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Abstract. This paper analyses a model for the intensity of distribution for rays

propagating without absorption in a random medium. The random medium is

modelled as a dynamical map. After N iterations, the intensity is modelled as a

sum S of N contributions from different trajectories, each of which is a product of

N independent identically distributed random variables xk, representing successive

focussing or de-focussing events. The number of ray trajectories reaching a given point

is assumed to proliferate exponentially: N = ΛN , for some Λ > 1. We investigate the

probability distribution of S. We find a phase transition as parameters of the model

are varied. There is a phase where the fluctuations of S are suppressed as N → ∞,

and a phase where the S has large fluctuations, for which we provide a large deviation

analysis.
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1. Introduction

We consider a model for light rays propagating through a random medium with negligible

absorption. Random fluctuations of the refractive index cause rays to diverge or to

focus, leading to fluctuations of the light intensity, depending on the path of the light

ray to reach the point where the intensity is observed [1, 2, 3, 4, 5, 6]. In addition to

applications to optics, the model studied here is relevant in a dynamical systems context,

where extremely large fluctuations of the density of trajectories can be observed [7]. The

results may also have applications in electron transport in low-temperature conduction,

where very pronounced fluctuations of current density have been observed [8]. We

consider cases where interference effects, leading to ‘speckle’ phenomena [9] are not

relevant, either because the light source is not phase coherent, or because the spatial

resolution of observations is greater than the coherence length.

Because the effects of each successive focussing or de-focussing events are to multiply

the light intensity by a random factor, the effects of focussing are expected to increase

exponentially with the path length. On the other hand, the intensity at a given point is

the sum of the intensities from all of the rays reaching that point. The number of rays

reaching a point increases exponentially with the path length, and we expect that the

proliferation of rays will tend to average out the fluctuations of the intensity. There are,

therefore, two effects on the distribution of intensity fluctuations which compete as we

increase the path length. Does the effect of focussing along individual rays dominate,

so that the light intensity shows increasingly pronounced fluctuations? Or does the

proliferation of paths become dominant, so that intensity fluctuations are averaged out

and the medium behaves as a diffuser which produces a uniform intensity? In this paper

we introduce and analyse a very simplified, but physically well-motivated model, which

is analytically solvable. We show that this model has a phase transition between a

fluctuation-dominated phase and a uniform phase.

Our model is a reasonable description of paraxial propagation, where the angular

dispersion of the rays remains small, and it may, therefore, find applications in situations

where light rays are scattered through small angles. Propagation of light through an

atmosphere which is turbulent due to convection is an important problem where paraxial

approximations are usually valid [2, 3]. However, the principle underlying our phase

transition, which is a competition between increasing intensity fluctuations along a ray

and the averaging effect of a proliferating number of rays, is applicable outside the

paraxial context.

2. A model for intensity statistics

Several approaches have been proposed to compute the distribution of the intensity of

waves travelling through a random medium. Many authors have treated the solution

of the wave equation directly, see e.g. [4, 5]. Others have simplified the problem by

considering a short-wavelength limit and concentrating on the ray trajectories [3, 6, 10].
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This approach relates the high-intensity events to the effects of focussing, and makes

elegant connections with catastrophe theory [11, 12]. The use of catastrophe theory is

appropriate when only a few rays reach each observation point. As we move deeper into

a random medium, however, the number of trajectories which can reach a given point

proliferates, essentially exponentially. It is this case which is addressed in our work:

we consider propagation with negligible absorption in a short-wavelength limit, so that

the intensities are determined by focussing of rays, but the number of rays which could

contribute is extremely large. Our objective in this paper is to analyse a solvable model

which can serve as a benchmark for future studies of more specific models.

