
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Vertical and horizontal elasticity for dynamic virtual
machine reconfiguration

Stelios Sotiriadis, Nik Bessis, Cristiana Amza, Rajkumar Buyya

Abstract—Today, cloud computing applications are rapidly
constructed by services belonging to different cloud providers
and service owners. This work presents the inter-cloud elasticity
framework, which focuses on cloud load balancing based on
dynamic virtual machine reconfiguration when variations on
load or on user requests volume are observed. We design a
dynamic reconfiguration system, called inter-cloud load balancer
(ICLB), that allows scaling up or down the virtual resources
(thus providing automatized elasticity), by eliminating service
downtimes and communication failures. It includes an inter-cloud
load balancer for distributing incoming user HTTP traffic across
multiple instances of inter-cloud applications and services and
we perform dynamic reconfiguration of resources according to
the real time requirements. The experimental analysis includes
different topologies by showing how real-time traffic variation
(using real world workloads) affects resource utilization and by
achieving better resource usage in inter-cloud.

Index Terms—Cloud Computing, Cloud Elasticity, Horizontal
Scalability, Vertical Scalability, Cloud Load Balancing, Inter-
Cloud

I. INTRODUCTION

CLOUD computing presents new business opportunities as
an environment for deploying applications and services.

Fundamentally, it provides an elastic infrastructure for utilizing
virtual servers that are available anytime from everywhere.
It includes three models, namely as Infrastructure as a Ser-
vice (IaaS) that includes virtualized resources, Platform as a
Service (PaaS) that includes an environment for developing
applications and services and Software as a Service (SaaS)
that includes on demand and pay as you go software. Also,
it includes platforms that offer resources such as hardware
(CPU, memory, hard-disk), software and network on a bespoke
manner. Today, cloud elasticity seems to be a vital cloud
asset as it allows users to increase or decrease capacity of
virtualized resources on demand, so pay for only what they
use. Traditional businesses deploy applications or services in a
cloud platform in the form of a unique virtual machine (VM)
and make it available to users through a virtualized network of
the cloud platform provider. Lately, another similar technology
has been emerged, the so called metacloud that is a framework
for providing clouds on demand as well as services called
microservices i.e. the IBM microservices [1]. The metacloud
is a cloud based platform (for example the system offered by
Cisco1) for deploying and operating private clouds for global
organizations.

Similar example is the future Internet concept that allow
development of novel cloud applications combining different

1http://www.cisco.com/c/en/us/products/cloud-systems-management/

cloud services that might belong to different cloud providers
(i.e. the FIWARE platform2). This is generally known as
inter-cloud, that refers to multiple cloud providers [2] and
is heterogeneous in terms of cloud platform architectures.
Metacloud follows the inter-cloud concept thus it is comprised
by a network of clouds that are hosted in different places.
Here customers can easily host their own private clouds in the
metacloud infrastructure for example Cisco metacloud is base
exclusively on OpenStack3.

Inter-cloud services also refer to cloud enablers that are
part of a generic service oriented architecture (SOA), in which
providers develop applications or services by selecting func-
tionalities from different cloud platforms (i.e. authentication,
data storage, data analysis etc.). There are many providers that
offer such services and claim to offer an ”infinite” view of
virtual resources. This refers to scalability as the ability of the
system to accommodate larger loads and to elasticity as the
ability to scale with loads dynamically. Cloud platforms offer
both, however it does not allow automated VM reconfiguration
(that refers to scaling up or down VM resources) based on
real time usage. Consequently, as cloud VMs resource usage
requirements change dynamically, the initial configuration
could lead to service performance degradation, for instance
if demand increases significantly.

To deal with these, this work focuses on the dynamic VM
reconfiguration in terms or horizontal and vertical elasticity.
We define the terms horizontal elasticity that refers to the
creation of new VMs and vertical elasticity that refers to
the resizing of existing VMs. To address such issues, cloud
providers offer elastic load balancers that manage incoming
traffic without disrupting the flow of information. In particular,
platforms such as OpenStack, VMWare VCloud4 etc. provide
load balancers to achieve stability, adaptability and optimal
usage of client workloads. However, in this work we are
motivated by the inter-cloud concept that makes elasticity
a challenging task. In particular, the elasticity factor, which
targets dynamic adaptation to workload changes, is a crucial
aspect to be explored. The problem that this work is focusing
is timely and comes from the transition from monolithic
web applications to distributed microservices where elasticity
becomes a hurdle (i.e. how to manage a microservice, scale it
up or down automatically and reconfigure it according to real
time usage).

We are motivated by the works of (a) [3] that describes

2https://www.fiware.org/
3https://www.openstack.org
4http://www.vmware.com/products/vcloud-suite.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/154422695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON SERVICES COMPUTING 2

the Google Borg as a cloud scheduler, (b) [4] that describes
the Kubernetes that is an environment for building distributed
applications from containers [5], (c) [1] that presents the IBM
microservices that break up large applications to easily to
manage, maintain and operate modules, (d) [6] that describe
Elastack that provides automated monitoring and adaptation
in OpenStack platforms and (e) [7] that describe challenges
towards automated cloud application elasticity. The innovation
of this work is based on the dynamic elasticity involving
running already deployed VMs rather containers that are exe-
cuted in different cloud platforms, thus we focus on exploring
the best method for VM reconfiguration. This includes the
dynamic VM reconfiguration that is affected by the variation of
service usage in real-time. Current approaches usually refer to
services from the same cloud provider or perform elasticity by
launching new instances in the provider-side. Having said that,
the contributions of the inter-cloud load balancer (ICLBICLB)
framework include the following:

(C.I) To provide an elastic inter-cloud load balancer for
applications or services composed by microservices.
That allows cloud applications or services to scale
up/down in accordance to real time resource usage
and traffic.

(C.II) To allow dynamic and automated VM capacity re-
configuration when increased workloads (i.e. HTTP
traffic) or resource utilization levels (i.e. VM disk
usage) are observed.

(C.III) To compare horizontal versus vertical reconfiguration
for different scenarios in order to conclude to optimal
usage for each of which. We use real world systems
to demonstrate our solution including OpenStack and
VMWare VCloud as cloud platforms, Elasticsearch
[8] as a deployed system and the the Yahoo! Cloud
System Benchmark (YCSB) [9] as the real world
workload for stressing the system and support our
research argument for two cases including (a) for in-
creasing traffic and (b) for increasing resource usage.

Regarding C.I, the work proposes a new load balancing
layer positioned on top of the cloud platforms. The aim is to
move existing solutions (e.g.OpenStack Elastic Load Balancer)
a step forward, by allowing management of application and
cross-utilization of services belonging to different providers
and service owners by decoupling load balancers from the
providers. To achieve this we present an experimental study
that includes real world workload testing for an Elasticsearch
VM cluster. In particular, we setup a cluster and we test it
using YCSB workload to stress system performance. Thus,
we used two ways of triggering autoscaling, a) based on
the HTTP traffic coming from the YCSB (that is deployed
in an external VM) and b) based on the monitoring of the
Elasticsearch5 resources that is an enterprise-grade search
engine [10]. Having said that, we tested the system in different
configurations including Elasticsearch cluster that is deployed
in OpenStack and VMWare VCloud.

Regarding C.II, VMs are monitored constantly and capacity
is increased or decreased in relation to a VM reconfiguration

5https://www.elastic.co

strategy. The aim is to eliminate downtimes without affecting
the overall flow of information. This will allow cloud VMs
either to be resized or to be re-instantiated in the same or
a different cloud provider with zero loss in communication.
The experimental analysis presents various cases in which
ICLB could be applied with success. Next, Section II presents
a detailed discussion of the literature and tools along with
the dependencies and the contribution of our work on and
to existing approaches and tools. In Section III we present a
discussion of the design issues of ICLB modules, in Section IV
the performance evaluation and in Section VI the conclusion
and future research directions.

II. MOTIVATION AND INNOVATION

In this work we focus on solving the problem of VM
autoscaling by employing load balancers to add VM clones
for sharing load or to resize VM size.

Cloud providers claim to offer high availability services with
an ”infinite” view of resources. This includes (a) scalability
as the ability of the system to accommodate larger loads
and (b) elasticity as the ability to cope with loads dynam-
ically. However, VMs resource usage requirements change
dynamically, so the initial VM configuration is static and
could lead to service performance degradation, for instance
if demand increases significantly. Here, we focus on the
cloud elasticity that is the degree in which a system can
provision/deprovision resources automatically to cope with
high demands. Our goal is to reconfigure a VM size according
to the resource usage and/or incoming traffic in an automatized
way. To achieve fault tolerance and keep VM connection alive,
we run experiments in a load balancing environment where
VMs are placed under a load balancer VM (the inter-cloud
load balancer) that distributes HTTP traffic fairly according
to different algorithms (i.e. the round robin). We analyze
real time resource utilization levels and we trigger horizontal
(increase/decrease VM size) or vertical (cloning VM through
replication) elasticity to avoid overloads. Our motivation is
based on Figure 1 that experimentally demonstrates a real
world system of an Elasticsearch head node performance that
is deployed in an OpenStack system and is under stress.

