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Abstract 

How much should society invest in medical care that extends the lives of the older 

generations? We derive a golden rule for the level of health care expenditures and find that 

the optimal level of life-extending health care expenditures should increase with rising 

productivity, increase with the retirement age, and also increase with the population growth 

rate if a higher growth rate lowers the ratio of retirees to working-age people sufficiently, 

while the effects of an improvement in medical technology are ambiguous. Moreover, we find 

that a market economy may be inefficient in terms of the provision of life-extending health 

care because an individual ignores the effect of his own longevity on the income of others. 
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1. Introduction 

Advanced economies devote significant resources to health care. A substantial part of the 

spending is for treatments that will extend the lives of the elderly.
1
 In this paper, we address 

the question how much a nation should sacrifice in terms of the consumption of individuals in 

order to extend the life of generations and compare the social planner’s solution to the market 

solution. Clearly, a society could sacrifice the consumption of its population in order to 

devote large resources to treat the old. Alternatively, a nation could choose to live happily, not 

worrying about the length of the lifespan, as long as they can. We analyze the optimal level of 

health care spending on old individuals in a balanced-current-account steady state.  

Our social planner’s problem does not have a time dimension. Instead, we focus on 

finding the optimal steady state for an economy where the cost of increased life-extending 

health care – in the form of lower consumption and utility of the working-age population – is 

traded off against the utility gained by increasing the lifespan of the old. The possible steady 

states vary in terms of the consumption per capita and the number of living individuals 

belonging to the older generations. One possible steady state has higher levels of consumption 

per capita while there are relatively few older individuals alive due to a lack of health care. In 

another steady state the working-age individuals have to pay higher taxes, hence enjoy lower 

levels of consumption, but there are more old folks around, kept alive by the health care 

funded through the taxation of the younger cohorts. We derive an optimality condition for 

taxation and the provision of health care such that the sum of the utility of all individuals alive 

at a point in time is maximized. We then solve the private individual’s optimization problem 

and compare it to the social optimum.  

 

                                                           
1
 According to the World Bank the United States spent on average from 2001-2010 around 16% of GDP on 

health care (sum of public and private costs).  
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2. Literature 

A large body of literature exists on the determinants of health care expenditures. What 

separates this literature from our approach is that we solve the social planner’s problem and 

compare it to the level chosen by individuals acting independently while this literature mainly 

approaches the issue as demand for health care by individuals as a function of income and 

age. Our approach is to derive how much society should spend on extending the lives of its 

citizens and then show how the private provision of health care may be dynamically 

inefficient. 

The question concerning the optimal level of health care spending is closely related to the 

golden rule literature that began with Ramsey (1928) on the optimal level of saving and was 

expanded in papers on the optimal level of research and the optimal level of education (see 

Phelps, 1966 and 1968, among others).
2
 Here, investing in future research ideas, education, or 

the physical capital stock requires a reduction in current levels of consumption, while better 

education and technology and a larger stock of capital will make possible an increase in the 

future level of consumption. There is an optimal capital stock, and a corresponding optimal 

saving rate that maximizes steady state consumption of the representative individual.  

Our optimality condition is similarly a golden rule result. In our analysis, there is a golden 

rule level of life-extending health care at which the aggregate utility of the currently living 

individuals, who belong to different generations, is maximized. Increasing the level of taxes 

and health care beyond this level would reduce aggregate utility in steady state because the 

reduction in utility of the working-age population would be greater than the utility of 

individuals who would be kept alive as a result of the higher level of health care spending. We 

                                                           
2
 Mertens and Rubinchik (2015) derive a golden-rule equilibrium in an overlapping-generations model and show 

it to be Pareto optimal with constant returns to scale production, transfers, arbitrary life-time productivity and 

homogeneous instantaneous felicity. 



3 
 

should note that maximizing the aggregate utility of all currently living individuals is 

equivalent to maximizing the expected lifetime utility of any given individual because he will 

belong to the different age cohorts as he goes through life.  

We are not the first to derive the optimal length of life in an overlapping-generations 

model. Ehrlich and Chuma (1990) derive a demand function for longevity. They show that the 

demand for health has to be derived together with the demand for longevity and the related 

consumption plan and that these choices depend on initial endowments rather than current 

income. Rosen (1988) derives valuation formulas for age-specific mortality risks. Our 

analysis is closest to that of Hall and Jones (2004) who derive the demand for life-extending 

medical care to explain the rising economic resources spent on health care. They find that the 

rising level of health spending can be explained by the diminishing marginal utility of non-

health consumption combined with a rising value of life. Becker et al. (2007) model the 

incentives for medical care at the end of life in order to explain what is frequently perceived 

as excessive care for end-of-life treatments. Their argument is that the excessive demand for 

health care can be explained by decreasing marginal benefits of survival. Thus towards the 

end of life, the importance of keeping hope alive in a terminal care setting and the low private 

opportunity cost of medical spending explain the high level of end-of-life spending. Since 

resources have no value after death, a self-interested individual would be willing to spend his 

entire wealth to extend his life when dying. Moreover, such life-extending health care may 

preserve the hope of living, which raises its subjective value to the dying. In a recent paper, 

Cordoba and Ripoll (2016) provide a model to explain this observation by abandoning the 

expected utility approach of Hall and Jones and applying the non-separable utility 

representation of Epstein and Zin (1989) and Weil (1990) to study preferences towards 

longevity and mortality risk. In so doing they relax state separability of preferences and 

distinguish between the parameters governing mortality aversion and intertemporal 