We motivate our model by considering a simplified one-dimensional problem of ray

propagation along the z axis. The point at which a ray crosses the perpendicular axis

after propagation for a distance of z = n∆z (where ∆z is some fixed increment) is

xn. The evolution of the ray position xn is described by a sequence of random one-

dimensional maps, fn:

xn+1 = fn(xn) . (1)

We assume that this random dynamical system has ‘chaotic’ properties with a positive

Lyapunov exponent [13]. The density of initial conditions is ρ0, and the density of

trajectories after N iterations of the map is denoted as ρN(x). If the map were invertible,

the density would be ρ0(xN)/F ′N(xN), where FN(x) is the mapping for N iterations so

that

F ′N(x) =

(
∂xN
∂x0

)
(2)

is the stability factor of the trajectory, xN(x) is the N step pre-image of x, and ρ0(x) is

the initial density at x. Usually, however, a point will have multiple pre-images, so that

ρN(x) =
N∑
j=1

ρ0(xj)

|F ′N(xj)|
(3)

where the xj are the N pre-images of x. The number of pre-images of a point is expected

to proliferate exponentially (with exponent equal to the topological entropy [14]), and

after N iterations we have:

N ∼ ΛN (4)

for some constant Λ > 1. The stability factor of the trajectory is a product of terms

for each time step, where the sum runs over all of the pre-images of x at n = 0 and the

sensitivity of each trajectory is a product of independent terms:

F ′N(x) =
N∏
k=1

∣∣∣∣ ∂xk∂xk−1

∣∣∣∣
xk−1

=
N∏
k=1

f ′k(xk) (5)

where the xk are the successive pre-images after k iterations. When N is large, the

density of trajectories is therefore constructed as a sum of a large number of terms (as

implied by equations (3) and (4)), each of which is the product of a large number of

factors (implied by equation (5)).
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The analysis of how ρN(x) varies as a function of x for a specific system is clearly a

difficult and usually intractable problem. However, the large number of proliferating pre-

images implies that a statistical approach may yield valuable insights. In this paper we

consider a statistical model for the density, represented by a sum S, which is constructed

using a set of independent, identical distributed variables, Xk. The model is defined by

the equations

N = int(ΛN)

S =
N∑
j=1

Yj

Yj =
N∏
k=1

Xk . (6)

Because intensity is a positive quantity, we assume that all of the factors Xk are positive.

The problem is to characterise the probability distribution of S in the limit N � 1,

given the value of Λ and the probability density function (PDF) of Xk. If S approaches

a limit with small fluctuations relative to its magnitude, the density at large times is

uniform. Alternatively, if the fluctuations of S relative to its size grow, then the density

becomes highly inhomogeneous.

We note that in the model described by Eq. (6) there are competing effects. The fact

that the Yj are a product of many factors implies that they have very wide fluctuations

in magnitude. On the other hand, S is a sum of an exponentially large number of

independent quantities, so that fluctuations may be averaged away. We must consider

which effect dominates, and whether, in the limit as N → ∞, the dominant effect can

change as the parameter Λ is varied. In the following we show that there is a phase

transition: when Λ is relatively small, S shows very large fluctuations, but as Λ is

increased beyond a critical value Λc, the fluctuations of S in the limit as N → ∞ are

suddenly suppressed. A numerical illustration of this effect is shown in Fig. 1, where we

can see how a set {S1, . . . , Sm}, with m = 100, evolves as we increase N for two different

values of Λ. When Λ < Λc the random variable S exhibits inhomogeneous fluctuations

spanning several decades in magnitude, while these fluctuations are largely suppressed

when Λ > Λc. For this numerical example the random variables Xk in Eq. (6) are drawn

from a log-normal distribution (see Section 6 for more details).

The model given by Eq. (6) appears to be quite realistic as a model for fluctuations

of ray intensity: if rays reach the point of observation via chaotic trajectories, then it is

plausible that these rays will sample different regions of the random medium and that

the intensity factors will be independent. The most significant weakness of our model

is that it does not represent the effects of propagation: the intensity predicted by the

model after N + 1 steps is un-related to the realisation of the model for N steps. A

more realistic model may take account of the cumulative effect of focusing along paths.

However, if we are interested in the distribution at a single point, there are no obvious

reasons why the predictions of our model should be suspect. In addition, our model has
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Figure 1. Representation of a set of values of the random variable S allocated in

the vertical axis over different values of N (horizontal axis). Left and right panels

correspond to a value of the parameter Λ below (Λ = 0.99Λc) and above (Λ = 1.01Λc)

the critical point Λc, respectively. The colour coding illustrates from low (blue) to high

(yellow) values of S, and the colour bar is in decimal logarithmic scale. At N = 500,

the largest (smallest) fluctuations of S are larger (smaller) than the mean by a factor

103 (10−3) for the left panel, which shows the extreme nature of the fluctuations. On

the contrary, the fluctuations do not exceed the mean by more than ≈ 10% for the

right panel.

the advantage of being highly amenable to analytical investigations.

