, and one each with difference

4t and 4t + 4 respectively. All-alternate pairs with these differences occur with

these frequencies in S.

Considering S', the only cycles of S' that are different from S are the oth and

2t + 2th cycles, and these are:

(1, -2,3, , 2t + 2, -(2t + 3), -(2t - 3), -(2t + 5), 2t + 6, ... ,4t + 2), and

(2t + 3, 2t, , -(2t - 5), -(2t + 5), 2t + 4, -(2t + 3), -(2t - 1), -(2t + 1) ),

This has the effect of replacing the alternate pairs [2t+2, 2t+4] and [2t+4, 2t+6]

in the oth cycle by the pairs [2t + 2, -(2t - 3)] and [-(2t - 3), 2t + 6], and the
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pairs [-(2t - 5), -(2t - 3)] and [-(2t - 3), -(2t - 1)] in the 2t + 2th cycle by

[- (2t - 5), 2t + 4] and [2t + 4, - (2t - 1)]. Thus alternate pairs with difference

2 are replaced with cycles with differences 4t - 1, 4t + 3, 4t - 1, and 4t + 3. In

particular we note that in 8' the alternate pairs [2t + 2, 2t + 4], [2t + 4, 2t + 6],

[-(2t-5), -(2t-3)] and [-(2t-3), -(2t-1)] each occur with frequency 4t-3 ~ 5,

whereas every other alternate pair with difference 2 occurs with frequency 4t - 2,

and no other alternate pair occurs with frequency more than two.

Lemma 5.3.7. For k > 4 the automorphism group of the 2kCS(4k + 1) S' is

trivial.

Proof. Since by Lemma 5.3.2 the fixed points of any automorphism of 8' form

a subsystem, and since by Lemma 5.3.6 S' has no proper subsystems, no non-

trivial automorphism has more than one fixed point. We consider the case k = 2t

first. We know from the above analysis that the four alternate pairs [2t, 2t + 2],

[2t+ 2, 2t + 4], [-(2t -7), -(2t - 5)] and [-(2t - 5), -(2t - 3)] occur with unique

frequency 4t - 5. Any automorphism of 8' must either permute or stabilise these

pairs. Since the point 2t + 2 is common to two pairs, and -(2t - 5) is common

to the other two, any automorphism either fixes both points or transposes them.

Supposing them to be transposed, either 2t must be transposed with -(2t - 7)

and 2t + 4 with -(2t - 3) or 2t with -(2t - 3) and 2t + 4 with -(2t - 7).

The 3rd cycle contains the sequence - (2t - 7), 2t, - (2t - 5), 2t +2, ... , starting

at the 2t - 4th position. The cycle does not contain either of the points 2t + 4

or -(2t - 3) because otherwise the oth cycle would contain 2t + 1 or -2t. Since

this is the unique cycle containing the edge -(2t - 5), 2t + 2, the automorphism

preserves the cycle and reverses it. But then -(2t - 7) and 2t cannot be mapped

to 2t + 4 and -(2t - 3). Therefore the automorphism is the identity.
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The case k = 2t + 1, t 2': 2 is proved in a similar way. Suppose there exists a

non-trivial automorphism of S'. The alternate pairs [2t+2, 2t+4], [2t+4, 2t+6],

[-(2t - 5), -(2t - 3)] and [-(2t - 3), -(2t -1)] are the only ones that occur with

frequency 4t - 3 in S'. Therefore a non-trivial automorphism transposes 2t + 4

and -(2t-3), and either exchanges 2t+2 with -(2t-5) and 2t+6 with -(2t-1)

or exchanges 2t + 2 with -(2t - 1) and 2t + 6 with -(2t - 5).

However the 6t + 7th cycle contains the sequence 2t + 2, 2t + 6, 2t + 4, -(2t -

3), -2t, -(2t - 5) starting at the 4tth position. The cycle does not contain the

point - (2t - 1), because otherwise the oth cycle would contain -1. Since this

is the unique cycle containing the edge (2t + 4, -(2t - 3)), the automorphism

preserves it and reverses it about this edge. But then 2t + 6 would map to - 2t,

not -(2t - 1). Thus the automorphism is the identity. o

Lemma 5.3.8. There exists a 6CS(13) with trivial automorphism group and no

proper subsystems.

Proof. We modify the construction of Lemma 5.3.4 for m = 6 exchanging 4 at

position 4 in the oth cycle with -1 at position 5 in the 4th cycle.

(1, -2, -3, -1, -5, 6) , (2, -1, -2, 5, -4, -6)

(3, 0, -1, 6, -3, -5) , (4, 1, 0, -6, -2, -4)

(5, 2, 1, -5, 4, -3) , (6, 3, 2, -4, 0, -2)

(-6, 4, 3, -3, 1, -1) , (-5, 5, 4, -2, 2, 0)
(-4, 6, 5, -1, 3, 1) , (-3, -6, 6, 0, 4, 2)

(-2, -5, -6, 1, 5, 3) , (-1, -4, -5, 2, 6, 4)

(0, -3, -4, 3, -6, 5)

This 6CS(13) is proved to have no proper subsystems using the same method as
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for Lemma 5.3.6. The differences between alternate pairs in ordinary cycles, i.e.

cycles with no exchange, are 4, 6, 2, 2, 6, 5. In the oth cycle the corresponding dif-

ferences are 4, 1,2,6,6,5, and in the 4th cycle they are 4,6,3, 2,1,5. In particular,

we see that the alternate pair [6, -1] occurs three times in S', in the oth, 8th, and
11th cycles respectively, whereas no other alternate pair occurs with frequency

greater than two. Consequently, the points 6 and -1 are either both fixed or

swapped by any automorphism of S'. If they are fixed then the automorphism is

trivial by Lemma 5.3.2. Otherwise, considering the triples of consecutive points

-1, -5,6 in the oth cycle, 6,5, -1 in the 8th cycle, and 6,4, -1 in the 11th cycle,

-5 must either be fixed or mapped to either 5 or 4. But considering the 2nd cycle,

which contains the edge (-1,6) and also -5, if 6 and -1 are swapped, then -5

must be swapped with 3. Hence 6 and -1 must be fixed, and any automorphism

of S' is trivial. D

Lemma 5.3.9. There exists an 8CS(17) with trivial automorphism group and no

proper subsystems.

Proof. We modify the construction of Lemma 5.3.4 for m = 8 exchanging 6 at
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position 6 in the oth cycle with -3 at position 7 in the 4th cycle.

(1,-2,3,4, -5) -3) -7) 8) , (2,-1,4,5, -4, 7, -6, -8)

(3,0,5,6, -3,8, -5, -7) , (4,1,6, 7,-2, -8, -4, -6)

(5,2,7,8, -1, -7,6, -5) , (6,3,8, -8,0, -6, -2, -4)

(7,4, -8, -7, 1- 5,-1, -3) , (8,5, -7, -6,2, -4,0, -2)

(-8,6, -6, -5,3, -3, 1)-1) , (-7,7, -5, -4,4, -2, 2,0)

(-6,8, -4, -3, 5, -1,3) 1) , (-5, -8, -3, -2,6,0,4,2)

(-4,-7,-2,-1,7,1,5)3) , (-3,-6,-1,0,8,2,6,4)

(-2,-5,0,1,-8,3)7,5) , (-1,-4,1,2,-7,4,8,6)

(0,-3,2,3, -6) 5, -8, 7)

Again, the system has no proper subsystems, which can be shown by the same

method as in Lemma 5.3.6.For cycles other than the oth and the 4th, the sequence

of alternate differences is 2,6,8,2,2,2,8,7. For the oth cycle it is 2,6,8,7,2,6,8,7,

and for the 4th cycle it is 2,6,8,2) 7,2,1, 7. From these differences we see that,

except for the alternate pairs [4,6]' [6,8]and [-1, -3], each alternate pair with

difference 2 occurs four times in the system, whereas these pairs each occur only

three times each. No other alternate pair occurs three times. Therefore an

automorphism can only permute these pairs, and the point 6 is common to two

of them it is fixed by all automorphisms. By Lemma 5.3.2, an automorphism

that fixes more than one point is the identity, so a non-trivial automorphism

transposes 4 with 8 and -1 with -3. In particular, cycle 6 uniquely contains the

edge -1, -3, and so it is preserved. However, this cycle contains 4 but not 8, so

the only automorphism is the identity.

Therefore, by Lemma the only automorphism is the identity. D
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5.3.2 Proof of Theorem 5.3.2

We require two different symmetric decompositions of K4k,4k into 2k-cycles. We

first of all show that there is at least one such decomposition.

Theorem 5.3.4. For each k ~ 2 there exists a symmetric decomposition of K4k,4k

into 2k-cycles.

Proo]. As already remarked, the case k = 2 has been covered in Section 5.2. For

k > 2 we present a separate construction for each residue class (mod 4).

I) For k = ° (mod 4), we put k = 4s, and partition the 2k - 2 differences

(mod 4k), excluding 0, k and 2k, into sequences, each of length k - 1. For

k ~ 12 these sequences are:

-3,5, -7, ... , -(k - 1), -(k - 2), (k - 4), -(k - 6), ... , -2, k + 1,

and

L -(k + 3), (k + 5), -(k + 7), ... , -(2k - 1), -(2k - 2), (2k - 4),

-(2k - 6), (2k - 8), ... , -(k + 2),

where in the first sequence the central, 2sth value is -(k - 2), and in the

second sequence the central value is -(2k -1). For k = 4 the sequences are

-3, -2,5 and 1, -7, -6 respectively, and for k = 8 they are:

-3,5, -7, -6,4, -2,9 and 1, -11, 13, -15, -14, 12, -10.

The first sequence sums to zero and the second to k. This can be seen for

instance in the first sequence by pairing -3 with -(k - 2), 5 with (k - 4)

etc, which sum alternately to ±(k + 1), giving

-s(k + 1) + (s - l)(k + 1) + (k + 1) = o.
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For the second sequence, pairing -(k + 3) with -(2k - 2) etc., we obtain

similarly

1 - 8(3k + 1)+ (8 - 1)(3k + 1) = -3k - k (mod 4k).

Develop these into sequences of k points starting with ° by successive ad-

dition:

a) 0, -3,2, -5,4, -7, ... , -(28 + 1), -(68 - 1), -(28 + 3), -(68 - 3),

-(28 + 5), ... , -(k - 1), -(k + 1),0, and

b) 0,1, -(k + 2), 3, -(k + 4), ... , -(68 - 2), (28 - 1), -68, (28+ 2),

-(68 + 2), (28+ 4), -(68 + 4), ... , (k - 2), -(2k - 2), k.

From sequence a) we shall construct 4k cycles that additionally contain the

edges with difference k, and from sequence b) we shall construct 2k cycles

that additionally contain the edges with difference zero and 2k cycles that

additionally contain the edges with difference 2k.

From sequence a), take the four sequences obtained by adding 0, k, 2k and

3k respectively:

i) 0, -3, ... - (k + 1),0,

ii) k, (k - 3), , -1, k,

iii) 2k, (2k - 3), (k - 1), 2k,

iv) 3k, (3k - 3), , (2k - 1), 3k.

Now concatenate i) with ii) and iii) with iv), then join the ends and label

alternately to obtain the cycles:
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(0', -3, ... - (k + 1),,0, k', (k - 3), ... , -I', k), and

(2k', (2k - 3), ... (k - I)', 2k, 3k', (3k - 3), ... , (2k - 1)', 3k).

Labelling the points in the opposite way and pairing i) with iv) and ii) with

iii) we obtain:

(0, -3', ... - (k + 1),0', 3k, (3k - 3)', , (2k - 1), 3k'), and

(k, (k - 3)', ... , -1, k', 2k, (2k - 3)', (k - 1), 2k').

We develop each of these cycles cyclicly by adding 0,1, ... , (k - 1) respec-

tively to each point to obtain a total of 4k cycles that in particular contain

all the edges with difference k.

We construct the cycles containing the edges with differences zero and 2k

from sequence b). Take the four sequences obtained by adding 0, k, 2k and

3k respectively:

i) 0,1, ... , -(2k - 2), k,

ii) k, k + 1, , -(k - 2), 2k,

iii) 2k, 2k + 1, 2, 3k,

iv) 3k,3k+l, ,k+2,0.

To construct the cycles with difference zero, we concatenate two copies of

sequence i), one reversed, and label alternately, joining the ends to obtain

a cycle, and do the same also with sequence iii). This yields the cycles:

(0, 1', ... , -(2k - 2), k', k, -(2k - 2), ... ,1,0'), and

(2k, (2k + 1)', ... ,2, 3k', 3k, 2', ... , (2k + 1), 2k').

Develop these cyclicly by adding 0,1, ... , (k - 1) respectively to each point

to obtain a total of 2k cycles.

To construct the cycles with difference 2k, concatenate sequence ii) with
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sequence iv) reversed, join the ends and label in both ways to obtain the

cycles:

(k, (k + 1)', , -(k - 2), 2k', 0, (k + 2)', , (3k + 1), 3k'), and

(k', (k + 1), , -(k - 2)', 2k, 0', (k + 2), , (3k + 1)', 3k).

Develop these cyclicly by adding 0,1, ... , (k - 1) respectively to each point

to obtain a further 2k cycles.

This completes the symmetric decomposition for k - 0 (mod 4).

II) For k - 1 (mod 4), we put k = 48 + 1, and partition the 2k - 2 differences

(mod 4k), excluding 0, k and 2k into two sequences each of length k - 1.

For k 2 9 these are:

-1,2, -3, ... ,-(28 -1), (28+ 1), -(28 + 2), (28+ 3), ... , -(k -1), (68+ 1),

and

-28, (k + 1), -(k + 2), (k + 3), ... , -(68 - 1),68, -(68 + 2),

(68+ 3), ... , -(2k - 2), (2k - 1),

and for k = 5 the sequences are -1,3, -4,7 and -2,6, -8,9. As a further

example, the sequences for k = 9 are

-1,2, -3,5, -6, 7, -8, 13 and -4, 10, -11, 12, -14, 15, -16, 17. Each sequence

sums to k. This can be seen for instance with the first sequence by pairing

-1 with -(k - 1), 2 with (k - 2) etc, which sum alternately to ±k, giving

-k8+k(8-1)+(28+1)+(68+1) = k. Similarly with the second sequence,

pairing (k+1) with (2k-1) etc., we have -28+3k8-(68+2)-3k(8-1) = k.

Develop each of these into sequences of k points starting with 0 by successive

addition:

a) 0, -1, 1, -2, 2, ... , -(8 - 1), (8 - 1), -8, (8 + 1), -(8 + 1), (8 + 2),

-(8 + 2), ... ,28, -28, k, and
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b) 0, -28, (28 + 2), -(28 + 1), (28 + 3), -(28 + 2), (28 + 5), ... , -(38 - 1),

(38 + 1), -(38 + 1), (38 + 2), -(38 + 2), ... , (k - 1), -(k - 1), k.

From sequence a) we shall construct 4k cycles that additionally contain the

edges with difference k, and from sequence b) we shall construct 2k cycles

that additionally contain the edges with difference zero and 2k cycles that

additionally contain the edges with difference 2k.

From sequence a) construct a cycle by concatenating two copies, labelling

alternate points, and joining the ends, i.e.

(0', -1, 1', ... , -28, k', 0, -I', 1, ... , -28', k). This cycle has two new edges

with difference k. Develop cyclicly (mod 4k) to obtain 4k cycles.

We now construct the cycles containing the edges with differences zero and

2k from sequence b). Take the four sequences obtained by adding 0, k, 2k

and 3k respectively:

i) 0, -28, ... , -(k - 1), k,

ii) k. (k - 28), ,1, 2k,

iii) 2k, (2k - 28), , k + 1, 3k,

iv) 3k, (3k - 28), , 2k + 1,0.

To construct the cycles with difference zero, we concatenate two copies of

sequence i), one reversed, and label alternately, joining the ends to obtain

a cycle, and do the same also with sequence iii). This yields the cycles:

(0, -28', ... , -(k - 1), k', k, -(k - 1)', ... , -28,0'), and

(2k, (2k - 28)', ... , (k + 1), 3k', 3k, (k + 1)', ... , (2k - 28), 2k').