Fig. 1. YCSB Elasticsearch workload overload execution in small size VM
for 250 thousand insert and update records



IEEE TRANSACTIONS ON SERVICES COMPUTING 3

To achieve a realistic scenario, we used the real world
workload of YCSB6 that is a framework with a common set
of workloads for evaluating the performance of different ”key-
value” and ”cloud” serving stores. Based on that, we run the
YCSB workload in order to explore the performance of the
Elasticsearch system. In detail, we executed YCSB workload
to stress system performance with (a) 250 thousand records
(normal execution) and 10 million records (extremely heave
execution) by running in 5 threads in a small size VM (2 GB
RAM, 20 HD disk, 1 CPU Core) and we observed that the VM
disk usage is constantly increased meaning at some point the
VM will be overloaded and will fail execution of tasks. We can
observe that the disk usage percentage is increased from 67%
to 71% percent. Based on this trend (and its repeatable pattern
that is visually apparent) we can expect (for a heavy workload)
that at a certain point the disk usage will reach 100% and
the workload execution will fail. So, we aim to avoid the
Elasticsearch cluster overload point in order to trigger VM
reconfiguration and achieve load relief either in a clone or in
a resized VM.

Another exampe is Figure 2 that demonstrates an overuti-
lized Elasticsearch cluster. In particular, we stress the system
by selecting a small size VM in OpenStack and we measure
its performance when we run 10 million records. We observed
that the VM reaches an overload point of 100% (around after
40 minutes of execution time) and continues at the same levels.
At that time we can assume that the overload could cause er-
rors in the workload execution since there is no free disk space.
To validate this assumption, we measured the Elasticsearch
insert data throughput and estimated completion time and we
demonstrate results in Figure 2. We can observe that around
time instance 600 the throughput started to decrease and until
time instance 1200 the throughput drops almost to zero. We
compared these values with the disk usage and we concluded
that this is the time moment when the Elasticsearch VM disk
usage started to become overloaded (the time instance that it
reaches 100%). Similarly, estimated completion time started
to increase significantly, meaning that the workload execution
will be delayed and eventually could not be executed at all (for
example after 1235 time instance the estimation completion
time is increased dramatically in a steady increasing trend).

0
10
20
30
40
50
60
70
80
90

0

1000

2000

3000

4000

5000

6000

7000

8000

10
0

16
5

23
0

29
5

36
0

42
5

49
0

55
5

62
0

68
5

75
0

81
5

88
0

94
5

10
10

10
75

11
40

12
05

12
70

13
35

14
00

14
65

15
30

15
95

16
60

17
25

17
90

18
55

19
20

19
85 Es

tim
at

ed
 c

om
pl

et
io

n 
tim

e 
(s

ec
on

ds
)

In
se

rt 
da

ta
 T

hr
ou

gp
ut

Time sample

Insert Throughput Estimated Completion Time

Fig. 2. YCSB Elasticsearch workload insert throughput data failure and
estimation completion time for small size VM (10 million tasks for insert
and update records)

6https://github.com/brianfrankcooper/YCSB

So we analyzed resource usage features (i.e. cpu percentage,
memory percentage, disk usage percentage etc.) and traffic val-
ues in order to trigger autoscaling and avoid overloading. The
proposed system is not the first to focus on these issues, but
to the best of our knowledge is one of the few that addresses
the comparison of horizontal and vertical scaling in inter-
clouds in order to conclude to the best solution for different
scenarios. In addition, we demonstrate that based on a real
world case (of the previous experiment) even state of the art
cloud applications (like Elasticsearch) suffer from automated
scaling and automated monitoring. Thus, ”outsourcing” user
demands to clone VMs based on inter-cloud load balancers
could offer a sophisticated and performance efficient solution.
We perform an experimental study of OpenStack and VMWare
VCloud platforms to illustrate the effectiveness of our system.

III. RELATED WORK

This section presents a discussion of the related works
referring to cloud service elasticity and scalability. We classify
elasticity into vertical, which refers to the changing of VM
size, and horizontal, which refers to the creation of new VMs.
In [11] the authors present a horizontal elasticity solution by
allowing VM allocation (by adding or removing VMs) in the
cloud. They present a simulation analysis that demonstrates
a minimization of SLA violation, by focusing on horizontal
elasticity. In [12] the authors monitor VM resources and
develop an architecture for reducing the provision overhead.
According to [13], the approach does not offer scale-down
mechanisms.

In [13], the authors focus on the use of a private cloud envi-
ronment in order to improve the High Performance Computing
(HPC) research infrastructure. Specifically, they have imple-
mented an HPC job scheduler to improve the utilization of the
cloud resources. This work, based on OpenStack, focuses on
launching new nodes and not on migration or resizing cloud
VMs. In [14] the work focuses on the need for integration
of QoS and SLA requirements with the cloud and automated
dynamic elasticity of the cloud for SLA management and it
is a theoretical discussion of research directions. The work
presented in [15] focuses on elasticity as the ability of a cloud
to add and remove instances in an automated way. The solution
is called Elastack, which is a monitoring and adaptive system.
The authors claim that the solution is generic and could be
applied to existing IaaS frameworks. It is a promising work
that is OpenStack oriented.

In [7] the authors present a study on dynamic scaling of
applications in the cloud. The work shows efforts at the edge
of state-of-the-art technology on cloud elasticity. They present
new challenges in the areas of server, network and platform
scalability. In [16] the authors demonstrate an automated
system for elastic resource scaling of multi-tenant clouds. It
is called CloudScale and achieves adaptive resource allocation
with no need to know a priori. According to [15], CloudScale
focuses on vertical instance scaling (that is it is said to act on
the instance itself rather launching new ones). The authors
in [17] present a system called Kaleidoscope that allows
cloning of VM instances when demand is increased by copying



IEEE TRANSACTIONS ON SERVICES COMPUTING 4

the complete or partial state of the original instance. Kaleido-
scope does not launch new instances. According to [15], this
approach requires adapting and integrating within the cloud
infrastructure. Also, to be effective it requires installation on
all instances.

In [18] the authors present an architecture for an IaaS
cloud to allow dynamic resource allocation. They develop
a system called Kingfisher that contains components for
replication and migration using an integer linear program
in order to optimize cost, and implement an OpenNebula
extension for load balancing when load is changing. In [19]
the authors present an architecture for an IaaS cloud to allow
dynamic resource allocation. They develop components for
VM scheduling with management objectives for replication
and migration and implement an OpenStack extension for load
balancing. In [20] the Amazon EC2 Auto Scaling is designed
to launch or terminate EC2 instances automatically according
to user-defined policies, schedules, and health checks. The
solution allows management of VM resources based on pre-
dictable and anticipated load changes. Further, the approach
uses the Amazon CloudWatch (for notifications and alarms)
and the Elastic Load Balancing (for distribution of traffic
among various instances) in the autoscaling groups.

Further, [21] provides the Amazon Elastic Load Balanc-
ing (ELB) to automate the process of incoming web traffic
between different Amazon EC2 instances. By using ELB, the
users add and remove instances according to the need of the
traffic without disrupting the flow of information. In the case
that a VM fails the ELB sends the request to other instances
that have been previously configured in the ELB. In [22] the
authors investigate the feasibility of dynamic cloud scaling,
by focusing on Cloudify telco services. They focus on the
migration of processes among peer servers in a transparent
way for pro-active resource provisioning based on call load
forecasting. The work in [23] presents vertical elasticity for
applications with dynamic memory requirements when run-
ning on a generalized virtualized environment. The solution
offers the ability to scale the VM memory dynamically using
memory ballooning provided by the KVM hypervisor.

In [24], the authors show a data centre architecture based
on virtual machine monitors to reduce provisioning overheads.
They also employ a combination of predictive and reactive
methods to determine when to provision resources. [25] dis-
cusses the OpenStack load balancing solution of VM traffic.
It offers an API to allow distributing requests between VMs
similar to Amazon ELB. In [26], the authors present the
soCloud that is a PaaS component in multiple clouds that
uses load balancers to ”switch from one application instance
to another” if there are failures. The work of [27] presents
the MODAClouds that offers a system for migrations among
multiple clouds that reacts to performance reconfigurations.
MODAClouds provide innovative features such as avoiding
vendor lock-in problems supporting the development of Cloud
enabled Future Internet applications and provide quality assur-
ance during the application life-cycle and support migration
from Cloud to Cloud when needed. In [4], authors present
the Kubernetes that is an ”open-source system for automating
deployment and scaling” using containerized applications to

allow scaling applications on the fly and optimization of
resources when needed. It is particularly focused on launching
containers that can be horizontally scale-able and composed
by microservices.

We are motivated by the solutions of [14], [15], [26], [4]
and [20] that aim to contribute from the perspective of an
inter-cloud application. Specifically, we focused on real-time
workload analysis such as of the cloud applications traffic
when increased usage is observed, as in [21] and [25]. To the
best of our knowledge, our work is different from the literature
in the aspects of inter-cloud load balancing (placed on top of
clouds) and focuses in already running VMs rather than in
containers.

IV. INTER-CLOUD ELASTICITY FRAMEWORK DESIGN

Developers build innovative cloud applications using ser-
vices from different owners that are deployed in different
cloud platforms. The following sections discuss (A) the ICLB
framework, (B) its architecture, (C) the analysis of the system
configuration and its processes.

A. Inter-Cloud Elasticity Framework

ICLB approaches cloud and inter-cloud elasticity from the
perspective of distributed and interoperable services [28], in
order to allow management of the elastic reconfiguration of
VMs without affecting application uptime and by improving
performance. Its key layers are (i) inter-cloud layer, (ii) elas-
ticity layer, (iii) load balancing layer, (iv) monitoring layer, (v)
elastic threshold management, (vi) security and (vi) portability,
which are presented below.