We note that the model presented here is somewhat analogous to models for the

partition function of the Ising model and other interacting spin systems on disordered

Bethe lattices [15, 16]. We remark, however, that we are aiming at a different type of

result: our quantity S is analogous to the partition function, and we are concerned with

its probability density. This would be analogous to studying the probability distribution

of the partition function under different realisations of the lattice disorder. The model is

also somewhat reminiscent of Derrida’s random energy model for a spin glass [17]. Our

model is also quite closely related to a model used in studies of hopping conductivity

[18, 19]. That model differs by having random elements with different signs (or, more

generally, different complex phases), but it also exhibits a phase transition, associated

with a transition of the sign of the sum.

3. Explicit analytical calculations

In the following we simplify the discussion by making a specific choice of the PDF of

the Xk. We give these variables a log-normal distribution by writing

Xk = exp(yk) , Py =
1√
2πσ

exp

[
−(y − µ)2

2σ2

]
(7)

where µ and σ are constant (throughout, Ps will denote the probability density function

of a random variable s, and 〈s〉 represents its expectation value). With this choice of
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PDF, the moments of Xk are obtained explicitly as:

〈Xn〉 ≡ 〈(Xk)
n〉 = exp(nµ+ n2σ2/2) (8)

which, as we shall see below, enable us to make explicit calculations. Later, we shall

show that qualitative results obtained from this distribution are true for a very general

choice of the probability distribution of the factors Xk.

In the following section we describe three calculations that can be done with the

model (6), giving explicit results for the special case where the Xk have a log-normal

distribution (as defined by (7)).

3.1. Mean value

The mean value of S is

〈S〉 ≡ exp[NΣ0] = [Λ〈X〉]N (9)

where the first equality defines the growth exponent Σ0. Using Eq. (8), we find for the

log-normal model

Σ0 = µ+ ln Λ +
1

2
σ2. (10)

The parameter µ can be adjusted to make the mean value of S independent of N (which

is a physical constraint on the intensity distribution for a non-absorbing medium), but

this is irrelevant to the condition for the phase transition.

3.2. Normalised central moments

A central moment of S is 〈∆Sk〉 where ∆S = S − 〈S〉. We consider the normalised

central moments

Mk ≡
〈∆Sk〉
〈S〉k ∼ ξNk (11)

where the second equality defines the growth factor ξk. We find that, in the limit as

N →∞, M2 ∼ ξN2 with

ξ2 =
〈X2〉

Λ〈X〉2 . (12)

This implies that the dispersion of the distribution of S approaches zero as N → ∞ if

ξ2 < 1, suggesting that the distribution will condense onto a delta function. This can

be generalised. Consider the third moment

〈∆S3〉 = N
[
〈Y 3〉 − 3〈Y 2〉〈Y 〉 − 2〈Y 〉3

]
. (13)

Noting that

〈Y 3〉 =
[
〈X3〉

]N
, 〈Y 2〉〈Y 〉 =

[
〈X2〉〈X〉

]N
, 〈Y 〉3 =

[
〈X〉3

]N
(14)

we see that

M3 ≡
〈∆S3〉
〈S〉3 ∼ ξN3 (15)
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where

ξ3 =
maxl=0,1,2〈X3−l〉〈X〉l

(ln Λ)2〈X〉3 . (16)

In general, 〈∆Sk〉 is (for integer k > 1) a linear combination of N times 〈Y k−l〉〈Y 〉l, with

l = 0, . . . , k−1. The integer coefficients are related to Pascal’s triangle, but their values

are irrelevant to determining the growth factors ξk. The value of 〈∆Sk〉 is determined

by the largest (in magnitude) of the values of 〈Xk−l〉〈X〉l. We have

Mk ≡
〈∆Sk〉
〈S〉k ∼ ξNk (17)

where

ξk =
maxl=0,...k−1〈Xk−l〉〈X〉l

ln Λk−1〈X〉k . (18)

In general, we cannot conclude that l = 0 is the largest term, but for the log-normal

model we have an explicit expression (8) for the expectation values, and we find

ξk = exp
[
(k − 1)

(
kσ2/2− ln Λ

)]
. (19)

This expression has been derived for positive integer values of k. It is however an

analytic function and we can consider the consequences of assuming that it is valid for

arbitrary values of k.