Develop these cyclicly by adding 0, 1, ... , (k - 1) respectively to each point

to obtain a total of 2k cycles.
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To construct the cycles with difference 2k, concatenate sequence ii) with

sequence iv) reversed, join the ends and label in both ways to obtain the

cycles:

(k, (k - 28)', ,1, 2k', 0, (2k + 1)', , (3k - 28), 3k'), and

(k', (k - 28), ,1', 2k, 0', (2k + 1), , (3k - 28)', 3k).

Develop these cyclicly by adding 0, 1, ... , (k - 1) respectively to each point

to obtain a further 2k cycles.

This completes the symmetric decomposition for k 1 (mod 4).

III) For k = 2 (mod 4), we put k = 48 + 2. In this case we shall decompose

K2k,2k into 2k-cycles. We can expand this to a decomposition of K4k,4k

by partitioning K4k,4k into four copies of K2k,2k, then decomposing each of

those into 2k-cycles.

Firstly we arrange the k - 1 differences (mod 2k), excluding k and 0, into

the sequence 1, -2,3, -4, ... , (k - 1). This has sum ~, which we can see

by pairing consecutive terms, giving - (k;2) + (k - 1) = ~. Develop this

into a sequence of k points starting with ° by successive addition to obtain

0,1, -1,2, -2 ... ,28, -28, (~8 + 1) = ~.

Take the four sequences obtained by adding 0, ~, k and 3; respectively to

each point:

) ° 1 1 2 2 k-2 k-2 ka "-,, - , ... , -2-' --2-' 2'

b) ~,k~2,k;2, ... ,k_l,l,k,

c) k, k + 1, k - 1, ... , k~2, 3
2
k,

d) 3k 3k+2 3k-2 k 1 °2'-2-'-2-'"'' + , .
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Now concatenate two copies of a), one reversed, label alternately, and join

the ends to obtain the 2k-cycle

(0' 1 l' k-2' k k' k-2 l' 0), ,- ,... ,--2- '2' 2' --2-'···' , .

We do the same with sequence c) to obtain the cycle

(k' k 1 k l' k+2' 3k 3k' k+2 k 1 k r k), ,+ , - ,... ,-2- ,2' 2 ' -2-'· .. , - , ,+ "

These cycles each contain two new edges with difference zero. Develop each

of these cyclicly (mod 2k) for ~ repetitions only to obtain k cycles. Finally,

concatenate b) with d) reversed, join the ends and label in both possible

ways to obtain the two cycles

(k' k+2 k-2' l' k 0' I. 1 3k+2' 3k) d2 ' -2-' -2- , ... , ", ,fI., + , ... , -2- '2 ' an

( k k+2' k-2 1 k' 0 k r 3k+2 3k')2' -2- , -2-' ... , , , , + ,... ,-2-' 2 .

These cycles each contain two new edges with difference k. Develop each

of these cyclicly (mod 2k) for ~ repetitions to obtain k further cycles.

This completes the symmetric decomposition for k == 2 (mod 4).

IV) For k = 3 (mod 4), we put k = 48 + 3. As for the previous case, we shall

decompose K2k,2k into 2k-cycles, and expand this to a decomposition of

K4k,4k.

Firstly, we arrange the k - 1 differences (mod 2k), excluding k, into the

sequence

-1,3, -5, ... , (k - 4), -(k - 2), (k + 1), -(k + 3), (k + 5), -(k + 7),

... , -(2k - 4), (2k - 2) = -2.
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The sequence sums to k, which we can see by pairing -1 with (k + 1), and

3 with -(k +3) etc., giving k(s + 1) - ks = k. Develop this into a sequence

of points starting with 0 by successive addition:

0, -1,2, -3, ... , - k;l, k~3, - k~3, ... ,k - 2, -(k - 2), k.

Concatenate two copies of this, one reversed, label alternately, and join the

ends to obtain the 2k-cycle

(0', -1, 2', ... , - (k - 2), k', k, - (k - 2)', ... , -1', 0).

This cycle contains two new edges, each with difference o. Develop this

cyclicly (mod 2k) for k repetitions to give k cycles. Now add k to each

point of the original sequence of points to obtain

k, (k - 1), (k + 2), ... ,2,0, and concatenate two copies of this sequence end

to end, label alternately, and join the ends to obtain

(k', (k - 1), (k + 2)', ... ,2,0', k, (k - 1)', (k + 2), ... ,2',0).

This cycle contains two new edges, each with difference k. Finally develop

this (mod 2k) for k repetitions to complete the symmetric decomposition

for the case k = 3 (mod 4).

This completes the proof of Theorem 5.3.4. o

Recall that we have already provided a second different decomposition of K8,8

into 4-cycles in Section 5.2. For k > 2, given one decomposition we can easily

produce a second different one by the following method. Denote the vertices of

the two parts of K4k,4k by 0, 1, ... , (4k - 1) and 0', 1', ... , (4k - 1)' respectively.

Note that for the cases k 0,1,3 (mod 4) in Theorem 5.3.4, the decomposition

contains a cycle that contains the edges (0,0') and (k, k') but not the edge (1,1').

Also, for the case k == 2 (mod 4) the decomposition contains the edges (0,0') and

(~,f) but again not the edge (1,1'). If we now re-label the decomposition by
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exchanging the label 1 with 0, and the label I' with 0' in all cycles, we obtain a

new, though isomorphic decomposition, but which in the cases k - 0,1,3 (mod 4)

the cycle that contains the edge (k, k') also contains the edge (1, I') but not the

edge (0,0'), and in the case k = 2 (mod 4) the cycle that contains the edge (~, f)
also contains the edge (1, I') but not (0,0'). In each case the second decomposition

is different to the original in the sense required.

This completes the proof of Theorem 5.3.2.
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Chapter 6

Odd cycle systems

6.1 Introduction

In this chapter we shall prove that for every group r and every odd m > 3, there is

an mCS(n) system for some n, which has full automorphism r. Mendelsohn, [16],

has already proved this for m = 3. The proof of this result requires a different

fundamental construction from that used for the even-cycles case of Chapter 5,

but we will also use some of the basic results proved there.

In common with the even-cycles case, the approach is to show that for any

graph G = (V, E), there is an mCS(n) system with the same automorphism

group. The result of Frucht [9] is then used to provide a graph with the required

automorphism group.

To construct an mCS system with the same automorphism group as a given

graph, we define a recursive construction analogous to a lVI-dimensional cube,

where V is the vertex set of the graph. Subsystems on selected 2-faces of this

cube are modified to give a new system with the required automorphism group.

Section 6.2 describes the recursive construction and derives some important
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properties. Section 6.3 details the modified construction, and proves that the

modified system has the required automorphism group. Section 6.4 gives con-

structions which provide the basic building blocks required. Section 6.5 draws

these elements together to prove the main result.

6.2 Basic construction

Given an mCS(n), S, (m, n 2 3), and a non-zero positive integer v, we define an

mCS(nV) on the n" points (XI, X2, ... , xv), Xi E {O,1, ... , n-1}, which we denote

by SV. Before proceeding we define some notation. If X = (Xl,X2, ... ,xv) is any

point of SV we denote the value of the ith coordinate of X by (X)i' i.e. (X), = Xi,

We denote the set {O,1, ... , n - I} by the symbol [n].

We now define the cycles of SV. The sequence (XI, X2, .•. ,Xm), X, E SV,

j = 1, 2, ... ,m is a cycle of SV if

i) for at least one i E {I, 2, ... ,v}, the sequence

The cycles of SV define an mCS(nV), because if XI, X2 are distinct points of SV,

the edge (Xl, X2) is in a unique cycle of SV because for each i E {I, 2, ... ,v}

if (X1)i =I- (X2)i the edge ((X1)i, (X2)i) is in a cycle of S, which is unique by

definition.
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The construction just given is valid for all such S. However, from this point

on we shall assume that S is has trivial automorphism group, .and also that it

has no proper subsystems.

The system SV has many subsystems of order nk for all 1 ::; k ::; v. We

are particularly interested in the case k = 1, as we shall use these to derive the

automorphism group for S", We characterise the subsystems of order n in the

following lemma.

Lemma 6.2.1. If S has trivial automorphism group and has no proper subsys-

tems, then every mCS(n) subsystem of SV consists of the points in which the

values of k ~ 1 distinct coordinates il < i2 < ... < ik are equal, and take all the

values in [n], and the remainder of the coordinates are constant.

Proof. Let T be any mCS(n) subsystem of S", and let (Xl, X2, ... ,Xm) be any

cycle in T. For any i E {1, 2, ... ,v}, either (XI)i = (X2)i = ... = (Xm)i

or ((XI)i, (X2)i, ... , (Xm)i) is a cycle of S. If two points of T differ in the ith

coordinate, with values x and 'y, then there is at least one edge of T whose

endpoints have ith coordinate values x and y. So if the ith coordinate is not

constant for every cycle of T, the cycles of S obtained by taking the ith coordinate

in each point for each cycle of T form a subsystem of S. However this must be

the whole of S, since S has no proper subsystems. Therefore, if the ith coordinate

is not constant in T, it takes all values 0,1, ... .ri - 1.

If there are two distinct coordinates i, and i, whose values are both not

constant for all points of T, then they both take all values 0,1, ... ,n - 1, and

since T is of order n, each value of the ith coordinate occurs with only one value

of the lh coordinate. Since S has trivial automorphism group, these must be

equal for all points of T, otherwise the correspondence would define a non-trivial
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automorphism of S.

o

Thus for any A C {I, 2, ... , v}, each n-set of points (Xl, X2, ... , Xv) in S" with

Xj held fixed for j t/: A, and for j E A, taking the same value which ranges across

all values 0,1, ... ,n - 1, is an mCS(n) subsystem of SV isomorphic to S. For

any A there are therefore nv-1A1 such mCS(n), one for each choice of the fixed

values. We shall say that any two subsystems corresponding to the same set A

are mutually parallel.

Lemma 6.2.2. For each automorphism ¢ of SV there is a permutation, (J", of

1, ... , v such that ¢(XI' ... ' xv)= (Xa-l(l), ... , Xa-l(v)), for every XI, ... , XvE [n].

In other words, each automorphism of SV corresponds to a permutation of the

coordinates.

Proof. We prove that for each 1 :::;i :::;v, there is a 1 :::;j :::;v such that for any

values al,.··,ai-l,ai+l, ... ,av E [n], there are values al, ... ,aj-l,aj+I, ... ,av

E [n] with

for each X E [n].

For any choice of i and of values al, ... , ai-I, ai+l, ... , av, the set of points

{X(x): (X(X))r = ar,'" i= i, (X(X))i = X, X E [n]) forms an mCS(n) subsystem

of SV, and therefore so does the image of these points in ¢. By Lemma 6.2.1

there is a non-empty set of values Ai = {jll j2, ... jk} C {I, 2, ... ,v}, and a set

of values {ar: Qr E [n], r E {I, 2, ... , v} \ Ai} such that for each X(x), X E [n]

there is ayE [n] with (¢(X(x)))r = y for r E Ai and (¢(X(x)))r = ar otherwise.
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Observe that for any r E Ai, the mapping x ~ X(x) ~ (¢(X(x)))r = y

provides an automorphism of S, from which we conclude that y = x, since S has

trivial automorphism group.

We now show that the images under ¢ of the mCS(n) subsystems obtained

by varying the aI, ... , ai-I, aH 1, ... ,av are mutually parallel.

In order to show this it is only necessary show to that Ai remains the same if

we change anyone at, t =I- i at a time. So choose t =I- i, 1 ::; t ::;v, and substitute

any value a~ =I- at for at. Then there is a set A~ C {I, 2, ... , v}, and values o:~,

r E {I, 2, ... , v} \ A~ such that ¢ maps each point

X'(x) = (ab ... , at-I, a~,at+I,"" ai-I, x, ai+b"" av) to the point ¢(X'(x)), where

(¢(X'(x)))r = x if x E A~, and (¢(X'(x)))r = o:~ otherwise.

For each fixed x E in], the points X(x) and X'(x) are both members of the

mCS(n) subsystem consisting of the points

(aI, ... ,at-I, y, at+I,"" ai-I, x, aHI,"" av), yE in]. We shall call this a crossing

subsystem. Thus ¢(X(x)) and ¢(X'(x)) are also members of a crossing subsystem.

Suppose r E Ai \ A~. Then (¢(X(x)))r = x and (¢(X'(x)))r = O:r for each

x E in]. But for any given value of x, as members of the same crossing subsystem,

either (¢(X(x)))r = (¢(X'(x)))r or (¢(X(x)))r = at and (¢(X'(x)))r = a~, by

Lemma 6.2.1 and the trivial automorphism group of S.

But if n > 2, we can find values of x that contradict this, so we must conclude

that Ai C A~. Reversing the roles of X(x) and X'(x), we can show Ai C A~. So

Ai = A~, and Ai is independent of the choice of the values an r =I- i.

We next show that IAil = 1. Denote the mCS(n) subsystem {(Xb ... , xv) :

Xj = aj, j =I- i, Xi E in]} by p,,(aI' ... ,av), and set
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Also denote the mCS(n) subsystem

The members of Pi are pairwise disjoint, as are those of Qi, and </> maps each

member of Pi to a member of Qi. But there are nv-l members of Pi and nv-IAil

members of Qi, so IAil = 1.

We have proved that for any 1 :::;i :::;v, there is a 1 :::;j :::;v such that for any

values al,··· ,ai-I, ai+l,···: av in [n], there are values aI, ... ,aj-l, aj+l, ... ,av in

[n] such that ¢ maps the point (al,.'" ai-I, X, Qi+l, ... , Qv) of SV to the point

(al, ... ,aj-l· X, aj+l,···, av) for each X E [n]. Set O"(i) = j. The map i ~ di) is

1-1 because O"(i) = O"(if) implies that for every X E SV, (X)i = (X)il, so i = if.

Thus since v is finite, 0" is a permutation of 1,2, ... , v, and the result is proved.

o

6.3 Main construction

We now construct an mCS with automorphism group isomorphic to that of an

arbitrary graph G. If J<L is a permutation of [n], then we denote by J<L(S) the

mCS(n) with cycles (J<L(XI), J<L(X2)"'. , J<L(xm)), where each (Xl, X2,"" xm) is a

cycle of S.
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Construction

Given a graph C = (V, E), where IVI = u and V = {I, 2, ... ,v}, an mCS(n)

system S, defined on [n], with trivial automorphism group and no proper subsys-

tems, and a non-trivial permutation, r;, of [n], define the mCS(nV) U(C, S, r;,) from

SV by, for each edge (i,j) of C, replacing the mCS(n) subsystem of SV defined

by the set of points {X E SV : (X)p = O,p i= i,j, (X), = (X)j E [n]} by the

subsystem on the same points which has cycles (XI, ... , Xm) where each cycle

((XI)i, (X2)i,"" (Xm)i)= ((XI)j, (X2)j, ... , (Xm)j) is a cycle of r;,(S).

For any edge (i, j) of C, we shall call a cycle (Xl, ... ,Xm) with (Xp)t = ° for

t i= i, j and (Xp)i = (Xp)j for all p, an edge cycle of U(C, S, r;,),and all other cycles

of U(C, S, r;,) non-edge cycles. We shall call the mCS(n) system comprising the

(i,j) edge cycles for the edge Ci,j) of C, the (i,j) edge subsystem of U(C, S, x).

It is worth noting that, rather than replacing copies of S by r;,(S), we could

instead have replaced them with an mCS(n) non-isomorphic to S. This would

have the advantage that the corresponding version of Lemma 6.3.3 has a simpler

proof, but the disadvantage of needing to find two non-isomorphic mCS(n), both

with trivial automorphism group and without proper subsystems for each m,

We now prove the analogue of-Lemma 6.2.1 for U(C, S, r;,).

Lemma 6.3.1. Every mCS(n) subsystem of U(C, S, r;,) consists of the points in

which the values of k distinct coordinates il < i2 < ... < ik are equal for some

1::;k ::;v, and the remainder of the coordinates are constant.

Proof. Let T be any mCS(n) subsystem of U(C, S, r;,). If T contains no edge

cycles, then the argument of Lemma 6.2.1 can be applied. Otherwise, T contains

edge cycles, so T is an edge subsystem of U(C, S, r;,),because each edge subsystem

is isomorphic to S, and so has no proper subsystems. In either case, T is of the
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stated form. D

Lemma 6.3.2. If 0" is an automorphism of G, then the map

¢ : (Xl, X2,··· ,xv) 1---+ (Xa-l(l), Xa-l(2),"" Xa-l(v)) is an automorphism ofU(G, S, r;,).