(i) Inter-Cloud Layer: It contains the inter-cloud commu-
nication layer that allows interactions among differ-
ent cloud platforms. It allows mediation for connect-
ing clouds utilizing APIs and platform interfaces such
as OpenStack7, VMWareVCloud and others presented
in [29]. Essential mechanisms include inter-cloud au-
thentication, collection of data related to resource usage,
instantiation and deployment of services (in a remote
manner) and others. In [30] and [29] we developed a
prototype composed not only from heterogeneous cloud
platforms but also from independent (in terms of func-
tionality) cloud services. These are developed by differ-
ent cloud service providers and offered as open source
Software-as-a-Service (SaaS). A vital component of this
layer is the Inter-Cloud Mediation Service, specified in
[31], that uses SaaS based microservices. A detailed
presentation of this service is presented in [29] along
with the inter-cloud VM migration mechanism.

(ii) Elasticity Layer: It features the dynamic properties for
elastic reconfiguration of cloud service VMs. The layer
includes two different modes of elasticity: vertical and
horizontal. Todays cloud platform providers offer these
in the form of launching new or resizing existing VMs
instances. The layer focuses on elasticity as the ability

7OpenStack API: http://developer.openstack.org



IEEE TRANSACTIONS ON SERVICES COMPUTING 5

of resources to scale out (either vertical or horizontally)
so to cope with loads dynamically.

(iii) Load balancing Layer: Most cloud providers offer so-
phisticated load balancing mechanisms, for instance the
OpenStack Load Balancing-as-a-Service [25], the Ama-
zon ELB [21] and others. These are the default mech-
anisms that users could easily deploy and configure us-
ing the platforms dashboard system. The load-balancers
could handle traffic by distributing requests to different
clone instances. A widely used solution is the open-
source proxy servers (i.e the NGINX8) for implementing
complex load balancing in terms of different algorithms
for traffic distribution (i.e round-robin) and dynamic
automation of the load balancer based on workload
reconfigurations.

(iv) Monitoring Layer: It is a vital requirement to observe
real-time resource usage so to allow adaptive decision-
making during run-time. This layer is responsible for
data collection directly from the running instances and
comprises high performance real-time observation of VM
usage for the purpose of triggering elastic reconfigura-
tion.

(v) Elastic Threshold Management Layer: It implements
the dynamic and real time cost management function
that defines the elastic reconfiguration thresholds for
services. The layer provides functions to calculate profits
or overheads of a service owner or provider by analyzing
HTTP traffic.

(vi) Security Layer: Cloud services are usually deployed as
web applications: prevention of attacks that could in-
crease traffic between application and services is of vital
importance. The layer establishes an external security
layer to increase security and discover attacks.

(vii) Portability Layer: It defines the process for systematiz-
ing application and service deployment among different
cloud platforms. The layer defines solutions for porta-
bility by automating the deployment of self-sufficient
containers (i.e Docker9). In [30] and [29] we presented
inter-cloud IaaS portability solutions that are used here.

B. Architecture of inter-cloud based on ICLB framework

ICLB framework, demonstrated in Figure ??, targets the
automation of the inter-cloud elasticity and performs dynamic
VM reconfiguration based on the variation of HTTP traffic.
ICLB differentiates three actors: the application/service owner,
named as App owner, the user that forwards traffic to the
service (i.e by making HTTP requests to the App) and the
3rd party service owners that are independent of the cloud
platforms. The next section presents the structure of the ICLB
internal processes regarding initialization and during traffic.

1) Initialization of the ICLB architecture: The ICLB ini-
tialization process defines processes prior to the publication of
the service. The following describes the configuration of ICLB
modules including initialization and management of elasticity.

8NGINX: http://nginx.org
9Docker: https://www.docker.com

(i) The assumption is that the service owner actor has al-
ready implemented an App/service using available inter-
cloud platform services. By using the Portability module
the actor creates App/services in proprietary containers
that are portable, thus independent of cloud providers
and infrastructure constraints. These are also ready for
deployment (i.e available in the Docker) to any cloud
provider.

(ii) The IC load balancer is configured by the ICLB compo-
nents in order to allow traffic distribution in the deployed
App. At this point the assumption is that the owner
instantiates at least two VMs that host the App in the
same or different clouds. During initialization, the owner
configures any local load balancers of the local providers
by creating, if needed, replicated instances of the local
services. The owner configures the IC load balancer
to distribute traffic among service endpoints based on
HTTP load balancer algorithms such as round-robin,
least-connected or IP-hash.

(iii) Using ICLB, the service owner configures the monitoring
aspects of the App/service. In particular, the monitoring
module allows live data capturing based on an interval
(i.e data collection every 5 seconds). The monitoring
component requires installation and configuration within
the VMs and will offer a centralized control point for
storing data including configuration and performance
data. The real-time time monitoring will allow automated
actions of the ICLB components, i.e restart a VM using
the IC mediation component.

(iv) The IC mediation component is based on a service-
centric architecture as in [29]. This allows remote con-
nection to the various clouds interacting through REST-
Ful cloud services. Key functionalities include identity
management and cloud registry (secure authentication to
connect to clouds), subscription service (data retrieval
regarding services virtual resources and context manage-
ment (subscribe, unsubscribe, create, update and register
context), complex event management (interfaces to the
inter-cloud mediation for defining rules and patterns
to react on certain event flows) and others described
in [29]. The mediation works independently of the ICLB
component, yet it uses its interfaces to get and post events
to the clouds. For example, the ICLB module, through
the mediation service will send a request for restarting a
VM. Major aspects of elasticity including horizontal and
vertical elasticity are defined in this component.

(v) The cost management component provides generalized
functions and algorithms for real-time data handling.
ICLB uses it to define triggers for inter-cloud elasticity.
The owner initializes this component by selecting one
of the preferred real-time resource usage assessment
algorithms. These are simple rules: for instance, when
traffic increases 50% a new instance will be re-launched
or resized and ICLB will notify the IC load balancer.

(vi) The security component includes the application and
service authentication point that is implemented within
the IC mediation. The ICLB component is initialized ac-
cording to the requirements of the owner. The component



IEEE TRANSACTIONS ON SERVICES COMPUTING 6

could perform horizontal and/or vertical elasticity based
on rules and real-time data captured by the monitoring
and security within the inter-cloud system.

2) Elasticity processes of the ICLB service: ICLB tar-
gets real-time traffic management of cloud applications and
services. The following demonstrates the interaction among
processes during incoming HTTP traffic. Firstly, the users send
HTTP requests to the IC load balancer, which in turn forwards
the traffic to the local load balancers or the VMs (depending
on the initial deployment). The IC load balancer is deployed
as a cloud service within the inter-cloud system and monitored
in real time. Also, it utilizes an HTTP load balancer algorithm
(pre-defined by the owner) for traffic distribution. The volume
of the traffic is monitored by the ICLB component every
interval, while the IC load balancer resource usage is captured
by the monitoring component. ICLB is based on real-time
monitoring; it defines the automation mechanism according to
the configuration parameters of the owner. In case of increased
or decreased traffic, the cost management rules trigger actions
in ICLB, which sends events to interacted components. These
are as follows.

(i) ICLB monitors resource usage and HTTP traffic using
the monitoring component (based on interval measure-
ments). In particular, we set the monitoring threshold to
every second for the whole set of the experimental study.
Data is collected and analyzed on the fly.

(ii) ICLB is configured for triggering events (according to a
decision-making process) based on rules and/or patterns
coming from the cost management component. If a rule
is met, a sequence of events is triggered. The security
component is utilized as a web firewall to classify
incoming traffic to healthy and malicious requests.

(iii) ICLB, through the IC mediation, sends a request for
performing autoscaling (vertical or horizontal elasticity
to increase or decrease resources). In the horizontal case
it also sends the URI of the new deployed instance that
has been generated using the portability module.

(iv) Events coming to the IC mediation assigned as actions
for clouds (i.e launch a new instance). In case of hori-
zontal elasticity a response is generated to the ICLB to
update the IP of the new instance.

(v) For horizontal elasticity, ICLB gets the IP of the new
instance and performs a sanity check to know when
the service is up; at this point it updates the IC load
balancer list of IPs without dropping the connection. For
vertical elasticity the IC load balancer sends requests to
the instance automatically when it is up.

(vi) The IC load balancer continues to distribute the traffic ac-
cording to a load balancer algorithm (that is predefined in
the initialization stage), and from this moment it forwards
HTTP requests to the new clone instance (horizontal) or
the resized instance (vertical).

(vii) The ICLB continues monitoring. In case of decreasing
traffic it repeats the same process to drop/shutoff an
instance; however, in this case it first updates the system
to delete the instance IP, if required, by the owner (i.e
for cases where a cloud client would like to release IPs

to decrease costs). After, it sends the request to the IC
mediation component for removing the instance IP from
the list. In any other case, the IC load balancer keeps the
IP in the list; however, it does not send traffic until they
become active again.

To demonstrate the above interactions, we present a simple
example that involves the monitoring of the traffic for in-
creased workloads by 50% for more than 1 hour. Foe example,
in this case, the ICLB framework will resize an instance of the
inter-cloud from a small to medium size (i.e from 1 CPU, 2
GB RAM, 20 GB HD to 2 CPUs, 4 GB RAM, 40 GB HD). A
more complex case is the generation of a new clone instance
of the selected medium size. In this case the IP of the new
VM will be registered into the IC load balancer and the traffic
will be spread among the pool of cloned VMs.