3.3. Largest element in sum

We can consider the PDF of Ym, the largest element of the sum in equation (6), using

a combination of large deviation [20, 21] and extreme value [22] approaches. The

distribution of Y is more conveniently described in terms of a logarithmic variable

Z =
1

N
ln Y =

1

N

N∑
k=1

yk (20)

where yk = ln Xk. Note that Z is the mean value of yk, so that the distribution of Z is

expected to be described by a large-deviation ansatz [20, 21]:

PZ ∼ exp[−NJ(Z)] (21)

where J(Z) is termed the large deviation entropy function or rate function [21]. For the

log-normal model the entropy function can be determined explicitly:

J(Z) =
(Z − µ)2

2σ2
. (22)

The precise form of the distribution of the maximal value of Z, namely Zm = lnYm/N

is then determined from the Gumbel distribution [22]. However the essential features

are easily explained. The peak of the distribution of Zm is at position Z0, determined

by the condition that the product of the probability density and the number of samples

is of order unity:

NPZ(Z0) ∼ 1 . (23)
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By usingN ∼ ΛN , the above condition can be expressed in terms of the entropy function

as J(Z0) = ln Λ, which has two solutions. Of these we must consider the larger solution,

because we are considering the distribution of maximal values. For the log-normal model

this gives

Z0 = µ+
√

2σ2 ln Λ . (24)

The probability density to obtain Zm < Z0 is extremely small: exponentials of

exponentials. The probability density for Zm > Z0 is approximately [22]

PZm(Zm) ∼ N exp[−NJ(Zm)] . (25)

When Zm − Σ0 is sufficiently small, we can approximate this using a Taylor expansion

about Σ0, the value corresponding to 〈S〉, see (9, 10). The derivative of J(Z) at Σ0 is

J ′(Σ0) =
Σ0 − µ
σ2

=
1

2
+

ln Λ

σ2
(26)

so that PZm ∼ exp[−αN(Zm − Σ0)] with

α =
1

2
+

ln Λ

σ2
. (27)

Therefore, the corresponding PDF of Ym is

PYm ∼ Y −(1+α)m . (28)

We remark that the case where α = 1 may be significant. If α < 1, the approximation

(28) suggests that the integral determining the mean value is divergent. In this case

the mean value is determined by the behaviour of the tail of the distribution at values

much larger than the typical value of Y . For our log-normal model, the critical point

where α = 1 is determined by the condition

ln Λc = σ2/2 . (29)

4. Inferences from calculations

The calculations discussed in section 3 can be used to infer properties of the distribution

PS, as follows.

4.1. Existence of delta-function measures

Let us consider the consequences of finding that ξk < 1 for some value of k. This

condition may be satisfied if the distribution PS approaches a delta function as N →∞.

This is also consistent with the distribution PS having a long ‘tail’, provided this tail

decreases sufficiently rapidly as S →∞ and as N →∞. For example, a distribution of

the form

PS ∼ [1− w(N)]δ(S − S0) + w(N)Θ(S − S0)(S − S0)
−(1+α), (30)

with w(N) ∼ exp[−βN ], α > k, and β > 0, is consistent with having normalised

central moments that go to zero, Mk → 0, as N → ∞. In this sense, showing that
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ξk < 1 for k > 1 implies that there is a delta-function component of PS that emerges as

N →∞. It is hence desirable to determine the region of parameter space for which the

delta-function component of PS is present.

We have seen that Mk ∼ ξNk , where, in the log-normal case, ξk is given by expression

(19), which is an analytical function of k. In the following, we assume that this

expression is valid for any real positive value of k. This is very similar in spirit to the

‘replica trick’ where the free energy is obtained from the nth moment of the partition

function by taking the limit as n→ 0 [23, 24]. Let us determine for which combination

of the model parameters (Λ, µ and σ) the value of ξk may be less than unity for some

choice of k > 1. Clearly the value of µ is irrelevant because it does not appear in (19).