Proof The map ¢ is one-to-one on U(G, S, r;,), so it only remains to show that ¢

is a map of cycles of U(G, S, r;,).

If (XI, ... ,Xm) is an (i,j) edge cycle of U(G,S,r;,), then for each t =I- i,j,

(Xr)t = 0 for all r E {l, ... ,m}, (Xr)i = (Xr)j for all r, and

((XI)i, (X2)i, ... , (Xm)i) = ((XI)j, (X2)j, ... , (Xm)j) is a cycle of r;,(S). But since

0" is an automorphism of G, k(i),O"(j)) is an edge of G, and so

(¢(XI), ¢(X2), ... , ¢(Xm)) is an (O"(i),O"(j)) edge cycle of U(G, S, r;,) because for

each t =I- i.]; (¢(Xr))a(t) = (Xr)t = 0 for all T', and

((¢(XI))a(i), (¢(X2))a(i),"" (¢(Xm))a(i)) = ((XI)i, (X2)i, , (Xm)i)

= ((XI)j. (X2)j, ... , (Xm)j) = ((¢(XI))a(j), (¢(X2))a(j), , (¢(Xm))a(j)) is a cy-

cle of r;,(S).

If (XI, ... , Xm) is a non-edge cycle of U(G, S, x), then for each t E {l, ... ,v},

either (Xr)t is constant for all T E {l, ,m}, or ((XI)t, (X2)t: ... ,(Xm)t) is a

cycle of S. The sequence (¢(Xd,.¢>(X2), , ¢(Xm)) is then a non-edge cycle of

U(G, S, r;,) because (¢(Xr))a(t) = (Xr)t, and so (¢(Xr))a(t) is the same for all

r E {I, ... ,m} if (Xr)t is the same for all r, and ((¢(XI) )a(t), (¢(X2) )a(t), ... , (¢(Xm))a(t))

D

Lemma 6.3.3. Any automorphism of U(G, S, r;,) is of the form

for some permutation 0" of {I, 2, ... , v}.
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Proof. We use the proof of Lemma 6.2.2 as the basis of the proof.

We again prove that for any 1 ::; i ::;v, there is a 1 ::; j ::; v such that for any

values ab' .. , ai-I,aHI, ... ,av E [n], there are values

with

for each x E [nJ.

For any choice of i and of values aI, ... ,ai-I, aHI, ... ,av, we shall again com-

pare the mapping of the mCS(n) subsystem

{X(x): (X(x))s = as, s =J i, (X(X))i = x, x E [n])

with the mapping of the subsystem {X'(x) : x E [n]} obtained by changing any

one of the values at, t =J i, to any different value a~, to show that the images of

these subsystems are also mutually parallel.

We again denote the set of coordinates whose values are not constant in.'
{¢(X(x)) : x E [n]} by Ai, and the corresponding set for {¢(X'(x)) : z E [n]} by

There are several extra cases to consider. Using the same terms as in the proof

of Lemma 6.2.2, we have to additionally consider the possibility that either of the

mCS(n) subsystems {X(x) : x E [n]} and {X'(x) : z E [n]} may be mapped to

edge subsystems of U(C, S, K,) by the automorphism ¢.

If {¢(X(x)) : x E [n]} is the edge subsystem for an edge (e,e') of C, then

¢(X(x)) = Y(y) where (Y(Y))s = 0, s =J e, e' and (Y(Y))e = (Y(Y))el = y.
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Then y = t;;(x) for all x, since the mapping X t--+ X(x) t--+ ¢(X(x)) t--+ Y is an

isomorphism from S to t;;(S), which must be r: since S, and therefore also t;;(S),

has trivial automorphism group.

If r E Ai \ A~. Then (¢(X (x)))r takes a different value for each value of x, and

(¢(X'(x)))r is constant. Also, for any given value of x, X(x) and X'(x) are in

the same crossing subsystem, and accordingly, either (¢(X(x)))r = (¢(X'(x)))r

or (¢(X(x)))r = at and (¢(X'(x)))r = a~ if the crossing subsystem is a non-

edge subsystem, and (¢(X(x)))r = t;;(at) and (¢(X'(x)))r = t;;(aD if the crossing

subsystem is an edge subsystem. But since n > 2, we can find values of X to

contradict this, so Ai C A~. By exchanging X(x) and X'(x) in the argument we

also show that A~ C Ai, so Ai = A~.

The same argument as was used in Lemma 6.2.2 then shows that IAil = 1, and

that, if Ai = {j}, then the mapping a(i) = j provides the required permutation.

D

Lemma 6.3.4. If rp is an automorphism of U(G, S, t;;), then it is of the form

¢ : (Xl, X2,···, Xv) t--+ (Xa-l(l), Xa-l(2), ... 1 Xa-l(v)), where a is an automorphism

ofG.

Proof. By Lemma 6.3.3 there exists a permutation a of V such that

¢(XI, X2, ... ,xv) = (Xa-1(I)l Xa-l(2), ... ,Xa-l(v)) for every point (XI, ... , xv) in

U(G, S, x). We show that a is an automorphism of G.

Let (i,j) be any edge of G. We have to prove that (a(i), a(j)) is also an edge

of G. As an mCS(n) subsystem of U(G, S, t;;) has no proper subsystems, no two

such subsystems share a cycle. Since S has trivial automorphism group, there

is a cycle (XI,X2, ... ,xm) of t;;(S) that is not a cycle of S. Define the (i,j) edge

cycle (XI,X2, ... ,Xm) of U by (X,}, = 0, s i- i,j, and (Xr)i = (Xr)j = x;
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for r = 1,2, ... , m. Then the image (¢(XI), ¢(X2), ... , ¢(Xm)) in ¢ is a cycle

of U, and (¢(Xr))s = 0, s =I- (J(i), (J(j), and (¢(Xr))u(i) = (¢(Xr))u(j) = x; for

r = 1,2, ... ,m.

But since (Xl, X2, ... , xm) is a cycle of K,(5) but not of 5,

(¢(XI)' ¢(X2), ... , ¢(Xm)) is an edge cycle of U, so (CJ(i), (J(j)) is an edge of

G. D

Theorem 6.3.1. The automorphism group of U(G, 5, K,) is isomorphic to the

automorphism group of G.

Proof Lemmas 6.3.2, 6.3.3 and 6.3.4 have established a one-to-one correspon-

dence between the automorphisms of U(G, 5, K,) and the automorphisms of G. We

have to show that this correspondence is a group isomorphism. Let (JI, (J2be auto-

morphisms of G, and let ¢1l ¢2 be the corresponding automorphisms of U(G, 5, K,),

i.e. for all X E U(G, 5, 11:), (¢I(X))j = (X)Ujl(j) and (¢2(X))j = (X)u;-l(j) for

j = 1,2 ... , v.

Then (¢I(¢2(X)))j = (¢2(X))ujl(j)

X E U(G,5,K,), j = 1,2 ... ,v.

Hence, since the identity on G,corresponds to the identity on U(G, 5, K,), our

correspondence is an isomorphism of groups. D

6.4 Construction of mCS with trivial automor-

phism group and no proper subsystems

In this section we address constructions for the the mCS(n) systems 5 needed to

construct U(G, 5, K,). It is clearly desirable for our purpose of constructing mCS

with given automorphism group, that we should build U(G, 5, K,) of minimal order
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n" for any given m by selecting n as small as possible. For odd m 2': 9, we could

almost certainly choose n = m, However, in this thesis, it has been decided to

present a construction for mCS(2m + 1) with the requisite properties. For the

case m = 9, a 9CS(9) example has also been included.

6.4.1 An mCS(2m + 1) with trivial automorphism group

for m >9

We again utilise Lemma 5.3.4 and prove the counterpart of Construction 2 in

Chapter 5 for cycles of odd length. Recall that the basic cycle B, which is

developed (mod Ztri + 1), is defined by B = (bI, b2, •.• , bm)

i(-l)i+I for i < !!2.
2

[or

We shall again use the convention that positions in cycles are labelled 1 to m,

but cycles labelled 0 to 2m. Cycle B is referred to as cycle O. We refer to this

unmodified system as S.

Construction 2'

We consider the cases m = 4t + 1, and 4t + 3, t 2': 2 separately.

For m = 4t + 1, the point at position 2t + 2 in cycle 0 is exchanged with the

point at position 4t - 1 in cycle 2t + 2.

For m = 4t + 3, the point at position 2t + 4 is exchanged with the point at

position 4t + 1 in cycle 2t + 2.

We shall refer to the modified system as S'.

Lemma 6.4.1. The modified system S' is an mCS(2m + 1).
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Proo]. We consider the case m = 4t + 1 first. Arithmetic is modulo 8t + 3. Cycle

o of Sis:

(1, -2, 3, ... , (2t-1), -2t, -(2t+1), (2t + 2), -(2t+3), 2t+4, -(2t+1), ... , 4t, -(4t+1))

with the point (2t + 2) at position 2t + 2). Cycle 2t + 2 is therefore:

(2t + 3, 2t, ... , -(2t - 5), -(2t + 3), -(2t - 3), -(2t + 1), -(2t - 1))

with the point -(2t - 3) at position 4t - 1. Since the points to be exchanged

both have the same neighbours, no edges are added or destroyed. We check that

no point is duplicated in a cycle by the exchange. Point -(2t - 3) is not already

in cycle zero, because (2t - 3) is. The point 2t + 2 cannot be present in cycle

2t + 2 because otherwise cycle 0 would contain O. Thus there is no duplication of

points, and S' is an mCS(2m + 1).

We next consider the case m = 4t + 3. Arithmetic is modulo 8t + 7. Cycle 0

of Sis:

(1, -2, 3, ... , -2t, (2t+1), (2t+2),''-(2t+3), (2t + 4), -(2t+5), 2t+6, ... , -(4t+3))

where the point (2t + 4) is at position 2t + 4. So cycle 2t + 2 is

(2t + 3, 2t, ... , -(2t - 3), -(2t + 5), -(2t - 1), -(2t + 3), -(2t + 1))

with the point - (2t - 1) at position 4t + 1. The points which are to be exchanged

have the same neighbours, so no edges are added or deleted. The point -(2t -1)

is not already present in the Oth cycle because 2t - 1 occupies position 2t - 1
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in that cycle. The point 2t + 4 is not already present in cycle 2t + 2 because

otherwise cycle zero would contain 2. Therefore S' is an mCS (2m + 1). D

Lemma 6.4.2. The mCS(2m + 1) S' given by Construction 2' has no proper

subsystems.

Proof. This proceeds in exactly the same way as Lemma 5.3.6. D

Recall that we call a pair of alternate points in a cycle an alternate pair, and

that we show alternate pairs in square brackets, viz. [a, b]. In preparation for

examining the automorphism group, we calculate the frequency of occurrence of

each alternate pair as in Chapter 5.

Firstly, we take m = 4t + 1 and t 2': 2. The oth cycle of Sis:

(1, -2, 3, ... , (2t - 1), -2t, -(2t + 1), (2t + 2), -(2t + 3), 2t + 4, ... , -(4t - 1),

4t, -(4t + 1)).

Cycle 2t + 2 is

(2t + 3, 2t, ... , 4t + 1,2,1, -(4t - 1), ... , -(2t - 5), -(2t + 3), -(2t - 3),

- (2t + 1), -(2t - 1)),

where all points are (mod 8t + 3).

Apart from the alternate pairs [4t, I], [-(4t + 1), -2J, [(2t - 1), -(2t + 1)],

[-2t, (2t + 2)], all alternate pairs have difference 2. So in a single cycle of S,

there are 4t - 3 alternate pairs with difference 2, two with difference 4t - 1, one

with difference 4t and one with difference 4t + 2. Each pair with difference 2 has

frequency 4t - 3.

We now examine the alternate pairs in S'.

i) In cycle 0, the pair [-2t, 2t + 2] is replaced with [-2t, -(2t - 3)], and the

pair [2t + 2, 2t + 4] is replaced with [-(2t - 3), 2t + 4]. The replacement

pairs have difference of 3 and 4t + 1.
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ii) In cycle 2t+2, the pair [-(2t-5), -(2t-3)J is replaced with [-(2t-5), 2t+2],

and the pair [-(2t - 3), -(2t -l))J is replaced with [2t+2, -(2t - 1))J. The

replacement pairs have differences 4t - 3 and 4t + 1.

Therefore, in S', the pairs [2t+ 2, 2t + 4], [-(2t - 5), -(2t - 3)], and

[-(2t - 3), -(2t - l))J have frequency 4t - 4> 3. All other pairs with difference

2 have frequency 4t - 3, and no other pair has frequency greater than two.

We do the same for the case tri = 4t + 3, t ~ 2. Cycle 0 of Sis:

(1, -2,3, ... , -2t, 2t + 1,2t + 2, -(2t + 3), 2t + 4, -(2t + 5), 2t + 6, ... ,

- (4t + 1), 4t + 2, -(4t + 3))

where the point to be exchanged, 2t + 4 is at position 2t + 4.

Cycle 2t + 2 is

(2t + 3, 2t, ... , 4t + 1,2, 4t + 3, -(4t + 3), -1, ... , -(2t - 3), -(2t + 5), -(2t - 1),

- (2t + 3), - (2t + 1)),

where the point -(2t - 1) at position 4t + 1 is to be exchanged with the point

2t + 4 in cycle O. Arithmetic is modulo 8t + 7.

The alternate pairs in cycle 0 with difference other than 2 are [- 2t, 2t + 2],

[2t + 1, -(2t + 3)], [4t + 2, 1], and [-(4t + 3)), -2]. A single cycle of S contains
.'4t - 1 pairs with difference 2, one pair with difference 4t + 2, two with difference

4t + 1, and one with difference 4t + 3 in S.

In S', the frequencies are modified in the following way.

i) For cycle 0, the pair [2t + 2, 2t + 4J is replaced by [2t + 2, -(2t - l)J and

[2t+ 4, 2t + 6J by [-(2t - 1), 2t + 6J.

ii) In cycle 2t + 2, [-(2t - 3), -(2t - l)J is replaced by [-(2t - 3), 2t + 4J and

[-(2t - 1), -(2t + 1)] by [2t+ 4, -(2t + l)J.
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Of the replacement pairs, two have difference 4t + 1 and two have difference

4t + 2. In Sf the pairs [2t + 2, 2t + 4], [2t + 4, 2t + 6], [-(2t - 3), -(2t - 1)] and

[-(2t -1), -(2t + 1)]therefore occur with frequency 4t - 2 ~ 6. Other pairs with

difference 2 have frequency 4t - 1, and no other pair has frequency greater than

4.

We now have the means to prove the triviality of the automorphism group of

Sf.

Lemma 6.4.3. The mCS(2m + 1) Sf obtained by Construction 2f has trivial

automorphism group.

Proof. We know by Lemma 5.2.2 that the fixed points of any automorphism of

Sf form a subsystem, and since by Lemma 6.4.2 Sf has no proper subsystems, no

automorphism other than the identity has more than one fixed point.

In the case m = 4t + 1, t ~ 2, the alternate pairs with unique frequency of

occurrence in Sf are [2t+2, 2t+4], [-(2t-5), -(2t-3)] and [-(2t-3), -(2t-1)].

An automorphism of Sf must either preserve or permute these pairs of points.

Two pairs share the point -(2t - 3), so this is fixed by any automorphism, and

if it is not the identity, it must exchange 2t + 2 with 2t + 4 and -(2t - 5) with

-(2t - 1).

Cycle 2t+4 contains the sequence -(2t - 5), -(2t -1), -(2t - 3), 2t+ 5, 2t+2,

starting at the 4t - 1th position. This cycle does not contain the point 2t + 4 be-

cause otherwise the oth cycle would contain O. This is the unique cycle containing

the edge -(2t - 5), -(2t -1), so the cycle is preserved by any automorphism, and

a non-trivial automorphism must exchange them, reversing the cycle. But then

-(2t - 3) would not be fixed. Thus the only automorphism of Sf is the identity.