C. Analysis of the ICLB configurations

The App/services owner configures the load balancer by
including the addresses of the VMs (IPs and ports). The
default setup for the load balancer is set to the round robin
algorithm that distributes the HTTP traffic fairly. With regards
to the service configuration, the App/services owner/developer
configures VMs (that belong to the inter-cloud system) and
installs components (such as security, monitoring etc.) using
the portability deployment module, then selects whether to
use a local load balancer (Local LB) or not. The final service
endpoints are forwarded to the ICLB that configures the inter-
cloud load balancer (IC-LB), the monitoring (to get real-time
data), the IC mediation (i.e to get authentication tokens from
clouds) and the cost management functions. Finally, ICLB is
set to serve incoming user traffic.

Vertical autoscaling refers to the reconfiguration of the
hardware resources of a running VM including virtual CPU
number, disk and RAM size. Various cloud providers include
different size flavors, thus the threshold for horizontal autoscal-
ing triggers an action for changing the cloud platform flavor
that in turn upscales or downscales according to dynamic
user needs. Vertical autoscaling creates App/service downtime,
however it keeps the same endpoint URI. Horizontal autoscal-
ing refers to the creation of new VMs that are clones of the
selected instance, utilizing a process of creating a new image
by assigning the same resources (flavor). After the creation,
the cloned VM is executed independently of the initial VM.
The Horizontal autoscaling does not create any downtime of
the App/service as the image creation process does not stop
VM execution, yet the new cloned VM gets a new endpoint
URI.

The load balancers are organized by the ICLB service, so
in the horizontal case the load balancer forwards all the traffic
to the running instance(s) while in the vertical it is configured
with the new endpoint.

V. PERFORMANCE EVALUATION

This section presents the performance analysis of the ICLB
framework. It includes (a) the experimental setup, (b) the
benchmark analysis, (c) the comparison of horizontal and



IEEE TRANSACTIONS ON SERVICES COMPUTING 7

vertical autoscaling, (d) the inter-cloud load balancing bench-
marks, the inter-cloud load balancing scenarios based on (e)
HTTP traffic volume and (f) resource usage and (g) the
inter-cloud load balancing based on various service layers
(for example layers of microservices that integrate a cloud
application).

A. Experimental setup

We developed the experiments using two infrastructures
based on (a) an OpenStack and (b) a VMWare VCloud
platforms. The OpenStack system is comprised by 11 nodes
(1 head and 10 compute) with total 128 Cores, 284 GB RAM
and 12 TB HDD and has been deployed as an experimen-
tal infrastructure while the VMWare is from a commercial
provider. We deployed different VMs following the default
sizes of OpenStack that we duplicated in VMWare. Using both
systems we aim to demonstrate the inter-cloud notion.

The experimental setup includes the utilization of a load
balancing solution deployed in OpenStack, while the VMs
are deployed in OpenStack and VMWare. We perform hor-
izontal and vertical autoscaling in both platforms using their
RESTnAPIs. The fundamental objective is to keep connection
of VMs alive during each ICLB process. To demonstrate a
real world scenario, we deployed Elasticsearch and we run
different experiments to explore the performance of ICLB
framework. Elasticsearch is an open source search engine us-
ing schema free JSON documents and provides an HTTP web
interface. We used the the Yahoo! Cloud System Benchmark
(YCSB) workload in order to stress the CPU utilization for
different workloads and we set threshold values to trigger
VM reconfiguration (i.e. when CPU utilzation is higher than
a specific CPU usage percentage). For the whole set of the
experiments we use the YCSB core workload, that has a mix
of 50/50 reads and writes.

The YCBS workload allows us to test our system using a
real world workload benchmark that increases CPU utilization.
Figure 3 demonstrates a simple example of this scenario where
it is shown that the HTTP traffic is forwarding from YCSB
node (that in our case simulates a user) to the Elasticsearch
cluster. Here the client forwards requests to the Elasticsearch
node using the inter-cloud load balancer (ICLB), by sending
traffic to N1 while N2 is offline for the moment. A monitoring
service that is preinstalled in all nodes and monitors different
features including percentage of CPU usage, Memory, HD,
IOs etc.

user
N1 (Head)

N1_Clone
(Head)

IC
LB

YCSB

traffic

N3

N2
OpenStack

VMWare VCloud

Inter-C
loud

Fig. 3. HTTP traffic forwarding from user that sends YCSB workload to the
Elasticsearch cluster

In detail, the traffic is forwarding to the N1 that is the head
node of the Elastisearch cluster consisting of three nodes (N1,
N2, N3 ). The assumption is that when the traffic overcomes
a threshold a new clone VM (N1C lone) will be created (for
example from size small to medium) to handle the increasing
demands and replace N1. In our case, we set the default
parameter for autoscaling the HTTP requests, however this
can be extended to include CPU utilzation and other. In more
detail, the monitoring service uses the psutil library10 and is
responsible for collecting monitoring data per second, and
sends it to the ICLB along with the identification number of
the node.

Based on this setup, we perform the following experiments.
(A) Firstly, we perform a benchmark analysis of horizontal

and vertical autoscaling including various tests of cloud
VMs sizes (named as flavors). For each experiment we run
10 tests and we measure the average of these executions.
The experimental setup includes load balancing in the
Elasticsearch cluster.

(B) The autoscaling of a single VM that utilizes other services
belonging to different clouds. The aim is to explore if
there are any downtimes in terms of horizontal autoscal-
ing and also to measure the times needed for vertical
autoscaling (that is the time to create new instances).

(C) The benchmark analysis of the ICLB that distributes traf-
fic into the Elasticsearch cluster (comprised by two VMs)
in order to compare the total execution time, requests
served and transfer rates. In addition, we compare round
robin, IP hashing and least connected load balancing
algorithms to explore their performance for various levels
of concurrent requests.

(D) The autoscaling of the Elasticsearch in a topology in
which the ICLB component distributes requests among
two identical VMs for a large number of requests that
simulate incoming traffic using the YCSB workload. The
aim is to compare horizontal and vertical autoscaling and
to explore an optimization scheme for further gains.

(E) The ICLB scenario in which the ICLB component mon-
itors resource utilization levels and accordingly triggers
autoscaling based on CPU usage.

(F) A complex inter-cloud heterogenous topology in which
the monitoring of CPU levels triggers autoscaling.

B. Benchmark Analysis of Horizontal and Vertical Autoscaling

This section presents the analysis of autoscaling of the
Elasticsearch (that in our example demonstrates the cloud ap-
plication/system) based on the YCSB workload. In particular,
Table I shows the measurements of the horizontal autoscaling
that includes three different VM configurations (known also
as flavors). We deploy Elasticsearch and we configure flavors,
where flavor f1 is 1 CPU, 1 GB memory and 1 TB HD, f2
is 1 CPU, 2 GB memory and 20 TB disk and f3 is 2 CPU,
4 GB memory and 40 GB HD. We divided the VM creation
phase into two stages; the Response and the Active server.
Specifically, the Response is the time needed for the request

10https://pythonhosted.org/psutil/



IEEE TRANSACTIONS ON SERVICES COMPUTING 8

to send a VM creation to the OpenStack API and get the
response (shown as status 202 Accepted) information from
the virtual server.

It should be mentioned that the ICLB sends API calls using
the REST interfaces of the platforms, so the response time is
the time needed for a call to be executed (i.e. send an HTTP
GET/POST) and return the successive HTTP response. The
response data includes VM identification, endpoint IP etc. The
Active server is the time needed for the server to acquire status
Active in the OpenStack system. We execute a sequence of 10
requests for each of the three flavors, thus the total experiment
includes 30 executions with 60 measurements executed in a
total of 50 minutes. The total creation time is the sum of the
two aforementioned times. With regards to the network aspects
we follow the default network configurations of the cloud
platforms (for example OpenStack uses the Neutron service11

that provide networking as a service and are responsible for
creating the virtual interfaces for the OpenStack system).
According to Table I we calculate that the average total time
for Elasticsearch VM creation for f1 is 51.44 seconds, for f2
40.47 seconds and for f3 is 38.36 seconds.

TABLE I
HORIZONTAL AUTOSCALING BENCHMARK ANALYSIS

Based on these we conclude the following findings.
• The average time for the VM creation for all cases is less

than 44 seconds.
• As the size of the requested VM is increased, the time

for VM creation is decreased slightly, thus bigger VM
sizes does not affect performance significantly.

• The average time for a VM creation, independent of its
size, is 43 seconds.

• The VM is not yet accessible as the system has not yet
assigned a floating IP to it. Based on a basic experiment
in an OpenStack platform we concluded that the IP
allocation and assignment process would increase the
average creation time by an average of 6 seconds, so the
average VM creation time becomes 48.55 seconds.

In Figure 4 we visualize the horizontal autoscaling values of
Table I in a clustered column diagram to highlight the above
findings.

Table II demonstrates the vertical autoscaling values (re-
sizing of a VM). In this case we execute a simple upscaling
resizing in an OpenStack system using the API and by sending
HTTP requests. It includes the upscaling from flavor f1 to f2, f2
to f3 and f3 to f4. The new flavor, which is not in the previous
horizontal case, is f4 and includes 4 CPUs, 8 GB RAM and
80 GB HD. We executed 10 requests (as previously) and we
measured two parameters that divide the overall upscaling
process into the altering of flavor to flavor Uptime and flavor

11https://wiki.openstack.org/wiki/Neutron

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(S

ec
on

ds
)

f1: Response f1: Active server f2: Response

f2: Active server f3: Response f3: Active server

Fig. 4. Benchmarking: Horizontal autoscaling of a cloud VM

to flavor Downtime. The first reflects the resizing preparation
time where the instance is online and the second the execution
time where the instance is offline.