If σ2/2 < ln Λ, then, for all values of k, satisfying 1 < k < 2 ln Λ/σ2, ξk < 1. This

therefore suggests that there is a delta-function component whenever ln Λ > σ2/2.

In the case where σ2/2 > ln Λ, the values of ξk can be less than 1 only for k < 0.

In this case, we cannot infer the existence of a delta-function component. We have seen

that when σ2/2 > ln Λ, the exponent in (28) satisfies α < 1. This implies that the

integral defining the mean value is divergent in the approximation (28), and that the

mean value (which is finite) is determined by the behaviour of PS far into the tail of

its distribution. If 0 < α < 1 and k < 1, the value of 〈∆Sk〉 is determined by PS at

small values of S, so that 〈∆Sk〉/〈S〉 is small, without the necessity for a delta-function

component.

Hence we can conclude that when ln Λ > ln Λc = σ2/2, we always have a k > 1

such that ξk < 0, implying that PS condenses onto δ(S−S0) as N →∞. When Λ < Λc,

we can have ξk < 0, when k < 1. This however is just a consequence of the very long

tail of the distribution, and it does not imply condensation onto a delta function.

4.2. Sum is dominated by its largest term

It is possible that the tail of the distribution of S is, in fact, dominated by the largest

value of X, so that when S � S0, PS approaches PYm . In the following we provide

evidence that this is indeed the case. First, we note that if ξk > 1, the divergence of

Mk as N →∞ will be determined by the tails of the distribution of S. By making the

change of variables Y = exp(NZ), and so Ym = exp(NZm), in the tail of the distribution

we have PZm ∼ N exp[−NJ(Zm)], so that

〈∆Sk〉 ∼
∫

dZ exp [N (ln Λ + kZ − J(Z))] . (31)

Using the Laplace principle and writing F (Z) = ln Λ + kZ − J(Z) we estimate

〈∆Sk〉 ∼ exp[NF (Z∗)] (32)

where F ′(Z∗) = 0. For the log-normal model we have Z∗ = µ+ kσ2, so that

〈∆Sk〉 ∼ exp
[
N
(
ln Λ + kµ+ k2σ2/2

)]
. (33)

Combining this estimate with Eqs. (9), (10) and (17) we recover equation (19), hence

suggesting that the tails of the distribution of PS are asymptotic to the distribution of
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the largest element of the sum. Numerical results presented in the next section show

that this is indeed the case, see Fig. 3.

4.3. Nature of the phase transition

The arguments presented so far imply the existence of a phase transition, which occurs

at a critical value Λc. For the log-normal model we have shown this is Λc = exp(σ2/2).

To quantify this phase transition we will analyse the asymptotic behaviour of the PDF of

S as N →∞. Consider the predicted form of PS for the supercritical case, ln Λ > σ2/2.

As N → ∞, the distribution approaches a delta function, but we have also seen that

the tail is in agreement with the distribution of the maximum value Ym. By making use

of PZm ∼ N exp[−NJ(Zm)] and changing back to Ym, we write

PS ∼ δ(S − S0) +N exp [−NJ(Zm)]

∼ δ(S − S0) +
1

N
exp(−ND)

(
S

S0

)−(1+α)
(34)

where D = αΣ0 +J(Σ0)− ln Λ, which is a positive quantity. On the other hand, for the

subcritical case, ln Λ < σ2/2, we predict that

PS ∼
1

N
exp(−ND)

(
S

S0

)−(1+α)
. (35)

5. Generalisation

Thus far we have derived results using explicit formulae for the log-normal model. It

is desirable to understand how to address the same issues for a general probability

distribution of the positive factors Xk, which allows us to introduce the auxiliary variable

yk, defined by Xk = exp(yk). It is convenient to express the results in terms of the

cumulant generating function λ(k) for the distribution of Z, defined by

〈exp(NkZ)〉 = exp[Nλ(k)] . (36)

Because

〈exp(NkZ)〉 =
〈

exp

(
k

N∑
i=1

yi

)〉
= 〈exp(ky)〉N (37)

and X = exp(y) it follows that

λ(k) = ln 〈Xk〉 . (38)