For the case m = 4t + 3, the pairs that occur a unique number of times in Sf
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are [2t+ 2, 2t + 4], [2t+ 4, 2t + 6], [-(2t - 3), -(2t - 1)] and

[-(2t - 1), -(2t + 1)]. Therefore any automorphism must either preserve of per-

mute these pairs. Since two share the point 2t + 4 and the others share the point

-(2t -1), any automorphism that is not the identity exchanges these points, and

either exchanges 2t + 2 with -(2t - 3) and 2t + 6 with -(2t + 1), or exchanges

2t + 2 with -(2t + 1) and 2t + 6 with -(2t - 3).

The 6t + 7th cycle contains the sequence

2t + 6, 2t + 2, 2t + 4, -(2t - 1), -(2t + 2), -(2t - 3),

starting at the 4t + Ith position. The cycle does not contain the point -(2t + 1),

because otherwise cycle zero would contain -1. Since this is the unique cycle

containing the edge (2t + 4, -(2t - 1)), a non-trivial automorphism preserves

the cycle and transposes this edge. But then 2t + 2 would be exchanged with

-(2t + 2), contrary to the previous deduction. Therefore the only automorphism

is the identity.

o

6.4.2 An mCS(n) with trivial automorphism group for

m=57 ,

This section deals with the remaining cases.
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A 5CS(1l)with trivial automorphism group and no proper subsystems

The following system

(1, -2, -3, 4, -4)

(4,1,0, -4, -2)

(-5,4,3, -1, 1)

(-1, -4, -5,2,4)

(2,-1, -2, 5, -4)

(5,2,1, -3, -1)

(-3,5,4,0,2)

(0, -3, -4,3,5)

(3,0, -1, -5, -3)

(-5,3,2, -2,0)

(-2, -5,5,1,3)

is obtained from the construction Lemma 5.3.4 by exchanging the -5 at position

5 in cycle zero with the -4 at position 1 in the 6th cycle. Arithmetic is modulo 11.

It is a valid 5CS system because the points exchanged have the same neighbours,

i.e. 4 and 1, and also because, after the exchange, neither cycle contains any

point more than once.

The new system has no proper subsystems by invoking Lemma 5.3.3, using

the same proof as for Lemma 5.3.6 and Lemma 6.4.2, because the new system

was obtained from a cyclic system.

We now examine the frequencies of alternate pairs in the system. The al-

ternate pairs in a single cycle of the original system have frequencies 1,1,1,2,2,

corresponding to 2nd differences 4, 5, 2, 3, 3. In the new system, the pairs [-3, -5]

and [-5, - 2] in cycle zero and [-4, 3] and [-1, -4] in cycle 6 are replaced by pairs

[-3, -4]'[-4, -2]'[-5,3] and [-1, -5]. The pair [-5, -2] also occurs in cycle 5.

The pair [- 2, -4] appears also in cycle 1. The pair [-5, 3] occurs also in cycles 2

and 8, and [-1, -5] occurs as well in cycle 9. Thus the frequencies of occurrence
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of alternate pairs in the new system are

1,2,1,2,2; 1,1,2,2,2; 1,1,1,3,2;

1,1,1,2,2; 1,1,1,2,2; 1,1,1,1,2;

3,1,1,2,2; 1,1,1,2,2; 1,1,1,2,3;

2,1,1,2,2; 1,1,1,2,2.

Only cycles that have the same frequency pattern (allowing for cyclic permutation

and reversal) can be mapped to each other by an automorphism of the new system.

Cycle six has a unique pattern, and therefore can only be mapped to itself.

Further, since the pair [-5,3] has unique frequency in this cycle, an automorphism

must either fix or exchange these points. If the points are fixed, then since the

system has no proper subsystems, all points are fixed, by Lemma 5.2.2. If the

points -5 and 3 are exchanged, then 4 is fixed and 1 and -1 are also exchanged.

But cycle 5 is the unique cycle containing the edge (-5,3), so if -5 and 3 are

exchanged, the automorphism reverses the cycle, fixing the point -2. Thus at

least two points are fixed, and so all points are fixed.

A 7CS(15) with trivial automorphism group and no proper subsystems

We prove that the following system has the required properties.

(1, -2,3,4, -5, -1, -7)

(4,1,6,7, -2, -6, -4)

(7,4, -6, -5, 1,-3, -1)

(-5,7, -3, -2,4,0,2)

(-2, -5,0,1,7,3,5)

(2, -1,4,5, -4,7, -6)

(5,2,7, -7,6, -5, -3)

(-7,5, -5, -4, 2, -2,0)

(-4, -7, -2, -1,5,1,3)

(-1, -4, 1,2, -7,4,6)
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(3,0,5,6, -3, -7, -5)

(6,3, -7, -6,0, -4, -2)

(-6,6, -4, -3,3, -1, 1)

(-3, -6, -1,0,6,2,4)

(0, -3,2,3, -6,5,7).



This was obtained from a cyclic system by switching the 6 in cycle zero with

the -1 in cycle four. It is a 7CS because the points exchanged have the same

neighbours, -5 and -7. The system is shown to have no proper subsystems again

by the same proof as for Lemma 5.3.6 and Lemma 6.4.2.

Now we show that it has trivial automorphism group. Before the switch, each

cycle has the same pattern of frequencies of occurrence, which is 3,1,1,3,3,2,2,

corresponding to 2nd differences 2,6,7,2,2,5,5. The switch of points causes the

alternate pairs [4,6]' [6, 1] to be destroyed in cycle zero, and pairs [7, -1] and

[-1,3] destroyed in cycle four, to be replaced by the pairs and the pairs [4, -1],

[-1,1]' [7,6] and[6, -3]. Of the altered pairs:

i) [4,6] is also in cycles 3 and 11,

ii) [6,1] is also in cycle 8,

iii) [-1, -3] is also in cycles 8 and 11,

iv) [4, -1] is also in cycles 6 and 13,

v) [1, -1] is also in cycles 6,10, and 13,

vi) [6, -3] is also in cycle 8.

Pairs [7, -1] and [7,6] are in no other cycles. This results in the new frequency

patterns:

3,1,1,3,3,4,2 3,1,1,3,3,2,2 3,1,1,3,3,2,2

2,1,1,3,3,2,2 3,1,1,3,2,2,2 3,1,1. 3, 3, 2, 2

3,1,1,3,4,2,3 3,1,1,3,3,2,2 3,2,1,2,3,2,1

3,1,1,3,3,2,2 3,1,1,4,3,2,2 2,1,1,3,2,2,2

3,1,1,3,3,2,2 4,1,1,3,3,3,2 3,1,1,3,3,2,2.
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We note that the frequency pattern for cycle zero is unique in the sense that no

cyclic permutation the pattern nor its reverse matches any of the other patterns.

Therefore, any automorphism of the system must map this cycle to itself. Also,

this pattern does not match any cyclic permutation of itself or its reverse, so

in fact any automorphism fixes all points in this cycle. Therefore, since more

than one point is fixed, we deduce by Lemma 5.2.2 that the system has trivial

automorphism group.

6.4.3 A 9CS(9) with trivial automorphism group

The previous constructions have concerned mCS(2m + 1). This example is pro-

vided to illustrate that mCS(m) with the right properties certainly exist for m ~

9. We start by constructing 9C3(9) from the basic cycle (0,1,- L 2,-2,3, -3,4, (0)

The differences between consecutive numerical points cover all the differences

(mod 8) except 4 twice, and the latter difference once. When developed cyclicly

(mod 8), leaving the infinity point fixed, this gives a 9C3(9) with an automor-

phism group of order 8.

(0,1,-1,2, -2,3, -3, 4y (0)

(2,3,1,4,0, -3, -1, -2, (0)

(1,2,0,3, -1,4, -2, -3, (0)

(3,4,2, -3, 1,-2,0, -1, (0).

The following 9CS (9)

(-1,1,0, -2, 2,3, -3,4, (0)

(-2,3,1,4,0, -3, -1, 2,(0)

(1,2,0,3, -1,4, -2, -3, (0)

(3,4,2, -3, 1,-2, -1,0, (0).

is obtained from the first system by the transpositions (0, -1) and (2, -2) in cycle

zero, (2,-2) in cycle two, and (-1,0) in cycle three. The first two transpositions
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cause the loss of edges (0,00), (-1,2) and (-2,3) and the gain of edges (-1,00),

(0, -2) and (2,3) in cycle zero. In cycle two, the transposition causes the loss

of edges ((-1, -2) and (2,3), and the gain of edges (-1,2) and (-2,3). In

cycle three, the transposition (-1, 0) results in the loss of edges (-1, 00) and

(-2,0) and the gain of edges (0,00) and (-2,-1). Since every edge lost in

one cycle is gain gained back in another cycle, the new set of cycles is also a

9CS(9). We now prove that this new system has no automorphisms other than

the identity. The alternate pairs [-1,0]' [3,4]' and [-3,4] all occur with frequency

3, whereas all others have frequency 2 or less. By Lemma 5.2.2 the fixed points

of an automorphism form a subsystem, and since a 9CS(9) can have no proper

subsystems, a non-trivial automorphism can fix no more than one point. Since 4

occurs in two of these pairs, it must be fixed by every automorphism, and 3 and

-3 must be switched by a non-trivial automorphism. The sequence 3, -3,4, ...

in cycle zero must be mapped to -3,3,4, .... Since this sequence does not occur

in any cycle, the system has trivial automorphism group.

6.5 Main result

Theorem 6.5.1. If r is any abstract group, If! = /, then for any odd m 2: 3,

there exists an mCS with full automorphism group isomporphic to r. For m 2: 5,

the order of this mCS is of order no greater than (2m+ 1)21'1092"1 ifr is non-cyclic,

and (2m + 1)31' otherwise.

Proof. for m = 3 this is covered by Mendelsohn's result [16]. In Theorem 6.3.1

it was shown that for any graph G = (V, E), and given an mCS(n), m odd, with

suitable properties, there exists a mCS(nIV1) that has full automorphism group

isomorphic to that of G. Frucht, in [9] and [10Jhas shown that if a minimal
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generator set for r is of size u, then there is a graph G with full automorphism

group isomorphic to r which has 2"(v vertices if r is non-cyclic and 3"(otherwise.

We know that v :::;[092"1 for any group, since the group (Z2)V is the smallest

group with v generators. Finally, the results of Section 6.4 have shown that for

m ;::::5 we may assume n = 2m + 1. These individual results establish what was

to be proved.

D

The author is sure that for m ;::::9 we can substitute we n = m in the above

result, although the construction necessary to prove this has not been completed.
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Chapter 7

Decompositions of Steiner triple

systems into triangles

7.1 Introduction

This chapter is concerned with the decomposition of the sets of triples of a Steiner

triple system into configurations. A configuration is simply a partial triple system,

but the terminology is generally used for partial triple systems having a fixed

small number of triples. A fundamental question then is, given a configuration

C, whether the blocks of an STS(v) can be decomposed into copies of C. Strictly

speaking this implies that if C is a configuration containing n triples, then n

divides b, the number of blocks of the STS(v). However it is usual to extend

the definition to include the situation where the decomposition includes all but

a remainder of fewer than n blocks. This extended definition is the one used

here. There are two 2-block and five 3-block configurations which can occur in a

Steiner triple system. Complete or nearly complete results for the decomposition

of both 2-block configurations and three of the 3-block configurations are known
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[12J. But the 3-block configuration of greatest interest is the triangle (three triples

isomorphic to {a, z, b}, {b, x, c}, {c, y, a} ). It was Fiiredi who first asked whether,

if the number of triples in a Steiner triple system is divisible by three, the blocks

can be decomposed into triangles. The problem is very much an open one. The

best that is known is an existential result:

Theorem 7.1.1. [17] For every v 1 or 3 (mod 6) there exists an STS(v)

decomposable into triangles.

Apart from this the only other results that appear to be known are that

every STS( v), v ::; 15 is decomposable into triangles, and that whenu = 1

or 19 (mod 72), the number of STS(v) decomposable into triangles tends to

infinity with v [12J. Information about decomposition of Steiner triple systems

into configurations C<1Il <1180 be found in chapter 13 of [8], and in [11J.

We first present four general results on decomposition into triangles. We shall

prove:

Theorem 7.1.2. The STS which is obtained by the Bose construction on any

Abelian group of odd order is decomposable into triangles.

Theorem 7.1.3. The STS(3v) which is obtained by the Bose construction on

any STS(v) is decomposable into triangles.

Theorem 7.1.4. If any STS(v) has a decomposition into triangles, then so does

the STS(2v + 1) formed from it by applying the doubling construction.

Theorem 7.1.5. The STS(3v) which is constructed from any STS(v) by the

tripling construction is decomposable into triangles.

The first and third of these results together solve three quarters of the exis-

tence problem directly, leaving only the case v == 1 (mod 12).
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As noted above, a result of [12] is the closest approach to an enumeration of

STS(v) that are decomposable into triangles. The number of STS(v) is known to

be vv2(i-o(1)) [2]. In the final section of this chapter we shall prove:

Theorem 7.1.6. The number of STS(v) that are decomposable into triangles is

at least vv2(s\-o(1)).

We prove these results in the following sections.

7.2 Bose construction on Abelian groups of odd

order

In this section we prove Theorem 7.1.2. The notation for the Bose construction

from Chapters 2 and 3 will be used. We shall first prove the theorem for cyclic

groups, then extend it to all odd-order Abelian groups.

We first state the following decomposition of the non-vertical blocks, which is

applicable for any Abelian group of odd order. We define an inverse-free set, ~,

for G to be a subset of G \ {o} containing exactly one of ±x for each x E G \ {O}.

We define the d~fJerence for the non-vertical block {(x, i), (y, i), (z, i + I)}, where

x, y E G, z = (x + y)/2, i E Z3, to be whichever of x - y or y - x is in ~.

The set of triangles:

{(g+8,1), (g+28,0), (g,O)}

{(g,O), (g + 8, 2), (g - 8,2)}

{(g - 8,2), (g - 38, 1), (g + 8, I)},

Vg E G, £5 E ~, contains each non-vertical block of the STS once. Observe

that two of the blocks in each triangle have the same difference. That difference
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is 215,and the third block has a difference 415. This partitions the non-vertical

blocks because multiplication by two is always an isomorphism in an Abelian

group of odd order. We shall use the notation T(c5,g) to refer to triangles of

the above form. This is the basis for all the decompositions into triangles in this

section. Our approach will be to select one triangle T( 15,g) for each vertical block,

replacing one block of each triangle by a vertical block in such a way that the

displaced blocks can themselves be made into triangles.

7.2.1 Cyclic group case

Lemma 7.2.1. The Bose STS on a cyclic group of odd order can be decomposed

into triangles.

Proof. Take the cyclic group C to be Zn for odd n. We set q = Ln/3 J.
Assuming an inverse-free set, ~ for C, we use the above mentioned de-

composition of the non-vertical blocks. It remains to incorporate the vertical

blocks,{(g, 0), (g, 1), (g, 2)}, for all 9 E C into triangles. We note that the in the

triangle T (8, 9), the last block may be replaced by the vertical block on (9 + 6) to

make a different triangle. Our method will be to find parameters c5}, 152,153,g}, g2

which define three disjoint series of triangles: T(c51, g), T(c52,g+ gl), T(c53, 9 +g2);

9 = 0,1, ... ,q-1, such that the sets of three blocks displaced by the incorporation

of a vertical block into each triangle will themselves form new triangles.

We shall deal first with the case where n is not divisible by three. For fixed
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g, conditions for the three displaced blocks:

(g - 361, 1),

{(g + gl - 62,2), (g + gl - 362, 1), (g + gl + 62, I)}

{(g + g2 - 63,2), (g + g2 - 363, 1), (g + g2 + 63, I)}

to form a triangle are:

where arithmetic is modulo n, Further, we set conditions modulo n to make

the three series of vertical blocks incorporated into the triangles contiguous and

non-overlapping:

The above five equations have the solution:

These values are well-defined and non-zero because n is not divisible by 2 or 3.

Note that although 62 = 63, the two series of triangles T (62, 9+ gl ), T (63, 9+g2);

9 = 0, 1 ... ,q - 1 are disjoint because g2 - gl = q.