TABLE II
VERTICAL AUTOSCALING BENCHMARK ANALYSIS

The sum of the values of the two parameters defines the
total upscaling time. The same configuration is valid for the
downscale process. Based on the measurements in Table II we
observe that the total time of upscaling from f1 to f2 is 68.26
seconds, from f2 to f3 is 37.52 seconds and from f3 to f4 is
53.77 seconds. We further define a connection looseness factor
that is the division of uptime to downtime value. The factor is
calculated as 1.17 for resizing f1 to f2, 1.21 from f2 to f3 and
1.29 from f3 to f4. Based on the table values we conclude the
following.

• The overall time for VM resizing is always less than 53.5
seconds.

• As the size of the requested VM is increased, the time
for VM creation does not change linearly and is related
to the size of the required flavor and the bandwidth.

• The VM is accessible as the system keeps the same
endpoint (IP).

• The connection looseness factor shows an increasing
trend each time the VM upscales, thus VMs tend to loose
connection when size is increased.

In Figure 5 we visualize the vertical autoscaling values of
Table II in a clustered column diagram in order to highlight
above findings.

C. Comparison of horizontal and vertical autoscaling

This section demonstrates the comparison between horizon-
tal and vertical autoscaling that it is triggered by ICLB. We
base out experiment in Figure 3, however we activated the



IEEE TRANSACTIONS ON SERVICES COMPUTING 9

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(S

ec
on

ds
)

f1-f2: Uptime f1-f2: Downtime f2-f3: Uptime

f2-f3: Downtime f3-f4: Uptime f3-f4: Downtime

Fig. 5. Benchmarking: Vertical autoscaling of a cloud VM

N1C lone so users send requests to the ICLB component that
in turn triggers the autoscaling mechanism. In this case load
balancing is performed in a round-robin fashion, meaning that
half of the re. For this experiment autoscaling is executed
every 100 YCSB requests in order to measure the downtimes
(vertical) and VM creation times (horizontal) of identical
flavors (f2 and f3). Figure 6 demonstrates the comparison
between the horizontal and vertical autoscaling of a cloud App
for flavor f2 along with the linear trend lines.

48.43

28.21

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 2 3 4 5 6 7 8 9 10 Average	
(V-H)

Ti
m
e	
(S
ec
on
ds
)

Vertical	f2 Horizontal	f2
Linear		(Vertical	f2) Linear		(Horizontal	f2)

Fig. 6. Horizontal versus vertical autoscaling of a cloud App for flavor f2

Similar to Figure 6, Figure 7 demonstrates the comparison
between the horizontal and vertical autoscaling for flavor f3.

26.66

46.15

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 2 3 4 5 6 7 8 9 10 Average	
(V-H)

Ti
m
e	
(S
ec
on
ds
)

Vertical	f3 Horizontal	f3
Linear		(Vertical	f3) Linear		(Horizontal	f3)

Fig. 7. Horizontal versus vertical autoscaling of a cloud App for flavor f3

Based on the previous figures we conclude to the following
findings.

• The horizontal autoscaling outperforms the vertical one,
since the downtime average is lower. The average values
of vertical autoscaling (28.21 and 26.66 seconds) com-
pared to the horizontal ones (46.15 and 48.13 seconds)
demonstrate that, based on times, the preferred solution
is the horizontal.

• The trend lines show that the vertical autoscaling down-
times for both f2 and f3 decrease as the ICLB component
executes the mechanism based on the specific number of
YCSB runs. In contrast, the horizontal autoscaling case
demonstrates a marginally decreasing trend for f2 and an
increasing one for f3.

It should be noted that during this experiment the assump-
tion was that the AppClone VM has been created at a previous
stage.

D. Inter-Cloud Load Balancing Benchmarks

This section presents the fundamental benchmark study of
the ICLB that is the key component of the ICLB framework.
The topology of the App/services is similar to Figure 3 where
users send HTTP requests to the ICLB that in turn it forwards
each into the N1 or the N1C lone VMs, however in this case
N1 is deployed in OpenStack and N1C lone is deployed in
VMWare VCloud. The experimental configuration involves
YCSB executions of workloada12 that includes 1000 record
counts and operation counts. To compare performance, we
present two scenarios in which (a) all the traffic is forwarded
to one VM that executes all HTTP requests (here, ICLB is
acting as a proxy) and (b) the traffic is distributed among two
identical VMs (here, ICLB is acting as a load balancer in a
round-robin fashion). Figure 8 demonstrates the results of the
execution of 1000 requests (with total transfer size of 21.6
KB) where the percentages demonstrate the requests served
within a certain time (ms).

0

2000

4000

6000

8000

10000

50% 66% 75% 80% 90% 95% 98% 99% 100%

Ti
m
e	
(S
ec
on
ds
)

Requests	Executed	1	VM Requests	Executed	2	VMs

Fig. 8. Benchmarking: Percentage of requests served within a certain time
(ms)

Figure 9 shows metrics including the mean time across all
concurrent requests, the mean time per request, and the total
time of execution for both cases. We can observe that the ICLB
improves times for each metric. Further to the aforementioned
scenarios, another useful analysis is the comparison of the load
balancing algorithms that could assist with the next sections

12https://github.com/brianfrankcooper/YCSB/blob/master/workloads



IEEE TRANSACTIONS ON SERVICES COMPUTING 10

experimental developments. Figure 10 shows the comparison
between the round robin, IP hash and the least connected
algorithms.

1316.4

438.804

43.88

869.16

289.719

28.972

0 500 1000 1500

Total	time

Mean	time	per	request

Mean	time	(all	concurrent	
requests)

Time	(miliseconds)

ICLB	in	2	VMs ICLB	in	1	VM

Fig. 9. Benchmarking: Mean time across all concurrent requests, the mean
time per request, and the total time of execution

In particular, Figure 10 (a) demonstrates the total time
required to execute 5,000 and 10,000 requests with concur-
rency level of 100 users in both cases and Figure 10 (b)
the comparison of the requests per second for the same
configuration.

2.67

5.955.18

10.38

2.36

19.04

0.00

5.00

10.00

15.00

20.00

C:100/R:5000 C:100/R:10000

To
ta
l	t
im

e	
(S
ec
on
ds
)

(a)

Total	Time:	Round	Robin
Total	Time:	IP	Hash
Total	Time:	Least	Connected	

2225.45 2160.16

1145.80 1144.59

2513.89

624.14

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

1 2

N
um

be
r	o

f	R
eq
ue
st
s

(b)

Requests	per	second:	Round	Robin
Requests	per	second:	 IP	Hash
Requests	per	second:	Least	Connected

Fig. 10. Benchmarking: Comparison between round robin, IP hash and least
connected load balancing algorithms

It is apparent that in the low volume requests scenario
(C:100/R:5000) the least connected algorithm offers improved
results (lowest total time and highest serving volume of
request per second). In contrast, when the number of the
requests increased significantly (C:100/R:10000) the round
robin algorithm outperforms all three. Based on Figures 8,
9 and 10 we make the following observations.

• The percentage of the requests served demonstrates that
in the case of 1 VM, 50% of the requests are completed
in at most 91 milliseconds while 90% of the requests are
completed in at most 1.196 milliseconds. All requests
are completed within 9.524 milliseconds, which was the
longest request time noted in the test.

• During the execution of the benchmark almost 90% of
the requests are served in similar times, while above this
amount, the serving times differ radically. Eventually,
100% of requests are executed in 9.524 ms for 1 VM
and in 2.663 ms for 2 VMs.

• The transfer rate (KBs per second) for 1 VM is 9.61
while for 2 VMs it is 14.56. The transfer rate factor (that
is measured as the division of the transfer rate of two to
one VM) is calculated as 1.5, thus it shows significantly
increased performance.

• The requests per second for 1 VM is 22.79 while for
2 VMs it is 34.52, showing that in the second case the
serving volume has been increased significantly.

• The mean time (that is the time between one HTTP re-
quest and another) is well improved in the load balancing
case, since we observe around 60% performance gain.

• Based on the experimental tests, the least connected
algorithm is most suitable for 5,000 requests with the
round robin for 10,0000 requests.

E. Inter-Cloud Load Balancing based on the volume of the
HTTP Traffic

This experiment shows ICLB autoscaling performance anal-
ysis of the topology of Figure 11. We experiment at the App
and LLB level, while the SLBs are monitored in order to
ensure that there are no failures in communication. In this
case, during the execution of a number of requests, we trigger
vertical autoscaling based on HTTP traffic reconfiguration.

user

N1 (Head)

N1_Clone
(Head)

IC
LB

YCSB

traffic

N3

N2
LLB

SL
B1

Cloud2

Cloud1

SL
B2

Fig. 11. HTTP interactions among ICLB users and App/services and
components

The experimental configuration is as follows.
• We executed an extensive number of 30,000 HTTP re-

quests using the round robin algorithm. The traffic is
directed from the ICLB to the LLB component that in
turn distributes it to the App and AppClone.

• We set a rule for vertical and horizontal autoscaling to
the 3,000 HTTP requests.

• The ICLB and LLB VMs includes 2 CPUs, 4GB RAM,
40GB HD (flavor f3) while the App and AppClone includes
1 CPU, 2GB RAM, 20GB HD (flavor f2).

• The vertical autoscaling mechanism sends a resizing
request for AppClone from flavor f2 to f3.

