
Open Research Online
The Open University’s repository of research publications
and other research outputs

Generally speaking : exploring expressions of generality
in secondary mathematics classrooms
Thesis
How to cite:

Drury, Helen Louise (2008). Generally speaking : exploring expressions of generality in secondary mathematics
classrooms. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2008 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Generally Speaking: 

Exploring Expressions of Generality in Secondary 

Mathematics Classrooms 

Helen Louise Drury, B.A. 

Thesis submitted for the degree of 
Doctor of Philosophy 

In 
Mathematics Education 

The Open University 
2008 



Acknowledgements 

ACKNOWLEDGEMENTS 

To John, for Mondays I will always remember and miss, for challenging and 

supporting my emerging ideas, and for being consistently positive about my ability to 

write despite rarely seeing any coherent evidence. To Anne, for transforming my 

interest in maths education into a passion. To my dad, for more than will be written 

here, but specifically for supporting and encouraging what must have seemed an 

inexplicable ambition. To all my family and friends for persistent attempts to 

understand what I was doing and why. And to Robin, for consistently conspiring in 

the pretence that academic writing was a perfectly sensible way to spend a Sunday, 

and for offering apposite but ignored advice on posture and balance. 

1 



Abstract 

ABSTRACT 

It is widely recognised that generality is at the heart of the learning and teaching of 

mathematics. Motivated by a desire to understand what it is about generality which presents 

such an obstacle for so many students, this study examines the variety and complexity of 

ways in which generality is expressed in mathematics classrooms. 

Systematic reflection on my own experience of teaching over a year revealed a wide range of 

types of generalisation taking place in mathematics classrooms. The main study then analyses 

transcripts of fifty-two lessons taught by six teachers teaching at least four hundred students, 

sampled over a period of two months. The focus is on 'ordinary' lessons where expression of 

generality is not the main objective. Infonned by the literature, observation notes and student 

work, a framework is developed with five categories used to distinguish between types of 

generalisations, which emerge from the transcribed data . These categories are: the object of 

generalisation, its presumed longevity of relevance, its justification, its origin and the 

awareness being promoted. 

Having established the Ubiquitous richness and complexity of expression of generality in 

mathematics classrooms, the study looks in closer detail at the expression of generality 

pertinent to mathematical procedures and to mathematical concepts. The study uses the 

framework, and draws on second language education literature, to re-examine the fifty-two 

main study lessons. This analysis highlights the complexity of expressing generality through 

natural language, and suggests that natural language exhibits many of the pitfalls and 

ambiguities of algebraic expression. Further, it suggests that algebraic notation might offer a 

clearer means of expressing generality in many cases. The framework developed for 

considering characteristics of expressions of generality is then applied to the researcher's own 

classroom, demonstrating how awareness of ways in which generality is expressed can inform 

pedagogic choices as well as provide a structure for reflection on practice. 

ii 



Contents 

TABLE OF CONTENTS 

CHAPTER 1: INTRODUCTION .•....•...•.......•..........•...........•....•.•....•..•............. 1 

1.1 Research Focus ............................................................................................... 1 

1.2 Research Questions ........................................................................................ 2 

1.3 Researcher's background ................................................................................ 5 

1.4 The significance of the study .......................................................................... 6 

1.5 The structure of the thesis ............................................................................... 8 

CHAPTER 2 : LITERATURE REVIEW •••......••.•.•.•••.....•..•......••...•.••••............. 11 

2.1 Why generality? ............................................................................................ 12 

2.1.1 General Facts .................................................................................... 16 

2.1.2 General Approaches ......................................................................... 17 

2.2 General Procedures ....................................................................................... 18 

2.3 General Concepts .......................................................................................... 23 

2.3.1 The vocabulary of mathematics ....................................................... 26 

2.3.2 How do students learn words? ......................................................... 33 

2.4 Algebra: the language of generalisation ....................................................... 45 

2.5 Algebra: a non-native language? .................................................................. 59 

2.5.1 Use of target language ...................................................................... 60 

2.5.2 Communicative language teaching .................................................. 64 

2.5.3 Meaningful study ............................................................................. 65 

2.5.4 Teaching rules of manipulation (grammar) ..................................... 67 

2.6 Language and Learning ................................................................................ 71 

2.7 Teacher-led Discourse .................................................................................. 74 

2.7.1 What is teacher-led discourse? ......................................................... 74 

III 



2.7.2 Analysing teacher-led discourse ...................................................... 79 

2.7.3 Characteristics of teacher-led discourse ........................................... 81 

2.8 Decisions and Tensions ................................................................................ 89 

2.9 Chapter Summary ......................................................................................... 93 

CHAPTER 3: METHODOLOGY I - RESEARCH DESIGN AND DATA 

COLLECTION .........••..•••••••.•..•...............•..•••...•.•....•••••..................•..•.••......• 98 

3.1 Introduction .................................................................................................. 98 

3.2 Learning from the pilot study ....................................................................... 99 

3.3 Methodological Principles .......................................................................... 101 

3.4 Research strategy: details and rationale ..................................................... 116 

3.4.1 Sampling ........................................................................................ 117 

3.4.2 Observing ....................................................................................... 118 

3.4.3 Recording ....................................................................................... 119 

3.4.4 Transcribing ................................................................................... 121 

3.5 Ethics .......................................................................................................... 124 

3.6 Chapter Summary ....................................................................................... 127 

CHAPTER 4: METHODOLOGY II - DATA ANALYSIS AND INTERPRETATION 

................................................................................................................. 128 

4.1 Introduction ................................................................................................ 128 

4.2 Levell Analysis (fieldwork) ...................................................................... 131 

4.3 Level 2 Analysis (transcript coding) .......................................................... 133 

4.4 Level 3 Analysis (deeper analysis) ............................................................. 135 

4.5 Creating accounts of classrooms ................................................................ 137 

4.5.1 Desiring description ....................................................................... 139 

4.5.2 'Thick' Descriptions ...................................................................... 142 

IV 



4.5.3 Interpretive Tensions when creating 'thick' descriptions .............. 146 

4.6 Evaluation of Methodology ........................................................................ 154 

4.7 Chapter Summary ....................................................................................... 157 

CHAPTER 5: IN THE RESEARCHER'S CLASSROOM ................................. 159 

5.1 Introduction ................................................................................................ 159 

5.2 Lesson segment: Algebra bingo ................................................................. 161 

5.3 Analysis and Interpretation ......................................................................... 162 

5.3.1 Generalisations about ... algebra .................................................... 164 

5.3.2 Generalisations about... the game ................................................. 167 

5.3.3 Generalisations about. .. behaviour and purpose ........................... 171 

5.4 Reflections: unfounded generalisations and levels of awareness ............... 174 

5.5 Chapter Summary ....................................................................................... 176 

CHAPTER 6: THE MAIN" STUDY LESSONS ................................................ 178 

6.1 Introduction ................................................................................................ 178 

6.2 The main study teachers ............................................................................. 179 

6.3 Who is talking? ........................................................................................... 188 

6.4 Who is generalising? .................................................................................. 194 

6.5 Journeying towards the general .................................................................. 195 

6.6 Chapter Summary ....................................................................................... 196 

CHAPTER 7: TYPES OF GENERALITy •••••••••••••••••••••••••••••••••••••••••••••••••••••• 198 

7.1 Introduction ................................................................................................ 198 

7.2 Lesson Analysis .......................................................................................... 201 

Lesson [10] CB 10(1) Quadratics ........................................................... 202 

7.3 The emergent framework for generality ..................................................... 209 

v 



7.3.1 Subject of generalisation ................................................................ 209 

7.3.2 Awareness of generalisation .......................................................... 213 

7.3.3 Derivation of generalisation ........................................................... 218 

7.3.4 Justification of generalisation ........................................................ 221 

7.3.5 Longevity of generalisation ........................................................... 222 

7.4 Applying the framework ............................................................................. 225 

Lesson [35] PF 7(mixed) Subtraction ..................................................... 226 

7.5 Chapter Summary ....................................................................................... 231 

CHAPTER 8-1: PROCEDURAL GENERALITY •••••••••••••••••••••••••••••••••••••••••••• 233 

8-1.1 Introduction .............................................................................................. 233 

8-1.2 Lesson Analysis ....................................................................................... 234 

[14] eB 10(1) Percentage change ........................................................... 235 

[26] KT 8(1) Angles ................................................................................ 236 

[15] LR 7(4) Perimeter and area ............................................................. 239 

[21] BG 10(2) Interior and exterior angles, and order of operations ...... 241 

[12] SJ 10(3) Squares and cubes ............................................................. 243 

Summary oflesson analysis: similarities and differences ...................... 250 

8-1.3 Findings ................................................................................................... 251 

8-1.4 Chapter Summary .................................................................................... 255 

CHAPTER 8-11: CONCEPTUAL GENERALITY •••••••••••••••••••••••••••••••••••••••••• 257 

8-11.1 Introduction ............................................................................................ 257 

8-11.2 Introducing concepts: New Naming ....................................................... 260 

8-11.3 Using concepts: Needless and Nonsensical Naming .............................. 266 

[05] eB 11(3) Factorising ....................................................................... 266 

VI 



[07] SJ 10(2) Approximations ................................................................. 270 

[27] PF 9(1) Fractions ............................................................................. 272 

8-11.4 Developing concepts: definition and scope ............................................ 275 

[34] LR 10(1) Rational and irrational numbers ...................................... 276 

8-11.5 Chapter Summary ................................................................................... 279 

CHAPTER 9: BACK IN THE RESEARCHER'S CLASSROOM ••••••••••••••••••••••• 283 

9.1 Introduction ................................................................................................ 283 

9.2 Why use algebra to express generality? ..................................................... 286 

9.3 Expressing generality algebraically ............................................................ 291 

9.4 Expressing general concepts algebraically ................................................. 294 

9.5 Expressing general procedures algebraically ............................................. 298 

9.5.1 Students' appreciation of generality .............................................. 301 

9.6 Chapter Summary ....................................................................................... 306 

CHAPTER 10: CONCLUSION .......................................•.•.......................•.• 307 

10.1 Summary of Findings ............................................................................... 307 

Research Question 1 ................................................................................ 307 

Research Question 2 ................................................................................ 309 

Research Question 3 ................................................................................ 31 0 

10.2 Overview of Findings ............................................................................... 311 

10.3 Critical Evaluation of the Study .............................................................. .313 

10.3.1 Depth of detail and breadth of generalisibility ............................. 314 

10.3.2 Studying other teachers and reflecting on own practice .............. 315 

10.3.3 Understanding practice and changing practice ............................ 316 

BmLIOGRAPHY ..........••......•.•.•...........•...•..•........••...••.••••..•••••....•••..•.•..•••• 318 

vii 



Chapter 1 Introduction 

CHAPTER 1: INTRODUCTION 

This chapter introduces and explains the scope (1.1), research questions (1.2) and 

background (1.3) of the study, and discusses its significance as a piece of 

contemporary educational research (1.4). The final section provides an overview of 

the remainder of the thesis (1.5). 

1.1 RESEARCH Focus 

This study investigates the role of generalisation in secondary mathematics 

classrooms. It is concerned with the ways in which such generalisations are expressed 

by teachers and students in teacher-led discourse. The importance of students' 

appreciation of generality has long been recognised. When examples are used to 

illustrate a whole space of mathematical possibilities, it is important that students 

appreciate this general space, and are able to generalise. Krutetskii (1976) writing 

originally in 1968 observed that the more successful mathematics students in his study 

were those who could generalise on the basis of analysis of just one phenomenon. 

Following this argument, it would seem desirable for mathematics classrooms to be 

places where all students become better able to see the general through the particular 

(Whitehead, 1932). The discussion of generality is thus a central part of mathematics 

education, and the role of the teacher in promoting and guiding such discussion is 

worth serious consideration. 

As Cobb et al. (1997: 258) observed, "The current reform movement in mathematics 

education places considerable emphasis on the role that classroom discourse can play 

in supporting students' conceptual development". When teaching, I fmd that leading 
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Chapter 1 Introduction 

class discussions results in considerable personal and professional pressure. My 

philosophies and approaches feel particularly exposed, and the effects of the decisions 

I make appear magnified by my working with up to thirty-two students at a time. 

Having chosen an appropriate task, the teacher-led discourse phase influences the 

extent to which students' activity on the task will be mathematically profitable. 

During teacher-led discourse, whether implicitly or explicitly, misconceptions are 

addressed; the classroom culture is set out; the purpose of the activity is shared. 

Although all of these things are also taking place through choice of activity, and 

interactions with individuals and small groups, they are particularly prominent in 

teacher-led discourse phases. 

1.2 RESEARCH QUESTIONS 

This study sets out to explore the issues surrounding algebra as a language of the 

general, both through the literature and through reflection on my own practice. I 

listened for opportunities for algebraic expression of mathematical generality in my 

own and others' classrooms, and attempted to embrace such opportunities in my own 

classroom, to demonstrate potential links between research fmdings and implications 

for classroom practice. 

The research questions that guided this study, however, did not set out a specific 

intention to work on emergent algebra (as defmed by Ainley, 1999a and in section 

2.5.4). The focus on emergent algebra emerged from immersion in the classroom 

observations, the data created from these observations, and reflection on my own 

practice. My intention in writing the research questions for the study was that they 
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Chapter 1 Introduction 

should be sufficiently exploratory and open so as not to anticipate any particular 

findings. 

Research questions serve a variety of functions. Five main functions are delineated by 

Punch (1998): organising the project and giving it direction and coherence; delimiting 

the project, showing its boundaries; keeping the researcher focused during the project; 

providing a framework for writing up the project; and pointing to the data that will be 

needed. Three research questions were posed in this study, in order to set the study in 

its broad context, refine its focus, and guide the analysis. The remainder of this 

section explores the origin, meaning and function of each research question in greater 

detail. 

What generalisations are being expressed in 
secondary mathematics classrooms? 

How are procedural generalisations 
expressed in mathematics classrooms? 

How are conceptual generalisations 
expressed in mathematics classrooms? 

The first research question - What generalisations are being expressed in secondary 

mathematics classrooms? - seeks to explore the shape and direction of class 

discourse, and describe how expressions of generality are arrived at in whole class 

discussions. 

This question served an additional function at a later stage in the research when it 

provided a focus for synthesising the findings in response to the other research 

3 



Chapter 1 Introduction 

questions and for identifying the main substantive contributions offered in this study. 

The response to this question is presented in chapter seven, and runs throughout the 

thesis. 

The second research question asks - How are procedural generalisations expressed in 

mathematics classrooms? The distinction made between general mathematical 

procedures and general mathematical concepts, both in sections 2.2 and 2.3 and 

chapters 8-1 and 8-11, enables greater insight into classroom expressions of 

generalisation. It is nevertheless the case that the same mathematical idea can be 

viewed as both a procedure and a concept. For example, in order to achieve the 

highest grades at GCSE, students are expected to be able to 'complete the square'. 

This involves three elements of concept appreciation: to know when it is an 

appropriate technique to employ (scope), to be able to refer to it as 'completing the 

square', and recognise the expression when used by others (naming), and to 

understand that the technique is a general one (abstraction). Similarly, learning about 

'perimeter' involves understanding the name, scope and meaning of the concept 

'perimeter', as well as learning the procedure for 'finding the perimeter' of various 

shapes. 

The third research question - How are conceptual generalisations expressed in 

mathematics classrooms? - seeks to address the ways in which mathematical concepts 

are expressed in mathematics lessons. In addressing this question I employ Davydov's 

(1972/1990) description of what it means to understand a concept. 

4 



Chapter 1 Introduction 

This work focuses on the classroom practices of six mathematics teachers teaching 

students across five academic years (seven to eleven). The three research questions 

are all explored both within the context of the researcher's own practice, and of fifty-

two 'main study lessons' taught by six different teachers. All of these points will be 

elaborated on in subsequent chapters. 

1.3 RESEARCHER'S BACKGROUND 

This section describes the background to the present study in terms of the researcher's 

story of coming to undertake this piece of work. The study's focus on students' 

appreciation of generality and teachers' direction of whole class discussions relate 

strongly to my own background in teaching, and before that, studying mathematics. It 

is for this reason that a personal sketch of my path to commencing this study is seen 

as both necessary and important. This acknowledges that: 

The past experience of the researcher is of significance to any research 
study he or she conducts [for ... ] each new experience spreads a layer 
upon the researcher's existing fund of professional knowledge and 
influences the establishment of the reearcher's relationship with the focus 
of the investigation. 

Munby and Spafford, 1987: 507 

It is always difficult to pin-point the beginning of an interest or a concern that, 

through time and subsequent experiences and interactions, grows into a motivation for 

research. Rather than attempt to do so here, I merely note that teacher-led discourse 

has, for some time, seemed to me to possess almost daunting potential for developing 

students' understanding of mathematics. As a beginning teacher, the experience of 

thirty pairs of eyes and thirty energetic students engaging to some extent with a topic 

that I was responsible for initiating, sustaining and concluding was both daunting and 

inspiring. When engaging with research literature, I was frequently frustrated that 

5 
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Chapter 1 Introduction 

teacher-led discourse was held up as the solution to a multitude of issues in 

mathematics education. Whilst the benefits of students sharing and discussing their 

ideas are frequently expounded, detailed descriptions of the direction and content of 

these discussions are rarely offered (see section 4.5.1). The intention when 

commencing this study was to explore teacher-led discourse in 'ordinary' classrooms, 

alongside reflecting on such discourse in my own classrooms, in order to offer 

detailed description of the decisions and tensions involved. My interest in generality 

and its role in mathematics education is explained in section 2.1. 

1.4 THE SIGNIFICANCE OF THE STUDY 

The significance of this study lies in the substantive insights and the methodological 

developments it has generated. These, it is argued, have potential relevance for 

mathematics education research and practice, and curriculum research and curriculum 

development more generally. 

This work provides detailed, empirical, classroom-based data on the nature and 

dynamics of whole class discussion in a secondary school setting. Such data are 

relatively limited at present. Little is known from the perspective of empirical 

research about how teachers structure whole class discussions. This study, therefore, 

supports an important development in mathematics education, following researchers 

such as Davis (1997) who emphasise the role of 'listening' both as a teacher and as a 

researcher. In view of this, the substantive conclusions from this study would seem of 

particular importance both to the researcher and practitioner audience within 

mathematics education. 
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Chapter 1 Introduction 

This study also has significance within the field of language in education more 

generally, through illustrating empirically how classroom interactions take place. 

Furthermore, it does this for a curriculum subject (mathematics) that has received 

comparatively little attention within recent research on language and discussion. 

Much research sets out to find the best way to teach certain topics or skills. It 

considers the tensions, but with an implicit or explicit assumption that there will be a 

'best' way, and that the research will be able to go some way towards finding that. I 

believe that teachers need to be fully aware of the tensions and choices they are 

making, and the potential advantages and drawbacks of each possible decision, so that 

they can make a considered and informed decision. Rather than focus on how teachers 

do teach, or how teachers 'should' teach, I ask what decisions and tensions are and 

could be experienced, and indicate where choices or decisions might be made. 

In order to explore the mathematics classroom through the perspective of 

generalisation, this study has been required to innovate methodologically. It has 

applied and combined a number of new ideas to the context of language in 

mathematics education research. The insights that have emerged from this process 

will, it is hoped, contribute to the ongoing methodological dialogue within the field. I 

refer particularly to the ideas that have emanated concerning combining observing 

others and researching own practice and the challenges of trying to make research 

meaningful and beneficial to its practising teachers. As with the substantive insights, 

such methodological concerns, it is hoped, would also be of significance to the 

broader fields of mathematics education research more generally. 
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Chapter 1 Introduction 

Both the investigation of a sample of teachers' teaching and action research into the 

researcher's own practice are commonly used and accepted methods of investigating a 

research question. What is innovative here is the combining of both of these methods 

in order gain greater insight into an enquiry. Combining approaches to explore a 

question more fully (triangulation) is common practice. This might involve, for 

example, interviewing teachers and/or students alongside observations of their 

lessons. This study sets out to use a notion of triangulation not to gain a more realistic 

conception of what did happen in a particular situation, but to gain a deeper 

understanding of what is possible. 

1.5 THE STRUCTURE OF THE THESIS 

The thesis is organised into ten chapters. This introductory chapter has outlined the 

scope, background, theoretical approach and significance of the study. In chapter two, 

attention turns to the research literature that has informed this work. This reviews 

studies from the fields of generalisation and algebra, language, teacher-led discourse 

and teaching decisions and locates the study at the intersection of these four areas. Its 

central theme is the expression of generality in teacher-led discourse. 

Chapter three describes and explains the procedures by which the research was 

undertaken (methods) and the principles and intentions that underpinned their use 

(methodology). Emphasis is placed on providing detailed examples of how the nature 

of the data generation procedures evolved over the course of the study, in line with its 

'emergent approach'. In chapter four the inter-related questions of how the data was 

analysed are addressed, along with what measures were taken to ensure validity in the 

claims made. 
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Chapter 1 Introduction 

Reflection on my own practice played a significant role throughout this study. This is 

reflected in this thesis through the inclusion of chapters five and nine. In addressing 

the first research question - what generalisations are being expressed in secondary 

mathematics classrooms? - reflection on my own practice, as described in chapter 

five, was significant in initial categorisation of generalisations. Generalisations about 

algebra, about the activity in progress, and about behaviour in the mathematics 

classroom are considered. The insights gained through reflecting on my own practice 

through the perspective of 'types' of generalisation being expressed contributed to the 

decision to distinguish between generalisations in the main study lessons. 

Before these distinctions are introduced, chapter six introduces the mam study, 

through provision of a contextual sketch of the six main study teachers. The purpose 

of this chapter is to present specific details and more general information about the 

individual case settings to give the reader a context within which to understand the 

cross-case discussion of findings in the subsequent three analysis chapters. 

The main study's fmdings are, then, provided in three separate chapters, each relating 

to one of the study's research questions. Chapter seven focuses on two teacher-led 

discourses, and develops a framework for distinguishing the characteristics of 

expressions of generality. This, therefore, responds to Research Question 1: What 

generalisations are being expressed in secondary mathematics classrooms? Chapter 

eight-I looks more closely at those generalisations identified as dealing with 

mathematical procedures. This, then, responds to Research Question 2 - How are 

procedural generalisations expressed in mathematics classrooms? Chapter eight-II 
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then explores the expression of mathematical concepts in greater detail. Its reference 

is Research Question 3 - How are conceptual generalisations expressed in 

mathematics classrooms? 

Chapter nine returns to my own classroom~ and addresses the emergent question of 

whether it might be effective to increase the use of algebraic notation in expressing 

generalisations~ such as the procedures and concepts explored in chapters 8-1 and 8-1I~ 

in secondary mathematics classrooms. The chapter also offers an illustration of how 

the findings of chapters 7~ 8-1 and 8-11 can inform a teacher~s practice. 

Chapter ten summarises the fmdings~ and considers their implications for research and 

practice in the area of whole class mathematical discussion. It ends with a critical 

evaluation of the design and undertaking of this study. 

10 



Chapter 2 Literature Review 

CHAPTER 2: LITERATURE REVIEW 

Having outlined the scope, research questions, background, theoretical approach and 

curriculum context of the research in chapter one, this chapter considers the 

intellectual background against which this study was carried out. It situates the present 

research in relation to previous theoretical and empirical investigations in the fields of 

mathematics education research and research on classroom language, and 

demonstrates how it has been influenced by work within these areas. This chapter 

reviews research from four main areas: research on generalisation and algebra (2.1-

2.3); research on language (2.3-2.6), research on class discussion (2.6-2.8) and 

research on teacher decision-making (2.8). These four areas overlap in sections 2.3, 

2.6 and 2.8, reflecting the inter-connected nature of the issues. For each of these there 

will be a combination of brief overview of work in that area with more detailed 

consideration of the studies of most relevance to the present work. A fmal section will 

summarise the discussion by locating the present study in relation to the literature 

reviewed (2.9). 

Various terms are examined throughout this thesis, including, fundamentally, 

generalisation, algebra, and discourse. Although it was not my intention that this 

chapter should focus on the definitions of these terms, it soon became clear that any 

serious exploration of the interplay between them required a detailed investigation of 

the scope of each. Generality and generalisation are consequently discussed in section 

2.1, algebra in section 2.4, and discourse in section 2.7. 
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Chapter 2 Literature Review 

Literature informed this study from its initial conception to the writing-up of fmdings. 

It therefore seems inappropriate to confine my discussion of its influence to a single 

isolated chapter. Whilst the main background literature is discussed here in chapter 

two, some research that proved central to the study is introduced in later chapters 

where pertinent. Although my awareness of the studies introduced in later chapters 

also affected my research questions and design, they resonated most vividly once the 

initial phases of the study had been carried out. I try to show where the literature 

played an influential role in the initial design of the study, and where findings from 

the study prompted exploration of a particular area of the literature. 

2.1 WHY GENERALITY? 

This section focuses on the importance of generality as a topic for research in 

mathematics education. I begin by exploring the role that generalisation plays in the 

learning of mathematics, asking what distinguishes mathematics from other school 

subjects, and what links mathematics to generality. I then focus on four separate areas 

of the mathematics curriculum, and examine the role of generality in each. 

I use the term generalisation to refer to the process of stressing some features and 

ignoring others (Gattegno, 1963) so as to express or appreciate the shared structure of 

a set of particulars. Generalisation has a particular role to play in mathematics. The 

abstract nature of the subject requires that generalisations be made about general 

relationships between general concepts. I take as assumed background the perspective 

advocated and adumbrated in Mason et al. (1985) and developed over many years, its 

most recent expression being in Mason et al. (2005). The authors argue the case for 

expressing generality as lying at the heart of school mathematics in general, with 
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Chapter 2 Literature Review 

algebra as its final expression, leading to rules for manipulating expressions so as to 

resolve problems. 

Krutetskii (1976) carried out a major study of mathematical ability in students, which 

demonstrated the importance of students being able to appreciate that examples 

illustrate a whole space of possibilities. Through analysis of observations of, and 

conversations with, students, Kruteskii compiled a list of nine components of 

mathematical ability. Alongside spatial awareness, logical reasoning, flexibility, proof 

and memory, these include three components that particularly relate to appreciation 

and expression of generalisation: 

1) An ability to extract the formal structure from the content of a 
mathematical problem and to operate with that formal structure. 

2) An ability to generalize from mathematical results. 
3) An ability to operate with symbols, including numbers. 

Krutetskii observed that the more successful mathematics students in his study were 

those who could generalise "'on the spot', on the basis of an analysis of just one 

phenomenon": 

They recognise every specific problem at once as the representative of a 
class of problems of a single type and solve it in a general form - that is, 
they work out a general method (an algorithm) for solving problems of the 
given type. 

Krutetskii, 1976: 262 

In their nine characteristics of good problem solvers, Suydam and Weaver (1977:42) 

list "ability to note irrelevant detail" and "ability to generalise on the basis of few 

examples", both of which relate strongly to generalisation. Hadamard (1945) used 

evidence from studies of famous mathematicians to argue that mathematical ability 

could not be distinguished from general ability. He did, however, separately consider 

the case of the 'prodigious calculator', arguing that many prodigious calculators did 
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not appear to be in any real sense mathematicians. This seems reasonable, as high 

facility in handling numbers often appears to stem from having committed numerous 

number facts to memory, and short-term memory enabling retention of more that the 

normal 7 ± 2 units (Miller, 1956). These are not deemed to be mathematical skills. 

Hope (1985) argues, however, that prodigious calculators also make use of 

mathematical relationships, such as a2 
- b2 

= (a - b)( a + b) which assists in 

computations such as 632 
- 372

• Although many students meet these general rules, few 

use them in calculation. This suggests that appreciation of generality might aid 

calculation, and skilled calculation might then be considered a mathematical skill. 

Following these arguments, it would seem desirable for mathematics classrooms to be 

places where all students become increasingly able to see the general through the 

particular (Whitehead, 1911; Mason, 2002a). The discussion of generality is thus a 

central part of mathematics education, and the role of the teacher in promoting and 

guiding such discussion is worth serious consideration. 

However, the finding that successful mathematics students find the process of 

generalisation easy, while students with low prior attainment fmd it hard, does not 

lead researchers unanimously to the conclusion that generality should occupy such a 

significant position in the mathematics classroom. Some believe that we should be 

reducing the emphasis on generalisation in the mathematics classroom, in order to 

give lower attaining students a greater chance of success. For example, Rees (1981) 

used factor analysis to conclude that there are two relatively distinct types of 

mathematical ability. One type (the 'g-factor') was dependent only on instrumental 

understanding, while the other was more dependent on relational understanding, and 
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was related to making valid inferences. Tasks involving inference were found to be 

more difficult for students than those requiring only the 'g-factor'. Rees suggested 

that very able students should be positively encouraged to develop inferential powers 

while average and less able students should concentrate on intellectual development 

via more instrumental approaches, with the possibility that relational understanding 

might develop in some domains. 

Rees's suggestion seems ill-advised, on the grounds that all students have 

demonstrated the power to generalise. Lower attaining students should be offered 

more opportunities to express generality, in order that they may develop this natural 

power. Mason among others argues that everyone has powers of generalisation, all 

that we need to do is learn to apply them to mathematics. 

Children enter school already having displayed immense powers of 
imagining and expressing (describing what they see or imagine using 
language, displaying using their bodies, depicting), generalising and 
specialising (in picking up and using language), and conjecturing and 
reasoning (detecting patterns in language so as to be able to make up their 
own sentences to express themselves). Exercising, developing and 
extending one's powers is a source of pleasure and self-confidence. 
Failure to use those powers is at best throwing away an opportunity, and 
worst, turns students off mathematics and off school. So as a teacher I am 
faced with the question, 'Am I stimulating my students to use their 
powers, or am I trying to do the work for them?'. 

Mason, 2002: 107 

Issues such as this seem to come down to uncertainty or disagreement about the 

underlying purpose of mathematics education in schools. In the following section I 

discuss one approach to delineating the contents of the mathematics curriculum, and 

show the various roles that generality plays in each of the categories identified. 
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In seeking to distinguish mathematics from other disciplines, much disparity is 

encountered regarding a definition of mathematics. Brown (1978) suggested that there 

were four types of mathematical learning, namely simple recall, algorithmic learning, 

conceptual learning and problem solving. The Cockcroft Report (1982: 71) suggested 

that there are three elements in mathematics teaching - facts and skills, conceptual 

structures, and general strategies and appreciation. In 1985, Her Majesty's 

Inspectorate listed five main categories of objectives for mathematics learning, the 

four cognitive categories of which (facts, skills, conceptual structures and general 

strategies) bear a close resemblance to those of Brown (they included a fifth category 

of 'personal qualities'). In sections 2.1.1 - 2.3, Brown's four types of mathematical 

learning are examined from the perspective of there being four types of mathematical 

generality. Sections 2.1.1 and 2.1.2 clarify what is intended by the terms 'general 

facts' and 'general approaches', while sections 2.2 and 2.3 contain more detailed 

discussion concerning 'general procedures' and 'general concepts', as literature 

related to these two categories informs research questions 2 and 3, and the analysis in 

chapters 8-1 and 8-11. 

2.1.1 General Facts 

Although the memorisation of facts might bring to mind rote learning, rather than 

generalisation, there are numerous ways in which mathematical facts are linked with 

generality. Many facts can be derived from other facts, and students may not be 

remembering the facts themselves, but the general process of deducing the fact from 

others. Rather than learning that '7 x 9 = 63', for example, a student might use the fact 

that '9n = IOn - n', and quickly calculate 70 minus 7 to fmd their answer. The facts 

themselves may be general, such as 'all even numbers end in 0, 2, 4, 6 or 8'. General 
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strategies might be developed for learning mathematical facts, such as application, 

repetition or proof. 

2.1.2 General Approaches 

General approaches are defined here as procedures which guide the choice of which 

skills to use and which knowledge to draw on. Crucially they enable a problem to be 

approached with confidence and with the expectation that a solution will be possible. 

With these strategies is associated an awareness of the nature of mathematics and 

attitudes towards it. 

It is often found that something that is first encountered in one part of our experience 

turns out to be useful in other areas as well. Having solved a problem in one context, 

we don't have to solve it again, because we solved it abstractly. For example, a 

common problem is to find the number of sides and diagonals of a polygon. It turns 

out that the same solution applies also to a question about the number of handshakes 

that occur if everyone in a room shakes hands with everyone else, and also to a 

problem about the number of different ways a student could choose two classes to 

take. They all look the same when you think of them abstractly. If I know the solution 

to one of these problems, I can transform a new problem into the known problem, and 

quickly find the answer. This thinking, this appreciation of general approaches, is 

central to mathematics. 

Section 2.1 demonstrated the importance of generality as a topic for research, and 

outlined an approach to dividing the mathematics curriculum that informs the 

structure of the study. Having looked at ways in which mathematical facts and 
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mathematical approaches might be considered to involve generalisation, sections 2.2 

and 2.3 look at the remaining two aspects of mathematics education, procedures and 

concepts, in connection with the process of generalisation. 

2.2 GENERAL PROCEDURES 

One of the objectives of mathematics teaching is for students to learn mathematical 

techniques and procedures. The extent to which students appreciate that these 

procedures are general is therefore of critical importance. For a procedure introduced 

in a lesson to be appropriately applied in future situations, students must understand 

the scope of its relevance. Various educational researchers have considered the 

question of how best to ensure students appreciate the scope of general procedures. In 

this section I consider some of the distinctions that have been made in this area in 

order to be able to discuss the issues more clearly. 

It is important to emphasise that the term procedure is used throughout this study to 

refer to a mathematical method or technique. This could be as specific as 'how to 

multiply an integer by ten', or as widely applicable as 'how to approach word 

problems'. The term was selected in preference to algorithm, on the grounds that a 

student might develop a procedure for, say, multiplying two fractions, without the 

procedure having the formality one might associate with an algorithm. Although the 

term procedure can also be used to refer to a formal series of steps to solve a problem, 

in this study a looser interpretation is adopted. A student might 'see the general' in 

one problem, and apply that procedure to subsequent problems, without considering 

themselves to be following the rigorous steps of an algorithm, and perhaps even 

without consciously noticing the generality. 
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2.2.1 Inductive and deductive approaches 

In this section I discuss the distinction between deductive and inductive approaches to 

teaching general rules. These two approaches might also be seen to apply to 

mathematical facts, concepts or approaches, but seem to apply most directly to the 

teaching of procedures. The examples used by advocates of both approaches tend to 

be drawn from the teaching and learning of procedures. 

Spencer (1878) advocated the use of learners' powers, and reported on the beginnings 

of getting students to generalise for themselves: 

The particulars first, and then the generalizations, is the new method ... 
which, though 'the reverse of the method usually followed, which consists 
in giving the pupil the rule first' is yet proved by experience to be the right 
one. Rule-teaching is now condemned as imparting a merely empirical 
knowledge - as producing an appearance of understanding without the 
reality ... While the rule-taught youth is at sea when beyond his rules, the 
youth instructed in principles solves a new case as readily as an old one. 

Spencer, 1878: 56-7 

The term inductive refers to students detecting and expressing similarities and 

differences for themselves, and so reaching and expressing their own generalities. 

Halmos (1994) advocates a method where the teacher is encouraged to, 

concentrate attention on the definite, the concrete, the specific. Once a 
student understands, really and truly understands, why 3x5 is the same as 
5x3, then he quickly gets the automatic but nevertheless exciting and 
obvious conviction that 'it goes the same way' for all other numbers. 

Halmos, 1994: 852 

This contrasts with the deductive approach in which students are expected to commit 

definitions, rules and principles to memory. These are often illustrated with a few 

examples, and then applied to exercises. Teachers might teach deductively or 

inductively: teaching rules first and applications later or offering examples from 
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which learners use their own powers with guidance. A mixed approach might be 

thought most likely to benefit a variety of learners. Through viewing procedures as 

generalisations, this section has shown that mathematical procedures can be taught 

inductively (Spencer, 1878; Halmos, 1994) or deductively, and has briefly considered 

the advantages of each approach. 

2.2.2 Empirical and structural generalisation 

Another distinction I found to be useful in looking more closely at the process of 

generalisation is Bills and Rowland's (1999) distinction between 'empirical' and 

'structural' generalisation. They define 'empirical' generalisations as those achieved 

by considering the form of the examples, while 'structural' generalisations are made 

by looking at underlying meanings, structures or procedures. One example from my 

own teaching experience that this brings to mind is that of 'collecting like terms', 

where an empirical generalisation can be relatively simply perceived through 

considering a set of examples such as: 

3n+4n= 7n 
6x+2x+ lOx = 18x 
12a + 5b + 3a = 15a + 5b 

A general procedure can be appreciated from the above examples that might be 

expressed as 'add the numbers but keep the letters the same'. However, this general 

procedure can be appreciated on an empirical level without students appreciating, for 

example, that '3n' stands for the product of 3 and a number, rather than 'thirty-

something'. The structural generalisation might be gleaned from working with 

examples of the form: 

3x9+4x9=7x9 
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This distinction between empirical and structural generalisation is exemplified by 

Mason through his task "Do Thou Likewise". 

Here is a worked example of a calculation on some abstruse number-like 
objects represented as pairs of numbers: 

(a; b) + (c; d) = (ac; bc + ad) 
so 
(4; 6) + (3; 5) = (4 x 3; 6 x 3 + 4 x 5) = (12; 18 + 20) = (12; 38) 
Now cover everything above, and do (1; 2) + (3; 4) yourself. 

Mason, 2005 

F or me, this is a powerful reminder that procedures can be learnt without being 

understood. Under Bills and Rowland's (1999) distinction between 'empirical' and 

'structural' generalisation, "Do Thou Likewise" is 'empirical'. Due to the way this 

procedure is presented, it can only be appreciated empirically. The structural 

generalisation is actually that the procedure is an upside-down version of adding 

fractions. It is conceivable that many students who 'can add fractions' are applying an 

empirical generalisation similar to this. The question then arises of the value of such a 

procedure. 

The distinction between empirical and structural generalisation (Bills and Rowland, 

1999) introduced in this section raises the question for researchers and practitioners of 

how teachers can support structural generalisation. 

2.2.3 Procedural and conceptual understanding 

Students often encode in their memory any correlations between surface-level features 

of a problem and the method used for solving that problem and proceed to execute 

that method when detecting these surface features in other problems (Ben-Zeev, 1998; 

Ben-Zeev & Star, 2001; Chi & Bassok, 1989; Schoenfeld, 1988). Arguably, when 

such surface-level encoding happens during instruction, students do not acquire the 
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ability to discriminate between cases when a certain arithmetical operation is required 

and when it is not appropriate, but rather learn mindless, stereotyped copying 

behaviour. This 'when I see something like that, I do this' understanding is sometimes 

referred to as 'procedural'. Many researchers have drawn a distinction between these 

two types of 'knowing' or 'understanding', cautioning that where student 

understanding is limited to the procedural, answers cannot be checked, because the 

objects are without meaning. 

Lampert (1986) draws a similar distinction, referring to procedural understanding as 

'computational knowledge' as contrasted with 'principled conceptual knowledge' 

which represents the understanding of abstract principles and concepts that govern 

and define mathematical thinking and procedures. Following Mellin-Olsen (see 

Skemp, 1976), Skemp distinguishes between 'relational understanding', which he 

defines as "what I have always meant by understanding" (1971: 153), and 

'instrumental understanding'. This latter he describes as 'rules without reasons'. A 

similar distinction is illustrated in this example from Davis: 

Some teachers want a student to begin solving the equation 2x + 3 = x + 8 
by thinking, "I'll move the 3 across the equals sign and change its sign." 
These teachers hope the student will then write 2x = x + 8 - 3 but this 
approach is surely a case of regarding mathematics as a collection of 
small, meaningless rituals. Why "move the 3 across the equals sign?" And 
why on earth should such an act "change (the) sign of the 3?" Certainly, if 
we want the student to think of mathematics as consisting of reasonable 
responses to reasonable challenges, it will be far better if we encourage 
the student to think, "I can subtract 3 from each side of that equation, 
without changing its truth set." If the student has seen pictures of balance 
scales or has worked with actual balances, there can by very 
straightforward imagery underlying the idea of subtracting the same thing 
from each side of an equation. 

Davis, quoted in Wagner and Kieran, 1989: 270 
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Although fluency and understanding are often held up as if in conflict, they are both 

required for successful learning in mathematics. Time spent emphasising and 

developing the one may well contribute to increasing the other, but at a slower rate, 

perhaps, than if it had been the central focus of the activity. With respect to how these 

forms of knowing come to bear on the teaching of mathematics, Graeber (1999), in 

examining forms of knowing mathematics, finds that it is important for preservice 

teachers to understand that executing an algorithm, or getting the right answer, does 

not imply conceptual understanding. Prospective teachers, according to Graeber 

(1999), must understand that students who possess one form of knowledge do not 

necessarily possess other forms of knowledge. For instance, students may hold 

procedural knowledge of how to divide two fractions but have poor conceptual 

knowledge of either fractions or division. If preservice teachers enter the classroom 

without making the distinction between conceptual and procedural knowledge, they 

are apt to take existence of one type as evidence of existence of the other. It has been 

frequently asserted (e.g. Hart, 1981; Orton, 1992) that algorithms are taught too 

quickly, and are either forgotten, or remembered in a form different from that which 

was taught. 

2.3 GENERAL CONCEPTS 

The New Shorter Oxford English Dictionary (1993) defmes a concept as "a product of 

the faculty of conception; an idea of a class of objects, a general notion; a theme, a 

design". A word in a language, such as dog, rarely applies to a single entity and 

nothing else. With the exception of proper names, words that refer to one particular 

case will also refer to other individuals that belong to the same category or kind. To 

learn a common noun, then, requires some understanding of the conditions of 
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category membership. This is usually described as a concept. Understanding of 

concepts necessitates generalisation as, in working with a concept such as fraction, or 

quadrilateral, we isolate one or a few features of a type of object for study, and see 

what we can learn about the behaviour of those features while ignoring everything 

else about them: features like number, shape, or direction. For example, when 

working with numbers we take the concept of counting away from all other details 

about the things we are counting, such as colour or name, and just think about how 

many there are. Once students have learnt to work with numbers as an abstract entity, 

they can add two numbers (such as fifty and thirty-two) without having to think of 

them as representing fifty apples and thirty-two apples. Once they have finished their 

calculations with numbers, they can come back to the material world and know the 

total number of apples. 

Why is understanding of these general concepts necessary for language use? We 

could ask, following Locke, why such general terms exist in natural language. Why 

do we need common nouns? Locke's answer, having considered the impossibility of 

storing separate words for every individual thing, and the difficulty of sharing ideas 

with others who had experienced different individual things, is that: 

a distinct name for every particular thing would not be of any great use for 
the improvement of knowledge: which, though founded in particular 
things, enlarges itself by general views; to which things reduced into sorts, 
under general names, are properly subservient. 

Locke, 1690/1964, bk.2: 15 

Each experience that we have with a particular object - a fire that is hot and bums us, 

a piece of chocolate that tastes nice - can only be learnt from if the particular object is 

seen as representative of a general category. The advantage of having a general 
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concept, is that once you know that something belongs to such a category, you know 

further facts about it. 

The concept of an object or of a property is always abstract. Every 
concept is an abstraction, regardless of what it represents. 

Davydov,1972/1990:44 

Links between language and generalisation are manifold. The abstract, general nature 

of all words applies particularly to mathematical language, where words are often 

used to describe the abstract concepts of a set of abstract concepts. 'Three', for 

example, is both an abstract concept itself, and also part of the set of concepts we call 

'odd numbers'. One of the arguments supporting children's capacity to generalise is 

their understanding of the meanings of words. 

Using a process involving testing people on the meanings of a sample of words from a 

dictionary, including only those words whose meanings cannot be guessed through 

morphology or analogy, Nagy & Herman (1987) estimated that American high school 

graduates have a vocabulary of approximately 45,000 words. Given that this estimate 

does not include words such as proper names or idioms, the figure is probably closer 

to 60,000. This equates to about 10 new words a day between the age of 12 months 

and the completion of high school (Pinker, 1994). 

It seems convincing that if students can generalise word meaning, they can generalise 

mathematically. Why, then, is mathematical generalisation deemed an advanced skill, 

while the learning of a first language is considered easy? One distinction that can be 

made is that the particular cases of mathematical generalisation tend to be more 

abstract than those of everyday concepts. 
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Section 2.3 has sought to indicate the ways in which understanding a concept involves 

generalisation. It showed how every word is general, as each name (with the 

exception of proper nouns) belongs to a general concept. The argument was put 

forward that if students can generalise word meaning, they can generalise 

mathematically. Given the large number of new words that students show themselves 

to be capable of learning (Nagy & Herman, 1987; Pinker, 1994), it is suggested that 

students possess and demonstrate natural powers of generalisation. 

Section 2.3.1 looks in greater detail at those concepts that relate specifically to 

mathematics, and at the distinctions that have been made between Ordinary English 

and Mathematical English. Having linked these two registers (Halliday, 1975) with 

Vygotsky's (1934/1987) distinction between everyday concepts and scientific 

concepts, his (1933/1975) definition of the sublated concept is introduced. 

2.3.1 The vocabulary of mathematics 

Limited understanding of mathematical concepts is a barrier for many students' 

mathematical development (Slavit, 1998). Ability to formulate, describe and compare 

mathematical ideas is central to mathematics learning (Ernest, 1999; Laborde, 1990). 

Kane (1967) makes a useful distinction between 'Ordinary English' and 

'Mathematical English'. This distinction emphasises that mathematics teachers are not 

merely supporting students in extending their existing vocabulary to include technical 

mathematical words. Mathematics teachers also introduce new meanings for words 

that are already part of students' vocabulary. The meaning that these words are given 

'in maths' may differ significantly from their meaning in everyday English. 
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Mathematical English (ME) is a hybrid language. It is composed of 
ordinary English (OE) commingled with various brands of highly stylised 
formal symbol systems. The mix of these two kinds of language varies 
greatly from elementary school text books to books written for graduate 
students. 

Kane, 1967 

One justification for not simply taking Mathematical English to be a sub-set of the 

vocabulary of Ordinary English is that, while some technical mathematical vocabulary 

has a meaning only in Mathematical English, some words have the same meaning in 

Mathematical and Ordinary English, and still others (arguably the most confusing for 

students) have a different meaning in Mathematical English than in Ordinary English. 

While some words have entirely different meanings in ME and OE, others have a 

similar meaning in the two, but the ME meaning is more specialised or refined. Some 

classic examples of these words, of which there are many, include difference,product, 

similar, odd, and mean. 

Pimm (1995) uses Halliday's (1975) notion of a mathematics register as a starting 

point for exploring the ambiguities and potential confusions related to mathematical 

communication. Following Halliday, Pimm takes a register to be "a set of meanings 

that is appropriate to a particular function of language, together with the words and 

structures which express these meanings" (Halliday, 1975: 65). Pimm proposes that 

students must become aware that there are different registers and that the grammar, 

meanings and uses of certain tenns and expressions vary within and between them. 

In Earp and Tanner's (1980) investigation into the words used in an American sixth-

grade textbook, only 197 out of 716 words were used in a technical mathematical 

way, such as average, millilitre, scale, thousandths. They interviewed fifty students to 
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assess their comprehension of the vocabulary in the book, and found 98% 

comprehension accuracy for the non-mathematical words and only 50% for the 

mathematical words. Mathematical texts, even those that use little technical 

vocabulary, are often written with fewer context clues than passages in ordinary 

English (Earp, 1971; Shuard & Rothery, 1984), which gives students fewer clues 

about unknown words or phases. The paucity of provision of context clues in 

mathematics means that questions often demand that students know the exact meaning 

of all words in order to know what is being asked of them. A study by Otterbum & 

Nicholson (1976), followed up by Nicholson (1977) found that offering context clues, 

by placing a word in a sentence or paragraph, improved students' understanding of the 

word. A word which appears in isolation is harder to read than if it is part of a 

sentence. 

Williams (1981) showed that the choice of vocabulary used is not as significant a 

factor in students' understanding as the way in which the text helps the reader to 

understand its vocabulary. Although his focus was on written texts in OE, many of 

techniques apply to mathematics, and could be adapted for use by teachers. He offers 

the following checklist for effective lexical familiarisation. 

(a) Is it clear to the reader when a lexical item is being familiarised? In 
other words, does the book have a typographic system for 
familiarisation? 

(b) Is this system consistent? 
(c) Does the book contain an index, and does that index distinguish (again 

by a typographical device) between lexical items that are familiarised 
in the main body of the book, and those that are not? 

(d) Are the lexical familiarizations likely to do their job for the target 
readership? 

(e) Are the familiarisation forms chosen the most appropriate? In 
particular, has the author made sufficient use of non-verbal devices? 

(t) If illustrative familiarizations are included, what degree of interaction 
between illustration and text is there, and how successful is it? 
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(g) Are familiarisations followed up - by presentation in a different 
context, in an exercise, in a diagram, in an end-of-chapter summary 
etc.? 

(h) If the book contains a glossary, is the language of the glosses suitable 
for the target readership? 

(i) Are there instances of non-familiarization of key terminology? 
Williams, 1981 

Vygotsky (1934/1987) distinguished between everyday concepts and scientific 

concepts, on the basis of whether or not they were based on a system. He argued that 

everyday concepts are based in rich daily contexts, rather than being based on a 

system, whilst scientific concepts are defined according to a system that has 

developed in human history, and therefore lacks concrete contexts. According to 

Kozulin, Vygotsky's scientific concepts are based on "formal, logical, and 

decontextualized structures" (1990: 168). As mathematical concepts are within a 

system and are characterized by formal and decontextualized structures, in this thesis, 

I will take mathematical concepts to be an example of the scientific concepts 

discussed by Vygotsky. The following definitions are drawn from Vygotsky 

(1934/1987) and others who discussed this distinction (Panofsky, John-Steiner, and 

Blackwell, 1990; Kozulin, 1990; Davydov, 1972/1990; and Schmittau, 1993). 

Everyday concepts are concepts that originate from children's daily lives through 

communication with their family, friends, or community and thus are closely 

connected to concrete personal contexts. Children express them through their own 

words and use them in their ways of thinking without conscious awareness. As a 

result, everyday concepts are not systems; rather they are based on subjectivity. 

Mathematical concepts are scientific concepts that are connected to mathematics. 

They are based on a system, and therefore they have logic and objectivity. They are 
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expressed in a mathematical language and introduced to children in a formal, highly 

organized education. Mathematical concepts enable children to develop mathematical 

thinking and to require conscious awareness and voluntary behaviour for concepts. 

As Zack (1999) discussed, the relation between spontaneous and scientific concepts 

might be regarded as either mutually dependent or dichotomous (mutually exclusive). 

On the one hand, the relation could be thought of as dichotomous on the surface 

because of their conflicting characteristics. Yet Vygotsky's words suggest he may 

have taken another position: "There is a mutual dependence in the relation between 

the processes of development of children's concepts in daily lives and in school. It 

enables such relation that the processes of these two concepts pass in the different 

ways" (Vygotsky, 1933/1975: 122). The subsequent sections describe in detail the 

relation between the two kinds of concepts and their development. However, care 

must be taken when inferring what Vygotsky said about the relation of scientific and 

everyday concepts, for while mathematical concepts are here equated with scientific 

concepts, Vygotsky himself did not deal specifically with mathematical concepts. 

Vygotsky (1934/1987) thought of concepts as follows: 

We know that the concept is ... a "complex and true act of thinking" that 
cannot be mastered through simple memorization. ... At any stage of its 
development, the concept is an "act of generalization." The most 
important finding of all research in this field is that the concept -
represented psychologically as word meaning - develops. The essence of 
the development of the concept lies in the transition from one structure of 
generalization to another .... This process is completed with the fonnation 
of true concepts. 

Vygotsky, 1934/1987: 169-170 
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Accordingly, a concept is not static or unchangeable, but a complex and dynamic act 

of thinking and an act of generalisation. In addition, psychologically this concept 

develops from one structure of generalisation to another. It is apparent that this notion 

of concepts applies to everyday concepts but does not apply to mathematical concepts 

because mathematical concepts have been developed through history. Thus, the 

distinction between the two types of mathematical concepts which have developed in 

human history and which develop based on children's everyday concepts as their 

psychological development must be made clearer than it is in some of Vygotsky's 

writing. 

Once clearly distinguished from one another, we now need to consider the 

relationship between these two kinds of concepts in mathematics education. In the 

cognitive development of children, everyday concepts arise from below to above in 

some sense when children learn formal and systematic mathematical concepts in 

school (Vygotsky, 1933/1975; 1934/1987). In other words, everyday concepts are 

reorganized and raised to a higher level by the appearance of mathematical concepts. 

However, the everyday concepts that are raised to higher level might not be called 

everyday concepts after this elevation because they now include elements of more 

systemic thinking. Likewise, mathematical concepts also change from their proper 

definition, for after this elevation they now include notions derived from experience in 

concrete contexts in addition to their systematic characteristics. 

Though Vygotsky (1974) did not give detailed accounts of how these two mutually 

dependent concepts develop in children, he pointed out that the relation between 

higher and lower forms could be expressed well using the idea of a dialectic, where 
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from the interrelating of everyday and mathematical concepts a new form- the 

sublated concept- gradually develops. Brushlinsky (1968) described this idea as 

follows: 

In [Vygotsky's] words, any higher stage of developments does not replace 
[lower stages] but subordinate them as their parts. That is, the higher 
stages contradict the lower. However, they do not eliminate the lower; but 
the higher stages include the lower as their sublated parts. Categories 
become components within a system, contradicting one another in the 
system. (L. S. Vygotsky reminds us of the duality of Hegelian meaning of 
sublate - elimination [of original form] together with preservation [of 
crucial features of the category]) 

Brushlinsky, 1968: 12 

As Vygotsky (1933/1975) recognized, contradictions between everyday and 

mathematical concepts are factors that promote the intellectual development and bring 

new possibilities for their development of children. Therefore, it is useful to use the 

idea sublated to explain how the concepts develop. These are defined as follows. 

(1) Mathematical concepts contradict a part of the children's everyday 
concepts; 
(2-A) The everyday concepts are lifted to a higher level, based on a 
system in mathematics; 
(2-B) The mathematical concepts are lifted to a higher level in which the 
daily contexts according to children's everyday concepts are accompanied 
with them; 
(3) They are preserved as a unified concept, that is, a sublated concept. 

Consequently, sublated concepts are defmed as follows: Concepts developed through 

the sublated process, having both a system in mathematics and rich daily contexts, 

wherein children are free to move back and forth between the everyday and the 

mathematical world. Furthermore, children should be able to use the sublated 

concepts with conscious awareness and voluntary behaviour. 

Having briefly considered the complexity of word learning in mathematics, the next 

section considers the process by which such concepts are thought to be learnt. 
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2.3.2 How do students learn words? 

Whilst the importance of students learning and using subject-specific vocabulary is 

frequently emphasised, the process by which students learn these words, or words of 

any kind, remains relatively mysterious. Of all the language learning that children do, 

including grammar and sentence structure, it is word learning that seems to be central 

in terms of generalising. When a student learns that a particular word or name applies 

to a set of particular cases, they are generalising. This is because, as St. Augustine 

emphasised around 1600 years ago, it is not simply the word itself that is being learnt, 

but the general class of 'things' that the word signifies: 

From words we can learn only words. Indeed we can learn only their 
sound and their noise. We learn nothing new when we know the words 
already, and when we do not know them we cannot say we have learned 
anything unless we also learn their meaning. And their meaning we learn 
not from hearing their sound when they are uttered, but from getting to 
know the things they signify ... 

St. Augustine, 4th C AD 

Where consideration is given to what this process described by st. Augustine might 

consist of, it is often explained by the process of 'association'. The term 

'association', is used to describe the way in which a learner hears a word being used, 

and comes to associate the word with what it refers to. It is assumed that this is the 

process by which dogs learn to obey the commands of their owner, as they associate 

the right behaviour with the right sound. 

Although some studies (Collins, 1977; Harris, Jones & Grant, 1983) have found that 

for very young children there may be a spatial and temporal concurrence between 

word and meaning, this occurs only about 70 percent of the time. There is 

experimental evidence that children are able to learn words for objects and actions 
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that are not observable to them at the time the words are being used. The associative 

principle therefore fails to capture certain facts about language development. The 

complexity of word learning is emphasised by Quine (1960), who tells an anecdote in 

which a linguist attempts to learn a language from its native speakers (Quine, 1960: 

29). "A rabbit scurries by, the native says 'Gavagai,' and the linguist notes down the 

sentence 'Rabbit' (or 'Lo, a rabbit'), as tentative translation, subject to testing in 

further cases." The case that Quine puts forward is that the linguist can never be 

certain of the accuracy of this translation. The word might be used to describe 

mammals, animals, things that run, the act of running itself, the fur or colour of the 

rabbit. Even once the linguist can be sure that gavagai is a name that refers to the 

rabbit, a problem of generalisation arises, regarding how this word should be used on 

future occasions. 