Therefore, if we choose an inverse-free set ~ which contains the values - ~q and
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- ~, the above process decomposes the Bose STS on G into triangles, except for

the vertical block on 61+3q = ~ in the case that n 1 (mod 6), and the vertical

blocks on ~ and 94
q+1 respectively in the case that n - 5 (mod 6). The two series

of triangles T( -¥-, g), g = 0,1, ... , q - 1, and T( -~, g), g = ~,~+ 1, ... , 5
2
q - 1

are re-arranged in the decomposition.

In the case that n is divisible by 3, say n = 6t + 3, we use as inverse-free set

1,2, ... , 3t + 1. Now take the 6t + 3 triangles T(2t + 1, g):

{(g+2t+1,1), (g+4t+2,0), (g,O)}

{(g,O), (g+2t+1,2), (g+4t+2,2)}

{(g+4t+2,2), (g,l), (g+2t+1,1)},

9 = 0,1, ... ,6t + 2, and the 6t + 3 vertical blocks, and reassemble them into the

8t + 4 triangles:

{(g + 2t + 1. 1), (g+4t+2,0), (g, O)}

{(g,O), (g + 2t + 1, 2), (g + 4t + 2, 2)}

{ (g + 2t + 1, 0), (g+2t+1,1), (g + 2t + 1, 2)},

9 = 0, 1, ... , 6t + 2, and

{(g+4t+2,2), (g + 2t + 1, 1), (g, I)}

{(g,2), (g + 4t + 2, 1), (g + 2t + 1, I)}

{(g+2t+1,2), (g,l), (g + 4t + 2, I)},

9 = 0,1, ... ,2t. There are in this case no remainder blocks. This concludes the

proof for the case where G is a cyclic group. o
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7.2.2 Proof of the main theorem

In order to prove the theorem for all Abelian groups we need some intermediate

cases, firstly that in which the group is a product of two factors. There is a

complication when the orders of the factors both have residue 5 (mod 6), because

the factors each have a decomposition into triangles with two remainder blocks,

whereas we require a decomposition into triangles of the product with only one

remainder block. This requires a little extra rearrangement of triangles, and is

dealt with in Lemma 7.2.3. But first, we prove the simpler case.

Lemma 7.2.2. If Hand K are Abelian groups of odd order such that the Bose

STS on each has a decomposition into triangles, and in the case of H the re-

mainder blocks are vertical blocks, then the Bose construction on H x K has a

decomposition into triangles if at least one of IHI, IKI has residue not equal to 5

(mod 6).

Proof. Let C = H x K, where H, K, are Abelian groups of odd order. Assume

that IHI =I 5 (mod 6). Let !:lH, !:lK be inverse-free sets for H, K respectively.

Then the set:

!:l = {(o,k);o E !:lH,k E K} U {(O,o');o' E !:lK}

is an inverse-free set for C. We can write the set of blocks for the Bose design on
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G as the disjoint union Be = e,UB2 UB3, where

Bl = { {((h, k), 0), ((h + 6, k), 2), ((h - 6, k), 2)},

{((h,k),l), ((h+6,k),0), ((h-6,k),0)},

{((h, k), 2), ((h + 6, k), 1), ((h - 6, k), 1)},

{((h, k), 0), ((h, k), 1), ((h, k), 2)};

h E H, k E K, 6 E !::,.H }

B2 = { {((h, k), 0), ((h + 8, k + k'), 2), ((h - 6, k - k'), 2)},

{((h, k), 1), ((h + 6, k + k'), 0), ((h - 6, k - k'), O)},

{((h, k), 2), ((h + 6, k + k'), 1), ((h - 6, k - k'), 1)};

h E H, k E K, 6 E !::,.H, k' E K \ {O} }

B3 = {{((h,k),O), ((h,k+6'),2), ((h,k-6'),2)},

{((h. k), 1), ((h, k + 6'), 0), ((h, k - 8'), O)},

{((h, k), 2), ((h, k + 6'),1), ((h, k - 6'), 1)};

h E H, k E K, 6' E !::,.K }

The set B, contains all the blocks where the difference has a zero second coor-

dinate, plus all the vertical blocks. The set B2 contains all the blocks where the

difference is non-zero in both coordinates, and the set B3 contains all the blocks

where the difference is zero in the first coordinate. Now B2 can be completely

decomposed into triangles with no remainder blocks:

{((h,k),O), ((h+6,k+k'),2), ((h-6,k-k'),2)},

{((h + 6, k + k'), 1), ((h + 26, k + 2k'), 0), ((h, k), O)},

{((h - 6, k - k'), 2), ((h - 36, k - 3k'), 1), ((h + 6, k + k'), 1)},

122



where h E H, k E K,8 E t::..H, k' E K \ {O}. Also B3 can be completely decom-

posed into triangles with no remainder blocks since it is the disjoint union of IHI
copies of the non-vertical blocks of the Bose STS on K:

{((h, k), 0), ((h, k + 8'), 2), ((h, k - 8'), 2n,

{((h, k + 8'), 1), ((h, k + 28'),0), ((h, k), On,

{((h, k - 8'),2), ((h, k - 38'), 1), ((h, k + 8'), In,

where h E H,k E K,8' E t::..K.

Now observe that BI is the disjoint union of IKI copies of the Bose STS on

H, each of which we can decompose into triangles, such that:

1. if IHI == 3 (mod 6), there are no remainder blocks,

2. if IHI - 1 (mod 6), the set of remainder blocks is of the form

{ {((hI, k), 0), ((hI, k), 1), ((hI, k), 2n; k E K },

for some hI EH, corresponding to the one remainder block of the Bose

STS on H.

In case 1, the proof is complete. In case 2, the remainder blocks:

{ {((hI, k), 0), ((hI, k), 1), ((hI, k), 2n; k E K },

together with the subset:

{((hI, k), 0), ((hI, k + 8), 2), ((hI, k - 8), 2n,

{((hI, k + 8), 1), ((hI, k + 28),0), ((hI, k), On,

{((hI, k - 8),2), ((hI, k - 38), 1), ((hI, k + 8), In,
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k E K, b E 6.K of 83 is a copy of the Bose STS on K, and may be decomposed into

triangles, leaving one or two remainder blocks respectively according as IKI 1,5

(mod 6).

Finally assume that IHI = 5 (mod 6). Then from the theorem, IKI =1= 5

(mod 6), and we reverse the roles of Hand K in the above. This completes the

proof. o

The method would leave a remainder of 4 vertical blocks in the case that both

IHI and IKI have residue 5 (mod 6). To deal with this case we need an extra

device which is provided by the next result, which is for cyclic groups only.

Lemma 7.2.3. The Bose STS on the product oj tuio cyclic groups each with order

congruent to 5 (mod 6) can be decomposed into triangles.

Proof. We repeat and extend the proof of Lemma 7.2.2, using the construction of

Lemma 7.2.1, in the case IHI, IKI 5 (mod 6). The blocks of the Bose STS on

H x K are divided into three subsets 81, 82, and 83 as before. The set of blocks

82 can be decomposed into a set of triangles which we shall call 72. We shall

postpone specifying the difference set to be used. The set of blocks 83 can also

be decomposed into a set of triangles we shall call 73. We shall choose that the

difference set of {O} x K for that decomposition contains the differences (0, -!If)

and (0, _3~K), where q« = LlKI/3J.

The set 81 is equivalent to IKI copies of the Bose STS on H. We choose

an inverse-free difference set for H x {O} which includes the differences (-¥, 0)

and (-~, 0), where qn = LlHI/3J, and decompose the non-vertical blocks of each

copy of the Bose STS on H into triangles in the standard way. We shall call the

resulting set of triangles Z]. We incorporate 3qHIKI vertical blocks into trian-

gles by rearranging the qHIKI triangles T(( -¥, 0), (h, k)), h = 0, 1, ... , qn - 1,
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k E K, and the 2qHIKI triangles T(( -q::, 0), (h, k)), h = q~, q~+ 1, ... , 5~H - 1,

k E K. This leaves 21KI remainder blocks, which are the vertical blocks on

{(hI, k); k E K} and {(h2' k); k E K}, where b, and h2 are 9~H and 1 + 9~H

in some order. We can combine each of these sets with the subsets of T3 cor-

responding to hI, respectively h2. The two sets of vertical blocks are incorpo-

rated by rearranging the 2qK triangles T((O, - 3~K), (hI, k)), T((O, - 3~K), (h2' k)),

k = 0,1, ... , qK - 1, and 4qK triangles T((O, -!If), (hI, k)), T((O, - q:), (h2' k)),

k = q!{ , 2f + 1, ... , 5~K - 1. This leaves four remainder blocks, namely the verti-

cal blocks on (hI, k1), (h2' k1), (hI, k2) and (h2' k2), where i; and k2 are 9~K and

1 + 9~K in some order. To complete the proof, it remains to incorporate three of

these into triangles.

In common with earlier proofs we shall find three triangles from the existing

partial decomposition which we shall combine with three of the four above re-

mainder blocks to produce four new triangles and leave just one remainder block.

Using the notation of Lemma 7.2.1, a triangle T(8, g), where 8 and 9 are elements

of H x K, can be combined with the vertical block { (g + 8, 0), (g + 8, 1), (g + 8, 2) },

discarding the block {(g-8, 2), (g-38,1), (g+8, I)}. We suppose the three start-

ing triangles to be T(81, gl), T(82,"g2), T(83, g3), and require them to be combined

with the three remainder blocks:

{ ( (h2, k2), 0) , ((h2, k2), 1), ((b«, k2), 2)},

{((hI, k1), 0), ((hI, k1), 1), ((hI, k1), 2)},

{((h2' k1), 0), ((h2' k1), 1), ((h2' k1), 2)}.
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We may therefore set:

g2 + 0'2 - (hI, kI)

g3 + 0'3 - (h2' kI),

and derive conditions for the discarded blocks:

{(gI - 0'1,2), (gl - 30'1, 1), (gl + 0'1, I)}

{(g2 - 0'2,2), (g2 - 30'2, 1), (g2 + 0'2, I)}

{(g3 - 0'3,2), (g3 - 30'3, 1), (g3 + 153,I)}

to form a triangle. There are several choices. Selecting:

gl - 0'1 - g2 - 0'2

g3 - 30'3 - gl + 0'1

g3 + 0'3 - g2 - 30'2

defines the triangle:

{(((hI + h2)/2, k1), 2), ((hI, 2kI - k2), 1), ((h2' k2), I)}

{(((hI + h2)/2, kI), 2), ((h2' k1), 1), ((hI, k1), I)}
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This triangle corresponds to the values:

151= ((h2 - hd/4, (k2 - kl)/2), gl = ((3h2 + hl)/4, (k2 + kl)/2)

152= ((hI - h2)/4, 0), g2 = ((h2 + 3hl)/4, kl)

If (hI - h2)/4 E 8.H, then T(b2,g2) is in 71, but if this not the case then we can

merely exchange h., and h2 in our defining equations. Similarly we can ensure

that T( 153, g3) is in 73 by exchanging kl and k2 if necessary. We can ensure that

T(bb gl) is in 72, because, we have not so far used re-used any triangles from 72,

and can we choose any inverse-free set for the blocks 72 which includesej.

Thus it is possible to ensure that the three triangles are in 72, 71 and 73

respectively. However it is still necessary to check that T(b2, g2) was not among

the (jHIKI triangles T((-¥,O),(h,k)), h = O,l, ,qH -1, k E K, or the

2qHIKI triangles T((-q::,O),(h,k)), h = q:,'1f- + 1, ,¥ -1, k E K which

were rearranged earlier in the decomposition of Bb and that T(63, g3) was not

among the 2qK triangles T((O, _3~K), (hI, k)),

T((O, _3~K), (h2, k)), k = 0,1, ... , qK - 1, and 4qK triangles

T((O, - q:), (hI, k)), T((O, -llf), (h2' k)), k = q!{, 9f + 1, ... ,¥ - 1 of 73 which

were also rearranged.

The two cases are similar. Taking hI, h2 = 9~H, 9~H + 1 in some order, we

have that 152 is (±1/4,0). If IHI = 6t + 5, then - 3~H = 1/2 can never equal

either value, as IHI is not divisible by 3. The condition for - q:: to equal 152 is

±1/4 = t + 1 (mod 6t + 5), which only occurs when t = 0, i.e. IHI = 5. Similarly,

153 is never equal to (0, - 3~K), but 153 = (0, - q:) if IKI = 5. We have therefore to

check the cases IH I= 5 and IK I= 5 further.
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If IHII = 5, then _3~H = 3, and _q:: = 1, and we have to choose hI = 9/4 = 1

and h2 = 9/4 + 1 = 2. So 62 = (1,0) and 92 = (0, kI). The rearranged triangles

of 7i of interest are T((3, 0), (0, k)), T((1, 0), (3, k)) and T((1, 0), (4, k)), k E K.

Thus T(62, g2) is T((1, 0), (0, kI)), which is not one of the rearranged triangles.

Similarly, if IKI = 5, T(63, 93) has not previously been rearranged. This concludes

the proof.

o

Lemmas 7.2.2 and 7.2.3 are now readily be combined to produce the general

result:

Proof of Theorem 7.1.2. The group can be expressed as a product of cyclic fac-

tors. We are at liberty to choose the order of the factors, and choose to group all

the factors with order residue 5 (mod 6) together, and further group them into

pairs, with possibly one unpaired factor of order residue 5 (mod 6). Considering

each pair as a single factor, the whole group is now written as a product where

all but possibly one of the factors has order 1 or 3 (mod 6), and for each of which

we have demonstrated a decomposition into triangles for the corresponding Bose

STS, by Lemmas 7.2.1 and 7.2.3. .Furthermore each of these decompositions sat-

isfies the additional condition for Lemma 7.2.2, that any remainder blocks should

be vertical blocks, and so by Lemma 7.2.2 and induction on the number offactors

there is a decomposition into triangles for the Bose STS on the whole group. 0

7.3 Bose construction on Steiner triple systems

The Bose construction on Steiner triple systems produces a new STS on 3v points

from any STS on v points. Assume (V,8) is the original STS, and (V', E') is the
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new STS, then

V' = {(a, 0), (a, 1), (0,,2); a E V}, and

B' = { {(a, 0), (a, 1), (a, 2)}; a E V}U

{ {(a, i), (b,i), (c,i + I)}, {(b, i), (c,i), (a,i + I)}, {(c, i), (a, i), (b,i + I)};

{a,b,c} E B; i E Z3}.

It is conventional to refer to the first part of B' as the vertical blocks of B', and

the second as the non-vertical blocks. Recall that in this and subsequent sections

triangles are written in rows.