The cumulant generating function is a Legendre transform of the entropy function for

the distribution of Z:

J(Z) = kZ − λ(k) , k = J ′(Z) . (39)

We can assume that J(Z) is a convex function, so that, for any value of Z1,

J(Z) ≥ J(Z1) + J ′(Z1)(Z − Z1) (40)

and a similar result holds for λ(k). Now consider how the results of sections 3 and 4

generalise.
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5.1. Central moments

Using (18) and assuming that the maximum growth exponent occurs for l = 0, we find

that the exponents for the central moment are given by:

ln ξk = λ(k)− kλ(1)− (k − 1) ln Λ . (41)

When k < 2, only the l = 0 case need be considered, so that (41) is certainly valid

in that case. The critical point for the phase transition is where ξ1+ε = 1 as ε > 0

approaches zero, that is

λ′(1)− λ(1) = ln Λc . (42)

In the non-uniform phase, we can use (42) together with the convexity of λ(k) and the

positivity of ln Λ to establish that (41) is valid for all k.

5.2. Distribution of maximum element of sum

The maximum value of Y has a power-law distribution P (Ym) ∼ Y
−(1+α)
m , with the

exponent given by α = J ′(Σ0). Using (39), we obtain an implicit equation for α: we

have λ(α) = αΣ0 − J(Σ0) with λ′(α) = Σ0. Noting that Σ0 = ln Λ + λ(1), we arrive at

λ′(α)− λ(1) = ln Λ , (43)

which is an implicit equation for α. In the case of the log-normal model we found that

the critical point, i.e., where the delta-function component for the large N limit of PS
appears, corresponds to the point at which α = 1. Equation (43) implies that, in the

general case, the condition α = 1 is satisfied at a value of Λ which satisfies equation

(42). We conclude that, in our model, the delta function distribution occurs whenever

the decay of the distribution of the largest element is sufficiently rapid that the mean

value of S is close to the mode of the distribution of S.

5.3. A consistency check

As a consistency check, we should verify that Σ0 ≥ Z0, that is, the peak of the

distribution of the maximum value of Y lies below the mean value of S, consistent

with equation (34). This ensures that the PDF of the tail of PS is already exponentially

small for S just slightly greater than 〈S〉.
This is true for the log-normal model, where, setting A2 = ln Λ and B2 = σ2/2, we

write Σ0 = µ+ A2 +B2 and Z0 = µ+ 2AB. Because A2 +B2 − 2AB = (A−B)2 ≥ 0,

we do confirm that Σ0 ≥ Z0, as expected.

It is less easy to see why this should be true in the case of a general distribution

of S. Recalling that 〈Xk〉 = exp[λ(k)], the values of Z0 and Σ0 are defined via the

following relations

J(Z0) = ln Λ , Σ0 = ln Λ + λ(1) . (44)

Define Z1 to be the image point of k = 1 under the Legendre transformation:

J(Z1) = Z1 − λ(1) , J ′(Z1) = 1 . (45)
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Figure 2. PDF of the random variable S when the variables xk follow a log-normal

distribution with µ = 0 and σ = 0.18, and for Λ = 0.99Λc (a), Λ = 1.01Λc (b), and

Λ = 1.05Λc (c). Different symbols correspond to different values of N . The dashed

line is a power-law function that goes as S−(1+α), where α is given by Eq. (27).

Equations (44) give Σ0 = J(Z0) + λ(1), and hence

Σ0 − Z0 = J(Z0) + λ(1)− Z0 = J(Z0)− J(Z1) + Z1 − Z0 . (46)

Noting that J ′(Z1) = 1, the convexity relation (39) then establishes that Σ0 − Z0 ≥ 0.

6. Numerical investigations

We investigated the distribution of S/〈S〉 for our model to verify that the phase

transition exists as N → ∞, and that it is correctly described by our theory. We

used the log-normal distribution and the uniform distribution.

6.1. Log-normal distribution

The explicit calculations for this model have been derived in the previous section, where

we have computed that the critical value of the phase transition occurs at Λc = σ2/2.