Goodman (1983) similarly pointed out that for any act of induction, there is an infinite 

number of equally logical generalisations that can be made, each one equally 

consistent with the particular experience. Students need to be clear about what the 

speaker intends to refer to when using the word. 

Having formed a conjecture about a one-on-one pairing between a word and a general 

concept, how do children check whether it is correct? Various studies have shown that 

children do not appear to rely on adults to correct them, reinforcing correct naming 

and correcting those that are incorrect. Not all cultures include the practice of parents 

of correcting children's word use (Lievan, 1994). Although a child who cannot talk 

obviously cannot get feedback on their speech, a study of a four-year-old who could 

not speak showed that he possessed a vocabulary and grammatical understanding 
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appropriate to his age (Stromswold, 1994). This suggests that students need only to be 

exposed to the appropriate vocabulary to learn, and that testing and correcting 

students' word use does not necessarily significantly contribute to their language 

development. It follows from this that if students heard others using mathematical 

vocabulary frequently, they would learn the vocabulary even without the careful 

naming. This leads to the conjecture that teachers should use mathematical words 

frequently, and not worry overly about explaining them each time. 

No matter how good they are at understanding the minds of others, 
children cannot learn a word without the ability to grasp the associated 
concept. Suppose, for the sake of argument, that two-year-olds have the 
same theory of mind as adults. Still, two-year-olds will not be able to learn 
words such as modem and stockbroker (even though these refer to 
observable middle-sized objects) because they don't yet know what such 
categories are. What theory of mind does for children is enable them to 
establish the mapping between a word and a concept. But this presupposes 
the availability of the concept. 

Bloom, 2002: 86 

The mathematics classroom exposes students to many signs, symbols and diagrams. 

After numerals and their combinations have been introduced as representing numbers, 

letters begin to be used to designate quantities and numbers. 

The principal functions of a symbol in mathematics are to designate with 
precision and clarity and to abbreviate. The demands of precision require 
that the meaning of each symbol or symbol string be razor sharp and 
unambiguous. 

Davis and Hersh, 1981: 123-124. 

Skemp (1971) offered an explanation of how we learn concepts. He suggested that 

there is no way we can help an adult born blind but given sight by an operation 

understand the concept of "redness" by means of a definition. We could make the 

person abstract the idea by pointing to different objects that are red or to ones that are 

not red. This would explain what is meant by 'redness.' Skemp claimed that learning 

of mathematical concepts is similar. We should not expect students to learn concepts 
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through definitions. Teaching through examples (rather than general definitions) 

carries the implicit pedagogic intention of encouraging students to attend to aspects of 

the particular that will appear as important features of the general (Mason and Pimm, 

1984). 

Skemp argues that this examples-to-definitions route is cognitively necessary: 

Concepts of a higher order than those which people already have cannot 
be communicated to them by definition, but only by collecting together, 
for them to experience, suitable examples. 

Skemp, 1971:14 

The approach of teaching general concepts through offering particular examples 

(rather than giving a general definition) has parallels with teaching general procedures 

inductively (see section 2.2.1). Generalisation entails the transition from a description 

of the properties of a particular object to locating and isolating a whole class of 

similar objects. It is the essential attributes of a concept, those that are common and 

remain stable, that delineate each concept from others. 

There is a tendency in the language and psychology literature to suggest that general 

concepts are learnt through exposure to them. Bloom (2002) explains that, whilst it is 

a truism that children need to be exposed to words in contexts in which they can infer 

their meanings in order to learn them, the words do not need to be presented in a 

labelling context (they can be merely overheard), the children do not need to be able 

to see the word's referent, and they do not require encouragement or feedback on their 

word use. 
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'Lexical familiarisation' is used to describe the process of weaving new words into 

sentence contexts in order to render the meaning clear. It might therefore be expected 

that mathematical texts and teachers would use mathematical vocabulary at every 

available opportunity, to optimise lexical familiarisation. However, conceptions are 

often developed and discussed initially using a 'transient' concept. For instance, 

Shuard & Rothary (1984: 14) describe how in SMP Book C: 28, movement to the 

right on the number line is referred to as a 'blue shift' while movement to the left is 

termed a 'green shift'. Later in the chapter the student is told that the set of directed 

numbers will henceforth be used to describe such shifts. This notion of a distinction 

between a transient and a universal concept emerged as a useful distinction during the 

data analysis, and is discussed further in chapter 7. 

Davydov (1972/1990) considers concept development (especially in young children) 

to proceed from perception to conception to concept. However the formation of 

theoretical concepts at the older age relies on the detection and delineation of certain 

'invariables' abstracted from the formation of elementary concepts. 

As the definition of 'meaning' is at the centre of this inquiry, it is unfortunate that no 

such definition appears to exist. Philosophers such as Quine propose that while 

sentences have meanings, such as their truth conditions or their method of 

verification, words do not. I will take Bloom's (2002) definition of what it is to know 

the meaning of a word, which is to have a certain mental representation or concept 

that is associated with a certain form. 

Under this view, two things are involved in knowing the meaning of a 
word - having the concept and mapping the concept onto the right 
form ... Saying, for instance, that a two-year-old has mixed up the 
meanings of cat and dog implies that the child has the right concepts but 
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has mapped them onto the wrong fonns. On the other hand, saying that the 
two-year-old does not know what mortgage means implies that the child 
lacks the relevant concept. People can also possess concepts that are not 
associated with fonns. A child might have the concept of cat but not yet 
know the word, and even proficient adult users of a language can have 
concepts, such as of a dead plant or a broken computer, that they don't 
have words for. 

Bloom 2002: 17-18 

This separates the knowing of meaning into two requirements: (1) having the concept 

and (2) mapping the concept onto the right fonn. For Davydov, however, in order for 

someone to have a concept of something, they must also know the word. Otherwise it 

remains a conception. A student who says "I couldn't do question 9, I don't know 

what integer means" may be deemed to possess the concept but not yet know the 

word, while saying that a student mixes up the meanings of mean, mode and median 

implies that the student has the right concepts but maps them onto the wrong fonns 

(words). Saying of a year 7 student they don't know what differentiation means 

implies that the student lacks the relevant concept. 

So what is this concept that is required for the first of these requirements? The 

concept need not contain every aspect of the knowledge someone connects with a 

word. If the meaning of a word were determined by all thoughts related to that word, 

then there would be no sense in which two people, or even a single person over time, 

could ever have the same meaning of a word. These 'meaning holistic' ideas were 

introduced into analytic philosophy in the early 1950's, in works by Hempel (1950) 

and Quine (1951), both concerned with the meaning of theoretical sentences in the 

fonnulation of a scientific theory. Semantic holism can be roughly characterized as 

the doctrine that the meaning of a person's words is a function of all of one's beliefs 

involving those words. A more detailed account of holism can be found in Block 
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(1998). Holistic theories of meaning are often criticized for entailing that any 

difference between beliefs will result in a difference in meaning. For instance, if what 

I mean by "gold" is a function of my "gold" -beliefs, and one of these beliefs changes, 

then what I mean by "gold" would seem to change as well. Holistic theories of 

meaning are thus typically accused of (among other things) entailing that no two 

people (or no person at two times) ever mean the same thing by any of their words. 

There are two traditional ways in which a word's meaning can be context sensitive. 

The first is to be ambiguous. The word "bank," for instance, can be used to designate 

either a financial institution, or the edge of a river. The context-sensitivity of "bank" 

is thus explained in terms of the different lexical entries being accessed in different 

contexts. The second is for the word's meaning to incorporate an 'indexical' 

component, allowing the entry for the word in one's mental lexicon to make reference 

to various contextual features. The word "here," for instance, is context-sensitive 

because the entry for it in one's lexicon makes reference to its place of utterance. 

However, there are many cases where words seem to refer to different things in 

different contexts without being straightforwardly ambiguous or indexical. The 

phenomenon can also show up with some proper names. The classic illustration of 

this is Wittgenstein' s discussion of "Moses". 

If one says "Moses did not exist", this may mean various things. It may 
mean: the Israelites did not have a single leader when they withdrew from 
Egypt -- or: their leader was not called Moses -- or: there cannot have 
been anyone who accomplished all that the Bible relates of Moses --or: 
etc. etc. 

Wittgenstein, 1953: §79 
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"Moses" seems as if it can be used to mean a number of things, but, as Wittgenstein 

points out later, the suggestion that the term is ambiguous is not especially plausible. 

Learning a word is a social act. When children learn that rabbits eat 
carrots, they are learning something about the external world, but when 
they learn that rabbit refers to rabbits, they are learning an arbitrary 
convention shared by a community of speakers, an implicitly agreed-upon 
way of communicating. When children learn the meaning of a word, they 
are - whether they know it or not - learning something about the thoughts 
of other people. 

Bloom, 2002: 55 

Bloom emphasises that, "Just because the relationship between a word and its 

meaning is a social fact doesn't entail that one needs social competence or knowledge 

to learn this fact." (Bloom, 2002: 55) 

Word learning really is a hard problem, but children do not solve it 
through a dedicated mental mechanism. Instead, words are learned 
through abilities that exist for other purposes. These include an ability to 
infer the intentions of others, an ability to acquire concepts, an 
appreciation of syntactic structure, and certain general learning and 
memory abilities. These are both necessary and sufficient for word 
learning: children need them to learn the meanings of words, and they 
need nothing else. 

Bloom,2002: 10 

Bloom suggests that the phenomena that such constraints have been posited to explain 

(such as children's tendencies to treat words as object names, to avoid words with 

overlapping references, and to generalise object names on the basis of shape) are 

better explained in terms of other facts about how children think and learn. 

Learning a word requires memorizing an arbitrary relationship between a 
form and a meaning, and the rote learning of paired associates is 
notoriously slow and difficult. Consider how hard it is to learn the capitals 
of different countries or the birthdays of particular people. 

Bloom, 2002: 25 

40 



Chapter 2 Literature Review 

Although we think of word learning as something that 'children' do, "All we can say 

with certainty is that word learning typically reaches its peak not at 18 months but 

somewhere between 10 and 17 years." (Bloom, 2002: 44). 

Carey and Bartlett (1978) carried out experiments with young children (see Bloom, 

2002: 26) in which they were casually introduced to a new colour word whilst 

involved in another, unrelated activity. When the three- and four-year-old children 

were tested a week later on their comprehension of the word, over half remembered 

something about its meaning. 

Bloom and Markson (1997) carried out an experiment (described in Bloom 2002: 28 

onwards) that seemed to show that both children and adults learn properties of objects 

as effectively as they learn names for objects. So is an object's name just a special 

kind of fact about it? 

In order for a conception to become a concept, Davydov (1972/1990) states that three 

requirements must be met. The class of objects that the concept contains must be 

unambiguously distinguishable from others through the possession of essential 

attributes. A term must be assigned to the concept. The meaning of this term need not 

rely on visual images, but can have an abstract character. This means that it might be 

difficult or impossible to have a mental picture of the concept, which may be defined 

by reference to previously understood concepts. 
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Davydov (1972/1990: 45-6) offers the following 3 criteria as the basis of developing a 

concept: 

• Knowing the precise scope. 

• Knowing the name. 

• Understanding the general concept without being offered a particular 

example. 

Conceptions, at least, are perpetually being formed in mathematics lessons. Some of 

these develop into concepts through discussion, naming, and clarification of scope. 

Many, however, do not. Students may have a conception of 'the sorts of questions you 

get where you have to factorise in two brackets' without the concept of 'quadratic'. 

They may have a conception of 'fractions that can be changed into each other' 

without a concept of 'equivalent fractions'. 

The three criteria given by Davydov (1972/1990, 45-6) for fonning a concept, 

described above, provide the basis of three important decisions in teaching: 

Scope: when and how do you establish the precise scope of a concept? 

Naming: when and how do you introduce a name? 

Abstraction: when do you move from exemplifying the conception with the 

particular and assume that students can appreciate meaning from the general? 

Davydov's (1972/1990) distinction between perception, conception and concept 

proved particularly valuable in the analysis (discussed in chapter eight-II) of 

classroom discourse related to general mathematical concepts. Davydov's 

(1972/1990) analysis led me to inquire whether the development of a conception was 
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a necessary prerequisite for a new concept. The movement through perception, 

conception and concept may not have to be a step-by-step progression. You could, for 

example, develop a conception without perception, by basing the new conception on a 

set of previous conceptions, rather than on a set of actual perceptions. Is it possible 

that the same can be said of concepts without conceptions? If the name, scope and 

meaning of a concept are introduced with reference to previously understood 

concepts, students may be able to get a sense of the abstract without recourse to either 

perception or conception. But their understanding of that concept might well be 

weaker as a consequence. Watson (2003) explores the role of learnt phrases such as 

"vertically opposite angles are equal" in the context of a South African township 

school. She explains that this chorused statement was not subsequently applied by 

many students in exercises following its chanting, and attributes this to poor 

understanding of the concept of angle and difficulty in recognising angles in 

unfamiliar orientations, as well as a disjunction between the memorised statement and 

its meaning. 

Another example of introducing formal concepts before developing the relevant 

conceptions would be if students were told that 'equivalent fractions' are found when 

you "mUltiply the numerator and denominator by the same number". Alternatively, 

students could develop a conception of equivalent fractions through investigating, 

perhaps using diagrams to solve a problem. This conception could then be discussed, 

named, and so become a concept. Spending time developing conceptions before 

introducing formal concepts seems intuitively to be a valuable way to enhance 

understanding. Such a time investment, however, inevitably runs into issues of pace, 
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coverage and efficiency. The decision of how long to spend and what approach to take 

to help students build strong conceptions is a difficult and important one for teachers. 

However powerful language may be, words alone do not a mathematician make. 

Definitions, however clear and precise, may not offer students the opportunity to 

develop a full concept. 

A person who hears or reads a detailed verbal formulation (the definition 
of a concept) can actually fail to have a definite visual image 
corresponding to the integral meaning of this formulation during this 
period, and yet "understand" it, know how to "explain" it. This reveals a 
characteristic feature of the concept as a particular form of reflection - the 
nonvisuality of its content. However, visual concepts have to lie beyond 
the particular attributes themselves, which are expressed in words." 

Davydov, 1972/1990: 53 

This section set out to offer a brief overview of the state of understanding of how we 

learn words. It began by establishing that the learning of words actually requires much 

more than this: alongside the word itself, we must learn the general class of 'things' to 

which that word refers. The notion of 'association', by which each word is linked to 

its referent, was introduced. It is established that experimental data indicates that there 

is rarely a spatial and temporal concurrence between word and meaning, and that even 

where this is the case, the meaning of a word cannot be clearly deduced from the 

presence of the referent (Quine, 1960; Goodman, 1983). Once a one-on-one pairing 

between a word and its meaning has been adopted through exposure to the appropriate 

vocabulary, we do not necessarily rely on feedback and correction to ensure that we 

have correctly learnt the word (Lievan, 1994; Stromswold, 1994). Of course, before 

such a pairing can take place, we must possess the necessary concept. These can be 

developed through exposure to examples (Skemp, 1971) and encouragement to attend 

to aspects of the particular that also appear as features of the general (Mason and 
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Pimm, 1984). Davydov (1972/1990) described the process of coming to understand 

the meaning of a concept as a three stage movement from perception to conception to 

concept. The term 'lexical familiarisation' was introduced to describe the process 

through which new concepts are introduced. Whilst psychologists often separate word 

learning into two components: having the concept and mapping the concept onto the 

right form (Bloom, 2002), Davydov (1960) distinguishes three components: knowing 

the precise scope; knowing the name, and understanding the general concept without 

being offered a particular example. 

2.4 ALGEBRA: THE LANGUAGE OF GENERALISATION 

Whilst the separation of the mathematics curriculum into constituent parts, as in 

sections 2.1 - 2.3, does offer insights into the subject, it seems likely that many other 

subjects on the secondary curriculum could be reasonably broken down into 'general 

facts', 'general approaches', 'general procedures' and 'general concepts'. Yet my 

focus on the expression of generality seems particularly pertinent to mathematics 

education. Seeking a justification for my intuitive sense that the role played by 

generality in mathematics is somehow greater or more significant than its role in other 

secondary school curriculum subjects, I consistently arrived at the conclusion that 

algebra lay at the heart of the claim that generalisation is more important in 

mathematics than other subjects. Many of the problems discussed above might apply 

to other subjects. A new piece of vocabulary, or a new concept, might need to be 

learnt, or a new procedure might be taught. Learning in any subject, then, involves 

generalisation: students need to realise that this particular fact, concept, procedure or 

approach can be applied in other circumstances. The expression of this generality, 

however, does not usually form such a central part of a subject as it does in algebra. 
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One of algebra's most obvious purposes is to express general properties of numbers, 

operations on number, functions, and many other referents (Stacey and MacGregor, 

2001: 141). 

Algebra is not merely the use of particular symbols and letters, or the interpretation or 

transformation of expressions involving these symbols. The process of appreciating 

and expressing generality about a mathematical procedure or concept might be 

considered by many to be 'algebraic thinking'. Perhaps in response to the case that 

algebraic thinking could be viewed as seeing the general through the particular, 

Kieran (1989a) argued that algebraic thinking required not only that the general 

should be expressed, but that "one must also be able to express it algebraically" 

(Kieran, 1989a: 165). Whilst I acknowledge that other interpretations of algebraic 

thinking can be useful, including those that do not require use of algebraic notation to 

express the thinking, the definition of algebraic thinking that proved most valuable in 

this thesis runs along similar lines to Kieran's (1989a) idea of expressing the general 

algebraically. Throughout the remainder of this study, the term 'algebra' is used to 

mean use of 'algebraic notation', rather than adopting a looser sense in which 

consideration of generalised arithmetic, even when expressed in natural language, is 

included in the definition of 'algebra'. Section 2.4.1 offers illumination of the 

different interpretations of 'algebra' through history, as a background to its 

interpretation in this study. 

2.4.1 Historical significance of algebraic notation 

For an insight into why the word 'algebra' might have such a diversity of meanings I 

next consider the historical development of algebra. In 1842 G. H. F. Nesselman 
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categorized the historical development of algebraic symbolism into three stages, 

rhetorical, syncopated, and symbolic algebra (Bell, 1945). Rhetorical algebra writes 

the solution of a problem without any abbreviations or symbols. Syncopated algebra 

uses shorthand abbreviations for some of the more frequently used operations, 

quantities, and relations. Symbolic algebra writes the solutions to problems in a type 

of mathematical shorthand made up of symbols, some with less than obvious 

connections to the ideas and things they represent. 

Expressions and equations have been a vital part of the history of mathematics. 

Starting with the ancient Egyptians and Babylonians about 3000 years ago, rhetorical 

algebra was used in the form of words to solve linear equations. Rhetorical algebra is 

also "the kind of algebra encountered by today's school children well before any 

formal notation is introduced" (Sfard & Linchevski, 1994: 197). Before the time of 

Diophantus of Alexandria (around A.D. 250), all algebra appears to have been 

rhetorical. 

Diophantus (3rd century AD) introduced some symbolism in to Greek algebra, but 

rhetorical algebra endured in most of the world, except India, for many centuries. 

Diophantus and the Hindus were some of the first to use some type of shorthand or 

symbols in their algebra. In Diophantus's Arithmetica there are abbreviations for the 

unknown up through the sixth power, subtraction, equality, and reciprocals, a type of 

notation that came to be known as "syncopated algebra" (Sfard, 1995: 18). Not until 

the fifteenth century did some type of syncopation begin to appear in Western Europe, 

and in the sixteenth century symbolic algebra started to be used there. Its development 

did not become wide spread until around the middle of the seventeenth century. 
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Around 820AD the Persian mathematician AI-Khwarizmi introduced the term Al-

Jabr, which gave algebra its name. The term, which means to combine, refers to the 

process of combining like terms when simplifying an equation in an attempt to solve 

it. Centuries later, and specifically in 1591, Francois Viete wrote an algebra book 

which is very similar to modem algebra texts, formally giving rise to symbolic 

algebra (Sfard, 1995). Then, in 1830, the British mathematician George Peacock 

proposed that in algebra letters replace numbers and that, in general, algebra was 

arithmetic using symbols (Sfard, 1995). 

Having considered, in this section, the development of algebraic notation and its uses 

through time, the following section considers its place on the secondary mathematics 

curriculum, and the research findings concerning students' difficulties with learning to 

use and understand algebra. 

2.4.2 Difficulties in using algebraic notation to express generality 

Every learner who starts school has already displayed the power to 
generalise and abstract from particular cases, and this is the root of 
algebra. 

Mason, 2005: 2 

As described in section 2.3, students' capacity to learn words is often used, as in the 

Mason quote above, to argue that students are capable of thinking algebraically. 

However, research tends to focus on the difficulties students experience with algebra, 

rather than their natural ability to generalise. There is much more to learning algebra 

than merely using algebraic notation to express generalised arithmetic. But even the 

transition from arithmetic to algebra alone is fraught with issues. 
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Equals and equations 

Different concepts associated with the equal sign were explored by Kieran (1981). As 

young students tend to use the sign while practising arithmetic, it can become viewed 

as a "a left-to-right directional signal" (Kieran, 1989b: 393). There is consequently a 

risk that students will view the equal sign as merely a signal to "do something" rather 

than as a symbol of equivalence and balance (Kieran, 1990; Stacey and MacGregor, 

1997). 

Kieran and Herscovics (1994: 59) make a case for the existence of a cognitive gap 

between arithmetic and algebra that can be characterised as "the student's inability to 

operate spontaneously with or on the unknown". The fundamental concept of 

equivalence was discussed by Pirie (1995), who focussed on low attaining pupils' use 

of the equals sign when working with equations. The students were encouraged to see 

the equation with unknowns on both sides as a single entity rather than as consisting 

of two separate sides. By seeing the equation as a mathematical object, with the 

equals sign as a 'fence', students were successful in solving the equations. The equals 

sign was seen as part of the whole and not taken as a signal for action (Kieran, 1992). 

Objects and processes 

Sfard (1991) and Gray and Tall (1994) called attention to the challenges faced by 

students in understanding that algebraic expressions are, at the same time, both 

objects and processes. Tall & Thomas (1991) describe this process-product obstacle. 

This obstacle refers to the inability of students to view algebraic expressions as having 

a dual nature; that of a process and of a product. An expression such as 2 + 5n, for 
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example, indicates both the instructions to perform a calculation (process) and it is 

also the result of such a calculation when a value is not assigned to the variable 

(product). If an algebraic expression is only viewed as a process then "the powerful 

way in which it can be manipulated and linked to other expressions makes little sense 

and failure with algebra becomes inevitable" (French, 2002: 16). This relates to the 

lack of closure obstacle (Collis, 1975) which refers to students' view of 2 + 5n as an 

incomplete answer. 

Sfard and Linchevski (1994) develop their theory of reification according to which 

there is an inherent process-object duality in the majority of mathematical concepts. 

They argue that the operational (process orientated) conception emerges first and that 

the mathematical objects (structural conceptions) develop afterwards through 

reification of the processes. They maintain that this is a difficult stage for many 

learners to achieve and that it is seldom accomplished quickly or without difficulty. 

They propose that the development of algebraic thinking is accomplished by means of 

a sequence of ever more advanced transitions from the operational to the structural. In 

particular they consider two especially crucial transitions: that from the purely 

operational algebra to the structural algebra 'of fixed value' i.e. an unknown, and then 

from there to the functional algebra of a variable. 

According to Kieran (1989c; 1990), in relation to an algebraic or arithmetic 

expression, the surface structure of an algebraic expression refers to ''the given form 

or arrangement of the terms and operations, subject ... to the constraints of the order 

of operations" (1989c: 34), while systemic structure refers to the properties of the 

operations, and relationships between them. One example of systemic structure is the 
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equality relationship between the left- and right-hand expressions of an equation. 

Kieran states that, for many students, "the equation is simply not seen as a balance 

between right and left sides nor as a structure that is operated on symmetrically" 

(1989c). 

Lacking meaning 

Because we read from left to right, many students tend to interpret expressions such as 

2 + 5n as 7n. Tall and Thomas (1991) refer to this as the parsing obstacle. Tall and 

Thomas (1991) also draw attention to what they call the expected answer obstacle. 

From prior experiences with arithmetic students expect to perform some calculation 

when they encounter an operation sign such as +. So, when faced with algebraic 

expressions such as 2 + 5n they expect to produce an answer. 

Various studies have also been conducted that looked at student difficulties when 

dealing with the concept of equation. Equations are defined as open number sentences 

consisting of two expressions which are set equal to one another. This is what Kieran 

calls the "surface structure of an equation" and it is an aspect that students fmd 

challenging to recognize (1989c: 34). In addition, students have trouble recognizing 

the "systemic structure of an equation" which includes the equivalent forms of the two 

expressions given in the equation (1989c: 34). Kieran claims that students who "view 

the right-hand side of an equation as the answer and who prefer to solve equations by 

transposing," lack an understanding of the balance between the right and left hand 

sides of the equation (1989c: 52). Moreover, in one of her studies Kieran found that 

many algebra students "could not assign meaning to a in the expression a+ 3 because 

the expression lacked an equal sign and right-hand member" (1990, p. 104). Relating 
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to this, a 1984 study by Wagner, Rachlin, and Jensen found that students added "=0" 

to any expression they were asked to simplify. 

Students also face difficulties when asked to work with equivalent equations. A study 

by Steinberg et al. (1991) examined the knowledge of eighth and ninth grade students 

related to equivalent equations. Pairs of equations were given to the participants who 

had to identify whether the equations in each pair were equivalent. The researchers 

found that students who gave incorrect solutions could not distinguish between 3x and 

3+x. In addition some thought that subtracting a number from both sides of an 

equation would alter the answer because "-4 on each side is subtracting 4 twice" 

(Steinberg etal., 1991: 117). 

Another study of secondary school students by Hall (2002), examined the errors that 

students make when attempting to solve simple linear equations. The results showed 

that many students "find the process of collecting "like" terms so difficult that they 

cannot confidently simplify an expression such as 3x+2x" (2002: 46). Hall reports 

that some students have difficulties combining "like" terms in expressions such as 

"3x+ 2y+4x" which involve "unlike" tenns within the expression (p. 46). The author 

concludes that students who have such difficulties with combining like terms in the 

case of expressions will have even more difficulties in finding the appropriate strategy 

to solve simple linear equations. 

MacGregor & Stacey (1992, 1995) drew attention to the limits of X-Y numerical 

tables in the generalization of patterns. It was apparent that these tables, which list the 

inputs and outputs of an algebraic function, were emphasizing a formulaic aspect of 
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generality based on trial and error heuristics, hence confining algebraic notations to 

the status of place holders bearing very limited algebraic meaning. 

The wide variety of difficulties outlined in section 2.4.2, including interpretation of 

equals and equations, distinguishing between objects and processes, and manipulating 

algebraic symbols without meaning, provide real challenges for teachers. The 

following section considers the research into teaching approaches that might help 

students to overcome these difficulties. 

2.4.3 Issues in teaching algebra 

Whilst the diagnosis of students' algebraic issues is interesting in its own right, the 

researchers' intention is usually that their study might inform teachers' practises. 

Having found and categorised nine errors carried out by students when solving linear 

equations, for instance, Hall (2002) offers a number of ideas concerning use of 

manipulatives to support student understanding. His main advice for practising 

teachers, however, relies on teacher-led discussion to 'prevent the formation of bad 

habits' . 

Familiarity with these nine errors should enable me, and perhaps other 
teachers, to be better equipped to forestall the most common mistakes. 
Indeed, such errors could be discussed at the appropriate point, both in 
lessons and in textbooks. This may be especially important at the 
introductory level because it prevents the formation of bad habits as well 
as the development of inaccurate constructions on the part of the learner. 

Hall, 2002: 62 

As a practising teacher, faith in teacher-led discussion such as Hall's above can 

appear daunting, as researchers offer such interactions as the solution to all 

difficulties, but are often vague about the form such discussion might take. Another 
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example where teacher-led discourse is seen as effective, but where the reader is left 

unsure of the form the discourse takes can be found in Radford's description of a class 

working on using algebraic notation: 

When the students reached an impasse, the teacher intervened: "If the 
figure I have here is 'n', which one comes next?" Thinking of the letter in 
the alphabet that comes after n, Josh replied: "0". In the end they ended up 
with the following formula: "(n+ 1) + n". 

Radford 2006: 13 

I found myself wondering how the teacher had intervened in order that they should 

have 'ended up with' a correct formula. 

An increasing number of studies are taking these errors and issues as their starting 

point, and developing activities or teaching strategies designed to respond to the 

identified issues. Nickson (2003) distinguishes two main clusters of research 

concerned with the teaching and learning of algebra. There is a group of studies 

relating to what teachers do with their students, and a group relating to the teaching of 

particular topics within algebra. She points out that the focus of the first group of 

studies is not the conceptual content of the lessons, while studies in the second group 

address matters concerning particular content (Nickson, 2003: 33). In my study, with 

its focus on teacher-led discourse, more can be discovered about 'what teachers do' 

than about student understanding. I strive to address both areas in the analysis, 

although theory regarding student understanding remains hypothetical or is based 

closely on previous studies. 
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Whitney (1985) argues that students should grow in their natural powers of seeing the 

mathematical elements in a situation, reasoning with these elements to come to 

relevant conclusions, and carrying out the process with confidence and responsibility. 

Hudson, Elliott and Johnson (1999) carried out a study exploring how a focus on 

language and meaning can assist students in reconstructing algebraic knowledge. The 

researchers' initial perspectives included: 

• An interest in the use of vocabulary and terminology, such as solve 
and simplify 

• David Pimm's (1995) discussion of the notion of a mathematical 
register 

• An emphasis on the language competence underpinning the 
development of symbolic representation 

• The Vygotskian (1962) emphasis on the social and communicative 
aspects of language and on speech as an instrument of thought 
itself, that is, as a psychological tool. 

Hudson et ai., 1998: 2 

These relate to my own starting points. Their study involved video recording a series 

of one-hour discussions with four groups of students, based around tasks designed to 

get students talking together about their understanding of algebra. Their aim was to, 

"relate our background reading to the development of a theoretical framework taking 

account of our emphasis on language and meaning in the interpretation of our data" 

(Hudson et al., 1998: 4). After in-depth and detailed analysis of particular sections of 

the videotape transcripts, they found that their broad background understanding of 

teaching and learning algebra could not fully account for the phenomena observed. 

They therefore turned to social practice theory (e.g. Lave and Wenger, 1991) in search 

of a 'wide(r) angle lens' (Dengate and Lerman, 1995) through which to view their 

data. 
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These issues are explored further in section 2.5, through use of the metaphor of 

algebra as a second language. I discuss five main areas under consideration by maths 

educators concerned with the teaching of algebra: its aims, categorisation, place 

within the maths curriculum, use of rules, and choice of exercise or task. As the 

teaching of algebra is not the central focus of my research, I have not attempted to 

fully encompass the range and detail of literature on these five themes, but merely to 

give an overview that helps to situate the present study. 

Is it the aim of teaching algebra that students should know the rules of algebra, or 

apply them in meaningful contexts? Should students devote time to manipUlating 

expressions or creating them? Syntax of algebra involves manipulation of algebraic 

symbols. Semantic algebra is concerned with meaning. In the early stages, this would 

involve using algebraic notation to express arithmetic generality. 

The general is present and involved in both these interpretations, as a lesson on 

algebraic manipulation (i.e. one that emphasised syntax) would expect students to 

understand and apply a rule such as 'multiply the term in front of the brackets by each 

of the terms within the bracket', or to follow several particular examples of this rule 

and generalise it for further particular cases. The general plays a huge role in 

manipulating algebraic syntax. 

There is both syntactic and semantic generality involved in algebraic notation. It is 

possible to express a generality about the syntax, and also to use its semantics to 

express generality. 
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Malara and Navarra advocate "a didactical contract which tolerates initial 

'promiscuous' syntactical moments" (2003: 230). They introduce the metaphor of 

'algebraic babbling', emphasising the similarities between learning natural language 

and learning algebraic language. They promote early introduction of algebraic 

thinking, with ideas of generalised arithmetic expressed using some algebraic 

language. 'Algebraic babbling' allows for unconventional use of the syntax, as the 

emphasis is on semantics in the early stages. 

Many researchers have questioned the extent to which algebraic notation is 

meaningful for students. "It is generally accepted that this meaning cannot only be a 

syntactical meaning, which would mean just knowing the rules of symbolic 

manipulation and conforming strictly to them - to some extent independently of any 

sense making" (Balacheff, 2001: 251). 

Be this as it may, I hardly believe that the didactic situations susceptible to 
leading our students to deeper layers of symbolic or other forms of 
generality can be reduced to the choice of fortuitously good mathematical 
problems. Powerful though it may be, the plane subject-object is not, 
epistemologically speaking, strong enough. The plane of social 
interaction must be included. The students have to learn to see the objects 
of knowledge from others' (teachers and students) perspectives. This is 
why, in the classroom, we often organized an exchange of ideas and 
solutions and the discussion of them between groups, followed by general 
class discussions (Radford & Demers, 2004). The idea, however, is not 
merely to 'share' solutions in order to catalyze the attainment of deeper 
layers of generality. It is rather that the objectification of knowledge 
presupposes the encounter with an object whose appearance in our 
consciousness is only possible through contrasts. Our awareness and 
understanding of an object of knowledge is only possible through the 
encounter with other individuals' understanding of it (Bakhtin, 1990; 
Hegel, 1977; Vygotsky, 1962). In this encounter, our understanding 
becomes entangled with the understandings of others and the historical 
intelligence embodied in cultural artifacts (e.g. language, writing) that we 
use to make our experience of the world possible in the first place. 

Radford, 2006: 17 
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I am interested in the teacher's role in this process and, more specifically, in the 

teacher's use of language as an influence on students. 

Kieran (1996) expresses concern that of three kinds of activities that have been found 

to be beneficial in learning algebra, the early stages of the secondary school 

curriculum tends to focus on transformational activities, which are rule-based 

activities such as simplifying expressions and solving equations. Time is devoted to 

these transformational activities at the expense of generational activities where 

students generate expressions and equations to express general relationships, and 

global, meta-level activities such as problem solving, justifying and finding structure. 

A point is reached in a student's mathematics education, often at key stage 5 (aged 

16-18) where algebraic notation is deemed the most appropriate means' for 

communication of generality. The literature reviewed in section 2.4.3 has pointed to a 

tension that can be summed up briefly as being between the following two 

conjectures: 

1. For students to become more familiar with, and gain a better appreciation of, 

algebraic notation for expressing generality, teachers might beneficially use 

such language as frequently as possible. 

2. Students find algebraic notation confusing, so teachers should avoid using it 

where a generality can be expressed using language with which the student is 

more comfortable. 
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2.5 ALGEBRA: A NON-NATIVE LANGUAGE? 

The observation in section 2.4 that algebra could be viewed as a language through 

which general mathematical procedures and concepts can be expressed led me to 

investigate the research literature concerned with acquisition of non-native languages. 

The teaching of algebra as a purposeful communication tool is a recent idea in 

comparison with similar arguments in second language acquisition theory. As second 

language teaching is not the central focus of this study, this brief literature summary 

of methods and approaches is intended to indicate areas of relevance and interest to 

the field of mathematics teaching, rather than to provide an exhaustive review of the 

area. 

In line with writings related to non-native language teaching, I use the term 'L2' to 

refer to the language being learnt. In this section I consider the extent to which 

algebra might gainfully be regarded as an L2. First I must make it clear that it is not 

my intention to suggest that algebra is an L2, but merely to draw attention to some 

interesting parallels. L2 studies offer a vocabulary, and theoretical and empirical 

richness from which to make greater leaps in the field of mathematics education. The 

vocabulary has been developed to enable concepts etc. to be discussed. In coming 

across much of this material, I found it resonated with ideas that I had developed or 

was developing, but was finding difficult to express through limited vocabulary. 

Rather than create and introduce a new set of terminology for mathematics education, 

it might make sense to use the terms adopted by the L2 research community. Whether 

or not these terms prove useful for my data analysis and sharing my conclusions, I 

have found them useful personally when grappling with the ideas involved. 
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The four main issues that repeatedly emerged from the L2 education literature were 

the extent to which the teacher communicates using the target language in the 

classroom, the extent to which classroom L2 use is purposeful and communicative, 

whether the focus is on correct manipulation of symbols, or on symbol meaning, and 

how grammatical rules should be taught. These can be seen as closely analogous with 

issues in the learning of algebra, as discussed in section 2.4. 

2.5.1 Use of target language 

Although Morgan and Neil (2001) insist that modem languages are the only subject in 

the curriculum where the language is both the content and the medium of instruction, 

it is possible to listen to some mathematics lessons, especially those focussing on 

algebra, and conclude that this 'unique' attribute could also be applied to 

mathematics. 

One major element of controversy regarding the introduction of the UK National 

Curriculum guidelines was its insistence on use of the target language (TL) for 95-100 

per cent of the time: 

Students are expected to use and respond to the TL, and to use English 
only when necessary (for example, when discussing a grammar point or 
when comparing English and the TL). 

DfEE/QCA, 1999: 16 

The desire to use the target language for the majority of the time in language 

classrooms stems from the aspiration of creating a naturalistic environment for L2 

learning. The National Curriculum requires that students are given opportunities for: 

• Communicating in the target language in pairs and groups, and 
with their teacher 

• U sing the target language creatively and imaginatively 
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• Using the target language for real purposes 
DfEE/QCA, 1999: 17 

This led to my wondering whether the same criteria could be applied to students' use 

of algebraic language in the mathematics classroom: 

• Communicate algebraically in pairs and groups, and with their 
teacher 

• Use algebraic notation creatively and imaginatively 
• Use algebraic notation for real purposes 

One textbook for beginning teachers in teaching L2 suggests: 

Use previously taught/learned structures for genuine communication ... 
You can create a bank of structures which students should be encouraged 
to use when dealing with the immediate classroom environment ... This 
bank of phrases can be added to in a systematized fashion during the 
course of their language learning classes. 

Morgan and Neil, 2001 

This is challenging for teachers when placed in the context of algebraic notation. It 

might roughly translate as: introduce notation and rules, remember you've introduced 

them, and use them meaningfully in future lessons. 

Atkinson (1993) gives some reasons why total target language use is not ideal. 

Although when only the naturalisation variable is considered, total use of the target 

language might seem desirable (as it most closely mimics total immersion), there are 

many variables associated with maximising student learning. Some effective activities 

can only be effectively carried out in students' native language. What sets out to be a 

communicative ideology can inhibit the communication it was originally designed to 

encourage. 
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Salters et al. (1995) carried out small-scale research that examined the teaching of 

science through the medium of French, taught by a native speaker. They found that 

the teacher's status as a native speaker can be a major factor in students' reacting 

positively to the lesson and the L2. If teachers try to pretend that they do not 

understand English, this can lead to an artificial situation that is far from the 

communicative ideal. As the mathematics teacher may be the student's only source of 

mathematical or algebraic vocabulary, it is tempting to conclude that such vocabulary 

should be used wherever relevant. The teacher has the task of providing a 

mathematically rich environment within the confines of the classroom. 

In response to the insistence in government publications and inspectors' reports on 

use of the target language, some critics argue for a more balanced view of the place of 

the students' native language in learning the L2 (Buckby, 1985; Harbord, 1992; 

Atkinson, 1993; Collins, 1993). Common sense would suggest that it is possible to 

use more of the target language with students who have been learning the language 

for some time, than with beginners. It is surprising, then, that recent research does not 

fmd this to be the case (Dickson, 1996; Dobson, 1998). 

Researchers engaged in the debate over appropriate use of the target language 

distinguish between two uses of the native language: codeswitching and decoding. 

The term 'codeswitching' refers to the praCtice of switching between the target 

language and the mother tongue for specific purposes. 'Decoding' refers to the 

practice of making an utterance in the target language followed by the translation in 

the native language. Wong-Fillmore (1985) observes that such decoding encourages 

students to wait for the translation and so deprives them of the process of deciphering 
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the target language used. Buckby (1985: 51) advocates use of the 'English sandwich', 

in which a phrase is uttered in the target language, followed by the English 

translation, and immediately followed again by the target language version. 

Advice for teachers in encouraging student use of the target language: 

• Accept incomplete utterances and allow them to supplement with 
English 

• Encourage inaccurate language which does not impede 
communication 

• Refuse to accept English where it is not necessary 
Morgan and Neil, 2001: 148 

It is strikingly difficult to find such succinct recommendations to mathematics 

teachers regarding students' use of algebra to express ideas, even as a starting point 

for debate and discussion. 

Section 2.5.1 was intended to point to the differences between the debate in L2 

education literature concerning 'use of the target language' and use of algebra in 

mathematics classrooms. Distinctions that have been developed in L2 teaching 

research, such as between 'codeswitching' and 'decoding' might also be applied to 

different ways teachers might use algebraic language to communicate with their 

students. This literature resonates with main study fmdings (see chapters six to eight-

II) and reflection on my own practice (chapter nine), which suggest that there may be 

advantages in mathematics education researchers and teachers engaging in a parallel 

debate concerning use of algebra - a target language for mathematics. 
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2.5.2 Communicative language teaching 

Communicative language teaching strives to give learners authentic, meaningful and 

purposeful tasks for language use. Communicative language courses do not focus on 

content learning, but use the content as a means for obtaining language learning. 

Communicative language teaching is at one extreme of a continuum of content-based 

approaches to language teaching, which ranges from language-driven to content

driven. As teachers and students are not held accountable for content outcomes, 

communicative language teaching can be described as the language-driven end of the 

spectrum of content-based approaches. At the opposite extreme, content-driven 

approaches are those in which student and teacher are not held accountable for 

language outcomes. For example, immersion programmes, in which the L2 is the 

medium of instruction for the curriculum. This resonates with the 'purposeful algebra' 

approach advocated by Ainley et al. (2004) and Coles and Brown (1998). 

At the content-driven end, there is the introduction of mathematical vocabulary and 

algebraic notation in the midst of an investigation or exploration of a topic. The 

emphasis on content, rather than language, might be what I am seeing in the observed 

classrooms. 

The problem here is that teachers could be 'sheltering' too much, for too long. This is 

perhaps why the National Curriculum places specific emphasis on acquisition of 

mathematical language and algebraic notation. The potential problem with this 

reemphasis on language is that the emphasis might shift to the other end of the 

spectrum, with a language-driven approach in which algebraic conventions are drilled 

and practised in unconvincing 'contexts'. 
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2.5.3 Meaningful study 

From the 1980s onwards, task-based alternatives to conventional L2 syllabuses have 

been developed, as a response to both dissatisfaction with conventional linguistically

based syllabuses, and research findings into second language acquisition. Three 

distinct approaches can be identified (Doughty and Williams, 1998): courses with a 

structured approach to learning the grammar and structure of the L2 (focus onforms), 

courses where the L2 is used to explore interesting and diverse topics without 

focussing on vocabulary and grammar (focus on meaning), and courses that pay 

attention to formal elements of the L2 in the context of meaningful study (focus on 

form). The development of these three approaches is explored in this section. 

Structurally graded materials tend to provide stilted language models, which reduces 

student motivation. Pedagogical devices such as translation, grammar rule exposition, 

pattern drills and error correction are used to teach small aspects of the language, such 

as a word or grammatical structure. The focus for learning, such as a word or 

grammatical structure, is presented by the teacher or textbook in chunks. This method 

is referred to as focus on forms. The learner is expected to try to learn each separate 

item when presented, and then to synthesise the parts in order to communicate when 

necessary. Wilkins (1976) calls this the synthetic syllabus. The model assumed by this 

teaching approach involves the accumulation of isolated linguistic entities, one-by-

one. 

One response to frustration with the focus on forms approach has been to abandon all 

attempts to teach specific units of vocabulary and grammar, and instead to develop an 
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approach to L2 learning which mimics that of students' learning of their native 

language. This approach, referred to as focus on meaning, is seen in immersion 

teaching and some content-based courses. This approach is limited by time 

restrictions, as L2 language exposure, even in an immersion situation, is rarely as 

extensive as students have experienced when learning their native language. It is also 

constrained by the less purposeful and necessary nature of L2 learning, in comparison 

with the purpose and need for the native language. 

The late 1990s saw the development of a proposal for language teaching known as 

focus on form (Doughty and Williams, 1998; Long, 1998; Long and Robinson, 1998). 

This approach involves task- or content-based lessons, where grammar and 

vocabulary are introduced in context. The sequence and timing is determined by the 

students' internal syllabus, rather than an externally imposed one. Advocates offocus 

on form hold that this approach is more helpful for students than an externally 

imposed linguistic syllabus, with features such as explicit grammar rules, translation, 

structural pattern drills. Focus on form involves the use of a variety of pedagogic 

procedures designed to shift students' attention briefly to linguistic code features 

during an otherwise meaning-oriented lesson. These attention shifts are prompted by 

the learner's internal syllabus, as problems arise incidentally with comprehension or 

production while students are engaged in pedagogic tasks. 

This approach should ensure that attention to linguistic code features occurs at the 

point when students have a perceived need for the new item. The meaning and 

function of the linguistic code are consequently more likely to be evident to the 

students. This is the time at which students are deemed to be psycholinguistically 
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ready to begin to learn the code. The foeus on form approach does not require the use 

of any particular pedagogic procedure to achieve the focus on form. 

Doughty and Williams (1998: 4) clarify the distinction between focus on form, on 

meaning and on forms, stating that focus on form entails attention to formal elements 

of a language, whereas focus on forms is limited to such a focus, and focus on 

meaning excludes it. Focus on form allows teachers and students to complete 

interesting, motivating courses dealing with content they recognise as relevant to their 

needs, while still successfully addressing language problems. Several attempts have 

been made (e.g. Long and Crookes, 1992; Skehan, 1998) to harness the benefits of a 

focus on meaning via adoption of an analytic syllabus, while simultaneously, through 

use of focus on form, to deal with its shortcomings, such as slow rate of development 

and poor grammatical accuracy. This can be seen as parallel to frustration with 

traditional approaches to mathematics teaching. There is movement towards the 

equivalent to afoeus onform approach to algebra teaching, with research by Ainley et 

al. (2005) and Coles and Brown (2001), for example, advocating purposeful activity 

in mathematics classrooms, where algebraic notation is not the central focus, but 

attention is drawn to it where pertinent. 

2.5.4 Teaching rules of manipulation (grammar) 

Grammatical rules are often formed for learners, as pedagogic authors attempt to 

'teach' grammatical rules that are only expressed in rule form for the purpose of 

teaching. Dirven (1990) found that the oversimplified, inaccurate rule formations in 

textbooks can and do mislead learners into incorrect generalisations. These arise 

because there is relatively little coherent theory underlying rule formation. The area of 
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rule fonnation IS comparatively uncharted (Westney, 1994), although some 

grammarians have attempted to give a theoretical basis to their rules (e.g. Leech and 

Svartvik, 1975; Swan, 1994; Newby, 1989). 

The methodology of teaching grammar is a highly contentious topic, with 

disagreement over whether the central aim of grammar teaching is that students 

should know about it, or use it, and whether they should be able to manipulate 

sentences or freely produce them. There is also discrepancy over the categorisation of 

grammar into units for the purposes of creating a syllabus or learning objective, and 

questions over the extent to which grammar should be dealt with separately from 

other aspects of language. Divergence of view can also be found regarding the extent 

to which a cognitive focus on explicit grammar rules assists acquisition, and the type 

of exercises and activities which willlead.wammatical fluency. 

The traditional approach to teaching grammar is that learning is seen as a conscious 

process and grammar rules are used deductively (they are explained by teacher or 

textbook prior to being applied in exercises). According to this approach, grammar 

(seen as a set of fonns and structures) is central to the textbook syllabus. The aim is 

for students to be able to form correct sentences, and this is to be achieved through 

presentation, explanation and practice. Exercises considered appropriate include 

gapped sentences, pattern drills and transformation of sentences. The emphasis is on 

form rather than context. 
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The communicative grammar approach, in contrast, not only sees language as a 

formal system, but as the process used to communicate messages between human 

beings in actual contexts. The central aim has shifted from focussing on formal 

correctness towards communicative effectiveness. In extreme cases, grammar was 

dispensed with altogether. Rather than concentrate on analysis, use became of greater 

importance, as a distinction was made between knowing about grammar (' declarative 

knowledge') and knowing how to use it ('procedural knowledge') (Johnson, 1994). 

This communicative approach, with a 'learning-by doing', inductive methodology, led 

to an apparent (but non-existent!) 'grammar versus communication' dichotomy, in 

which understanding was thought to emerge from use, rather than the other way 

round. 

Just as L2 teaching suffered from a 'grammar versus communication' dichotomy, so 

there is a dichotomy in mathematics education between theory and manipulation. 

Much criticism has been levelled against the practice by which "symbol 
pushing" dominates early experiences in algebra. We call it "blind" 
manipulation when we criticise; "automatic" skills when we praise. 
Ultimately everyone desires that students have enough facility with 
algebraic symbols to deal with the appropriate skills abstractly. The key 
question is, What constitutes "enough facility"? 

U siskin, Z. (1988: 16) 

Krashen (1981) distinguished between learning - with a conscious focus on grammar 

and explicit rules and terminology - and automatic, unconscious acquisition. He 

argued that acquisition, rather than conscious leaming, was the way to achieve 

communicative competence. He proposed a teaching method where 'comprehensible 

input' was automatically processed by students' innate acquisition mechanism. 

Various teaching methodologists took a similar approach during the 1980s, founded 
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on the belief that many of the processes that were so successful in first language 

acquisition could also be applied to the learning of L2s. 

Some educational psychologists, focussing on the various cognitive processes linked 

to learning, and to learning a language in particular, argue in favour of learner 

autonomy. According to this method, teachers should guide learners towards 

focussing on aspects of language, and then be encouraged to use various cognitive 

strategies in order to explore for themselves how language works. Rather than 

'imposing' their own grammatical knowledge on learners, teachers are seen as 

facilitators in the learning process. Grammar rules explained by the teacher gave way 

to consciousness-raising or discovery techniques and tasks (Rutherford, 1987; 

Rutherford and Sharwood Smith, 1988; Bolitho and Tomlinson, 1995). 

The theories introduced in this section are illuminating when applied to the teaching 

and learning of algebra. Johnson's (1994) distinction between 'declarative 

knowledge' (knowing about grammar) and 'procedural knowledge' (knowing how to 

use it) can be revealingly applied to algebra, and have parallels with distinctions 

between conceptual and procedural understanding that were discussed in section 2.2. 

Likewise Krashen's (1981) distinction between learning and automatic, unconscious 

acquisition is one that has also been made in the context of mathematics education. 

These similarities indicate that there may be some merit in considering how L2 

educationalists have resolved these tensions, as their approaches may offer something 

of use in supporting students' emergent algebra (Ainley, 1999a). 
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Algebraic notation as a language? 

Whereas a learner of L2 would find most sentences easier to express in their natural 

language, some expressions are easier to express in algebra than they are in natural 

language. For instance, the rule that: 

xa X xb = xa+b 

In addressing the three research questions, the findings of which are revealed in 

chapters 7 and 8, I became increasingly aware of the unharnessed potential of algebra 

as a medium for mathematical thinking, and the expression of mathematical ideas. 

One aspect in which algebraic notation differs from an L2 is that (syntactic) 

manipulation of sentences in the language can give semantic insights. The syntax of 

the algebraic language, its grammar, tends to become the focus in lessons at the 

expense of its semantics. Algebra can be used as a communication medium, but can 

be reduced to 'grammar exercises' in the classroom, as its syntax is significantly 

different from those in natural language. 

2.6 LANGUAGE AND LEARNING 

In a study that focuses on use of language and teacher-led discourse, the role of 

language in learning is of central importance. It is therefore unsurprising that theories 

that explored the role of language in learning would playa significant role. The reader 

seeking a full exploration of alternative theories of learning is advised to look 

elsewhere, as word limit constrains this to a brief description of the Vygostkian 

approach to language and learning that frames this study. 
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Vygotsky explored the inter-relationship of language development and thought, and 

established an explicit and profound connection between speech (which may be silent 

inner speech or oral language) and the development of mental concepts and 

metacognition. Vygotsky's (1962) work is underpinned by a central assumption that 

socio-cultural factors are essential in the development of mind. Intellectual 

development is seen in terms of meaning making, memory, attention, thinking, 

perception and consciousness which evolves from the interpersonal to the 

intrapersonal. The individual dimension is considered to be derivative and secondary 

to the social dimension. 

Vygotsky describes how self-talk develops, soon after the development of language as 

a tool for social interaction, as a tool to guide a child's activities, and this self-talk is 

used for self-directed and self-regulated behaviour. Self-talk "develops along a rising 

not a declining, curve; it goes through an evolution, not an involution. In the end, it 

becomes inner speech" (Vygotsky, 1987: 228). Around the age the child starts school, 

their self-talk is internalised. Language can thus be viewed as two separate systems. 

Firstly, a system of social communication, and secondly, inner speech. This is not to 

say that thinking cannot take place without language, but that it is mediated by it and 

thus develops to a higher degree of sophistication. Inner speech (involving signs based 

on those of communicative speech) provides much deeper meaning that the lower 

psychological functions would otherwise allow. While external speech is the process 

of turning thought into words, inner speech is the opposite; the conversion of speech 

into inward thought. For example, inner speech has no need for subjects, and contains 

predicates only. Word use is more economical, as one word in inner speech may be so 
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replete with sense to the individual that it would take many words to express it in 

external speech. 

These ideas have significant implications for the teaching of mathematical concepts, 

suggesting as they do that students need language for concepts in external speech in 

order to manipulate those concepts in their inner speech. 

Kozulin (1990) argues that language, rather than being correlative of thought, is 

correlative of consciousness, and that the mode of language correlative to 

consciousness is meanings. He maintains that to study human consciousness is to 

study a meaningful structure, of which verbal meaning is the methodological unit. 

The London School of Linguistics, based on Malinowski's (1923, 1935) concept of 

context of situation, argues that utterances are comprehensible only in the context of 

the entire way of life of which they form part. They see language as essentially a 

social and cultural phenomenon which has evolved to fulfil our human needs. 

Michael Halliday (1978) works within this tradition, which developed systemic

functional grammar. It terms all chunks of speech and writing 'text'. Systemic theory 

assumes that all languages have developed as a consequence of two general human 

needs: 'ideational meaning': the need to express ideas and 'interpersonal meaning': 

the need to express our social relationships with other people. There is a third 

component of meaning: 'textual': the way in which the other two types of meaning 

are brought together in speech or writing. 
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The authors referred to in this section helped to shape my understanding of the 

significance of language, and its relationship with thought. Vygotsky's concept of 

'inner speech' supports the importance of developing mathematical concepts, 

suggesting that supporting students to become fluent in 'ME' (see section 2.3.l) may 

have more significant advantages for students than merely improved exam 

comprehension. Linguistic theories (Kozulin, 1990; Malinowski, 1923; Halliday, 

1978) supported the emphasis that this study places on the spoken word, emphasising 

the importance of context in considering meanings, and the different uses of language. 

2.7 TEACHER-LED DISCOURSE 

Having established the importance of language and social interaction in mathematics 

classrooms, this section explores the issues related to teacher-led discussion in the 

mathematics classroom. The past decade has seen increased interest in the role played 

by language in mathematics education. 

2.7.1 What is teacher-led discourse? 

With the intention of placing my analysis of teacher-led discourse within the broader 

context of discourse analysis, I looked to the various strategies and spectra that have 

been developed to describe the variety of discourse that has been subjected to analysis 

within education research and beyond. One such spectrum concerns the extent to 

which students participate in the discourse. This extends from entirely one-way 

uninterrupted discourse with no student contribution, often termed 'lecture'. to 

'discussion' where students generate at least fifty percent of the talk. As shown in 

chapter six, the teacher-led discourse in the main study lessons lay in between these 
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two extremes. In discourse-analysis this type of discourse, where the teacher 

predominates, is often termed 'recitation'. 

The lecture is the least interactive of the three main categories of teaching discourse. 

The term 'lecture' is used to describe one-way uninterrupted discourse, as when 

giving a speech (Hills, 1979). In a classroom context, this would involve the teacher 

'delivering' a lesson without seeking student interaction. This category also includes 

other forms of unquestionable or unalterable content, such as books, radio or 

television. Much interest has been shown in how students learn through the lecture 

style of discourse. As the negotiation of meaning with the teacher and other students 

has been shown to playa central role in learning researchers have enquired as to how 

learning can take place effectively without interaction. It is argued that students 

participate in an "internal didactic conversation" (Holmberg, 1986) wherein they 

interact with course materials and "talk to themselves" about the new information and 

ideas it contains. Distance educationalists describe this as learner-content interaction. 

For Moore (1989) this is the "defining characteristic" of education: "Without it there 

cannot be education, since it is the process of intellectually interacting with content 

that results in changes in the learner's understanding, the learner's perspective, or the 

cognitive structures of the learner's mind" (1989: 2). Whilst this intrapersonal 

communication between a student and the instructional content is essential to learning 

(Dillon & Gunawardena, 1995; Hillman, Willis & Gunawardena, 1994; Holmberg, 

1988; Moore, 1989; Wagner, 1994) interpersonal interaction must also be included. 

