
Using Lisp-based pseudocode to probe student understanding
Christophe Rhodes

Goldsmiths, University of London

London, United Kingdom

ABSTRACT
We describe our use of Lisp to generate teaching aids for an Algo-

rithms and Data Structures course taught as part of the undergrad-

uate Computer Science curriculum. Specifically, we have made use

of the ease of construction of domain-specific languages in Lisp

to build an restricted language with programs capable of being

pretty-printed as pseudocode, interpreted as abstract instructions,

and treated as data in order to produce modified distractor versions.

We examine student performance, report on student and educator

reflection, and discuss practical aspects of delivering using this

teaching tool.

CCS CONCEPTS
•Applied computing→Computer-assisted instruction; • So-
cial and professional topics → Computational thinking; • The-
ory of computation→ Program constructs; Program reasoning; •
Software and its engineering→ Multiparadigm languages;

KEYWORDS
multiple choice questions, Lisp

ACM Reference Format:
Christophe Rhodes. 2018. Using Lisp-based pseudocode to probe student

understanding. In Proceedings of the 11th European Lisp Symposium (ELS’18).
ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION
In this paper, we discuss the development and use of a large ques-

tion bank of multiple-choice, short-answer and numerical-answer

questions in teaching a course in Algorithms & Data Structures,

as a component of degree programmes in Computer Science and

in Games Programming in the United Kingdom. We report specif-

ically on the use of automation, using Lisp among other tools, to

develop questions with specific distractors and specific feedback

corresponding to likely or common student mistakes.

Gamification of learning has been experimented with and stud-

ied in detail in recent years, with the increasing availability of

platforms and integrations allowing for more and varied gamifica-

tion techniques to be applied at all stages of a student’s education;

the benefits of gamification include higher student engagement,

with the curriculum material (as the tasks are intended to probe

or reinforce the course content) and with the rest of the cohort

(through the social elements of game-playing). The approach we

describe here can be viewed as an application of gamification tech-

niques; in the categorization of a recent systematic mapping [3], we

describe an element of gamification in a blended-learning course

delivered in conjunction with a learning management system, with

ELS’18, April 16–17 2018, Marbella, Spain
2018. ACM ISBN 978-2-9557474-2-1.

rapid feedback and countdown clocks, specifically in the context of

Computer Science education but applicable more widely.

In the remainder of this introductory section, we provide some

relevant context for the Algorithms & Data Structures course in

which we have implemented this pedagogy: the conventions of

Higher Education in the UK, of Computing education in UK Higher

Education, and of the particular programmes of study at Goldsmiths.

Section 2 covers the development of multiple-choice question banks

suitable for our purposes, including the use of Lisp to help to gen-

erate the questions, specific feedback, and assure their correctness.

Section 3 describes the in-course delivery of quizzes including these

questions, presenting quantitative results and qualitative reflections

from students and educators, and we conclude in section 4.

1.1 UK Higher Education
In the UK, Tony Blair in 1999 famously gave as an aim that half of

all young people should go to University. Since giving that aim in a

party conference speech, the UK Higher Education landscape has

shifted substantially, with the introduction and raising of tuition

fees (from £1k per year, to £3k and then £9k per year), and the

removal of quotas and caps in student recruitment, and the situation

is indeed that half of people under 30 in the UK have started a

programme of Higher Education, compared with approximately

one quarter two decades ago.

This rapid growth in student numbers has inevitably led to pres-

sure on resources: campus space, lecture halls, and staff time. Addi-

tionally, placing more of the costs of Higher Education on the stu-

dent, even if through a notional student loan (which operates more

like a tax), has led to more consumerist and arguably transactional

approaches to education from the students: it is more common to

hear from students now that they are paying for content that they

will consume than it would have been twenty years ago. In addi-

tion, students nowadays are digital natives; they are accustomed to

online delivery of content, though perhaps not so much of material

requiring substantial engagement; they are used to the affordances

provided by online platforms, and indeed are somewhat intoler-

ant of the perceived backwardness of some Learning Management

Systems.