• The horizontal autoscaling mechanism requests a flavor
f3.

Figure 12 shows the comparison between vertical (ICLB
Vert.) and horizontal (ICLB Hor.) autoscaling performance
during run-time execution of 30,000 HTTP requests. In par-
ticular, Figure 12 (a) demonstrates the time taken for tests
that is measured in seconds (primary vertical axis) and the
requests per second (secondary vertical axis), while Figure
12 (b) demonstrates the mean time per request measured
in milliseconds (primary vertical axis) and the transfer rate



IEEE TRANSACTIONS ON SERVICES COMPUTING 11

(secondary vertical axis). Observing the figures, we conclude
that the horizontal outperforms the vertical autoscaling.

5.34

3.17
80.81

136.09

0

20

40

60

80

100

120

140

160

0

1

2

3

4

5

6

ElastIC	Vert. ElastIC	Hor.

Tr
an
sf
er
	R
at
e	
(K
b	
pe
r	s
ec
.)

To
ta
l	t
im

e	
(m

s.
)

(b)

Time	per	request	(mean)

Transfer	rate

160.49

95.30

191.55

322.58

150

200

250

300

350

0
20
40
60
80

100
120
140
160
180

ElastIC	Vert. ElastIC	Hor.

Re
qu
es
ts
	p
er
	S
ec
on
d

To
ta
l	t
im

e	
(S
ec
on
ds
)

(a)

Time	taken	for	tests

Request	per	second

Fig. 12. Comparison between vertical and horizontal autoscaling performance
during run-time execution of 30,000 HTTP requests

According to Figure 12 (a) and (b), we conclude to
following findings. The horizontal outperforms the vertical
autoscaling for requests executed per second, mean time per
request and transfer rate. The performance factor for horizontal
(that is calculated as the division of transfer rate between
horizontal and vertical autoscaling) is calculated at 1.68. The
total time (time taken for tests) for the vertical case is higher.
This comes in contrast to Figure 7 benchmark results, that
demonstrate that the time needed for vertical autoscaling is
less than the horizontal. Yet, we have also observed that during
the experiment the App VM (that is the VM that did not
upscale and continued to serve HTTP requests as normal)
started to show a degradation in the volume of requests served
because of delays caused by the increasing load in the ICLB
component.

To minimize that issue, caused when the VM status is
resizing or migrating, we developed an optimization scheme
that allows direct interactions with the load balancer in order to
change its configuration parameters on the fly during run-time
and before the execution of the vertical autoscaling request. We
noticed that when the ICLB configuration is changed before
(i.e remove an instance from the list before its status changes to
offline) the distribution of the load balancer is well optimized.
Figure 13 demonstrates the optimized performance results.
According to the optimization scheme, the performance of
the vertical to horizontal autoscaling is increased by a factor
of 1.27. Similarly, results for other metrics (Figure 13) are
well improved: for instance, the vertical autoscaling serves
376 requests per second while the horizontal serves around
319.

F. Inter-Cloud Load Balancing based on Resource Usage
Monitoring

As discussed in Section III, the monitoring component
performs real-time analysis of Apps/services and thus could
trigger autoscaling according to resource usage. To demon-
strate this, we present an experimental analysis similar to
the topology of Figure 11 by triggering vertical autoscaling
when CPU level is increased over a certain amount, as per the

2.50

3.13172.27

134.59

0
20
40
60
80
100
120
140
160
180
200

0

1

1

2

2

3

3

4

ElastIC	Vert.	
Optimized

ElastIC	Hor.

Tr
an
sf
er
	R
at
e	
(K
b	
pe
r	s
ec
.)

To
ta
l	t
im

e	
(m

s.
)

(b)

Time	per	request	(mean)
Transfer	rate

77.27
94.24

376.42

319.01

300
310
320
330
340
350
360
370
380
390

0

20

40

60

80

100

ElastIC	Vert.	
Optimized

ElastIC	Hor.

Re
qu
es
ts
	p
er
	S
ec
on
d

To
ta
l	t
im

e	
(S
ec
on
ds
)

(a)

Time	taken	for	tests
Request	per	second

Fig. 13. Comparison between optimized vertical and horizontal autoscaling
performance during run-time execution of 30,000 HTTP requests

following configuration. The assumption is that at initialization
stage the AppClone is offline and will be started according to
a CPU load threshold of the App VM. We also configure the
ICLB service to trigger horizontal autoscaling for App VM
CPU loads higher than 15%. Finally, we measure real-time
CPU load following an experimental time frame.

Figure 14, shows the App CPU load during this time frame.
It could be observed that at 16:07:31 the CPU load becomes
16%, a percentage that triggers the autoscaling mechanism.
However, it should be mentioned that this is an ideal scenario
that we stress the VM to increase the CPU load percentage
in order to trigger autoscaling. The AppClone that is offline
will be started automatically then the load will be 15% or
higher. For example, in the case where the threshold will
be set to a higher number i.e. 50% autoscaling will not be
triggered until the load will reach such number. So, there the
challenge is to define the correct threshold to avoid suboptimal
autoscaling. However, this is not the aim of this study and
in the future work we expect to increase the number of
experiments in order to define a historical record that will
be able to train a machine learning algorithm that will define
autoscaling triggering according to selected features such as
CPU, memory etc.

0%
2%
4%
6%
8%

10%
12%
14%
16%

16
:0
5:
27

16
:0
5:
33

16
:0
5:
39

16
:0
5:
45

16
:0
5:
51

16
:0
7:
08

16
:0
7:
14

16
:0
7:
20

16
:0
7:
26

16
:0
7:
32

16
:0
7:
38

16
:0
8:
34

16
:0
8:
40

16
:0
8:
46

16
:0
8:
54

16
:0
9:
00

16
:0
9:
06

16
:0
9:
12

16
:0
9:
18

16
:0
9:
24

16
:0
9:
30

16
:0
9:
36

16
:0
9:
42

16
:0
9:
48

16
:0
9:
54

16
:1
0:
00

16
:1
0:
06

CP
U
	L
oa
d

Real	time	frame

Fig. 14. CPU load of App VM

Figure 15, shows the comparison between normal (execution
without adding a new instance) and CPU load balancing
triggering and the values of the selected metrics. In detail,
it shows the performance gain in selected metrics for normal



IEEE TRANSACTIONS ON SERVICES COMPUTING 12

and ICLB load balancing when the CPU reaches the 15%
limit. According to these, we conclude the following findings.
The ICLB minimizes the CPU load. This could be observed in
Figure 14 at the time that the new instance becomes available.
The performance factor regarding the transfer rate is 1.25
presenting an important optimization gain.

177.89

143.88

23.91

29.67

20

22

24

26

28

30

32

0

50

100

150

200

Normal CPU	Trigger

Tr
an
sf
er
	R
at
e	
(K
b	
pe
r	s
ec
.)

To
ta
l	t
im

e	
(m

s.
)

(b)

Time	per	request	(mean)
Transfer	rate

8.91

7.14

56.24

70.13

40

45

50

55

60

65

70

75

0

2

4

6

8

10

Normal CPU	Trigger

Re
qu
es
ts
	p
er
	S
ec
on
d

To
ta
l	t
im

e	
(S
ec
on
ds
)

(a)

Time	taken	for	tests
Request	per	second

Fig. 15. Comparison between normal and CPU load balancing triggering for
total test time, request served per second, time per request and transfer rate

To summarize, the experimental analysis of Section 5,
Subsections D and E, present the various cases of VM recon-
figuration in an inter-cloud system. Following the flow of the
experimentation, we concluded that the horizontal and vertical
elasticity could offer significant optimizations and could be
triggered either based on increasing traffic volume or resource
utilization. The downscaling process supports only flavors with
similar hard disk sizes, and for these ICLB offers similar
results, thus due to this technical limitation we decided to
demonstrate only upscaling cases.

G. Load Balancing based on different Inter-Cloud Layers

Until now, the experimental analysis included tests exe-
cuted in different cloud providers but on the same platform
(OpenStack). This section presents an extensive experiment
of a heterogeneous inter-cloud system, where applications
and services are deployed in different cloud platforms. The
assumption is that the ICLB is deployed in Cloud A, and
App and AppClone in Cloud B. Both applications utilize a
set of 3rd party services belonging to Cloud C (S1, S2) and
the experiment will dynamically create a new one that will
be the result of a vertical autoscaling (S3) triggered by the
ICLB component. In particular, we have deployed Cloud A
in Amazon, Cloud B in VMWare Cloud and Cloud C in
OpenStack to demonstrate heterogeneity. Figure 16 shows the
topology of the inter-cloud system.

user

N1 (Head)

N1_Clone
(Head)

YCSB

traffic
N3

N2
ICLB

SL
B1

Cloud3Cloud1

SL
B2

Cloud2

Fig. 16. Topology of HTTP traffic in three heterogeneous clouds

The experimental configuration involves the following
setup.

• The time frame of the test is set to 300 seconds in which
it executes around 50,000 HTTP requests.

• The total traffic for all cases is 21.6 MB per second.
• We measure the CPU load and we set a vertical VM

autoscaling threshold at 15%. This means that a new VM
will become active when the CPU of one of S1 or S2 is
above that amount.

• We execute the experiment based on a round robin load
balancing algorithm.