4 
 

substitutions. Using this framework, the authors find that individuals prefer uncertainty about 

the time of death and that there is a decreasing marginal utility of survival that makes people 

want to pay more for life extension the closer they get to death.
3
 Kuhn et al. (2015) model the 

simultaneous choice of health care and retirement over the life cycle by making the disutility 

of work depend negatively on health status. Here increased private investment in health care 

has the effect of postponing retirement by lowering the disutility of labor leading to excessive 

consumption. The authors find that this outcome is inefficient because the individual suffers 

the disutility of an excessively long working life. In a recent paper, Andersen and 

Bhattacharya (2015) show how dynamic efficiency considerations can justify public 

investment in health. First, assuming exogenous mortality risk, they show how publicly-

funded health spending on the young can improve welfare if the economy is dynamically 

efficient – the real rate of interest higher than the rate of population growth. The reason is that 

the social opportunity costs of public investment in the health care of the young equals the 

rate of the population growth while the private costs equals the rate of interest.
4
 Second, they 

show that the young may also underinvest in health when mortality risk is endogenous in the 

presence of mortality-contingent claims. Here public provision of health care lowers the 

interest rate on life annuities because of reduced mortality risk, which helps the young if they 

are net-borrowers. Our analysis differs from both Kuhn et al. (2015) and Andersen and 

Bhattacharya (2015) by deriving the socially and privately optimal levels of life-extending 

health care and exploring the effect of changes in different parameters on these optimal levels.  

There is a parallel literature on the optimal size of the population in philosophy. Using the 

utilitarian approach, the optimal population can be determined as the one maximizing total 

                                                           
3
 Their approach allows for the case of low intertemporal substitution while maintaining homotheticity and can 

also explain why poor people value life extension no less than wealthier people. 

4
 This result mirrors the standard result that a pay-as-you-go pension system is welfare reducing in a dynamically 

efficient economy. 
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utility, the product of the number of people alive and their personal utility levels. This raises 

philosophical dilemmas discussed extensively in the literature because an increase in the 

number of people alive that is accompanied by lower consumption and utility of each of them 

may increase total utility. Thus it is possible to increase total utility by making each person 

worse off. This gives rise to Parfit’s (1984) Repugnant Conclusion, according to which a large 

increase in the number of people alive can increase total utility even though its members have 

very low levels of consumption, in fact possibly lives barely worth living. Here population 

size substitutes for average utility and it is the quality-quantity substitution that is repugnant. 

A related problem is Methuelah’s Paradox, see Cowen (1989). Here a longer life welfare 

dominates a shorter life even though the level of consumption in each year is lower. Thus a 

very long life during which the individual finds his life almost not worth living is preferred to 

a shorter live of higher utility per year. As we will show, our economic model will get around 

these paradoxes by assuming diminishing marginal utility and diminishing marginal 

productivity of health care spending. 

Going back to economics, Becker (1964) introduced the concept of human capital. In his 

framework, individuals have different levels of human capital, which determines their future 

earnings potential, and can add to this stock through education and training. Grossman (1972) 

expanded Becker’s notion of human capital to include health capital and made a distinction 

between health as an output and medical care as one of many inputs in the production 

function for good health. Here health is a durable capital stock that gradually depreciates with 

age but can be augmented through health care and healthy living. Health as capital yields an 

output of “healthy time” which affects productivity in the workplace, therefore affecting 

wages, productivity at home, and utility from leisure. We depart from Grossman in not letting 

health depreciate with age but instead to let retirees face an increasing probability of death. 
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Instead of the capital good “health” depreciating continuously with age we let it work 

perfectly until it breaks down.  

In our model health care spending extends lives. We are concerned about the cost of 

extending lives rather than improving the quality of life. The cost of extending lives has been 

shown to be a significant component of overall health care expenditures. Seshamani and Gray 

(2004) use English longitudinal data and find that approaching death affects costs for up to 15 

years prior to the time of death. In particular, the tenfold increase in costs from five years 

prior to death to the last year of life is much greater than the 30% increase from age 65 to 85. 

Lubitz and Riley (2003) study Medicare payments in the US and find that around 30% of 

Medicare payments go to people in the last year of life. These authors find that people in their 

last year of life make up 35% to 39% of the 5% of beneficiaries with the highest costs. Note 

that this is clearly an underestimate of the cost of extending lives, as the figure omits the cost 

of treatment of those whose lives were extended beyond one year. Jones (2003) and Miller 

(2001) also find that US Medicare expenditures rise rapidly in the years preceding death. The 

former finds that expenditures rise at the rate of 9.4% per year in the 3-10 years before death 

and then by 45% in the final two years before death. Jones (2003) argues that the critical 

determinant of health expenditures as a share of GDP is the willingness of society to transfer 

resources to those at the end of life. Better medical technology that makes it possible to 

extend lives makes health care expenditures and life expectancy increase over time.  

This leads us to the topic of this paper, which is to answer the question how much the 

working population should pay to extend the lives of the older generation when realizing that 

they will also receive the same care funded by the next generation. We start by solving the 

social planner’s problem and then move on to model spending on life-extending health care 

by individuals to compare it to the social optimum.  

3. A simple model 
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We start with a simple model to describe our basic insights. A more realistic model that also 

allows for richer comparative statics and a comparison between the socially optimal allocation 

and an allocation based on individual decision making is presented in the following section. 

The simple model is similar to that presented in Section III of Hall and Jones (2007) with the 

addition of explicitly taking into account the retirement age. Our more general model in the 

following section will then show the effect of population growth on the optimal level of 

health care and make it possible to derive both the socially optimal and the privately optimal 

level of care and show how the privately optimal level can be excessive. 

Consider an economy consisting of individuals who live for A years. The survival 

probabilities equal unity until age A is reached when death becomes a certainty. Individuals 

work until they reach the age of retirement R. Assume, for simplicity that one individual is 

born each unit of time and, hence, the population size is 𝑁 = 𝐴, while the number of working 

and retired individuals are 𝑁𝑤 = 𝑅 and𝑁𝑜 = 𝐴 − 𝑅, respectively. It follows that 𝑁 = 𝑁𝑤 +

𝑁𝑜. 