One might expect, given that the students are at least notionally

responsible for the cost of their own higher education, that students

would have made an informed choice about their programme of

study and have clarity about their reasons for entering Higher

Education. However, this is not always the case [5, 6], and even

when it is, those reasons may not align with the educator’s reason

for teaching in Higher Education; a majority of students enter into

Higher Education seeing it as a means to an end, of getting a job

that would otherwise be inaccessible, or having a better chance at

a particular career – whereas few teachers in Higher Education

have the career development of their students as their primary

motivation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/154422793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ELS’18, April 16–17 2018, Marbella, Spain Christophe Rhodes

Teachers in Higher Education do operate under constraints,

sometimes quite severe ones. One such constraint is that the system

works in a way that expects it to be unlikely for students to fail

courses. Even minimal engagement with the material is expected

to yield a passing grade; degrees are further classified, with classi-

fications of a “first-class” or an “upper second” being considered

of high enough quality to act as an entry qualification for typical

graduate trainee schemes or study for advanced degrees, while

“lower second” or “third-class” classifications, while indicating that

the degree was passed, are seen as being of lesser quality
1
. Conven-

tionally throughout the sector, a mark of 40% is a pass, and a mark

of 60% is the boundary between lower- and upper-second degree

classifications.

1.2 Computing education
When offering a degree programme in Computer Science or a re-

lated discipline, we must be conscious of the fact that we will have

at least three constituencies in our student cohort. We may have

some students who will go on to further academic study of the dis-

cipline itself; however, we would expect those students to be small

in number compared with the students who are studying Computer

Science as a means to an end (such as a career in Informatics) or

who do not have a particular reason for studying Computer Science

at all.

In designing our curricula and our teaching methods, we must

therefore accommodate multiple different styles of learning and a

wide range of current and prior engagement. We will have to teach

students who are already accomplished programmers and wish to

deepen their theoretical understanding, and students who believe

that a University course can teach them to programme so that they

can go out and get a job. We must therefore be careful to nurture

development of applicable and transferrable ways of thinking, help-

ing the students to develop computational thinking [11] or build

mental models or “notional machines” [9] of the systems that they

interact with.

Teaching students to programme, and to reason about programmes,

is difficult – and assessing whether students have mastered indi-

vidual elements of the skill [1, 8] potentially has a high cost. We

do not claim to have found a panacea, but one aspect which we be-

lieve is particularly demotivating is the somewhat binary nature of

assessment: it is common to see bimodal distributions of outcomes,

or at least high failure rates [7], typically corresponding to a failure

by the student to get anything working at all – an experience seen

in microcosm by anyone faced with inscrutable compiler or linker

error messages. As educators, we should aim to find ways to allow

students to receive partial credit for partial solutions, so as to recog-

nize forward progress even if it has not yet led to a fully-functional

implementation.

1.3 Algorithms & Data Structures at
Goldsmiths

We report in this paper on a course in Algorithms & Data Struc-

tures at Goldsmiths. There is a particular issue in the delivery of

1
This is a highly simplified description, as there are also distinctions between the

perceived quality of degrees awarded by different institutions, being a combination of

reputational teaching quality and expected student attainment at intake.

this course: it is taken as a compulsory part of the programme

by students on the BSc in Computer Science (CS) programme and

those on the BSc in Games Programming (GP). The CS students

are taught programming in Java, while the GP students are taught

programming in C++. This creates a particular challenge, in that

examples need to be in both or neither programming language in

order not to give the perception of unfair or second-class treat-

ment to either cohort. In this course, students are given practical

programming work in the form of small automatically-marked lab

assignments as well as more open tasks, but theory is presented in

a language-neutral pseudocode format.

2 QUESTIONS
One of the components of our delivery of this material is a series of

multiple choice quizzes, delivered through the Moodle
2
Learning

Management System (LMS). These quizzes are intended to be part

measurement instrument – the mark achieved contributes to the

final grade in the course – but chiefly a pedagogical tool, to help

the students recognize whether they have understood the material

sufficiently to identify or generate solutions to problems.

The function of our questions is similar to the root question
concept described in the Gradiance documentation [10]: we aim

to produce questions, or question templates, with the following

characteristics:

• a student who has understood the material should find an-

swering the question to be straightforward;

• a student who has not begun mastering the material should

have a low probability of being able to guess the correct

answer;

• individual or groups of students should find it easier to mas-

ter the material than to acquire and search through a set of

questions with corresponding answers;

• for multiple choice questions, distractor answers correspond-

ing to commonmisunderstandings or misconceptions should

be present.