The monitoring component collects the resource CPU load
that is also evaluated in real time from the ICLB component.
Figure 17 demonstrates the CPU load variation during this
time frame. It could be observed that when Service 1 reaches
its peak limit (threshold of 15%), ICLB triggers the recon-
figuration of resources that denotes the creation of Service 3
(in heterogeneous Cloud 3). Figure 20 further includes two
sub-frames for (a) characterizing the first frame when CPU
utilization is 16% (Service 1), and (b) the time frame that
vertical autoscaling is executed (total time of 94 seconds). At
the end of this process a new instance is available for traffic
distribution in the ICLB. Lastly, after the creation of the new
instance, it can be observed that the CPU loads are reduced
(below the threshold of 15%). Similar to Figure 14, the
experiment includes a selected threshold that is to overcame
(i.e. the 15% threshold). To conclude, the results of the
experiment demonstrate that the autoscaling can be executed
relatively fast (i.e. one and a half minute) if we consider the
number of operations involving in this process (create a new
VM, configure network interface, etc.). In addition, we set the
threshold to 15% CPU percentage, that clearly is a low load,
however we mostly wanted to demonstrated the process of
autoscaling rather the conceptualization of selecting the ideal
thresholds. As mentioned before these could be the result of
an analysis using historical data from real world datacenters
in order to train the system define thresholds according to real
usage, a direction that we aim to focus in future works.

0%	  

5%	  

10%	  

15%	  

20%	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

12
:1
2:
01
	  

12
:1
2:
08
	  

12
:1
2:
15
	  

12
:1
2:
22
	  

12
:1
2:
29
	  

12
:1
2:
36
	  

12
:1
2:
43
	  

12
:1
2:
50
	  

12
:1
2:
57
	  

12
:1
3:
04
	  

12
:1
3:
11
	  

12
:1
3:
18
	  

12
:1
3:
25
	  

12
:1
3:
32
	  

12
:1
3:
39
	  

12
:1
3:
46
	  

12
:1
3:
53
	  

12
:1
4:
00
	  

12
:1
4:
07
	  

12
:1
4:
14
	  

12
:1
4:
21
	  

12
:1
4:
28
	  

12
:1
4:
35
	  

12
:1
4:
42
	  

12
:1
4:
49
	  

12
:1
4:
56
	  

CP
U
	  L
oa
d	  
Se
rv
ic
e	  
1	  
an
d	  
2	  

CP
U
	  L
oa
d	  
Ap

p	  
an
d	  
Ap

p	  
Cl
on

e	  

Time	  frame	  at	  real	  Cme	  
App	  CPU	  Load	   App	  Clone	  CPU	  Load	   Service1	  CPU	  Load	  
Service2	  CPU	  Load	   Service	  3	  CPU	  Load	  

Time	  frame	  
of	  Ver+cal	  	  
Autoscaling	  

	  
	  

	  Time	  	  	  	  
	  	  	  frame	  of	  	  	  
	  peak	  of	  
Service	  1	  

Fig. 17. CPU load of inter-cloud topology for time frame of 300 seconds

To demonstrate the effectiveness of the ICLB autoscaling
in the above scenario we compare the next two cases.

(i) We execute the same experiment with the topology of
16 without triggering vertical autoscaling. This case



IEEE TRANSACTIONS ON SERVICES COMPUTING 13

involves two identical 3rd party services.
(ii) We execute the vertical autoscaling to examine how it

affects the performance of the HTTP request service
considering any delays that could be included in the
ICLB component when it updates the configuration file.

Figure 18 demonstrates comparison between various metrics
for cases of vertical and non-vertical autoscaling.

3.89

4.12
131.12

120.09

118

120

122

124

126

128

130

132

3.15

3.35

3.55

3.75

3.95

4.15

Without	
Vertical	

Autoscaling

With	Vertical	
Autoscaling

Tr
an
sf
er
	ra
te
	(K
by
te
s/
se
c)

To
ta
l	t
im

e	
(m

s.
)

(b)

Time	per	request	(mean)
Transfer	rate

162.88

177.01

310.21

285.33

150
170
190
210
230
250
270
290
310
330

160

165

170

175

180

185

190

195

200

Without	
Vertical	

Autoscaling

With	
Vertical	

Autoscaling

Re
qu
es
ts
	p
er
	S
ec
on
d

To
ta
l	t
im

e	
(S
ec
on
ds
)

(a)

Time	taken	for	tests

Request	per	second

Fig. 18. Comparison between total time of tests, requests per second, time
per request and transfer rate for the two cases of vertical and non-vertical
autoscaling

Based on the analysis of this section we concluded the
following findings. The inter-cloud topology demonstrates in-
teractions among heterogeneous cloud platforms and services.
Also, the ICLB component performs real-time evaluation of
results (from the monitoring component) and the IC media-
tion service allows communication among the heterogeneous
clouds using their APIs. It also reduces the CPU load of
the services at the moment that the new service instance is
registered in the ICLB component. There are no errors and
failures during serving the whole set of the 50,000 HTTP
requests. The non-vertical autoscaling case outperforms the
vertical one in terms of requests execution, however the
transfer rate factor is measured at 1.08, which is marginally
better, caused by the delays of the ICLB component.

This study focuses on the ICLB level, thus portability and
security issues have been treated as a black-box. Especially,
inter-cloud IaaS level portability is the total time for migrating
a VM among clouds. To have a more complete view, we
executed a simple example case of an Elasticsearch instance
migration (running on Ubuntu 12.04 LTS-64 of 800 MB). The
process includes a) log into the original cloud platform (where
the VM is already running), b) create a clone snapshot (i.e.
of an already operated Elasticsearch node), c) download the
snapshot, d) log into the target cloud, e) upload the snapshot, f)
set keypair, g) launch the cloned instance (that inherits all the
configuration of its ”master” VM image, and h) set instance
IP. The total time for instance migration is 64.93 seconds and
could be taken into consideration when horizontal autoscaling
includes VM migrations.

VI. CONCLUSIONS AND FUTURE WORK

We proposed the ICLB, a modular framework that allows
load balancing of inter-cloud applications and services that

belong to heterogeneous providers. We aimed to improve the
elasticity in the IaaS level through autoscaling of cloud and
inter-cloud VMs, so we highlighted key requirements. We
also utilized various load balancing configurations in order to
ensure zero downtime. We based our initial hypothesis in a real
world system (Elasticsearch cluster deployed in OpenStack
and VMWare) in order to demonstrate the problems and issues
on scaling inter-cloud applications. The experimental analysis
is positive and shows various topologies in which ICLB frame-
work could be applied along with fundamental benchmarks
on horizontal and vertical autoscaling that could serve other
studies, as well. The contributions of our work include the
proposition of a new inter-cloud load balancer that acts on top
of the clouds and allows interactions among heterogeneous
cloud platforms. We compared different scenarios for vertical
and horizontal elasticity and we demonstrated that in both
cases we could executed the experiments without any loss in
communication or failures.

The future research steps involve different directions of
solutions that could be applied as optimization schemes includ-
ing machine learning algorithms. Also, we expect to increase
the number of experiments in order to define a historical record
that will be able to train a machine learning algorithm that will
define autoscaling triggering according to selected features
such as CPU, memory etc. In addition, large scale cloud
platforms have different VM placement algorithms that are
mainly related with physical machines computational resource
utilisation levels. In future, we aim to explore historical data
from resource utilization to adapt VM placement algorithms
based on past VM usage experiences. This will be achieved by
monitoring the VM usage in real time and by training different
machine learning models to calculate the prediction of the VM
resource usage per server, thus to place VMs accordingly.

REFERENCES

[1] IBM, “Microservices from theory to practice: Creating
applications in ibm bluemix using the microservices approach,
http://www.redbooks.ibm.com, aug. 2016.”

[2] D. Petcu, “Consuming resources and services from multiple clouds,”
J. Grid Comput., vol. 12, no. 2, pp. 321–345, Jun. 2014. [Online].
Available: http://dx.doi.org/10.1007/s10723-013-9290-3

[3] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
ser. EuroSys ’15. New York, NY, USA: ACM, 2015, pp. 18:1–18:17.
[Online]. Available: http://doi.acm.org/10.1145/2741948.2741964

[4] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15.
New York, NY, USA: ACM, 2015, pp. 167–167. [Online]. Available:
http://doi.acm.org/10.1145/2806777.2809955

[5] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–57,
Apr. 2016. [Online]. Available: http://doi.acm.org/10.1145/2890784

[6] L. Beernaert, M. Matos, R. Vilaça, and R. Oliveira, “Automatic
elasticity in openstack,” in Proceedings of the Workshop on Secure
and Dependable Middleware for Cloud Monitoring and Management,
ser. SDMCMM ’12. New York, NY, USA: ACM, 2012, pp. 2:1–2:6.
[Online]. Available: http://doi.acm.org/10.1145/2405186.2405188

[7] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically
scaling applications in the cloud,” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 1, pp. 45–52, Jan. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1925861.1925869

[8] Kubernetes, “https://www.elastic.co aug. 2016.”

http://dx.doi.org/10.1007/s10723-013-9290-3
http://doi.acm.org/10.1145/2741948.2741964
http://doi.acm.org/10.1145/2806777.2809955
http://doi.acm.org/10.1145/2890784
http://doi.acm.org/10.1145/2405186.2405188
http://doi.acm.org/10.1145/1925861.1925869


IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings
of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[10] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2015.

[11] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elas-
ticity controller for cloud infrastructures,” in Network Operations and
Management Symposium (NOMS), 2012 IEEE, April 2012, pp. 204–212.