Holmberg (1988) insists that although pre-packaged materials for distance education 

can represent a kind of "simulated communication," it is the interaction between 

humans that "represents real communication" (1988: 116). Although the lecture 
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format is effective for disseminating information, it does so at the expense of 

validating this knowledge and making it meaningful to the student (Shale, 1988; Shale 

& Garrison, 1990). In their study of student nurses participating in distance learning, 

Gabriel and Davey (1995) found that the self-study packs were sufficient for students 

to learn elementary facts, but face-to-face interaction with other students was required 

for abstract or complex ideas. The Open University and other distance learning 

institutions have developed ways of encouraging self-reflection and engagement 

without discussion. Pirie and Schwarzenberger (1988) emphasised the role of 

mathematical discussion in developing understanding. 

Recitation is the term used to describe the most common form of classroom 

interaction. In this mode of interaction, the teacher is the predominant speaker. The 

teacher guides the class through the use of questions, instructions and information 

(Edwards & Furlong, 1978; Hodge, 1993; Sinclair & Brazil, 1982; Sinclair & 

Coulthard, 1975). In 1985, Dillon found that on average the teacher speaks for 59% to 

69% of the time (Dillon, 1985; 1994). Kramarae and Treichler (1990) report that it is 

typical for teachers in college classrooms in the United States to speak for 75% of the 

time. BeHack, Kliebard, Hyman & Smith (1966) found in their experimental social 

studies classes, taught to seventeen-year-olds, that teacher speech varied from 60% to 

93% of all classroom discourse. These numbers are similar in the United Kingdom 

(Barnes, 1976). 

This classroom domination is evidenced in the artificial interactions that take place in 

the classroom. Although classrooms frequently contain between twenty and thirty 

potential communicators, discourse within them is often characterised by a 'central 

76 



Chapter 2 Literature Review 

communication system (Adams and Biddle, 1970). This centralised communication is 

reinforced and maintained by means of rhetorical techniques such as responding to 

questions by asking another question, traditionally a technique used by teachers (Gere 

& Stevens, 1985). Flanders (1970) devised the "two-thirds" rule: two-thirds of every 

class is made up of talk, and two-thirds of the talk comes from the teacher. 

The second characteristic of recitation is that the interaction between the teacher and 

students will follow a regular pattern. The teacher will initiate some form of action, 

usually a question, the student will respond, and the teacher will acknowledge the 

student's response (Atkinson, 1981; Dillon, 1985; 1994; Hodge, 1993; Mehan, 1978; 

Sinclair & Brazil, 1982; Sinclair & Coulthard, 1975; Stubbs, 1983). This mode of 

interaction is described by Sinclair and Coulthard (1975) as lnitiation-Response

Feedback. They propose that it is the quintessential teaching exchange: (teacher's) 

initiation, (student's) response and (teacher's) feedback (Stubbs, 1983). The last stage 

is also known as evaluation (Mehan, 1978). "One aspect of this form of interaction is 

that the teacher retains control of the conversation, and another is that renewed 

initiation is not always required." (Pimm, 1987: 28). Pimm (1987:28) offers an extract 

in which the student appears to take the teacher's negative evaluation of a response to 

indicate that further suggestions are required. 

These two characteristics of recitation are interrelated. Since the teacher is controlling 

the class by means of initiation and feedback, he or she will tend to do most of the 

talking (Atkinson, 1981). When the student asks a question, however, the structure is 

reduced to initiation-response since students do not "overtly evaluate teachers' 

answers" (Stubbs, 1983b). 

77 



Chapter 2 Literature Review 

Two main features distinguish discussion from the other two forms of classroom 

interaction. Firstly, unlike a lecture or recitation where the teacher will do all or two

thirds of the talking respectively, the students in a discussion will generate at least 

fifty per cent of the talk (Dillon, 1985; 1994). Secondly, students' participation in the 

discussion does not follow the initiation-response-feedback model of recitation. Both 

teachers and students offer statements and questions (Dillon, 1994). Shale & Garrison 

(1990: 29f) argue that discussion enables students to validate their "emerging 

knowledge through collaborative and sustained interaction with a teacher and other 

students" . 

Teachers whose predominant mode of classroom interaction is discussion reinforce 

the idea that the teacher is an active, communicative partner in learning (Jones & 

Mercer, 1993). Discussion also fosters co-operative learning between students and 

teacher (Fowler & Wheeler, 1995). The merits of this form of interaction are 

supported by Amidon and Giammatteo (1967) who found that the classrooms of those 

elementary school teachers that were found to be 'more effective' involved 

approximately 12% more student participation. These teachers were interrupted by 

more student questions, and tended to encourage and build on student ideas. 

Although teacher self-report indicates that teachers believe themselves to be using 

discussion, external observation indicates that this is not the case (Alvermann et al., 

1990; Connor & Chalmers-Neubauer, 1989). 

Analysis of the main study transcript, and calculation of proportions of teacher and 

student talk (discussed in chapter 6) demonstrated the limitations of relying only on 
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comparisons of who is talking, or how much students contribute. It was therefore 

necessary to explore further into the qualitative differences between discourses. 

2.7.2 Analysing teacher-led discourse 

Analysis of the teacher-led discourses in the main study lessons, as will be discussed 

in chapter six, placed them in the category of 'recitation' as defined in section 2.7.1. 

However, deeper analysis was required in order to distinguish characteristics that 

might account for qualitative differences between the discourses. Researchers tend to 

develop their own systems of discourse analysis, or adapt others' for their particular 

purposes. This tailoring of the analysis method to the subject being studied offers the 

potential for greater insight into the specific research questions and data. It is 

nevertheless essential to benefit from the background of discourse analysis, in order to 

learn from both the methods and the findings of previous studies. 

Flanders' categories of description for classroom verbal behaviour (1970) established 

the Interaction Analysis tradition, where classroom language is analysed with the 

intention of revealing something about the teaching and learning process. Since his 

initial development of ten Flanders' Interaction Analysis Categories (FIAC), many 

hundreds of classroom observation instruments have been developed along similar 

lines. His original categories were divided into teacher talk (seven categories 

including 'accepts or uses ideas of pupils', 'asks questions', and 'lecturing'), pupil 

talk (either 'response' or 'initiation'), and silence. FIAC has been developed into 

subject-specific techniques. For the language-teaching classroom, for example, 

Moskowitz (1976) adapted and added to FIAC in the development of his Foreign 
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Language Interaction (FLINT) categories. In his analysis tool, each of the FIAC 

categories is sub-divided to give a more detailed description of the interaction. 

It is noteworthy that such descriptive categories include both pedagogic and social 

language. There is significant overlap between the two. Bowers (1980) sought to 

distinguish more clearly between language used directly for teaching and learning, 

and language used for social or organisational reasons, through developing seven 

categories of 'move'. 

Brown's Interaction Analysis System (BIAS) (Brown, 1975) was developed in the 

Interaction Analysis tradition, and is a simplification and reduction of Flanders' 

original ten categories. Rather than coding acts or moves, these categories can be used 

with a time-line, and coded at regular time intervals (every three seconds, for 

example). 

The aim of using tools such as those described above was to find out about the 

teaching and learning that goes on in a classroom. Classroom based language studies 

are also carried out with the intention of fmding out more about how language works. 

Sinclair and Coulthard (1975), for example, carried out research into classroom 

language for linguistic purposes, to fmd out more about the structure of spoken 

discourse. They devised a classification system consisting of twenty-one acts, 

including prompt (such as 'Have a guess', 'Come on quickly'), metastatement 

(helping pupils see the purpose and structure of the lesson) and conclusion 

(summarising what has proceeded). 
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The potential disadvantage of systems of analysis such as these is that, by focusing on 

individual utterances, they neglect the bigger picture. Malamah-Thomas recommends 

that researchers should focus on whether or not the 'key message' is understood by 

students: 

... these systems tend to concentrate on the various parts of the lesson. In 
order to analyse, they must fragment. And, in stressing the parts, they all 
overlook the whole; the whole lesson which is greater than the sum of its 
parts. For the crux of any classroom lesson lies in the learning that occurs 
in it. The crucial factor is whether the teacher gets his or her message 
across, whether the students learn what the teacher sets out to teach them. 
Any worthwhile analysis of classroom interaction must focus on this 
factor, and should also point up why the lesson succeeds, if it is 
successful, and why it fails, if it is unsuccessful. 

Malamah-Thomas, 1987: 31 

The difficulty with this insistence is that there is no known method for accurately 

measuring whether a lesson 'succeeds' or not. 

Section 2.7.2 has given an overview of categories and systems of analysis, such as 

Flanders' Interaction Analysis Categories (1970), that have been used to offer insight 

into classroom verbal behaviour. In this study I strive to heed the warning of 

Malamah-Thomas (1987) that fragmentation, concentration on individual utterances, 

can lead researchers away from, rather than towards, appreciating what makes a 

lesson successful. In classifying expressions of generality, my intention is to retain a 

sense of the overall 'journey towards the general' (see section 6.5). 

2.7.3 Characteristics of teacher-led discourse 

Brendefur and Frykholm (2000) develop and use a framework of four constructs that 

can be used to analyse various forms of classroom communication. Each successive 

level necessarily assumes the characteristics of its predecessor. Uni-directional 
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communication is where teachers dominate discussion through lecturing, asking 

closed questions. Opportunities for students to communicate their ideas are limited. 

Contributive communication describes interactions to assist or share, between 

students and between teacher and students. Reflective communication is related to 

Cobb et al.'s (1997: 258) concept of "reflective discourse". The sharing of ideas 

described in contributive communication here become "springboards for deeper 

investigations and explorations" (Brendefur and Frykholm, 2000: 127). Instructive 

communication takes place where subsequent instruction is shaped by the student

teacher conversations. Brendefur and Frykholm question the extent to which teachers 

are, "consciously aware of conversations that are moving from reflective to instructive 

levels of discourse?" (2000: 150). 

Researchers such as Barnes et al. (1967) demonstrated that detailed linguistic analysis 

of transcripts often results in insights that can easily be missed in the rapid exchanges 

of classroom interaction. Through use of such detailed analysis, they distinguished 

between questions that were genuinely open and those that were pseudo-open, a term 

introduced for those that appeared on the surface to be inviting a variety of responses, 

but actually sought the one answer intended by the teacher. 

Some of the researchers into classroom language have come from a linguistic, rather 

than educational, research background. Sinclair and Coulthard (1975: 6), for example, 

studied classroom discourse as a topic for investigation in its own right, rather than to 

make inferences about significance, intention and meaning. They ''wanted a situation 

where all participants were genuinely trying to communicate and where potentially 

ambiguous utterances were likely to have just one accepted meaning". 
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Teacher-led discourse helps students and teachers to construct and develop their 

interpretations of mathematical meaning. Effective classroom discussion can assist in 

extracting the concept's essential attributes and negotiating between every day and 

mathematical word use. If classroom practices and discourse focus predominantly on 

routine calculations and finding answers, then the meaning associated with some signs 

may be very narrow. One frequently stated example of this phenomenon is that 

students interpret 'equal' to mean 'answer'. 

Several studies offer both a classroom context, and a linguistic framework of useful 

constructs in the consideration of class discussion. Chapman (1997) linguistically 

characterises 'more mathematical' language. She emphasises that using such language 

is integral to the learning of mathematics, and describes the actions of a teacher 

encouraging students to shift towards 'more mathematical' language. Ainley (1987) 

proposed three categories of questions: focussing, rehearsing and enquiring. The 

allocation of questions to categories cannot be an exact science. as they are delineated 

on the basis of teacher intentions. not merely the words spoken. 

Gerofsky (1996) uses techniques from linguistic analysis to compare word problems 

and college lectures. and makes suggestions as to how each of these genres (Bakhtin, 

1986) could be adapted in order to make them more realistic. Morgan (1996, 1998) 

uses Halliday'S functional grammar (1985) to analyse students' assessed written work. 

Ball (1987) addresses the importance of 'intellectual honesty' between teachers and 

students in the mathematics classroom. For Ball, this means giving students space and 
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freedom to make sense of mathematics, ask questions, connect new experiences with 

their own knowledge, and listen to others' reasoning. She emphasizes the need for 

teachers to learn to hear, and carefully listen to, the things children care and think 

about in the classroom. 

Discussion amongst groups of students is considered to be an important vehicle for 

sorting out ideas. Gagne and Smith (1962) found that students who were encouraged 

to talk about what they were doing were more successful than when talk played little 

part. Wall (1965) argued that group work resulted in increased production of 

conjectures. He believed that this both increased the likelihood of a solution being 

reached, and the quality of that solution. This is because conjectures and suggested 

solutions receive a higher level of criticism in a group. 

Barnes (1976) outlined several ways in which teachers can influence groups' activity 

and discussion while remaining at a distance. Students should fully comprehend the 

purposes of the activity, should be convinced that their contribution will be valued, 

and should not be constrained by formal language or by trying to guess what the 

teacher wants. Students will need help in organising materials and ideas, and in 

preparing to share fmdings with the class. For group work to be effective, it requires a 

significant time investment. 

Hewitt (1997) introduces the metaphor of amplification and editing to describe a way 

in which a teacher can help students to shift their attention (Mason, 1989). By editing 

student contributions, asking them to repeat themselves missing some of the sentence 

out, teachers can amplify that which is left. "The role of teacher as amplifier/editor 
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can also help focus the attention of a whole class on certain aspects of what has 

already been said, written, or drawn by someone in the class" (Hewitt, 1997). 

A conjecturing atmosphere is defined as one in which ideas that are still uncertain and 

unformed can be expressed and shared. By expressing these ideas, they can be worked 

on and modified. As the quote below shows, listening plays a central role in the 

creation of a conjecturing atmosphere. 

The essence of working in a conjecturing atmosphere is therefore listening 
to and accepting what others say as a conjecture which is intended to be 
modified. Consequently, it is well worth noticing how you go about: 
• Developing and using a vocabulary which fosters conjecturing, (e.g. 

use words such as 'I suggest that ... ' or 'Perhaps ... ' rather than 'No!' 
or 'That's right!'). 

• Listening to others and being listened to. 
Mason, 1988: 6 

Brown and Coles' early papers reflect on partnerships between teacher and researcher 

(Brown and Coles, 1997), leading to a case study of a change in teacher behaviour 

which focuses on 'listening' (Coles, 2001). This 'listening' focus resulted in the 

development of an increasingly supportive 'conjecturing' atmosphere in which 

students valued each other's contributions. 

The Zone of Proximal Development (ZPD) is the collection of actions which can be 

caused and triggered by others, and which the students could soon initiate use of for 

themselves. Vygostky introduced the tenn to indicate the area where the most 

sensitive assistance should be given. The intention is that students develop higher 

mental functions through this assistance, and develop skills that they will then use 

independently. This assistance, enabling the student to achieve a task within their 

ZPD, is termed scaffolding. 
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Findings from analysis of the main study lessons contributed to the development and 

extension of Zones of Proximal Development into the concept of Zones of Proximal 

Generality (Mason et ai., 2007). As this emerged from the data and contributed to the 

framework developed in chapter seven, discussion of this theory can be found in 

section 7.3.2. 

An explanation of scaffolding is given in Tharp & Gallimore (1997) and other 

authors. Levels of support may vary in form, substance and context. Support is given 

when the teacher models the targeted performance of a task, giving verbal 

explanations that identify the elements of the task and strategy. Limited support would 

be the provision of cues to some aspects of the task to complement what students have 

already mastered. In a similar vein, Heed, Hawkins and Roller (1991) have described 

levels of support that lie between these two extremes: 

Assisted modelling: Teachers provide some coaching and models that 
enable the completion of the task. 
Element identification: The teacher identifies the elements of the desired 
approach or strategies to help students complete the task. 
Strategy naming: The teacher articulates a relevant strategy and students 
employ it on their own. 

Roehler and Cantlon (1997) focused on the types and characteristics of scaffolding in 

learning conversations and several different types were found: 

• Offering explanations: Explicit statements are given by an expert to 
elaborate on the learners' emerging understandings. 

• Inviting students' participation: Learners are given opportunities to assume 
control of the knowledge building process. 

• Verification and clarification of students' understandings: If emerging 
understandings are reasonable, the teacher verifies the students' responses. If 
the understandings are erroneous, the teacher offers clarification. 

• Modelling 0/ desired behaviours, this includes: 
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Making thinking visible, as in think aloud, showing what someone 
thinks about the process at a given moment. 
Generating questions and comments as in talk aloud, for example when 
a teacher shows how to perform by talking through the steps. Teachers 
generate questions and comments but later students take over. 
Inviting students to contribute actively. Learners are encouraged to 
contribute clues in order to complete a task and to articulate their 
understandings of task demands. 

Meyer and Turner (2002) describe how scaffolded instruction during whole-class 

mathematics lessons can provide the knowledge, skills, and supportive context for 

developing students' self-regulatory processes. In examining classroom interactions 

through discourse analysis, these qualitative methods reflect a theoretical change from 

viewing self-regulation as an individual process to that of a social process. Their 

article illustrates how studying instructional scaffolding through the analyses of 

instructional discourse helps further the understanding of how self-regulated learning 

develops and is realized in mathematics classrooms. Qualitative methods, such as 

discourse analyses, and their underlying theoretical frameworks have great potential 

to help "unlock" theories of learning, motivation, and self-regulation through 

exploring the reciprocity of teaching and learning in classrooms. 

Bauersfeld (1988) identified the phenomenon of fonnelling in which the teacher 

realises that a student has. difficulties, and opens with a short question with the 

intention of stimulating the student to correct themselves. On receiving an inadequate 

response, the teacher goes further back, aiming to receive an 'adequate' response. The 

quality of discussion deteriorates. The teacher's questions become increasingly 

narrow, as the teacher reduces their presumption of the student's actual abilities. 

Tension increases as the student realises that demands are becoming simplified and 

more urgent. Over time, the discussion may be reduced to recitation or sentence 
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completion, until the student produced the expected answer, which is often a single 

word. 

In his study exploring how students ascribe mathematical meanings to real-world 

situations, Voigt (1998) focuses on how the students and teacher negotiate 

mathematical meanings when they ascribe different meanings to phenomena. He 

describes a textbook picture of 6 people in a swimming pool and 3 people leaving the 

pool. He uses a fictitious discourse to illustrate how a teacher might direct a student 

towards the intended mathematical statement of 9 - 3 = 6. 

• How many persons are in the picture? Students' answer: 9. 
• How do we have to calculate if some go away? Answer: Minus. 
• How many persons left the pool? Answer: 3. 
• The result: How many persons remain in the pool? Answer: 6. 

Through this procedure, the picture becomes a specific arithmetical task, 
and a "number sentence" represents the solution. Details of the picture 
become clearly related to mathematical signs. The sequence of questions 
occurs concurrently with writing the sentence. This procedure is an 
example of a pattern of interaction; it will be termed the pattern of 'direct 
mathematization'. Particular empirical phenomena are related directly to 
mathematical signs; the sequence of questions and answers establishes the 
close correspondence step by step. Neither empirical nor mathematical 
coherence is addressed in its own right. 

Voigt, 1998: 209 

Voigt points out that students might learn how to relate parts of pictures to particular 

numerals step-by-step, without thinking about the relationship among numerals. He 

argues that explicit negotiation of meaning is more helpful than direct 

mathematization (Voigt, 1998: 217). This could be viewed as a specific case of the 

tension between procedures and understanding that was described in section 2.2. 

Voigt's 'direct mathematization' might result in students being offered a 'procedure' 

for converting 'real world' situations into mathematical calculations, without the 

understanding required to evaluate the reasonableness of their interpretation. Voigt 
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argues that explicit discussion of alternative interpretations leads to improved 

understanding of mathematical signs. 

2.8 DECISIONS AND TENSIONS 

In each lesson, whenever something happens, it is at the expense of something else. 

Each decision that a teacher makes, while enabling one collection of happenings, 

restricts others. Berlak and Berlak studied teachers in the early 1980s, and found that 

one of the stresses of teaching comes both from the number of decisions teachers have 

to make, and from the nature of the decisions they have to take. Teaching decisions 

often require teachers to choose between mutually exclusive options, such as whether 

to treat all students the same, or allow for individual differences, or whether to 

intervene or ignore a situation. They pointed out that a single decision may involve 

the resolution of several such dilemmas. Through analysis of their observations, 

Berlak and Berlak (1981) delineate three sets of dilemmas, enabling teachers or 

researchers to assess a situation to discover if any dilemmas are present. 

In the proceedings of a workshop that focussed on the mathematical knowledge 

required by teachers in order to teach effectively, and the ways in which such 

knowledge might be developed, Smith (2001) reports on a session investigating 

teacher management of whole class discussion. This paper contrasts with my own 

study, in that it explicitly focuses on teachers' mathematical knowledge in relation to 

class discussion, whereas I am seeking to describe the phenomena of expressing 

generality in class discourse, rather than seeking to explain it. Session participants 

looked in depth at a single classroom example where a problem is posed, worked on 

in small groups, and then the groups' solutions are shared. Participants were asked to 
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put themselves first in the position of the class teacher, deciding how to discuss the 

students' contributions, and then in the position of the reflective teacher, considering 

the mathematical understandings that they had drawn on in making the decisions. 

In the discussion, we were able to describe the general mathematical 
knowledge a teacher might draw upon in this situation ... what was more 
difficult was to describe what knowing would be supportive for a teacher 
"in the moment" and the ways that knowing would be connected to the 
mathematical worlds of the students ... That this group of experienced 
professionals did not seem to have the language to describe some of the 
essential kinds of knowledge and ways of knowing that might be 
important in a particular teaching situation is disquieting. 

Smith, 2001: 61-63 

Smith emphasises the value of research that is "embedding the mathematics into 

classroom contexts, students' work on mathematics, and teacher interactions" (Smith, 

2001: 63). He believes that a shared language will develop through the increased use 

of such materials, "for better describing the mathematical knowledge that supports 

teaching" (Smith, 2001: 63). I agree with the importance of developing a framework 

and language for discussing such issues, and seek to do so for issues extending 

beyond teachers' mathematical knowledge. One of the aims of this current study, 

consequently, is to embed theoretical findings within the classroom context, and so 

develop language for dealing with the central issues. In Smith's words, "as that 

happens, sessions such as the one described here may offer even stronger insights into 

the mathematics of teaching" (Smith, 2001: 63). 

To teach requires a conscious process of reflection (Dewey, 1933; Russell & Munby, 

1991; Schon, 1983; Van Manen, 1995, Grimmett and Erickson, 1988; Clift et ai., 

1990; Henderson, 1992). There is much divergence surrounding the precise definition 

of reflection. Dewey defmed reflective thought as the "active, persistent, and careful 

consideration of any belief or supposed form of knowledge in the light of the grounds 
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that support it and the further conclusions to which it tends" (Dewey, 1933: 9). Schon 

(1983) considers the teaching profession to be characterised by "experience, trial and 

error, ... [and] intuition in the face of complex problems". More recently, the term has 

been used to describe how teachers make regular, in-the-moment decisions in non

routine situations (Norlander-Case et ai., 1998; Reiman, 1999; Kelchtermans & 

Ballet, 2002). 

In the current study, I use the term 'teacher tensions' to describe the conscious or 

unconscious choices that teachers make whilst teaching. I choose to use this term 

inclusively, including all choices made, whether or not the teacher is aware of making 

the choice. 

Romano (2006) draws attention to those moments in the "complex teaching act" 

where teachers are required to "engage in reflection to make critical decisions about 

how to respond to particular problems in practice" (2006: 293). In seeking a stimulus 

for capturing these reflections, Romano asks practising teachers to describe their 

"bumpy moments" in teaching, with the intention that these will offer insights into the 

teachers' thoughts, knowledge and beliefs. She argues that her findings have 

implications for capturing reflection during teaching, ongoing practising teacher 

professional development, and pre-service teacher education, as a tool for examining 

the reflective process involved with the act of teaching. 

Romano's work initially appears to have close parallels with the current study, in its 

appreciation of teaching as a "highly complex activity" (2006: 973), and its intention 

to gain insight into that complexity through asking teachers to write about moments in 
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lessons. "Bumpy moments" are defined as, "teaching incidents that require the teacher 

to engage in reflection to make an immediate decision about how to respond to a 

particular problem in practice" (2006: 974) "The problem is not easily solved for any 

number of reasons, has importance to the teacher, and is perceived to have future 

implications or an effect on the students in the classroom" (2006:974). This appears 

similar to my own idea of identifying 'teaching tensions' in lessons. 

However, although the definition above and four examples were provided to teachers, 

they appeared to interpret the term with relation to classroom organisation and 

management, rather than explanation and discussion. One teacher in the study 

explicitly redefined the term "bumpy moment" to mean "teaching flubs" or errors, 

while another considered it to be a complete stop in learning. The author considered 

these reinterpretations to be consistent with her original intention that "bumpy 

moments" were incidents that require the teacher to engage in reflection to make an 

immediate decision about how to respond to a particular problem in practice (2006: 

977). 

It is possible that the choice of the four examples influenced the teachers' 

interpretation of the definition: 

The following examples were provided for the teachers: (1) an 
instructional dilemma which occurred when the range of student 
behaviours and abilities made it difficult for all students to complete what 
was considered to be a fairly simple assignment; (2) an instance in which 
a parent helper did not come in to class, forcing the teacher to reconsider 
how the day's activities might be affected; (3) a leaking roof which caused 
disruption in the classroom; and (4) a problem in teaching that directly 
resulted from the teacher not being prepared for the day's events. 
Consistent with the definition of "bumpy moment" set forth earlier, all 
examples described teaching incidents that required the teacher to engage 
in reflection to make in immediate decision about how to respond to a 
particular problem in practice. 
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Romano, 2006: 975 

These difficulties influenced my decision to theorise about potential tensions and 

decisions, rather than attempt to access the in-the-moment thinking of the main study 

teachers. 

Schifter and Lester (2005) examine several moments of discontinuity or "openings in 

the curriculum", and conclude that successful facilitation requires deep content 

knowledge, awareness of learning objectives, and appreciation of the beliefs and 

understandings of seminar participants. Although their analysis focuses on 

professional development seminars, rather than lessons, they believe that their 

conclusions apply to other mathematical discussion settings. 

Responding to openings for teacher learning, however, is not just a matter 
of having the right cognitive dispositions. It is just as important to 
understand that effective facilitation requires courag~ourage to 
challenge the thinking of other adults, to redirect a discussion that is 
moving in an unproductive direction, and to face the agitation, sometimes 
even tears, that result when firmly held ideas begin to crack. 

Schifter and Lester (2005: 118) 

Borthwick (2001) focuses on the decision teachers make when they are surprised by a 

student's question or response, and must choose whether to explore the 'moment', or 

carry on as if the student had not contributed in this way. 

2.9 CHAPTER SUMMARY 

This chapter has located the present study at the intersection of three fields: research 

on students' appreciation of generalisation and algebra, research on language use, and 

research on teacher-led discourse. I have explored the central place that the 
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appreciation and expression of generality has in mathematics, and argued that the 

relationship of generality within mathematics is distinct from that which it has with 

other school subjects. 

The plethora of generality in mathematics classrooms could be subjected to any 

number of frameworks and categories. Research literature and inspection and policy 

reports (Brown, 1978; Her Majesty's Inspectorate, 1985; Cockcroft Report, 1982) 

have framed my separation of mathematical generality into four types of learning: 

facts, concepts, algorithms and problem solving strategies. I have shown that each of 

these four aspects of mathematics has its own distinct link to the general, and 

particular issues linked with this generality. I have argued that these might be 

observable in the mathematics classroom, as generalities are expressed related to each 

of the four categories. These categories formed the basis for my first set of 

distinctions in chapter 7, although the category of 'mathematical facts' is subsumed 

by the others (see 7.3.1 for further explanation), and the term 'procedures' is used in 

preference to 'algorithms' (see section 2.2). 

Two of these four categories, general procedures and general concepts, were 

examined in greater detail in sections 2.2 and 2.3. Section 2.2 made use of some of the 

available distinctions between different ways of teaching, and ways of understanding, 

mathematical procedures. These included distinctions between inductive and 

deductive approaches, empirical and structural generalisations, and procedural and 

conceptual understanding. These are taken as a theoretical starting point in chapter 

seven when considering different characteristics of expressions of generality. 
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Section 2.3 makes use of Davydov's (1972/1990, 45-6) three criteria for concept 

formation to consider three important decisions for teachers in introducing students to 

mathematical concepts: 

1. when and how do you establish the precise scope of a concept? 

2. when and how do you introduce a name? 

3. when do you move from exemplifying the conception with the particular and 

assume that students can appreciate meaning from the general? 

One difference between generality in a mathematical context, as compared with other 

curriculum subjects, is that there is often the possibility of expressing these 

generalities using algebraic notation. In section 2.4 the connections between 

generality and algebra were explored. Having examined the historically developing 

and currently various definitions of the term 'algebra', I explained that the focus in 

this thesis is not what some have termed 'algebraic thinking', but rather 'algebra' is 

used here to indicate formal algebraic notation. I take the question asked by 

Sutherland (1991) "Can we develop a school algebra culture in which pupils find a 

need for algebraic symbolism to express and explore their mathematical ideas?" and 

ask whether it is the school mathematics culture, rather than merely the algebra 

culture, that might benefit from change. 

Section 2.5 looked to literature in the field of teaching non-native languages, and 

considered whether any insight could be gained from regarding algebra as an L2 (the 

term used in the literature for non-native languages). The literature discussed in this 

section shaped my thinking and opened my awareness of alternative perspectives on 

the expression of generality in mathematics classrooms. However, it did not 
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contribute directly into the framework developed in chapter 7, or the subsequent 

analyses in chapter 8. It was included in this chapter with the intention of offering an 

insight into the background literature that influenced this study. 

Vygotskian approaches to the importance of language for thought were introduced in 

section 2.6. The impact of students using and understanding 'ME' (see section 2.3.1) 

is emphasised through consideration of Vygotsky's concept of 'inner speech', which 

supports the importance of developing mathematical concepts. Section 2.6 also 

considered how linguistic theorists (Kozulin, 1990; Malinowski, 1923; Halliday, 

1978) can contribute to educational research, such as this, that focuses on the spoken 

word. 

Section 2.7 examined previous research that analyses teacher-led discourse. The 

distinction was made between lecture, recitation and discussion, with the discourse 

that forms the main study expected to exhibit the characteristics of discourse towards 

the centre of this spectrum (recitation). 

In section 2.8, literature regarding teacher decisions was reviewed. In this section it 

was noted that a teacher might have chosen a task designed to encourage meaningful 

use of algebra. This same teacher may be aware of and experienced in the importance 

of language. They may want to foster a conjecturing atmosphere in their classroom. 

Even if each of these three factors has been put in place, during each conversation 

they have with their students, they must continually make decisions that will impact 

on their students' learning, with concomitant stressing of some aspects and 
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consequently down-playing of others. The literature reviewed in this chapter calls 

attention to the complexity of these teaching decisions within the context of 

expressing generality. 
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CHAPTER 3: METHODOLOGY I - RESEARCH DESIGN 

AND DATA COLLECTION 

Having considered the previous research that informs the study in chapter two, this 

chapter focuses on the processes by which this research was undertaken. The 

objective here is to describe the methodology and methods of this study, and to 

explain the basis on which these were decided and the manner in which they were 

carried out. 

3.1 INTRODUCTION 

Although the terms 'methodology' and 'method' are sometimes used synonomously, 

an important distinction must be made between the two. Methodology is the study of 

methods and deals with the philosophical assumptions underlying the research 

process, while a method is a specific technique for data collection under those 

philosophical assumptions. Inevitably, the methodology described in section 3.3 

informs the development of the research methods employed, and so there is a 

necessary relationship between the methodological discussion in section 3.3, and the 

details of method that follows in section 3.4. The role of methodology can be held in 

very high regard: 

Methodology is a theory of how inquiry should proceed. It involves 
analysis of the assumptions, principles, and procedures in a particular 
approach to inquiry (that, in turn, governs the use of particular methods). 

Schwandt, 2001: 161 

The imperative indicated by language such as the 'should' used by Schwandt in the 

previous quote can be somewhat daunting. The impression can be gleaned that 
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methodology is concerned with philosophising about the discovery of the 'one correct 

approach' to defining the problem, framing the hypotheses, generating and analysing 

data. My approach to the question of methodology more closely follows that of 

Blackburn (1996) who argues that, "The more modest task of methodology is to 

investigate the methods that are actually adopted at various historical stages of 

investigation into different areas, with the aim not so much of criticizing but more of 

systematizing the presuppositions ... " (1996: 242). 

3.2 LEARNING FROM THE PILOT STUDY 

Before the three research questions of this present study were fmalised, my research 

began with a more change-oriented approach. The pilot study sought to address the 

question: 'how can teachers use class discourse to support students in expressing 

generality?, With the intention of remaining open to a variety of successful 

approaches, I invited seven teachers to participate in the pilot study, and observed two 

different teaching groups with each teacher. As I wanted differences in the lessons to 

be comparable and definable, I constrained the participating teachers by offering them 

a particular task, whilst leaving them free to choose the way in which they adapted the 

task to design something that would result in appropriate activity for their students. I 

selected the task below (Mason, 2005: 56), on the basis that it provided rich 

opportunities for expressing generality, yet was open to different classroom 

applications. Word restrictions prevent detailed discussion of the pilot study here, but 

a forthcoming paper will be accessible at http://ermeweb.free.fr/proceedings.php. 
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Task 3.3.48 Multiple expressions 

Take a picture sequence and inagine building each picture tom sticks, perhaps Ike 1he one shown 
here (all sticl<9 are assumed 10 be the same length). 

16Ej 61 
In how many different ways can you wa1< out how mlily ma1J::hsticks wiD be needed to mace 1he p 11 

picture? How many !ticks Wi. be needed to make just the perimeter? 

Mason, 2005: 56 

This research method offered an opportunity to explore how different teachers 

approach the same task, and look at the different 'end-points' with different groups of 

students. The 'Algebra House' pilot study influenced the methodological principles of 

the main study, discussed in section 3.3 below. The pilot was particularly significant 

in establishing the fourth principle, to observe 'ordinary', rather than 'intervention' 

lessons. Findings from the pilot study also informed the central study, as I was 

particularly struck by the contrast between the teacher and students' use of algebra 

and terms such as 'general' and 'particular' in the pilot study, compared to their 

almost complete absence in central study lessons. 

Further piloting activiti~s were orientated more specifically to developing and trialling 

observation, transcription and analysis techniques, learning about appropriate 

researcher roles, and deciding which and how many lessons to incorporate into the 

full study. During July 2005 three days per week were spent in school, observing over 

15 lessons (taught by six different teachers), talking to students, and trying out 

techniques. All pilot-data were analysed in order to judge the relative efficacy of 

different approaches. In the following sections reference is made to pilot work in the 

context of specific methodological decisions. 
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3.3 METHODOLOGICAL PRINCIPLES 

This section is concerned with the ideas and intentions which underpinned the ways in 

which this study was carried out. Although some infonnation is provided about the 

specific data generation procedures that were followed, the central purpose was to 

explain the spirit in which such methods were used and the aims their use was meant 

to achieve. Further detail about the research design can be found in section 3.4. 

The study's methodological task was to construct a process for generating and 

analysing data that would follow ethical guidelines, function within practical 

constraints, and address the research questions being posed,. 

The first criterion for the research design was that all practices should follow ethical 

guidelines set out by BERA (2004). The effects of following this principle are 

discussed in section 3.5. The second criterion involved practical considerations given 

the time-frame for completion and the desire to conduct ongoing analysis. The third 

criterion was that all aspects of the research design would help to address the research 

questions (Rossman and Rallis 1998): 

1. What generalisations are being expressed in secondary 
mathematics classrooms? 

2. How are procedural generalisations expressed m mathematics 
classrooms? 

3. How are conceptual generalisations expressed in mathematics 
classrooms? 

There was a need, therefore, for a methodology that would enable the generation of 

authentic accounts of whole class discussions in mathematics classrooms. The 
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descriptive and exploratory nature of the three research questions led to the choice of 

a qualitative approach (see first principle), as this was considered more appropriate for 

offering detailed insight and opportunities for careful analysis of discourse. For 

practical reasons it was necessary to narrow the focus of questions such as "What 

generalisations are being expressed in secondary mathematics classrooms?" to 

considering particular secondary mathematics classrooms, which entailed adopting 

some aspects of a case study approach (see second principle). The exploratory nature 

of the research questions also made it appropriate to begin with the classroom 

practice, rather than starting with a preconceived framework or a hypothesis about 

fmdings (see principle three) and to collect data about what is happening, rather than 

what could, should or might (see principle four). The last principle was also 

specifically suited to my research questions. As the research questions are descriptive 

of existing practices, I strove in the research design to minimise disruption to lessons. 

This was a factor in my decision to maintain a teacher-persona during the data 

collection phase. Although a digital recorder was used to enable subsequent analysis 

of discourse, more intrusive techniques such as video recording, which might have 

impacted on what teachers and students said more profoundly, were not employed. 

The research questions' emphasis on discourse, and the expression of generality, 

influenced my use of voice recorder and transcription as the main data collection 

technique. 

The three criteria described above (that the study would follow ethical guidelines, 

function within practical constraints, and address the research questions being posed) 

were complemented by critical engagement with the following sources of information 

and experience: 
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1. Piloting experience (see section 3.2) 
2. Relevant published research (see chapter 2) 
3. Methodological literature (see below) 

Arguments about the nature and strengths of particular strategies or techniques from 

methodological literature did not direct decisions but rather supported those made on 

the basis of pilot work and critical reviews of related studies. 

The three criteria of the methodological task were considered in connection with the 

above sources of information and experience in order to develop the six 

methodological principles that underpinned the research design. The methodology of 

this study can be understood in terms of these six principles, which together comprise 

the theoretical and philosophical ideas underpinning the methods and their use. These 

methodological principles are: 

• to adopt a qualitative approach; 

• to work on a small scale, using case studies; 

• to begin with the classroom practice; 

• to observe 'ordinary' lessons; 

• to engage in on-going reflection on my own teaching practice; 

• to maintain a teacher-persona. 

Each of these six principles will be explained in turn and a discussion of how they 

manifested themselves in the research design will be presented. 

First principle: A qualitative approach 

By comparison with numbers, meanings may seem shifty and unreliable. 
But often they may also be more important, more illuminating and more 
fun. 

Dey, 1993: 11 

103 



Chapter 3 Methodology I 

The nature of the three research questions is descriptive and exploratory, and they are 

consequently most effectively approached qualitatively. Yates argues that research 

carried out with the intention of "constructing generalised laws" is mostly 

quantitative, while qualitative methods are more suited to achieving "detailed 

description of particular circumstances" (Yates, 2004: l35). Those working with 

qualitative methods, 

stress the importance of such things as the subjective experiences of the 
researcher and the participants, the central importance of meaning to 
social life, and the importance of social and cultural context in situating 
different meanings and interpretations. 

Yates,2004: l37-8 

Wolcott argues that, "the real mystique of qualitative inquiry lies in the processes of 

using data rather than in the process of gathering data" (Wolcott, 1994: 1). He 

distinguishes between description, analysis and interpretation. The aim of description 

is, "to stay close to the data as originally recorded. . . The underlying assumption, or 

hope, is that the data 'speak for themselves'." (Wolcott, 1994: 10). 

Ethnography, or participatory action research, draws on participant observation and 

field notes as data sources. 

Instead of requiring myself to explain everything I see, I simply 
concentrate on recording every detail. I have learnt that rich descriptions 
yield the stuff of later explanations, whereas thin descriptions are 
worthless. 

Oran, 1998: 28 

One of the major arguments made against quantitative methods, especially surveys 

and experiments, is that data is often collected in 'artificial' situations. As one of the 

intentions of the experimental method is to create as 'closed' a system as possible by 

controlling and excluding many aspects of the situation, they tend to create an 
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artificial setting where behaviour may differ significantly from when they teach 'real' 

lessons. 

By working qualitatively, I had access to an extensive range of material. This enabled 

me to gain deeper and richer insights into the finer detail of the people, social contexts 

and social practices involved. There is a very broad range of identifiable methods for 

qualitative data collection. These include participant and non-participant observation, 

unstructured interviewing, group interviews, and the collection of documentary 

materials. 

Montgomery-Whicher, who uses a phenomenological approach to inquire into the 

lived meaning of drawing experience, draws an interesting analogy between 

phenomenology and drawing: 

As a practice of inquiry - a way of questioning our experience of the 
world - a phenomenological approach to research shares three important 
characteristics with drawing from observation: One, it begins in the 
everyday world in which we live; two, it is directed towards a renewed 
contact with the world; and three, learning to do this kind of research, like 
learning to draw, it is largely a matter of relearning to see. 

Montgomery-Whicher, 1997 

Second principle: Small scale study 

The research strategy adopted can best be described in terms of Hammersley et al.'s 

(1998:2) definition of case study research; that is "research that involves collecting 

detailed data relating to a relatively small number of cases, data that are 

predominantly unstructured in character, and that are subjected to qualitative 

analysis". While this definition does not necessarily correspond with others in the 

literature (such as Stake, 1994; Yin, 1994) it is the most accurate description of the 
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undertakings of this study. Hammersley et al. (1998: 2) suggest that: "it is useful to 

distinguish between the focus of a piece of research and the case or cases studied 

which provide information that is hoped will illuminate that focus". Applying this 

distinction to the present study, 

• the focus (or "the most general set of phenomena about which a study draws 

conclusions") is the use of whole class discussion in improving students' 

appreciation of generality in mathematics. 

• the cases (or 'the particular objects, specifically located in place and time, about 

which data were collected") are the teacher-led discourses of seven secondary 

school teachers with classes of students at Key Stage 3 and 4. 

As this study adopts a question-led approach to research design, presenting arguments 

about the strengths of case study research to justify the strategy adopted is 

inappropriate. Such a justification is also rendered problematic because the term 'case 

study' lacks specificity and clarity. While Stake (1995) suggests that case studies may 

be singular or multiple and of intrinsic or instrumental interest, Yin (2003) 

distinguishes explanatory or descriptive purposes and embedded or holistic 

approaches. He sets out arguments made by others that case studies can be 

characterised by their focus on decisions, processes, events, individuals or 

organisations. Robson (1993) also adopts a broad definition, describing case study as: 

A strategy for doing research which involves an empirical investigation of 
a particular contemporary phenomenon within its real life context using 
multiple sources of evidence. 

Robson, 1993: 146 

He suggests that the contemporary phenomenon, or case, can be "virtually anything" 

(1993: 146). Views also differ about the methods used in case studies and their 

associated strengths. Stake (1995) characterises case study research as qualitative 
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while Yin (2003) highlights the potential for incorporating quantitative methods. 

Stake argues in favour of 'naturalistic generalisation', but Yin suggests that 

generalisations from case studies may be made theoretically or on the basis of 

established reliability and external reliability. Further diversity can be found in 

arguments relating to the role of the researcher, notions of objectivity and 

interpretation, units of analysis, and relationships between case studies and other 

designs. 

A justification of case study as a strategy would thus be fraught with problems as to 

what exactly is being justified. Decisions made in this research are identified and 

justified with primary reference to the research questions and design principles before 

supporting arguments from methodological literature are presented. There remain 

issues of terminology and in light of the arguments made above this study is not 

labelled as a case study. However fit between the small-scale approach adopted and 

arguments that case study research is well-suited to addressing exploratory, open

ended questions may be noted. 

Third principle: 'Ordinary' lessons 

Lesson observations generated the bulk of data gathered in this study, so identifying 

which lessons would be best to observe was a central concern. The intention was not 

to seek lessons where generality was a central concern, but rather to observe 

'ordinary' lessons and consider the extent to which generality played a role. I 

observed teachers on multiple occasions, teaching different topics to several year 

groups and attainment groupings, at a variety of times of day. This gave me an 
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opportunity to see a broad range of ways they both expressed generality themselves, 

and promoted students to so do. 

This contrasts with the 'Algebra House' pilot study, in which, by keeping the task 

constant, I hoped to look more closely at the classroom culture, and how the ethos 

created by the students and teacher contributed to the aspects of generality on which I 

was focussing. The intention remained that the research would reveal what did happen 

in some mathematics classrooms, rather than what could happen as a consequence of 

significantly different circumstances. However, time spent discussing the lesson with 

the researcher and extra time spent preparing, for example, are both properties of 

'intervention' lessons that arguably could not realistically be extended to all lessons. 

In the 'Algebra House' pilot study, teachers commented that they had used different 

lesson structures and teaching techniques because they were 'doing something 

different'. If the teachers feel differently about the lesson, it is quite possible that the 

students do also. And yet it was my belief from the literature and my own teaching 

experience that there were opportunities to appreciate and express generality in every 

mathematics lesson. Surely, if this were truly the case, then a lesson such as 'Algebra 

houses' would fit right in to mathematics lessons, with teachers and students alike 

using teaching and learning skills that were considered standard. Why, then, did 

'Algebra House' seem so out of the ordinary? 

One answer to this is methodological. I had provided teachers with a specific activity. 

They had discussed their plans for the lesson during INSET. The 'Algebra House' 

observations may also have put more pressure on teachers to perform. Although the 
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teachers and students were accustomed to my presence in the classroom, there were 

some necessary differences. For example, a particular lesson had to be allocated to the 

activity, to ensure that I would be available to observe. BG's year 9 class, for 

example, had their 'Algebra House' lesson during a sequence of lessons on practice 

statistics coursework. For most of the teachers this was an unusual task type, which 

may have led to their questioning the appropriateness of their 'usual' teaching style. 

I believe that the unusual nature of the 'Algebra House' lessons resulted from 

something beyond the research methods used, however. It was unusual for the 

teachers to focus on using algebra to express generality meaningfully. Several 

teachers expressed uncertainty about what to write as the 'objective' for the lesson. 

Based on pre- and post-lesson discussions with the project teachers, analysis of 

schemes of work and discussion with students, it appears that most of the teaching of 

algebra to express generality could be described as empirical, rather than structural 

generalisation (Bills and Rowland, 1999; this distinction is outlined in section 

2.1.3.2). This observation emerged as a central theme of this study, and is discussed 

further in chapter nine. 

The main study set out to explore what happens in ordinary lessons, to try and escape 

the methodological impact described above. Having stated this aspiration to observe 

representative lessons, it is important to emphasise that this representativeness is 

limited by sample size. As my sample is small, any research fmdings are indicative of 

what can happen, rather than what does; a representative description would require a 

much larger sample and consequently, particularly given my time constraints, less 

'thick' data. 
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Fourth principle: Beginning with the classroom practice 

The fourth methodological principle concerned the project's commitment to start with 

classroom practice. By this it is meant that the study deliberately took the speech-acts 

of actual lessons as the starting point for the investigation and sought to work from 

these events to generate understandings of the expression of generality. This principle 

is seen as important for a number of reasons. 

Although interviews, both semi-structured and informal, were used during the pilot 

stage, teacher and students views were not systematically collected and analysed in 

this study. This was due to my increasing awareness of the inadequacies of asking 

people to give explanations, justifications or even descriptions of their practices. 

Keats (2000: 60-61) identifies eight potential interviewee behaviours that might affect 

interview responses. These include inconsistency, non-cooperation, evasion, 

inaccuracy in recall, lack of verbal skills, conceptual difficulty, emotional state and 

bias. Were I to do the study again, one possibility might be to collect and analyse this 

type of data, but to remain aware of the possibility of such effects. It would be 

difficult to not be influenced by what was said, so I decided on this occasion that it 

would be better not to ask. I did, however, record the conversations of teachers 

planning the task, which I used to triangulate with my lesson observation findings. I 

also had informal conversations with the teachers, some of which I recorded. 

Using research interviews (or focus groups) involves actively creating 
data which would not exist apart from the researcher's intervention 
(researcher-provoked data). By contrast, observation or the analysis of 
written texts, audiotapes or visual images deals with activities which seem 
to exist independently of the researcher. This is why we call such data 
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naturally occurring: they derive from situations which exist independently 
of the researcher's intervention. 

Silvennan, 2001: 159 

A theoretical distinction made by Argyris and Schon (1974) also supports the 

suggestion that making sense of teachers' classroom practice requires the direct study 

of that practice. They distinguish between two types of theories of action, a person's 

'espoused theory' defined as the theory they believe guides their actions, and a 

person's 'theory-in-use' defined as the theory that actually governs their actions. 

Argyris and Schon argue convincingly that an individual's 'theory in use', "may not 

be compatible with his espoused theory" and in light of this put forward the case for 

direct observation of an individual in order to learn about his/her 'theory-in-use'. 

They state that: 

We cannot learn what someone's theory-in-use is simply by asking him. 
We must construct his theory-in-use from observations of his behaviour. 

Argyris and Schon, 1974: 6-7 

A further reason for this study's commitment to begin with classroom practice is 

motivated by arguments that research that is grounded in the events of real classrooms 

is more likely to generate findings of relevance to practitioners in the school context. 

This recognises a gap that is often seen to exist between research in education and 

actual practice and suggests that one way in which this gap can begin to be bridged is 

through research that focuses on exploring the practice that occurs in real classrooms. 

Fifth principle: Continued reflection on own practice 

The importance of educational research that can directly impact on the classroom was 

the initial impetus for this study. As a consequence of this, although the central 
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investigation is based on observation, transcription and analysis of six teachers' 

classroom practice, this thesis sets out to show both how the main study emerged from 

my own classroom practice, and how the study influenced my practice during and 

after data analysis. 

The benefits of setting the theoretical and observation-based research findings of 

chapters six to eight in the context of the researcher's own practice are manifold. 

Chapter five shows how the questions emerged from the researcher's own practice, 

setting the main study in context. Chapter nine illustrates one way in which the central 

research findings might influence practising teachers. 

Constraints of time and space inhibit a full discussion of the methodological concerns 

related to researching one's own practice. My approach in this instance is strongly 

influenced by Mason (2002). 

Sixth principle: Continued teacher-persona 

Doctoral theses often describe a transition that has taken place from teacher to 

researcher. It has been my aim to develop my researcher self without losing any of the 

teacher I was developing into being. I believe that there is a need for researchers who 

have remained in the teachers' world, of bells and timetables and pastoral 

responsibilities. I continued to teach at the main study school throughout my research. 

As described above (principle three), my focus was on non-intervention. I wanted to 

portray what actually does happen in secondary school mathematics classrooms. 

Ethnographic studies often involve the researcher taking on a role within the research 
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environment. The advantages of action research as a teacher are well-documented 

(see, for example, Carr and Kemmis, 1986; Ruddock and MacIntyre, 1998). The 

advantages of a researcher also being a teacher have also been considered, though 

perhaps to a lesser extent. 

During all the phases of the research it was clear to me that I was in a good position to 

create and maintain trust with the teachers and students. The main study involved the 

observation and recording of lessons of teachers who had been, and continued to be, 

my colleagues. Having taught at the school for two years, I had worked closely with 

the teachers in the mathematics department. As the team has an 'open door' policy, I 

had observed their lessons both formally and informally. I had taken on the role of 

'Induction Tutor' to two of the teachers, which involved regular formal observations. 

Although this had significant advantages in terms of gaining access (the ethical 

implications of which are discussed in section 3.6), it made the shift from 'teacher' to 

'researcher' more challenging. 

In the study of education, the action in action research is located in and 
around the classroom where teachers teach students, or where better yet 
they educate each other. One can see that action research would bridge the 
great divide between research and its object, between research and 
researched. This is research which, in a democratic spirit, does not keep 
itself apart from the researched. After all, many of us who research were 
teachers in the schools once, and while we may figure that we are teachers 
still, we have found a considerable divide has grown up between our once 
and former colleagues. A form of research work that recognised our 
original work as teachers would seem attractive. 

Willinsky, 1997: 329-330 

Brennan and Noffke describe a similar convergence of roles. In carrying out a piece of 

action research with student teachers, they point out that, 

There was no neat dividing line between our teaching and our research. 
Rather, we tried to improve our teaching as we reflected on our project, 
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often with input from the students as to how our approach to action 
research was contributing to their development ... 

Brennan and Noffke, 1997: 24 

Ainley (1999b) discusses some of the tensions involved in taking on the dual role of 

teacher and researcher, principally between deciding when to support or advance the 

learning, and when to stay back and observe. In line with Ainley (1999b) and Wilson 

(1995), I do not view the situation as a conflict, but I am aware that there are tensions, 

choices that have to be made. As an adult in the room, especially one who was known 

to be a teacher, I was regularly looked to for advice and structure. A student 

considering inappropriate behaviour might look first to me to see whether I would 

prevent them. In one lesson, when the teacher went outside to speak to a student, I 

went to the front by the board and talked through a few examples with the students. 

They did not seem to fmd this surprising. Although outside researchers might 

hypothesise that students are better behaved in their presence, or that they answer 

their questions more honestly than they would answer those of a teacher, I did not feel 

that I missed out on these advantages. 

Being known as a mathematics teacher by both students and teachers in some ways 

made the adoption of the role of a researcher a more challenging one. When deciding 

to carry out my research study in the school in which I taught, I was quickly aware of 

the many advantages this would have in terms of access to data and insights that 

might otherwise be difficult to gain. What I was less aware of, was the need for some 

distance between researcher and subject. I needed to be able to set aside time to just 

be a researcher. On a practical level, I found that the best times for analysis were 
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during the school holidays, where I could take some distance from the school, 

teachers and students. As Ely et al. (1997: 204) comment: 

One of the many tensions or paradoxes of qualitative research is that when 
we as researchers begin to move into specifically interpretive modes, we 
must take a step back from the immediacy of the field and of our data and 
see them again as "the other". 

Ely etal., 1997: 204 

The time spent teaching in the school, attending departmental meetings etc. produced 

case studies of the teaching approaches, drawing on some of the techniques of 

ethnographic research. In terms of the ethnographic approach, I follow the broad 

definition of ethnography offered by Hammersley and Atkinson: 

In its most characteristic form it involves the ethnographer participating, 
overtly or covertly, in people's daily lives for an extended period of time, 
watching what happens, listening to what is said, asking questions - in 
fact, collecting whatever data are available to throw light on the issues that 
are the focus of the research. 

Hammersley and Atkinson, 1995: 1 
I took notes throughout the school day and also kept a journal of analytical notes 

about each teacher, in order to identify salient features of each one's teaching 

approach. The informal discussions held with teachers in the staff rooms also 

generated data and ideas, which I noted. 

I was given the opportunity to present the main features of the research project at one 

departmental meeting. Thus, all teachers were aware of the purpose and procedure of 

the research project, and were able to ask relevant questions from the start of the 

research period. However, generally in maths team meetings I deliberately refrained 

from making frequent references to research. I found this difficult to adhere to, as I 

felt I could benefit the department through sharing the literature that I had the time to 

access, but felt it was justified in terms of remaining 'one of the team' . 
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Following the methodology of Brown and McIntyre (1993), I tried to show positive 

regard for the main study teachers and their work; I refrained from negative 

judgements, took an interest in all that they said, and when a teacher appeared 

disappointed with a lesson, encouraged a balanced approach by asking what had gone 

well. I made it clear that I was not there to evaluate them, but to learn from them. 

3.4 RESEARCH STRATEGY: DETAILS AND RATIONALE 

In this section the research strategy is discussed in detail, identifying links to the 

principles and sources outlined in section 3.3. I observed fifty-two secondary 

mathematics lessons, from years 7-11 (10 to 16 years old), taught by six mathematics 

teachers in an Oxfordshire comprehensive school. Having previously taught full-time 

at the school, both students and teachers tended to relate towards me as they would a 

member of staff, rather than an outside researcher. Although I initially asked before 

each lesson whether I could observe and record, I established with all six teachers, 

after differing time periods, an agreement that I could come and go as I pleased. My 

research formed part of a department-wide policy of increased observations, in which 

all members of the department were encouraged to spend time in others' lessons. In 

this environment, my presence appeared to be unremarkable to both teachers and 

students. An important feature of the methodology was to make as little impact on the 

class as possible, and I wanted to avoid any influence on the teacher. I consequently 

felt confident that I was observing a realistic sample of the department's teaching. 

I observed all of the recorded lessons, and four sources of data were collected: 
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• researcher's field notes, including observations of students' working 

• audio-recordings from a digital recorder 

• pre- and post-lesson teacher comments 

• examples of students' written work 

When main study lessons are referred to in the study, I refer to them in the form 

"[Lesson number] Teacher initials Year (set) Topic". 

3.4.1 Sampling 

Two factors influenced the number of teachers I invited to take part in the study: the 

possibility of comparison and the practicalities of the situation. I wanted to have more 

than one teacher in the study, in order than points of commonality and difference 

might emerge, but knew from my pilot study of lesson observations (see section 3.2) 

that the data would be rich and plentiful and thus require considerable time to analyse 

and digest. I also felt that to understand the strategies and styles of teaching used by 

the participants, I needed to observe them working with more than one year group, 

and teaching different types of lessons. What seemed feasible given these priorities 

was to join six teachers as they taught different year groups four or five times each 

over a two month period - a total of fifty-two lessons. 