The reason for the last characteristic, that distractor answers

should be present, is to be able to identify individual students, or

measure the fraction of students, with a particular misunderstand-

ing, and to give them targetted feedback aimed to improve their

understanding. There is no need for distractors in numerical- or

short-answer questions, but the questions we produce must still

be done with that understanding, in order to be able to give tar-

getted feedback for particular wrong answers. The subsections

below give examples of targetted feedback in both short-answer

and multiple-choice questions.

2.1 Pseudocode
As described in section 1.3, the class taking this course consists of

two separate cohorts. To establish a common language, therefore,

an early lecture established the pseudocode conventions to be used

throughout the course (essentially a subset of the algpseudocode
notation provided by the LATEX algorithmicx package).

One of the questions (see figure 1) asked participants to compute

the final value of a variable after it was incremented within a loop:

2
https://moodle.org/

https://moodle.org/

Using Lisp-based pseudocode to probe student understanding ELS’18, April 16–17 2018, Marbella, Spain

What is the return value of this block of code? You may assume

that the value of all variables before the start of this block is 0.

x← 4

for -5 ≥ i > -15 do
x← x + 1

end for
return x

Figure 1: example simple loop question, question 6 of the
Pseudocode quiz

What is the return value of this block of code? You may assume

that the value of all variables before the start of this block is 0.

x← 8

for 4 ≤ i < 16 do
x← x + 1

break
x← x + 1

end for
return x

Figure 2: example loop question, question 8 of the Pseu-
docode quiz

the intent of the question was to make sure that the students could

identify the number of times the loop body was executed. As well

as the generic feedback given to a student after an attempt, specific

feedback was included to be shown to the student when they had

made an off-by-one error, reminding them to check the boundaries

of the iteration carefully.

A subsequent question in the same quiz used the same question

format, but introduced the keywords break and continue. Again,
students were given the generic indication for correct or incorrect

answers, but also specific feedback for particular wrong answers

given if the student had computed the return value for the wrong

keyword, or for no keyword present at all (see figure 2).

The Moodle LMS provides for automatic generation of variants

of questions through its Calculated question type, where a template

is filled in with randomly-chosen values, and a symbolic expression

(supporting standard mathematical operators) is interpreted with

each variable from the template bound to the corresponding value.

This facility is sufficient for questions based on simple calculations,

but has disadvantages for our purposes: the interface for writing

calculated questions requires a connection to the Moodle server,

and cannot be done off-line; it requires hand-editing each ques-

tion, which is error-prone; and generating non-numerical variants

automatically (e.g. choosing between break and continue) is not
possible.

We therefore took a different approach. We defined a sexp-based

mini-language to represent the constructs supported in our pseu-

docode, and implemented a pretty-printer and an interpreter in

Emacs Lisp. The definition and implementation were extended as

necessary from an initial set of six operators (the basic mathematical

operators, variable setting, and return) to encompass conditionals,

loops, function definition, and various elementary data structures

and operations on them (such as lists and vectors).

We could then generate valid forms in our mini-language, some-

what reminiscent of generation of random forms for compiler test-

ing [4]; see listing 1, which is the code to generate random examples

of the block presented in figure 2. These sexp-based forms are then

pretty-printed to Moodle’s GIFT input format
3
, and surrounded

with question markup to produce questions such as the ones pre-

sented in figures 1 and 2.

(defun make -break -continue -for -form ()

(let* ((ascend (flip))

(comps (if ascend '(< ≤) '(> ≥)))
(lc (elt comps (if (flip) 0 1)))

(uc (elt comps (if (flip) 0 1)))

(start (* (maybe -sign) (random 10)))

(diff (+ (random 10) (random 10) 1))

(end (if ascend (+ start diff) (- start diff))))

`(progn

,(make -form 'setq 'x)

(for (,start ,lc i ,uc ,end)

(progn

(incf x 1)

,(if (flip) `(break) `(continue))

(incf x 1)))

(return x))))

Listing 1: Emacs Lisp code to generate a loop in our mini-
language containing a break or continue within a for loop,
with reasonable start- and end-points.

Not only this, but if we could express a likely mistake that a

student might make in code (such as the off-by-one errors or the

confusion between break and continue), we could generate the

corresponding form, interpret it, and write specific feedback based

on that specific mistake, while checking that it did not accidentally

replicate the correct answer. Code to pretty-print, add the question,

answer and feedback is demonstrated in listing 2.