[12] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” ACM Trans.
Auton. Adapt. Syst., vol. 3, no. 1, pp. 1:1–1:39, Mar. 2008. [Online].
Available: http://doi.acm.org/10.1145/1342171.1342172

[13] I. Kureshi, C. Pulley, J. Brennan, V. Holmes, S. Bonner, and
Y. James, “Advancing research infrastructure using openstack,”
International Journal of Advanced Computer Science and Applications,
vol. 3, no. 4, pp. 64–70, December 2013. [Online]. Available:
http://eprints.hud.ac.uk/19421/

[14] S. Bouchenak, “Automated control for sla-aware elastic clouds,” in
Proceedings of the Fifth International Workshop on Feedback Control
Implementation and Design in Computing Systems and Networks, ser.
FeBiD ’10. New York, NY, USA: ACM, 2010, pp. 27–28. [Online].
Available: http://doi.acm.org/10.1145/1791204.1791210

[15] L. Beernaert, M. Matos, R. Vilaça, and R. Oliveira, “Automatic
elasticity in openstack,” in Proceedings of the Workshop on Secure
and Dependable Middleware for Cloud Monitoring and Management,
ser. SDMCMM ’12. New York, NY, USA: ACM, 2012, pp. 2:1–2:6.
[Online]. Available: http://doi.acm.org/10.1145/2405186.2405188

[16] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proceedings of
the 2Nd ACM Symposium on Cloud Computing, ser. SOCC ’11.
New York, NY, USA: ACM, 2011, pp. 5:1–5:14. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038921

[17] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi, M. Hiltunen,
A. Lagar-Cavilla, and E. de Lara, “Kaleidoscope: Cloud micro-
elasticity via vm state coloring,” in Proceedings of the Sixth
Conference on Computer Systems, ser. EuroSys ’11. New York,
NY, USA: ACM, 2011, pp. 273–286. [Online]. Available: http:
//doi.acm.org/10.1145/1966445.1966471

[18] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, June 2011, pp. 559–
570.

[19] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource allocation
with management objectives: Implementation for an openstack cloud,”
in Proceedings of the 8th International Conference on Network and
Service Management, ser. CNSM ’12. Laxenburg, Austria, Austria:
International Federation for Information Processing, 2013, pp. 309–315.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2499406.2499456

[20] Amazon auto scaling documentation. [Online]. Available: http:
//aws.amazon.com/documentation/autoscaling/

[21] Amazon elastic load balancing documentation. [Online]. Available:
http://aws.amazon.com/documentation/elastic-load-balancing/

[22] N. Janssens, X. An, K. Daenen, and C. Forlivesi, “Dynamic scaling
of call-stateful sip services in the cloud,” in Proceedings of the 11th
International IFIP TC 6 Conference on Networking - Volume Part I.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 175–189.

[23] G. Molto, M. Caballer, E. Romero, and C. de Alfonso, “Elastic memory
management of virtualized infrastructures for applications with dynamic
memory requirements,” Procedia Computer Science, vol. 18, no. 0, pp.
159 – 168, 2013.

[24] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” ACM Trans.
Auton. Adapt. Syst., vol. 3, no. 1, pp. 1:1–1:39, Mar. 2008. [Online].
Available: http://doi.acm.org/10.1145/1342171.1342172

[25] “Load balancing as a service,” 2105. [Online]. Available: https:
//wiki.openstack.org/wiki/Neutron/LBaaS

[26] F. Paraiso, P. Merle, and L. Seinturier, “socloud: a service-
oriented component-based paas for managing portability, provisioning,
elasticity, and high availability across multiple clouds,” Computing,
vol. 98, no. 5, pp. 539–565, 2016. [Online]. Available: http:
//dx.doi.org/10.1007/s00607-014-0421-x

[27] D. Ardagna, E. D. Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D’Andria, G. Casale, P. Matthews, C. S. Nechifor, D. Petcu, A. Ger-
icke, and C. Sheridan, “Modaclouds: A model-driven approach for the
design and execution of applications on multiple clouds,” in 2012 4th

International Workshop on Modeling in Software Engineering (MISE),
June 2012, pp. 50–56.

[28] S. Sotiriadis, N. Bessis, A. Anjum, and R. Buyya, “An inter-
cloud meta-scheduling (icms) simulation framework: Architecture and
evaluation,” IEEE Transactions on Services Computing, vol. DOI:
10.1109/TSC.2015.2399312, pp. 1–1, 2015.

[29] S. Sotiriadis and N. Bessis, “An inter-cloud bridge system for
heterogeneous cloud platforms,” Future Generation Computer Systems,
no. 0, pp. –, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X15000400

[30] L. Vacanas, S. Sotiriadis, and E. Petrakis, “Implementing the cloud
software to data approach for openstack environments,” 2015.

[31] S. Sotiriadis, N. Bessis, P. Kuonen, and N. Antonopoulos, “The
inter-cloud meta-scheduling (icms) framework,” in Proceedings of the
2013 IEEE 27th International Conference on Advanced Information
Networking and Applications, ser. AINA ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 64–73. [Online]. Available:
http://dx.doi.org/10.1109/AINA.2013.122

Stelios Sotiriadis is currently a research scientist
in the Edward Rogers Sr. Department of Electrical
and Computer Engineering of the University of
Toronto, Canada. His research interests are related to
distributed systems and especially Cloud computing
systems, Inter-Cloud, Future Internet (FI) applica-
tions and Internet of Things (IoT). He has published
over 70 papers and he won 2 best paper awards. His
personal profile is available in www.sotiriadis.gr.

Nik Bessis is a full Professor of Computer Science
and the Head of Department of Computing at Edge-
hill University, UK. He is a Fellow of HEA, BCS and
a Senior Member of IEEE. His research is on social
graphs for network and big data analytics as well as
on developing data push and resource provisioning
services in IoT, FI and inter-clouds. He is involved in
and led a number of funded research and commercial
projects in these areas. Prof. Bessis has published
over 250 papers, won 4 best paper awards and is the
editor of several books and the Editor-in-Chief of

the International Journal of Distributed Systems and Technologies (IJDST).
He served as an expert evaluator for the Hellenic QAA and, as an assessor
for more than 10 Professorships conferment worldwide.

Cristiana Amza is an Associate Professor in the
department of Electrical and Computer Engineer-
ing of the University of Toronto. Cristiana Amza
received her B.S. degree in Computer Engineering
from Bucharest Polytechnic Institute in 1991, the
M.S. and the Ph.D. degrees in Computer Science
from Rice University in 1997 and 2003 respectively.
Her research interests are in the area of distributed
and parallel systems, with an emphasis on designing,
prototyping and experimentally evaluating novel al-
gorithms and tools for self-managing, self-adaptive

and self-healing behavior in data centers and Clouds. She is actively collab-
orating with several industry partners, including Intel, NetApp, Bell Canada,
and IBM through IBM T.J. Watson, Almaden and IBM Toronto Labs.

Rajkumar Buyya is a Professor of Computer
Science and Software Engineering; Future Fellow
of the Australian Research Council; and Director
of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He is also serving as the founding
CEO of Manjrasoft Pty Ltd., a spin-off company of
the University, commercialising its innovations in
Grid and Cloud Computing. He received B.E and
M.E in Computer Science and Engineering from
Mysore and Bangalore Universities in 1992 and

1995 respectively; and a Doctor of Philosophy (PhD) in Computer Science
and Software Engineering from Monash University, Melbourne, Australia in
2002. He served as the foundation Editor-in-Chief of IEEE Transactions on
Cloud Computing. He is currently serving as Co-Editor-in-Chief of Journal
of Software: Practice and Experience, which was established over 45 years
ago.

http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1342171.1342172
http://eprints.hud.ac.uk/19421/
http://doi.acm.org/10.1145/1791204.1791210
http://doi.acm.org/10.1145/2405186.2405188
http://doi.acm.org/10.1145/2038916.2038921
http://doi.acm.org/10.1145/1966445.1966471
http://doi.acm.org/10.1145/1966445.1966471
http://dl.acm.org/citation.cfm?id=2499406.2499456
http://aws.amazon.com/documentation/autoscaling/
http://aws.amazon.com/documentation/autoscaling/
http://aws.amazon.com/documentation/elastic-load-balancing/
http://doi.acm.org/10.1145/1342171.1342172
https://wiki.openstack.org/wiki/Neutron/LBaaS
https://wiki.openstack.org/wiki/Neutron/LBaaS
http://dx.doi.org/10.1007/s00607-014-0421-x
http://dx.doi.org/10.1007/s00607-014-0421-x
http://www.sciencedirect.com/science/article/pii/S0167739X15000400
http://www.sciencedirect.com/science/article/pii/S0167739X15000400
http://dx.doi.org/10.1109/AINA.2013.122

	Introduction
	Motivation and Innovation
	Related Work
	Inter-Cloud Elasticity Framework Design
	Inter-Cloud Elasticity Framework
	Architecture of inter-cloud based on ICLB framework
	Initialization of the ICLB architecture
	Elasticity processes of the ICLB service

	Analysis of the ICLB configurations

	Performance Evaluation
	Experimental setup
	Benchmark Analysis of Horizontal and Vertical Autoscaling
	Comparison of horizontal and vertical autoscaling
	Inter-Cloud Load Balancing Benchmarks
	Inter-Cloud Load Balancing based on the volume of the HTTP Traffic
	Inter-Cloud Load Balancing based on Resource Usage Monitoring
	Load Balancing based on different Inter-Cloud Layers

	Conclusions and Future Work
	References
	Biographies
	Stelios Sotiriadis
	Nik Bessis
	Cristiana Amza
	Rajkumar Buyya