Proof of Theorem 7.1.3. Firstly decompose the non-vertical blocks of 8' into tri-

angles as:

{(a, 1), (b,O), (e,O)} {(b,O), (c,2), (a,2)} {(c,2), (a, 1), (b,I)},
{(b, 1), (c,O). (a,O)} {(c,O), (a,2), (b,2)} {(a,2), (b,1), (c,I)},
{(c, 1),(a,O), (b,O)} {(a,O), (b,2), (c,2)} {(b,2), (c,1), (a, I)},

for each block {a, b. c} E 8. The vertical blocks of (V', 8') must be incorpo-

rated into triangles by modification of some of the above. A partial parallel class

of B is a subset of B which contains no point of V more than once. Select

any maximal partial parallel class of the STS( v), and divide the points of the

STS(v) into those which are covered by the partial parallel class and those which

are not. For each block, {a, b, c} of that class, we take the three corresponding

triangles from the non-vertical blocks, together with the three corresponding ver-

tical blocks: {(a, 0), (a, 1), (a,2)}, {(b,0), (b,1), (b,2)}, {(c,0), (c,1), (c,2)}, and
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rearrange them into the four triangles:

{(a,O),(a,I), (a,2)} {(b,O), (c,2), (a,2)} {(c,2), (a, 1), (b,I)},
{(b, 1), (c,O), (a,O)} {(c,O), (c,1), (c,2)} {(a,2), (b,1), (c,I)},
{(c, 1), (a,O), (b,O)} {(a,O), (b,2), (c,2)} {(b,O), (b,1), (b,2)},
{(a, 1), (b,O), (c,O)} {(c,O), (a,2), (b,2)} {(b,2), (c,1), (a, I)}

If the starting STS, (V, B), has either a complete parallel class or one which

includes all but one point, the tripled STS, (V', B'), is completely decomposed

into triangles with a maximum of one remainder block, and we are finished. If

there is more than one point not covered by the partial parallel class, then there

are at least 3 points not covered, because v = 1 or 3 (mod 6). Take any three

such points a, b, c, and select the three blocks {a, b,d}, {c, a, e}, {b, c, I} of the

original STS(v). None of these blocks is in the partial parallel class, and so for

each of these blocks all 3 triangles in the tripled system as constructed above are

intact. We take one triangle from each set:

{(d, 1), (a,O), (b,O)} {(b,2),(d,I),(a,I)} {(a,O), (b,2),(d,2)},
{(e, 1), (a,0), (c,O)} {(~ 2), (c,1), (e, I)} {(c, 0), (e,2), (a,2)},
{(I,1), (b,O),(c,O)} {(c,2), (I,1),(b, I)} {(b,O), (c,2), (/,2)},

and merge them with the three vertical blocks {(a, 0), (a, 1), (a,2)},
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{(b,0), (b,1), (b,2)}, {(c,0), (c,1), (c,2)} to form the four triangles:

{(a,O), (a,1),(a,2)} {(b,2), (d,I),(a,I)} {(a,O), (b,2),(d,2)},
{(c,O), (c,1),(c,2)} {(a,2), (c,1),(e,I)} {(c,O), (e,2),(a,2)},
{(b, 0), (b, 1), (b, 2)} {(c, 2), (f, 1), (b, I)} {(b, 0), (c, 2), (f, 2)},

{(d,l),(a,O),(b,O)} {(e,l),(a,O), (c,O)} {(f,l),(b,O),(c,O)},

We may clearly proceed in this way until all the points but possibly one are

used up. All but possibly one (vertical) block of the tripled system is therefore

included in triangles, and the proof is complete. o

7.4 Doubling construction

The doubling construction produces a new STS on 211+ 1 points from any STS

on v points. If (V, 8) is the original STS, and (V',8') is the new STS, then

V' = {oo} U {(a,O), (a,l);a E V}, and

E' = { {oo, (a,0), (a,I)}; a E V}U

{ {(a, i), (b,j),(c,k)}; {a, b,c} E E; i,j,k E Z2, i+ j + k = O}.

Proof of Theorem 7.1.4· We denote the STS(v) by (V E), and the doubled STS(2v+l)

by (V', 8'), and divide the blocks of (V', E') into three parts:

i) { {(a, 0), (b, 0), (c, a)}; {a, b, c} E 8},

ii) { {(a, 1), (b,1), (c,O)}, {(a, 1), (b,O),(c,I)}, {(a,O), (b,1), (c,I)};
{a, b, c} E E},

iii) { {oo, (a,0), (a,I)}; a E V}.
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The blocks ii) as stated are already decomposed into triangles with no remainder.

The blocks i), being isomorphic to the original STS(v), have a decomposition into

triangles by assumption, with possibly one or two blocks remaining. There remain

the blocks iii) and the remainder from i) to be incorporated into triangles.

Firstly, for each remainder block, {a, b, c} from i), we form a triangle with two

blocks, {oo, (a, 0), (a, In, {oo, (b, 0), (b, In from iii). If there are two remainder

blocks it is easy to do this for both even if the remainder blocks have a point in

common.

Next, divide the remaining blocks of iii) arbitrarily into threes, with zero, one

or two blocks remaining. If a triple of blocks {oo, (a, 0), (a, In, {oo, (b, 0), (b, In,
{oo, (c, 0), (c, In, corresponds to a block {a, b, c} of B, then there is a trian-

gle {(a, 1), (b,1), (c,On,{(a, 1), (b,0), (c,In, {(a, 0), (b,1), (c,In of ii). These six

blocks can be rearranged into two new triangles:

{(a, 1), (b, 1), (c,On {(a, 1), (b, 0), (c, In {oo, (c, 0), (c, In,
{oo, (a, 0), (a, In {co, (b, 0), (b, In {(a, 0), (b, 1), (c, In

If a triple of blocks {oo, (a, 0), (a, In, {oo, (b, 0), (b, In, {oo, (c, 0), (c, In,
does not correspond to a block of B, then there are three distinct blocks of B,

{a, b,d},{b, c, e},{ c, a, f}, and we take the corresponding triangles of ii):

{(a, 1), (b,l),(d,O)} {(a, 1), (b,O),(d, I)} {(a,O), (b,1), (d,I)},
{(b,1), (c, 1), (e,O)} {(b, 1), (c,O), (e,I)} {(b,O), (c, 1), (e,I)},
{(c, 1), (a,1), (f,O)} {(c, 1), (a,O), (f, I)} {(c,O), (a, l),(f, I)},
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and the three blocks from iii), and rearrange to form the four triangles:

{(a, 1), (b,I),(d,a)} {(b, 1), (c,1), (e,a)} {(c, 1),(a, 1),(f,a)},
{oo, (a, a), (a, I)} {(a, 1),(b,a), (d, I)} {(a,a), (b,1),(d, I)},
{oo, (b,a), (b,I)} {(b, 1),(c,a), (e, I)} {(b,a), (c,1),(e, I)},
{oo, (c,a), (c,I)} {(c, 1), (a,a), (f, I)} {(c,a), (a, 1),(f, I)}.

All blocks of Sf can be incorporated into triangles in this way, and so the proof

is complete. D

Corollary 7.4.1. Every projective Steiner triple system is decomposable into

triangles.

Proof. Starting with the trivial STS on three points, apply Theorem 7.1.4 repeat-

edly. Since the initial STS is decomposable, so are all the resulting STS. D

7.5 Tripling construction

The standard tripling construction produces a new STS on 3v points from any

STS on v points. Assume (V, B) is the original STS, and (V', Sf) is the new STS,

then

Vf = {(a, a), (a, 1), (a, 2); a E V} , and

B' = {{(a, i), (b,j), (c,k)}; {a, b,c} E S; i,j,k E Z3, i+ j + k = a}u
{{(a,a), (a, 1), (a,2)}; a E V}.

We shall refer to the first part of B' as the mixed blocks of B', The second

part of B' will be referred to as the vertical blocks of Sf.
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Proof of Theorem 7.1.5. Firstly decompose the mixed blocks of 8' as:

{(a, 1), (b,2), (c,O)} {(a, I), (b,O), (c,2)} {(a,O), (b,O), (c,O)},
{(a,2), (b,O), (c,I)} {(a,2), (b,1),(c,O)} {(a, 1), (b,1), (c,I)},
{(a,O), (b,I), (c,2)} {(a,O), (b,2), (c,I)} {(a,2),(b,2), (c,2)},

for each block {a, b, c} E 8. The vertical blocks of the tripled system must be

incorporated into triangles by modification of some of the above. Select any max-

imal partial parallel class, and divide the points of the original STS( v) into those

which are covered by the partial parallel class and those which are not. For each

block, {o" b, c} of the partial parallel class, we take the three corresponding trian-

gles from the mixed blocks, together with the three corresponding vertical blocks:

{(a, 0), (a, 1), (a,2)}, {(b,0), (b,I), (b,2)},{(c, 0), (c, I), (c,2)}, and rearrange them

into the four triangles:

{(a,O), (a, 1), (a,2)} {(a, I),(b,O), (c,2)} {(a,O), (b,O), (c,O)}
{(a,2), (b,O), (c,I)} {(b,O), (b,I),(b,2)} {(a, I),(b,I),(c,I)}
{(a,O), (b,1), (c,2)} {(a,O), (b,2), (c,I)} {(c,O), (c,1), (c,2)}
{(a, I),(b,2), (c,O)} {(a,2), (b,1), (c,O)} {(a,2), (b,2), (c,2)}

If the starting STS, (V,8), has either a complete parallel class or one which

includes all but one point, the tripled STS, (V',8'), is completely decomposed

into triangles with a maximum of one remainder block, and we are finished. If

there is more than one point not covered by the partial parallel class, then there

are at least 3 points not covered, because v - 1 or 3 (mod 6). Take any three

such points a, b, c, and select the three blocks {a, b, d}, {c, a, e}, {b, c, f} of the

original STS(v). None of these blocks is in the partial parallel class, and so for
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each of these blocks all 3 triangles in the tripled system as constructed above are

intact. We take one triangle from each set:

{(a, 1), (b,2),(d,D)} {(a,I),(b,D),(d,2)} {(a,D), (b,D),(d,D)},
{(c, 1), (a,2), (e,D)} {(c, 1), (a,D),(e,2)} {(c, D), (a,D), (e,D)},
{(b, 1), (c,2), (f,D)} {(b, 1), (c,D), (f,2)} {(b,D), (c,D), (f,D)},

and merge them with the three vertical blocks {(a, D), (a, 1), (a,2)},
{(b, D), (b,1), (b,2)}, {(c, D), (c,1), (c,2)} to form the four triangles:

{(a, 1), (b,2), (d,D)} {(a, 1), (b,D), (d,2)} {(b,D), (b,1), (b,2)},
{(c, 1), (a,2), (e,D)} {(c, 1), (a,D), (e,2)} {(a,D), (a, 1), (a,2)},
{(b, 1), (c,2), (f,D)} {(b, 1), (c,D), (f,2)} {(c,D), (c,1), (c,2)},
{(a,D), (b.D), (d,D)} {(c,D), (a,D), (e,D)} {(b,D), (c,D), (f,D)}.

We may clearly proceed in this way until all the points but possibly one are

used up. All but possibly one (vertical) block of the tripled system is therefore

included in triangles, and the proof is complete. o

Since the Affine Geometries ate obtainable from the trivial STS(3) by repeated

application of the standard tripling construction,we have immediately:

Corollary 7.5.1. The Affine Geometries, AG(n, 3), n 2: 1 are decomposable into
triangles.

7.6 Enumeration of decomposable STS

We prove that the number of STS( v) that are decomposable into triangles is at

least vv
2(i4-o(1») by proving the result for each admissible v (mod 18). We deal
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first with the easy case:

Theorem 7.6.1. Theorem 7.1.6 is true for 'U = 3,9 (mod 18).

Proof. For v = 18s+3 and v = 18s+9, v/3 is also admissible. Further, by Theo-

rem 7.1.3, the STS(v) constructed from any STS(v/3) by the Bose construction is

decomposable into triangles. But by [2], there are (V/3t/32(~-0(I» = vv2(tr-o(I»

differently labelled STS (v/ 3), so there are at least that number of differently la-

belled STS(v) that are decomposable into triangles. However, an STS(v) has an

automorphism group of order no more than v!, so the number of non-isomorphic
• •• v

2(lh-o(l» 2( 1 (1»STS(v) that are decomposable mto triangles IS at least v v! = Vv 54-0 ,

which proves the result. o

In the following we make extensive use of 3-GDDs, a type of group divisible

design. A 3-GDD is a triple (V, B, Q), where V is a set of points of cardinality v,

Q is a partition of V into parts (groups), and B is a family of blocks which satisfy

the following properties:

1. If B E B, then IBI = 3.

2. Every pair of elements of V'Dccurs either in exactly one block, or one group,

but not both.

3. 191 > 1.

A 3-GDD is said to be of type g~lgg2 g~s if v = al.qI + 0,2g2 ... + o,sgs, and Q

contains a, groups of size gi for i = 1, 2 s.

To prove the result for v 1,7,13,15 (mod 18), we use a construction that

requires:
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a) One each of STS(7), STS(9), STS(13), STS(15) and STS(19) that are de-

composable into triangles.

b) A decomposition of the tripartite complete graph K3,3,3 into triangles. This

of course a Latin square of side 3.

c) For all s greater than some lower bound, 3-GDDs of types 68, 6821, and

6841.

d) For all s greater than some lower bound, a 3-GDD of type 32851.

For the decomposable triple systems required in a), those of order 9,15 'exist by

Theorem 7.1.3, and those of order 7, 19 exist by Theorem 7.1.4. For the STS(13),

we decompose the cyclic STS on the base blocks {a, 1, 4} and {a, 2, 7} into the

eight triangles:

{0,1,4},{3,4,7},{12,0,3}; {1,2,5},{5,6,9},{12,1,6};

{0,2, 7},{6,8,0},{6,7,11}; {1,3,8},{7,9,1},{7,8,12};

{2,4,9},{8,10,2},{8,9,0}; {3,5,10},{9,11,3},{9,10,1};

{4,6,11},{10, 12,4},{10,11,2}; {5, 7, 12},{11,0,5},{11, 12,3},

and the two remainder blocks {2, 3, 6} and {4, 5, 8}.

For c), we first state the general conditions for the existence of 3-GDDs of

the relevant types, which are taken from [7], page 189-190. A 3-GDD of type tU

exists iff:

• t =1,5 (mod 6); u = 1,3 (mod 6), u ~ 3

• t = 2,4 (mod 6); u =0,1 (mod 3), u ~ 3

• t =3 (mod 6); u =1 (mod 2), u ~ 3

• t =0 (mod 6); u ~ 3.
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A 3-GDD of type luI exists if all the following conditions are satisfied:

(1) if 9 > 0 and either t 2': 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0

(2) u:S; g(t - 1) or gt = 0

(3) g(t - 1) + u - 0 (mod 2) or gt = 0

(4) gt _ 0 (mod 2), or u = 0

(5) ~g2t(t - 1) + gtu 0 (mod 3).

From these conditions we see that the 3-GDDs of types 6\ 6821, and 6841 exist

for all s 2': 3, and 3-GDDs of type 32851 exist for all .52': 2.

We therefore have all the requirements. We now give the construction.

Construction

For v = 1,7,13,15 we construct a STS(18s + v) that is decomposable into trian-

gles.

• For v = 1, take a 3-GDD of type 68 and an extra point, which we will call

the infinity point. Replace each point of each group by three points, and

replace each block by a copy of K3,3,3, where each part is a tripled-up point.

Thus we now have a 3-GDD of type 188 which is decomposable into copies

of K3,3,3, and the infinity point. We now fit a copy of the decomposable

STS(19) across each group and the infinity point. This structure is an

STS(18.5+ 1) because each pair between groups is in a unique block of the

GDD, each pair within a group is in one block of a copy of the STS(19), and

each pair containing the infinity point is in one block of a STS(19) copy.

The STS(18.5+ 1) is decomposable into triangles because the GDD of type

188 is decomposable into copies of K3,3,3, each of which is decomposable
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into triangles with no remainder, and each STS(19) is also decomposable

into triangles with no remainder blocks.

• For v = 7, take a 3-GDD of type 6821 and an extra infinity point. Again

replace each point of each group by three points, and replace each block

by a copy of K3,3,3, where each part is a tripled-up point. Thus we now

have a 3-GDD of type 18861 which is decomposable into copies of K3,3,3,

and the infinity point. We now fit a copy of the decomposable STS(19)

on each group of size 18 and the infinity point. We also fit a copy of the

decomposable STS(7) on the points of the group of size 6 and the infinity

point. This structure is an STS(18s + 7) because each pair between groups

is in a unique block of the GDD, each pair within a group of size 18 is

in one block of a copy of the STS(19), each pair in the group of size 6

is in one block of the STS(7), and each pair containing the infinity point

is either in one block of a STS(19) copy or in one block of the STS(7).

It is decomposable into triangles with one remainder block because the

GDD of type 18861 is decomposable into copies of K3,3,3, each of which

is decomposable into triangles with no remainder, each STS(19) is also
'"

decomposable into triangles with no remainder blocks, and the STS(7) is

decomposable into triangles with one remainder block.

• For u = 13, take a 3-GDD of type 6841 and an extra infinity point. Again

replace each point of each group by three points, and replace each block

by a copy of K3,3,3, where each part is a tripled-up point. Thus we now

have a 3-GDD of type 188121 which is decomposable into copies of K3,3,3,

and the infinity point. We now fit a copy of the decomposable STS(19)

across each group of size 18 and the infinity point. We also fit a copy of
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the decomposable STS(13) on the group of size 12 and the infinity point.

This structure is an STS(18s + 13) because each pair between groups is in

a unique block of the GDD, each pair within a group of size 18 is in one

block of a copy of the STS(19), each pair within a group of size 12 is in one

block of a copy of the STS(13), and each pair containing the infinity point is

either in one block of a STS(19) copy or in one block of the STS(13). The

STS(18s + 13) is decomposable into triangles with two remainder blocks

because the GDD of type 188121 is decomposable into copies of K3,3,3, each

of which is decomposable into triangles with no remainder, each STS(19) is

decomposable into triangles with no remainder blocks, and the STS(13) is

decomposable into triangles with two remainder blocks.