This approach also allowed for more fine-grained mistake de-

tection in questions such as in figure 1, where instead of generic

feedback related to off-by-one errors (or -two, one at each end of

the loop), the feedback was generated based on the specific confu-

sions in each randomly-generated question between < and ≤ and

between > and ≥.

2.2 Recursive functions
Another aspect that students often struggle with is grasping recur-

sion, though that is a component of computational thinking (and,

arguably, a shibboleth to be probed in job interviews). Students

are encouraged to think about base cases, and to consider trans-

forming one or more solutions to a subproblem into the solution

to the whole problem, but the details are important and it is easy

for students to be lulled into a false sense of security by doing a

small number of exercises – or, alternatively, to not experience the

desired moment of enlightenment, and feel that forward progress

is not possible.

In order to help our students measure their understanding of

recursion, we generated in our mini-language multiple recursive

3
https://docs.moodle.org/en/GIFT_format

https://docs.moodle.org/en/GIFT_format

ELS’18, April 16–17 2018, Marbella, Spain Christophe Rhodes

(defun return -break -continue -for (n)

(dotimes (i n)

(let* ((form (make -break -continue -for -form))

(answer (interpret -form form))

(osub '((break . continue) (continue . break)))

(oform (sublis osub form)

(other (interpret -form oform))

(nsub '((break . progn) (continue . progn)))

(nform (sublis nsub form)

(neither (interpret -form nform)))

(insert (format "::R.%s::" (make -name form)))

(insert (format "What is the return value from the

following block of pseudocode ?\nYou may assume that the

value for all variables before the start of this block

is 0.
\n"))

(dolist (x (format -form form))

(insert

(format

" %s
\n"

(replace -regexp -in-string " " " " x))))

(insert (format "{#

=%s\n

=%%0%%%s#have you mixed up break and continue ?\n

=%%0%%%s#are both increments executed ?\n}\n\n"

answer other neither)))))

Listing 2: Emacs Lisp code using the form generator from
listing 1, modifying and interpreting the form in order to
generate answers which might be given by students with a
mistaken mental model. This function outputs n questions
of this form in Moodle’s GIFT format, ready to be imported.

What code fragment should replace Z for function A to return

the difference between a and b? You may assume that the initial

arguments to the function A are positive integers and that b ≤ a.

function A(a,b)

if a = b then
return 0

else
return Z + 1

end if
end function
⃝ A(a, b + 1)

⃝ A(a, b - 1)

⃝ A(a - 1, b - 1)

⃝ A(a - 1, b + 1)

⃝ A(a + 1, b - 1)

⃝ A(a + 1, b + 1)

⃝ A(a - b, b)

⃝ none of the other answers

Figure 3: example code building question, question 6 of the
Recursive Algorithms quiz

implementations of basic mathematical operations (addition, sub-

traction, multiplication, division, exponentiation), and used our

pretty-printer to generate questions where the conditional, base

case, or recursive call had been elided. We collected from the vari-

ants the corresponding possibilities for each of these code locations,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Loops in Pseudocode Vectors Pairs

VLE activities (cont’d)

pseudocode quiz
Statistics so far:

• 278 attempts: average mark 5.38
• 93 students: average mark 6.12

• 17 under 4.00
• 14 at 10.00

Quiz closes at 16:00 on Friday 13th October
• no extensions
• grade is

• 0 (for no attempt)
• 30 + 70 × (score/10)²

Figure 4: A slide from the lecture given after the quiz on
pseudocode had been open for a week.

and generated multiple-choice questions with a subset of these pos-

sibilities as choices (see figure 3 for an example). We were able to

ensure that we did not mistakenly include an accidentally-correct

answer from the possibilities as a distractor, by substituting in each

possible response into the corresponding functional form, inter-

preting it for randomly-chosen arguments, and checking that it did

not return the mathematically correct answer.