The department offered the possibility of observing teachers who differed along 

several potentially important dimensions. The six teachers had a spread of teaching 

experience, with two teachers in their fifth year of teaching or more, and three in their 

first three years of teaching. Two of those involved were female, and three men. More 

detail on the teachers as individuals is provided in chapter 6. Given this variety, two 
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months of full-time lesson observations was deemed sufficient to incorporate most of 

this variation. This seemed reasonable given ethical considerations (BERA, 2004) that 

no more demands than necessary be made of participants, and practical given the 

overall time frame for the study. 

3.4.2 Observing 

Due to the extensive time scales over which patterns of classroom behaviour are 

established (Coles and Brown, 1998) the main study observations took place at the 

start of the academic year, when teacher expectations are made most explicit. 

During whole class teaching I sat at the back of the classroom, noting teachers' and 

students' utterances and actions. During individual or group work a more interactive 

role was adopted, giving assistance to students if they asked, and initiating dialogue 

that helped me gain a fuller understanding of the task and the students' response to it. 

Aware that my presence as a participant may have changed teacher and student 

behaviour in lessons, discussions were held with teachers about this issue. None noted 

any changes in student behaviour, and field notes document several instances of 

students apparently ignoring my presence and engaging in off-task behaviour. 

The audio recording of the whole class appeared much less intrusive than others have 

reported with recording of particular students. Students at the front of the classroom 

sometimes touched the digital recorder, and occasionally the recorder prompted 

comment, such as "don't say that..", but mostly its presence was not remarked upon. 
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Detailed field notes were made, including board work. At the end of each lesson 

pertinent student work was photocopied. Either before or immediately after each 

lesson, copies of handouts or worksheets were made. As with field notes, these data 

tend to complement the audio data, rather than form a major evidence base. 

3.4.3 Recording 

The teacher's interactions with the class were recorded at two levels. All whole class 

interactions were recorded and, as the recorder was placed on the teacher's desk, their 

interactions with individual students and small groups were also recorded on 

occasion. 

This thesis focuses on teacher-led discourse, and consequently not all classroom 

discourse is subjected to analysis. This includes conversations between pairs or 

groups of students, discussions between the teacher and individual students, and those 

sections of the class discussion where several participants talk at once. These students 

may make a constructive contribution to the discussion, but as it is not available for 

all participants in the discussion to interpret, it is not included in the analysis of 

student or teacher talk. On occasion, a teacher chooses to amplify or edit this talk 

(Hewitt, 1997, see section 2.7.3) in which case they ask a student to repeat the 

contribution for all to hear. There were very few occurrences of general student 

chatter or suggestions amongst the sections of the lesson where mathematical ideas 

were being developed. Had it been practical to transcribe each individual one, and 

include them in the quantification of student talk, the effect on the proportions of 

teacher and student talk would have been minimal. 
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The majority of the lessons were successfully recorded. On one occasion a teacher 

(having given consent to the recording) mistook the digital recorder for a student's 

mobile phone. In the subsequent class telling-off, confusion and realisation. the record 

button was switched off. 

I became particularly aware during this phase of the research that, "the idea that we 

'collect' data is a bit misleading" (Dey, 1993: 16), as any data are essentially 

'produced' by the researcher. It had initially seemed to me that my experience would 

be the data, that by observing and recording lessons I would be collecting data. But 

then 'the data' is my own experiences (unrecorded and, perhaps, unrecordable) and 

the digitally recorded speech. Both of these are difficult to analyse formally. For these 

experiences to become analysable data, I needed to process them in some way. I 

hesitated to convert my experiences to data in this way, however, as by processing or 

recording them as data, I am necessarily interpreting them. In the words of Brennan 

and N oflke (1997: 37), "Data do not exist, except under the social conditions of their 

making". 

Of the two areas of experience. what I see and hear personally as researcher, and what 

is recorded by the digital recorder, it is tempting to conclude that the latter is the least 

susceptible to distortion through my interpretation in the data collection phase. To 

avoid subjectivity, it is tempting to remove myself completely from the picture, and 

"faithfully (alas, sometimes too faithfully) to preserve and report every word spoken" 

(Wolcott, 1994: 13). 
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In the very act of constructing data out of experience, the qualitative 
researcher singles out some things as worthy of note and relegates others 
to the background. Because it takes a human observer to accomplish that, 
there goes any possibility of providing "pure" description, sometimes 
referred to lightheartedly as "immaculate perception". 

Wolcott, 1994: 13 

The decision to use transcripts as the main unit of analysis, rather than 'thick' 

descriptions of lessons, is described in section 4.5. Either method of 'describing' is 

subject to Wolcott's warning, and I strived to take the following advice into account: 

Never forget that in your reporting, regardless of how faithful you attempt 
to be in describing what you observed, you are creating something that has 
never existed before. At best it can only be similar, never exactly the same 
as what you observed. And at worst ... 

Wolcott, 1994: 15 

3.4.4 Transcribing 

It was initially intended that written accounts of observed lessons would form the 

units of analysis. Through the pilot study (see section 3.2), it became apparent that the 

drawbacks of this approach outweighed the advantages. 

Traditionally, data have been seen as a way to objectify an aspect of the 
relationship of subject and world, in order for the detached observer to 
subject it to critical scrutiny. However, if our epistemological stance is 
such that we do not accept either the detached, unitary subject, or this 
particular representation of the separation of subject and world, then this 
function of data in the research process is no longer viable. 

Brennan and Noffke, 1997: 37 

I transcribed the lessons, as a strategy to familiarise myself with the data, and to allow 

quotations that would be as accurate as possible. However, a transcription is a 

necessarily incomplete record of an audio-tape, as it cannot include the physical 

gestures, intonation, location and the full interaction between the participants. As 

Kvale (1996) insists: 
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The originally lived face-to-face conversations disappear in endless 
transcripts, only to reappear butchered into fragmented quotes. 

Kvale, 1996: 182 

It is important to acknowledge that a transcription is not the raw data, but rather an 

interpretation of that data (Powney and Watts, 1987). A certain level of editing is 

deemed appropriate in the social sciences, as contrasted with transcripts written purely 

for discourse analysis, if such editing improves readability and access to the "ideas, 

logic, beliefs and understandings" (Arksey and Knight, 1999: 146). 

There are some areas of research, notably linguistics, where it is vital that 
transcripts are literal records of the sounds on the tape, or as nearly as 
possible, and that pauses are exactly timed and recorded. Unfortunately, 
the tone of voice - enthusiastc, bored, confrontational, mocking - easily 
and routinely does not make it in to the transcript. So too with body 
language ... The question is whether it is more suitable to try for richer 
descriptions of the interview, or whether it is acceptable to settle for an 
'accurate' rendering of the spoken words. 

Arksey and Knight, 1999: 146-7 

I found Mishler's (1991) parallel between a transcript and a photograph to be a 

helpful one, emphasising, as it does, that a transcript is one frozen, contexted, printed 

and edited version of reality. My aim then, should be to create one careful attempt to 

represent some aspects of the teacher-led discourse. Accuracy is necessarily a relative 

concept, for a number of reasons. One of these is that decisions about punctuation 

mean that more than one 'accurate' transcription could be produced. It is not possible 

to render an accurate account. Punctuation, for example, can never be ascertained with 

certainty. I made many decisions about how 'accurate' the transcriptions should be. I 

decided to include repetition, indicate hesitation (marked with dots for each second), 

and laughter, and not to correct grammatically confused sentences. Some contractions 

and colloquial language were removed or edited, where I felt it increased readability 

and comprehension without significantly affecting meaning. For example, teachers 
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frequently pronounced 'want to' as 'wanna' (e.g. [21] 1:05), but this made the 

transcripts more difficult to comprehend. I therefore decided to record 'wanna' as 

'want to'. Abbreviation conventions such as 'isn't', 'aren't', and 'weren't' were kept 

to, and verbal tics, such as 'er' and 'urn' have been included. I decided to use this 

relatively high level of accuracy of representation, to enable elementary discourse 

analysis to be carried out should this prove helpfuVenlightening. To capture as much 

detail as possible, I transcribed with all pauses and hesitations included. In reporting 

the data, however, I have left open the possibility of removing these, for ease of 

reading . 

. . . committing verbal exchanges to paper seems to result in their 
immediate deterioration: context, empathy, and other emotional dynamics 
are often lost or diminished, and the language seems impoverished, 
incoherent, and ultimately embarrassing for those who have cause to read 
back over their contributions (including the interviewer/researcher!). 

Poland, 1995: 299 

Although Powney and Watts (1987: 145) argue that, "transcription is very slow and 

expensive of resources", I decided to transcribe the lessons in full. My original 

intention was to fully transcribe only a small number of the recorded lessons. I 

expected that this process would sensitise me to the information required to address 

the research questions, and that I would then transcribe selectively. However, to 

preserve the coherence of the lessons, I ultimately created full lesson transcripts of 

fifteen lessons, including at least two different classes with each of the six central 

study teachers. The lessons selected were as follows: 

[OS] CB 11(3) Expanding brackets 
[07] SJ 10(3) Approximation 
[10] SJ 11(1) Quadratic formula 
[12] SJ 10(3) Squares and cubes 
[14] CB 10(1) Percentages 
[15] LR 7(4) Sheep Pens 
[21] BO 10(2) Order of Operations 
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[25] BG 10(2) Data 
[26] KT 8( 1) Angles 
[27] PF 9(1) Fractions 
[31] CB 8(2) Sequences 
[34] LR 1 O( 1) Rational numbers 
[35] PF 7(mixed) Subtraction 
[36] KT 10(4) Angles 
[38] KT 8(1) Sequences 

Methodology I 

Five of these lessons are discussed in greater detail in chapter 8-1 ([14], [15], [21], 

[26] and [12]), and a further four in chapter 8-11 ([05], [07], [27] and [35]). In 

addition, an excerpt from lesson [10] was transcribed for use in chapter 7 to illustrate 

the dimensions of the framework developed in the central study (see section 7.2). The 

framework is then applied to lesson [35] in section 7.4. The selection of these 

particular lessons and episodes to illustrate research findings is explained in the 

context of each particular case, and so can be found in section 7.1, at the start of 8-1.2, 

and throughout 8-11.3. 

3.5 ETHICS 

The distinctive ethnographic methodology adopted has two clear consequences for the 

ethics of the investigation. Firstly, no activity is taking place that would not normally 

take place in a mathematics classroom. Secondly, participants (both teachers and 

students) may not be aware of their part in the research. I wanted to overcome the 

potential ethical issues associated with this second point, whilst retaining the 

advantages of being 'just Miss Drury'. I did this by explaining clearly at the start of 

my research what I was intending to do, but then deliberately avoiding discussing my 

research with teachers or students from then onwards. 

If researchers do not want their potential hosts and/or subjects to know too 
much about specific hypotheses and objectives, then a simple way out is 
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to present an explicit statement at a fairly general level with one or two 
examples of items that are not crucial to the study as a whole. 

Cohen and Manion, 1994: 357 

I adopted this 'vague yet explicit' approach to sharing my research hypotheses and 

objectives. It was central, as Frankfort-Nachmias and Nachmias emphasise below, 

that informed consent should be acquired from participants in the study. 

The practice of ensuring informed consent is the most general solution to 
the problem of how to promote social science research without 
encroaching on individual rights and welfare. 

Frankfort-Nachmias and Nachmias, 1996: 85 

Diener and Crandall (1978) define informed consent as "the procedures in which 

individuals choose whether to participate in the investigation after being informed of 

facts that would be likely to influence their decisions". I have endeavoured to observe 

all four elements of this definition in my research method: competence, voluntarism, 

full information, and comprehension. 

Competence requires that the individuals involved in the research are sufficiently 

responsible and mature to make correct decisions given relevant information. 

Volunteerism implies that individuals freely choose whether or not to participate in 

the research, so that any exposure to risks is undertaken knowingly and voluntarily. 

Full information requires that participants' consent is fully informed. However, 

researchers themselves do not always know everything about the investigation. As 

Reynolds (1979: 95) points out, if ''there were full information, there would be no 

reason to conduct the research - research is only of value when there is ambiguity 

about a phenomenon". The strategy of reasonably informed consent is therefore often 

applied. Comprehension entails that participants fully understand the nature of the 
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research project. This may be achieved through a time lag between the request for 

participation and the decision to take part in the study. 

Cohen and Manion (1980) note that there are two stages to the process of seeking 

informed consent with regard to minors. First, the permission of the adults responsible 

for the prospective subjects must be sought and obtained, secondly the young people 

themselves should be consulted. In this case, I first gained permission from the 

school's Headteacher and Head of Mathematics, before seeking consent from the 

main study teachers to observe their lessons. 

Fine and Sandstrom (1988) argue that researchers must provide a credible and 

meaningful explanation of their research intentions, and that children must be given a 

real and legitimate opportunity to say that they do not want to take part. Should a 

child refuse, the authors recommend that they should not be questioned, their actions 

should not be recorded, and they should not be included in any book or article (even 

under a pseudonym). They might be included anonymously as part of a group. Fine 

and Sandstrom (1988) advise that while it is desirable to lessen the asymmetry of the 

power differential between children and adult researchers, the difference will remain 

and its elimination may be ethically inadvisable. Individual characteristics of 

particular students or their personal learning were not the focus of this study. In 

chapters seven, eight-I and eight-II, students' names are replaced by '[student name]' 

in the transcript to protect their anonymity. Where particular students are quoted or 

paraphrased in chapters five and nine, they are referred to using gender-preserving 

pseudonyms. These are used on those occasions when the thread of a discourse can be 
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followed more clearly if individual contributing students are identified. The initials 

given to the six central study teachers are also pseudonyms. 

3.6 CHAPTER SUMMARY 

Chapter three describes the methodological principles that drive this study. It 

describes the justification for, and implications of, adopting a qualitative approach, 

with a small-scale study of 'ordinary' lessons. Analysis began with the classroom 

practice, rather than the study being designed to test a preconceived hypothesis. 

Throughout the study, I carried out continued reflection on my own practice, and 

maintained a teacher-persona. The ethical challenge was to observe lessons with 

participants behaving as 'ordinarily' as possible, whilst ensuring that participants were 

fully informed about their part in the research. This was overcome through ensuring 

informed consent at the start of the study, then maintaining a low research profile 

during the observation period. 
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CHAPTER 4: METHODOLOGY II - DATA ANALYSIS 

AND INTERPRETATION 

In chapter four, I describe how the data collection discussed in chapter three was 

analysed and interpreted. Analysis operated at three levels. Level 1 analysis was 

conducted during the fieldwork period, documenting immediate substantive and 

methodological responses to the data (see section 4.2). Level 2 analysis (section 4.3) 

addressed research question one and resulted in an analytical framework describing 

generalisations expressed in the observed lessons (presented in chapter seven). Level 

3 analysis (section 4.4) looked further into the types of generality defmed at level two 

and addressed the second and third research questions. 

4.1 INTRODUCTION 

I needed to create a system of breaking down the complex social realities of 

classrooms in order to describe, explain and theorise about them in the form of written 

propositions, but without losing their subtleties. The approach to analysis that has 

been adopted for this study is similar to that described by Coffey and Atkinson: 

Analysis is a cyclical process and a reflexive activity; the analytical 
process should be comprehensive and systematic but not rigid; data are 
segmented and divided into meaningful units, but connection to the whole 
is maintained; and the data are organised according to a system derived 
from the data themselves ... Analysis is not about adhering to anyone 
correct approach or set of right techniques; it is imaginative, artful, 
flexible, and reflexive. It should also be methodical, scholarly, and 
intellectually rigorous. 

Coffey and Atkinson, 1996: 10 

Analysis in the main study focused on transcribed class discourse, supplemented by 

observation notes and copies of students' written work. Analysis involved what Miles 
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and Huberman (1994) affirm are common features of qualitative analytic methods, 

including annotating and coding data, identifying commonalities and differences, and 

gradually elaborating claims. Whilst the claims made in chapters six to eight have 

grounded qualities and are based on evidence, they also reflect the researcher's 

insight, imagination, judgements, interpretations, orientation towards particular 

research questions, and the desire to respond to those questions in a particular way. 

Guba and Lincoln (1989) argue that the "findings or outcomes of an inquiry are 

themselves a literal creation or construction of the inquiry process" (1989: 143) and 

Dey (1993) emphasises that outcomes are ''those of the analyst, and related to the 

overall direction and purpose of the research" (1993: 98). An rather than the 

interpretation of the data was sought: different researchers might construct different 

categories in analysing data from the present study, or use the same data to address 

different research questions. 

However the aim was not to develop any response to the research questions, but a 

response based on analysis that attends to the links between claims and evidence, and 

is oriented towards the research questions. Through following these principles, the 

production of trustworthy and relevant outcomes was facilitated. The similarity 

between these principles and those guiding methods of data collection (section 3.1) 

demonstrates the coherent approach adopted across the study's methodology. 

A framework based on that developed by Srivastava (2005) ensured an appropriate 

balance between more grounded and more researcher-directed analysis. The following 

three questions were asked throughout analysis: 1) What are the data telling me?; 2) 

What do I want to know?; 3) What is the relationship between 1 and 2? The first of 
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these questions reflected the first analytic principle requiring close relationships 

between claims and evidence, and guided more grounded aspects of analysis. This 

was not an exercise in grounded theory (Glaser and Strauss, 1967), but analysis did 

have grounded qualities in the emergence (through purposive interaction between the 

researcher and the data) of categories or concepts that had not previously been 

considered. Data were not read, interpreted and analysed free of prior ideas, 

expectations, values or aims. Question 2 ensured that these were made explicit and 

that the second analytic principle was adhered to. Question 3 assessed the dynamic 

interplay between more grounded and more researcher-driven aspects of analysis. 

While both questions influenced all analysis at all times, analysis became an 

increasingly focussed activity. 

Dey notes that distinctions made by researchers during analysis may "not [be] 

recognised explicitly or even implicitly by the subjects themselves" (1993: 98). One 

can question why participants, in this study the students and teachers, should be 

expected to confirm research findings presented to them in a form that reflects 

analytical processes which involve the researcher's creative insight, imagination and 

judgements, and lead to outcomes at a remove from the participants' spoken and 

written words. For these reasons participants were not asked to comment on fmdings. 

Several criteria were used to evaluate outcomes of analyses, ensuring that they were 

not accepted prematurely, and that analysis was deemed complete at an appropriate 

juncture. These related closely to the analytic principles. 

• The analysis helps address the research questions. 

• All claims can be related to specific evidence. 
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• All potential difficulties in interpreting the mearung of data have been 

identified and I have only used interpretations in which I was sufficiently 

confident as the basis of claims. 

• The analysis accounts for most of the relevant data. 

If the analyses met all four criteria, then they were judged trustworthy and accepted as 

a basis for making claims. 

It is important to emphasise that the three levels of analysis were inter-related in that 

they represented three sequential periods of investigation of a common and evolving 

focus. In essence, the research was an ongoing process of becoming progressively 

clearer about expression of generality in whole class discourse, and the three levels of 

analysis were all part of this broader process. In this sense they need to be understood 

as inter-linked, rather than separate, entities. 

4.2 LEVEL 1 ANALYSIS (FIELDWORK) 

Level 1 refers to ongoing analysis throughout the fieldwork phase. It did not lead 

directly to a response to any of the research questions, but it was crucial to methods of 

data description and other forms of analysis. Level 1 analysis played a key role in 

section 6.2, where the different teaching styles of teachers are depicted, and enabled 

me to take account of the situation of the lesson, as well as of the discussion recorded. 

Hull refers to what he calls, "a 'black market' record of events and on-the-spot 

interpretations" (Hull, 1985: 27). This 'black-market' record was also available in my 

memory of the lessons. Such understandings are inevitable when the same researcher 

both gathers and analyses data. I have attempted to make use of their value whilst 

being aware of their dangers. 
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Analysis was an on-gomg process throughout the study. Although the relevant 

literature on qualitative research approaches often deals with data analysis as if it were 

a separate process, Taylor and Bogdan observe that this is "perhaps misleading" 

(1998: 141). Grounded theory is an approach that is concerned with 'the discovery of 

theory from data' (Glaser and Strauss, 1967: 1; see also Strauss and Corbin, 1990). 

Although this was not an exercise in grounded theory, one aspect that I took from 

grounded theory was to consider analysis as an ongoing process, and allow theories to 

emerge from the data: 

The analysis of the data gathered in a naturalistic inquiry begins the first 
day the researcher arrives at the setting. The collection and analysis of the 
data obtained go hand-in-hand as theories and themes emerge during the 
study. 

Erlandson et al. 1993: 109 

I was very aware that the process of selecting the data was also part of the analysis. 

This was initially debilitating, as I wanted as full and accurate a picture as possible, 

and was reluctant to select and reduce my data. It soon became clear, however, that I 

was required to do so, in order to reduce my data into a 'handleable form' (Powney 

and Watts, 1987: 161). The shift from description to analysis and interpretation was 

challenging. The nuances between these three activities are often very fine (see 

Wolcott, 1994, chapter two). I also acknowledge that description is never 'mere 

description', but already some form of analysis (see Wolcott, 1994: 15). 

It was important that all sources of data be recognised. In some cases, structure was 

imposed, in others, I endeavoured to recognise the influence of informal 

observations/discussions on my fmdings. Lesson observation notes were written up 
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the day they took place, and this was immediately followed by annotation of the data 

with memos, creating evidential narratives. These were narrative accounts of 

immediate reactions to and reflections on the data. Both substantive and 

methodological issues were noted (Burgess 1984) while Dey's (1993) comments 

describe the nature of these annotations succinctly: 

We may put down a jumble of confused ideas. We may ask confused 
questions. Memoing should be a creative activity, relatively 
unencumbered by the rigours of logic and the requirements of 
corroborating evidence. Memos should be suggestive, they needn't be 
conclusive. 

Dey, 1993:89 

Level 1 analyses ensured the principles for data collection and analyses were adhered 

to, through the creation of an audit trail of initial and evolving understandings of data. 

In recording evolving ideas and interpretations, the danger that later developments 

would automatically be accepted as 'better' was avoided. Instead later analyses could 

be compared and contrasted with earlier attempts and informed judgements made. 

4.3 LEVEL 2 ANALYSIS (TRANSCRIPT CODING) 

This section deals with what Ely et al. (1997: 160) describe as 'overtly analytical 

acts'. Level 2 analysis began only once I had collected the entirety of the data, and 

completed the basic data management (sorting field notes, transcribing recordings). 

The main source of data consisted of transcripts of interactions between teachers and 

groups of students. With the intention of avoiding imposing preconceptions onto the 

data, I used the data itself, informed by the theory, to shape categories for coding. The 

process of analysis began with consideration of all fifty-two observed and recorded 
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lessons attending to the manifestation and expression of different types of generality. 

Initial analysis was based on familiarisation with the data and repeated listening to the 

lesson recordings and reading and re-reading observation notes, interview notes and 

transcripts. 

The transcribed lessons were coded using Nvivo software to identify examples of 

different kinds of expression of generality. I coded examples of teachers and students 

expressing generalisations, then sub-coded these into distinguishing categories that 

emerged from the data. One advantage of the software was that expressions of 

generality could be coded and compared without removing them from their contexts. 

Although considering the utterances in isolation diminished their richness, it was 

possible to access the preceding and subsequent discourse, up to the full lesson 

transcript. I also had my field notes from the lessons, the full audio-recording, and 

notes made during level 1 analysis, to refer back to. Throughout my analysis, I aimed 

to remain aware of the context and background of each expression of generality. 

Although this richness of context cannot be fully shared with the reader, as I cannot 

expect the reader to read the full transcript of every lesson so the observation 

experience can be accessed only through the written word, every effort has been made 

to ensure descriptions are as full as possible (see section 4.5). 

Having coded the expressions of generality, the data were examined to see what 

themes and ideas emerged. The decision to use these techniques from grounded theory 

(Strauss and Corbin, 1990) was based on the aim of the research to portray what is 

happening in 'ordinary' classrooms. I then grouped the codes into categories, and 

checked across the discourses that there was a fit for all of the lesson transcripts. Most 
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of the categories emerged from all the discussions, although some lessons had 

relatively more or less of certain categories. The categories began to emerge from my 

own practice, as indicated in chapter five, but were developed and clarified through 

analysis of the full transcribed data set. The sub-themes that emerged and developed 

during the coding process are introduced and explained in chapters seven and eight. 

The conclusions reached through this analysis should be directly attributable to, and 

justifiable by recourse to, the data, so that someone else could understand the 

conclusions. That person may not have reached the same conclusions themselves. It is 

the intention of my research design that my study benefits from my total submersion 

in the data, my presence while the lessons took place, and transcribing the lessons 

myself. 

4.4 LEVEL 3 ANALYSIS (DEEPER ANALYSIS) 

The findings from the level 3 analysis are primarily reported in chapters 8-1 and 8-11. 

Analysis at level 3 took as a starting point the framework developed with respect to 

generalisations through level 2 analysis. At all times the evidential narratives from 

level 1 analysis acted as a reference point and record of previous ideas and insights. 

The aim was not to re-code the data but to enhance the discussion of findings from 

level 2 (see section 1.2). In this way all three levels of analysis served complementary 

and cumulative purposes. The analytic principles (see 4.1) continued to guide analysis 

at level 3, and the questions 'what is the data telling me?' and 'what do 1 want to 

know?' remained important in ensuring that analysis remained respectful of evidence 

and focused on the research questions. According to Bogdan & Biklen (1992): 
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Analysis involves working with data, organising them, breaking them into 
manageable units, and synthesising them, searching for patterns, 
discovering what is important and deciding what you will tell others. 

Bogdan & Bilden, 1992: 153 

The main motivation for data collection, description, interpretation and analysis was 

to aim to explore the generalities being expressed in secondary mathematics 

classrooms. It would have run counter to this objective to place a pre-existing 

theoretical framework on the data. Instead, the analysis is a mixture of 'direct 

interpretation of the individual instances' and some 'aggregation of instances until 

something can be said about them as a class' (Stake, 1995: 74). However, since it is 

neither the main nor explicit aim of this research to generalise to other cases, the main 

modes of analysis were narrative description and direct interpretation, rather than 

categorical aggregation. 

Throughout all three levels of data analysis, and particularly at level two, the fifty-two 

recordings of teacher-led discourse were the main source of data for analysis. The unit 

of analysis at level two was the transcribed discourse, coded into episodes where the 

discourse appeared to be 'journeying towards' a generality. However, classroom 

observation notes, samples of students' work and pre- and post-lesson unstructured 

interviews with teachers were used to support or counter the conclusions of analysis, 

enabling deeper insights to be gained, and hypotheses to be verified. For example, 

conjectures that are made about how teachers viewed the procedures and concepts 

involved in their lessons, which emerged from analysis of the transcripts, were 

supported by comments made by teachers before and after lessons. 
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4.5 CREATING ACCOUNTS OF CLASSROOMS 

I found a number of texts useful when I was starting to write the so-called 'final' 

version of the study. In tenns of writing strategies, I gained support from texts by 

Bassey (1999), Becker (1986), Ely et aZ. (1997), Walford (1998) and Wolcott (1990). 

Reading about writing was a necessary part of the writing-up process. I was 

repeatedly reminded that it was not acceptable to assume that the data could speak for 

itself, and that I should resist the temptation to let the quotes make my points. Taylor 

and Bogdon (1998: 175) point out that analysis is essential, and that it is not enough 

simply to quote from an interesting interaction, and hope that the points make 

themselves. They also argue against indulging in colourful quotations or examples, 

and against either supplying insufficient or overly lengthy quotations. They also 

advise letting the reader know where the argument is going, using direct and concise 

writing, grounding the writing in specific examples and editing early drafts carefully. 

I have striven to honour this advice in this study. 

I focus in this section on methodological issues involved in describing lesson 

observations. Mason says of such experiences that they, 

" ... become data only when they are constructed as such by someone 
taking a research stance, with the intention to analyse it in relation to other 
data. Thus data occupy a space between observations and analysis." 

Mason,2002b: 158 

Having explained why there is a need to focus on describing lessons, I consider three 

examples of lesson descriptions taken from mathematics education research. A lesson 

from the pilot study is then described, with reflection on the interpretive tensions 

experienced during its writing. 
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As described in section 3.4.4, the original conception that accounts of classrooms 

would provide the main unit of analysis for the main study yielded to the appeal of the 

relative objectivity of lesson transcripts. This was partly a result of the breadth and 

exploratory nature of the research questions, and the large quantity of data collected. 

These two factors combined to render creation of detailed and comparable accounts of 

the main study classrooms overwhelming. Although creating classroom accounts did 

not playas large a part in the 'writing-down' of data as originally intended, it retained 

an important role in the 'writing-up'. Whilst both of these are equally matters of 

textual construction, "the second phase of 'writing up' carries stronger connotations 

of a constructive side to the writing" (Atkinson, 1990: 61). 

This section consequently plays a dual role. Firstly, it serves to explain why the 

decision was made to use lesson transcripts, rather than lesson descriptions, as the 

main unit of analysis. The justification for this lies in the complexity and tensions 

related to the creation of such descriptions, and the difficulties of writing full and 

comparable accounts of lessons without concurrently analysing and interpreting (and 

so 'accounting for') what took place. Secondly, given that such written accounts of 

lessons play an important part in the sharing of analysis findings, the complexities and 

tensions needed to be resolved in order that 'accurate' accounts can be created. I argue 

that all description is interpretative to some degree, and that responsibility falls on the 

researcher to be aware and honest about the extent to which they have interpreted and 

analysed. 
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4.5.1 Desiring description 

The process of analysis of the transcripts of classroom discussion is influenced by my 

experiences in the classroom as an observer. The principle of contextualisation is 

based on Gadamer's insight that there is an inevitable difference in understanding 

between the reader and the writer ofa text (Gadamer, 1976: 133). If the subject matter 

be set in context the intended audience can see how the situation under investigation 

emerged. 

If you want to be in a position to analyse some event, some situation, then 
we must first be clear on what that event or situation consists of, as 
impartially as possible. 

Mason, 2002b: 40 

It is the natural inclination of readers (perhaps especially those who are practising 

teachers) to compare the data with their own experiences and to consider aspects not 

intended by the researcher when collecting or describing the data. Experiences 

recorded are available to be shared, and readers can reach their own conclusions based 

on the data. My own practice is significantly influenced by reading about others' 

lessons. Although much research does not contain detailed lesson descriptions, I fmd 

that it is to these descriptions that I relate most strongly. 

In this section I consider the work of three mathematics education researchers who 

use classroom descriptions in different ways. Mason (2002b) draws a distinction 

between writing an 'account-or an experience and 'accounting-for' it. The intention 

with accounts-of experiences is that others can recognise the experience. 

An account-of describes as objectively as possible by minimising emotive 
terms, evaluation, judgements and explanation. It attempts to draw 
attention to or to resonate with experience of some phenomenon. . . A 
'phenomenon' is a pattern discerned or distinguished by an observer de-
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sensitised in certain ways, and so from an account we learn about the 
sensitivities of the observer as well as about the incident. 

Mason, 2002b: 40 

I have been influenced by maths researchers who have included accounts as data. One 

such description appears in Houssart (2004), where selected sections of particular 

lessons are included at the start of each chapter. For example, in a chapter titled 'Easy 

tasks, hard tasks, elastic tasks', she begins with the following extract. 

The teacher was introducing multiplication of two-digit numbers by 
single-digit numbers using vertical format. The ftrst example on the 
blackboard was 14 x 1. The teacher went through this, multiplying ftrst 
the 4 by 1 and the 1 by 1. I was sitting next to Matthew, who had a 
whispered conversation with me about 'One times anything' and arrived 
at the answer 14 in a single calculation. Matthew was asked to go to the 
board and do the second calculation, 14 x 2, which he did correctly. As he 
came back to his seat, he said, 'Pips, mate.' 

Houssart, 2004:127 

This is an 'account or. Choices have necessarily been made about what to include 

and what to leave out. We do not hear the words of the teacher, whether she praised 

the student for his answer. Nor are we offered a description of what the other students 

are doing. The choice has also been made to describe this particular section of this 

particular lesson, possibly partly because it relates to the chapter theme. Houssart 

recorded unofficial talk, or 'whispers', in all but two lessons observed throughout her 

study (2004: 32). She chooses to give us a sense of this even when illustrating other 

fmdings. 

Fernandez and Yoshida (2004) give very detailed accounts of two lessons observed as 

part of a 'Lesson Study' in a Japanese elementary school. Ms. Nishi's lesson is 

described in eighteen pages, in the following style: 
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One of the students described the expression as 12 minus 2, and another 
student provided the answer 10. The student replied: "I subtracted 2 from 
12." Then she asked him again how he got the answer 10. The student 
answered again "I subtracted 2 from 12." Ms. Nishi insisted, "Can you 
explain it in more detail?," but she got no further response. It seemed as if 
it was not clear to the student what else the teacher wanted to hear. Ms. 
Nishi looked a little bit frustrated with the difficulty she was having 
getting the student to answer her question. 

Fernandez and Yoshida, 2004: 95 

No analysis is included of this lesson. The following chapter describes the discussion 

of the other teachers, but does not explicitly include the thoughts of the researchers. 

Yet the eighteen page description is not merely an 'account of. The researcher makes 

decisions about when the exact words used are important, and must be quoted, and 

when the speaker can be paraphrased. This makes the lesson easier for readers to 

access than if it had been written as an annotated transcript. Describing the lesson in 

such detail enables the readers to make sense of the data for themselves. It may also 

persuade the reader of the veracity of their explicit and implicit conclusions. 

French takes a different approach, offering a 'typical' classroom discourse: 

T: Let the number we start with be x. 
We added 7. How can we write that? 
A:x+7 
T: We then doubled, so what shall 
we write next? 
B: 2x+7 
T: C. What number did you start 
with? 

C:3 
T: So, what isx + 7 if x = 3? 
C: 10 
T: D, what is 2x + 7 with x = 3? 
D: 13, but that's not double. 
T: So, what should double x + 7 be? 
D: 2x+ 14 

French 2002: 43 

The point he emphasises here is that "establishing a correct expression at each stage 

requires discussion about appropriate algebraic procedures and conventions together 

with verification through numerical checks". (French, 2002: 43). However, his 
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'typical' classroom discussions leave me wondering, as a teacher, how closely they 

can or could be emulated. 

4.5.2 'Thick' Descriptions 

The term 'thick description' was introduced by a philosopher, Ryle (1971), and made 

popular by an anthropologist, Geertz (1973), in the discussion of anthropological 

methods. In general terms, a thick description of human behaviour is one that retains 

and is faithful to the meanings which that behaviour has for the people involved. The 

method stems from the belief that brief numerical descriptions of behaviour often 

distort meaning. The definition of behaviour here is different from that used by a 

behaviourist. A behaviourist describes behaviour exclusively in terms of overt 

physical events, removing inventions, purposes, beliefs, conjectures and thoughts. An 

advocate of thick description would tend to avoid describing thoughts and behaviour 

in terms derived from a general model of behaviour. Instead, they aim to use terms 

and concepts that the individuals being described would recognise and judge 

appropriate. This is not to say, however, that an interaction between people must have 

a single meaning or interpretation. Where there are several participants, they may 

have different, perhaps unstable, purposes or intentions. 

An advocate of thick descriptions would favour a rich narrative account, perhaps 

accompanied by photographs, film, taped conversation, although the ethics of 

including such sources in a study involving children are complex. The intention here 

is to make the reader feel acquainted with the individuals described. An advocate of 

thick description would be sceptical of a claim that a quantitative data file is always a 
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complete and accurate record of an experience. Available data may omit important 

measurements. Through thick description, hidden biases can be revealed. 

Ryle's examples of the need for thick description are drawn from every day life, such 

as this one: 

[consider] ... the notion of waiting - waiting for a train perhaps. ... The 
'thick' description of what I am doing on the platform requires mention of 
my should-be train-catching. Here there is [nothing] in particular that I 
must be positively doing in order to qualify as waiting. I may sit or stand 
or stroll, smoke or tackle a crossword puzzle, chat or hum or keep quiet. 
All that is required is that I do not do anything or go anywhere or remain 
anywhere that will prevent me catching the train. Waiting is abstaining 
from doing things that conflict with the objective. 

Ryle, 1971: 479 

'Waiting' is readily characterised in terms of purposes, and poorly in terms of specific 

behaviours. 

My dual aims of wanting my analysis to benefit from my immersion in the field, 

whilst being able to share my findings as fully as possible, led to my desire to write 

'thick' descriptions of the lessons I observed. I wanted to give others a sense of the 

classrooms derived from more than the transcripts, including observation notes, 

discussions with teachers, and students' work. Events are not reducible to simplistic 

interpretation, hence 'thick descriptions' are essential. Morrison (1993: 88) argues 

that by "being immersed in a particular context over time not only will the salient . 

features of the situation emerge and present themselves but a more holistic view is 

gathered of the interrelationships of factors". Such immersion facilitates the 

generation of descriptions which lend themselves to accurate explanation and 

interpretation of events rather than relying on the researcher's own inferences. 

143 



Chapter 4 Methodology II 

The relevance of thick description to empirical research is emphasised by Becker 

(1996). Geertz states that the aim of ethnography is "to render obscure matters 

intelligible by providing them with an informing context" (1983: 152). 

I actually think the well-publicised tension between quantitative and 
qualitative approach has a greater ring of truth when formulated as a 
problem in ontology rather than as a problem in method (or epistemology) 
... quantitative research (with its methodological emphasis on pointing, 
sampling, counting, measuring, calculating, and abstracting) is premised 
on the notion that the subjective involves illusions that should be rejected. 
The basic idea is that it is only when all subjectivity has been subtracted 
from the world that the really real world remains. And what remains that 
is really real is the world of quanta ... In contrast, qualitative research 
(with its procedural emphasis on empathy, interpretation, 
thematization/enplotment, narration, contextualisation, and 
exemplification/concreteness/substance), is premised on the notion that 
the objective conception of the real world is partial or incomplete. The 
basic idea is that one of the very important things left out of the real world 
by the objective conception are qualia. Think of qua/ia as things that can 
only be understood by reference to what they mean, signify, or imply ... 

Shweder 1996: 177 

In considering how to share my observed classroom experiences with readers, I also 

made use of the notion of hypotyposis. Rather than merely present the conclusions 

attained through data analysis, it is essential that the reader be able to access and 

experience the data for themselves. In this way, they can get a sense of its authenticity 

and reliability. The construction of versions of social reality offers an opportunity to 

persuade the reader of the authenticity, plausibility and significance of my 

representations (Atkinson, 1990: 57). 

One of the important devices whereby the narrative contract is invited in 
the text is via the rhetorical device known as hypotyposis: that is, the use 
of a highly graphic passage of descriptive writing, which portrays a scene 
or action in a vivid and arresting manner. It is used to conjure up the 
setting and its actors, and to 'place' the implied reader as a first-hand 
witness. 

Atkinson, 1990:71 
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Crapanzano (1986) has discussed the role of ethnographic hypotyposis in relation to 

the writing of George Catlin's early descriptions of North American Indian scenes: 

'His aim is to impress his experience of what he has seen so strongly, so vividly, on 

his readers that they cannot doubt its veracity. It is the visual that gives authority'. 

(Crapanzano, 1986: 57). Such hypotyposis is "used to establish and reaffirm the 

relationship of co-presence of reader and author 'at the scene'. (Atkinson, 1990: 70). 

There is a close relationship between the 'authenticity' of these vivid 
accounts and the authority of the account - and hence of the author. 
Authenticity is warranted by virtue of the ethnographer's own first-hand 
attendance and participation. It is therefore mirrored in the 'presence' of 
the reader in the action that is reproduced through the text. The 
ethnograher is a virtuoso - a witness of character and credibility. It is 
therefore important that 'eye-witness' evidence be presented which 
recapitulates that experience. 

Atkinson, 1990: 73 

This study, with its main study data set of fifty-two observed, recorded lessons, with 

student work and observation notes, can benefit from ideas related to 'thick' 

description and hypotyposis. 

I will give an 'account or (Mason, 1994, and defined in section 4.5.1) the lessons 

based on my lesson observation notes, full transcription from audio recordings, and 

students' work. My aim in writing about this intervention is to recreate these lessons 

for the reader. By sharing my experiences of the lessons, I hope to offer opportunities 

for readers to reach their own conclusions about what they can tell us about language 

and generalisation in mathematics classrooms. 
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4.5.3 Interpretive Tensions when creating 'thick' descriptions 

It is important to acknowledge that, when creating 'thick' descriptions of classrooms, 

researchers must go some way towards analysis. My interpretation of the pilot study 

lesson discussed later in this section may have begun even before the start of the 

lesson. My reading of relevant research literature, my teaching experience and my 

research design, contributed to the way in which I read the teacher's lesson plan, and 

doubtless affected the way in which I expected the group work to be carried out. 

These unformed expectations provided implicit assumptions which resulted in certain 

student actions being particularly noteworthy (because they illustrated or conflicted 

with my expectations). Although as an ethnographer, I aimed to be open to all 

possibilities, I acknowledge the impossibility of eliminating all conjecture and 

expectation. Better, I believe, to work hard at being open minded, whilst being aware 

of possible structures that I may be imposing on my experiences. As Gadamer (1976) 

argues, prejudice is the necessary starting point of our understanding. The critical task 

lies in distinguishing between "true prejudices, by which we understand, from the 

false ones by which we misunderstand" (Gadamer, 1976: 124). 

The data is also subjected to the interpretation taking place during the lesson. This 

interpretation may be as simple as writing down something that a student has said in 

my observation notes. A choice has been made to record this comment, and to ignore 

others. I therefore have an idea, though not necessarily a conscious one, about the 

story I plan to tell, and the data that will be useful in telling that story. 
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Even if I were to record my experiences fully, in order to share my data with others I 

would need to condense it. Interpretation would come into play. Before the 

experiences can be analysed they must be rendered analysable - tapes transcribed, 

experiences noted in journals and written up in detail. At this stage, the data must be 

structured, to make analysis possible. Interpretation is involved again; the way I 

choose to structure my data affects subsequent analysis. I try to be as explicit as 

possible about the choices I make in interpreting my data in order to present it. 

While writing the lesson description that follows, which offers an account of a lesson 

from the pilot study, I was aware of various interpretive tensions. I was required to 

make numerous choices about what to include, and how to include it. My writing 

about my writing is in italics, in the same style as this paragraph. 

As students entered the room at the start of the lesson, the tables were arranged for 

groups of 4 students so that most chairs were sideways to the board. The students 

were told that they could choose who to sit with, although the teacher intervened in 

deciding that a 'fifth' person on one table should move to join a table with only three 

students. There was an A3 sheet of questions on each table. 

The register was taken, with students giving special answers if their name's position 

in the register was an odd number, or if it appeared in the sequence 3n + 2. They then 

discussed how frequently a student would be both of these things. Reference was 

made by students to multiples of six. 

The teacher then introduced the main theme of the lesson. 
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Teacher: 

Methodology II 

We're going to be looking at sequences today, ok, and in 
particular we're going to be looking at picture sequences. It's 
easy enough for most of us, especially if you've had somebody 
tell you how to do it, to work out nth terms for things and work 
out what sequences should look like. What's a much harder skill, 
that we love to develop in you, is to be able to look at pictures, 
and try to ascertain sequences from the pictures. 

Students were invited to work in their groups, and given around ten minutes, subject 

to what the teacher could see and hear happening in the groups. The teacher told them 

that he was very interested in what ideas they would come up with: 

Teacher: I'd love you to feed back your ideas to me as I'm coming round 
as well, so, maybe, you know, as I'm approaching your table you 
can speak up that much louder or say one of your very good 
ideas, as a group, ok. 

Most groups quickly began lively discussion, which generally appeared to be related 

to the task. One student in each group seemed to take on a 'chairing' role, reading out 

the questions and writing down the answers, and the layout of the tables appeared to 

make it difficult for some of the other group members to see. 

With the permission of one group, I left a recorder on their table. When listening to 

their discussion later, while they were deciding which matchsticks were 'added on 

each time' , I was struck by how limited their descriptions were. 

Student 1 
Student 2 
Student 3 
Student 4 
Student 1 
Student 3 

It's these 
Just these, yes. 
I think it's that one, that one and that one. Those three. 
I think its, 
No, I want that one. 
It's that one, that one and that one. 

The students seem to be relying on pointing to matchsticks, rather than describing 

them verbally. Given that some group members were finding it difficult to see the 

sheet, this seems restrictive and prone to misunderstanding. There was a contrast here 

with the teachers' discussion during the INSET session, where they used expressions 

such as 'the walls', 'the roof to make clear what they meant. 
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This paragraph is clearly interpretive. Other observers might not have made this 

observation, or might have noticed other things that I have not included. I have 

therefore ensured that there is sufficient evidence that, had their attention been drawn 

to it, a different observer could have seen the same thing. If something in the 

description strikes me, should I include my accounting for, or my noticing, in the 

description? Although this is intended as description, rather than analysis, 

interpretation has a role to play. 

After fifteen minutes of group work, several students came up to the board to describe 

their 'way of seeing'. These explanations have been transcribed, and are being 

analysed using discourse analysis techniques. In the last five minutes, the teacher 

invited the class to consider four expressions that could be used to describe the 

number of matches in the nth pattern. In their groups, they were asked to choose an 

expression and think about what 'way of seeing' it related to. Some groups built up 

the 'nth' house using longer sticks as groups of n matches, and shorter sticks as 

individual matches. One group considered 2(2 + n) + (n - 1). Their work is shown in 

figure 1 below. 

1.~~~ 

Z(z~~~G"\) 

Figure 1 

'-_ ... The first diagram, 2 + n, shows a line 
indicating n matches along the base of the 
house, with a single match on each side. In 
the second diagram, the expression is 
doubled, and written as 2(2 + n), and the 
diagram shows this doubling, with the 
addition of another line of n matches along 
the base of the roof, with a single match on 
each side. The third diagram shows the 
addition of (n - 1) to the expression, with the 
roof drawn on. 
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The students' diagram does not seem to provide a convincing explanation of why the 

total length of the roof is n - 1. The line at the top of the roof (which has a length of n 

- 1) is of ambiguous length in the diagram, only slightly longer than the single match 

and about half the length of the line used to denote n matches. This may be because 

this had already been discussed as a class, and was taken as a given. 

An interpretive tension: Should I be using language to describe the algebraic 

expressions that the students would themselves have used? 

The second way of directing attention towards the general rule, or locating the n, 

proved even more popular: looping the sections corresponding to the variable. Asked 

to justify others' rules, many groups worked on 3(P+l). One group's work on this 

expression is shown in Figure 2. Thus, the first diagram has 3 groups of 2 looped, the 

second has 3 groups of 3, the third 3 groups of 4 and the fourth 3 groups of 5. 

Figurel 

The diffiCUlty here is giving the 
impression that all communication was 
successful. There is tension in trying to 
give an accurate description of all that 
happened without offering every 
student's work in full. Arguably, if the 
description is intended to show what is 
possible, it is acceptable to focus on the 
positive. This may, however, lead to 
readers developing infeasible 
expectations that may lead to feelings 
of disillusionment. 

The 'looping' technique became confusing when students chose to use the same set of 

diagrams for all their general rules as shown on the right, below. 
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But now the reader is offered 50% successful and 50% 

unsuccessful examples. Does this accurately represent the 

students' work? A judgement needs to be made at this stage 

about students' understanding, so that the description allows the reader to have some 

idea of how representative is each piece of work offered. A tension arises here 

between offering a wholly qualitative account, and using quantitative measures to 

convey how representative each example might be. 

The looping technique enabled many students to express and share their general 

understandings without the algebra, as shown by the work below. 

Figure 3 

0) 
t -i ~ 

1C>f> ~ 

The following two paragraphs offer alternative descriptions of what is shown by the 

students' work in figure 3. There seems to be value in describing the work, and 

drawing the reader's attention to key features. In the first paragraph, I set out to 

describe only what could have been observed by the students. In the second 

paragraph, I intended to describe the work as clearly as possible to a reader with 

some background in algebra, and to indicate the generalities observable in the work. 
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The students' work shows the first three In the students' work, three diagrams have 

houses with the roof and the main body been drawn, resembling the 1 st, 2nd and 3rd 

of the house separately circled. They diagrams (Le. where n = 1, 2 and 3). The 

have recorded the number of matchsticks students here have indicated that the roof of 

in each looped section. Underneath this it the house consists of n + 1 matches, and the 

is written that the 'lOth thingy' would body of the house consists of twice this 

have'l1 on top' and '22 on the bottom'. amount. They have circled the roof section, 

There is a large '33' that appears to be and written the corresponding value of n + 

their calculation of the total number of 1, and circled the body of the house, writing 

matchsticks used in the lOth diagram. the corresponding value of2(n + 1). 

Again, in describing the students' work, my attempt to create an 'account of' suffers 

from interpretative tensions. My desire to offer a 'true' description of the lesson 

leaves me tempted merely to offer the students' work with no explanation. As a 

reader, however, I know I gain more from the data by reading a description, or even 

analysis, of it, as it provides a structure around which I can build my own 'story '. As 

long as I remain aware of the distinction between the two, there is a role for both 

'account of' and 'accounting for' here. It may be useful for a reader to be told that 

the generality that the students seem to be working on is some approximation of (n + 

1) + 2(n + 1). I cannot be sure how to express this algebraically, as the students did 

not complete the expression for n. 

These students are being algebraic (Hewitt, 1998) in that they are structuring their 

counting. They seem to be seeing the roof as n+ 1 and the building as 2(n+ 1) but they 

have not recorded this as an algebraic statement. They have, however, applied their 
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structure to an un-drawn example - the 1 (jh thingy - and correctly predicted that it 

will require 33 matchsticks. 

Not all groups were successful in explaining the 'ways of \Je COJ..l ~ I-\: d:J 

seeing' that had resulted in the four expressions. A student 81\ \j 'r; 

in one group wrote the comment on the right. 

The choice to include this in my description of the lesson reflects my interpretation of 

the lesson as a whole. It illustrates that the tools offered for understanding the 

generality had not been successful for all students. It also enables me to point out that 

this was unusual- this was the lowest level and all other students achieved more. In 

that sense, I am using a negative example for a positive purpose. I felt that the 

students were confident and honest. There was a conjecturing atmosphere. The 

apparently willing acknowledgement of not being able to 'do any' suggests that the 

students did not feel constrained by pressure to succeed (Hoaler, 1997). 

In summary, there are numerous interpretative tensions when writing 'thick' 

descriptions of lesson observations. I have shown how research might benefit from 

clarity about what is interpretation, and what description. I note the following 

interpretive tensions: 

• If something in the description particularly strikes me, should I include my 
accounting for, or my noticing, in the description? 

• Is it appropriate or justifiable to use language to describe student work that the 
students might not themselves have used? 

• If the intention is to show what is possible, is it acceptable to focus on the 
positive? 

• How to give a realistic overview of the lesson without being quantitative? 
• How can I make students' comments or workings clearer for the reader, without 

putting words into students' mouths? 
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• Can I describe the lesson vividly and convincingly without conveying a value 
judgment about the effectiveness of the teaching and learning? 

There are no simple answers to such questions. What is important is that they are 

considered by researchers as they 'create' their data. I have illustrated the value of this 

approach using a pilot study lesson. By being open about the tensions I have 

experienced in describing observed lessons, I found myself making more considered 

and informed choices. This resulted in a more considered lesson description. Wolcott 

(1990) argues that 'writing is thinking' , and points out the value of writing during the 

process of qualitative research. I would go further than this, and argue that writing 

about decisions made while writing is also of significant value. 

The tensions and decisions explored in this section served to illustrate both the 

complexity of using 'thick descriptions', and the insights they can offer. In carrying 

out level 2 analyses on the central study lessons, focusing on expressions of 

generality, sections of transcript emerged as a more effective unit of analysis than 

thick descriptions, as they enabled comparison of the discourse on a sentence- and 

word- level that would not otherwise have been possible. 'Thick descriptions' are 

used in chapters five to nine (and particular in the first and last of these chapters) in 

order to share research findings with the reader. 

4.6 EVALUATION OF MEmODOLOGY 

Throughout chapters three and four I have discussed the various tensions and conflicts 

encountered when designing the research methods. Choices have necessarily been 

made between alternative imperfect methods of data collection and analysis. In this 
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section I consider the extent to which the research methods adopted were appropriate 

to the methodological task. That is to say, did the methods generate and analyse data 

that would answer the research questions being posed, follow ethical guidelines, and 

function within practical constraints (see section 3.3). 

The ethical question is addressed in section 3.5, whilst the practical constraints must 

be taken as a given; inevitably they were either operated within or overcome, and 

either of these is an acceptable outcome. The remaining question, therefore, is 

whether the methods adopted were appropriate to answer the research questions 

posed: 

What generalisations are being expressed in 
secondary mathematics classrooms? 

How are procedural generalisations 
expressed in mathematics classrooms? 

How are conceptual generalisations 
expressed in mathematics classrooms? 

The 'received view' of science (Agar, 1986: 11) based on the systematic test of 

explicit hypotheses is inappropriate to research problems concerned with 'What is 

going on here?,(l986: 12), which involve learning about the world firsthand. In a 

sense, my analysis in this study involved my looking for things that resonated within 

me. As my reading and thinking focuses on language and generalisation, the issues 

and questions prompted within me by the lessons were mostly related to these areas. 

Although I had key questions for consideration, I wanted to remain open to new 

directions of study, new possibilities for the fmdings. As a consequence, Mason's 
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observation that we often learn. as much from research about the researcher as about 

the researched (2002b) is pertinent to this study. 

Dey (1993) argues that there is no single set of categories waiting to be discovered in 

qualitative data analysis. Instead of subjecting outcomes to external replication he 

suggests the procedure of data generation and analysis should be described in 

sufficient detail so that judgements about them can be made (this is the purpose of this 

chapter), and that evidence should be presented to support the claims made (as is done 

in chapters five to nine). 

In qualitative research, little is ever usually written about the process of 
analysis at all ... little is said about who the analysts are,... which 
particular perspective they adopt ... how disagreements are 
resolved ... whether full transcripts are used, how much is reported, what 
level of uncodable or unsortable data is tolerable, what basis is used for 
filtering data ... 

Powney and Watts, 1987: 174 

Since Powney and Watts lamented the paucity of insight offered into qualitative data 

analysis, some progress appears to have been made. Through rendering the process of 

data collection and analysis as clear as possible, the fmdings of the analysis are open 

to the critical review of the reader, which in itself renders these analyses more 

trustworthy. 

I have striven to avoid the anecdotal approach described by Bryman through 

systematic selection of data, with lengthier transcripts. 

There is a tendency towards an anecdotal approach to the use of data in 
relation to conclusions or explanations in qualitative research. Brief 
conversations, snippets from unstructured interviews . . . are used to 
provide evidence of a particular contention. There are grounds for disquiet 
in that the representativeness or generality of these fragments is rarely 
addressed. 
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Bryman, 1988: 77 

At the start of my recording and analysis I aimed to overcome this worry and potential 

bias of selecting snippets and anecdotes by considering everything as important. 

However, this quickly rendered any description or analysis impossible. My intention 

is not to set these worries aside, as they are both real and present. My awareness of 

them makes me more cautious about the judgments I make, but I cannot take it to its 

logical conclusion that, as no analysis is 'true' or 'accurate', there is no point in doing 

any analysis at all. 

As Mason (2002b) has emphasised (see section 4.5.1), it is important that the 

researcher is able to distinguish between describing what happened ('accounts of) 

and interpreting its meaning ('accounting for'). By striving to make a distinction, 

wherever possible, between these two types of accounting, my intention is that the 

findings of chapters five to nine are described in sufficient detail so that judgements 

about them can be made (Dey, 1993). 

Section 10.3 contains further evaluation of the study's research methods, including 

exploration of how three main tensions (depth versus breadth, researching others 

versus reflecting on own practice and understanding versus changing practice) were 

resolved in the study. 

4.7 CHAPTER SUMMARY 

This chapter has set out the ways in which the data of this study was analysed, by 

giving an account of the principles that underpinned the analytical procedures and of 
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the analytical procedures themselves. Furthermore, it has described and discussed 

how the final account was written and the measures that were employed to support the 

plausibility, credibility and trustworthiness of this final account. 

Analysis was carried out at three levels. Firstly, during the fieldwork phase. Secondly, 

transcript coding using Nvivo. Thirdly, deeper analysis was carried out focussing on 

the expression of general procedures and concepts, in order to address research 

questions two and three. 

The 'Algebra House' pilot study demonstrated the use of 'thick' descriptions of 

lessons. It was shown that these can be an effective tool for reporting research 

findings, although the number of lessons observed in the central study, and their 

complexity, rendered 'thick descriptions' less appropriate as the unit of analysis at 

level 2. Such descriptions were used to report the findings of the central study, and 

were made use of particularly in chapters five and nine, when recounting episodes in 

my own classroom. Although lesson transcripts were therefore adopted as the main 

unit of analysis, use was made of 'thick' descriptions and hypotyposis when 

disseminating the findings of analysis with the intention of increasing the study's 

plausibility, credibility and trustworthiness. 
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CHAPTER 5: IN THE RESEARCHER'S CLASSROOM 

During the initial stages of this study, while the research questions were being refined 

and an initial review of the literature was being carried out, I focussed concurrently on 

my own classroom teaching. Through considering the role of the teacher in focussing 

students' attention on generality, my own experiences shaped the direction of the 

study. In this chapter an excerpt from one of my own lessons is used to show how the 

decision to focus on the categorisation of types of generality emerged from my own 

classroom experience. 