The production of life-extending health care is given by the health care production 

function 𝐴 = 𝛾𝐵(𝜏) where 𝛾 > 0 is a parameter measuring efficiency in health care 

production, τ is health care expenditure per retired individual and the function 𝐵(𝜏) is 

assumed to be strictly increasing and concave in health care expenditure. We thus envisage all 

retired individuals receiving health care with the effect of prolonging their lives. 

An individual’s utility from consumption (c) is given by𝑈(𝑐), which is assumed to be 

strictly positive, increasing and concave in consumption. Welfare can therefore be written as 

𝑊 = 𝑅𝑈(𝑐𝑤) + (𝐴 − 𝑅)𝑈(𝑐𝑜)                                                      (1) 
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where cw and co are the consumption of working and retired individuals, respectively. A 

working individual produces y per unit of time.
5
 The economy’s budget constraint is therefore 

𝑅𝑦 = 𝑅𝑐𝑤 + (𝐴 − 𝑅)𝑐𝑜 + (𝐴 − 𝑅)𝜏                                                     

where the left-hand side gives total output of the economy while the right-hand side gives 

total expenditure on consumption and health care, or: 

𝑅(𝑦 − 𝑐𝑤) = (𝐴 − 𝑅)(𝑐𝑜 + 𝜏)                                               (2)  

To maximize welfare in (1), a social planner chooses consumption of a working 

individual cw, consumption of a retired individual co and health care expenditure per retired 

individual τ such that welfare W is maximized subject to the economy’s budget constraint in 

(2) and the health care production function. The Lagrangian can we written as: 

Γ =  𝑅𝑈(𝑐𝑤) + (𝛾𝐵(𝜏) − 𝑅)𝑈(𝑐𝑜) + 𝜆[𝑅(𝑦 − 𝑐𝑤) − (𝛾𝐵(𝜏) − 𝑅)(𝑐𝑜 + 𝜏)]                            

where λ is the Lagrange multiplier. The first order conditions give:
6
 

𝜕𝑈

𝜕𝑐𝑤
=
𝜕𝑈

𝜕𝑐𝑜
= 𝜆                                                                 (3) 

𝛾𝐵′(𝜏)𝑈(𝑐𝑜) − 𝜆𝛾𝐵
′(𝜏)(𝑐𝑜 + 𝜏) − 𝜆(𝐴 − 𝑅) = 0                                       (4)  

The condition in (3) implies consumption smoothing: 

𝑐𝑤 = 𝑐𝑜 = 𝑐                                                                   (5) 

Using (5) and (3) in (4) gives: 

𝑈(𝑐)𝛾𝐵′(𝜏) =
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)𝛾𝐵′(𝜏) +

𝜕𝑈

𝜕𝑐
(𝐴 − 𝑅)                              (6)  

                                                           
5
 We ignore the effect of health care spending on the health of working-age individuals and hence also their 

productivity. See Madsen (2016) for evidence on the link between health status and productivity. 

6
 In Appendix A1, it is shown that the first-order conditions derived below in fact give a maximum for the 

welfare function in (1), subject to the budget constraint in (2). 
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The equation gives optimal spending on health care per retired or old individual, which is the 

golden rule of health care spending and longevity since health care spending determines 

longevity A through the health care production function. The left-hand side shows increased 

social welfare due to increased longevity when each old individual lives and consumes longer. 

In effect, the number of old individuals receiving utility from consumption is increased and 

this increases welfare. The first term on the right-hand side shows the lost utility due to 

increased consumption and health care expenditures of those living longer. The second term 

on the right-hand side denotes the marginal cost of increased health care for those individuals 

over retirement age who would have survived in the absence of increased spending on health 

care.  

There is a tradeoff in the golden rule of equation (6) between increasing society’s welfare 

by having more old people alive and increasing welfare by having higher consumption for 

those who would have lived in the absence of increased health care.
7
 At the optimum the two 

are equal at the margin. 

Since the second order conditions for a maximum are fulfilled, the optimality condition in 

(6), equation (5) and the budget constraint in (2)   

𝑅(𝑦 − 𝑐) = (𝐴 − 𝑅)(𝑐 + 𝜏)                                                       (7) 

give optimal consumption per capita c and health care expenditure per old individual τ as 

implicit functions of productivity y, the retirement age R, the efficiency in health care 

production parameter 𝛾, and the functional forms of the utility function 𝑈 and the health care 

production function 𝐴. Comparative static analysis gives the following results:
8
 

𝜕𝜏

𝜕𝑦
=

𝜕2𝑈
𝜕𝑐2

[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]𝑅

Λ
> 0                                          (8) 

                                                           
7
 This equation is similar to equation (5) on page 46 in Hall and Jones (2007). 

8
 See Appendix A2 for detailed derivations. 
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𝜕𝜏

𝜕𝛾
=
𝐴
𝜕𝑈
𝜕𝑐
𝑅
𝛾 −

𝜕2𝑈
𝜕𝑐2

[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)](𝑐 + 𝜏)𝐵(𝜏)

Λ
< 0                        (9) 

𝜕𝜏

𝜕𝑅
=

𝜕2𝑈
𝜕𝑐2

[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)](𝜏 + 𝑦) − 𝐴
𝜕𝑈
𝜕𝑐

Λ
> 0                             (10) 

where: 

Λ ≡ 𝐴
𝜕𝑈

𝜕𝑐
[(𝐴 − 𝑅)

𝐵′′(𝜏)

𝐵′(𝜏)
− 2𝛾𝐵′(𝜏)] +

𝜕2𝑈

𝜕𝑐2
[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]2 

which is negative, as is shown in Appendix A2. 