3 DELIVERY AND RESULTS
Throughout the course, a new quiz on an individual topics (such

as those described in sections 2.1 and 2.2) was made available to

the students each week, with each quiz open for a 12-day period,

from Monday at 09:00 until 16:00 on the Friday of the following

week. The students were informed that each such quiz would be

worth 1% of their final grade, and at the mid-point of the open

period were shown a summary of the current cohort performance

in that quiz (see figure 4). The non-linear transformation in that

slide, from quiz score (out of 10) to awarded mark (out of 100) is to

encourage participation (a mark of 30% is a fail, but not a bad one)

and to avoid rewarding guesswork (a quiz score of 2 or 3 out of 10,

as might occur through chance, still leads to a failing mark).

The cohort of 120 students took the pseudocode quiz 588 times,

achieving scores plotted in figure 5. We tracked the improvement

in quiz scores relative to each student’s first attempt in that quiz,

to attempt to measure the effect of practice and feedback (figure 6),

which displayed a general improvement with diminishing returns

and levelling off at around eight attempts; and students’ best scores

in the quiz plotted against the time of their first attempt (figure 7),

where we found that there was no difference in the final outcome

provided the student started the quiz activity before two or three

days before the deadline.

The cohort’s performance in question six (the simple loop ques-

tion) is given in table 1, while their performance in question eight

(the loop with break/continue) is shown in table 2.

As can be seen from table 1, student performance in this question

is considerably better in the aggregate of the best performance of

Using Lisp-based pseudocode to probe student understanding ELS’18, April 16–17 2018, Marbella, Spain

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●●

●

0.0

2.5

5.0

7.5

10.0

Oct 03 Oct 05 Oct 07 Oct 09 Oct 11 Oct 13

time

sc
or

e

Figure 5: Individual scores (out of 10) in the pseudocode quiz
over the period of its availability. The vertical shaded areas
represent contact times (lectures and lab sessions).

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

● ●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

●● ●●

●

●

● ●

● ●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

−5

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

attempt

de
lta

Figure 6: Improvement in student scores in the pseudocode
quiz compared with the score attained in their first attempt.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

0.0

2.5

5.0

7.5

10.0

Oct 03 Oct 05 Oct 07 Oct 09 Oct 11 Oct 13

time

sc
or

e

Figure 7: Students’ best scores in the pseudocode quiz, plot-
ted against the timewhen they took their first attempt at the
quiz.

each student than in the other questions. This is expected; what

might be unexpected is the degree to which the specific issue of

off-by-one errors has been reduced. In the questions representing

correct off-by-one incorrect unanswered

best 83 11 21 6

other 193 90 135 49

Table 1: classified results for question 6 of the Pseudocode
quiz: the “incorrect” column refers to answers given but nei-
ther correct nor off-by-one.

correct incorrect unanswered

best 76 35 10

other 123 218 124

Table 2: classified results for question 8 of the Pseudocode
quiz. Unfortunately the different categories of incorrect an-
swers (confusion between break and continue, failure to con-
sider how it interacts with the for loop) are not easy to dif-
ferentiate from the Moodle reports.

correct incorrect unanswered

best 68 46 1

other 69 165 14

Table 3: classified results for question 6 of the Recursive al-
gorithms quiz.

the best attempts by each student, the error rate corresponding

to off-by-one errors is 11 in 121, or 9.1%, this is a reduction from

19.3% in the population of non-best attempts, or roughly a halving

of this error. By contrast, other incorrect answers decreased from

28.9% in general attempts to 17.4% in the best attempts; a decrease

of generic errors of roughly 40%. The decrease in the proportion of

unanswered question reflects the observed pattern that for many

students early attempts at the quiz under time pressure means that

they run out of time before answering the harder questions in the

quiz.

3.1 Student perspectives
Near the half-way point of the course, the students were asked

to provide feedback, first in a non-anonymous custom question-

naire delivered using the Learning Management System, and sec-

ond anonymously using the standard course evaluation question-

naire provided by the University. Neither method of soliciting feed-

back reached complete coverage of the students; indeed, only ap-

proximately half the cohort (n=61 students) completed the non-

anonymous questionnaire, and even fewer (n=40 students) the stan-

dard course evaluation.

As well as the self-paced multiple-choice quizzes described in

this paper, the students were given:

• automatically-graded lab exercises, typically to implement

particular algorithms or data structures, with their imple-

mentation assessed for correctness and targetted feedback

generated using JUnit4 and cppunit5, managed by the IN-
GInious platform [2];

4
https://junit.org/junit4/

5
https://freedesktop.org/wiki/Software/cppunit/

https://junit.org/junit4/
https://freedesktop.org/wiki/Software/cppunit/

ELS’18, April 16–17 2018, Marbella, Spain Christophe Rhodes

0

20

40

60

1

enjoyed

peer−assessment activities

automatically−graded labs

in−class quizzes

lectures

self−paced quizzes

Figure 8: Student responses to the question “Which activity
in this course so far have you most enjoyed?”