5.1 INTRODUCTION 

The literature discussed in section 2.1 emphasised the desirability of mathematics 

classes as places where all students become better able to see the general through the 

particular. The observations of Krutetskii (1976) and others demonstrate that 

discussion of generality should thus form a central part of mathematics education, and 

the role of the teacher in promoting and guiding classroom discussion of generality is 

worth serious consideration. 

Much of my focus as a teacher, whether considering language use, task design, or 

lesson structure, centres on structuring awareness. I regard it as my responsibility as a 

teacher to help students to focus their attention on those things that I think are 

particularly worth attending to. In developing students' sense of generality, for 

example, their attention can be drawn to which numbers in an example are structural, 

and which are particular, or whether a statement is sometimes, always or never true. 
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Analysis of the relevant literature heightened my sensitivity to movement between 

levels or types of attention when working with students on practice activities such as 

exercises and games. Various attempts have been made to categorise different 'levels' 

of attention. For example, the van Hiele 'levels' in geometry have been interpreted by 

some (e.g. Burger and Shaughnessy, 1986) as a way to differentiate between different 

students, labelling some as 'higher level thinkers' than others. The van Hiele 'levels' 

can also be used to describe "thinking in the moment" (Mason and lohnston-Wilder, 

2004: 59) without classifying learners. The levels can also be viewed as describing 

neither learner nor thinking, but rather the activity, or questioning, on offer for the 

learner to think about. Different tasks or questions might encourage thinking on 

different levels. At the same time, a single question or activity may require a number 

of different 'levels' of thinking, as specific examples are sought to check a general 

conjecture, for example. 

Through reflecting on my own classroom practice, I began to see a spectrum of levels 

that spanned between the extremes of particular and general. While students work on 

a particular example or set of examples, the teacher can be considered to be directing 

their attention either towards the more particular or more general ends of this 

spectrum in order to enhance student appreciation of an area of mathematics. 

Activities where skills are practised offer potential to direct attention away from the 

particular toward general patterns and fmdings. The discussion surrounding such 

practice activities may appear more relevant and interesting, or less important and 

note-worthy, as a consequence of being triggered by such an activity. 
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5.2 LESSON SEGMENT: ALGEBRA BINGO 

The discourse that follows took place during a game of 'algebra 
7 6 9 

bingo'. In this game, each student draws a 3-by-3 grid and fills it with 11 15 1 

their choice of integers from 1-15 inclusive, similar to the one on the 2 12 3 

right. I ask a student to choose a letter, then another student to decide what number 

the chosen letter will stand for, with the intention of emphasising that any letter could 

stand for any number. Another letter and number are then chosen. An algebraic 

expression is written on the board, and students calculate the value and cross off the 

answer in their grids, if they have it. The winner is the first student who crosses out all 

nine of their numbers. On this occasion the students chose a = 13 and g = 4. As 

explained in section 3.5, student names given here are gender-preserving pseudonyms. 

1 Me: All the questions are having brackets today. I'll start, let me know 
if you want to suggest a question. 

I write an expression on the board, saying it aloud as I do so, and students work out 

what number the expression represents. I then write the 'answer' up, forming an 

equation. 

My fIrst three bingo questions were: 

2(a- 8) 
3(7 - g) 
2(a- 9) 

2 
3 

4 
5 
6 
7 
8 
9 
10 
11 

with corresponding answers of 
10 
9 
8 

Grace: 
Me: 

Lizzie: 
Sam: 
Me: 
Grace: 
Sam: 
Natalie: 
Me: 
Louise: 

You're doing a pattern Miss. We'll stop thinking! 
Oh yes. But ifI carry on like that I'll have to do 7 next. and that 
seems tricky. 
You could put 7 in front. 
You'll have to put 7 in front. 
Will I? 
Or you could put 1, but/I 
Iffhat would be silly, you don't need to multiply it by 1. 
Multiplying by 1 doesn't do anything. 
[Writing 7(a-12)]. Does anyone want to make up a question? 
I want a. Can I have a? 
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12 Me: No. I want brackets today. 
13 Louise: Ok. Put it in brackets! Can you do that? 
14 Me: [Writing (a)]. I suppose it would mean the same as a, but that 

doesn't count. 
15 Chris: [To Louise] Put a 1 in front of the brackets. 
16 Rosie: [To Louise] Do (a - 0) in the bracket. 
17 Students: [Talk amongst themselves. Some of the talk is relevant, but not 

all.] 
18 Me: Ok. [Pause for quiet]. Let's think about this together. How many 

different ways can we make 13? 
19 Chris: 1, a in brackets. 
20 Me: [Writing l(a)]. What do you think? 
21 Rosie: Aren't the brackets supposed to be for doing something? Like a -

o? 
22 Chris: Ora times o. 
23 Me: [Writing l(a- 0) and lea x 0) on the board]. Are they both the 

same? 
24 Louise: a times 0 is o. 
25 Chris: Ohyeah. 
26 Me: Are they both the same? 
27 Chris: No, my one doesn't work. a + 0 would though. 

Several students then put their hands up to suggest other expressions, and the game 

continued. 

5.3 ANALYSIS AND INTERPRETATION 

Analysis of this transcript led to an increasing appreciation of a variety of categories 

and levels of generality contained within it. The subsequent discussion is divided 

according to the type of generalisation that it involves. I have spoken thus far of 

generality being contained within or involved in the discussion. A slightly different 

claim would be to say that generality is potentially present. The generalities examined 

below are those that I can perceive in the discussion, but another reader may discern 

further examples, or dispute those that I have perceived. The question, then, is one of 

perception of generality. An important question for consideration, and one that recurs 

throughout this study, is what generality the students are perceiving during the lesson. 

In analysing a lesson, the value of fmding a generality seems questionable unless the 
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students could also perceive it. Whilst a teacher striving to encourage students to think 

mathematically and to form generalisations may be pleased to note an increase in the 

'presence' of such occurrences in their lessons, such generality needs to be present in 

some sense for the students as well as for the teacher. 

There is something within me that would be hesitant to notice something in this 

extract that I didn't think could be noticed on other occasions with this group, but no 

claims to generality are being made here. This short extract is not chosen for being 

representative, but nor is it unusual. There was nothing deliberately extraordinary 

about this task, the class, or my approach. That is not to say, however, that 

mathematical discussion is equally likely or equally rich with all groups of students. 

Just as while all tasks offer an opportunity for generalisation and mathematical 

thought, some lend themselves to it more than others, so groups of students respond 

differently to any given task. As a teacher, there is a need to adapt a given task or 

teaching approach to suit each group of students. The risk here is that the adaptations 

teachers make for less mathematically confident groups of students give them fewer 

opportunities for mathematical thinking (see Dweck, 1999; Boaler, 1997). This 

'dumbing down' has been highlighted as problematic by Stein et al. (1996), amongst 

others. 

My reason for choosing this excerpt is that during whole class conversations such as 

this I am particularly aware of my role in structuring, or seemingly choosing not to 

structure, students' attention. The game provides opportunities for the students' 

attention to shift from the repetition and practice of algebraic substitution to 

considering more general properties. Having considered the various generalities 
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(explicit and implicit, mathematical and behavioural) 1 examine the extent to which 

students in the class might be aware of each generality, and the possible direction of 

their attention. 

5.3.1 Generalisations about ... algebra 

Algebra is both the language of generality, and an area of mathematics about which 

generalisations can be made. Partially as a consequence of this, there is some 

ambiguity in the extract about whether students are using a general rule in a particular 

case, or moving from the particular to express a general rule. Because the students are 

using algebra, some of their applications of generality may be interpreted as 

expressions. For example, when Chris and Rosie suggest ways that Louise can 

achieve the answer a, they offer the suggestions I(a) and (a - 0). They could be 

interpreted as focussing on the particular case of a = 13 and stating that multiplying 

13 by 1 gives 13, or that 13 - 0 is 13. An alternative interpretation might consider 

them to be claiming that l(a) and (a - 0) would equal a for any value of a. We cannot 

tell whether they, or the other students, are aware of this. A listener could interpret 

their suggestions as general statements, or as being true only when a = 13. Their 

assertions, in lines 15 and 16, seem to be applications of general rules. They do 

appear to be applying the general rules that multiplying by 1 or subtracting 0 leave the 

original number unchanged, and may also be expressing this generality. 

Students also appear to be using general rules about algebra. Rather than ask for the 

number she wanted (13, in line 11), Louise said "I want a. Can I have a?". This seems 

to be an application of the rule that a letter can represent a number. For her, it seems, 
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for this game, a and 13 may have become interchangeable, but she may retain 'a is 

currently 13'. The distinction between variable and unknown, and the understanding 

that letter represents number are considered to be an essential foundation of algebraic 

understanding (see Rosnick & Clement, 1980; MacGregor & Stacey, 1997). 

In line 5, Sam suggests that an answer of 7 can only be achieved if a 7 is put in front 

of the brackets: 

5 Sam: You'll have to put 7 in front. 

With this distinction between seven as a possible answer, and the only way to get 

seven as an answer, Sam appears to demonstrate some general sense of seven as a 

prime number. His expression could perhaps be interpreted as 'seven is the only 

(significant) factor of seven', which seems to be a more general statement (though 

incorrect, as one is also a factor of seven) than 'seven is a factor of seven'. 

Natalie appears to be justifying Sam's particular statement about multiplying a 

bracketed expression by one to obtain the answer seven with the expression of a 

general rule: 

8 Sam: That would be silly, you don't need to mUltiply it by I. 
9 Natalie: Multiplying by 1 doesn't do anything. 

With her use of the present tense here, Natalie seems to imply the general 

'multiplying any number by one doesn't do anything' rather than the more particular 

'multiplying this number by one wouldn't do anything'. Tense-use by both students 
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and teachers can be seen as an indication of the level of generality of a statement, with 

past-tense for the particular and present for the more general. 

Uncertainty about the level of generality experienced while analysing the transcript 

might also be felt by students trying to make sense of the discussion for themselves. 

Not only might they be unsure about whether a statement represents an exception or 

an example of a generality, they might also be uncertain about whether the claim is 

true. With the intention of encouraging students to think about each others' 

conjectures, and to realise that the truth or falsity of mathematics can be determined 

without an external authority (the teacher), I tend not to correct students' imperfect 

conjectures immediately. I believe that my classroom stance is generally founded on 

the belief that "If I'm having to remember ... , then I'm not working on mathematics." 

(Hewitt, 1999: 9). 

A teacher taking a stance of deliberately not informing students of 
anything which is necessary is aware that developing as a mathematician 
is about educating awareness rather than collecting and retaining 
memories. Furthermore, this stance clarifies for the students the way of 
working which is appropriate for any particular aspect of the curriculum -
the arbitrary has to be memorised, but what is necessary is about 
educating their awareness. 

Hewitt, 1999:9 

There is a huge responsibility here on the teacher to "provide a task which will make 

properties accessible through awareness" (Hewitt, 1999: 9). Students may become 

aware of the general effect of multiplying by one through their own experience. A 

student referring to this rule might provide a prompt for students to test the conjecture 

and develop their understanding. Multiplication by one deserves serious consideration 

and thought, there is much discussion to have, and plenty of particular cases, with or 

without context, to consider. It would be debilitating, however, if such deep 
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consideration were required on every occasion a generality was implied or inferred. 

Although the student may well generalise the rule, and even verbalise the rule, for 

themselves, the teacher might encourage the process by emphasising its importance. 

Some generalities will be more useful than others, and the teacher may be able to 

indicate to the student which these might be. 

5.3.2 Generalisations about ... the game 

I write game here, but few of the students appear to see competition as the main 

purpose of the activity. I find myself frustrated when the activity is interrupted by 

students telling us "I've got a full house!". Other students seem to feel the same. 

When someone won and we stopped, for example, Louise quietly said "I got full 

house ages ago". She apparently didn't think it was interesting enough to tell us about 

at the time. It is tempting to conclude that the game is an irrelevance, but I suspect 

that it acts to focus students' attention in the first place, offering them an opportunity 

to engage with the algebra. There is an issue of vocabulary here, for while give and 

make seem too strong, offer is often too weak. Although the opportunity to think 

mathematically is offered by a wide variety of tasks, there is something about some of 

these tasks that makes it more likely that the opportunity will be taken up. Perhaps it 

could be claimed that the game prompts, stimulates or provokes engagement with 

algebra. 

It is unclear how students distinguish between the rules of mathematics and the rules 

of the game. Grace's comment in line 2 suggested to me that she knew that the 'game' 

was just a disguise. When Louise asks, in line 13, whether she can put a in brackets, it 
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is unclear whether she is clarifying the rules of the game or of the mathematical 

world. Likewise, when Rosie questioned whether you would or could have brackets 

that weren't for "doing something" (line 21) she may have been asking about the rules 

of conventional algebraic notation, or the rules of the game. As I had insisted that all 

expressions must have brackets, Rosie may have been interpreting my game rule as 

'all expressions must have brackets that do something'. Her contribution can be seen 

either as a reminder of the rules of the game, or a general statement about the meaning 

and role of brackets in mathematics. In either case, her observation is a non-trivial 

one, especially given that in written language brackets are often used to designate the 

inessential, provide clarification or direct attention. 

With statements such as "all the questions are having brackets today" (line 1), and 

similar in line 12, I seem to need to have the arbitrary control of judging what is and 

isn't allowed. It is possible to distinguish levels of convention or arbitrariness in 

mathematics, of which games, tasks and exercises are perhaps the most arbitrary and 

transient. For example, while the 'fact' that there are 3600 around a point is a 

convention, the related rule that the sum of angles in a planar triangle is half the sum 

of angles around a point is a necessary mathematical truth. Hewitt (1999) explores 

this distinction between the arbitrary and the necessary, arguing that effectiveness of 

teaching practice may be improved by viewing the curriculum in terms of things that 

can be worked out by someone (necessary) and those things that all students need to 

be informed about (arbitrary). The National Strategy for Key Stage 3 mathematics 

(DtEE, 2001: 178) states that students should be able to "distinguish between 

conventions, facts, definitions and derived properties". It is possible to conceive of a 

continuum from apparently arbitrary rules for activities, investigations or games, 
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through the conventions of the mathematics community, to mathematical truths. 

Students' awareness of whether a generality is a mathematical necessity, a 

mathematical convention, or an arbitrary rule for a game or task seems crucial to their 

understanding. This distinction became increasingly pertinent through analysis of the 

main study data, and is discussed more fully in section 7.3.4. 

The arbitrary nature of general rules in classroom activities often acts to limit the 

range of permissible change associated with an aspect of mathematics. "Pick any three 

numbers", for example, may always mean (for a given group, with a given teacher) 

"pick any three 2-digit integers". If many activities require this sort of number, then 

time is saved by establishing 2-digit integers as the range of permissible values for 

these questions. If students understand that this is a classroom convention, and are still 

aware of the huge range of numbers that is actually available, then this practice is 

unproblematic. Unfortunately, this is unlikely to be the case. 

I experienced the effect of falsely reducing the dimensions-of-possible-variation for 

myself during the lesson, when I expressed the difficulty of 'making 7' within the 

restriction with brackets. I was restricting my interpretation of 'with brackets' to only 

those expressions with the form a(x + y). In retrospect, I could have introduced 2(g + 

1) + 3, or an equivalent, thereby allowing for many more possibilities. None of the 

students suggested an expression of the form a(x + y) + b, which suggests that, for this 

activity at least, the dimensions of possible variation of an expression with brackets 

did not include such a form. 
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Although my awareness of dimensions-of-possible-variation seemed to influence the 

students' apparent awareness, many of my contributions in this extract indicate that I 

am following, rather than leading the students. My response to Grace's indicating the 

pattern (in line 3) was to demonstrate surprise and interest (you noticed something 

that I hadn't noticed), to ensure that other students knew what she meant (by 

indicating that 7 would be needed next and pointing to the pattern on the board), and 

then to wait for students to take control. If a student had suggested that we break the 

pattern at that stage, I would have done so, as I believe there is value in following a 

student lead, and tend to do so almost automatically except in situations where I feel 

there is a mathematical or pedagogical reason to continue with my original intention. 

The group attention, however, seemed to focus on how 7 could be achieved. It has 

often been suggested that mathematical activity is at its most fruitful when it is 

initiated by the students themselves (e.g. Spencer, 1878; Banwell et al., 1972; Ainley, 

1982). In a whole class situation all students would generally be expected to consider 

the same problem at a given time, so a question immediately arises about whether a 

given student benefits from a different student's initiation of a mathematical task. 

Sam's contribution in line 5 indicates that his focus is on the mathematics, rather than 

the game. This is no longer 'find a way to make 7', but a consideration of what makes 

7 different from the previous three answers. Line 10 might have been a good 

opportunity to ask "Could I put anything else, or just 7 and I?", and discuss prime 

numbers and factors. I could have let the students think of alternative ways to make 7, 

but I felt that the pace of the activity would suffer. Many classroom activities have an 

extra purpose, alongside that of learning a particular topic. With tests the focus can 

move from learning mathematics to 'getting a good mark', while with games it might 
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move to 'winning'. Group work carries a wide variety of objectives including social 

as well as mathematical or psychological, some made explicit by the teacher (such as 

'make sure everyone contributes', 'give everyone a role') and others that may operate 

sub-consciously. While these objectives are generally seen as less important than the 

mathematics, to remove them completely would often render the activity effectively 

meaningless. 

5.3.3 Generalisations about •.. behaviour and purpose 

Many of the students' suggestions and assertions give insight into more than their 

knowledge of mathematics. Just as rules about mathematics can be formed on the 

basis of several particular examples (or even just one), rules about behaviour are 

being formed and revised based on particular instances in lessons. The general 

understandings of a group at a time combine to constitute a community of practice 

(Lave and Wenger, 1991). These generalities can be discerned from particular 

instances. 

One such generality concerns the role of errors and misconceptions in maths lessons. 

Chris's readiness to accept that "my one doesn't work" (line 27) and to suggest an 

alternative is not exceptional in this group. In another lesson with the same students, 

for example, Louise built positively on Tom's misconception to help him understand. 

We were converting fractions to percentages using equivalent fractions with a 

denominator of a hundred. When we were discussing 1125, Tom insisted that it must 

be equivalent to 25% , and a quarter, "because 25 is a quarter of a hundred". Louise 

responded, "I can see why you think that, Tom, but 1125 is much smaller". Grace 
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added, "Like if you had a cake cut into 25, the pieces would be really small, they 

wouldn't be quarters". 

In the discussion transcribed above, Chris's comment can be seen as a particular 

example of it being 'safe' to admit when you are wrong, which may be used by other 

students to create a general rule. His comment can also be viewed as an application of 

his own general views about what maths lessons are for. 

Exploiting learner's errors is a commonly accepted strength in teaching. What is more 

difficult to agree upon, however, is how this 'exploitation' is to be effected. Whilst 

discussions such as that between Tom, Louise and Grace may contribute to students' 

understanding of fractions, they are unlikely to resolve the misunderstanding 

universally. It has been suggested that taking time to explore misconceptions more 

fully may provide opportunities to develop understanding (Mason et al., 2005). One 

such suggestion is to invite learners to find instances in which the incorrect 

interpretation would give the correct answer (1/10 comes to mind in Chris's case). 

Getting the learners to articulate the conjecture and then to test it for 
themselves turns the initiative over to them, and reinforces the notion that 
in mathematics the authority lies within mathematics, not with individual 
people. 

Mason et al., 2005: 279. 

Such an exploration would require some consideration as to an accessible approach to 

the conjecture, as well as reworking of its exact phrasing. 

A second generality that I can perceive in the discussion is the rule that 'when other 

students are talking amongst themselves, it's ok for us to do that too'. Students were 
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attentive during most of the game, with a large proportion offering questions, answers, 

or other contributions. This is perhaps the nearest I can come, as an observer, to 

saying that they were 'listening'. The social contract that ensures that students listen 

during such discussions seems to break down in line 17. This particular occurrence is 

an example of a general tendency for students to talk amongst themselves if I appear 

to have taken a step back from the discussion. 

Inter-student conversations such as that started by Louise's declaration in line 11 that 

she 'wanted a' are something that I aim for in my teaching. In theory a problem 

suggested by a student and contributed to by other students should seem more 

interesting and relevant to the other students. Lines 11 to 16 lead to a period of time 

with all students talking. There is an assumption, often explicit, that if a student is 

talking to me, the whole class should be attending to it. This is somehow more 

difficult to encourage with student-student discussions, perhaps because the students 

who are speaking are less aware than I am of the need to keep everyone's attention. 

The students perhaps trust me not to use too many words they don't understand, and 

to watch all their faces closely to see if they are following the line of argument, but do 

not trust their peers to do the same. 

As their teacher, I might be able to share with them explicitly the objective that they 

listen carefully to discussions in which I am not participating. This kind of 

'communication about how we communicate' seems to have had an impact in other 

areas. In line 2, for example, Grace appears to be discouraging me from making it too 

easy so that they 'stop thinking'. In other lessons also, these students appear to see 

thinking as the central purpose of mathematics lessons. I believe that this is partly due 
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to the emphasis that I placed, especially at the start of the year, on the value of 

thinking. As a teacher, I can influence students' sense of satisfaction, and partly 

determine what they aim to achieve in maths lessons (Coles, 2004). Coles decided 

that, in order to alter students' views of mathematics, he would need to engage in 

meta-communication. This involved him promoting the idea of each student 

'becoming a mathematician'. He argues that: "It is through meta-communication 

about what it means to be 'becoming a mathematician' that I believe I can help create 

the context in my classroom in which learning 2 [changing the process of learning] 

can occur." (Coles, 2004: 23). The concept of meta-communication proved useful 

later in the study in attempting to account for the practice of main study teachers, and 

is discussed further in section 8-11.3 in relation to use of mathematical language. 

5.4 REFLECTIONS: UNFOUNDED GENERALISATIONS AND LEVELS OF 

AWARENESS 

The bingo game offers an illustration of how tasks with the principal objective of 

practising skills can provide an opportunity for discussion and development of ideas. 

The extent to which students take up this opportunity is greatly shaped by the role 

played by the teacher, and the stance they choose to take. In just a few minutes of 

classroom discussion, generalities seemed present concerning algebra, the rules of the 

game, and behaviour both in mathematics lessons and in mathematics more widely. I 

am interested in the 'presence' of these ideas. While they may be present for the 

students expressing and applying them, arguably they are not present for students 

struggling with the mechanics of substituting in the values of a and g. If there is a 

value for students struggling with the ideas in being in the presence of higher level 
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ideas, then it is one that is difficult to measure. Such a benefit might be increased by 

emphasising the generalities, and drawing students' attention to what is happening in 

the discussion. One way to focus attention on important contributions would be to 

push for more reasoning and justifying. Unless I question and probe for this 

justification, the possibility remains that surface-level observations will have the same 

status amongst listening students as those that are much more profound. 

Ellis (2005) found that teacher requests for justification led to "more productive" 

generalisation, and that repeated use of "why" before a generalisation had been 

expressed formally did indeed lead to improved, higher-level restatements of the 

generality. Much is often expected of teachers at the 'discussion' stage of a task. For 

example: 

Students can be asked to complete a table like this, simplifying the 
numerical fractions where possible. Discussion can then focus on how the 
results indicate which of the algebraic forms simplify and how that is 
achieved by seeking genuine common factors. 

French, 2002: 61 

In this, the 'findings' of the activity, the generalisation, is supposed to be remembered 

and referred back to. The next task French describes, however, results in a 

generalisation that does not need to be remembered and relied upon. How do students 

know the difference? In the first activity they benefit from attending to the general 

need to seek genuine common factors of algebraic fractions. In the second activity 

their attention is expected to focus on the technique of adding algebraic fractions. In 

the first the particular provides illustration and explanation for the required 

generalisation. In the second the general provides a meaningful context for practising 

the required particular skill. What are students attending to in each? What are they 
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learning? As a teacher, I feel that the words I choose to accompany each task, and the 

discussion that I guide, will have a major impact on students' learning in each case. 

5.5 CHAPTER SUMMARY 

This chapter shared a lesson segment from my own teaching practice to illustrate how 

reflection on my practice influenced the direction and structure of the study. 

Consideration of the overarching research question 'how is generality expressed in the 

secondary mathematics classroom?' whilst teaching lead me to develop the first 

research question, as discussed in section 1.2: what types of generality are expressed 

in secondary mathematics classrooms? 

I was interested in what it means for students to 'be generalising'. Although Hendrix 

(1961) argued that a student's understanding of a generality may be greatly 

temporally removed from their expression of it as a rule (with appreciation and 

expression occurring in either order), I believe that listening to learners offers an 

opportunity to gain insight into the process of generalising. In respect of the particular 

lesson segment, I asked how students' attention was directed towards the general, 

whether students were generalising for themselves, and what types of generality were 

being discussed. In order to address the first research question, I resolved to develop a 

framework for considering 'types' of generality. This, for example, distinguishes 

between generalities that hold in a particular lesson or for a certain activity, and those 

that are mathematically necessary. It also distinguishes between generalities that have 

been 'told' or surface-level 'spotted' and those that can be justified and explained. 

This latter is not a characteristic of the generality itself, but of the perceptions of the 
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students and teacher considering it. This distinction became increasingly important as 

the study progressed. 
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CHAPTER 6: THE MAIN STUDY LESSONS 

This chapter offers an overview of the lessons at the centre of this study. Having 

introduced the chapter in section 6.1, each of the teachers in the main study is 

introduced in turn in section 6.2. To begin to discover who is expressing generality, I 

began by exploring who was expressing themselves verbally on any topic. Section 6.3 

reports findings concerning the proportion of teacher and student talk in the main 

study lessons. Sections 6.4 and 6.5 explore some of the issues and questions arising 

from the previous sections. The chapter fmdings are summarised in section 6.6. 

6.1 INTRODUCTION 

Before examining the discourse observed, recorded, transcribed and analysed in the 

main study classrooms, this chapter offers the reader some insight into the pervading 

classroom culture in the mathematics department as a whole, and in the classrooms of 

the six individual study teachers. Different classrooms place different expectations on 

students regarding their participation and the verbal expression of their ideas. As 

discussed in chapter three, it is intended that the greatest insight into the main study 

classrooms will be gained by 'thick' descriptions when reporting the findings of 

analysis (chapters seven and eight). It is hoped that the introduction offered in this 

chapter will contribute to the depth of understanding of the classroom episodes 

offered in subsequent chapters. 
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6.2 THE MAIN STUDY TEACHERS 

The six mathematics teachers whose work informs the main study have varying 

professional experience, having taught for between one and seven years at the time of 

data collection. They teach 'good' or 'outstanding' lessons as 'measured' by 

institutional guidelines and criteria. Classrooms were generally well-ordered, with 

clear expectations shared implicitly or explicitly with students. They are not offered as 

typical, but examination of their work reveals the complexity of generality within 

mathematics classrooms. 

A concern is that teachers establish relationships with classes over the course of a year 

or more, so a single lesson might not be 'representative'. An extremely 'grade and 

exam' focussed teacher might not make explicit reference to exams in every lesson. A 

teacher who emphasises the importance of pair or group work might have rendered 

this so apparent in previous lessons that it is now an established way of working, and 

no reference is made to it. 

I have ensured that my analysis of teacher intentions in this section is consistent with 

all the data collected in the main study. This gives the advantage that I am not looking 

at a single lesson in isolation. Since the observations were carried out at the start of an 

academic year, where classroom culture and expectations are more likely to be made 

explicit, I have a sense (from observation notes and lesson transcripts) of the way 

teachers work with their classes. 
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Whilst emphasising that teachers' beliefs and practices change and develop over time, 

I found myself searching for frameworks I could use to describe the apparent 

differences in the main study teachers' orientations. Although constraints prohibit a 

full exploration of the plentiful theory (Thompson, 1992) of teacher beliefs and 

practices, I make some use of the relevant literature in this section to enhance teacher 

descriptions. Fang (1996) suggests that, rather than attempting to access teacher's 

beliefs through interview questions involving educational 'jargon', beliefs and 

practices can more effectively be approached by examining how often different 

teaching behaviours occur. As Ernest (1989) described it, there is sometimes a 

significant difference between espoused and enacted practice. 

I used Swan's (2006: 199) statements used to assess teachers' practices as a guide for 

distinguishing between different teacher's beliefs and practices during the main study 

lessons. Swan generated twenty-eight statements categorised as 'teacher-centred' or 

'student-centred'. The teacher-centred statements describe practices arising from a 

transmission-oriented belief system, with teaching seen as the transmission of 

definitions and methods to be practised. 'Student-centred' describes practices that one 

would expect to arise from a constructivist position, with mathematics seen as a 

subject open for discussion. 

Teacher-centred statements Student-centred statements 
(transmission oriented) (constructivist) 

1. Students learn through doing exercises. 15. Students learn through discussing 
their ideas. 

2. Students work on their own, consulting 16. Students work collaboratively in pairs 
a neighbour from time to time. or small groups. 
3. Students use only the methods I teach 17. Students invent their own methods. 
them. 
4. Students start with easy questions and 18. Students work on substantial tasks 
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work up to harder questions. that can be worked on at different levels. 
19. I tell students which questions to 5. Students choose which questions they 
tackle. tackle. 
20. I find myself encouraging students to 6. I encourage students to work more 
work more quickly. slowly. 
21. I only go through one method for 7. Students compare different methods for 
doing each question. doing questions. 
8. I teach each topic from the beginning, 22. I find out which parts students already 
assuming they know nothing. understand and don't teach those parts. 
9. I teach the whole class at once. 23. I teach each student differently 

according to individual needs. 
10. I try to cover everything in a topic. 24. I only cover important ideas in a 

topic. 
25. I try to teach each topic separately. 11. I draw links between topics and move 

back and forth between topics. 
26. I know exactly what mathS the lesson 12. I am surprised by the ideas that come 
will contain. up in a lesson. 
13. I avoid students making mistakes by 27. I encourage students to make and 
explaining things carefully first. discuss mistakes. 
14. I tend to follow the textbook or 28. I jump between topics as the need 
worksheets closely. arises. 

From Swan, 2006: 199 

SJ 

8J appears to believe that the most effective way to 'cover' the syllabus is to 'deliver' 

it. At key stage 4 she uses the textbook as a structure for lessons, relying on it as an 

indicator as to what content should be covered, and setting students questions from 

the exercises to work on individually. Each lesson begins with five quick questions, 

which test students' recall of topics previously 'covered'. In the transcribed lessons, 

exam success was referred to frequently (at least twice in each lesson) although this 

may be partly as a consequence of all observed 8J lessons being at key stage 4. 

In departmental meetings, SJ is enthusiastic about ideas contributed by colleagues 

involving students developing their own methods or working collaboratively in 

groups. However, these ideas are rarely used in her own classroom. Although 
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apparently interested in constructivist approaches, her observed style is more 

transmission-oriented. Unstructured questioning of students suggested that they regard 

SJ as a 'good' teacher, because she "explains things clearly" and "knows exactly what 

we need to learn". 

BG 

BO is a confident and experienced teacher. Her lessons tend to involve a starter, 

which mayor may not be connected to the objective for the lesson. The lesson 

objective is displayed on the white board throughout. There is then an explanation or 

discussion phase, followed by students working individually or with others sat near 

them on practice questions. BO works as a marker for SA Ts and OCSE exam papers, 

and has a particularly good knowledge of the expectations and demands of external 

exams. She uses this, and her awareness of common misconceptions, to support her 

clear, careful explanations, and to inform the order in which she teaches topics. In 

many aspects of her practice, BO could be thus described as taking a transmission

orientated approach. However, she has also been influenced by continuing 

professional development, and is enthusiastic about research findings and pedagogic 

ideas along more constructivist lines. BO strongly believes that different students 

learn in different ways and at a different pace. She speaks with affection and 

impressive detail about her impressions of individual students in her classes. including 

their approach to learning mathematics, their participation. and their understanding of 

various topics, and spends a substantial proportion of each lesson working with 

individuals and small groups of students. BG also values students expressing their 

mathematical ideas, and rarely asks her classes to work without discussion. 
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LR 

LR was in her second year of teaching when the main study data was collected, and 

her practice was still evolving and developing. She was keen to hear about new 

innovations and to try them in her classroom, although she was sometimes 

disappointed that the students did not respond as well as she would have liked. 

LR often introduces relatively open-ended problems for the class to work on, with the 

intention that students will take control of their learning, but then attempts to scaffold 

their work, apparently wary of allowing students to 'struggle' for themselves. In 

lesson [15], discussed in section 8-1.2, LR introduces a problem where a rectangular 

pen is to be made using 20m of fencing. The students seem reluctant to attempt to 

draw diagrams of possible pens. After two minutes, some students have not yet 

written in their exercise books, while others have drawn one or two rectangles that did 

not have perimeters of 20 units, and are beginning to express frustration. LR responds 

by asking the students to stop and listen, and asking them if anyone can explain an 

easier way of approaching the problem. 

10:52 Teacher: Has anyone worked out an easier way, or a way you can work 
out what different sizes of rectangles we can use? Has anyone 
thought ofa way? Erm, [student name], have you? 

Her intention seems to be to simplify the problem into a step-by-step process, to avoid 

students making mistakes. She appears to hold constructivist beliefs such as students 

learning through discussing their ideas, inventing their own methods and working on 

substantial tasks. However, her classroom practice is often transmission oriented, as 
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she generally teaches the whole class at once, and seems to feel responsible for 

explaining things carefully to avoid student mistakes. 

PF 

PF places strong emphasis on the role of discussion in students' developing ideas. He 

is overtly excited by mathematics, and by students' ideas for methods and approaches. 

Perhaps due to departmental setting policy, these more student-centred beliefs are not 

always manifested in his teaching. Lessons tend to combine whole class discussion, in 

which PF introduces an idea or method using regular student questioning, and 

students working individually on worksheets or textbook exercises. Although he held 

beliefs that were related to a constructivist view of learning, when students were 

working individually he operated in a transmissive mode. PF recognises that his 

beliefs are sometimes in conflict with his actions. During the pilot study, he decided 

to arrange the students in groups to work on the matchstick houses task, and stated in 

the post-lesson interview that he wanted to "do more group-work". As a teacher in his 

NQT year, it is likely that PF's practice was still developing rapidly, and that 

differences between his apparent beliefs and his practice might partially be explained 

by his relative inexperience. 

PF begins lesson [27], which is discussed in more detail in section 8-11.3, by showing 

his year 9 students two diagrams of rectangles, and asking them to think about how 

they could represent a quarter and a third of each one. Each rectangle was divided into 

twelve equal parts, and he asked the students to think about what the diagrams could 

be used for. 
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05:01 PF: 

The main study lessons 

Ok. Enn, have a look at what I've got on the board so far. We've 
got two grids almost, ok? {?} Next to the first one it says "how 
can we represent a quarter?", and next to the second one it says 
"how can we represent a third?". Urn, and don't just think "Ok, 
what boxes can I shade? And I can clearly shade in that many 
boxes to give us a third, that many boxes gives us a quarter" -
what I need you thinking about is why I've chosen those 
particular grids, why I've asked you for those particular 
fractions, ok, and what possibly we could do with these things. 
Just have ten fifteen seconds, talk to the person next to you if 
you need to, have a think about what we could do. 

This excerpt demonstrates PF's belief that students learn through discussing their 

ideas and having time to ponder. He then responds to student suggestions with 

enthusiastic statements such as "a key observation", "I really liked that", showing that 

he values their contributions. 

However, when asking the students to consider what they could do with the two 

fraction diagrams, he seems interested in getting the right answer that he has in mind 

(in this case, add the fractions). He is quite dismissive of a student's suggestion that 

they might multiply them: 

(10:33)PF: We've had an idea from Charlie that we could probably multiply 
them, that's not a bad idea. Enn, wouldn't be talking about 
common factors, lowest common factors if we were talking 
about multiplication. 

Rather than offer students the time to consider whether and how the diagrams might 

support multiplication of a third by a quarter, PF explains (possibly erroneously) that 

they would not be appropriate for supporting multiplication, and asks for further 

suggestions. 

CD 

CB is a confident, experienced teacher, and qualified as an 'Advanced Skills Teacher' 

during the academic year following the main study lesson observations. A large 

185 



Chapter 6 The main study lessons 

proportion of CB' s lessons are spent on discourse of some kind. Predominantly, this 

takes the form of CB thinking aloud on some aspect of the curriculum. Students then 

work independently on questions related to the topic that has been discussed. Rather 

than demonstrating a method or technique, CB often begins lessons with a challenging 

question or issue that he then works through methodically and reflectively. He asks 

students for contributions throughout these discourses, and encourages them to ask 

'what if ... ' style questions, or to challenge the claims he makes. 

CB appears to take student contributions seriously. In lesson [14], which is discussed 

more fully in section 8-1.2, he responds to student explanations of the result of 

increasing a number by 10% then decreasing it by 10% with comments such as 

"That's nice, yeah I like that" (04:40) and "Absolutely" (05:02). He then sets students 

a set of questions including '0.9 x 0.9' (10:02). Having received the correct answer of 

0.81 (10:21), he agrees that it is correct, then asks "Let's just see what kind of, can 

anyone tell me a wrong answer that they wrote down. I'm just interested, but there's 

nothing wrong with getting it wrong, it just means you had a misdirection of thought" 

(10:22). 

10:39 Student: 
10:40 Teacher: 

10:48 Student: 
10:50 Teacher: 

11 :04 Student: 
11 :07 Teacher: 

11 : 11 Student: 

11 : 16 Teacher: 

11 :23 Student: 

Times by eight point one. 
Times by eight point one. Really, really common, I think other 
people in here would have done that. Any other wrong answers 
you wrote down? Be proud of these wrong answers. 
Nought point nought eight one. 
Nought point nought eight one. Oh an extra divided by ten, 
rather than, I ... A new type of weird {?}. Another wrong 
answer? 
I put nought point one nine. 
Nought point one nine? 
[unclear comments] 
1 thought nought point eight one was too easy so I changed it 
round. 
Too easy [chuckles]. Why did you change it to nought point one 
nine? Eight one, and then ... 
One nine {?} 
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11 :25 Teacher: 
11 :29 Student: 
11 :32 Teacher: 

11 :44 Student: 

The main study lessons 

Yeah, explain why the one nine {?} 
Oh, eight-one plus nineteen is a hundred. 
We're definitely coming on to that, you've got one stage 
further ... [unclear] Erm, I don't know if you're technically 
wrong or not but decrease by ten percent and then ten percent of 
your new number. 
Ok. 

[14] CB 10(1) Percentage change 

CB is listening sufficiently to spot that the student who offers 0.19 as the answer has 

"got one stage further" (11 :32). By this it seems that CB believes the student to be 

calculating what percentage would be left after a 10% decrease followed by a 10% 

mcrease. 

As this extract from lesson [14] shows, there are many aspects of CB's practice that 

could be considered constructivist. However, his lessons remain predominantly 

teacher-led. He generally teaches the whole class at once, and his questions progress 

from easy through to more challenging. When working on exercises, students mostly 

work on their own, consulting a neighbour where appropriate. In contrast with PF and 

LR, who appear to aspire to more constructivist practices, C8 had spent seven years, 

at the time of the observations, reflecting on and developing his teaching practice, and 

appears satisfied that this approach is effective. 

KT 

KT's teaching combines aspects of the transmission and constructivist approaches. He 

emphasises the importance to students of expressing their ideas clearly, and values 

alternative student methods and approaches. Alongside these student-centred 

practices, he places great emphasis on full 'coverage' of the curriculum, with charts 

tracking topics that have been 'covered' filling the display boards on classroom walls. 
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Most lessons begin with students writing the answers to the prevIous lesson's 

homework on the board, and explaining their answers. 

08:27 Teacher: 

09:25 Student: 
09:38 Teacher: 

[26] KT 8( 1) Angles 

Now today, what we're gonna do is we're gonna go through, 
erm, some of the facts that we were talking about. And we're 
gonna try and prove them, ok? It's gonna be quite a, erm, it's 
gonna be quite a talky lesson. I'm gonna do lots of talking today. 
What [ want, what I want you to do is to listen very carefully and 
try and follow things as [ write them on the board, ok, cos what 
we're gonna do is we're go through and we're gonna try and 
prove some of the things that you already know about angles. 
Things like that. Yes, [student name]? 
Do you want us to copy everything off the board into our books? 
Yes, I'd like you to - but what [ don't want you to do, I don't 
want you to just copy it. [ want you to think about it as you're 
writing it, try and understand it as you're writing it. So, you 
might need to add some notes about the things that I say as I go 
along, ok? Right, erm, once we've done that, then we're gonna 
go and do an exercise on how to do things, and then we're also 
gonna go back and add something to our splurge diagram picture 
thing that we did at the beginning. 

KT's apparent increased hesitancy in comparison with other teachers is more 

noticeable in the transcripts than when observing, when the pauses feel like 

comfortable punctuations in his speech. The splurge diagrams are used to make links 

between different aspects of a topic, and between topics. These are added to 

throughout the topic, and frequently reviewed. 

6.3 WHO IS TALKING? 

What had seemed during the observation and level one analysis to be a reasonably 

balanced, interactive process, once transcribed, appeared more teacher-dominated 

than expected. Whilst it was apparent during level one analysis that the teacher 

dominated class discourse, the extent to which this was true only emerged through 
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further analysis. A node for teacher talk and one for student talk were created and all 

the sources (lessons) were coded for teacher talk and student talk (so all discourse was 

coded, ignoring comments, description and initial analysis). The percentage of the 

discourse that was contributed by the teacher and by the students was then calculated. 

Through immersion in the data, including observations of lessons, transcription and 

early analysis, a sense had emerged that the culture in many of the lessons was that of 

developing general understandings of concepts and procedures. Although I was aware 

from classroom observations that the teachers studied did dominate the talk time, the 

extent to which this was the case, as revealed through data analysis, was still 

surprising. Many of the lessons observed had felt like lessons in which the whole class 

was working together to develop a conceptual or procedural generality, and this 

feeling of mutual discovery and expression was at odds with the finding that, on 

average, almost eighty-nine percent of the 'class discourse' was teacher talk. 

The key to further developing this analysis was the observation that the classroom 

with the highest proportion of student talk, which was lesson [26] with 14.87%, did 

not seem to be the one where ideas developed the most collaboratively. In fact, there 

did not seem to be a strong correlation between my personal sense of a collaborative 

development of generality, and the proportion of teacher and student talk. In order to 

explore this aspect of the research question more fully, it therefore became necessary 

to examine more closely the source of this sense of collaborative development of 

ideas, and how it could be identified through transcription analysis. 
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This is the number of characters, rather than the number of words, or length of time 

spent speaking. 

Prior Teacher Stadent 
Lesson Teacber Year Set attainment Topic tllk talk 

[10] SJ 11 1 higher Quadratic fonnula Algebra 83.42% 16.58". 

[14] CB 10 1 higher Percentages Number 89.300/. 10.7001. 

[26] KT 8 1 higher Angles SSM 82.95". 17.05% 

[27] PF 9 higher Add & subtract fractions Number 89.91% 10.09"/. 

[34] LR 10 higher Rational numbers Number 86.650/. 13.35% 

[38] KT 8 higher Sequences Algebra 79.36". 20.64% 
upper 

[7] SJ 10 2 middle Approximation Number 89.88". 10.12% 
upper 

[25] BO 10 2 middle Data Data 95.26". 4.74% 
upper 

[31] CB 8 2 middle Sequences Algebra 92.20% 7.80% 

[35] PF 7 2 middle Subtraction Number 89.88". 10.12% 
lower 

[5] CB 11 3 middle Expanding brackets Algebra 94.61% 5.39"'" 
lower 

[12] SJ 10 3 middle Squares and cubes Number 86.46% 13.S4% 
lower 

[21] BO 10 3 middle Order of operations Number 87.24% 12.76% 

[IS] LR 7 4 lower Area and perimeter SSM 94.59"", 5.41% 

[36] KT 10 4 lower Angles SSM 85.94". 14.06% 

88.51% 11.49". 

The average teacher talk percentage was 88.51 %, with 11.49% student talk. Given 

Flanders' (1970) "two-thirds rule", discussed in section 2.6, it is perhaps unsurprising 

to find teachers dominating classroom talk time, but the extent of their domination is 

remarkable. Although teachers' perceptions of their practice were not a focus of this 

study, there is some indication that they were unaware of the extent of their majority 

of talk time. For example, in lesson [31], CB suggests to the class that this is a lesson 

in which student talk will dominate (line 10:09), though in fact only 7.8% of talk is 

student contributions. 

10:03 Student: 
10:03 Teacher: 
10:06 Student: 
10:09 Teacher: 

10: 17 Student: 

Three. 
Three, good. 
Oh, I know. Five. 
Five, brilliant. Saves my voice, this lesson, period five, it's 
lovely. 
Seven? 
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10: 17 Teacher: 
10:20 Student: 
10:21 Teacher: 
10:22 Student: 
10:25 Teacher: 

Yeah! 
Nine. 
Nine. 
Eleven? 
Eleven, absolutely. 

The main study lessons 

Lesson [31] CB 8(2) Sequences 

The percentage of teacher talk varied between lessons, from a minimum of seventy 

nine percent to a maximum of ninety five percent. The high percentage in lesson [25] 

might be explained by the small amount of total talk. Although ninety five percent of 

the talk was by the teacher (BG), class discourse of any sort takes up a relatively small 

proportion of the lesson. The first fifteen minutes are spent with students working on 

the 'starter' questions on the whiteboard, after which students are asked to read a page 

in the textbook that reminds them how to calculate the mean, mode and median, and 

explains why one of three averages might be most appropriate for use in different 

situations. 

The lesson with the smallest proportion of teacher talk was lesson [38], in which the 

teacher (KT) asks his year 8 set 1 to share their understanding of sequence and related 

concepts. Seventy-nine percent of the class discourse in this lesson was teacher talk. 

The class discourse alternated throughout the lesson between teacher and students, 

with a student speech act being followed by a speech act from another student only 

when alternative numerical answers were being offered. Student speech acts in lesson 

[38] are longer than in many other lessons, with apparent correlation between the 

length of the teacher prompt and the student response. 

19:12 Teacher: 

19:38 Student: 
19:40 Teacher: 

Enn. Can anybody think of the fonnula for that sequence? 
What's the fonnula for that sequence? [student name]. 
Add three to the prev-, the previous tenn. 
So that's add three to the previous tenn, that's the tenn to tenn 
rule. Does anybody know what the fonnula is? [silence] No? 
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19:54 Student: 
19:59 Teacher: 
20:01 Student: 
20:03 Teacher: 
20:05 Student: 
20:06 Teacher: 
20:06 Student: 
20: 10 Teacher: 

n equals the term times three. 
Yeah? 
Is n equal to the term times three? 
The term number times ... ? 
Three. 
Three, yes. 

The main study lessons 

Cos the first term's three, second term's six. third term's nine. 
The formula, which you might have seen written down before, is 
three n. Three times n. If n is one, if n' s two, then three times 
that number. No? No? Ok, I'm gonna, I'll take that off. Go 
through that a bit more. Ok? So we add three to the previous 
term. 

The average proportion of teacher talk with top set groups was eighty-five percent, 

while the average for all other sets was ninety-one percent. Students in sets two to 

four contributed an average of nine percent to the class discourse, while the average 

for students in the top set was fifteen percent. 

This tendency holds for each individual teacher, with the exception of PF, whose set 

one and set four lessons both had class discourse with around ninety percent teacher 

and ten percent student talk. The other five teachers in the study all talked for a 

smaller proportion of the amount of talking with their top set classes than with their 

other groups, as shown by the table below. 

Teacher Stadent 
Lesson Teacher Year Set Prior attainment talk talk 
[34] LR 10 1 higher 86.65% 13.35% 
[15] LR 7 4 lower 94.591'/0 5.41% 
[14] CB 10 1 higher 89.30010 10.70010 
[31] CB 8 2 upper middle 92.20% 7.80010 
[5] CB 11 3 lower middle 94.61% S.391'10 
[101 5J 11 I higher 83.42% 16.58% 
[7] 5J 10 2 upper middle 89.88% 10.12% 
[12] SJ 10 3 lower middle 86.46% 13.54% 
[25] BO 10 2 upper middle 95.26% 4.74% 
[21] BO 10 3 lower middle 87.24% 12.760/0 
[26] KT 8 I higher 82.95% 17.05% 
[38] KT 8 1 higher 79.36% 20.64% 
[36] KT to 4 lower 85.94% 14.06% 
[27] PF 9 I higher 89.91% 10.09010 
[35] PF 7 2 middle 89.88% 10.12% 
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This is a tendency that might merit further investigation. Analysis of the data 

collected in this small-scale study is not sufficient to show that this is a general 

tendency of teachers. 

Teacher Average 0/'0 Closer examination of the lessons taught by the two 

student talk 
CB 7.96 teachers with the highest percentage of student talk (SJ 

BO 8.75 
LR 9.38 and KT) suggested that there might be less similarity 

PF 10.1 
SJ 13.42 between the characteristics and expectations of student 

KT 17.25 
talk in these classrooms than there was between, for 

example, that of KT and CB, whose lessons exhibited the greatest difference in the 

ratio of student: teacher talk time. Whilst there are many studies that advocate the use 

of student discussion as an effective way to improve student understanding and 

develop mathematical reasoning, there is no reason to expect that more talk of any 

kind is desirable (Pirie & Schwarzenberger, 1988). The intention of this phase of the 

analysis was to explore the quality of student speech acts, and to analyse whether any 

general rules are discernible regarding students' contributions. Quantitative analysis 

of speech acts reveals rather little of what might be happening for students. 

It became apparent that the question "who is expressing generality" is more complex 

than can be answered quantitatively. The question had originally been conceived in 

order to distinguish between lessons in which generalities were expressed at students, 

and those in which students expressed the generalities for themselves. What emerges 

from this phase of the data analysis is the possibility that a further alternative is 

available, in which the teacher expresses the generalities with or for the students. 
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6.4 WHO IS GENERALISING? 

Language provides partial insight into the generality available to students in the 

mathematics classroom. Just as the researcher's insight is limited through accessing 

only the words and gestures, but not the thoughts of the speakers, so is the students'. 

There is no direct link between what is being expressed and what is being thought. In 

chapters seven and eight, the form of expression of these generalities is more closely 

examined. 

I often feel the urge to write about there being "a sense of ... " or "an idea that ... " in 

the classroom. A sense for who, and how explicit is this sense? Is the teacher aware 

that their language might "suggest the idea that ... ", and do they consciously choose it 

for this purpose? If students "pick up" the required conception, to what extent do they 

do so consciously? Are there occasions when it might be desirable to be more explicit 

about what students are supposed to be "developing an awareness of"? 

Expression lies somewhere between or is a mixture of, the enactive and cognitive 

modes or worlds, and often precipitates a movement between the two. Through 

talking, we can move from knowing how to do (enactive) to knowing why it works 

(cognitive). These three modes of (re)presentation are discussed in more detail in 

section 7.3. Expression plays various roles in the affective mode also, as overly 

formal expression might result in 'maths anxiety'. 
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6.5 JOURNEYING TOWARDS THE GENERAL 

Throughout this chapter there has been much discussion of the 'direction' of class 

discussions. The analogy of travel seems a useful one, and worth further exploration. 

In analysing the data, I felt I had an appreciation of the 'direction' of the discussion. 

This was not always flagged up explicitly to students, and I wondered whether they 

were aware of the purpose of the discussion. 

Having discussed the observed teaching traits of main study teachers in section 6.2, 

and analysed the proportion of teacher and student talk in section 6.3, section 6.4 

considered the theoretical possibility of students being cognitively involved without 

participating in the discussion, or conversely of participating without significant 

cognitive awareness. The style of this section is different again, and contains my own 

musings on questions related to the metaphor of teacher-led discussion as a journey 

towards the general. 

How direct is the route? 

There may be detours along the route that are designed to point out key mathematical 

features that will not be explored on today's route. While some students might be 

inspired by the possibilities for future exciting journeys, it is possible that others, 

already struggling with the length and challenge of today' s journey, will be put off by 

knowing that there is so much else to explore, and consequently, may 'switch off'. 

Others yet might not realise that the detour is a detour, confuse it for part of the main 

journey, wander off down it and get lost. 
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Who is leading the way? 

If students are merely following along the path, head down, attending only to each 

next step, they may not engage with the decisions being made along the way. 

Although they appear to reach the destination, they have merely been 'following', 

'assenting' rather than 'asserting' and would be unlikely to be able to find their way 

there again unaided. 

What pace is being travelled at? 

Do you wait for all to be sure of each step before moving on, or enable some students 

to explore ahead while others lag behind? How will we know when we've got there? 

Who will announce the successful completion of the journey? Is it for the teacher to 

decide what has been achieved, or are students deciding for themselves what is of 

importance? If students do not feel a sense of achievement at the journey they have 

made, they may be reluctant to engage in another journey tomorrow. 

6.6 CHAPTER SUMMARY 

This chapter provides an introduction to the teachers involved in the study, including 

generalities relating to the classroom culture they create. It also demonstrates the 

surprising predominance of teacher talk in the main study lessons. It is observed that 

the answer to the question 'who is generalising?' is not as strongly correlated with 

who is speaking as might be expected. The class discourse can be regarded as a 

journey that the whole class participates in to some extent, whether or not they 

contribute verbally. The question then arises as to the extent to which each student 

appreciates the generality that forms the 'destination' of this journey, and the factors 
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that might affect this appreciation. Chapters seven and eight, in addressing the three 

research questions, set out to cast light on the complexity of this issue. 
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CHAPTER 7: TYPES OF GENERALITY 

The chapter is intended to offer an insight into the complexity of generality that is 

present in secondary mathematics classrooms. Having introduced this section of the 

research findings (7.1), a lesson is described, with six generalisations identified and 

examined in detail (7.2). In section 7.3 a framework is elaborated that offers 

descriptive insight into the generalisations encountered. The same lesson is used 

throughout sections 7.1 -7.3, in order that the reader may familiarise themselves with 

the data. This lesson is used to introduce and illustrate the five dimensions of the 

framework. Section 7.4 shows how the framework can be applied to a different lesson 

transcript. The chapter findings are summarised in section 7.5. In chapters 8-1 and 8-

II, two of the identified types of generality, namely those relating to mathematical 

procedures and to mathematical concepts, are examined in more detail, responding to 

the second and third research questions. 

7.1 INTRODUCTION 

This chapter addresses the first of the three research questions that have driven this 

study: what generalities are being expressed in secondary mathematics classrooms? 

The chapter is intended to offer an insight into the complexity of generality that is 

present in secondary mathematics classrooms. Alongside continued reflection on my 

own teaching practice, as described in chapter five, I spent six months observing and 

recording the lessons of six mathematics teachers in one secondary school. This 

enabled the creation of a data set of fifty-two recorded lessons in Olympus DSS. 

These were listened to with the intention of identifying thick descriptions of excerpts 

from the lessons where generalities were being expressed. However, I very quickly 
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became aware of two findings that led to an adaptation of the research methods. First, 

every lesson observed contained numerous sections of transcript that could be 

considered to be expressions of generality. Second, many of the interesting and more 

striking distinctions between expressions of generality related to the teachers' or 

students' use of language, and consequently could be both analysed and shared with a 

reader most effectively through careful and accurate transcription. 

Due to practicalities of time, and with the intention of preserving the breadth and 

variety of the fifty-two central study lessons, fifteen lessons were transcribed and 

analysed using Nvivo software. These fifteen were selected from the fifty-two with 

the intention of retaining the breadth of the central study. To fulfil this aim, lessons 

were transcribed that were taught by all six of the central study teachers. For each of 

the six teachers, I selected a lesson from each of key stage 3 and key stage 4, and from 

classes with higher, lower and average prior attainment where available. The analysis 

of these lessons enabled me to develop my ideas, and to clarify concepts and theories 

both through personal reflection, and reference to the literature. 

In carrying out this analysis, I began to distinguish between the episodes of discourse 

in the transcript where generalities were being expressed or 'journeyed towards'. 