The derivative in (8) is positive implying that it is socially optimal to let health care 

expenditure and longevity increase following and increase in productivity. This is since the 

marginal utility of consumption falls with increased income, which raises the optimal level of 

health care. This result is similar to that derived in Hall and Jones (2004). The derivative in 

(9) is negative implying that it is socially optimal to let health care expenditure decrease 

following an increase in efficiency in health care production. Here an increase in efficiency in 

old-age health care provision results in a reduction in health care expenditures per old 

individual needed to maintain unchanged longevity. However, we will show in a richer model 

introduced below that this is not a general result. Finally, the derivative in (10) indicates that 

health care expenditure and longevity should increase following an increase in the retirement 

age. The intuition behind this result is the same as for an increase in productivity above; the 

marginal utility of consumption decreases with increased income resulting in increased 

allocation of resources to health care.  

We now move on to a richer model with overlapping generations that will allow us to 

explore the effects of productivity and the efficiency of health care further. The more general 

model will also enable us to explore the effect of changes in the rate of population growth on 

the optimal level of health care provision and, most importantly, to derive the privately 
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optimal level of life-extending health care and compare it to the social optimum. We can then 

draw policy conclusions.  

 

4. The golden rule of longevity derived 

The model is a continuous-age overlapping-generations model where individuals belonging to 

different generations (at different ages) are alive at each point in time and the social planner 

maximizes total utility of all living individuals.
9
 An individual works during the first part of 

his life cycle, and retires at a certain age. Output per worker is the same for all workers and 

national output is the sum of the output of each working individual. We solve the balanced-

current-account steady state social planner’s problem on how to allocate output between 

consumption and health care expenditures, on the one hand, and how to allocate consumable 

output across individuals, on the other hand. Hence, the social planner’s problem does not 

have a time dimension in that he makes the decision at a point in time facing the currently 

living generations while being constrained by the total output produced by the economy at 

that time. Clearly, increasing expenditures would lower consumption but only gradually 

increase the number of people alive. Our model does not describe this transition.
10

 Thus the 

                                                           
9
 Our setting is based on Andersen and Gestsson (2016). 

10
 The setting of our model is directly comparable to the chapter on the golden rule of education in Edmund 

Phelps's book Golden rules of economic growth: studies of efficient and optimal investment. In the education 

setting, the social planner has to decide how many years people spend in school, the more years the more 

productive they become but the fewer are the years left to have productive work. There is no time dimension 

here. If now a social planner were to add one year to everyone's education, the initial effect would be to reduce 

output because there would be fewer people in the labor market and no one had become more productive. Only 

gradually would the more productive cohorts enter the labor market and it would take decades for the full effect 

on output to appear. 
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paper only describes the optimal steady state, not the transition from one steady state to 

another. 

 The social planner can extend the lives of the older generation by reducing consumption 

and spending more on health care, which generates a higher maximum age and also lowers 

the mortality of all retirees at a given age. Such a scheme reduces the utility of those who 

would have lived in the absence of the health care expenditures through lower consumption; 

that is both the working-age population and the retirees who would have lived in the absence 

of the increase. The total utility of all living individuals is maximized at the social optimum, 

which is equivalent to maximizing the total utility of a given individual over his lifespan.  

 

4.1 Demographics 

The population at time t is split into two groups: those working (young), whose ages are 

between 0 and R (𝑎 ∈ [0, 𝑅]), and those retired (old), whose ages are between R and A 

(𝑎 ∈ (𝑅, 𝐴]), where R is the retirement age and A is the maximum age or longevity. Because 

the main concern of this paper are the effects of health care expenditure for the elderly, it is 

assumed that survival probabilities are constant and equal to one when an individual is young, 

and decreasing and concave in age when he is old. Hence the survival probabilities are: 

𝑚(𝑎, 𝐴) = {
1

𝑓(𝑎, 𝐴)
 𝑖𝑓 

𝑎 ∈ [0, 𝑅]

𝑎 ∈ (𝑅, 𝐴]
                                          (11) 

where lim𝑎→𝑅+ 𝑓(𝑎, 𝐴) = 1 and 𝑓(𝐴, 𝐴) = 0, which implies that 0 ≤ 𝑓(𝑎, 𝐴) < 1 must hold 

for all 𝑎 ∈ (𝑅, 𝐴]. Further, it is assumed that 𝑓(𝑎, 𝐴) is strictly decreasing and strictly concave 

in a and strictly increasing in A: 

𝜕𝑓

𝜕𝑎
< 0,

𝜕2𝑓

𝜕𝑎2
< 0,

𝜕𝑓

𝜕𝐴
> 0                                                       

The following figure shows the survival function: 
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Note that although longevity is uncertain for a given individual, the fraction of individuals 

reaching a certain age is deterministic for the social planner (see below). Following 

Boucekkine et al. (2002), the number of individuals born is assumed to grow at a constant rate 

n, which affects the age distribution in steady state. The number of individuals born at time t 

is 𝜑𝑒𝑛𝑡, where 𝜑 > 0. The number of individuals aged a at time t is therefore: 

𝑙(𝑡, 𝑛, 𝑎, 𝐴) = 𝜑𝑒𝑛(𝑡−𝑎)𝑚(𝑎, 𝐴) > 0                                           (12) 