• peer-assessed extended exercises, withmore open briefs than

the lab exercises, and an assessment rubric set up for them

to assess each others’ submissions;

• in-class multiple-choice quizzes, typically given at the half-

way point of a lecture, reinforcing or revising particular

points, delivered using kahoot!6;
• standard weekly lectures of two hours’ duration.

Figure 8 shows the student answers to the question of which

of the various activities they most enjoyed in the non-anonymous

questionnaire. The 61 respondents divide fairly evenly between

the five classes of activity, with a slight preference for self-paced

quizzes, in-class quizzes and lab exercises compared with lectures

and peer-assessment. The responses to the question of which ac-

tivities the students considered most or least instructional, how-

ever, are starkly different; figure 9 illustrates the answers to those

two questions, with positive counts representing answers to the

“most” variant and negative counts representing “least”. From these

responses, we see that the students value highly the automatically-

graded lab exercises and particularly the multiple-choice quizzes;

very few students considered the quizzes the least instructional

activity, compared with over one-third who considered them the

most; students are clearly distinguishing between enjoyment and

pedagogy, in that the in-class quizzes, which were considered to

be most enjoyable by many students, were rated as being most

instructional by very few.

Students were also encouraged to leave free-text comments in

both questionnaires. Some expressed frustration about particular as-

pects of multiple-choice quiz delivery, requesting that the time limit

for quiz attempts be raised or the enforced gap between attempts

be lowered; however, several commented on the level of challenge

6
https://kahoot.com/

peer−assessment activities

automatically−graded labs

in−class quizzes

lectures

self−paced quizzes

−20 −10 0 10 20

count

ac
tiv

ity

Figure 9: Student responses to the question “Which activity
in this course so far have you learnt most [positive counts]
/ least [negative counts] from?”

posed by the quizzes, and there have been in-person requests to

make the quizzes available after the deadline for that quiz to help

students guide their further learning and revision.

Student engagement in the quiz activities has remained high;

in the 16 completed quizzes in this academic year, the students

have submitted 6792 quiz attempts, each with 10 questions (so

each student has, on average, received automated feedback on 566

individual questions).

3.2 Educator perspectives
Using multiple-choice questions with the approach given in this

paper has several benefits from the perspective of an educator.

Firstly, and most importantly, it provides for instruments which the

students can take, multiple times, in order to judge their own state

of understanding of the foundational components of the material

and receive feedback regarding where and how that understanding

might be lacking. Importantly, it allows that feedback to be delivered

and received at a time of the student’s own convenienence; once

the questions are generated and the automation set up, there is

no additional cost, freeing up educator time to devise more useful

activities or provide extra material.

In addition, this approach can scale to the required size; this

entire course was delivered to a cohort of 120 students using one

instructor and one teaching assistant; this course does have some

non-automated components of delivery, such as moderation of

peer-assessment, marking of an individual written assignment, and

marking a final exam with longer-form questions. Scaling to larger

student numbers, as in a fully-online or MOOC setting, might re-

quire some additional instructor time to monitor student questions

on online forums – though our experience in running this course

this year is that the students themselves are well equipped to assist

each other on public forums, and indeed it is acknowledged that

helping each other in this way helps to consolidate learning and

build mastery; the teaching staff participation on the forums is

largely limited to administrative announcements and to provision

of material beyond the formal syllabus.

https://kahoot.com/

Using Lisp-based pseudocode to probe student understanding ELS’18, April 16–17 2018, Marbella, Spain

Further, it is important for us to know whether our students

(as a whole) have a good understanding of the material, a mixed

understanding, or maybe that a substantial part of the cohort has

misunderstood some topic. One benefit of having the quizzes open

for 12 days was that, at the half-way point, we could examine the

results so far and identify whether any specific part of the quiz

showed substantially worse (or worse than expected) performance

– and if so, that specific item could be addressed in a plenary session

such as a lecture.