Figure 2 shows numerical results for σ = 0.18 and for different values of Λ that are below

and above the critical point. In the sub-critical case the distribution is approximated by

a power-law, with an exponent which is independent of N , whereas in the super-critical

case the distribution sharpens as N increases.

6.2. Uniform distribution

We also consider the case where the random variable xk follows a uniform distribution

in the interval [0, `]. We first use the results of section 5 to determine the critical point

Λc, and the exponent α.

To determine explicitly the entropy function J , we start with finding the moments,

which is then used to determine the cumulant via equation (38):

〈Xk〉 =

∫ `

0

dX Xk =
`k

k + 1
, λ(k) = k ln `− ln(1 + k) . (47)
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Figure 3. PDF of the random variable S when the variables Xk follow a uniform

distribution in [0, 1], and for Λ = 0.95Λc (a), and Λ = 1.05Λc (b). Different symbols

correspond to different values of N , and the dashed line is a power-law function that

goes as S−(1+α), where α is given by Eq. (49). The inset panels show a comparison

between PS and the PDF of the largest element in the sum, PYm
, shown by the full

line.

To determine the entropy function, we could adapt Example 2.3 p.6 of Ref. [21], or else

use (39) to express J(Z) as the Legendre transform of λ(k): J(Z) = kZ − λ(k), with

λ′(k) = Z. (Note that the way things are defined, Z < ln ` and k > −1). We find

Z = ln `− 1/(1 + k), and eliminating k in (39) immediately gives:

J(Z) = −Z − 1 + ln `− ln(ln `− Z) (48)

which is clearly convex, positive and has a minimum when Z = log ` − 1. Using now

equation (43) we determine the exponent for the decay of the distribution PS ∼ S−(1+α).

We find ln Λ = ln(2)− 1/(1 + α) that gives

α =
1

ln(2/Λ)
− 1 , (49)

which is independent of `. Setting α = 1, or equivalently applying equation (41), we

find that the critical value is given by

Λc =
2

exp(1/2)
. (50)

Figure 3 shows numerical results for PS and PYm for the case where the xk have a uniform

distribution, with ` = 1.

7. Conclusions

We model intensity fluctuations by a sum of an exponentially increasing number of path

contributions N ∼ ΛN , each of which have a multiplicative distribution, with N random

factors. Our calculations indicate that there is a phase transition, with a critical value

of Λ:
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(i) The distribution PS ∼ δ(S − S0) as N →∞ when Λ > Λc, apart from a power-law

tail, with a coefficient which becomes exponentially small in the large N limit.

(ii) When Λ < Λc, PS ∼ S−(1+α) is approximately a power-law. with α < 1.

(iii) In both cases, there is a tail of P (S) which is asymptotic to the PDF of the largest

element of the sum. This PDF can be obtained analytically.

Numerical investigations on two solvable models verify these results, showing that

there is a transition between a phase where S has a delta-function distribution in the

limit as N → ∞, and a phase dominated by fluctuations, where S has a very broad

distribution approximated by a power-law.

We postulate that this is a reasonable model for the distribution of intensity at a

single point. It would be desirable to investigate how the parameters of our model could

be estimated for specific physical systems. Another interesting question is to consider

the spatial structure of the intensity distribution, which is not addressed at all by the

present model.

We remarked in the Introduction that we are neglecting interference effects, which

can lead to ‘speckle’ patterns when the light source is coherent. In such a case, the delta-

function intensity distribution of the uniform phase would be replaced by the intensity

distribution of a homogeneous speckle pattern, and the intensity distribution of the non-

uniform phase would also be broadened slightly. The statistics of speckle patterns has

been studied quite extensively: see for example [9], which discusses spatial correlation

functions, and [25] which considers recent work on intensity fluctuations of speckle as a

potential tool for medical imaging. We remark that speckle due to coherence effects can

also be observed in semiconductor systems at low-temperatures: for example Topinka

et. al. [8] show images of ‘branched’ current flows, suggesting focussing effects creating

large variations of current, together with small-scale fluctuations due to interference of

the wavefunction.

Finally, it would be interesting to explore whether the ideas developed in this work

could shed light on the transition observed in models of hopping conductivity [18, 19].

The model studied here could also conceivably shed light on the phenomenon of

concentration of density in models of particles transport by a compressible flow discussed

in [7].
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