Note that 𝑙(𝑡, 𝑛, 0, 𝐴) = 𝜑𝑒𝑛𝑡 > 0, 𝑙(𝑡, 𝑛, 𝐴, 𝐴) = 0 and 
𝜕𝑙

𝜕𝑎
< 0; the number of individuals 

born at time t is 𝜑𝑒𝑛𝑡, the number of individuals exceeding the maximum age A is zero, and 

the number of individuals aged a is strictly decreasing in a for all 𝑎 ∈ (𝑅, 𝐴], t and A. In 

addition, 
𝜕𝑙

𝜕𝐴
> 0 for all 𝑎 ∈ (𝑅, 𝐴], implying that the number of old individuals at each age 

level 𝑎 ∈ (𝑅, 𝐴] is increasing in longevity. Using (12), the population mass in the economy at 

time t can be written as 

𝑁(𝑡, 𝑛, 𝐴) = ∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎 + ∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎                        (13)  

𝐴

𝑎=𝑅

𝑅

𝑎=0

 

and the number of young and old individuals, respectively: 

 m(a,A) 

R A 

1 
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𝑁𝑤(𝑡, 𝑛, 𝑅, 𝐴) = ∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎                                          (14)   

𝑅

𝑎=0

 

𝑁𝑜(𝑡, 𝑛, 𝑅, 𝐴) = ∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

                                           (15) 

It follows from (12)-(15) that the population growth rate and the rate of growth of young and 

old individuals in the economy follow the growth rate of individuals born: �̇� 𝑁⁄ = 𝑛 and 

�̇�𝑤 𝑁𝑤⁄ = �̇�𝑜 𝑁𝑜⁄ = 𝑛 where 𝑁,̇  �̇�𝑤 and �̇�𝑜 are the time derivatives, while the dependency 

ratio, i.e. the ratio between the number of old and young 𝑁𝑜 𝑁𝑤⁄ , is constant over time..  

Furthermore, the number of the young and the old individuals at a given time is strictly 

increasing in the population growth rate: 

𝜕𝑁𝑤

𝜕𝑛
= ∫ 𝜑(𝑡 − 𝑎)𝑒𝑛(𝑡−𝑎)𝑚(𝑎, 𝐴)𝑑𝑎

𝑅

𝑎=0
= ∫ (𝑡 − 𝑎)𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎

𝑅

𝑎=0
> 0                  (16)      

𝜕𝑁𝑜
𝜕𝑛

= ∫ 𝜑(𝑡 − 𝑎)𝑒𝑛(𝑡−𝑎)𝑚(𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

= ∫(𝑡 − 𝑎)𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

> 0                 (17) 

where (16) is greater than (17) if 
𝑅

𝐴
> 1 −

𝑅

𝐴
, as is shown in Appendix A3. 

  

4.2  Individual utility 

Individuals gain utility from consumption: 

𝑈(𝑐(𝑎)) 𝑓𝑜𝑟 𝑎 ∈ [0, 𝐴]                                                             (18) 

where c(a) is consumption for an individual aged a at each point in time. Utility from 

consumption is standard (strictly increasing and concave and satisfies the Inada conditions). 

As the results below will show, the absolute value of utility matters for allocation. Hence, it is 

necessary to assume that the utility function is such that 𝑈(𝑐(𝑎)) > 0 𝑓𝑜𝑟 𝑎 ∈ [0, 𝐴]. As is 
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discussed in Hall and Jones (2007), this requires that for a constant relative risk aversion 

utility function 
𝑐(𝑎)1−𝜎

1−𝜎
 one has to assume that there exists a ν>1 if 𝜎 > 1 (the case of 

intertemporal elasticity of substitution being less than one) such that 𝜈 +
𝑐(𝑎)1−𝜎

1−𝜎
> 0 holds. 

This is assumed in what follow and, as is shown in Appendix A6, the results of the paper hold 

under such a utility function. 

 

4.3 Health care expenditure and longevity 

As in the simple model, health care expenditure per old individual 𝜏 is assumed to affect 

longevity and thus the health of old individuals (since 𝑓(𝑎, 𝐴) is assumed to be strictly 

increasing in A) in the following way: 

𝐴 = 𝛾𝐵(𝜏)                                                             (19)                                                               

where 𝛾 > 0 is a parameter measuring efficiency in health care production, and 𝐵′ > 0 and 

𝐵′′ < 0 implying positive but diminishing returns to health care expenditure. Furthermore , it 

is assumed that 𝛾𝐵(0) > 𝑅 ensuring A>R for all 𝜏 ≥ 0 implying that individuals reach 

retirement age even though there is no spending on old-age health care.  

 

4.4 Output 

Each young individual produces 𝑦 > 0 at each point in time. National output in the economy 

at time t can therefore be written as:  

𝑁𝑤(𝑡, 𝑛, 𝑅, 𝐴)𝑦                                                              (20)                                                    

It follows that national output can only increase when the number of working-age individuals 

increases or if output per working individual goes up. 
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This and constant dependency ratio (
𝑁𝑜

𝑁𝑤
) (see above) ensures stationarity in the model and 

the existence of steady state solutions for the optimal consumption per capita and health 

expenditure per old individual since it implies that output per capita 
𝑁𝑤𝑦

𝑁𝑤+𝑁𝑜
 =

𝑦

1+
𝑁𝑜
𝑁𝑤

 is constant 

over time. 