• For v = 15, take a 3-GDD of type 32851. Again replace each point of

each group by three points, and replace each block by a copy of K3,3,3,

where each part is a tripled-up point. Thus we now have a 3-GDD of type

928151 which is decomposable into copies of K3,3,3. We now fit a copy of

the decomposable STS(9) across each group of size 9. We also fit a copy

of the decomposable STS(15) on the group of size 15. This structure is
.'

an STS(18s + 15) because each pair between groups is in a unique block

of the GDD, each pair within a group of size 9 is in one block of a copy

of the STS(9), and each pair within the group of size 15 is in one block

of the STS(15). The STS(18s + 15) is decomposable into triangles with

two remainder blocks because the GDD of type 188151 is decomposable

into copies of K3,3,3, each of which is decomposable into triangles with no

remainder, each STS(9) is decomposable into triangles with no remainder

blocks, and the STS(15) is decomposable into triangles with two remainder
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blocks.

We now prove the remaining four cases of Theorem 7.1.6 by finding a lower

bound on the number of 3-GDDs of the required type for large 8 in the con-

struction above. We shall make extensive use of the fact that, if L(n) is the

number of latin squares of order n, then In(L(n)) ~ n2(ln(n) - 2). This result

is proved for instance in [6], page 95. Each case will be approached in the same

way. For each GDD with parameter 8 we construct a GDD with parameter 38,

using a Latin square, which can be viewed as a GDD with three groups. With

additional infinity points, this construction can be extended to parameters 38+ 1

and 38 + 2. The construction then enables us to write an inequality which can

be used to construct a lower bound on the number of 3-GDDs with parameter 8

for sufficiently large 8, which in turn, via Construction, leads to a lower bound

on the number of decomposable STS.

7.6.1 The case v = 1.

The recursive construction needs the extra condition that each 3-GDD has a

fixed subsystem of type 65. The existence of the designs with this extra condition

is proved first, although the motivation will not be apparent until we give the

construction itself.

Existence

Take a 3-GDD of type 68301. This exists for all 8 ~ 6 by the conditions quoted

above. Replace the group of size 30 by a 3-GDD of type 65, and the result is a

3-GDD of type 68+5 with the required subsystem, so the systems of the required

type exist for all 8 ~ 11.
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Recursive construction

Starting from 3-GDDs of type 68 we construct 3-GDDs of types 638, 638+1, and

For 638we take a latin square of order 68, written as a 3-GDD of type (68)3.

Across each group fit a 3-GDD of type 68 each having the required subsystem of

type 65. Each of these 3-GDDs can be different. To construct this 3-GDD, only

one of the GDDs of type 68 actually needs the given fixed subsystem, however

for our lower bound we specify that all of them do. This yields a 3-GDD of

type 638. If D(8) denotes the number of differently-labelled 3-GDDs of type 68

each with the required subsystem of type 65, and L(n) denotes the number of

differently-labelled latin squares of order n, then we have D(38) ~ L(68)D(8)3

for 8 ~ 11.

For 638+1we take a latin square of order 6s as before, plus 6 infinity points,

which we group together. Across each group and the group of infinity points

we fit a 68+1, each having the required subsystem. Each of these 3-GDDs can

be different. This yields a 3-GDD of type 638+1. Thus we have D(38 + 1) ~

L(68)D(8 + 1)3 for 8 ~ 10.

For 638+5we take a we take a latin square of order 68, plus 30 infinity points.

On the infinity points we place a copy of our chosen system of type 65, Across each

group and the infinity points we fit a system of type 68+5 containing the required

subsystem, identifying that subsystem with the one on the infinity points. Each

of these 3-GDDs can be different. This yields a 3-GDD of type 638+5. Thus we

have D(3s + 5) ~ L(6s)D(s + 5)3 for s ~ 6.

To summarise these results, we have that for all 8 > 11- ,
D(38) ~ L(68)D(8)3, D(38 - 2) ~ L(6(8 - 1))D(8)3, and D(38 - 10) ~ L(6(8-
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Lower bound for D(s).

Before we can use these to produce the lower bound on the numbers of 3-GDDs

of the given type, we need a facilitating lemma.

Lemma 7.6.1. (t - 5)21n(t - 5) > (t + 1~)21n(t + lIS) - (t + 8)2 for t 2 9.

Proof. let f(t) = (t - 5)2117,(t - 5) - (t + 11s)2117,(t+ lIS) + (t + 8)2. Then f(9) ~

130.5 > 0 Also f'(t) = 2(t - 5)ln(t - 5) - 2(t + 11s)ln(t + lIS) + 2t + 10~~, so

1'(9) ~ 0.13 > 0, and f"(t) = 21n C~~)+ 2, which is monotonic in~reasing,

and f"(9) ~ 0.37 > O. Therefore, f'(t) is increasing for t 2 9, and therefore so is

f(t). D

Lemma 7.6.2. For t 2 11 and u = t+ lIS' In(D(t)) 2 6u2(ln(u) -In(54
1
1
s))' i.e.

D(t) 2 (kU)6u2 for k = 541_l_.
18

Proof. We have shown above that D(t) 2 1 for t 2 11. The result is therefore

true for all11 ~ t ~ 54. Also, since 117,(L(n)) 2 17,2(117,(17,)-2), and this function is

monotonic increasing, we have that In((D(3t)), In(D(3t - 2)), In(D(3t -10)) are

all greater than or equal to g(t) for t 2 11, where g(t) = 36(t - 5)2(ln(6(t - 5))-

2) + 31n(D(t)). We assume inductively that In(D(t)) 2 6u2(ln(u) - In(5411S)'

where u = t + ls'
To complete the proof, it suffices to show that

g(t) 2 6(3t + 11s)2(ln(3t + lIS) -In(541
1
s)) for t 2 17.

Consider h(t) = g(t) - 6(3t + 11s)2(ln(3t + lIS) -In(541
1
s))' We show that h(t) 20

for t 2 15. By Lemma 7.6.1 we have, for t 2 9,

h(t) 2 36u21n(u) - 36(t + 8)2 + 36(t - 5)21n(6) - 72(t - 5)2 + 18u21n(u)

143



- 18u2ln(5411S) - 6(3t + 11S)2ln(3t + /S) + 6(3t + 1~)2ln(5411S)

= 54u2ln(u) - 36(t + 8)2 + 36(t - 5)2ln(6) - 72(t - 5)2 - 18u2ln(54/s)

- 6(3t + A)2ln(3t + lIS) + 6(3t + 11S)2ln(54/S)

~ 54u2ln(u) - 36(t + 8)2 + 36(t - 5)2ln(6) - 72(t - 5)2 - 18n2In(541
1
S) _

6(3u)2ln(3u) + 6(3t)2ln(541
1
S)

= 54t2ln(541
1
S) - 18u2ln(541

1
S) - 36(t + 8)2 + 36(t - 5)2ln(6)

- 72(t - 5)2 - 54u2ln(3)

= t2(36ln(54;s) - 36 + 36ln(6) - 72 - 54ln(3))

- t(576 + 360ln(6) - 720 + 2ln(541
1
S) + 6ln(3))

- (2304 - 900ln(6) + 1800 + 1~ln(54A) + ~ln(3))

~ 40.82t2 - 515.6lt - 2491.82 > 539 > 0 for t ~ 17, and so the lemma is

proved. o

Lower bound for numbers of STS(v)

Lemma 7.6.3. If v = 18s + 1, and s ~ 11, then the number of non-isomorphic
v2

STS(v) that are decomposable into triangles is at least ~ (9~3)54 = vv2(c-o(1)) as

h - 1V ---+ 00, were c - 54.

Proof. As in Construction above, take a 3-GDD of type 63s and an infinity point.

Inflate the GDD by a factor of 3, placing a K3,3,3 across each inflated block, and

STS(19)s across the inflated groups and infinity point. The resulting construct is

a STS(18s+1). Since all the ingredients are decomposable into triangles, so is the

STS(18s + 1). By Lemma 7.6.2, the number of differently labelled decomposable

(
s+_!_)6(S+fs)2STS(18s + 1) is therefore at least D(s) ~ ~ for s ~ 11. This gives

2 18

D(s) ~ (9~3)~4. The largest possible size of automorphism group for an STS(v)

is v!, so the number of non-isomorphic decomposable STS(18s + 1) is therefore
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v2

at least ~ (9~3)54 when v = 18s + 1, s ~ 11.

o

7.6.2 The case v = 7.

To facilitate the construction we set the additional condition that the 3-GDDs

all coincide on particular fixed 3-GDDs of types 6421 and 6821.

Existence

The proof is in three parts.

a) We construct a system of type 63r21. By [7], page 189 there exist 3-GDDs

of types 6243 and 23. Replace each group of size 6 in the first by a system

of type 23, which yields one of type 2643. Inflate each group by a factor

of 12 and place systems of type 123 on each inflated block. This give a

system of type 246483. Now take a system of type 18t2881, which exists

for t ~ 17. Replace the group of size 288 by the system of type 246483, to

give a system of type 18t246483. Now introduce 2 infinity points and on the

infinity points and each group of size 18 place a system of type 6321. On

the infinity points and each group of size 24 place a system of type 6421.

On the infinity points and each group of size 48 place a system of type 6821.

Thus we have a system of type 63t+4821 with the required subsystems. So

we have a system of type 63r21 for all r > 33.

b) We construct a system of type 63r+ 121. By [7], page 189, there exists a

3-GDD of type 8341. Inflate each group by a factor of 6 and place systems

of type 63 on each inflated block. This give a system of type 483241. Now
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take a system of type 18t168\ which exists for t ~ 11. Replace the group

of size 168 by the system of type 483241, to give a system of type 18t483241.

Now introduce 2 infinity points and on the infinity points and each group of

size 18 place a system of type 6321. On the infinity points and each group of

size 24 place a system of type 6421. On the infinity points and each group of

size 48 place a system of type 6821. Thus we have a system of type 63t+2821

with the required subsystems. So we have a system of type 63r+121 for all

r ~ 20.

c) We construct a system of type 63r+221. By [7], page 189, there exists a

3-GDD of type 8143. Inflate each group by a factor of 6 and place systems

of type 63 on each inflated block. This give a system of type 481243. Now

take a system of type 18t120\ which exists for t ~ 8. Replace the group of

size 120 by the system of type 481243, to give a system of type 18t481243.

Now introduce 2 infinity points and on the infinity points and each group of

size 18 place a system of type 6321. On the infinity points and each group of

size 24 place a system of type 6421. On the infinity points and each group of

size 48 place a system of type 6821. Thus we have a system of type 63t+2021
.'

with the required subsystems. So we have a system of type 63r+221 for all

r ~ 14.

Thus 3-GDDs of type 6821 with the necessary fixed subsystems exist for all s ~ 99.

Recursive construction

From 3-GDDs of type 6821 with the required fixed subsystems we construct 3-

GDD of types 6382\ 638+42\ and 638+82\ each again with the required fixed

subsystems. There are separate arguments for these cases.
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Firstly we take a latin square of order 68, written as a 3-GDD of type (68)3,

plus an additional 2 infinity points. Across each group and the infinity points,

fit a 3-GDD of type 6821, having the required fixed subsystems of types 6421

and 6821. The 3-GDDs can be different, providing they have the same fixed

subsystems previously mentioned. This yields a 63821. To construct the 3-GDD

of type 63821, only one of the GDDs of type 6821 actually needs the given fixed

subsystems, however for the purpose of producing a lower bound we specify that

all of them do. If D(8) denotes the number of differently-labelled 3-GDDs of

type 6821 with the given fixed subsystems, and L( n) denotes the number of latin

squares of order n, then we have D(38) ~ L(68)D(8)3 for 8 ~ 99.

Secondly, for 638+421, we take a latin square of order 68 as before, plus 26

infinity points. On the infinity points we place a copy of the chosen system of type

6421, Across each group and the common infinity points we fit a possibly different

3-GDD of type 68+421 with the fixed subsystems, identifying the subsystem of type

6421 with the one on the infinity points. This yields a 3-GDD of type 638+421 with

the required subsystems. Thus we have D(38 + 4) ~ L(68)D(8 + 4)3 for 8 ~ 95.

Finally, for 638+821 we take a latin square of order 68 plus 50 infinity points.

On the infinity points we place a copy of our chosen system of type 6821. Across

each group and the common infinity points we fit a 68+821 which has the fixed

subsystems of types 6421 and 6821, identifying the subsystem of type 6821 with the

one on the infinity points. This yields a 3-GDD of type 638+821 with the required

subsystems. Thus we have D(38 + 8) ~ L(6s)D(8 + 8)3 for s ~ 91. Hence,

to summarise these results, we have that for all 8 ~ 99, D(38) ~ L(68)D(8)3,

D(38 - 8) ~ L(6(8 - 4))D(8)3, and D(38 - 16) ~ L(6(8 - 8))D(8)3.
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Lower bound for D(s).

Lemma 7.6.4. (t - 8)2In(t - 8) > (t + 178)2In(t + 178) - (t + 8)2 for t 2:: 50.

Proof. let f(t) = (t-8)2ln(t-8)-(t+1~)2In(t+ t8)+(t+8)2. Then f(50) ~ 4.8 >

o Also 1'(t) = 2(t-8)ln(t-8) - 2(t+ 1~ )In(t+ 178) +2t+ 7~~, so 1'(50) ~ 26.55 > 0,

and /"(t) = 2ln C~l)+ 2, which is monotonic increasing, and /"(50) ~ 1.64.

Therefore, 1'(t) is increasing for t 2:: 50, and therefore so is f(t). 0

Lemma 7.6.5. For t 2:: 99 and u = t + 178' In(D(u)) 2:: 6u2(ln(u) - In(2971
7
8)),

i.e. D(t) 2:: (k'U)6u2 for k = 29i.L.
18

Proof. We have shown above that D(t) 2:: 1 for t 2:: 99. The result is therefore

true for all 99 ::; t ::; 297. Also, since In(L(n)) 2:: n2(ln(n) - 2), and this function

is monotonic increasing, we have that In( (D(3t)), In(D(3t-8)), In(D(3t-16)) are

all greater than or equal to g(t) for t 2:: 99, where g(t) = 36(t - 8)2(ln(6(t - 8))-

2) + 3In(D(t)). We assume inductively that In(D(t)) 2:: 6u2(ln(u) - In(297 t8))'

where u = t + 178.

To complete the proof, it suffices to show that

g(t) 2:: 6(3t + 1~)2(ln(3t + 1~) -.In(2971~)) for t 2:: 99.

Consider h(t) = g(t) - 6(3t + 1~)2(ln(3t + 1~)-In(297 1~)). We show that h(t) 2:: 0

for t 2:: 50. By Lemma 7.6.4 we have, for t 2:: 50,

h(t) 2:: 36u2ln(u) - 36(t + 8)2 + 36(t - 8)2ln(6) - 72(t - 8)2 + 18u2ln(u)

- 18u2In(297178) - 6(3t + 178)2ln(3t + 1~)+ 6(3t + 1~)2In(297178)

= 54u2In(u) - 36(t + 8)2 + 36(t - 8)2In(6) - 72(t - 8)2 - 18-u2In(2971~)

- 6(3t + 1~)2ln(3t + 1~)+ 6(3t + 1~)2In(297178)

2:: 54u2In(u) - 36(t + 8)2 + 36(t - 8fln(6) - 72(t - 8)2 - 18u2ln(297178)

- 6(3u)2ln(3u) + 6(3t)2ln(2971~)
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= 54t2ln(2971
7
s) - 18u2ln(29717S) - 36(t + 8)2 + 36(t - 8)2ln(6)

- 72(t - 8)2 - 54u21n(3)

= t2(36ln(2971
7
s) - 36 + 36ln(6) - 72 - 54ln(3))

- t(576 + 576ln(6) - 1152+ 14ln(2971~) + 42ln(3))

- (2304 - 2304ln(6) + 4608 + i~ln(29717s) + ~ln(3))

~ 102.2t2 - 581.9t - 2808.3 > 232 > 0 for t ~ 9, so h(t) > 0 for t ~ 50, and

the lemma is proved. o

Lower bound for numbers of STS(v)

Lemma 7.6.6. If v = 18s + 7, and s ~ 99, then the number of non-isomorphic
,,2

STS(v) that are decomposable into triangles is at least ~ (53V53) 54 = vv2(c-o(1)) as

v ~ 00, where c = 5~.