These distinctions were along several dimensions, which proved illuminating in 

addressing research question one as they highlighted the range of types of generality 

that were being expressed. In addressing research question 1, I wanted to articulate 

these distinctions, which had emerged from analysing the data by coding expressions 

of generality, and from consideration of research literature, in the context of ongoing 

reflection on my own teaching experience. In order to formalise these dimensions, 
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with the intention of using them for further analyses, and of sharing them with the 

reader, a framework for considering 'types' of generality was developed. This 

distinguishes, for example, between generalities that hold in a particular lesson or for 

a certain activity, and those that are mathematically necessary. It also distinguishes 

between generalities that have been 'told' or surface-level 'spotted' and those that can 

be justified and explained. This latter is not a characteristic of the generality itself, but 

of the perceptions of the students and teacher considering it. The five dimensions of 

the framework fall into two groups, as the framework is concerned with both the 

journey being made towards a particular generalisation, and the nature of the 

generalisation itself. Three of the dimensions are used to distinguish between aspects 

of the generality that appears to be underlying the discourse; that which seems to be 

being generalised about. By its very 'underlying' nature, this is necessarily subject to 

interpretation. Within the classroom, there may well have been divergence over what 

the teacher, and the different students, thought they were discussing. The framework 

is intended to offer insight into possible ambiguities, differences, and the variety of 

generality that might be said to be 'being discussed' in the observed secondary 

mathematics classrooms; the coding is not intended to be absolute, nor can it be 

wholly objective. Two dimensions were developed in order to describe aspects of the 

journey towards the underlying generality. These relate to the way in which the 

generality is derived in the particular instance, and the awareness that appears to be 

being promoted through the discourse. 

It is not the separation into categories itself that offers insight into classroom 

generalisation. Rather, their separation allows for closer examination of the 

generalities and their expression, and the research questions can thereby be addressed. 

200 



Chapter 7 Types of Generality 

There are potentially as many ways of categorising expressions of generality as there 

are groups of people to undertake their analysis. The possibilities outlined here, which 

emerged from both theoretical literature and lesson observations, are those that offer 

the most insight for this study. They might offer a framework for teachers to consider 

when resolving, or preparing to resolve, classroom tensions. 

F or reasons of economy of words and clarity, the framework is introduced through the 

particular example of lesson [10]. This segment from lesson [10] was not the basis 

from which the framework was developed (emerging as it did from a desire to 

distinguish between perceived differences between expressions of generality 

throughout all fifty-two central study lessons), but was chosen as it offers episodes 

which illustrate the detail of the framework. 

7.2 LESSON ANALYSIS 

It is intended that the generalities illustrated in the lesson analysis that follows will 

bring to the reader's mind similar interactions in their own classroom or wider 

experience. This should enable the development of a shared sense of how the general 

can feature in mathematics teaching. The aim, then, is not limited to demonstrating 

the role of generality in one particular mathematics classroom. The intention is also to 

develop categories of generality that aid future thought and discussions. 

Every maths lesson provided opportunities for generalisation. With the intention of 

illustrating the different types of generality, and different teacher methods of making 

students aware of them, I focus in this section on a twenty minute lesson segment 
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from lesson [10]. Six generalities are focussed on that are present in the discourse, 

which are labelled as [10JA through [10JF in order to facilitate future reference. 

Lesson [10] CB 10(1) Quadratics 

This analysis focuses on the first part of the lesson, which involves a twenty minute 

discussion of the general shape of a quadratic graph. The actual term 'quadratic' is 

notably absent throughout this sequence of lessons. This may be because the teacher 

wanted the students to be exploring and thinking for themselves, rather than merely 

accepting predetermined language and rules. He appears to be encouraging students to 

think about why certain generalities are true, rather than merely accepting them. For 

example, after about five minutes of discussion, one student offers, "isn't it, as long as 

it's got the x squared it'll always be a smiley graph?". The teacher responds with "ah, 

now you're quoting rules at us, which is fair enough, but what about the people in 

here who don't want to learn rules and they want to say, well wait a minute ... [and 

think about why]". The issue of when it is more or less beneficial to use the name 

'quadratic' whilst encouraging students to develop their own understanding of the 

related maths is explored further in chapter seven. It is possible that the use of an 

official term, imposed from the outside, would give students the impression that the 

rules and methods are also to be imposed in this way. 

The lesson began with reference to the homework task, which had involved students 

choosing any four quadratic equations (although this mathematical term had not been 

used) from the ten on the whiteboard, and drawing them on a graph. The teacher 

walked round looking at them, and observed that he could tell which of them were 
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right. He emphasised that, even though he didn't know which students had chosen 

which graph, and he wasn't looking carefully at the precise values, he could tell from 

their shape which of them were right and which were wrong "and we should see why 

in a second". 

Generality [IOJA: 

There is something that all of these equations have in common, and they 

consequently share a common shape. 

This might be intended to assist students' developing conception of quadratic, prior to 

introduction of the terminology on a future occasion. The teacher directed attention 

towards this through increasing the example-space, using 'distributed examples', then 

making statements about all the examples looked at. This implies a greater scope for 

the generality than might be apparent from only looking at four examples. 

They then look at the specific quadratic 'x2 + 2x - 5', using a table with which they 

had worked in the previous lesson: 

Teacher 

Student 
Teacher 
Student 
Teacher 

x -3 -2 -1 0 -1 -2 -3 
tl) 

\<) 

V) 

x:l+2x-5 

Can anyone tell me what goes in this little column here 
[indicating cell (1)]. This is if you decided to be one of those 
people who does all the workin~ bit by bit. Linden, what goes in 
that bit there? [indicating cell (1,]. 

Um. x squared. 
Then what? I'm gonoa do it all in one go. 
2x, minus S. 
Absolutely. You get the two x and the minus five. [Writes these 
in cells (2) and (3» 

203 



Chapter 7 Types o/Generality 

Lesson [10] CB 10(1) Quadratics 

Generality [10)B: 

When we're drawing the graph for a formula 'like this', this is a general 

method that can be used. 

Attention may have been directed towards this through the teacher's referring to 

specific numbers or expressions with the definite article. It is noteworthy that while 

the student says only "2x, minus 5", the teacher uses the definite article. This may act 

to emphasise the general and to locate what is being discerned as an object rather than 

as 'what you write'. Although there isn't always a 2x or a minus 5, use of 'the' might 

imply that we were looking for 'bx' and 'c'. Although 2x and -5 are specific examples 

of this, use of 'the' seems to indicate that they are acting as examples ofa generality. 

Teacher The minus 5 bit which, from what I remember was Luke's bit. 

Lesson [10] CB 10(1) Quadratics 

Generality [10)e: 

Formulae 'like this' can be broken into chunks, which themselves have 

general properties. 

All of the chunks that are 'like minus five' have certain general properties. The 

teacher appears to be directing attention towards this distinction through referring to 

specific numbers or expressions with reference to a particular student. Going through 

lots of examples in a previous lesson, Luke had always supplied the 'c' answer. 

Rather than call this bit 'c', it was being referred to as 'Luke's bit'. This also has the 
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benefit of student 'ownership' of the maths, which can have positive affective effects 

(Maher, 2002; Nesher & Winograd, 1992). 

Teacher The minus 5 bit will just say minus 5 all the time, and will look 
like that (pressing reveal on screen to reveal line of -5s). 

Lesson [10] CB 10(1) Quadratics 

Is this a particular statement about a specific row in the current problem, or a general 

statement along the lines of ''the c bit will just say c all the time". "All the time" 

seems to say more here than just 'in all these boxes'. It hints at the generality that this 

part is always constant. That whatever number they use, it will be constant. The scope 

of a generality comes to mind here. 

Teacher The plus lx, won't have very big numbers on it. The plus lx will 
just have, er 8, 6, 4, 2, 0, -2, -4, -6 and -8 on it. Can anyone tell 
me what's special about these numbers here? (indicating J? line). 

Lesson [10] CB 10(1) Quadratics 

Generality [10JD: 

The number in the ~ row is always positive. 

The teacher suggests with a question that there is a generality about all the numbers. 

"Can anyone tell me what's special about these numbers here?". 

The teacher is offered the answer that ''they're all positive numbers", which he 

cOnfll1l1S before emphasising the comparatively large size of the ~ row of the table. 

205 



Chapter 7 Types of Generality 

2x -8 
-5 -5 
r+2x-5 3 

Teacher: 

Student: 

Teacher: 

Student: 
Teacher: 

-6 -4 -2 0 2 4 6 8 
-5 -5 -5 -5 -5 -5 -5 -5 
-2 -5 -6 -5 -2 3 10 19 

Can anyone describe to me what happens to the numbers as I 
work along from right to left? The 4 squared is big. [student 
name]. 
Urn. There's sort of a symmetrical pattern. As you go along. So, 
it will go down and then go up. 
Absolutely. That's what I meant. It will go down and go up 
again. 
Because I've said the minus 5 doesn't do much at all, it just takes 
away 5 from them all, it doesn't really change that fact that 
[student name]' s said. That it goes go down, then they go up 
again. And I've also said, this 2x, it's not really that impressive a 
number. 2x just turns out to be 8 for this, 6 for this, 4 for this, 2 
for this, it's not all that big a number. (2 sees). With me saying 
that, what must the graph look like? (2 sees) If I'm saying that 
it's only what [student name] said which is important, only that 
top row which is important, what must the graph look like? 
[Student name] 
Urn, like a horseshoe. 
Like a horseshoe. And it is actually in a lot of textbooks called a 
smiley graph. And you can get away with calling it a smiley 
graph. 
Xl plus 2x minus 5 is a smiley graph. 

Lesson [10] CB 10(1) Quadratics 

The reference to being able to "get away with" calling it a smiley graph can be taken 

to be a reference to the GCSE exam. The "it" here must refer to more than just x'- + 2x 

- 5, and we can assume that it refers to all quadratic graphs with a positive coefficient 

of x2• Whilst this is all comparatively clear to post key stage four mathematicians, a 

student might be justified in wondering why they would want to call "it" anything at 

all. 

Teacher: I reckon that Xl plus 3x minus 5 will also be a smiley graph. I 
also reckon, oh, I didn't go any higher, r plus 5x minus 5 will 
also be a smiley graph. What about;' plus a million x minus 5? 

Lesson [10] CB 10(1) Quadratics 
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Generality {10}E: 

Quadratic graphs (always) look like smiley faces. 

Attention is drawn to this through looking at extreme particular cases. What would a 

quadratic look like with large values of b or c? Why is it always a smiley face? 

Teacher: 

Student: 
Teacher: 

Student: 

Teacher: 

Student: 
Teacher: 

Student: 

Teacher: 

Student: 

Teacher: 

Because I was saying this middle row was, you know, not very 
significant numbers, they're all tiny. Ten, er no 20, er what's 
that, 15, 10, 5, 0, -5, -10, -15, -20. What if I change that to a 
million? x squared plus a million x minus 5? [student name] 
It'll probably just be a smiley graph. 
It'll probably just be a smiley graph. [student name]? That'll be 4 
million, that'll be 3 million, and that'll be 2 million, that'll be 1 
million. Maybe it won't be a smiley graph. 
No it wouldn't, would it, 'cause the amount of xs is gonna be 
more than the squared number, so it's goona make more than 
itself. 
So the squared number will be tiny won't it? It'll be 16, 9, 4, 1, 
nought. 
Compared to the middle. 
The question I'm asking is will ~ plus a million x minus 5 be a 
smiley graph? 
I think it would be but it wouldn't be as 
It wouldn't be as kind oflike squashed. 
Wouldn't be as squashed. So it'll be kind of, like that? 
So it'll be kind of not like that but like that? 
Um, it will be a smiley graph 'cause it's got the x squared. Isn't 
it, as long as its got the x squared it'll always be a smiley graph? 
Ab, now you're quoting rules at us, which is fair enough, but 
what about the people in here who don't want to learn rules and 
they want to say, well wait a minute, if that was a million, then it 
doesn't do a nice uppy downy thing. You're actually absolutely 
right. I can't argue with what you said, it's true. 

Lesson [10] CB 10(1) Quadratics 

Generality {lO}F: 

There is (always) value in thinking about why generalities apply, rather than 

merely expressing them. 

Student: It is going to be a smiley graph, because it's like (.), it's like 
different points. You've got the 4, 3, 2, 1, zero, and then back 
round. See what I mean. If you're timesing it by that certain 
number then they're all going to be (done?) like that and there's 
still going to be a gap in between so there's still going to be a 
smiley. 
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The student says that the graph is "still going to be a smiley", as if the examples are 

changing over time. A comparison is being made between the extreme examples and 

the 'more standard' examples before. How often do students experience mathematical 

objects being changed over time? 

The teacher talks through the example, and emphasises the impact of the term in x2
• 

Student: 

Teacher: 

Student: 

Teacher: 

Student: 

If it's a smiley face does that mean it's got to start and end at the 
same point, or can it start lower and then go bigger? 
It could, perhaps be like the one I showed you where all you see 
is that bit. 
No but could it, could it be, like that, where it starts high, goes 
down, and then doesn't up as high? 
Yeah, because you're not seeing the whole, the smiley face 
doesn't have to be centred on that, that line. So it might be, that 
it's just this is a bad window and you can't see the whole of it. 
You've seen this bit, and then you can't see the bit on the side. 
But that's not a problem. So if it looks like (.) like that [lop-sided 
smiley face] if you move along a bit it looks like this [smiley 
face] probably. 
Is it possible to have one like, one that goes like ... 

Lesson [10] CB 10(1) Quadratics 

In this extract, the students and teacher talk about the singular "It could ... ", whilst 

seeming to refer to the whole set of quadratic graphs. Having asked, "If it's a smiley 

face does that mean ... ", the subsequent discourse is expressed in the singular, 

although it apparently refers to some sub-set of, or to all, graphs of quadratic 

functions. 

The six generalities offered in this section are not intended to be illustrative or 

representative of the types of generality, and means of expressing them, that might be 

identified in all maths lessons. The emphasis in this lesson was on students thinking 

208 



Chapter 7 Types of Generality 

for themselves, and developing their own generalisations. They were encouraged to 

go beyond appreciating generality, and even expressing generality, to having a sense 

of why the generality held. Although this topic may lend itself particularly well to this 

approach, it seems that many other areas of mathematics could be explored in a 

similar way. Mason (2002) emphasised this when he said that, 

A lesson without the opportunity for learners to generalise is not a 
mathematics lesson. 

Mason and Johnston-Wilder, 2002: 137 

7.3 THE EMERGENT FRAMEWORK FOR GENERALITY 

As explained in section 7.1, the six expressions of generality from lesson [10] that 

were identified in section 7.2 are being offered in this chapter with the intention of 

explaining the five dimensions of the framework. For the purposes of illustration and 

explanation, for each of the five framework dimensions that are introduced below, I 

show which category of the dimension might be applied to each of the expressions of 

generality discussed in section 7.2 above. In analysing the data, applying these 

codings to other lessons in the central study, it was clear that not all five dimensions 

of the framework would be as illuminative as each other for a particular lesson 

episode. It may be that only one or a few offer insights into any given episode, 

although which ones will vary according to the particular episode. For the purpose of 

establishing the nature of the framework, however, in this chapter, all five aspects are 

addressed for each identified lesson episode. 

7.3.1 Subject of generalisation 

The subjects of generality in section 7.2 vary considerably, and following the 

distinctions made in sections 2.1.2-2.1.4 can be categorised as generalisations about 

209 



Chapter 7 Types of Generality 

concepts, procedures and behaviours. The distinction between these subjects of 

generalisation emerged from analysis of the data informed by knowledge of the 

literature. In the analysis it was helpful to distinguish between mathematical concepts, 

procedures, and a variety of behaviours. There were a number of generalities which 

concerned behaviours belonging to a spectrum extending form the purely social to the 

predominantly mathematical. These I have termed 'behaviour on a social

mathematical spectrum', or where the context is clear, just 'behaviour'. The "socio

mathematical norms" developed by Cobb (1996) and his colleagues, which include 

mathematical activity with a social dimension (classroom social norms, 

sociomathematical norms and classroom mathematical practices) and a psychological 

dimension (beliefs about roles and mathematical activity in school, mathematical 

beliefs and values, and mathematical conceptions) lie towards the . middle of this 

category. 

The literature review had led to the distinguishing of four categories, including 

mathematical facts (discussed in section 2.1.1) along with the three illustrated here. In 

analysing the data, however, these factual generalities could be seen as a subset of 

conceptual or procedural generality. In the majority of the observed lessons 

mathematical facts appeared to be approached from the viewpoint either of 

contributing to students' conception of a concept, or as part of a procedure. 

It is important to emphasise that these categories are not mutually exclusive. As the 

example below illustrates, an individual expression of generality can be classified, for 

instance, as both a concept (lowest common multiple) and as a procedure (how to find 

the lowest common multiple of two numbers). 
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Asked what 'the lowest common multiple of eight and ten' meant, the 
student answered: 
Student: Urn, I went up in eights and then went up in tens, and then forty 

was the first one. 
Teacher: Went up in eights. Twenty-four, thirty-two, forty. Then work in 

tens, ten, twenty, thirty, forty. Forty's in both, well it's the lowest 
one in both the lists. 

[20] SJ 10(3) Fractions 

Despite this lack of exclusivity, it proved beneficial to distinguish between these 

groups in level 2 analysis, as shown in chapter 8. The same expression of generality 

might be analysed both as a general procedure and as a general concept, with different 

insights each time. 

Generality [lOlA: There is something that (all General concept: quadratic 
oj) these equations have in common, and they Quadratics share a common shape. 
consequently share a common shape. 
Generality [IO]B: When we're drawing the General procedure for drawing 
graph for a formula 'like this', this is a general graphs of quadratic functions. 
method that can (always) be used. 
Generality [lO]C: Formulae 'like this' can (all) General concept: the constant term 
be broken into chunks, which themselves have 'c' . 
~eneral properties. 
Generality flO]D: ~ is (always) positive. General concept: square numbers 
Generality [IO]E: Quadratic graphs (always) General concept: quadratics 
look like smileyfaces. 
Generality [lO]F: There is (always) value in General behaviour: asking why? 
thinking about why generalities apply, rather 
than merely expressin~ them. 

Some generalities, such as generality C, which generalises about the concept of a 

constant term in an algebraic expression, seem reasonably straightforward to classify 

as conceptual generalities. Others, such as generality A, are more difficult to classify. 

The generality asserts that the graphs the students have been drawing have something 

in common to do with their shape, could be described as a mathematical fact, but 

could also be seen as contributing to the conception of quadratic equation/expression. 
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The generality that 'quadratic graphs [with positive leading coefficient] look like 

smiley faces' could be considered to be part of the concept of 'quadratic', and thus 

classified as conceptual generality. In this case, as the term 'quadratic' is not being 

employed, it seems that the generality is being explored for its own merit. Likewise, 

this generality could be viewed as a check or tip for drawing quadratic graphs; 

checking that the finished graph looked like a smiley face could be part of the 

algorithm for drawing quadratics. It could then be classed as procedural. However, 

the teacher does not emphasise this point. Another utterance that might have been 

considered to be a mathematical fact is generality D which states that whether x is 

positive or negative, x2 is always positive. However, the utterance can also be classed 

as developing the general concept of a square number and of the action of squaring. 

The decision as to whether the generalisation can most appropriately be classified as a 

general fact or a general concept seems to depend on the form of the generality. The 

third generality that might have been considered factual is generality E, which 

generalises that graphs of quadratic functions always look like smiley faces. This I 

also coded as conceptual. While numerous mathematical concepts are invoked during 

this lesson, few are referred to by name. One concept that the teacher does appear to 

be attempting to direct students' attention towards is that of the three distinct terms 

within a quadratic function, in generality C. This lesson illustrates the main finding 

from the lesson observations regarding mathematical concepts; they are often used or 

introduced very differently from what might be expected from the literature. Just as 

this lesson on quadratics does not include use of the word 'quadratic', many central 

concepts were worked on and apparently developed without being named. The use of 

the student or teacher's own terminology, rather than that used by the established 

mathematics community, is also a common feature. In this lesson, a student describes 
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a parabolic graph as a horseshoe, and the teacher introduces his own preferred 

expression: smiley face. This may be because it enables them to distinguish between 

positive and negative coefficients of x2 more easily (smiley face and sad face), or 

because they are used to using the term themselves over many years, or for various 

other reasons. Either way, it is interesting that the teacher introduces the affective 

metonymy of 'smiley face' in preference to the technical metonymy of 'quadratic', 

especially as quadratics with negative leading coefficients require an alternative 

'scowling' metonymy. Given Davydov's insistence that to understand a concept fully 

one must know its name (Davydov, 1972/1990), the use and misuse of mathematical 

terminology is a focus for Chapter 8-11. 

Generality B is a procedure for calculating the values for plotting quadratic graphs, 

and thus can be classified as a procedural generality. 

Generality F is a mixture of attitudinal and behavioural, with CB indicating the value 

of a disposition to think about why mathematical rules work, rather than merely 

accepting, memorising and applying them. CB asserts that, in general. there is more to 

be learned and appreciated than just a general rule, there is value in considering why 

that rule always applies. 

7.3.2 Awareness of generalisation 

Analysis of the data revealed that the classification of generality into that concerned 

with behaviours. concepts or procedures was insufficient to encompass its full 

complexity. Each procedure, concept or behaviour that is available for students to 
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attend to can be brought to students' attention by teachers in various different ways. 

Some generalities were expressed in a way that encouraged cognitive consideration of 

their underlying meaning, justification and proof, while others could more fittingly be 

described as encouraging 'learning through doing'. When discussing the nature of a 

generality, a distinction is made here between enactive, cognitive and affective 

generalisation. If enactive generalisation involves 'being able to', while cognitive 

generalisation is associated with 'knowing', then affective generalisation includes 

'wanting to', 'feeling able to', 'being disposed to' (see Kilpatrick et al., 2001). 

The term awareness is used in many ways. While Mason uses awareness in relation to 

cognition, I use the term to encompass the three strands or behaviours: cognitive, 

enactive and affective. I use the word awareness to refer to what informs the response 

of the person to its environment. These may be manifested physically, emotionally 

and intellectually, which is more commonly summarised as enactive, affective and 

cognitive. These three categories have been used in various contexts to describe 

mathematical activity. 

One use of the three ideas is as the pairs of strands in the structure-ofa-topic 

framework, which was originally described in a series of booklets under the title of 

Preparing To Teach a Topic (Griffm and Gates, 1989; see also Mason, 2002c). The 

pairs of strands can be summarised by the expressions 'harnessing emotion', 'training 

behaviour', and 'educating awareness', which relate to the ideas of affective, enactive 

and cognitive awarenesses respectively. 
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Teachers can enactively train students' behaviour, by leading them through a 

sequence of tasks where the response becomes interiorised, or even a habit or ritual. 

The student's body may then perceive a generality, through copying or repeated 

exercises. before they become cognitively aware of it. Mason et al. (2005: 282) offer a 

task that illustrates how our attention can shift from thinking about what we are doing 

to letting our body almost unconsciously follow a pattern. However, this limited 

training of student awareness, whilst training students' behaviours, does not fully 

embrace the possibilities of their full awareness. When one or more of cognitive, 

enactive and affective dimensions is pushed to the background, student experience is 

impoverished, and learning made more difficult. 

Analysis at level two led to growing realisation that these three aspects of awareness 

could also be used to consider how generalisations themselves could be cognitive, 

enactive or affective. Through discussion with John Mason, we therefore extended the 

thoroughly documented discussion of enactive and cognitive generalisations to 

include affective generalisation (Mason et al. 2007). Where cognitive generalisation 

involves student's reasoning about the generality and enactive generalisation requires 

repeated application of a technique, affective generalisation alters students' 

dispositions to engage in future generalisation. The process of thinking 

mathematically can be fostered and sustained by the teacher not only demonstrating 

this way of thinking, but also using techniques to promote it in students. Affective 

generalisation involves students generalising from particular ways of working (Tabta 

& Brookes, 1966) to enjoying or gaining satisfaction from choosing to use those 

approaches on future occasions. In Mason et al. (2007) we showed how this fits with 

Vygotsky's language of zone of proximal development which refers to actions which 
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currently usually have to be triggered by the teacher, but which are beginning to be 

available to the student to initiate use of for themselves (see section 2.7). 

All three generalisations can be experienced in different mixtures differently by 

different students at the same point in the same discussion. While a particular 

generality may be intended by the teacher to direct students' attention cognitively, 

some students might generalise enactively and others have a more affective awareness 

of the generality. Each of these three types of generality can be negative or erroneous 

as well as positive and appropriate. For example, after 'practising' pages and pages of 

solving quadratic equations, a student could very easily form an enactive 

generalisation of an incorrect method or 'bugged procedure' (Brown & van Lehn, 

1980; van Lehn, 1989). Affective generalisations can be formed such as 'maths is 

boring' or 'I can't do this'. 

Generality [10]A: There is something that (all Affective: it is easy to check 
oj) these equations have in common, and they whether quadratics are correct or 
consequently share a common shape. incorrect because they share a 

general shape. 
Generality [10]B: When we're drawing the Enactive: splitting any given 
graph for a formula '/ike this', this is a general quadratic into a table with rows 
method that can (always) be used. like these can become almost 

automatic - if you see this, do this. 
Generality [lO]C: Formulae '/ike this' can (all) Affective: use of name encourages 
be broken into chunks, which themselves have ownership of ideas. 
general properties. Enactive: method involves 

breaking down. 
Generality [lO]D: Xl is (always) positive. Cognitive: thinking about whether 

and why this is true. 
Generality [lO]E: Quadratic graphs (always) Affective: the affective metonymy 
look like smiley faces. of 'smiley faces' is used. 
Generality [10]F: There is (always) value in Affective: a disposition is 
thinking about why generalities apply, rather encouraged wherein there is a 
than merely expressing them. value in considering why things 

work the way they do. 
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Generality B might be considered enactive, in that the procedure does not necessarily 

demand much cognitive attention. Given an equation of the form y = .... , students are 

encouraged by CB to break the equation down into its component parts. 

Generality D could be taken to be enactive, with students remembering that any 

number squared is positive, or even some version of 'a minus times a minus is a plus', 

without considering cognitively why this might the case. 

Generality F is an affective generality that encourages the process of cognitive 

generalisation. The teacher emphasises that different students work in different ways, 

and encourages those students who feel it is sufficient to have 'spotted' the rule to 

think about why it works. 

Teacher Ab, now you're quoting rules at us, which is fair enough, but 
what about the people in here who don't want to learn rules and 
they want to say, well wait a minute, if that was a million, then it 
doesn't do a nice uppy downy thing. 

In the six identified lesson [10] generalities, there was a misleading tendency for the 

procedures to be enactive, the concepts cognitive, and the behaviours affective. For 

example, the generality B was classified as a procedure in 7.3.1, and as enactive in 

the current section. The concept of generality D was classified as cognitive, and the 

behavioural generality Fwas classified affective. 

There are many reasons why these connections could predominate more generally. 

The link between procedural generality and enactive awareness, for instance, can 

derive from students being tested on the use of procedural techniques on routine 

questions. Teachers can consequently be tempted to follow textbooks in 
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demonstrating techniques using worked examples, and then invite learners to follow 

the template, or as Gillings (1972) reports from Egyptian papyry of 2000 BCE, to 'do 

thou likewise'. 

It is not necessarily the case, however, that general processes must be appreciated 

enactively, or that concept awareness involves cognitive awareness. By way of 

illustration of this point, the table below refers the reader to lesson segments described 

in chapter eight where concepts and procedures are generalised enactively, cognitively 

and affectively. 

Concepts Processes 
Enactive Understanding and usmg the Filling in the table of interior and 

concept of the lowest common exterior angles of regular polygons. 
multiple of the denominators when [21] BO 10(2) Interior and exterior angles 

adding fractions, although the (8-1.2) 

correct terminology was not used. 
f27] PF 9(1) Fractions(8-1I.2) 

Cognitive Defming rational and irrational Explaining whether you prefer a 
numbers. 10% increase then a 10% decrease 
[34] LR I O( 1 ) Rational and irrational or vice versa and why. 
numbers (8-11.3) [14] CB IO{I) Percentage change (8-1.2) 

Affective Praising students for writing the Students using and naming their 
wrong name for the correct angle own methods for approximation. 
theorem. [07] SJ 10(2) Approximations (8-1.2) 
[3 U CB 8(2) AnJdes (8-11.2) 

7.3.3 Derivation of generalisation 

The teacher can offer students an opportunity to use reasoning to derive a generality. 

Alternatively, they could offer students particular cases and invite them to spot a [the] 

general pattern. Some generalities discussed in the analysed lessons were recalled 

from previous lessons, while others the teacher simply told the students. CB uses 

some techniques to move away from telling towards students genera1ising for 

themselves. 
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Generality [lOlA: There is something that (all Telling: the teacher tells the 
oj) these equations have in common, and they students that there is a common 
consequently share a common shape. general shape to their graphs. 
Generality [IO]B: When we're drawing the Telling: the method comes from 
graph for a formula 'like this " this is a general the teacher. 
method that can (always) be used. 
Generality [IO]C: Formulae 'like this' can (all) Telling: this is CB's method for 
be broken into chunks, which themselves have drawing graphs. 
f(eneral properties. 
Generality [lO]D: Xl is (always) positive. Pattern-spotting or recall: 

although there are numbers in the 
table from which students could 
'pattern-spot', there are many other 
things to 'notice' about the 
numbers. 

Generality [lO]E: Quadratic graphs (always) Reasoning: considering extreme 
look like smiley faces. examples 
Generality [lO]F: There is (always) value in Telling: CB values justifying the 
thinking about why generalities apply, rather rules, rather than only applying 
than merely expressing them. them. 

Generality A is told by the teacher, although in such a way that students who notice 

the generality through pattern-spotting later in the lesson may legitimately believe that 

they spotted it for themselves. Rather than all students drawing the same four graphs, 

the teacher has asked them to choose four from ten, to create 'distributed examples' 

(Watson and Mason, 2005). As well as increasing the example-space, this gives 

students some ownership over the task, especially as they have some awareness about 

which would be easier and harder to draw. Increasing the example-space, then making 

statements about all the examples looked at, suggests greater generality, as the scope 

of the sample-space is a better representation of the scope of the generality in 

question. 

Generality D is to be recalled from a previous lesson, although it could also be 

pattern-spotting. 

Teacher: I reckon that Xl plus 3x minus 5 will also be a smiley graph. 

219 



Chapter 7 Types of Generality 

I also reckon, oh, I didn't go any higher, ~ plus 5x minus 5 will 
also be a smiley graph. What about ~ plus a million x minus 5? 

Lesson [10] CB 10(1) Quadratics 

Having established that the particular example of x2 + 2x - 5 makes a smiley face, CB 

moves very quickly towards the general through other examples of the form x2 + bx -

5. This might have been an interesting opportunity to ask students to suggest graphs 

'like this one' that would make a smiley face. 

Teacher: The plus 2x, won't have very big numbers on it. The plus 2x will 
just have, er 8, 6, 4, 2, 0, -2, -4, -6 and -8 on it. Can anyone tell 
me what's special about these numbers here? (indicating~ line) 

Lesson [10] CB 10(1) Quadratics 

CB directs their attention towards the relative size and significance of the term in x2 

through asking "can anyone tell me what's special about these numbers here?" This 

question suggests that there is only one 'special' thing about the numbers; the one CB 

is thinking of himself. 

Graphing software might have supported student understanding of generality E, 

where the effect of changing the coefficients a, b and c is considered. The extreme 

example of x2 + 1000000x -5 is used to move towards conjecturing about;' + bx -5. 

The intention here might be to direct students towards considering what a quadratic 

graph would look like with very large values of b or c, so as to offer them an 

opportunity to appreciate the relative significance of the term in Xl, which accounts 

for the quadratic graph's 'smiley face' shape. 
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7.3.4 Justification of generalisation 

A further dimension to the generalities in the main study lessons that emerged in level 

two analysis was whether the generality was mathematically necessary, 

mathematically conventional, or social. Not all mathematical generalities expressed in 

the lessons were mathematically necessary. For example, the rule that there are 3600 

in a full turn is a mathematical convention. 

Generality [lOlA: There is something that (all Necessary 
of) these equations have in common, and they 
consequently share a common shape. 
Generality [IO]B: When we're drawing the Conventional 
graph for a formula 'like this', this is a general BehaviouraVsocial 
method that can Js;zlways) be used. 
Generality [iOlC: Formulae '/ike this' can (a//) Necessary 
be broken into chunks, which themselves have 
~eneral properties. 
Generality [IO]D: x~ is (always) positive. Necessary 

Generality [1O]E: Quadratic graphs (always) Necessary 
look like smiley faces. 
Generality [lO]F: There is (always) value in BehaviouraVsocial 
thinking about why generalities apply, rather 
than merely expressing them. 

Generality A is mathematically necessary: quadratic graphs are in the shape of a 

'smiley' (or 'sad') face. In fact, this mathematically necessary generality is the central 

focus of the entire twenty minute class discourse. From the way CB mentions it, 

however, students might view it as a special maths teacher skill. Their attention might 

focus on the 'I' in 'I can tell which are right and which are wrong', thereby supporting 

a social rather than a mathematical generality. 
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It is not mathematically necessary to use the procedure in generality B to find the 

values to plot in a quadratic graph, although it is mathematical necessity that ensures 

that such a procedure works (for the restricted set of equations provided in external 

examinations). The generality is a convention, one encouraged by the writers of the 

GCSE exams through the provision of extendable tables, and here encouraged by CB. 

It is a mathematical necessity that algebraic expressions can be 'broken' into their 

constituent terms, and this section of the discourse could be seen to be referring to 

this. It is, however, conventional to refer to the term that is the subject of generality C 

as the y-intercept, or as c. CB, however, creates his own classroom convention by 

referring to it as 'Luke's bit'. 

7.3.5 Longevity of generalisation 

The generalities [IO]A - [IO]F selected in this lesson analysis can all be considered as 

universal generalities. By this it is meant that they can be applied in all situations. 

However, this is rarely made explicit in the discourse. and it therefore seems 

reasonable to question the extent to which the students are aware that these 

generalities apply beyond the particular example, task or lesson. 

Generality [IO]A: There is something that (all Universal: shape of quadratic 
oj) these equations have in common, and they graphs 
consequently share a common shape. 
Generality [IO]B: When we're drawing the Universally applicable method that 
graph for a formula 'like this', this is a general may only be temporarily employed: 
method that can (always) be used. this a method that can be used to 

plot any graph, but students at A-
level and beyond would be 
encouraged to plot graphs by 
considering values of the 
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coefficients and constant, rather 
than usin~ a table. 

Generality [lO]C: Formulae 'like this' can (all) Transient naming of universal 
be broken into chunks, which themselves have concept: the y -intercept IS a 
general properties. universal concept, but the name 

'Luke's bit' is unlikely to be used 
in future lessons. 

Generality [lO]D: Xl is (always) positive. Universal: property of 
multiplication of positive and 
negative numbers. 

Generality [lO]E: Quadratic graphs (always) Universal: as with generality 
look like smiley faces. [lOlA. 
Generality [lO]F: There is (always) value in Universal: there is value in 
thinking about why generalities apply, rather considering the underlying reason 
than merely expressing them. behind mathematical rules. 

Generality C, where CB refers to the c term of the quadratic as Luke's bit, is a 

universal general concept, being given a transient name. By referring to this term 

separately, CB may be offering students an opportunity to develop their conception of 

the constant. However, he would possibly be surprised if a student referred to the y-

intercept as Luke's bit in another lesson with a different context. 

Generality D is an universal generality, as ;. is positive for any real value of x, 

always. Given the focus in this lesson on equations of the form ~ + bx + c, there is 

the possibility that students may not appreciate the large scope of this generalisation. 

They might think that the rule only applies in the context of finding values to plot for 

quadratic graphs or when filling in tables of values. 

Distinguishing between transient and universal generalities leads to the question of the 

extent to which students are accurately able to detect the scope of a given generality. 

Teachers in the analysed transcripts often made statements that students were intended 

to interpret as general statements, that applied in more than one particular case, but 
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which were transient rather than universal. For example, in lesson [21], which is 

discussed in more detail in section 8-1.2, BG asks the students to write their answers 

to two decimal places. The students appear to interpret correctly that her intention is 

for this general rule to apply only in this one lesson, but there seem to be limited 

linguistic indicators that this is the case. 

36:38 Teacher: 

37:18 Teacher: 

44:31 Teacher: 

49:08 Teacher: 

Write the sum in your books first and then write the answers, 
yeah? So that when I'm checking ... 
Two decimal places is fme, yeah? Write your answers to two 
decimal places. 
Erm,just check {?} of your answers so far. Check your answers 
- two point one nine, four point six eight, three point eight seven 
five, nought point five, erm, nought point nine two. Tick that so 
far if you've got them. 
Right, how many of you have not done up to five? Ok, in that 
case, stop {?} and do these six instead. 
[general cries of dismay] 
Erm, just write the answers for those ones, yeah? You don't have 
to copy it down, just write the answers. 

Lesson [21] BG 10(2) Interior and exterior angles 

The procedure for drawing the graph of a quadratic is made to appear universally 

general in two main ways. Firstly, the teacher uses the same table to calculate values 

for all quadratic graphs, with x values always from -4 to 4, as below: 

x -4 -3 -2 -1 0 1 2 3 4 
~ 
2x 
-5 
xl+2x-5 

Secondly, although he talks in particulars, referring to the graph of x2 + 2x - 5 rather 

than a,;- + bx + c, he uses the defmite article in front of the terms, which makes them 

appear more general. The student says "2x, minus 5", but the teacher echoes it as "the 

2x, the minus 5". This use of the definite article may act to emphasise the general. 

Although there isn't always a 2x or a minus 5, use of 'the' might imply that we were 

224 



Chapter 7 Types o/Generality 

looking for a 'bx' and a 'c'. Although 2x and -5 are specific examples of this, use of 

'the' seems to indicate that the terms are acting as examples of a generality. 

He also emphasises the existence of three generally distinguishable parts to the 

quadratic (~, bx and c) through calling the third of these parts "Luke's bit". Going 

through lots of examples in a previous lesson, Luke had always supplied the 'c' 

answer. 

Teacher The minus 5 bit will just say minus 5 all the time, and will look 
like that (pressing reveal on screen to reveal line of -5s). 

Lesson [10] CB 10(1) Quadratics 

Is this a particular statement about a specific row in the current problem, or a general 

statement along the lines of "the c bit will just say c all the time"? "All the time" 

seems to say more here than just 'in all these boxes'. It hints at the generality that this 

part is always constant. That whatever number they use, it will be constant. 

Perhaps by exposing students to the general algebraic form ax2 +bx + c, a distinction 

could be made less ambiguously between when the particular was representing only 

the particular, and when it represented the general. This is explored more fully in 

chapter nine. 

7.4 APPLYING THE FRAMEWORK 

In this section I demonstrate how the emergent categories of generality described in 

section 7.3 can be used to provide a framework for analysing generalisations in a 
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mathematics lesson. Use of the framework offers a structure through which insights 

into the nature of the generality can be attained. 

Underlying generality Subject procedure, concept or behaviour 
Longevity transient or universal 
Justification mathematical necessity, conventional or 

behaviouraVsocial 
This given utterance Derivation telling, pattern-spotting or reasoning 

Awareness affective, cognitive or enactive 

Lesson [35] PF 7(mixed) Subtraction 

PF begins the lesson by clarifying some classroom expectations: 

00:29 Teacher: Ok, can we get ready nice and quietly please? There'll be no 
talking. Books out in front of you, ready to start please. And of 
course, never anyone swinging on their chairs. 

Lesson [35] PF 7(mixed) Subtraction 

Generality /35JA: 

There will never be anybody swinging on their chairs. 

Underlying generality Subject behaviour 
Longevity universal 
Justification social 

This given utterance Derivation telling 
Awareness enactive 

The subject of this last general rule is classroom behaviour. The teachers' intended 

awareness could reasonably be expected to be enactive. We may fmd that this is often 

the case with generalities with a behavioural subject. A more cognitive awareness 

might be encouraged with a question such as 'why do I ask you not to swing on your 

chair?', or 'what might happen if ... ?'. The utterance can be categorised as telling, 

although reasons may have been previously offered for why it is a good idea. The 

generality is behavioural/social, as it fonns part of the structure of a functional 

classroom. It seems reasonable to assume that the teacher intends the generalisation to 
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apply universally, indeed the use of the term 'never' might be seen as signalling this 

longevity of relevance. That PF feels the need to reiterate the rule, however, suggests 

that at least one student is not applying the rule as if it is universal, but rather expects 

to be reminded in each lesson. What is more, the prompt for PF's utterance was that a 

student was indeed swinging on their chair. Such a statement is actually therefore self-

contradicting. 

the lesson continues ..• 

PF then asks the class what they had been doing in the previous lesson. 

03 :23 Student: 
03:30 Teacher: 

We were rounding numbers to make sums easier. 
Fantastic, that's a great way to put it. Erm, we were rounding 
numbers in order to make calculations a lot easier for us. Erm the 
kinds of examples we had on the board were things like, we 
started off with something like four point nine six minus three 
point eight seven divided by two point something. And we said 
"Well if you round all those numbers, instead of having hideous 
calculation, we've got all these decimals and we're trying to 
divide, you know, four point eight four over six point two one"
we can round all the things together and it makes our life a lot 
easier. Ok, when we're dealing with just whole numbers, it 
makes our life a lot easier, it makes the calculating easier. And 
that's what we want isn't it, really, we wanna make everything a 
lot easier. That's fantastic. I'm glad we all remember about that. 

Lesson [35] PF 7(mixed) Subtraction 

Generality /35JB: 

P F offers a definition of 'rounding '. 

Underlying generality Subject concept, procedure 
Longevity universal 
Justification mathematical necessity, conventional 

This given utterance Derivation telling 
Awareness affective 

There is a mathematically necessary background to rounding, but it could also be 

considered to be a mathematical convention. Although PF gets a 'reminder' of the 
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concept that students had been thinking about in the previous lesson, he does not ask 

them for a full definition or description of what rounding involves, but instead he tells 

them what rounding is about. One reason for PF asking the students what they had 

studied in the previous lesson, especially given that it is not subsequently directly 

linked with the topic of 'subtraction', which is the focus of the current lesson, might 

be to emphasise the universal nature of the concept. The general concept is described 

repeatedly in terms of 'making things easier', and so may be intended as an affective 

generality that rounding is straightforward. Although two examples are offered of 

"hideous calculations" ("something like four point nine six minus three point eight 

seven divided by two point something" and "four point eight four over six point two 

one"), PF does not work through the process of rounding the numbers and estimating 

the answers. In fact, the description offered might more accurately be considered to be 

a definition of the concept of estimation or approximation, with rounding used as part 

of the approximating procedure. 

the lesson continues ••• 

PF then explains that the lesson will begin with a magic trick, which will be linked to 

addition and subtraction of whole numbers. 

04:17 Teacher: And it's gonna be - oohhh, all very excited - erm, and it's gonna 
be, it's gonna be linked in to the adding and subtracting whole 
numbers. Ok? Erm, and today I wanna think about adding and 
subtracting whole numbers, I wanna do it in a nice fonnal way, 
using nice columns. 

Lesson [35] PF 7(mixed) Subtraction 
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Generality [35JC: 

Whole numbers should be added and subtracted in a formal way, using 

columns. 

Underlying generality Subject 

Longevity 

Justification 

This given utterance Derivation 

Awareness 

Procedure: A formal method for adding and 
subtracting. 
Behaviour: The layout of the workings is 
being emphasised over the underlying 
method. 
Transient: there are many other ways to 
carry out subtraction. 
Conventional and behaviouraVsocial: The 
accepted traditional method for presenting 
these calculations. 
Telling: PF wants formal column 
subtraction. 
Affective: PF requests use of this procedure, 
describing it as 'nice'. 

Again the students are being told the generality, rather than spotting it or deducing it 

for themselves. On some occasions students will be encouraged to add and subtract 

integers mentally, on other occasions they will do so using informal pencil and paper 

methods. PF's stated preference for the formal method is not a universal rule, but this 

may not be clear from his choice of words. 'Today I wanna think about adding and 

subtracting whole numbers, I wanna do it in a nice formal way, using nice columns'. 

Although as a colleague of PF's I interpret his statement is meaning that today he 

wants to do it in a nice formal way using nice columns, this is not what he says 

literally. The transient nature of the preference may consequently not be apparent to 

the students. 
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the lesson continues ... 

05:04 Teacher: 

05:56 Student: 
05:57 Teacher: 

. .. Erm, what I'd like to do in, in this trick is, the first thing I'd 
like you to do is choose a number, erm three digit number, ok, all 
non-zero, erm where -
I know ... 
Ok, erm, and I'd like you to make sure that the first digit is 
greater than the last digit. Ok, so you choose a three digit 
number, say an example could be five hundred and thirty-two. 
Three digits, the first digit has got to be greater than the last 
digit, ok. That's the only, only rules we've got for this, this three 
digit number we've got. So we can't have anything like a 
hundred and ninety-eight or something like that, that would have 
been ... 

What I'd like you to do, underneath that number, can you reverse 
that first number, so write the reverse of that number. Yeah, just 
write that in the back of your books. 
And of course now you should have your first digits smaller than 
your last digits, hopefully in that second number. If you've done 
it all right. 
Erm, can you then put a line under those two numbers? Ok, erm, 
put a little subtraction sign to the left hand side of your second 
number, and do your subtraction please. Could you do the 
subtraction of those numbers. 

Lesson [35] PF 7(mixed) Subtraction 

Generality [35JD: 

Every three digit number must have non-zero digits, and the first digit must be 

greater than the last digit. 

Underlying generality Subject 
Longevity Transient: just for this 'magic trick'. 
Justification Social: rules for this particular trick. 

Mathematical necessity: to ensure that the 
subtraction results in a positive answer, and 
that the method involves 'carrying'. 

This given utterance Derivation Telling: PF tells students the rule. 
Awareness Cognitive: Students must think about 

whether their selected number fits PF's rule. 
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Generality {35JE: 

Write the second number underneath the first, put a line under the two 

numbers, put a little subtraction sign to the left hand side of the second 

number. 

Underlying generality Subject Procedure: how to subtract. 
Longevity Universal: a method that should always be 

used to subtract? 
Justification Conventional: although there are 

mathematical (place value) reasons behind 
the layout. 

This given utterance Derivation Telling: PF describes the traditional 
procedure. 

Awareness Enactive: the description is of 'doing', 
rather than 'think.in~'. 

Generality [D] and [E] are both expressed in terms of what PF would 'like', but 

further consideration reveals that the two generalities have very different natures. 

Generality [35]E is an universal convention for laying out the standard written method 

The value of the framework lies in the process, rather than the product, of its 

application. Consideration of the five identified aspects of the generality leads to 

deeper consideration of its complexity. 

7.5 CHAPTER SUMMARY 

This section provides an overview of the fmdings relating to the first research 

question. It summarises the claims made, and indicates the need for new directions. 

Analysis of the data at level two revealed that a variety of perspectives could be used 

to describe the nature of a generalisation. These included considering the subject of 

the underlying generality (procedure, concept, or behaviour), its longevity of 
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relevance (whether it applies just in the current task or lesson, or is more universal) 

and its justification (mathematically necessary, conventional or behaviouraVsocial). 

Generalisations could also be analysed through consideration of their derivation-

origin in the given instance (telling, pattern-spotting or reasoning) and the awareness 

that was being promoted (affective, cognitive or enactive). 

Underlying generality Subject procedure, concept or behaviour 
Longevity transient or universal 
Justification mathematical necessity, conventional or 

behaviouraVsocial 
This given utterance Derivation telling, pattern-spotting or reasoning 

Awareness affective, cognitive or enactive 

Application of the framework to expressions of generality in the transcribed data 

revealed the value of a framework like this in bringing to attention areas of possible 

mismatch between teacher intention and student experience. 
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CHAPTER 8-1: PROCEDURAL GENERALITY 

This chapter addresses the second research question: how are procedural generalisations 

expressed in mathematics classrooms? As was emphasised and illustrated in chapter 

seven, in describing the first dimension of the framework, a single utterance could be 

considered as involving behavioural, conceptual and procedural generalities. The 

intention is not to separate each category from the others, but to consider procedural 

and conceptual generalities separately in order to gain greater insight. For the purpose 

of analysis it became desirable to consider the types of generality separately, 

focussing in this chapter on procedural generality. This chapter develops from the 

analytical structures of chapter seven. The meaning and function of this question is 

considered in section 1.2, while the processes of analysis used to address this question 

were described in chapter 4. 

8-1.1 INTRODUCTION 

A substantial proportion of the secondary mathematics curriculum requires students to 

'be able to' or 'know how to' carry out various procedures, and it was therefore to be 

expected that the exposition and practice of these procedures would form a significant 

part of the lessons observed in phase two of this study. This chapter focuses on the 

ways in which students and teachers communicate that a procedure used to solve one 

problem, or part of a problem, can be applied to a general class of similar problems. 

Through addressing the research question, my attention shifted from considering how 

procedural generalisations were being expressed in the main study lessons, to 

questioning the research finding that teachers did not appear to consider the teaching 
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of mathematical procedures to involve generalisation. The intention of this chapter is 

to give the reader sufficient insight into the main study lessons that they appreciate the 

plausibility, credibility and trustworthiness of the overarching research findings 

related to research question two: 

i) every observed lesson contained mathematical procedures, each of which 

was an opportunity to generalise; 

ii) these procedures were rarely explicitly described as general, and the move 

between the particular and the general was implicit in those cases where a 

general expression was used at all; 

iii) viewing the teacher-led discourse regarding mathematical procedures as 

procedural generalisation offers insight into the numerous complexities 

and tensions involved in their introduction and appreciation. 

8-1.2 LESSON ANALYSIS 

Level three analysis of the lesson transcripts resulted in the identification of numerous 

episodes focussing on mathematical procedures. In this section, five lessons are used 

to illustrate how analysis resulted in greater insight into the process of generalising 

about mathematical procedures. Analysis of main study lessons revealed significant 

variety and complexity in the expression of general procedures. The purpose of this 

section is to offer the reader an opportunity to experience that complexity through 

descriptions of the observed lessons. The five episodes offered here were selected 

with the intention of reflecting the range of topics (including generalities that focus on 

number, algebra and geometry), of teachers, and of styles of journey in the fifty-two 

central study lessons. I explain the similarities and differences between the five 

lessons, and the central study lessons as a whole, at the end of section 8-1.2. The five 
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episodes were also selected because, in comparison with other observed lessons, the 

journeys were comparatively concise, and so could be shared with the reader within 

word constraints. 

In lesson [14] we journey towards the generality of percentage change, focussing on 

the consequences of following an n% increase with an n% decrease, beginning with 

the particular case where n = 10. In lesson [15] we journey towards the general 

procedure for drawing a rectangle given a fixed perimeter. In lesson [21] our journey 

concerns interior and exterior angles, and we journey towards the general procedure 

for finding exterior angles in regular polygons. In lesson [26] we journey towards a 

general procedure for proving angle theorems such as those concerned with alternate 

and corresponding angles. In lesson [12] we journey towards the general procedure 

for finding the square or the cube of a given number. Whilst following these journeys, 

the framework developed in chapter seven is used as a tool to consider the 

possibilities and problems with each journey. 

[14] CD 10(1) Percentage change 

The students had been set a homework task of writing about what would happen to an 

amount if it was increased by ten percent and then decreased by ten percent. 

00:30 Teacher: 

04: 13 Student: 
04:19 Teacher: 
04:23 Student: 

04:31 Teacher: 

04:35 Student: 

Enn, to start off, before I {?} what your answer to... {?} Your 
answer to a ten percent increase followed by a ten percent 
decrease {?} ... Enn can anyone read what they've put, they may 
have started {?} I don't mind at all. Ten percent increase 
followed by ten percent decrease, you've {?}. 
Enn you're decreasing ten percent for a hundred tenths so {?} 
Yeah, that makes sense to me. 
Or, enn, one percent is different in both cases so you can 
never ... 
That makes sense, yes, because you're talking about one percent 
{?}. Absolutely true. 
{?} 
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04:40 Teacher: 

04:45 Student: 

05:02 Teacher: 

Procedural Generality 

That's nice, yeah I like that. After you've increased by ten 
percent you have a new hundred percent. Can you read me what 
you put {?} 
If we increase them by ten percent and then decrease ten percent, 
we will not end up with the same number cos you, the ten 
percent that you increase is a {?} smaller number than after 
you've added ten percent {?} and you end up with less than what 
you started with. 
Absolutely. That thing about ending up with less than what you 
started with, I always find really, really hard to work out. I can 
never work out, I always know "Oh yeah, they're different", I 
always know that's not the same number you end up with". And 
then someone says "Is that more or less?" and I think "One of 
those two. Yeah definitely, definitely either more or less, one of 
those". 

[14] CB 10(1) Percentage change 

Underlying generality Subject procedure 
Longevity universal 
Justification mathematical necessity 

This given utterance Derivation reasoning 
Awareness cognitive 

Giving students time to think about a particular case, and to express their thoughts in 

writing for homework, provides a considered start to this lesson. It is unfortunate that 

the recording of this discourse is indistinct, so the students' contributions cannot be 

fully transcribed. Rather than CB simply telling the students the consequences of 

following an n% increase with an n% decrease, he gives them the structured 

opportunity to use reasoning to discover this for themselves, thereby encouraging 

more cognitive awareness. As the generality is mathematically necessary, it lends 

itself well to student discovery, in a way that conventional or arbitrary procedures do 

not (Hewitt, 1999). 

[26] KT 8(1) Angles 

This lesson involved general procedures for finding missing angles on diagrams, and a 

general procedure for proving angle theorems. The lesson began with six students 
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explaining the answers to six homework questions. Their explanations referred to the 

general procedures for finding angles on a straight line, and in a triangle. 

There was considerable consistency between the six students' styles of explaining 

their methods. They all combined stating the general 'angle fact' used with stating the 

sums they did in the particular case. 

04: 16 Student: 

04:32 Teacher: 
04:32 Student: 

04:50 Student: 

05:07 Teacher: 
05:08 Student: 

05:19 Teacher: 
05: 19 Student: 
05:27 Teacher: 

05:42 Student: 

06:00 Teacher: 
06:02 Student: 
06:04 Teacher: 
06:05 Student: 
06:06 Teacher: 

06:21 Student: 

Well there's one hundred and eighty degrees in a triangle. so 
ninety add forty is one hundred and thirty. so you need another 
fifty to make a like proper triangle, so B must be fifty. 
Excellent. 
And then cos that's a straight line, that has to have one 
hundred and eighty degrees in it as well, so there's forty 
already there so you need another one hundred and forty to make 
it a proper triangle. 

Um, I did that one tint and I needed, you need a hundred 
and eighty to make the straight line so I took a hundred and 
ten away from a hundred and eighty, which is seventy. 
Excellent. 
And then erm, so I did {?} on seventy and then a triangle has 
to be a hundred and eighty. 
Yep. 
So I did seventy plus seventy is a hundred and forty and {?} 
Good. So D is forty. 

Um I started with, am, knowing that a triangle is a hundred 
and eighty degrees in it, so I took the forty to make a hundred 
and forty, so I know these two, and I know these two are the 
same cos it's an isosceles, so I divided hundred and forty by two 
to get seventy. 
Excellent. What is it that tells you it's an isosceles triangle? 
Um because those two are the same. 
Those two marks are the same. 
Yeah. 
Two sides are the same, so two angles are the same. Yeah? 

Erm, with F, the opposite side's always the same so F has to be 
eighty. And for G, erm, because F and fifty plus eighty is 
hundred and thirty, urn, G has to be fifty because there are a 
hundred and eighty degrees In a triangle. 
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07:01 Student: 

07:15 Teacher: 
07: 17 Student: 

07:23 Teacher: 
08: 15 Student: 

[26] KT 8(1) Angles 

Procedural Generality 

Um, ninety add sixty is a hundred and fifty, and there have to 
be a hundred and eighty degrees in a triangle, so that is ... 
thirty. 
Good. 
Er, thirty add a hundred and fifty is a hundred and eighty, cos 
that's a straight line. 
Yep. So I is a hundred and fifty. 
Eighty add sixty is a hundred and forty, so it means J must be 
forty, erm, opposite angles are always the same so that's K is 
forty, forty add forty is eighty, and L must be a hundred. 

Underlying generality Subject procedure 
Longevity universal 
Justification mathematical necessity 

This given utterance Derivation reasoning 
Awareness cognitive 

I was struck by the similarity in the discourse between expressions such as "F has to 

be eighty" (06:21) and "there have to be a hundred and eighty degrees in a triangle" 

(07:01). Whilst the "have to be" in the second might be taken to indicate a generality, 

in the first quote this is surely not the case. Without linguistic tools such as this to 

guide them, students wishing to distinguish between particular and general statements 

must use non-linguistic indicators. 

The fact that the angle sum for a planar triangle is constant, and the convention that it 

is 1800 is used and referred to in five of the explanations, in all of which it is referred 

to as 'a triangle' , making the rule more clearly general, although the potential remains 

for 'a' to be interpreted as either singular or 'any' (Pimm, 1987). The straight line 

references appear more specific, with two of the three references being about 'that' 

straight line, rather than 'a' straight line. Both references to opposite angles use the 

word 'always', in an unambiguous signal of generality. The table below shows the 

expressions used by the students when referring to the general rules. 
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Triangle (04:16) Well there's one hundred and eighteen degrees in a 
triangle, 

(05:08) and then a triangle has to be a hundred and eighty. 
(05:42) Urn I started with, urn, knowing that a triangle is a 

hundred and eighty degrees in it, 
(06:21) because there are a hundred and eighty degrees in a 

triangle. 
(07:01) there have to be a hundred and eighty degrees in a 

triangle 
Straight line (04:32) And then cos that's a straight line, that has to have one 

hundred and eighty degrees in it as well, 
(04:50) Urn, I did that one fust and I needed, you need a 

hundred and eighty to make the straight line 
(07:17) a hundred and eighty, cos that's a straight line. 