 

4.5 The social planner’s problem 

We assume a balanced current account growth path in steady state and hence balanced budget 

constraints for the economy at each point in time. The economy-wide budget constraint is 

therefore in balance at all points in time: 

∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑦𝑑𝑎

𝑅

𝑎=0

 

= ∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑐(𝑎)𝑑𝑎 + ∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑐(𝑎)𝑑𝑎 +

𝐴

𝑎=𝑅

𝑅

𝑎=0

∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝜏𝑑𝑎

𝐴

𝑎=𝑅

 

which can, after multiplying through by 𝑒−𝑛𝑡, be written as: 

∫ 𝑙(𝑛, 𝑎, 𝐴)𝑦𝑑𝑎

𝑅

𝑎=0

  

= ∫ 𝑙(𝑛, 𝑎, 𝐴)𝑐(𝑎)𝑑𝑎 + ∫ 𝑙(𝑛, 𝑎, 𝐴)𝑐(𝑎)𝑑𝑎 +

𝐴

𝑎=𝑅

𝑅

𝑎=0

∫ 𝑙(𝑛, 𝑎, 𝐴)𝜏𝑑𝑎

𝐴

𝑎=𝑅

     (21)  

 where 𝑙(𝑛, 𝑎, 𝐴) = 𝑒−𝑛𝑡𝑙(𝑡, 𝑛, 𝑎, 𝐴). 

Because a balanced budget for the economy is assumed, there is no transfer of resources 

across time in steady state. The social planner’s welfare objective can therefore be written as 
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𝑊 = ∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑈(𝑐(𝑎))𝑑𝑎 +

𝑅

𝑎=0

∫ 𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑈(𝑐(𝑎))𝑑𝑎                         

𝐴

𝑎=𝑅

 

which can, after multiplying through by 𝑒−𝑛𝑡, be written as 

�̃� = ∫ 𝑙(𝑛, 𝑎, 𝐴)𝑈(𝑐(𝑎))𝑑𝑎 +

𝑅

𝑎=0

∫ 𝑙(𝑛, 𝑎, 𝐴)𝑈(𝑐(𝑎))𝑑𝑎                  (22)

𝐴

𝑎=𝑅

 

where �̃� = 𝑒−𝑛𝑡𝑊. In essence, the social planner is maximizing the sum of utilities of all 

living generations at a point in time, and thus gives a golden rule, taking into account that his 

decision affects both consumption of each working individual through taxes as well as the 

number of old individuals who get to live due to the provision of health care. He can choose 

to increase the number of the living by reducing the consumption of each member of the 

working-age population and finds the optimal amount of expenditures on health care, hence 

also the optimal tax rate, by trading off one effect against the other.  

The maximization problem solved by the social planner is equivalent to maximizing the 

expected lifetime utility of a given individual over time in that by always maximizing the sum 

of utilities of all living individuals of different ages he manages to maximize the expected 

lifetime utility of each individual. 

The maximization of this objective function subject to the budget constraint in (21) gives 

the social optimum. Note that the welfare function in (22) is strictly increasing in 

c(a) for all a ∈ [0, A] and τ (through A). The budget constraint in (21) ensures that a 

maximum exists to the constrained maximization problem (increased spending on health care 

per old individual decreases consumption given output and hence raises the marginal utility of 

consumption, ensuring that a maximum exists).
11

 Also note that time t does not appear in (21) 

                                                           
11

 In Appendix A4, it is shown that the first-order conditions derived below in fact give a maximum for the 

welfare function in (22), subject to the budget constraint in (21). 
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or (22) and, hence, the solutions for consumption per capita and spending on health care per 

old individual are independent of time. 

The Lagrangian for the maximization problem is (after using (11), (12), (19), (21) and 

(22)): 

Γ = ∫ 𝜑𝑒−𝑛𝑎𝑈(𝑐(𝑎))𝑑𝑎

𝑅

𝑎=0

+ ∫ 𝜑𝑒−𝑛𝑎𝑓(𝑎, 𝛾𝐵(𝜏))𝑈(𝑐(𝑎))𝑑𝑎

𝛾𝐵(𝜏)

𝑎=𝑅

 

+λ [ ∫ 𝜑𝑒−𝑛𝑎𝑦𝑑𝑎 −

𝑅

𝑎=0

∫ 𝜑𝑒−𝑛𝑎𝑐(𝑎)𝑑𝑎 − ∫ 𝜑𝑒−𝑛𝑎𝑓(𝑎, 𝛾𝐵(𝜏))𝑐(𝑎)𝑑𝑎

𝛾𝐵(𝜏)

𝑎=𝑅

𝑅

𝑎=0

− ∫ 𝜑𝑒−𝑛𝑎𝑓(𝑎, 𝛾𝐵(𝜏))𝜏𝑑𝑎

𝛾𝐵(𝜏)

𝑎=𝑅

] 

Assuming an interior solution, the first-order conditions are derived using that 𝑓(𝐴, 𝐴) = 0. 

First, the marginal utility is set equal to the shadow price of output 𝜆: 

 
𝜕𝑈

𝜕𝑐(𝑎)
= λ   for    𝑎 ∈ [0, 𝐴]                                             (23) 

The second condition makes that marginal benefit of increasing spending on the health care of 

each older individual 𝜏: 

[ ∫ 𝜑𝑒−𝑛𝑎𝑈(𝑐(𝑎))
𝜕𝑓

𝜕𝐴
𝑑𝑎

𝐴

𝑎=𝑅

] 𝛾𝐵′(𝜏) 

−λ [ ∫ 𝜑𝑒−𝑛𝑎𝑐(𝑎)
𝜕𝑓

𝜕𝐴
𝑑𝑎 +

𝐴

𝑎=𝑅

∫ 𝜑𝑒−𝑛𝑎𝜏
𝜕𝑓

𝜕𝐴
𝑑𝑎

𝐴

𝑎=𝑅

] 𝛾𝐵′(𝜏) −λ ∫ 𝜑𝑒−𝑛𝑎𝑓(𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

= 0                                                                                                                  (24) 
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where (19) has been used. The last condition is the budget constraint for the economy that sets 

total output equal to the sum of the consumption of the young, consumption of the old and the 

provision of health care for the old: 