A concern sometimes raised about using self-paced, remotely-

administered tests as a component of a final grade is that students

might be incentivised to cheat, for example by asking other peo-

ple to take the test on their behalf. One mitigation is that, since

each of these tests is worth 1% of their final grade, and students

can get a mark of 30% simply by submitting a blank entry, there is

limited upside to cheating; meanwhile, we performed spot-checks

on individual elements of suspicious behaviour, by requiring some

students to take quizzes under controlled conditions after identi-

fying anomalies in the logs (such as two students taking the same

quiz from the same IP address in quick succession – the students

replicated their scores of 10, and revealed that they had been rac-

ing each other!). If the concern is strong, there is nothing in the

approach described here which would prevent quizzes being used

primarily formatively, and possibly assessed for part of a course

mark under controlled conditions.

We would not expect to be able to be able to build a community

of users of our specific mini-language and toolset; it grew to meet

immediate needs, and it fulfils those needs minimally. The general

approach – identifying potential pitfalls or barriers to understand-

ing, designing assessments that probe those barriers, and providing

specific feedback in the case of students demonstrating that they

are struggling with those barriers – is, we believe, sound, and we

have demonstrated that at least in some subject areas this can be

done in a scalable way. It is perhaps surprising not to see this ap-

proach taken up more widely; we speculate that this is because

the technical sophistication level required to operate the toolchain

is fairly high; the up-front cost of development is steep; and that

the pedagogical approach taken implies more empathy with the

student and more responsibility for the learning journey, which

are not necessarily aspects selected for in hiring teaching staff at

University.

4 CONCLUSIONS AND FUTUREWORK
We believe that providing automated tools where students can

probe in detail their own understanding of the fundamentals of

the curriculum that they are studying is valuable. This provision

will also become more necessary as Higher Education Institutions

become more resource-constrained, as students expect more for

their tuition fees, and as competitors such as OpenCourseWare and

MOOCs establish the principle in students’ minds that pedagogical

materials are available for anyone to access for free.

In the specific case of a Computer Science curriculum, and Algo-

rithms & Data Structures specifically, we identified tangible benefits

to the practical pedagogy from the use of a Lisp with strengths both

in treating code-as-data and data-as-code, and for text manipulation.

As well as the Lisp-basedmini-language for interpreting and format-

ting pseudocode described in this paper, we implemented an Emacs

major mode for editing GIFT-format files, to make hand-edits to

generated questions fast and practical; we implemented simplified

versions of many elementary and more complex data structures, in

order to be able to generate questions on the behaviour of hash-

tables or the properties of graphs; and all this under time pressure

and on a budget.

For this specific course, one potential improvement would be to

implement a parser for the surface syntax of pseudocode, converting

it back to our sexp-based language. This, in combination with a

plugin for the LMS, would allow us to set free-text rather than

multiple-choice questions for topics such as recursive algorithms,

where even with the large number of distractor questions there

is some chance that some students will select right answers by

pattern-matching, without a full understanding of the material.

There are improvements that can be made in delivering multiple-

choice quizzes compared with this year. While giving specific feed-

back to the students about particular mistakes is helpful, it is also

useful for instructors to know that this has happened. The Moodle

LMS does not make it easy to see the frequency that particular

wrong answers are given from the reports that it produces; how-

ever, we could allocate distinct fractional marks, rather than zero,

to specific wrong answers; this would not substantially affect the

quiz score (a wrong answer scoring 0.01 points instead of 0.00 will

not have a material effect on a student outcome) but would make

it much more straightforward to analyse data extracted from the

LMS.

REFERENCES
[1] Jaap Boender, E. Currie, M. Loomes, Giuseppe Primiero, and Franco Raimondi.

Teaching functional patterns through robotic applications. In Proceedings of
the 4th and 5th International Workshop on Trends in Functional Programming
in Education, TFPIE 2016, Sophia-Antipolis, France and University of Maryland
College Park, USA, 2nd June 2015 and 7th June 2016., pages 17–29, 2016. doi:

10.4204/EPTCS.230.2. URL https://doi.org/10.4204/EPTCS.230.2.

[2] Guillaume Derval, Anthony Gego, Pierre Reinbold, Benjamin Frantzen, and Peter

Van Roy. Automatic grading of programming exercises in a MOOC using the

INGInious platform. In Proceedings of the European MOOC Stakeholder Summit,
pages 86–91, Mons, May 2015.