Proof. As in Construction above, take a 3-GDD of type 6821 and an infinity

point. Inflate the GDD by a factor of 3, placing a K3,3,3 across each inflated

block. Also place a decomposable STS(19) across each inflated group of size 6

and the infinity point, and a decomposable STS(7) across the inflated group of

size 2 and the infinity point. The resulting construct is a STS(18s + 7). Since

all the ingredients are decomposable into triangles, so is the STS(18s + 7). By

Lemma 7.6.5, the number of differently-labelled decomposable STS(18s + 7) is

(
8+2.. )6(8+fs)2 v2

therefore at least D(s) ~ 297~ for .'3 ~ 99. This gives D(s) ~ (5:53) 54.

As the largest possible size of automorphism group for an STS(v) is v!, the number
v2

of distinct decomposable STS(18s + 7) is at least ~ (5:53) 54 = vv2(s\-o(1)) when

v = 18s + 7, s ~ 99.

o

149



7.6.3 The case v = 13.

The 3-GDDs of type 68 are required to contain fixed subsystems of types 6441

and 6841.

Existence

We use the same method as for the case v = 7. For that case we showed that there

are 3-GDDs of types: 18t246483 for t ~ 17, 18t483241 for t ~ 11, and 18t481243

for t ~ 8. We shall use these as a basis for this construction.

a) Take a 3-GDD of type 18t246483 and 4 infinity points, and on the infinity

points and each group of size 18 place a system of type 6341. On the infinity

points and each group of size 24 place a system of type 6441. On the infinity

points and each group of size 48 place a system of type 6841. Thus we have a

system of type 63t+4841 with the required subsystems. So we have a system

of type 63r 41 for all r ~ 33.

b) Take a 3-GDD of type 18t483241 and 4 infinity points, and on the infinity

points and each group of size 18 place a system of type 6341. On the infinity

points and the group of size 24 place a system of type 6441. On the infinity

points and each group of size 48 place a system of type 6841. Thus we

have a system of type 63t+2841 with the required subsystems. So we have a

system of type 63r+141 for all r ~ 20.

c) Take a 3-GDD of type 18t481243 and 4 infinity points, and on the infinity

points and each group of size 18 place a system of type 6341. On the infinity

points and each group of size 24 place a system of type 6441. On the infinity

points and the group of size 48 place a system of type 6841. Thus we have a
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system of type 63t+2041 with the required subsystems. So we have a system

of type 63r+241 for all 7' ?: 14.

Thus 3-GDDs of type 6841 with the necessary fixed subsystems exist for all 8 ?: 99.

Recursive construction

From 3-GDDs of type 6841 with the required subsystems we construct 3-GDDs of

types 63841, 638+441, and 638+841, each again with the required fixed subsystems.

There are separate arguments for each case.

For GDDs of type 63841 we take a latin square of order 68, written as a 3-GDD

of type (6s)3, plus an additional 4 infinity points, which are grouped together.

Across each group and the infinity points, fit a 3-GDD of type 6841, having the

required subsystems. The 3-GDDs can be different, providing they have the

same fixed subsystems previously mentioned. This yields a 63841. To construct

this 3-GDD, only one of the GDDs of type 6841 actually needs the given fixed

subsystems, however for our lower bound we specify that all of them do.

For GDDs of type 638+441 we take a latin square of order 6s as before, plus

28 infinity points. On the infinity points we place a copy of our system of type
"

6441. Across each group and the common infinity points we fit a 68+441 with

the appropriate subsystems, identifying the subsystem of type 6441 with the one

on the infinity points. This yields a 3-GDD of type 638+441 with the required

subsystem.

For GDDs of type 638+841 we take a latin square of order 6s plus 52 infinity

points. On the infinity points we place a copy of the chosen system of type

6841. Across each group and the common infinity points we fit a 68+841 with the

required subsystems, identifying the one of type 6841 with the one on the infinity
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points. This yields a 3-GDD of type 638+841 with the required subsystems.

Therefore, if D( s) represents the number of differently-labelled 3-GDD of type

6841 with the required subsystems, then for all s 2: 99,

D(3s) 2: L(6s)D(s)3, D(3s - 8) 2: L(6(8 - 4))D(s)3, and D(3s - 16) 2: L(6(s -

8))D(s)3.

Lower bound for D(s).

Lemma 7.6.7. (t - 8)2ln(t - 8) > (t + ~~)2ln(t + ~~)- (t + 8)2 for t 2: 56.

Proof. let f(t) = (t - 8)2ln(t - 8) - (t + ~~)2ln(t + ~~)+ (t + 8)2. Then f(56) ~

22.8 > 0 Also f'(t) = 2(t - 8)ln(t - 8) - 2(t + ~~)ln(t + ~~)+ 2t + 71
5
8, so

f'(56) ~ 32.8 > 0, and f"(t) = 2ln C~-H)+ 2, which is monotonic increasing,

and f"(56) ~ 1.67. Therefore, f'(t) is increasing for t 2: 56, and therefore so is

f(t). D

Lemma 7.6.8. For t 2: 99 and u = t + ~~,In(D(u)) 2: 6u2(ln(u) - In(297~~)),

i.e. D(t) 2: (k1J.)6u2 for k = 29i!1.
18

Proof. We have shown above that D(t) 2: 1 for t 2: 99. The result is therefore

true for all 99 S t S 297. Also, since In(L(n)) 2: n2(ln(n) - 2), and this function

is monotonic increasing, we have that In( (D(3t)), In(D(3t-8)), In(D(3t-16)) are

all greater than or equal to g(t) for t 2: 99, where g(t) = 36(t - 8)2(ln(6(t - 8))-

2) + 3ln(D(t)). We assume inductively that In(D(t)) 2: 6u2(ln(u) - In(297~~)),

t 13where u = + 18.

To complete the proof, it suffices to show that

g(t) 2: 6(3t + i~)2(ln(3t + i~)-In(297i~)) for t 2: 99.

Consider h(t) = g(t) - 6(3t+ i~)2(ln(3t +~~)-In(297~~)). We show that h( t) 2: 0

for t 2: 56. By Lemma 7.6.7 we have, for t 2: 56,
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h(t) 2: 36u2In(u) - 36(t + 8)2 + 36(t - 8)2In(6) - 72(t - 8)2 + 18u2In(u)

- 18u2In(297~~) - 6(3t + ~~)2ln(3t + ~~)+ 6(3t + i~)2In(297~~)

= 54u2In(u) - 36(t + 8)2 + 36(t - 8)2In(6) - 72(t - 8)2 - 18u2In(297~~)

- 6(3t + ~~)2In(3t + ~~)+ 6(3t + ~~)2ln(297~~)

2: 54u2In(u) - 36(t + 8)2 + 36(t - 8)2In(6) - 72(t - 8)2 - 18u2In(297~~)

- 6(3u)2In(3u) + 6(3t)2In(297~~)

= 54t2In(297~~) - 18u2In(297~~) - 36(t + 8)2 + 36(t - 8)2In(6)

- 72(t - 8)2 - 54u2In(3)

= t2(36In(297~~) - 36 + 36In(6) - 72 - 54In(3))

- t(576 + 576In(6) - 1152 + 26In(297i~) + 78In(3))

- (2304 - 2304In(6) + 4608 + \6:ln(297~~) + 1~9In(3))

~ 102.24t2 - 689.84t - 2868.2 > 457 > 0 for t 2: 10, so h(t) > 0 for t 2: 99,

and so the lemma is proved. D

Lower bound for numbers of STS( v)

Lemma 7.6.9. If v = 18s + 13, and s 2: 99, then the number of non-isomorphic
v2

STS(v) that are decomposable into triangles is at least ~ (5:59) 54 = vv2(c-o(1» as

v --t 00, where c = 5~.

Proof. As in Construction above, take a 3-GDD of type 6841 and an infinity point.

Inflate the GDD by a factor of 3, placing a K3,3,3 across each inflated block, and

STS(19)s and a decomposable STS(13) across the inflated groups and infinity

point. The resulting construct is a STS(18s + 13). Since all the ingredients

are decomposable into triangles, so is the STS(18s + 13). By Lemma 7.6.8, the

number of differently-labelled decomposable STS(18s + 13) is therefore at least
13)6(8+g)2 v2

(
S+- 18

D(s) 2: 297\\ for s 2: 99. This gives D(s) 2: (53V59) 54. The largest
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possible size of automorphism group for an STS(v) is ul, so the number of distinct
v2

decomposable STS(18s -+ 13) is therefore at least ~ (53V59) 54 when 'U = 18s -+ 13,

s ~ 99. 0

7.6.4 The case v = 15.

Our enumeration of decomposable STS(18s + 15) uses a construction of 3-GDDs

of type 32851. The construction needs the additional condition that the 3-GDDs

all coincide on particular fixed 3-GDDs of type 3851 and 3451.

Existence

We prove the existence for the separate cases s = 0, 1 (mod 2). For s 0 (mod 2),

we start with a 3-GDD of type 12t241, which exists for t ~ 3. Add 5 new points

and join these and the 24-group with a system of type 3851. Also join each 12-

group and the 5 new points by a system of type 3451. This gives a system of type

34t+851. Thus the required system exists for even s if s ~ 10.

For s - 1 (mod 2), we first take a 3-GDD of type 816143, which exists by [7],

page 189. Inflate each point by a factor of 3, and replace each tripled-up block by

a system of type 33. This yields a system of type 241181123. Now take a 3-GDD

of type 12t781, which exists for t ~ 8. Replace the 78-group by a system of type

241181123, giving a system of type 12t+3241181. Add 5 new points and join these

and the 24-group with a system of type 3851, the 18-group with a system of type

3651, and the 12-groups with systems of type 3451. This gives a system of type

34t+2651. Thus such systems with odd s exist for s ~ 29, and so 3-GDDs of type

32851 with the required subsystems exist for s ~ 28.
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Recursive construction

Starting from 3-GDDs of type 32851 with the required subsystems, 3-GDDs of

types 36851, 368+851, and 368+451 are constructed, each again with the required

fixed subsystems. There are separate arguments for each case.

For GDDs of type 36851, we take a latin square of order 68, written as a 3-

GDD of type (68)3, plus an additional 5 infinity points. Across each group and

the infinity points, fit a 3-GDD of type 32851, having the required subsystems.

These 3-GDDs can be different, providing they have the same fixed subsystems

previously mentioned. This yields a 36851. To construct the 3-GDD of type 36851,

only one of the GDDs of type 32851 actually needs the given subsystems, however

for our lower bound we specify that all of them do. If D( 8) denotes the number

of differently-labelled 3-GDDs of type 32851 with given fixed subsystems of type

3851 and 3451, and L(n) denotes the number of latin squares of order ri, then we

have D(38) 2: L(68)D(8)3 for 8 2: 28.

For GDDs of type 368+451, we take a we take a latin square of order 68, plus

17 infinity points. On the infinity points we place a copy of our chosen system

of type 3451. Across each group and the common infinity points we fit a possibly

different 3-GDD of type 328+451"with the appropriate subsystems, identifying the

subsystem of type 3451 with the one on the infinity points. This yields a 3-GDD

of type 368+451. Thus we have D(38 + 2) 2: L(68)D(8 + 2)3 for 8 2: 26.

For GDDs of type 368+851, we take a latin square of order 68 as before, plus

29 infinity points. On the infinity points we place a copy of the chosen system

of type 3851. Across each group and the common infinity points we fit a possibly

different 3-GDD of type 328+851 with the appropriate subsystems, identifying the

subsystem of type 3851 with the one on the infinity points. This yields a 3-
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GDD of type 368+851 with the required subsystems. Thus we have D(3s + 4) ::::

L(6s)D(s + 4)3 for s ::::24.

To summarise these results, we have that for all s ::::28,

D(3s) ::::L(68)D(8)3, D(3s - 4) ::::L(6(8 - 2))D(s)3, and D(3s - 8) ::::L(6(8 _

4))D(8)3.

Lower bound for D( s).

Lemma 7.6.10. (t - 4)2In(t - 4) > (t + V2ln(t + ~) - (t + 6)2 for t ::::13.

Proof. Let f(t) = (t-4)2In(t-4)-(t+~?ln(t+V+(t+6)2. Then f(13)·~ 36.3 >

o Also 1'(t) = 2(t-4)ln(t-4) -2(t+~)ln(t+~)+2t+7~, so 1'(13) ~ 0.034 > 0,

and f"(t) = 2fn (:~i)+2, which is monotonic increasing, and f"(13) ~ 1.14:::: O.

Therefore, 1'(t) is increasing for t ::::13, and therefore so is f(t). 0

Lemma 7.6.11. For t ::::28 and u = t +~,In(D(t)) ::::6u2(ln(u) -In(84~)), i.e.

D(t) ::::(kU)6u2 for k = 8~~ .
6

Proof. We have shown above that D(t) ::::1 for t ::::28. The result is therefore

true for a1l28::; t::; 84. Also, since fn(L(n)):::: n2(ln(n)-2), and this function is

monotonic increasing, we have that In((D(3t)), In(D(3t - 4)), In(D(3t - 8)) are

all greater than or equal to g(t) for t ::::28, where g(t) = 36(t - 4)2(ln(6(t - 4))-

2) + 3ln(D(t)). We assume inductively that In(D(t)) ::::6u2(ln(u) - In(84V),

where u = t + ~.

To complete the proof, it suffices to show that

g(t) ::::6(3t + V2(ln(3t + V -In(84~)) for t ::::28.

Consider h(t) = g(t) - 6(3t + ~)2(ln(3t + ~) -In(84~)). We show that h(t) ::::0

for t ::::28. By Lemma 7.6.10 we have

h(t) ::::36u2ln(u) - 36(t + 6)2 + 36(t - 4)2ln(6) - 72(t _ 4)2 + 18u2ln(u)
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- 18u2ln(84~) - 6(3t + ~?ln(3t + ~)+ 6(3t + ~)2ln(84V

= 54u2ln(u) - 36(t + 6)2 + 36(t - 4)2ln(6) - 72(t - 4)2 - 18u2ln(84~)

- 6(3t + ~?ln(3t + ~)+ 6(3t + ~?ln(84~)

~ 54v?ln(u) - 36(t + 6)2 + 36(t - 4)2[71,(6)- 72(t - 4)2 - 18u21n(84V

- 6(3u)2ln(3u) + 6(3t)2ln(84V

= 54t2/n(84~) - 18u2ln(84~) - 36(t + 6)2 + 36(t - 4)2/71,(6)

- 72(t - 4)2 - 54u2ln(3)

= t2(36ln(84V - 36 + 36171,(6)- 72 - 54ln(3))

- t(432 + 288171,(6)- 576 + 30ln(84~) + 90171,(3))

- (1296 - 576ln(6) + 1152 + 12.5ln(84~) + 37.5171,(3)).

;:::::57t2 - 604t - 1512.7 > 6083 > 0 for t ~ 18, and so the lemma is proved. 0

Lower bound for numbers of STS(v)

Lemma 7.6.12. Ij » = 18s+15, and s ~ 28, then the number a/non-isomorphic
,,2

STS(v) that are decomposable into triangles is at least ~ C5V27)54 = vv2(c-o(1)) as
h - 1V ~ 00, were c - 54.

Proof. As in Construction above, take a 3-GDD of type 32s51. Inflate by a factor

of 3, placing a K3,3,3 across each inflated block, and STS(9)s and a decomposable

STS(15) across the inflated groups. The resulting construct is a STS(18s + 15).

Since all the ingredients are decomposable into triangles, so is the STS(188 + 15).

The number of differently-labelled decomposable STS(18s + 15) is therefore at

(
s+Q )6(S+V2 v2

least D( s) ~ 841 for s ~ 28. This gives D( s) ~ (15~7) 54. The largest

possible size of automorphism group for an STS(v) is vl, so the number of distinct
v2decomposable STS(18s + 15) is therefore at least 1.. (_V_) 54 when v = 18s + 15

v! 1527 ,

.5 ~ 28. o
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This completes the proof of Theorem 7.1.6.
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