∫ 𝜑𝑒−𝑛𝑎𝑦𝑑𝑎 =

𝑅

𝑎=0

∫ 𝜑𝑒−𝑛𝑎𝑐(𝑎)𝑑𝑎 + ∫ 𝜑𝑒−𝑛𝑎𝑐(𝑎)𝑑𝑎 + ∫ 𝜑𝑒−𝑛𝑎𝜏𝑑𝑎             (25)

𝐴

𝑎=𝑅

𝐴

𝑎=𝑅

𝑅

𝑎=0

 

The first condition implies that the marginal utility of consumption is independent of age 

(because 𝜆 is independent of age). Hence we have consumption smoothing across generations: 

𝑐(𝑎) = 𝑐 for 𝑎 ∈ [0, 𝐴]                                                       (26)                                                                                                           

Using (23) in (24) after multiplying through by 𝑒𝑛𝑡, using (26 ) and doing some manipulation 

using (11), (12), (14) and (15) gives our main result: 

𝑈(𝑐)
𝜕𝑁0

𝜕𝐴
𝛾𝐵′(𝜏) =

𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)

𝜕𝑁𝑜

𝜕𝐴
𝛾𝐵′(𝜏) +

𝜕𝑈

𝜕𝑐
𝑁𝑜(𝑡, 𝑛, 𝑅, 𝐴)                       (27)                                        

The equation gives optimal spending on health care per old individual, which is our golden 

rule of health care spending. It is analogous to equation (6) above. The left-hand side shows 

increased social welfare in terms of a greater number of old individuals reaching each age 

level and therefore more individuals receiving utility from consumption. The first term on the 

right-hand side shows the lost utility for all others, whose consumption is reduced due to the 

consumption and medical needs of those who now reach higher age levels because of the 

increased provision of health care. The second term denotes the marginal cost of increased 

health care for all individuals over retirement age. There arises a clear tradeoff between 

increasing spending on life-extending medical care and allowing people to enjoy extended 

lives, on the one hand, and increasing the consumption of those who would have lived in the 

absence of increased spending on medical care, on the other hand. 

We now come back to the repugnant conclusion emphasized in the philosophy literature. 

This conclusion does not arise in equation (27) above since the maximization of total utility 
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does generate a solution for the optimal size of the population. While increasing expenditures 

on health care provision does reduce mortality among the old and generate a larger number of 

living individuals, there is a cost in terms of diminished utility of the working-age population 

as well as those who are old but would have survived in the absence of the increased 

expenditures. Moreover, there are diminishing returns to health care spending (𝐵´´(𝜏) < 0). 

There comes a point at which increasing expected longevity further – and increasing the 

number of people alive – reduces the utility of these two groups and does not lengthen lives 

sufficiently to make their marginal utility approach infinity because the utility function 

satisfies the Inada conditions. Thus we end up avoiding both Parfit’s Repugnant Conclusion 

as well as Cowen’s Methuselah’s Paradox.
12

  

Finally, the budget constraint in (21) has to hold, which can be written in the following 

way after multiplying through by 𝑒𝑛𝑡, using the result in (26) and doing some manipulation 

using (11), (12), (14) and (15): 

(𝑦 − 𝑐)𝑁𝑤(𝑡, 𝑛, 𝑅, 𝐴) = (𝑐 + 𝜏)𝑁𝑜(𝑡, 𝑛, 𝑅, 𝐴)                               (28) 

The output net of consumption of the working-age population must equal the sum of 

consumption and the health care expenditures of the old generations. 

Note that we do not allow for spending on health care to raise the level of health of 

working-age individuals, only to extend the lives of the old beyond the age at which they 

would otherwise have died. Moreover, we do not allow for the output from increased health 

care expenditures to benefit the working-age individuals contemporaneously, only to extend 

their lives and hence their expected lifetime utility. Another limitation of the analysis is that 

                                                           
12

 We do not need to resort to the reasons Ng (1989) proposed for people not willing to live very long lives of 

misery. This author argued that people might be genetically or culturally programmed to desire the longest 

possible life but not a life of thousands of years and that people may not be able to understand the significance of 

large numbers. 
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there is an empirical connection between health levels when young and in later years, which is 

not present in the model.
13

 However, making the utility of the working-age individuals, as 

well as their life expectancy, depend on their health outcomes while working, and hence the 

level of health care, would not add insights into our analysis while complicating the 

formulation of the model unnecessarily.  

 

4.6  Comparative statics 

Since the second-order conditions for a maximum are fulfilled, the conditions in (27) and (28) 

give the optimal steady state levels of consumption per capita 𝑐 and health care expenditure 

per old individual 𝜏 as implicit functions of population growth n, productivity y, the 

retirement age R, the parameters 𝜑 and 𝛾, and the functional forms of the utility function 𝑈 

and the health care production function 𝐴.
14

 Below we analyze how productivity, both in the 

private sector y and in the public sector γ, as well as the population growth rate n affect the 

optimal level of health care expenditure per old individual 𝜏. 

The effect of increased productivity y is given by:
15

 

𝜕𝜏

𝜕𝑦
=

𝜕2𝑈

𝜕𝑐2
(𝑁𝑜+(𝑐+𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏))𝑁𝑤

Ψ
> 0                                   (29)                                            

where 

Ψ ≡ (𝑁𝑤 + 𝑁𝑜)
𝜕𝑈

𝜕𝑐
𝑁𝑜 [(

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

− 2
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝛾𝐵′(𝜏) +
𝐵′′(𝜏)

𝐵′(𝜏)
]

+
𝜕2𝑈

𝜕𝑐2
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)]
2

. 

                                                           
13

 See Almond and Currie (2011).  

14
 See Appendixes A4 and A5. 

15
 See Appendix A5. 
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Note that Ψ is negative, as is shown in Appendix A5, the numerator is negative due to 

diminishing marginal utility, and 
𝜕𝑁𝑜

𝜕𝐴
> 0, as can be seen from (11), (12) and (15), which 

gives the sign in (29). 