Opposite an~les (08:15) opposite angles are always the same 
Isosceles triangle (06:21) the opposite side's always the same 

(05:42) I know these two are the same cos it's an isosceles 
(06:06) Two sides are the same, so two angles are the same 

KT then leads students through a proof that opposite angles are equal, and that 

alternate angles are equal, before asking the students to write their own proof that 

corresponding angles are equal. 

[15] LR 7(4) Perimeter and area 

This lesson began with students asked to draw rectangles with a perimeter of 20cm. 

LR then tells the class that a farmer has 20m of fencing and wants to make the biggest 

possible pen for his four sheep. A student conjectures that if the perimeter has to stay 

constant at 20 metres, then changing the dimensions will not alter the amount of space 

the sheep have. LR asks the class to raise their hands to show whether or not they 

agree with this conjecture. They then count squares to find the areas of the 6 by 4 and 

7 by 3 rectangles, and fmd that the conjecture is false. 

A general procedure for finding a rectangle with a perimeter is offered by one student. 
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This is not expanded to a general procedure for drawing rectangles with any given 

perimeter. 

10:52 Teacher: 

10:56 Student: 

11:01 Teacher: 
11 :02 Student: 

11: 11 Teacher: 
11: 14 Student: 

11: 19 Teacher: 

11:38 Student: 
11 :39 Teacher: 

Has anyone worked out an easier way, or a way you can work 
out what different sizes of rectangles we can use? Has anyone 
thought of a way? Enn, [student name], have you? 
Erm, well we {?} you know you can get two numbers that add 
up to ten ... 
Two numbers that add up to ten. 
Like seven and three, you could do like, do that and then just like 
double it. Because like ten is {?} 
What a good idea. 
Because then six add four makes ten, and then you know you 
just double it {?} makes twenty. 
Six add four makes ten, excellent, and then another six add four 
makes ten, so we've just got, we've got two the same again, so 
six add four is ten so another six add four to make twenty. So 
those are like complements to ten aren't they? Complements to 
ten, six and four. [student name], what does add to seven to 
make ten? 
Three. 
Three. Good. So let's have a rectangle which is seven and three. 
Draw that one, see if that one gets a perimeter of twenty. Seven 
and three, let's try seven and three. Tried seven and three? Try 
seven and three, seven wide, three high. 
Ok, we're gonna see if we can draw all the rectangles, all the 
rectangles we can with a perimeter of twenty. 

[15] LR 7(4) Perimeter and area 

Underlying generality Subject procedure 
Longevity universal 
Justification mathematical necessity 

This given utterance Derivation reasoning 
Awareness cognitive 

The student's general procedure, begun at 10:56, is very broken up, and consequently 

difficult for the other students to follow. The tension here is between valuing students' 

thinking, valuing the clear articulation of their thinking, and valuing their answer. It is 

important to make clear and distinct time for both of these skills in the mathematics 

lesson. Mocking students who express their ideas unclearly, or who appear not to 

understand a procedure because they struggle to discuss it, diminishes the likelihood 

of creating a conjecturing atmosphere (Mason et al., 1982). But students do need to 
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learn how to express mathematical ideas, so this must also be seen as valuable. This is 

supported by giving students time, in pairs, to construct an explanation before sharing 

it with the rest of the class, modelling explanations (as KT does in lesson [26]), or 

building time for students to explain to the class (as in lesson [38]). 

[21) BG 10(2) Interior and exterior angles, and order of operations 

The starter activity for lesson 21 followed on from a previous lesson in which students 

had found the size of the interior angles of regular polygons. At (00:02), BG defines 

'exterior angle' by drawing a diagram of a pentagon and labelling the interior and 

exterior angles. She then begins to fill in a large table that asks students to calculate 

(or copy from earlier in their exercise book) the interior angle of regular polygons 

with from three to 11 sides, and to use this to calculate the exterior angles, and thus 

the sum of exterior angles. To fill in the row concerning an equilateral triangle, BG 

draws a triangle on the board, marks one of the interior angles and its corresponding 

exterior angle, and works through the gaps in the table row as follows: 

01:24 Teacher: 

01:47 Student: 
01 :49 Teacher: 
01:51 Student: 
01:53 Teacher: 
01:54 Student: 
01:54 Student: 
01:55 Teacher: 

... so three, a triangle has three sides, we know it's a hundred 
and eighty degrees inside a triangle, one exterior angle, one 
interior angle is 60 because you're dividing it by three, ok? So 
how big is the exterior angle going to be? 
I just don't know, enn ... 
The interior and exterior add up to? 
Ah, a hundred and twenty! 
A hundred and? 
Twenty. 
Eighty. 
Eighty. A hundred and eighty. Right so that's going to be a 
hundred and twenty. That's where it was coming from. Ok? 

[21] BG 10(2) Interior and exterior angles 

Number ofsides Sum of interior Sizeofeaeh Sizeofeaeh Sam of exterior 
angles interior angle exterior anile angles 

3 1800 600 1200 3600 

4 
5 
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I And so on ... 

Until the prompt at 01:49, the definition of exterior angle that had been offered did 

not include reference to the fact that the sum of the interior and exterior angles is 

180·. Students were given a brief opportunity to notice this for themselves. BG then 

directs their attention towards it first by asking them to find the exterior angle of an 

equilateral triangle, hoping that they will become aware of the sum being 180', and 

then by explicitly asking, at 01 :49; "The interior and exterior add up to?". At this 

point, at least one student seems to notice that they sum to 180', and use this to 

calculate that the exterior angle is 120'. Perhaps concerned that this will not make 

sense for those students listening to the thread of discourse, BG does not allow "The 

interior and exterior add up to?"(Ol :49) to be followed only by "Ah, a hundred and 

twenty!" (01 :51), but waits until 180' is offered. Instances such as these when a 

student answers the original question asked when an extra question is inserted were 

identified as a phenomenon by Davis (1984). 

BG then finishes the first row of the table by asking "Then, if one of them is a 

hundred and twenty, how much will be all three of them?" (01 :55). Having received 

the answer 360', she states "Ok? This is basically what you've got to do for all these 

other polygons". 

Underlying generality Subject procedure 
Longevity universal 
Justification mathematical necessity 

This given utterance Derivation pattern-spotting 
Awareness enactive 

The general procedures here could be viewed in many different ways. Students are 

unlikely to have to fill in a table just like this one again, but might still perceive much 
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of the procedure to be about the filling in of tables, rather than calculation of angles. 

As well as potentially limiting student awareness to the enactive, this might result in 

students not appreciating the universal nature of the generality. Students may 

generalise from the particular line of the table that deals with triangles to completing 

other lines of the table through pattern-spotting without an awareness that the 

procedures can be generalised beyond the table. Students might also believe that the 

patterns are due to the social conventions of the way the table has been set up by BO, 

rather than appreciating that they are mathematically necessary. 

[12] SJ 10(3) Squares and cubes 

Lesson [12] is the first lesson SJ had with this year ten set three group at the start of 

their OCSE course. The first ten minutes are therefore taken up with explaining the 

course structure and other administrative details. The remaining fifty minutes are a 

'discussion' of how to fmd square numbers and cube numbers, with some time spent 

for students to record the square and cube numbers on matching cards. 

Thirteen minutes of discourse is offered in full in this section, as it seemed the most 

appropriate way to convey the seeming lack of journeying towards the general in this 

lesson. Although there is the potential for students to appreciate numerous procedural 

generalities, including how to square a number, cube a number, multiply by one, fmd 

multiples of nine, and multiply by four through doubling twice, the extent to which 

these are in fact appreciated is uncertain. 

Underlying generality Subject procedure 
Longevity universal 
Justification conventional 

This given utterance Derivation pattern spotting 
Awareness It is difficult to identify the 
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promotion of any particular 
aspect of awareness. 

The central general procedures in lesson [12] are how to find the square of a number 

and how to fmd the cube of a number. Each of these is introduced by SJ asking about 

particular cases, beginning with one (squared and cubed respectively), then asking for 

the general method after a few examples. As these students are in year ten, they have 

been exposed to the procedure for finding squares and cubes in previous years' 

mathematics lessons. The students offering the correct answers could be seen as 

working from the general to the particular, in applying their general procedure to SJ's 

particular numbers. The students who did not seem to recall the general procedure 

have the opportunity to work from the particular to the general, through spotting what 

the students offering answers are doing to each number. 

Having invited students to create matching cards with all the square numbers between 

12 and 152, and given them time to so do, SJ explains that the six remaining pairs of 

cards on their sheets are for the cube numbers. She does not give a general definition 

class what should go on the card that matches 13
• 

30:59 Teacher: 

31 :21 Teacher: 

31 :33 Student: 
31 :38 Teacher: 

31 :48 Student: 
31 :50 Teacher: 

Right, what goes in one? 
[students offer answers of three, two, or one] 
Hands up for one. Hands up for one. Hands up for three. [student 
name], why did you put your hand up for one? [student name], 
why did you put your hand up for one? 
Because one times one times one equals three. One. [laughter] 
Right. [student name] your mistake, as [student name] made 
earlier on, he said one times one was two, remember, he added it 
instead of multiplying it. So many of you will get this wrong, 
and it's-
Except me. 
Except [student name] at the back there. Cos you've got one 
times one is one, one times one again is one. So what's one to 
the power of anything then? What's that, effectively, what's one 
to the power of a million? 
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32:01 Students: 
32:02 Student: 
32:04 Students: 
32:06 Teacher: 
32:08 Student: 
32:09 Student: 
32:09 Student: 
32:11 Students: 

One. 
A million. 
One! 
What's one to the power of seven? 
A million. 
One. 
Seven. 
One! 

Procedural Generality 

[12] SJ 10(3) Squares and cubes 

The student at 31 :33, when asked to explain why 13 is one, says that she has 

calculated one times one times one. This might indicate to other students that the 

general procedure for finding n3 is to calculate n times n times n. However, as the 

general procedure is explained with a particular example, other interpretations are 

available. including. in this case, multiplying (n + 2) lots of n, or n2 times n2 times n2
• 

At 31 :38 SJ confirms this general procedure by directing students' attention towards 

the possible error of multiplying the number by three instead of multiplying it by itself 

three times. Again. the procedure is discussed in the very special particular case of 

one. obscuring important generalisation. 

At 31 :50 SJ draws students attention to the generality 1 n = I, although it seems some 

students have not been following the discussion, as the answers of seven and a million 

either suggest that some students are continuing to add rather than multiply, or that 

they are being deliberately obtuse. 

32: 13 Teacher: 

32:21 Student: 
32:21 Student: 
32:23 Student: 
32:26 Student: 

32:38 Teacher: 

Are you winding me up now? I hope you are, I don't know if 
you are, else I'm going to be (?). Right, what about two cubed? 
Ooh,ooh. 
Six. 
Eight. 
Twelve. 
[general disagreement] 
Right. .. Think before you shout a number. What sum do I have 
to do to work out what the answer to two cubed is? What am I 
working out, in my head, what am I making my brain do, if I say 
to you "two cubed"? What am I...? I know I've let you shout out 
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33:08 Student: 
33:10 Teacher: 

33:24 Student: 
33:25 Teacher: 

33:51 Student: 
33:52 Teacher: 
33:54 Student: 
33:55 Teacher: 

Procedural Generality 

but some people have put their hand up nicely ... {?} I'll have a 
go at remembering your name - [student name]. 
Alright, would you do two times two times two? 
You do two times two times two. Alright, because it's two to the 
power of three, so I want three lots of two. So, now then, I know 
we can all multiply by two. [student name]. 
It's eight. 
It's eight isn't it. We're not adding. Who shouted six? Right, we 
just need to think about it - we're not adding, and we're not 
doing two add two add two, and it's - cos I can appreciate why 
you said six cos ... [all talk at once]. So let's think about it, so 
multiplied by two would be ... ? 
Four. 
Four, four multiplied by two would be ... ? 
Eight. 
Eight. We have to think when we're doing our cubes or we're 
gonna get them wrong. Alright, so it takes us a few seconds to 
think about it to stop us from getting it wrong. 
[several students talk at once] 

[12] SJ 10(3) Squares and cubes 

SJ's use of the term 'sum' rather than 'calculation' at 32:38 is ambiguous, as in 

Mathematical English (see 2.3.1) 'sum' means add. Despite the student having 

explained that cubing one involved multiplying one by one then by one again, the 

common misconception that 23 is 6 arises in this section, along with the less easily 

explained suggestion that 23 might be 12. At 32:38, 8J directs students' attention 

towards the general procedure, asking "what am I working out, in my head, what am I 

making my brain do, if I say to you "two cubed"?". Having received an explanation 

from a student, SJ amplifies their response with "You do two times two times two. 

Alright, because it's two to the power of three, so I want three lots of two" (33:10). 

Her amplification contains the concerning ambiguity, which she explicitly attempts to 

clarify later in the discourse, as 'three lots of two' signals multiplication of three by 

two. The general procedure is still being expressed through particular examples, 

although the 'because' clause of the sentence links the form of the expression ''two to 

the power of three" with the procedure required "three lots of two". Given 8J's 
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repeated emphasis that 23 means 2x2x2 rather than 2+2+2, her use of the expression 

"three lots of two" is potentially misleading. 

34:23 Teacher: 
34:24 Student: 
34:30 Teacher: 
34:33 Student: 
34:34 Teacher: 

35: 11 Teacher: 

36:01 Student: 
36:03 Teacher: 

36:09 Student: 
36: 10 Teacher: 
36: 12 Student: 
36: 15 Teacher: 

36:27 Student: 
36:28 Teacher: 
36:32 Student: 
36:34 Student: 
36:35 Student: 
36:36 Student: 
36:37 Teacher: 

36:52 Student: 
36:53 Teacher: 
36:66 Student: 
36:56 Teacher: 
36:58 Student: 
36:59 Teacher: 

37:06 Student: 

Three cubed. 
Oh, you're having a laugh. 
Think about it right, think
Nine. 
Three cubed, what am I trying to do? Three times three times 
three. 
[all talk at once, volume increasing] 
Guys! Guys! Guys! Hang on a minute! Manners, now, the lot of 
you. Alright, I appreciate that I have let you call out at some 
points in my lesson. But I do not appreciate the way some of you 
have just been acting then. And I do not want to spend the rest of 
my Maths lessons with you lot telling you how to behave. Am I 
making myself quite clear now? 
Yes Miss. 
And has anyone got a problem with it? 
You know the answer to that? 
Twenty-seven. 
Twenty-seven, how do you know it's twenty-seven? 
Cos three times three is nine, times three is twenty-seven. 
Alright. It just takes that few minutes to think about it, doesn't it. 
three to the power of three means there's three of them; three 
multiplied by three multiplied by three. 
Nine. 
Three multiplied - you're at it again. Three multiplied by three. 
Ohhh! That's what I was doing. 
Nine. 
It's twenty-seven. 
Eighteen. 
Right [student name] - {?} four legs on your chair, four legs on 
your chair, or you'll be kneeling in my lessons from now on. 
Right, three multiplied by three, let's count the threes. Three, six, 
nine, yeah? [student name]? 
Miss? 
What's three mUltiplied by three? 
Vh? 
Three multiplied by three. 
Nine. 
Nine. I'm at nine now, I've got to multiply it by three again. 
Nine multiplied by three? 
Twenty-seven. 

[12] SJ 10(3) Squares and cubes 

Due to the particular numbers involved in this example, it is difficult to know whether 

the students offering 'nine' are part way through the calculation 3x3x3, or have 

completed the inappropriate calculation 3+3+3. Different calculation speeds lead to 
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answers being shouted out at different times, with some students becoming inattentive 

whilst waiting for others to follow the procedure. 

37:07 Teacher: 

37: 1l Student: 
37:11 Student: 
37: 13 Student: 
37: 14 Teacher: 

37:37 Student: 
37:38 Teacher: 
37:40 Student: 
37:41 Teacher: 
37:45 Student: 
37:47 Teacher: 

37:51 Student: 
37:53 Student: 
37:55 Teacher: 

38:28 Teacher: 

38:42 Teacher: 

40:09 Teacher: 

40:25 Student: 
40:26 Teacher: 

40:32 Student: 
40:33 Teacher: 
40:34 Student: 

Twenty-seven. You know the trick with your nine times table 
and your fmgers? 
Yep. 
No, I don't 
Yes I do. 
Right, I'll show you then. What you have to do, ok, and I have to 
go like this because I find it easier that way - if I had to do nine 
multiplied by three, I would count along my fingers and I would 
go that's one, two, three, so I would put my third finger down. 
Which leaves me with ... You put your fourth finger down. I'm 
doing times three. 
Oh I'm doing times four! 
Well, {?} we're doing three times nine. 
Oh. 
Right, third fmger down, are you watching? 
Ohyeah! 
Twenty on there, and how many on that side? One, two, three, 
four, five, six, seven. Twenty-seven. 
That is so smart! 
But what if you've got fmgers missing? 
Ok, that would be a problem. Perhaps you could just draw some 
fingers and pretend you had five on one hand. 
[general chatter] 
So it'll carry on working for any of your multiples of nine, your 
fingers, ok? So if I've got five times nine, I count to my fifth 
finger and put it down, that'd give me four and five on that side 
to give me forty-five. Right, it's just something that's worth 
knowing. 
So we were wanting to do nine times three which I think [student 
name] told us a bit ago would give us the answer of twenty
seven. 
Right. What do you have to know next then? You have to know 
what four cubed is. And these, I expect for you to know them 
quite quickly. And that's our aim, to be able to do them quite 
quickly at the end, ok? Four cubed. How many - right let's think 
about it. Think about it, I want brains thinking. I don't want silly 
answers, I want brains in gear, thinking about what it means. If 
you can't do sixteen multiplied by four, you might want to 
double it and double it again. Double it and double it again. 
[general discussion] 
Four times four is sixteen, we know that from our four squared, 
but we've got to multiply that by four. I appreciate that 
multiplying by four isn't always - [indistinct aside to a student] 
- isn't always the easiest th\ng to do. 
Times four? 
Times four, so that would be sixteen times four. I actually find it 
easier in double it then double it again. 
{?} 
Do you need to go outside? 
No. 
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40:35 Teacher: 
40:39 Student: 
40:43 Teacher: 
40:45 Student: 
40:46 Teacher: 
40:46 Student: 

41 :02 Teacher: 

41 : 16 Student: 
41: 17 Teacher: 

41 :43 Teacher: 

Procedural Generality 

Right. 
It's forty-eight. No, forty-six. Forty-six, it is. 
What's sixteen doubled? Double sixteen for me. 
Thirty-eight. 
Thirty-two, so double thirty-two for me. 
It's sixty-four! Sixty-four. 
[discussion] 
Alright, go! [student name], work. that out. All of you, go. I've 
got to pick something up from {?}. I don't want to hear any 
answers, it's not fifteen, you're adding. I want you working it out 
now, in your heads. 
Eighty-six. 
No, in your heads. Thank you. 
[students chat] 
Five times five is twenty-five, twenty-five times five - I find it 
easier to count in twenty-fives cos I can use my fingers - twenty
five, fifty, seventy-five, a hundred, a hundred and twenty-five is 
what I get to. 

[12] SJ 10(3) Squares and cubes 

Having found the value of five cubed, they do not discuss the cube of six, seven, eight 

or nine as they are not required by the exam syllabus. 

42: 13 Teacher: 

42:22 Student: 
42:23 Teacher: 

42:32 Student: 
42:34 Teacher: 

42:51 Student: 
42:54 Teacher: 
42:56 Student: 
42:59 Student: 
43 :02 Student: 
43 :06 Teacher: 
43: 10 Student: 
43: 11 Teacher: 
43: 11 Student: 
43:16 Teacher: 
43: 17 Student: 
43: 19 Teacher: 
43 :21 Student: 
43:22 Teacher: 
43 :22 Student: 

You're lucky in the fact you don't have to know six, seven, eight 
and nine. They don't reckon that you have to know them otT the 
top of your head, so one, two, three, four and five you do and 
you actually do need to know -
Are we going to write these down in the front of our books? 
You're going to do this in a second, alright? I just wanna go 
through them now and we'll, I'll tell you what I want to do with 
them in a minute. Ten cubed. 
Three hundred. 
No, and I don't want any calling out, remember. Ok? Ten cubed. 
What you are doing {?} 
Right what I'm doing is ten times ten times ten. Ten multiplied 
by ten multiplied by ten. 
Four hundred. 
Ten multiplied by ten multiplied by ten. 
Ten multiplied by ten multiplied by ten. 
Ten times ten is a hundred, times ten is a thousand. 
Thirty. 
[student name]. [student name]? 
What? 
Don't add. 
Ohyeah. 
{?} 
It's a thousand. 
Ten times ten times ten. 
I think it is. 
[ student name]? 
One thousand five hundred? 
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43:28 Teacher: 
43:30 Student: 
43 :31 Teacher: 
43:32 Student: 
43:44 Teacher: 

What's ten times ten? Sarah? 
Hundred. 
Hundred. Times ten? 
Thousand. 
A thousand {?} Alright? A thousand. 

[12] SJ 10(3) Squares and cubes 

Procedural Generality 

Students do not seem to be taking notice of each others' answers. Although, at 42:59, 

a student offers the explanation and answer ''ten times ten is a hundred, times ten is a 

thousand", students continue to offer suggested answers of30 and 1500. 

Whilst research question two focuses on procedural generality, and although the 

generalities in lesson [12] can be viewed as procedural, a greater insight can perhaps 

be gained into this lesson through consideration of those generalisations being made 

by students regarding classroom culture. 

Summary of lesson analysis: similarities and differences 

As might be expected, the full data set of fifty recorded lessons contains an enormous 

variety of styles of journey towards appreciation of general procedures. Level three 

analysis of the fifteen transcribed lessons developed my sense that while some of the 

journeys involved the majority of students progressing in their appreciation of the 

general procedure, others were leaving students behind, or some participants were on 

very different journeys to others. The five lessons offered in section 8-1.2 were 

selected to give the reader a sense of this distinction. My impression throughout the 

stages of analysis was that the discourse in lessons [14] and [26] offered greater 

opportunity for appreciation of the general than lessons [15], [21] and [12]. 
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The clarity of student explanation in lesson [26], where they explain the reasoning 

behind their homework answers using angle facts, seems to contrast with the more 

'choppy' style of much of the classroom discourse analysed. In lesson [15] the short 

student responses were considered as one reason for the student's general procedure 

not seeming to be adopted by other students in the class. The quality of student 

explanation arose as an issue in lessons [IS] and [12], in each of which the teacher 

seems to be encouraging students to contribute ideas and share ideas, but the students' 

contributions do not seem conducive to supporting each others' learning. Lesson [IS] 

is marked by a lack of student contributions, in which one student is prompted to 

explain her approach to an apparently unreceptive class. LR seems nervous of the 

students not understanding what they have been asked to do. One reason for asking a 

student to explain, rather than explaining herself, may have been to reassure herself, 

and the other students, that there is a student present who has followed LR's 

instructions, so the task is possible. Lesson [21] appears to reduce to a table filling 

exercise in which students are working with the grain, and missing opportunities to 

work across the grain (Watson, 2000). 

8-1.3 FINDINGS 

The review of the literature offered a variety of distinctions between approaches to 

teaching general procedures. Level three analysis involved applying these well

established distinctions to the transcribed lessons in pursuit of an explanation for the 

differences between the journeys. This section explains how these distinctions seemed 

insufficient to account for the significant differences in character of the five journeys 

towards generality explored in section 8-1.2. 
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In section 2.1.3 teaching was separated into deductive or inductive, while student 

understanding was categorised as either computational or conceptual. Both teaching 

and learning were seen to be focusing on either a structural or an empirical 

appreciation. These theoretical categories and definitions may prove useful for 

teachers in planning lessons, or to researchers examining certain aspects of teaching 

practice, but their contribution to accounting for the success or otherwise of a journey 

towards the general seems limited. 

In accounting for differences between the lesson episodes, it is difficult to assess 

whether student understanding is computational or conceptual, structural or empirical. 

As discussed in section 2.2, it is possible for students to have procedural knowledge 

of how to divide two fractions but have poor conceptual knowledge of either fractions 

or division (Graeber, 1999). One way in which teachers encourage students to attain 

conceptual rather than merely computational knowledge is to promote structural 

generalisation, rather than empirical (this distinction was first introduced in section 

2.2). This takes place through teachers directing students' attention to underlying 

meanings, structures or procedures involved in the particular cases, rather than 

towards form. In the five lessons explored in section 8-1.2, one might argue that 

lessons [14] and [26] seem more effective in developing students' conceptual 

knowledge than lessons [15], [21] or [12]. However, this distinction does not seem to 

take us any nearer to understanding why this might be the case. 

One possibility, again outlined in chapter two, is that one way of promoting 

conceptual understanding is to offer students the opportunity to discover or at least to 

express the generality for themselves. The distinction between inductive and 
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deductive teaching methods for general procedures was described in section 2.2. Any 

given general procedure can be approached from either of two directions: beginning 

with the general or beginning with the particular. As discussed in section 2.2, teachers 

might teach deductively or inductively: teaching rules first and applications later or 

offering examples from which learners use their own powers with guidance. 

Two of the lessons examined in section 8-1.2 might be defined as having an inductive 

approach to teaching general rules. In lesson [21], BG offers students a table to 

complete that gives them the opportunity to 'discover' that the sum of exterior angles 

is 360°. In lesson [14], CB uses an inductive method to generalise about repeated 

percentage change. Although these could both be classified as inductive approaches, 

they are qualitatively different. 

Many of the general procedures identified in 7.3 were introduced in a way that does 

not appear to fit into either of these categories. The teacher does tell the students the 

generality (a characteristic of the deductive approach), but they do so having worked 

through various particular examples. In a sense, the teacher could be described as 

modelling the inductive approach. In accounting for the difference, in terms of 

apparent student understanding and involvement, between lesson segments, the 

distinction between deductive and inductive approaches does not seem critical. 

Structural understanding does seem to be being encouraged in lessons [14] and [26] 

more effectively than in the other three episodes described. This might be partially 

attributable to the teachers' emphasis on proof and justification. Students' cognitive 
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awareness was being promoted through challenging them to explain why the rules 

worked the way they did. 

Another possible contributory factor is that the students in lesson [14] had been asked 

to think about the topic for discussion for homework, and had written explanations of 

their thinking that may have supported them in participating in the discussion. Lesson 

[26] also began with student contributions based on homework, which led into the 

topic of the lesson. This student reflection need not have taken place at home, but 

offering students time to think independently before discussion might account for the 

qualitative differences in the discourses. 

8-1.3.1 A role for algebra? 

In this chapter, with the emphasis of analysis on the expression of procedural 

generality, it seems relevant to consider whether algebra might have been a useful tool 

for describing the general procedure in this case. 

Each of the five lessons described in this chapter were concerned with generalisations 

that could be expressed using elementary algebra. In lesson [14] the teacher directs 

the students to offer particular cases where an nolo increase is followed with an n% 

decrease, beginning with the particular case where n = 10. In lesson [15] the different 

'ways of seeing' the perimeter of a rectangle could have been expressed in general, 

for example, using / to stand for the length and w for the width. These might include 

21 + 2w, / + w + / + w, or 2(/ + w). In lesson [21] the findings from the table of interior 

and exterior angles could have been expressed, using e to stand for the exterior, and i 

for the interior angle. In an n-sided shape, i + e = 180, e = 360ln and so on. In lesson 
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[26] algebra could be used to express the alternate and corresponding angle theorems, 

facilitating proof. In lesson [12] the terms 'square' and 'cube' might be defmed less 

ambiguously through stating that 'n2 = n x n' and n3 = n x n x n. 

Through consideration of the open and exploratory research question: 'How are 

procedural generalisations expressed in mathematics classrooms?', questions have 

emerged concerning the possible advantages of being more explicit about the general 

nature of the procedures being taught and used in mathematics classrooms. In 

particular, an awareness that many of the procedures on the secondary mathematics 

curriculum can be expressed using secondary level algebra appears to offer potential 

both for enhancing awareness of the general procedures themselves, and for using 

algebra purposefully (Ainley et al., 2005). 

8-1.4 CHAPTER SUMMARY 

A lesson where mathematical procedures are being taught and learnt is necessarily 

one in which generality is being expressed. In this chapter, the complexities 

associated with expressing general procedures have been exposed. In order to 

highlight the complexity and variety of general procedures, I have offered detailed 

episodes from five of the fifty-two main study lessons. 

Mathematically necessary procedures can be deduced by students themselves using 

their reasoning powers. This promotes cognitive awareness. Teachers can offer 

several examples, and ask students to express what is the same and what is different, 

or simply ask them what they notice about the examples offered. Where the procedure 

is revealed to students, rather than students deriving it for themselves, an alternative 
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possibility for supporting cognitive awareness of the generality might be to invite 

students to express the procedure algebraically. 
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CHAPTER 8-11: CONCEPTUAL GENERALITY 

This chapter addresses the third research question: how are conceptual generalisations 

expressed in mathematics classrooms? Having introduced the themes of the chapter (8-

11.1), Section 8-11.2 reports on analysis concerning the way in which new 

mathematical terminology is introduced. Section 8-11.3 explores the extent to which 

new concepts introduced by teachers are used subsequently by teachers and students 

to communicate ideas. In section 8-11.4 the development of the meaning and scope of 

general concepts is examined. The chapter fmdings are summarised in section 8-11.5. 

8-11.1 INTRODUCTION 

Reference to any mathematical concept requires generalisation, as a particular 

mathematical object is being seen as a member of a set of similar objects. 

Mathematics has developed an elaborate technical vocabulary, the use of which has 

been subject to much attention (e.g. Durkin and Shire 1991, Pimm 1987). The British 

government provides schools with a comprehensive list that year 7 (10-11 year old) 

students are required to "use, read and write, spelling correctly" (DfEE, 2001). The 

United Kingdom National Strategy for Key Stage 3 (DfEE, 2001) expects students to 

'use', 'understand', 'distinguish between' and 'define' a large nwnber of 

mathematical concepts. 

These mathematical concepts are sometimes, but not always, formally named. For 

example, teachers talking about fractions often refer to the 'nwnber on top', or even 

'the top' perhaps because it almost as quick as saying 'nwnerator'. Both expressions 

are intended to indicate a generality. The teacher cannot be sure, however, that 
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students view the word or phrase as general rather than particular. The example of 

numerator is unusual in that an approximate definition of the mathematical term (top 

number) is hardly longer than the term itself. If the definition feels too cumbersome to 

use, as might be the case with terms such as 'quadratic', or 'rational number', teachers 

must choose between the general mathematical word, and a specific numeric example. 

However often, as in the case of denominator (which 'denominates' or signals the 

sizes of portions) and numerator (which enumerates the denominated portions, saying 

how many there are), these mathematical terms offer some insight into meaning and 

use. This chapter focuses on the comparative advantages of using ordinary English 

and mathematical English, the factors that might influence the decision to use one or 

the other, and the influence that they have on learners. 

Alongside use of the concept's name, a multitude of options are available for the 

expression of conceptual generality, of which some are exemplified in the following 

list: 

Mathematical name 
Particular example 
Colloquial name 
Placeholder name 
Definition 

for example ... 
decimal fraction 
0.76 
pointy number 
thingy 
proper fraction whose denominator is a power of 10 

Often a combination of these terms will be used. "Is the answer a pointy number 

thingy like 0.76?". Arguably the student who asks this question has an emerging 

concept of' decimal', although in this instance he or she is unaware of the option to, 

or chooses not to, use the mathematical name. 
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A student whose concept of decimal fraction is not fully developed might be unclear 

about the specific numerical examples that would or would not be encompassed under 

the term. As discussed in chapter 2, I use Watson & Mason's (2005) expression 

dimensions of possible variation, adapted from Marton & Booth (1997). 

There are several definitions available for decimal fraction. We could define it as: 

[A] A decimal fraction is a fraction where the denominator (the bottom 
number) is a power often (such as 10, 100, 1000, etc). 

www.mathsisfun.com 
[B] A proper fraction whose denominator is a power of 10. 

www.thefreedictionary.com 
[C] A fraction in which tenths, hundredths, thousandths, etc are written in 
figures after a decimal point which follows the figure or figures 
expressing whole numbers, eg 0.5 = five tenths; or K 

www.allwords.com 
[D] Any number written in the form: an integer followed by a decimal 
point followed by a (possibly infinite) string of digits. 

www.answers.com 

There are some interesting differences between these definitions. Definition [D] does 

not include the requirement that the fraction be a proper fraction (and so includes 

fractions of magnitude greater than 1). The defmitions focus on the way the fraction is 

written, but whilst [A] and [B] are written as fractions, [C] and [D] focus on the 

decimal form. 

Analysis of the main study lessons and levels 1 and 2 highlighted three issues 

pertinent to the expression of conceptual generality in mathematics classrooms: 

• When is the mathematical name used (and by whom)? 

• How is the general definition expressed? 

• How do students come to appreciate the dimensions of possible variation of a 

concept? 
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These relate to Davydov's (1972/1990) three criteria for understanding a concept, 

which will be used as a framework for the analysis addressed in this chapter. 

Segments from four different lessons are discussed in this chapter. These are not 

intended to be representative of the fifty-two central study lessons. Rather, each 

excerpt is one that particularly struck me during the analysis, and illustrates the 

fmdings of level 3 analysis. In some cases the episode offered a particularly concise 

example of a phenomenon that was noted repeatedly in the fifty-two central study 

lessons. In others cases the episode was striking for being unusual in comparison with 

the other observed lessons. The rationale for including each of the four episodes is 

explained as each particular extract is introduced. 

8-11.2 INTRODUCING CONCEPTS: NEW NAMING 

The most obvious way of referring to a mathematical concept, one might think, would 

be to name it. When analysing the fifty-two classroom transcripts, coding for 

expressions of conceptual generality, it was somewhat surprising to find that names 

were not used as much as might be expected when expressing conceptual generalities. 

Of Davydov's three criteria for understanding a concept, introduced in sections 2.1.2 

and 2.5, the criterion that the concept should be associated with a particular term, 

referred to as 'naming', consequently became a particular focus. I searched for 

instances of either teacher or students using specifically mathematical terminology, 

such as 'irrational number' or 'sequence' and considered possible reasons for the use 

of that particular word. I also noticed occasions when such a word could have been 

used, as the concept was being referred to, but the tenninology was not mentioned. 
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The commonly accepted use of a word is to refer to a concept whose meaning is 

taken-as-shared. The term 'taken-as-shared' is attributed to Schutz (1962) who coined 

the term taken-to-be-shared, later adjusted to taken-as-shared by Streeck (1979). It 

refers to the meaning that is thought to be shared by others. This is not to deny that 

individuals hold their own unique meanings, merely to insist that communication is 

made possible only if a meaning is negotiated that is thought to be shared by others. 

Cobb, Yackel & Wood (1990) describe how classroom discussion is an opportunity 

for taken-as-shared meanings to emerge in the classroom, and that these meanings can 

become the shared mathematical meanings of society. Following Davydov, it would 

therefore be expected that names of mathematical concepts would be used, the scope 

and meaning of which were appreciated by all participants in the discussion. 

Based on the main study data, it is argued that a word can 'make sense' even when 

unfamiliar, if it is used to point to a specific and indicate that it represents a more 

general case. This happened particularly in those classrooms where mathematical 

meaning was being negotiated and developed by students and teachers. There was a 

sense that precise definitions were not always valued. Words were used as tools; a 

means to the end of understanding. 

The analysis focussed on those parts of lessons where a new concept was being 

introduced. Several examples were witnessed, as expected, where a new word was 

introduced with a specific example, or several, or a definition. On other occasions, a 

concept was discussed for some time before a new piece of vocabulary was attached 

to it. Cases were also observed where teachers appeared to have decided that a 

conception need not be named at all. A teacher emphasising that 5 + 7 is the same as 7 
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+ 5, and so b + a is the same as a + b, appeared to be developing students' 

conceptions of the commutative law, although the term was not mentioned. The UK 

National Strategy (DtEE, 2001) explicitly discourages teachers from using this 

terminology, apparently due to its perceived complexity. 

In observed lessons, there was a relatively high frequency of interactions where words 

were being used in the classroom apparently with the purpose of communication, but 

where context or subsequent discussion made it clear that only the speaker (and 

maybe a very few of the listeners) could understand the term being used. The word, 

then, was being given for a concept that either students had no conception of, or if 

they did have conception, it was not yet related to the word being used. I found 

examples of various ways in which these initially 'meaningless' words were discussed 

in order to link them to previous conceptions, or build new conceptions. These are 

discussed below. 

The statement, "we're going to study quadratics, let's start with 3~ + lx" is different 

from "we're going to study 3~ + lx." If the word 'quadratic' does not yet have a 

reference for students, then the meaning of the two sentences is arguably identical. 

The sense of the first, however, emphasises that the particular case of '3~ + lx' 

represents some kind of general concept. 

Analysis revealed that in the lessons observed, teachers often seemed to use words 

with no shared reference, words that students did not yet 'have a concept' of. The 

development of a sense of 'how general' is crucial to students' appreciation of 

concepts. A full appreciation of the general requires more than realising that a concept 
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extends beyond the particular. One is also required to know the range of permissible 

change of the concept. Students must know the precise scope of the generality. As 

Davydov (1972/1990) argued, for a concept to be understood, the class of objects that 

the concept contains must be unambiguously distinguishable from any others. The 

provision of a definition is related to this later stage. If a definition of the general is 

provided before there is any sense that a general case exists, it is effectively 

meaningless. Arguing along these lines, Gattegno insists that meaning is antecedent to 

speech, and that, "Speech can come only after we have grasped the existence of 

meanings" (1970: 18). 

This suggests that mathematical vocabulary is of use only once students have fully 

developed a conception. In the classrooms I observed, however, teachers often use 

such technical language in the very early stages of students beginning to develop a 

concept. 

Aware of the view that words "makes sense to us only when they are familiar, when 

we recognise them from experience" (Mason 2002a: 47) I wondered whether it was 

really the case that all these new words were making no sense to students. This led me 

to distinguish between the sense that a word has alone, without context (Frege would 

have referred to this as the 'referent'), and the sense that a word can make at a given 

time, in a different place. Prior experience is required for us to recognise a concept 

through its associated word alone. A recently introduced word, however, can make 

sense if it is accompanied by a particular example. Understanding the word without 

any such particular example is Davydov's (197211990) third condition for 'having' a 

concept. 
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In the lessons observed, words were often used, either by teachers or students, which, 

according to Davydov's (1972/1990) definition, not everyone present 'had a concept' 

of, but this does not make them meaningless. Technical language may be used in the 

classroom, with sense-giving examples, to limit the possibility of students not 

knowing what the teacher is talking about. There is an assumption that if the word is 

used again in another lesson, it will be again be defined or exemplified. Although this 

repeated, exemplified use might enable students to discern the scope, and hence 

understand the concept, that the word relates to, there is a danger that students merely 

rely on the teacher to exemplify or explain mathematical words, and so there is less 

motivation to try to engage with its meaning. 

This leads me to consider the introduction of mathematical concepts within the 

framework of scaffolding (Wood, Bruner and Ross, 1976). Although their definition 

of the term emphasised the teaching of methods and problem solving, the idea also 

seems applicable to the understanding of concepts. When a word is initially 

introduced it might be accompanied by explanation and example, but over time the 

scaffolding is reduced, with the intention that students can make sense of the word 

alone. In the same way as a mother working with a child might not want to "stifle his 

performance by doing too much herself' (Wood and Middleton 1975: 182), a teacher 

must avoid students becoming over-reliant on their explanations and examples of 

concepts. 
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The analysis of teacher-led discourse in the main study revealed that mathematical 

vocabulary can fulfil an essential role very early on in the development of a general 

concept, even when its scope, and hence defmition, is incomplete. 

At an elementary level, 'multiplication makes bigger' expresses a valid 
generalisation about the operation of multiplication when applied to whole 
numbers. When the notion is extended, and the same words and symbols 
are applied metaphorically to the new situation (either to fractions or to 
negative numbers, for example), this observation makes sense, but it is no 
longer true. The failure of a valid generalisation, one which accords with 
the everyday connotations of the word multiply, can result from not 
perceiving the novel use to which the words are being put. 

Pirnrn 1987: 9 

This seems to me to corne down to levels of generality. A student's understanding of 

number is not just a definition, in fact it may not include a definition at all, as with 

Tall and Vinner's concept image (1981). While the concept definition is "a form of 

words used to specify that concept" (ibid: 152), the concept image includes all mental 

images and associations with the concept. Seemingly conflicting concept images may 

be evoked at different times. The word number would be related to a collection of 

general statements and images of the nature 'the integers 1,2, 3 ... are all numbers', or 

Pirnm's example, 'all numbers are either odd or even'. 

Vygotsky (1965) provides experimental evidence that meanings of words undergo 

evolution during childhood, and defines the basic steps in that evolution. 

At any age, a concept embodied in a word represents an act of 
generalization. But word meanings evolve. When a new word has been 
learned by the child, its development is barely starting; the word at first is 
a generalization of the most primitive type; as the child's intellect 
develops, it is replaced by generalizations of a higher and higher type - a 
process that leads in the end to the formation of true concepts. 

Vygotsky 1965,83 
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8-11.3 USING CONCEPTS: NEEDLESS AND NONSENSICAL NAMING 

The linguistic literature reviewed in section 2.3 suggested that the closer the 

introduction of language in the classroom to that in the real world, the more effective 

it is likely to be. This leads me to believe that one of the practices observed could be 

improved upon. This is the introduction of a new concept which, though related to the 

topic under discussion, is not used to communicate the ideas in question. 

[05] CD 11(3) Factorising 

Lesson [05] is chosen as it illustrates effectively and concisely a phenomenon that 

occurred frequently across the fifty-two central study lessons; teachers repeatedly 

using mathematical vocabulary immediately accompanied by its definition. 

In lesson [5] CB introduces the students to the termfactorise: 

21: 16 Teacher: But really, the ultimate skill to get you the grade you're aiming 
for, that's the people who are doing foundation paper, if you 
wanna get a D, you're gonna have to learn to do something 
called factorising. People who are doing the intermediate paper, 
if you wanna get a C, there is no way you're gonna get that C 
unless you can do something called factorising. And factorise 
means when you put the brackets back in. If I give you those 
seven problems, which you've got written on your page, can you 
work out what they came from? Can you work out what number 
went out the front of them, or for one of them, which one had a 
letter out the front of it? 

[5] CB 11(3) Factorising 

This is a year eleven class preparing for their GCSEs, and so this is almost certainly 

not the first time they have used the termfactorise. CB's use of language, however, 

suggests that the term is completely new: "something called factorising". 

Throughout the remainder of the lesson, however, every use of the word is 

accompanied by a definition. 
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22:01 Teacher: And so without me teaching you at all, can you write down, can 
you factorise those seven expressions? Can you get them back to 
having brackets in them? 

[5] CB 11(3) Factorising 

Perhaps CB is not yet confident that the term has been adequately defined. He defines 

it again once students have had time, perhaps, to begin to develop a conception of the 

term. 

26:20 Teacher: Guys if you've finished, factorise means put brackets back in, 
mUltiply out means get rid of brackets. 

[5] CB 11(3) Factorising 

At the end of the lesson, CB uses the termfactorise twice before defining it again. 

54:33 Teacher: Urn, next lesson we're gonna do something similar, I'm amazed 
actually. I am absolutely flabbergasted by the fact that I've come 
round and watched you factorise expressions which are C-grade 
expressions. I've come round and just watched you do it and 
think 'Oh God, I'm gonna have to help her on that one', and then 
I've watched you factorise stuff which I did not think you'd be 
able to do. You've learnt what factorise means, factorise means 
put back in brackets, but you can do it, that's really, really 
impressive. 

[5] CB 11(3) Factorising 

This occurs where one of the teacher's objectives for the lesson, stated or otherwise, is 

that students should 'use', 'understand', 'distinguish between' or 'define' (DfEE, 

2001) certain concepts. As a result, the concept is named, explained, exemplified, and 

then perhaps discarded. 

Naming allows you to talk about things. If you don't have a need to talk about 

something, there is no need to name it. Arguably, this argument could be expanded to 

include thinking, rather than merely talking, but the idea of 'needing' a name is 

nevertheless a central one. Pimm warns that despite its advantages for classification 
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and discussion, if the naming loses its purpose, "the process degenerates into a sort of 

feeble natural history" (Pimm, 1995: xiii). 

Just as with communicative language teaching, for communicative 
mathematics teaching, the pupils doing the communicating must have 
something they wish to express. 

Pimm, 1987:202-3 

Analysis of the full set of main study lessons suggested that an awareness of 

Gattegno's (1970) recommendation concerning the need to develop meaning before 

tenninology (discussed in section 8-1I.2) is worth heeding. Perhaps because the 

school's schemes of work frequently require that students 'understand' a particular 

tenn, the main study teachers frequently introduced a definition and examples of a 

concept in a lesson, even when the concept name was not to be referred to 

subsequently. There were several examples of such arbitrary naming in the lessons 

observed. In lesson [20], for instance, the particular fraction 24/5 is on the whiteboard 

and the following conversation takes place: 

13: 18 Teacher: 
13:20 Student A: 
13:21 Student B: 
13:22 Student C: 
13:24 Teacher: 

Posh word for the top number? 
Nominator. 
Noooom 
Numerator. 
Numerator. And denominator. So we need to remember those. 

[20] SJ 10(3) Fractions 

In the subsequent discussion of a method for converting from top-heavy fractions to 

mixed numbers, the technical vocabulary of numerator and denominator was not used 

at all. Instead, all discussion concerned the example of 24/5, with 'twenty-four', 'four' 

and 'five' functioning as specific labels for general concepts. In some ways these 

names are more effective. Confusion does arise though, as the equivalent mixed 

number (4 ~) involves two different fours, leading to ambiguity. 
5 
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14:31 Student D: 

14:35 Teacher: 
14:36 Student E: 
14:37 Teacher: 
14:39 Students: 
14:40 Teacher: 
14:42 Students: 
14:43 Teacher: 

14:45 Student F: 
14:46 Teacher: 
14:47 Student F: 
14:48 Student G: 
14:49 Teacher: 
14:51 Students: 
14:52 Student F: 
14:54 Teacher: 
14:55 Student H: 
14:57 Student I: 
14:59 Teacher: 
15:01 Student F: 
15:02 Teacher: 

Conceptual Generality 

Can you see how many fives go into twenty-four, and then the 
remainder goes on top? 
Right. 
Ohyeah. 
Ok? How many whole fives go into twenty-four? 
Four. 
With remainder what? 
Four. 
Remainder four. So I've done twenty four, divided by five, 
which gives me /I 

II It would be five, the answer, wouldn't it? 
Four remainder four. So what's my answer got to be? 
Five. 
Twenty. 
How many whole ones have I got? 
Four. 
Four, so four goes into four once. So it'd be five. Or is that not II 

// I think you've gone // 

Miss, it's four and four fifths. 
Right. Yeah? 
Ohyeah. 
Happy with that? 

/1 Was I right? 

[20] SJ 10(3) Fractions 

Having introduced the terms 'numerator' and 'denominator', they are completely 

ignored. Perhaps this was because there was some hesitation from students when 

asked for the word, or because it is easier to discuss with specifics. If the latter were 

the case, however, the question arises as to why the technical tenns were introduced at 

all. There seems to be a degree of confusion amongst the students over this 

explanation, which mayor may not be reduced by use of the general concepts. If you 

read this dialogue through, replacing the specific numbers with your own choice of 

general term (eg. numerator, whole number), does the explanation appear more or less 

confusing? 

Why introduce general terms if you are then going to talk in particulars? The benefit 

of the terminology to empower students in communicating mathematically is lost if 

they do not use them. It is important for teachers to think carefully about when to 
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introduce or define terms, to ensure that they are seen as a tool to expression and 

understanding, rather than merely 'extra things to learn'. 

[07] SJ 10(2) Approximations 

As with the excerpt from lesson [05] above, this episode from lesson [07] is chosen as 

a succinct example of a phenomenon repeated across the central study lessons: the use 

of 'made up' terms to refer to mathematical concepts or procedures. General 

mathematical procedures that are alluded to in lesson [07] involve using 

approximation both to find exact answers, and to check answers found on a calculator. 

The general procedures are not expressed generally, but are demonstrated using 

particular examples. The lesson begins with seven questions that require mental 

strategies including doubling, halving and approximating. After about five minutes, SJ 

asks the students for their answers. 

14: 12 Student: 
14:13 Teacher: 
14:14 Student: 
14:16 Student: 
14:18 Teacher: 
14:20 Student: 
14:21 Teacher: 
14:22 Student: 
14:22 Teacher: 
14:23 Student: 

[did boxes. 
So what did you do? 
Car boxes. 
Ok, what I did ... 
Cardboard box. 
Can I write it up on the board? 
No,just tell me-
Ohh. 
- what you did. 
Ok. What I did -

[07] SJ 10(2) Approximations 

It was usual practice in other observed SJ lessons for students to give fairly full 

explanations of how they found their answers. For example, in this lesson one student 

explained how he had found 50% of 498, by noticing that 498 is close to 500, then 

recording the two that had been added on by recording it in a box. He then halved the 

500, and halved the two before SUbtracting the resulting I from the 250 to get the 

answer 249. 
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14:29 Student: 

14:34 Teacher: 
14:35 Student: 

14:41 Teacher: 
14:43 Student: 
14:45 Teacher: 
14:45 Student: 

14:55 Teacher: 
14:56 Student: 
15:00 Teacher: 

Conceptual Generality 

Ok. I got the four nine eight, and obviously that's close to five 
hundred. 
Five hundred, ok. 
So I put, so that means I put a little two in my little box, so I 
remembered it, cos that's how I do it. 
Yep, ok. 
And what I did is I halved it 
Yep. 
I halved it, oh ok, you've already got that on the board, two fifty. 
So this means I have to halve what is in the box, so I halved 
what was in the box, which equals one. 
Ok. 
So I take away one from that, it would equal two four nine. 
Ok. 

[07) SJ 10(2) Approximations 

The student's tenn 'boxes' is not a generally accepted piece of mathematical 

tenninology, but is used by both student and teacher to refer to this method. 

Perhaps the most surprising finding in the data collected came from those lessons with 

a particular emphasis on discussion and students 'thinking for themselves'. 

Conceptions under discussion in these classrooms were sometimes given completely 

different names, or even an inaccurate name, and yet students' appreciation of the 

conceptions did not appear to suffer. It would seem that a sense of generality can be 

communicated by allocating a word to a particular number or example. The word 

means 'things like this'. The linguistic tenn for this is a 'placeholder'. A placeholder 

name occupies a syntactic space between noun and pronoun. Whilst functioning 

grammatically as nouns, their referents must be supplied by context, like pronouns. 

They serve as placeholders for names of objects that are otherwise unknown or 

unspecified. In everyday discourse, words such as 'thingummy' or 'whatsit' are used 

in this way. The meaning of these words changes depending on context. In lesson [07] 

a student ascribes the word 'boxy thing' to his method for finding 50% of 498. Such 

271 



Chapter 8-/l Conceptual Generality 

use of placeholders has much in common with the use of letters for as-yet-unspecified 

numbers, or place holders for later insertion of numbers in expressions and formulae. 

In lesson [31], talking to class 8(2) about the work on angles that he had just marked, 

CB explained that he has corrected their language but they shouldn't worry about 

getting it wrong. "Trying to use the vocab" appears to be seen as a different skill from 

understanding the maths. Whilst valued, it is somehow separate from understanding 

and method. 

3:50 Teacher: I started writing on some people, um, brilliant explanation but 
that's not corresponding angles that's alternate angles. Because [ 
just thought well I might, while you're trying to use the vocab, [ 
might as well show you exactly how to use it. I think on one of 
them I wrote 'it's not alternative it's alternate'. That's not I'm 
telling you off, that's me just saying, they're doing so 
fantastically, why not have, make another little comment. 

[31] CB 8(2) Sequences 

To use Davydov's framework, the teacher's emphasis for this piece of homework 

seems to be on the meaning of alternate and corresponding angles. Each correctly 

found missing angle also indicates some appreciation of the concept's scope, although 

the examples included in the worksheet did not differ significantly from those they 

had discussed in the previous lesson, with Z-shaped and F -shaped diagrams that 

involved few other lines. The concepts' names are apparently considered to be of 

relatively little significance. 

[27] PF 9(1) Fractions 

In lesson [27], 'lowest common multiple' is confused with 'lowest common factor'. 

This confusion goes unnoticed by the teacher, who also adopts the incorrect 

terminology. Whilst in a sense this illustration could be considered unrepresentative 
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of the fifty-two central study lessons, as no other lesson contained such a lengthy 

teacher confusion of mathematical vocabulary, one of the most striking things about 

the episode was the lack of concern or surprise demonstrated by students, which left 

me as an observer wondering how much attention is being given to the use of 

particular mathematical vocabulary by students, who are perhaps more focused on the 

underlying meaning than the particular word used. 

The students are asked to think about why the fractions 113 and 114 might have been 

chosen by the teacher for shading on a rectangle containing 12 squares. 

07:43 Student: 
07:45 Teacher: 
07:46 Student: 

07:59 Teacher: 

[27] PF 9(1) Fractions 

Urn, I was thinking along the lines of why. [Is it because] 
[Good, good] 

you've given three and four and the lowest common factor of 
three and four is twelve, so you've divided into twelve. And I 
was thinking if you'd given us three and six you'd have to divide 
the box into six because the lowest common factor of three and 
six is six. 
Fantastic. And, urn, great use of language there as well, I really 
liked that. Urn, lowest common factor, really key idea. And as 
the lowest common factor of 3 and 4 is 12 it's no coincidence 
that I've got twelve boxes. 

The [placeholder] of 3 and 4 is 12 can be understood by the students as suggesting a 

link between the denominators of the fractions. Factor and multiple being commonly 

confused words linked to multiplication and to the idea of 'going in to', it almost 

doesn't seem to matter in this instant that the term is incorrect. Some may interpret 

'lowest common factor' as 'product', others as 'lowest common multiple'. Perhaps 

many interpret it as 'slightly tricky thing to do with multiples'. When completing a 

worksheet of adding and subtracting fractions in the second half of the lessons, all of 

the students seemed to be accurately selecting the lowest common multiple of the two 

denominators. Understanding in the moment does not appear to have suffered from 

273 



Chapter 8-II Conceptual Generality 

inaccurate language. The confusion was corrected by the teacher, once the mistake 

had been realised, and the correct term was then used. 

It seems that, when responding to the student, the teacher's attention was on the 

conception, not the concept. The student was being praised for "great use of 

language" because they were expressing a complex concept. It's the "really key idea" 

that was being praised. Coles' (2004) idea of meta-communication, first referred to in 

section 5.3.3 resonates again here, as PF's meta-message in praise of the use of 

mathematical language might be considered of greater, or at least equal, importance, 

to correcting the terminology used. In striving to encourage students to 'talk like 

mathematicians', some degree of 'babble' (Malara and Navarra, 2003; see 2.4.3) is 

perhaps inevitable. If each incorrect use of mathematical names was immediately 

corrected by the teacher, students might become reluctant to attempt its use. 

In the same lesson [27], students were asked to think about how they would fmd the 

answer to ~ + !. A student suggested multiplying 9 by 12, and conversation 
12 9 

followed between several students and the teacher, with the teacher explaining that it 

is best to use the lowest common multiple of the two denominators, rather than always 

using their product. Once the example has been worked through, and a denominator of 

36 has been chosen, the teacher summed up the importance of using LCM rather than 

product. 

PF: Ok, so that's the important thing, [name of student who 
suggested 108], there's nothing wrong with what you said, it's 
perfectly reasonable, and when we get on to harder and harder 
things, it's sometimes easier just to do it that way. Urn, but it is 
good for us to look at a lowest common multiple. rather than just 
any old multiple, ok, and the lowest common multiple of these 
two things, is (1) is of course, 36, ok. 12, times 3, 36, and 9 times 
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4 is 36. So it's definitely a common multiple and it's the lowest 
common mUltiple. 

Student: 
PF: 

Do you expect me to remember that? 
I would love you to remember that. 

To what does 'that' refer in this instance? It might refer to the technical term of 

'lowest cornmon multiple', the specific example 2-+ !, or perhaps the idea that it 
12 9 

might not always be best to use the product of the denominators. This student's 

question raised an interesting question for me about what exactly students are 

expected to take away from whole class discussions. Do they need to know the precise 

scope, name and definition of each idea discussed? Often it seems it is the conceptions 

rather than the concepts that they are expected to have developed. 

There appears to be a conflict between immediate and longer-term understanding in 

teacher's use of, and response to, students' language. The development of an accurate 

mathematical language will aid students in future discussions, but in the short-term 

the emphasis may be on communication, rather than accuracy. An overemphasis on 

short-term communication may result in missed opportunities for the development of 

the mathematical and algebraic registers. 