[3] Darina Dicheva, Christo Dichev, Gennady Agre, and Galia Angelova. Gamifi-

cation in Education: A Systematic Mapping Study. Educational Technology &
Society, 18(3):75–88, 2015.

[4] Paul F. Dietz. The GNU ANSI Common Lisp Test Suite. Presented at International

Lisp Conference, Stanford, July 2005, 2005. http://cvs.savannah.gnu.org/viewvc/

checkout/gcl/gcl/ansi-tests/doc/ilc2005-slides.pdf.

[5] Susan Harter. A new self-report scale of intrinsic versus extrinsic motivation

in the classroom: motivational and informational components. Developmental
Psychology, 17:302–312, 1981.

[6] Stephen E. Newstead, Arlene Franklyn-Stokes, and Penny Armstead. Individual

differences in student cheating. Journal of Educational Psychology, 88(2):229–241,
1996.

[7] Elizabeth Patitsas, Jesse Berlin, Michelle Craig, and Steve Easterbrook. Evidence

that computer science grades are not bimodal. In Proceedings of the 2016 ACM
Conference on International Computing Education Research, ICER ’16, pages 113–

121, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4449-4. doi: 10.1145/

2960310.2960312. URL http://doi.acm.org/10.1145/2960310.2960312.

[8] Franco Raimondi, Giuseppe Primiero, Kelly Androutsopoulos, Nikos Gorogiannis,

Martin Loomes, Michael Margolis, Puja Varsani, NickWeldin, and Alex Zivanovic.

A racket-based robot to teach first-year computer science. In European Lisp
Symposium, IRCAM, Paris, May 2014.

[9] Juha Sorva. Notional machines and introductory programming education. Trans.
Comput. Educ., 13(2):8:1–8:31, July 2013. ISSN 1946-6226. doi: 10.1145/2483710.

2483713. URL http://doi.acm.org/10.1145/2483710.2483713.

[10] Jeffrey D. Ullman. Gradiance on-line accelerated learning. In Proceedings of the
Twenty-eighth Australasian Conference on Computer Science - Volume 38, ACSC ’05,

https://doi.org/10.4204/EPTCS.230.2
http://cvs.savannah.gnu.org/viewvc/*checkout*/gcl/gcl/ansi-tests/doc/ilc2005-slides.pdf
http://cvs.savannah.gnu.org/viewvc/*checkout*/gcl/gcl/ansi-tests/doc/ilc2005-slides.pdf
http://doi.acm.org/10.1145/2960310.2960312
http://doi.acm.org/10.1145/2483710.2483713

ELS’18, April 16–17 2018, Marbella, Spain Christophe Rhodes

pages 3–6, Darlinghurst, Australia, Australia, 2005. Australian Computer Society,

Inc. ISBN 1-920-68220-1. URL http://dl.acm.org/citation.cfm?id=1082161.1082162.

[11] Jeannette M. Wing. Computational thinking. Commun. ACM, 49(3):33–35, March

2006. ISSN 0001-0782. doi: 10.1145/1118178.1118215. URL http://doi.acm.org/10.

1145/1118178.1118215.

ACKNOWLEDGMENTS
Thanks to Alexandre Rademaker for pointing out the similarity

of this approach to the root question concept of Gradiance. Jonas

Bernoulli and Alvarez Gonzales Sotillo made contributions to the

Emacs Lisp gift-mode library
7
for editing GIFT-format quizzes,

and Steve Purcell accepted a pull request for its inclusion in MELPA.

Thanks are due also to colleagues and (particularly) students at

Goldsmiths for making helpful suggestions, pointing out errors,

and participating in the activities.

7
https://github.com/csrhodes/gift-mode

http://dl.acm.org/citation.cfm?id=1082161.1082162
http://doi.acm.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
https://github.com/csrhodes/gift-mode

	Abstract
	1 Introduction
	1.1 UK Higher Education
	1.2 Computing education
	1.3 Algorithms & Data Structures at Goldsmiths

	2 Questions
	2.1 Pseudocode
	2.2 Recursive functions

	3 Delivery and Results
	3.1 Student perspectives
	3.2 Educator perspectives

	4 Conclusions and Future Work
	References
	Acknowledgments