8-11.4 DEVELOPING CONCEPTS: DEFINITION AND SCOPE 

As section 8-11.2 describes, concept names are introduced by both teachers and 

students, sometimes without an associated meaning, and sometimes incorrectly. The 

meaning and scope of concepts are invoked by teachers and students without use of 

the appropriate name. Having explored the issue of naming in depth in section 8-11.2, 

this section focuses on the other two aspects of concept appreciation described by 
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Davydov (1972/1990). The focus here is on how class discussion provides an 

opportunity for students' appreciation of the concept's scope and meaning to develop. 

[34] LR lO{l) Rational and irrational numbers 

The excerpt from lesson [34] struck me, as it contained the longest amount of time 

spent explicitly developing the scope of a concept, and demonstrated how challenging 

this process can be. The episode is as an example of a process that I have observed 

happening informally in a number of mathematics classrooms, as a necessary part of 

students' developing concepts. I offer it here because it illustrates the high cognitive 

demand that this places on students, thus potentially making a case for more 

consideration and time to be spent on the development of mathematical concepts. 

The lesson began as follows. 

03:29 LR: The first thing we're going to do today is we're going to think 
about rational and irrational numbers. 

[34] LR 10(1) Rational and Irrational numbers 

In the above example, the use of the specific terms 'rational' and 'irrational' indicate 

that a generality is present. The teacher seems to be suggesting to the students that 

there is something to look for. The board was then divided into two, and students 

suggested numbers that they thought were rational, or were irrational. De Morgan 

(1898) argues that individuals should participate in abstraction in this way. They 

should develop their own conceptions and concepts. 

It is by collecting facts and principles, one by one, and thus only, that we 
arrive at what are called general notions; and we afterwards make 
comparisons of the facts which we have acquired and discover analogies 
and resemblances which, while they bind together the fabric of our 
knowledge, point out methods of increasing its extent and beauty. 

de Morgan 1898, 33-4 
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When defining rational and irrational numbers, how many examples might you feel 

you needed to show a student for them to 'understand' the concepts? This lesson 

demonstrated that numerous examples were required to enable students to form a 

definition for themselves of the two concepts. The board was almost full of fractions, 

pi, and other symbols, before the suggested definitions were clarified to: 

19:02 Student: Um, a rational is a number that has, it can be converted into a 
fraction that has a whole number as the numerator and the 
denominator. 

[34] LR 10(1) Rational and Irrational numbers 

Although the year 10 students involved would be expected to understand the concepts 

'fraction', 'whole number', 'numerator' and 'denominator', merely offering them a 

definition such as this at the start of the lesson would have resulted in a 'concept 

based on concepts', as discussed above, which would arguably have resulted in less 

complete conceptual understanding. A general concept requires generalisation over a 

number of other general concepts. So in order to express a generalisation students 

may have to refer to previous generalisations, with their associated terminology. 

This was a formalisation of a process that from my observations, seems to happen 

frequently in mathematics classrooms. This is where a name is used to indicate that 

there is a general concept, and various examples either are or aren't allocated the 

name. Over time, the scope becomes clearer to students. 

In the post-lesson interview, the teacher in this lesson said they had been particularly 

pleased when students introduced 7t, as it demonstrated that their scope or range-of-

permissible-change is not limited to surds. As the teacher's self-appointed role was to 
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choose students to offer examples, and to respond to their suggestions, she had the 

time to reflect on the appropriateness of each one. How often do teachers give 

themselves the chance to think this carefully about the examples that students are 

offered (or offer themselves) in developing a conception? What is it that gives us the 

sense that students are 'ready' for the scope to be extended? 

The scope of a concept, then, is something that students must learn and develop over 

time, just as they do when learning vocabulary in their first language. As Pimm 

(1987) observes, the mathematics teacher acts as a role model of a native speaker of 

mathematics. Looking at it in this way, the ratio of 'native' to 'foreigner' in a 

classroom seems less than ideal. Arguably the best way to learn a language is to 

surround yourself with its speakers. You then meet lots of vocabulary in use, and as 

the words become more familiar, you develop a sense of their meaning, and discern 

their scope. 

In this sense, every curriculum subject might be seen to have a lot to learn from the 

language classroom. There is a major difference, however, in that words in a foreign 

language are often learnt by attaching them to the corresponding concept in English. 

This is only possible when the word is already known, the concept already grasped. 

The language of mathematics is not a different way of describing previously used 

concepts, but a vocabulary associated with a whole new set of ideas and ways of 

perceiving and conceiving. The 'language of mathematics' seems to be more usefully 

thought of as a set of concepts than as a set of words. The question of 'scope' then, is 

Fticularly pertinent. 
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In a year 11 class where all students 'understand' the term 'rectangle', a classic 

misconception of scope (French 2004: 31) arose. The teacher was asking how many 

faces a cuboid drawn on the board had. The drawing showed six rectangular faces of 

which one opposite pair were square. When students were hesitant to answer, she 

rephrased the question to "how many rectangles does the net have?", to which a 

student replied "four". The scope of 'rectangle' for this student apparently did not 

include squares: 

Student: 

Teacher: 

I was meaning the end two bits is a square, so they're not 
rectangles. 
Right, ok. Right. What's the size of my first rectangle? 

'Rectangle' was being used with the reference 'faces of the cuboid'. The student's 

misunderstanding was ignored because they worked out for themselves that the 

teacher meant all the faces of the cuboid. But their understanding of the scope of 

'rectangle' remained incorrect. The focus was on nets and 3 D shapes, so thinking a 

square isn't a rectangle doesn't impede understanding of the question. When is it 

helpful for the teacher to explore this misconception, and why? How can teachers help 

students to correctly identify the scope of a general concept? 

8-11.5 CHAPTER SUMMARY 

The focus of this chapter is teachers' use of language when introducing concepts and 

developing students' understanding of them. A conflict was detected between 

immediate and longer-term understanding in teacher's use of, and response to, 

students' language. The development of an accurate mathematical language will aid 

students in future discussions, but in the short-term the emphasis may be on 

communication, rather than accuracy. 
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New naming (8-11.2) 
Using concept names that are not 
sufficiently familiar to be 'taken as 
shared' (Streeck, 1979) 

Needless naming (8-11.3) 
Introducing concept names but then 
defining them every time they are used 
them: [05] Ee 11(3) Factorising: 
'factorise' . 
Ignoring the name in future references 
to the concept: [20] JRA 10(3) 
Fractions: 'numerator'. 

(8-11.4) 
Inviting students to define general 
concepts for themselves: [38] PRO 
8(1) Sequences. 

Nonsensical naming (8-11.3) 
Using placeholders for concept names: 
[07] JRA 10(2) Approximations: 'I did 
boxes'. 
Using incorrect concept names: [27] 
RG 9(1) Fractions: 'lowest common 
factor'. 

(8-11.4) 
Taking time to develop the scope of a 
concept: [34] AF 10( 1 ) Rational and 
irrational numbers. 

As shown in the summary diagram above, Davydov's defmition of the three essential 

aspects of concept appreciation provides a useful framework for examining how class 

discussion offers students opportunities to develop general concepts. The episodes 

illustrated above show how words and their scopes and meanings can become 

separated in mathematics lessons. Section 8-11.2 showed how a name is often used 

before the concept, or even the conception, has begun to develop. Section 8-11.3 

showed how a concept can be introduced and defined but then no use subsequently 

found for its meaning. An emerging conception might also be given a transient, even 

an incorrect, name in the short-tenn, so that it its referent can be focused on, referred 

to, discussed and developed without concern for linguistic precision. There seem to be 

inherent concerns with each of these separations, and yet instances were found of 

280 



Chapter 8-IJ Conceptual Generality 

most of them in most of the classrooms observed, all of them effective lessons with 

competent teachers. Section 8-II.4 showed how conceptions are often discussed and 

developed in these mathematics classrooms without some or even any of Davydov's 

(1972/1990) criteria for their becoming concepts. Students may be unsure of the exact 

scope of a generality, it may be given no name, or an incorrect name, and it may be 

perpetually supported by particular examples as the speaker believes its meaning 

would not otherwise be shared. The decision as to how and when to develop students' 

conceptions into concepts is a complex and fascinating one. 

An accurate appreciation of mathematical general terms (rectangle, numerator, lowest 

common multiple) is required for success in exams, and use of textbooks and 

worksheets. Students' use of appropriate terminology makes them part of a 

community of mathematicians, spanning both time and space. Orton (1994) 

emphasises that "mathematics is a unique universal language which transcends social, 

cultural and linguistic barriers, having symbols and syntax that are accepted the world 

over". (Orton 1994, 17). In a particular classroom at a particular time, however, it may 

be possible to communicate effectively using a different tenn for a conception, or 

without a name at all. 

Teachers with the intention of really listening to students may choose to focus on 

what those students apparently mean, rather than what they say. There is perhaps a 

balance to be achieved between developing students' long-tenn mathematical 

language proficiency, and communicating effectively in the short tenn. The study 

findings suggest that it is beneficial for teachers to be aware that they are making that 

compromise. 
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There are numerous tensions related to the teaching of general mathematical concepts. 

A major finding of the analysis reported in this chapter' concerns the dearth of 

discussions where students' attention is linguistically directed towards all three 

aspects of a concept: its name, scope and meaning. The separation of these three 

aspects of mathematical concepts could have implications for student understanding. 

Through consideration of how general concepts are expressed in mathematics 

classrooms, the implications for using algebra to express generality begin to emerge. 

What is particularly striking is that the issues and tensions described in relation to use 

of mathematical concepts also apply to the use of algebraic notation, yet these issues 

tend to be treated as separate. In chapter nine, some implications of the chapter eight 

findings for use of algebraic notation are considered. 
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CHAPTER 9: BACK IN THE RESEARCHER'S 

CLASSROOM 

Throughout the analysis of chapters 7, 8-1 and 8-11, the complexities of expressing 

mathematical procedures and concepts have been examined in detail. Through using 

the framework to examine my own and others' practices I became aware of the 

considerable and perhaps over-looked complexity of expressing generality through 

natural language, and of the potential benefits of expressing generality through 

algebra. This is not a necessary conclusion of application of the framework, and it is 

to be hoped and expected that others will apply the framework to their own and 

others' practice in order to gain different insights into possibilities for expressing 

generality. Similarly, it is intended that the theoretical considerations and practical 

investigations of this chapter might be fruitfully explored by a teacher without their 

necessarily having applied the framework of chapters 7, 8-1 and 8-11 to their own or 

others' practice. Although the framework acted as a stimulus to further and deeper 

analysis, causal links between the process of applying the framework (the outcome of 

which is shown in table form as in previous chapters), and the subsequent insights are 

not always transparent. By attempting to replicate the process of applying the 

framework to the described episodes, the reader may be provoked to similar or 

different insights into the choices that were and could have been made. 

9.1 INTRODUCTION 

This study considered the challenge of communicating general mathematical rules 

(chapter 8-1) and concepts (chapter 8-11), and the challenge of teaching algebra with 
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understanding (pilot study). Analysis suggested that each of these can be done more 

effectively if they are intertwined. Whilst the use of new and imaginative 'purposeful 

algebra' tasks can be both effective and inspiring, the search for the innovative and 

creative can draw attention away from possibilities that are present even in very 

traditional-seeming tasks and lessons. Tasks where algebraic expression of generality 

is a central focus, at the forefront of both the task-designer and teacher's mind, have a 

significant part to play in students' developing appreciation of generality, and 

algebraic facility. This study has shown, however, that there is an apparent gulf 

between lessons 'about' algebra, and lessons where the focus is on other aspects of 

mathematics. This was particularly emphasised to me through the differences in the 

teaching styles of the project teachers between the pilot lessons with the matchstick 

houses and the main study lessons. 

As is recounted in chapter 8-1, the analysis of the fifty-two main study lessons led me 

to an increased awareness both of the ambiguities and imperfections of using 

mathematical terminology and everyday language to express general mathematical 

procedures, and of the negligible use of algebra to express these in 'ordinary' lessons. 

This resulted in my adopting the question asked by Sutherland (1991), "Can we 

develop a school algebra culture in which pupils find a need for algebraic symbolism 

to express and explore their mathematical ideas?". Analysis of the main study lessons 

revealed a tendency for algebra to be used to express patterns in shapes and in 

numbers, but to be ignored when working on other areas of mathematics. 

Tall and Thomas (1991: 4) assert that "there is a stage in the curriculum when the 

introduction of algebra may make simple things hard, but not teaching algebra will 
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soon render it impossible to make hard things simple". There are a number of points 

that I think are worthy of mention in connection with this observation. Firstly, it was 

clear from the transcripts in the main study that students do not necessarily think that 

'hard maths is bad, easy maths is good'. Where such an attitude does develop, it can 

arise as the consequence of numerous socio-cultural factors from home, school, and 

the wider community. Many of these can be overcome through the creation of a 

classroom culture in which difficulty is embraced and relished. Making things more 

complicated, or even making things sound more complicated, can be a satisfying 

activity. Watson and Mason (2005: 144) give the example ofa teacher asking students 

for different questions where the answer is 16. The teacher introduced the idea to 

students of his having "my favourite question", which was interpreted as meaning 

"hard or complicated". Activities such as this one make achieving complexity into 

both a game, and a worthwhile objective. In my experience, one of the pleasures for 

students in learning trigonometry or Pythagoras' Theorem is that they can tell others 

that they have so done with considerable pride. Mathematics can be made accessible 

and enjoyable without needing to seem 'easy'. Secondly, it is possible for students 

with very little experience of symbolic algebra to be offered tasks in which use of 

algebraic notation makes hard things easier, for example problems involving 

mathematical proof. 

Many tasks have been offered to mathematics teachers that are designed to offer 

students an opportunity to express generality. Rather than develop original and 

innovative 'purposeful algebra' tasks, the research findings suggested that there was 

scope to develop 'ordinary' practice in 'ordinary' lessons. This in itself is not a new 

message. Mason (2002a) emphasises how language can be used to express generality, 
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and Ainley et al. (2004) write about purposeful algebraic tasks. Brown and Coles 

(1997) also suggest that algebra can be used meaningfully to express generalisations 

students have made during 'meaningful' activity. However research often uses 

exemplar tasks that involve the expression of 'extra-curricular' generalities. The 

analysis of the main study lessons demonstrated that there is still great scope for 

teachers to invite students to express 'curricular' generalities using algebraic 

language. This requires of teachers both that they recognise moments in classroom 

interaction where algebraic language is available as an effective alternative to natural 

or mathematical language, and that they make the decision in such moments to adopt 

algebraic language as a means of expressing the generality. Having completed level 2 

and 3 analysis of the main study lessons (chapters 7 - 8-11), I endeavoured to notice, 

and make informed choices in response to, such moments in my own practice. 

9.2 WHY USE ALGEBRA TO EXPRESS GENERALITY? 

The use of tasks such as those discussed in the previous session can focus students' 

attention on the expression of generality, and establish it as a worthwhile activity in 

the mathematics classroom. Findings from the pilot and main study, however, 

suggested that the impact of such tasks was reduced by a separation between these 

'expressing generality' tasks and nonnal classroom tasks. 

The use of algebra to express general procedures and concepts that form part of the 

secondary mathematics curriculum potentially offers the following opportunities: 

• show what algebra can do (9.3.1) 

• increase relevance (9.3.2) 

• increase facility (9.3.3) 
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• reduce ambiguity (9.3.4) 

• direct attention towards the general (9.3.5) 

9.2.1 To demonstrate the power of algebra 

Main study lessons that focused on algebra tended to concentrate on the manipulation 

of expressions and solving of equations, generally in the absence of context. This 

corresponds with the literature, as discussed in section 2.4, which proposes that the 

teaching of algebra as defined by the national curriculum can be restricted to 

manipulating and transforming expressions and solving equations with no apparent 

purpose. 

To most lay people the defining characteristic of algebra is its use of 
symbols, but beyond that they would find it difficult to describe either 
what algebra is or what purpose it has. Indeed, many mathematics teachers 
find it difficult to answer those recurrent questions that students ask: 'Why 
are we learning algebra?' and 'What use is it?' Unfortunately, many 
people's experience of school algebra fails to give them a clear view of 
what algebra is. The questions arise because they acquire a very narrow 
and restricted image of the subject. 

French,2002: 1 

By using algebra as mathematicians use it, this problem may be overcome. Through 

endeavouring to use algebra to express generality across the whole curriculum, 

students may experience its power as a tool for communicating mathematical ideas. 

9.2.2 To increase relevance 

Through considering algebraic language as a second language like French or German, 

a new perspective can be gained on its teaching. Section 2.3 considered how the 

research and practice of second language teaching might have something to offer 

mathematics education. Mathematics teachers are often students' only ambassadors of 
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mathematical language, the only representative of the mathematics community with 

whom students come into contact. If students perceive that the only use teachers have 

for algebraic language is in the teaching of algebraic language, then the purpose of 

learning such a language becomes lost. It seems to be essential that students see how 

algebraic language can be used across all mathematical topics. 

9.2.3 To increase facility 

Some parallels can be drawn between use of algebraic language, and use of 

mathematical language. Lessons learnt in chapter 8-11 regarding use of the 

mathematics register can be applied to use of algebraic notation. Findings in chapter 

8-11 suggested that teachers often appear concerned about using mathematical 

language, in case students do not understand, and 'switch off'. If teachers explain a 

task using complex mathematical vocabulary, students might be intimidated, and feel 

excluded by the mathematics community (here represented by the mathematics 

teacher). Research has shown that the language in which mathematics is expressed 

can act as an obstruction to students' mathematical understanding (Pimm, 1987; 

Laborde, 1990). The answer to this problem lies in frequent use, with explanations, 

definitions and 'translations' into regular English to ensure that the meaning of the 

technical terminology is clear to students. This scaffolding and fading approach is 

discussed in section 2.7.2. Lee's (2006: 20) argument that, ''the teacher's role is to 

mediate between the discourse of mathematics and the discourse that pupils routinely 

use, to make bridges between the discourses so that the pupils become able to use 

mathematical language to conjure ideas and to explore and communicate those ideas" 

applies equally well to algebraic language. 
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9.2.4 To reduce ambiguity 

Chapter 8-1 showed how, in the main study lessons, examples often played an 

essential part in the introduction and explanation of mathematical concepts and 

procedures. The concept of 'fraction' is much easier to exemplify than to define in 

general, and I have heard experienced teachers debate whether or not such a definition 

should or should not include 27r. Likewise, use of the mathematical vocabulary 
37r 

associated with fractions, such as numerator and denominator, to explain the general 

rule for dividing fractions, can result in confusing and contorted sentences that fail to 

illuminate. Perhaps as a consequence, main study teachers often used examples to 

show general concepts and procedures. 

The example that 22 = 2 x 2, for instance, can lead to the inappropriate generalisation 

that 32 = 2 x 3 and 42 = 2 x 4. Especially when working with more complex 

procedures, the same number often plays different roles in an example. Students 

might not always understand what is invariant and what can change, what is structural 

and what is particular. For a student who is familiar with algebraic notation, however, 

the rule that :!. + ~ = ad could clarify the procedure of dividing rational numbers. This 
b d be 

algebraic expression might also lead to justification and proof. 

Of course, exploration of examples can be an essential part of developing students' 

conceptual understanding. It is certainly not my intention that general algebraic 

expressions should replace exploration of particular examples. Rather, there are 

occasions when students benefit from hearing or developing the general rule and that 
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algebra is often a clearer medium for this than either natural or mathematical 

language. 

9.2.5 To direct attention towards the general 

As found in chapters 8-1 and 8-11, examples and general rules are often offered with 

the intention of providing students access to a general concept or rule. The extent to 

which the students are aware of the generality present in such discussions is often 

unclear. The discussion required to develop an algebraic definition of a concept or 

description of a process offers the opportunity to emphasise the general nature of the 

concept or procedure. 

One approach 1 have adopted is, having worked on several examples of a method in 

some area of mathematics, to ask students to write down a general method. They are 

then asked to read out their methods. 1 might then encourage students to otTer a 

method description that is entirely general, with no particular examples. This 

description can be tested on more and more complex examples to make sure it deals 

with all possible cases. Through discussion, we then attempt to construct such a 

general method as a class, and see whether algebraic notation becomes useful. An 

episode involving this approach is recounted in section 9.5. 

Analysis in chapters five to eight, particularly that of 8-1 and 8-11, reveal potential for 

the plethora of general procedures and concepts that were found to be expressed in 

mathematics classrooms to act as an opportunity for emergent algebra (Ainley, 

1999a). However, given the difficulties students have been found to have with 

understanding and using algebraic notation (as outlined in section 2.4.2), practitioners 
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might reasonably be concerned that their students would be daunted by such an 

activity, and that placing such an emphasis on emergent algebra would lead to a 

classroom culture marked by frustration and failure. In researching my own practice 

with regard to use of algebra to express procedural and conceptual generality, it was 

therefore important to consider ways in which correct algebraic notation can be 

encouraged, thus enabling algebraic expression of generality to become a central part 

of classroom practice. 

In sections 9.3, 9.4 and 9.5 I offer accounts of my own teaching experience, with the 

hope that they will provide an opportunity for consideration of whether the reader 

might have made the same or different decisions. I aim to give a thick description, so 

that the reader can more clearly envisage the choices that were available to me, and 

consider the merits of the various options. These accounts are not intended to model 

best, or even effective, practice, but rather to act as stimulus to reflection. A 

distinction is made in these three sections between 'accounts of the lesson (Mason, 

2002b) and my reflections on the decisions made in the findings of this study, with 

'accounts of set in standard style, and the reflections as indented text. 

9.3 EXPRESSING GENERALITY ALGEBRAICALLY 

At the start of the lesson, the students unpacked their exercise books and copied the 

objective from the whiteboard: "describing a number you don't know, or a pattern that 

always works". 

As I have numerous on-going objectives, choosing a single one to share 
with students (in order to comply with whole school policy) can be 
difficult. Objectives can be 'shared' with students on other occasions, 
through what and how I choose to praise contributions, and where I direct 
attention, and writing them up at the start of the lesson does not always 
seem appropriate. Even where a 'learning objective' can be identified, the 
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impact of a lesson, for example, where students measure angles in 
triangles to deduce that the sum of the angles is 180·, would be 
significantly diminished by sharing the objective "to know that the sum of 
the angles in a triangle is 180·". In this case my intention was to direct 
attention away from what was being expressed, towards the method of its 
expression. The framework developed in chapter 7 distinguished between 
transient and universal generalities, and questioned whether students are 
always aware of which of the generalisations expressed in a lesson are 
universal, and which apply only for a particular activity. The learning 
objective in this case might direct students' attention towards the universal 
generalities associated with algebraic notation, rather than the transient 
rules of the particular activities engaged with. 

I then began an activity that the group was familiar with. I read down the register, and 

as I called each student's name, I threw an imaginary dice at them. 

The use of an imaginary dice emerged from throwing a die at students and 
asking them to square the number. Frustrated that we didn't have a die 
that went up to twelve in the department, I asked students to imagine one 
that did. The resultant humour from 'missed catches', 'losing the dice' and 
'ow, it hit me' may not add much mathematically, but such student 
creativity feels like an important part of the culture I aim to create in my 
classroom. 

The students were asked to catch the dice, look at the number, do something to it, and 

tell the rest of the class what they had done, and what the answer was. Mason et al. 

(2005: 22) offer several versions of this activity, wherein all students in a class are 

invited to think of a number, and then to carry out a sequence of operations on that 

number. In this lesson, I gave the example that I might catch the die, and tell the class 

that ifI mUltiplied the number by 7 and added 5, the answer would be 40. 

One of the generalities being expressed here is: when it is your turn to 
'catch the die " say 'something like this '. The particular example of "if I 
multiply my number by 7 and add 5, the answer is 40" is intended to tell 
students the accepted general form of their statements. 

Underlying generality Subject procedure, behaviour 
Longevity transient 
Justification behavioural/social 

This given utterance Derivation telling 
Awareness difficult to classify 
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My attention is drawn by the framework to the potential ambiguity 
between my offering a general structure of statements that are acceptable 
in this activity (transient, behaviouraVsocial), and my indicating a general 
structure of statements that are mathematically acceptable (universal, 
conventional). 

The examples below are selected to give the reader an insight into the scope of 

examples offered by students in the subsequent discourse, rather than an exhaustive 

list of questions. 

Student description 

Add 5, get 9. 

My board workings 

n+5=9 
n=4 

I square it and I subtract 1 and the n2 
- I = 99 

answer's 99. n2 = 100 
n= 10 

n timesed by 7 plus 2 is 44 7n + 2 = 44 
7n=42 
n=6 

I noticed that students were moving between natural and algebraic 
language, and considered attempting to direct students' attention towards 
the variety of language available. I felt that by drawing attention to this I 
would reduce its impact. Somehow the value of the students' language use 
being 'natural' would be lost if I, as the authority figure, indicated 
distinctions between the two. If there are students who are not noticing the 
distinction between natural language and the algebraic register, perhaps 
this is of benefit. 

Again, I was sensitised by the framework to notice that some of the 
general rules about what was or was not acceptable to say or write on the 
board were universal conventions of the mathematics community (a 
number multiplied by itself is written as 'n2

" for example), while other 
rules were behaviouraVsocial rules for this particular task, imposed by me 
(the 'problems' must have one or two steps, and must be sufficiently 
straightforward that other students in the class can solve them). Where 
students appeared to be complying with other general rules (n, the number 
on the imaginary die, must be an integer, for example), it is unclear 
whether they might consider this to belong to the former (universal, 
conventional) category, or to be part of the constraints of the particular 
task. 
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Section 9.3 was intended both to give some insight into the ways of working I adopted 

to support the year 7 students to use algebraic notation, and to indicate ways in which 

the findings of the main study influenced my reflection on my own teaching. Sections 

9.4 and 9.5 offer further classroom episodes from my own practice that illustrate the 

use of algebraic notation to express generality in 'ordinary' lessons, and show how the 

analysis of chapters 7,8-1 and 8-11 shaped my thinking. 

9.4 EXPRESSING GENERAL CONCEPTS ALGEBRAICALLY 

In another lesson with the same year 7 group, the focus for the lesson was the 

mathematical topics that would be useful for their upcoming maths test. I reintroduced 

each topic, students offered their own definitions and examples, and then the students 

wrote their own booklet, textbook, poster or cartoon to explain the key concepts. I was 

aware of making numerous decisions when leading discussion of the terms multiple 

andfactor. General definitions of these terms are often example-ridden, and I found it 

difficult to phrase a clear definition without offering particular examples. 

When the 'teacher-led discourse' phase of the lesson had ended, Ben, who was 

writing a revision booklet on the six terms at which I had been directing students' 

attention, asked me, "How would you defme multiple, Miss?". I paused, realising that 

the way Ben had phrased his question afforded me an opportunity to act upon my 

noticing that the general definitions of multiple and factor were awkward in both 

natural and mathematical language. "How would I define it?" I asked. "It would 

depend who I was defining it for and why" (here deliberately ignoring the manifest 

fact that I was defming it for Ben, in order that he could complete the task I had set 
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him) "I might define it by saying m is a multiple of n if, when you divide m by n, the 

answer's an integer". 

Nick, sitting next to Ben, was listening by now. He asked me to repeat my defmition, 

1 raised my eyebrows at the pair of them, with the intention of indicating that there 

was little value in just writing down my words verbatim, and they began to 

reconstruct a general definition of multiple using x and y. The two students also, 

through their subsequent conversation, developed a definition of factor which ran 

something like: "a is a factor of b if b divided by a is a whole number", although the 

definition that Ben wrote down was "a is a factor of b if b is in the a times table". 

This episode raises a substantial number of questions, which 1 offer as considerations 

for further research: 

• Do Ben and Nick's expressions of the definitions using some algebraic notation 

indicate an understanding of the two terms? 

• Does the students' attempt to verbalise the generality enhance their understanding 

of the terms? 

• Why did 1 choose not to use a more formal defmition, such as "m is a multiple of n 

if, bn = m, and b, m and n are integers"? What determines an appropriate level of 

formality? 

The framework developed in chapter 7 offers a structure for further analysis of this 

interaction. 

Underlying generality Subject concept: 'factor' and 'multiple'. 
Longevity universal 
Justification convention, mathematically necessary. 

This given utterance Derivation telling, pattern-spotting: students were 
asked to give examples, then offer a 
general definition. 

Awareness enactive: several examples. 
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Although all mathematical concepts are, to some extent, conventional, as their names 

tend not to be mathematically necessary, the concepts multiple and factor could be 

seen as necessary to some extent. Various components of the concept image (Tall and 

Vinner, 1981) of the two concepts are mathematically necessary attributes of number. 

Prompted by the framework, reflection on my teacher-led discourse related to the two 

concepts sensitised me to the extent to which I had been treating factor and multiple 

as conventional mathematical terms, rather than general concepts that can be explored 

and investigated. In association with concepts of divisibility and prime, these are areas 

of mathematics towards which students' cognitive awareness could be developed. 

Rather than focussing on the enactive, by asking students to find the factors and 

multiples of different numbers, there is an opportunity to direct attention towards the 

necessary, rather than the arbitrary (Hewitt, 1999). Use of the framework developed in 

chapter 7 to structure my reflection on the teacher-led discourse related to the general 

concepts heightened my awareness that, by focussing on examples and definitions in 

everyday language, opportunities to think mathematically about the concepts may 

have been missed. 

Analysis in chapter 8-11 resulted in increased sensitivity to the tensions and decisions 

involved in expressing general concepts. Analysis of the fifty-two main study lessons 

demonstrated that in lessons such as lesson [34] (8-11.4) where attention is directed to 

the scope of a concept by students suggesting particular cases that are or are not 

contained within the scope of the concept, many examples are required before 

students volunteer a general definition. This leads me to question whether students 

would have benefitted from offering examples such as "9 is a multiple of 3" and "40 
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is a factor of 1,600" and explaining whether and why they are true or false. An 

activity such as this might have given students such as Ben and Nick an opportunity to 

express their algebraic defmitions and explain them to other students in the class. 

The identification of needless naming (8-11.3) also resonated with me on reflecting on 

this lesson, as I realised that I rarely use the terms factor and mUltiple other than in 

those lessons where they form part of the main objective. I fmd myself choosing not 

to use these terms with the self-justification that they are sometimes confused by 

students, and might detract from the mathematics on which I intend students to focus. 

However, this study's findings suggest that it is often the concept itself, rather than 

the name, that students are still developing, and ordinary language can be at least as 

ambiguous as can mathematical language. As discussed in section 8-11.2, as teachers 

are the 'native speaker' of mathematical language in the classroom, we can support 

students' lexical familiarisation by using mathematical terminology frequently. 

Section 9.3 has shown how the framework developed in chapter 7, and the findings of 

chapter 8-11, supported my reflection on my own practice in an interaction where the 

focus was on the general concepts multiple andfactor. The following section offers a 

further account of a teacher-led discourse with the same year 7 'mixed-ability' group, 

where the generality being expressed was the procedure for converting between mixed 

numbers and improper fractions. 
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9.5 EXPRESSING GENERAL PROCEDURES ALGEBRAICALLY 

During a series of lessons about fractions, one lesson was spent considering the 

meaning of mixed numbers (e.g. 7 2) and the different ways they might be 
5 

represented. Alongside various diagrams and 'real world examples', students 

suggested that they could be expressed as improper fractions (in this case 37 ), using 
5 

diagrams to support the equivalence between the mixed number and improper fraction 

forms of notation. 

At the start of the following lesson, I told the class that I was thinking of a mixed 

number, and I wanted them to explain to me how to convert it into an improper 

fraction. A few hands went up. One student said, "if you had3.!., then you would 
3 

times the three by the three, add the one ... ". I interrupted, and said I wanted to know 

how I could do it for any fraction, not just 3.!.. Another student said ''you times the 
3 

number at the front by the num ... ". As she hesitated to find the tenn, a student sat 

near her supplied "numerator". I asked the fIrst student whether she meant the number 

at the top or the bottom. She said it was the bottom and corrected herself to 

"denominator". I said that it was starting to sound complicated, and wondered aloud 

how a mathematician might describe my fraction. "If we're being mathematicians, 

then rather than say '3 113 or 2 119 or 6 2/3 or a fraction like that', how might we 

describe any mixed number?". 

In retrospect, and in consideration of the fairly small proportion of 
students who claimed to be happy with the algebraic expression of the 
general procedure, it might have been beneficial to have spent more time 
exploring how particular examples and the mathematics register can be 
used to express generality. This might have been useful for the six 
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students who did not apply the rules in the two questions asked in the 
following lesson. Regular exploration of these three approaches to 
expressing generality (through the particular, the mathematics register, 
and algebraically) might promote the creation of links between the three, 
as well as enhancing appreciation of their various merits and complexities. 
Whilst these decisions might seem particularly pertinent when working 
with a 'mixed-ability' class, findings from the fifty-two lessons in the 
main study suggest that the 'speed of travel' when engaging in teacher-led 
discourse with thirty students is a significant decision to make. 

Perhaps due to the increased use of algebra with this class when expressing generality, 

my prompt "If we were being mathematicians ... " stimulated one student to offer 

"algebra". Another student then suggested "n". "But how would we know that it was a 

mixed number?" I asked them. "n could be any number, and could be written any 

way, like a decimal, or a percentage, or an improper fraction. How can we use algebra 

to show that it's a mixed number?" A boy near the front, increasingly loudly, was 

muttering "n, n, n", so I asked him to come and write his idea on the board, and he 

n 
wrote n - on the board. 

n 

From this student's muttered contribution I was reasonably sure that this 
student would suggest an expression of this form, and so as I suggested 
that he share it with the whole class, I was anticipating that other students 
would challenge his suggestion. It is part of the creation of a 'conjecturing 
atmosphere' that students are confident to offer ideas that might be 
incorrect, but there is still an important decision to be made about when it 
is appropriate to 'expose' students to the corrections of their peers. 

I paused and indicated that I wanted the students to be silent and think about what had 

been suggested. A couple of hands went up, and one student said "all the numbers 

would have to be the same, like two and two halves, or five and five fifths". I wrote 

these mixed numbers on the board, and added a hundred and a hundred hundredths. 

Other students nodded as if in understanding. 

Another decision was to draw attention to the meaning of 'n and n nths', 
but not so much that it detracted attention from the conversion of mixed 
numbers to improper fractions, and the algebraic expression of this 
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process. I was really leading the discussion, and had a clear idea what I 
wanted the outcome to be. Although we wandered a little way into the 

patterns created by n n , and I was intrigued by the students' choice of 
n 

letters to represent the three constituent parts, essentially I was directing 
the discussion to a predetermined end. It is important that I do not believe 
that I am following the students' line of enquiry when I am actually 
following my own, but as long as there is awareness that this is the case, it 
can be an effective strategy on occasion. 

At the end of this discussion I asked the students to raise their hands if they had 

followed all or most of the discussion - six students put their hands up, and two put 

their hands half up. There are obvious limitations in this form of student assessment, 

but this did seem to match with the students who had been contributing. This at least 

can tell me that none of the students who had remained silent considered themselves 

to have been following (or wanted me to consider them to have been following), and 

all of the students who had contributed did consider themselves, or did want me to 

consider them, to have been following. Of course, definitions of/ollowing are open to 

interpretation here. 

The framework developed in chapter 7 offers a structure for considering 
the approach I took to expressing the general procedure for converting 
between improper fractions and mixed numbers. 

Underlying generality Subject procedure 
Longevity universal 
Justification mathematical necessity 

This given utterance Derivation reasomng, pattern-spotting, 
telling 

Awareness cogr.dtiveorenactive 

The first contribution of the framework is to focus attention on the 
underlying generality that was being expressed: the general procedure for 
converting between improper fractions and mixed numbers. This leads me 
to question the extent to which the students were attending to this general 
procedure, and whether this could have been emphasised more effectively. 

The procedure is a mathematical necessity (although one that is closely 
related to the conventions of fraction notation), and in the previous lesson 
I had intended that the procedure for converting between improper 
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fractions and mixed numbers would be derived through reasoning. 
However, working with the framework heightened my awareness that, 
through starting this lesson by asking students to 'remember' the 
procedure, and spending very limited time on particular examples, a more 
'pattern-spotting' approach might be being taken by students. Students 
who did not recall the procedure from the previous lesson were essentially 
being 'told' how to convert between the two different forms. In the 
process, we may have lost sense of the meaning of the procedure, 
including the idea that the improper and mixed forms of the fractions 
represent an equivalent quantity. 

In the light of this reflection, I was led to consider what students' might have been 

attending to during the discourse, and what they might be able to draw on in future 

lessons. 

9.5.1 Students' appreciation of generality 

In the next lesson (which was the following day) I asked the students to write down: 

1. an example of an improper fraction. 
2. an example of a mixed number. . 
3. why, when we were discussing 'general fractions' at the end of yesterday's 

lesson, did we write n/d? What did the nand d stand for? 

4. 31.. as an improper fraction. 
4 

5. 16 as a mixed number. 
7 

6. a general description of how to convert a mixed number to an improper 
fraction, using words, examples, algebra, as desired. 

7. a general description of how to convert an improper fraction to a mixed 
number, using words, examples, or algebra, as desired. 

I was interested to see whether any of the students who were able to apply the general 

procedures in a particular instance (as in questions four and five) did not write a 

general definition in questions six and seven. Six students did not complete question 

four and question five correctly, so it is perhaps unsurprising that they did not write a 

general method for question six and question seven. These six students' responses 

might be considered concerning, as one could argue that their apparent confusion over 

how to convert between mixed numbers and improper fractions manifested a failing 
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of the approach of using algebra to express general procedures. Without a control 

group, however, it remains possible that these six students would not have answered 

questions four and five correctly after a more traditional teaching experience. In 

section 9.4.2 I consider how the emphasis on using algebra to express generality could 

have been retained and improved upon so that these students might correctly apply the 

general procedure. 

All of the students who applied the general procedure to the particular questions four 

and five also attempted a general description of the procedure (questions six and 

seven). One student correctly answered for question 5 that 1617 = 2 217, and wrote a 

general description of how: "Get improper fraction ego 1617, see how many 7s go into 

16 = 2 but two left so it is 2 217!" (Q7), but for question 4 and question 6 wrote 

"?????????????????????". It is interesting that this student made the link between the 

particular and the general here, but felt unable to carry out the inverse of the 

procedure shown in questions five and seven. 

In question three, I had directed students' attention towards the vocabulary 

'numerator' and 'denominator', through using the first letter of each tenn, so it is 

perhaps unsurprising that many of them used it in their descriptions. What might be 

considered of interest is that none of the students referred to 'top number' and 'bottom 

number', and all the students who used the terms numerator and denominator (which 

was all of those who attempted an answer to questions six and seven) used them 

correctly. Of course, offering them 'n/d' in question three provided potential 

scaffolding for this, but their behaviour does suggest that links were being made. 
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In response to question six, students offered a variety of explanations of how to 

convert from a mixed number to an improper fraction, from which the five examples 

below have been selected to illustrate the range of responses given. 

You would see how many the denominator said and times it by the whole number then 
you would add the numerator and keep the denominator the same. 

Multiply the integer and the denominator and add on a extra numerator and put the 
answer over the denominator [sic]. 

You times the denominator and the hole number and add the numerator [sic]. 

Times the whole number by the denominator. Add the answer to the numerator, the 
answer will become the numerator and you will keep the original denominator. 

To convert a mixed number into an improper fraction you would take the mixed 
number (e.g. 2 2/7) and see that the denominator is a 7, and the whole number is a 2, so 
you must do 2 multiplied by 7 which is 14. The numerator of2 217 is 2, so you must 
look at this as an extra two sevenths. So 14 sevenths plus 2 sevenths is 16 sevenths, and 
you must put 16 over the original denominator which was 7 so you get the answer 1617. 

Only one student chose to use algebra. This student wrote: 

To get a mixed number into an improper fraction you times the denominator by the 
whole number and then add the numerator 

m = mixed number 

md+n 
d 

This general rule appears partially confused, as it is not the mixed number (m) that is 

multiplied by the denominator, but its integer component. However, it is perhaps 

unrealistic to expect perfect accuracy from a student who is so new to expressing 

themselves algebraically. This may be because their attention was on both the correct 

algebraic notation required, and the general procedure they were trying to express. 

The student's expression of the general procedure might be taken as algebraic 

babbling, as defined by Malara and Navarra (2003, see section 2.4.3), and thus taken 
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as a natural and unconcerning consequence of a focus on semantics rather than syntax 

in early algebra. 

A similar range of responses was offered in response to question seven, explaining 

how to convert from an improper fraction to a mixed number: 

See how many times the denominator goes into the numerator and how many times 
would be the whole number then what was left behind would be the numerator and the 
denominator is the same. 

You see how many times the denominator goes into the numerator and write that to the 
side. You see how many is remained from this and write that above the denominator. 

You see how many times the denominator goes into the numerator and make the 
remainder as a fraction. 

Divide the numerator by the denominator, the answer will be the whole number. The 
remainder will be the numerator. The denominator will stay the same. 

You must divide the numerator by the denominator and as many times it goes in with 
no remainder is the whole number on the left, and the left overs makes the fraction on 
the right. Eg: 
1115 
11 + 5 = 2 r. 1 The 2 goes on the left and the remainder is the fraction 115 So the 
answer is 2 115. 

As the examples above illustrate, the students used a wide variety of means to 

communicate their methods, including particular examples, technical mathematical 

vocabulary (numerator and denominator) and, in one case, algebra. In a 'mixed-

ability', year 7 classroom, the number of students who offered a clear general 

description might be considered encouraging, but at the time I was disappointed that 

some students had felt unable to do so. 
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One student, with high prior attainment, wrote "Don't know myself, would ask 

[names of three students on his table]". He generally acts as if eager both to learn and 

to meet teacher expectations, so it is interesting that he chose to write this, and to read 

it out when I asked students to share their explanations with the class. He seemed to 

have humorous intent, as he was smiling himself, and did not seem surprised when I 

laughed, but I wonder at the extent to which it contains elements of the truth. Another 

student (sitting nearby) wrote a description of how to convert an improper fraction 

into a mixed number, but in response to question six wrote "sorry don't know ask 

brainy people" then provided a list of eleven names of students in the class, as well as 

my own name. I was intrigued to see that he had included me amongst this list, 

roughly in the middle. The culture I aspire to creating with this group is one in which 

the students' contributions are considered as valuable as my own, and that it is 

acceptable to ask other students in the class for help with understanding a concept or 

process. Perhaps because of my own focus on this, I am reading too much into this 

student's writing, which may not be representative or indicative of his genuine views 

of the mathematics classroom. Despite this, I feel it is a possible positive indication 

that he views asking others for help as an acceptable mathematical behaviour, and that 

he does not distinguish strongly the value of students' and teachers' contributions. 

Sections 9.3, 9.4 and 9.5 gave an insight into how the findings of the main study, 

described in chapters 7, 8-1 and 8-11, influenced reflection on my own teaching 

practice, and how algebra was used to express general mathematical procedures and 

concepts in teacher-led discourse with my year 7 class. 
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9.6 CHAPTER SUMMARY 

This chapter serves both to indicate classroom implications of the main study findings 

and to suggest avenues for further research. The framework has been used to inform 

reflection on my own practice. The framework was used to trigger and structure 

reflections and analyses that might otherwise have been overlooked, and acts as a 

prompt to elicit deeper insight rather than as an ongoing underlying framework. As 

suggested by the findings of chapter 8-1, use of algebra to express general procedures 

and concepts could be more comprehensively included in schemes of work. Although 

my initial work with the year 7 group was not thoroughly and instantaneously 

effective, the (sometimes spontaneous) take-up of algebraic notation in these and 

other lessons with the group is encouraging. Further study would be required to 

monitor the effects of this change both on students' use of algebra to express 

generality, and their understanding and application of the procedures and concepts. 
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CHAPTER 10: CONCLUSION 

This final chapter draws together the insights that have emerged from this study of the 

use of algebraic language to express generality. The discussion is in three parts. The 

fITst section summarises the findings reported in the preceding chapters, relating them 

to the study's three research questions (10.1). An overview of the study's findings is 

then offered in the next section (10.2). The chapter ends with a critical reflection on 

the design and undertaking of this research study (10.3). 

10.1 SUMMARY OF FINDINGS 

This section re-presents the fmdings of the study in relation to the foci of the three 

research questions: 

Research Question 1 

What generalisations are being expressed in 
secondary mathematics classrooms? 

How are procedural generalisations 
expressed in mathematics classrooms? 

How are conceptual generalisations 
expressed in mathematics classrooms? 

What generalities are being expressed in secondary mathematics classrooms? 

The study revealed the complexity of generality in secondary mathematics 

classrooms. The review of the literature revealed the importance of generality in 
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mathematics education. However, the significant role that generality plays in 

mathematics was not found to be emphasised in the main study lessons. 

The teacher-led discourse from my own teaching practice in chapter five illustrated 

the wide variety of 'types' of generalisation. Distinctions were made between 

generalities concerning algebra, the activity in which the students are being invited to 

participate, and behaviour in mathematics classrooms. It was found that consideration 

of the lesson from the perspective of generality and generalisation offered insight into 

potential ambiguities and possible changes in teacher practice that might support 

student understanding. 

In the main study the approach of identifying generalisations in teacher-led discourse 

was expanded to observations of fifty-two lessons taught by five teachers in a 

secondary comprehensive in Oxfordshire. Shaped by the literature, five categories for 

distinguishing between generalisations emerged from the transcribed data, infonned 

by observation notes and student work. The categories that emerged included 

consideration of the object of the underlying generality (procedure, concept, or 

behaviour), its longevity of relevance (whether it applies just in the current task or 

lesson, or is more universal) and its justification (inathematically necessary, 

conventional or behaviouraVsocial). Generalisations were also analysed through 

consideration of their derivation-origin in the given instance (telling, pattern-spotting 

or reasoning) and the awareness that was being promoted (affective, cognitive or 

enactive). These categories are introduced in section 7.3, and summarised in the table 

overleaf. 
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Underlying generality Subject procedure, concept or behaviour 
Longevity transient or universal 
Justification mathematical necessity, conventional or 

behavioural/social 
This given utterance Derivation telling, pattern-spotting or reasoning 

Awareness affective, cognitive or enactive 

This framework was shown to be useful in bringing to attention areas of potential 

mismatch between teacher intention and student experience. 

Research Question 2 

How are procedural generalisations expressed in mathematics classrooms? 

This study has shown that regarding the teaching of mathematical procedures as a 

process of supporting students in their appreciation of procedural generalisations 

offers insight into teaching decisions that may improve practice. In the main study, as 

described in chapter 8-1, every lesson observed involved procedural generalisation, 

each of which was an opportunity to generalise. This generalisation was rarely made 

explicit in the discourse, with shifts between the particular and the general being made 

implicitly, if at all. Whilst the main study teachers, knowing that this study was 

focusing on generalisation, frequently apologised that there 'wasn't any generalising' 

in the lessons being observed, I identified numerous generalisations that were offered 

as methods to be remembered and practised, rather than general procedures whose 

scope and derivation can be tested and proven. The research fmdings suggest that 

teachers being explicit (in self-talk as well as with students) about use of particular 

examples, and expression of the general, when teaching students mathematical 

procedures, might increase student awareness of those procedures. Reflection on my 

own practice, discussed in chapter nine, explored how algebraic notation could be 

used in every mathematics lesson to focus attention on the general nature of the 
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procedures being taught and learnt, as well as to develop students' purposeful (Ainley 

et al., 2004) use of algebraic notation. 

Analysis of main study lessons, discussed in chapter 8-1, revealed that whilst 

numerous procedural generalisations were expressed, students' attention appeared to 

be directed towards them enactively rather than cognitively. Hewitt's (1999) 

distinction between the arbitrary and necessary was employed to suggest that 

mathematically necessary procedures could be deduced by students themselves using 

their powers of reason, thereby encouraging cognitive, rather than merely enactive, 

engagement with the procedure. Where procedures are arbitrary, alternative strategies 

might be more appropriate, such as offering several examples and asking students to 

express what is the same and what is different. One significant contribution of this 

study has been the proposal that cognitive awareness of procedural generalisations 

might also be promoted through inviting students to express the procedure 

algebraically. 

Research Question 3 

How are conceptual generalisations expressed in mathematics classrooms? 

Chapter 8-11 reported the findings of. analysis at all three levels related to the 

expression of general concepts. Research findings suggested a tension for teachers 

between developing students' mathematical language, which will benefit future 

communication, and emphasising current communication. A teacher's correction of 

students' unconventional use of mathematical language could create the appearance of 

also criticising the mathematical conjecture the student is making, and might hamper 

the development of a conjecturing atmosphere. 
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Davydov's separation of concept appreciation into scope, name and definition was 

offered as an effective framework for researching the opportunities offered to students 

for developing general concepts during teacher-led discourse. The study has shown 

that names and their scopes and meanings can become separated during teacher-led 

discourse. In the main study lessons, concept names were often used before students 

had been offered an opportunity to develop the concept, or even the conception (8-

11.2). It was found that concepts were introduced and defined in lessons where no use 

was subsequently found for the concepts' meaning (8-11.3). 

The research findings reported in section 8-11.4 demonstrated that conceptions were 

often discussed and developed in main study classrooms without some or even any of 

Davydov's (1972/1990) criteria for their becoming concepts. Teacher-led discourse 

that focused on a particular conception often demonstrated lack of clarity about the 

exact scope of a concept. Concepts were often discussed without the correct name, 

occasionally even with an incorrect name. The majority of uses of concepts were 

supported by particular examples. Analysis suggested that the teaching decisions 

surrounding how and when to support students in developing conceptions into 

concepts is both complex and fascinating. 

10.2 OVERVIEW OF FINDINGS 

This study has probed the complexity of the manipulative and expressive roles of 

algebra, and brought to the surface some of the choices that teachers make, with the 

intention that they might become more aware of their impact. I have shown, through 

observation, recording and analysis of fifty-two lessons, that there is a multitude of 
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generalisation in mathematics classrooms. The effect of this research on me as the 

researcher was to sensitise me to the possibility that the potential of algebra as a 

medium for purposeful expression of mathematical generality has been overlooked. 

Whilst working towards addressing the three research questions discussed in section 

10.1, throughout analysis of the fifty-two main study lessons, I became aware of an 

apparent mismatch between the huge potential of algebra as a tool to express 

generality, and of mathematical generality as a 'real context' for developing use of 

algebraic notation. 

The study has shown that the language used to express general concepts and general 

procedures is often obtuse or appears to go unnoticed. Whilst awareness of the 

manifold complexities of algebraic symbols and expressions might lead teachers to 

neglect algebraic notation in those lessons where algebraic manipulation is not the 

main objective, the complexities of everyday language and mathematical terminology 

illustrated in this study revealed that algebra might offer a less ambiguous tool for the 

expression of general mathematical concepts and procedures. 

Whilst students studying mathematics at 'A' level and beyond are expected to 

understand and use procedures and concepts expressed in algebraic notation, analysis 

of main study lessons found that this is not the case in younger classes. This study's 

research fmdings suggest that the advantages (conciseness, preciseness) of algebra to 

express generality in higher level mathematics courses could be used throughout 

secondary mathematics education. This study has demonstrated that there are many 

challenges and ambiguities involved in the use of natural and of mathematical 

language to express general concepts and procedures. It follows from this that 
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although using algebraic notation would bring its own challenges, it is far from 

obvious that students would find it was a barrier to understanding. 

This study has offered rich data, with detailed descriptions of classroom discourse. 

The study's fmdings are made more relevant through detailed descriptions of 

'ordinary' lessons. Through engaging in research as a teacher practitioner, I have also 

shown that engagement ~ enquiry is an important part of teaching. Implications for 

practice are illustrated in chapter nine, where the impact of increased sensitivity to 

expressions of generality on my own teaching is shown. Through studying the 

relevant literature, analysing others' practice, and reflecting on my own teaching, I 

have heightened my awareness of the decisions being made in teacher-led discourse, 

and the possible learning benefits of increased use of algebra in 'ordinary' lessons. 

10.3 CRITICAL EVALUATION OF TIlE STUDY 

Several limitations of this study were considered at the design stage and reflect the 

fact that decision-making in research involves compromise. Aspects that have 

strengths in one respect often have weaknesses in others. Some limitations relate to 

the generalisability of the study (10.3.1), others to the combination of researching my 

own practice and that of others (10.3.2). Further limitations are associated with impact 

on teaching practice (10.3.3). The concluding section considers these limitations with 

respect to the principles used to guide research design and analysis that were 

introduced in section 3.3. 

Undertaking research involves continually trying to find a balance between different 

sets of objectives that seem to be pulling in conflicting directions. The challenge, 
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though, is not so much in making the trade-offs, but in trying to remain aware of 

when, how and why the trade-offs are made. This research has involved making trade

offs between: 

1. depth of detail and breadth of generalisability; 

2. studying other teachers and reflecting on my own practice 

3. understanding practice and changing practice. 

This section will critically reflect on the course that this study has steered between 

these three sets of alternatives, and in so doing consider how they might better be 

approached in the future. 

10.3.1 Depth of detail and breadth of generalisibility 

A perennial dilemma in all research is that of depth versus breadth. The former is 

often championed in terms of understanding and insight while the latter is proposed as 

the route towards generalisation and external validity. The nature of the focus and 

questions that this study sought to investigate meant that a small-scale approach was 

both sensible and necessary. The onus throughout the work has been on depth of 

detail, rather than breadth of generalisibility. This is seen not only in the small 

numbers of case study settings, teachers and students, but also in the analytical focus 

on specific lessons. The small scale strategy afforded rich data relating to individual 

class discourses, but this came at the expense of generalisability to other classrooms. 

The advantage of this trade-off lies in the richness of the data, the detail of the 

descriptions of classroom discourse and the relevance of the fmdings and implications 

for practice. The disadvantage, though, is an inability to know with confidence the 

extent to which the findings and implications of this study might be applicable to 
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settings beyond the five classrooms that were investigated. At this stage, it would 

seem important that the conclusions of this study are seen as ideas that are valid in 

relation to the contexts in which they were generated, but that will require further 

investigation in different settings to explore their potential generalisibility. I would 

add that I feel strongly that the question of the generalisibility of findings from a 

research study such as this is not simply a question of methodological theory, but 

should also be gauged through dialogue with practitioners about the applicability of 

the ideas that have emerged. In addition to this, the ideas could be considered as 

potential frameworks used to explore further settings. Consequently, any 

generalisations arising from this study should be constructed in a 'naturalistic' form. 

These are generalisations, not of a statistical nature, but instead, generalisations ''that 

form the basis of hypotheses to be carried from one case to the next" (Brown and 

McIntyre, 1993 :50). Further investigation in different settings, therefore, would 

enable the potential generalisability of the findings of this study to be explored. 

10.3.2 Studying other teachers and reflecting on own practice 

The process of reflecting on my own practice, informed by relevant literature and 

observation of others, is one that I regard as an essential part of my teaching. Whilst 

the research questions raised in this study could have been explored through 

structuring and formalising this existing informal practice, it was also important to 

make use of other research methods to gain deeper insight. 

One alternative study design would have placed my own lessons amongst the main 

study lessons, and carried out all three levels of analysis on my own practice 

alongside that of my colleagues. Quite apart from the difficulties of fairly comparing 
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my own actions (about which I have some level of appreciation of motive and 

intention) with those of colleagues, I found it impossible to reflect on my own practice 

and possible alterations that might be more effective for student learning without 

implementing those changes in my future practice. I was unable to simultaneously 

systematically reflect on potential improvements to my practice and teach as I 

'ordinarily' would. Whilst it was an important part of my research design that the 

lessons analysed were 'ordinary , lessons, I could not carry out level 1 analysis of my 

practice without wanting to change it. In the following section I discuss the tension 

between understanding and changing practice, which relate to this point. 

10.3.3 Understanding practice and changing practice 

This study has been very much about understanding, rather than changing, 

mathematics whole class discussions. While I would argue that this was justified in 

light of the desirability of more exploratory work on maths classroom discussions, I 

feel it is also important to recognise the potential limitations of such a strategy. I refer 

particularly to the problem of academic research that does little to actually inform the 

development of teaching and learning within actual schools. In one sense this is a 

dissemination issue, in that there is a very crucial need to explore creative and 

constructive ways of communicating research fmdings to practitioners. It is also, 

though, a question of methodology, and I feel that great benefit could be gained, in 

terms of relevance for practice, by undertaking classroom curriculum research that is 

more collaborative in relationship, and change-orientated in its intentions. The 

potential for such approaches to build upon, use and refine, the insights generated 

from studies such as this one is a particularly exciting prospect. To this end, the 
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considerable literature on collaborative research with, and action research by, 

teachers, provides a wealth of ideas and experience on which to draw. 

The limitations discussed above have not prevented the making of claims which, with 

their basis in both theory and evidence, constitute a response to the research questions 

posed at the outset of the study, and offer a novel contribution to knowledge. 
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