Intuitively, the marginal utility of consumption of each member of the working-age 

population declines as the level of productivity increases. This is reflected in the negative sign 

of the numerator, which is negative due to its inclusion of the second derivative of the utility 

function. As in Hall and Jones (2007),
16

 lower marginal utility reduces the burden of paying 

taxes to support the currently old and to pay for their health care, which increases the golden 

rule level of health care provision. It follows that people should live longer in more developed 

countries and poor countries should spend less on extending the lives of their citizens.
17

 

The effect of increased efficiency in health care provision γ is given by:
18

 

𝜕𝜏

𝜕𝛾
= −

[(𝑁𝑤+𝑁𝑜)
𝜕𝑈

𝜕𝑐
𝑁𝑜(

1

𝐴
+

1
𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

−
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)+
𝜕2𝑈

𝜕𝑐2
[𝑁𝑜+(𝑐+𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)](𝑐+𝜏)
𝜕𝑁𝑜
𝜕𝐴

]𝐵(𝜏)

Ψ
⋛ 0   (30)             

                                                           
16

 Below, we show the social optimum and the comparative statics exercises using a CRRA utility function in 

order to further compare our results to those of Hall and Jones (2007). 

17
 Empirical studies have shown that the actual level of health care expenditures is increasing in the level of 

productivity, hence output. Newhouse (1977) studied the relationship between GDP per capita and per capita 

medical care expenditures for 13 developed countries and found that more than 90% of the variation in the level 

of health care expenditures across countries could be explained by differences in the level of GDP per capita. 

Several other studies found similar results using data for different samples of countries and different time 

periods. Gerdtham et al. (1992) extended this analysis to pooled data of 20 OECD countries over the period 

1960-1987 and also found a positive income elasticity of health care spending with respect to GDP. The same 

applies to Parkin et al. (1987), who use PPP-adjusted numbers for health care spending and GDP per capita in a 

cross-section of countries. Hitiris and Posnett (1992) also found a positive effect of income on health care.  

18
 See Appendix A5. 
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The second term in the numerator is negative, which gives a negative derivative as in the 

simple model in Section 3. The additional insight given by this model comes from the bracket 

in the first term where: 

𝜕 (

𝜕𝑁𝑜
𝜕𝐴
𝑁𝑜

)

𝜕𝐴
=

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

−
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

 

are the effects of an increase in longevity on the relative increase in the number of old from an 

increase in longevity, which equals −
1

𝐴
 in the simple model in Section 3 making the first term 

in the numerator vanish. Here, this is negative (since 
𝜕2𝑁𝑜

𝜕𝐴2
< 0) giving decreasing effects of an 

increase in longevity on the number of old. However, whether this is greater than or less than 

1

𝐴
 is ambiguous leaving the sign of the first term ambiguous resulting in the sign of the 

derivative being ambiguous. Hence, further specification for the survival function in (11) is 

necessary for determining the sign of the derivative.  

Intuitively, increased efficiency in health care provision results in a reduction in the health 

care expenditures per capita needed to maintain unchanged longevity and health, which 

implies a negative sign for the derivative in (30), while the marginal benefit from spending on 

health care increases, which implies a positive sign for the derivative. It is not clear which 

effect is stronger.  

The effect of increased population growth rate n is given by:
19

 

 

                                                           
19

 See Appendix A5. 
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𝜕𝜏

𝜕𝑛
= −

{
 
 

 
 

(𝑁𝑤+𝑁𝑜)
𝜕𝑈
𝜕𝑐
𝑁𝑜 (

1
𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁0
𝜕𝐴𝜕𝑛

−
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

)

+
𝜕2𝑈
𝜕𝑐2

[𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] (𝑐 + 𝜏)𝑁𝑜 (
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

 −
1
𝑁𝑤

𝜕𝑁𝑤
𝜕𝑛

)}
 
 

 
 

Ψ

⋛ 0            (31) 

Both terms in the numerator are indeterminate. The last bracket in the first term is: 

𝜕 (

𝜕𝑁𝑜
𝜕𝐴
𝑁𝑜

)

𝜕𝑛
=

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴𝜕𝑛

−
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

 

giving the effects of an increase in the population growth rate on the relative increase in the 

number of old from an increase in longevity. This and hence the first term in numerator are 

positive (negative) if an increase in the population growth rate accelerates (slows down) the 

relative growth in the number of old from an increase in longevity implying that old-age 

health care expenditure should increase (decrease). The last bracket in the second term is:  

𝜕 (
𝑁𝑜
𝑁𝑤
)

𝜕𝑛
=
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

 −
1

𝑁𝑤

𝜕𝑁𝑤
𝜕𝑛

 

giving the effects of an increase in the population growth rate on the dependency ratio Hence, 

the second term in the numerator is negative (positive) if an increase in the population growth 

rate results in an increase (decrease) in the dependency ratio (remember that 
𝜕2𝑈

𝜕𝑐2
< 0). We can 

therefore conclude that expenditure on old-age health care should increase following an 

increase in the population growth rate if it accelerates the relative growth in the number of old 

from an increase in longevity and if it results in decrease in the dependency ratio. Hence, and 

increase in the population growth rate should increase spending on old-age health care if there 

is a sufficient decrease in the dependency ratio. 
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The intuition behind this result is that an acceleration in the effects of an increase in 

longevity on the number of old individuals results in spending on old-age health care being 

more effective in terms of increasing longevity and the number of the old while a decrease in 

the dependency ratio results in more individuals working relative to being retired and, hence, 

output per capita increases making it being optimal to spend more resources on old-age health 

care due to diminishing marginal utility of consumption.  

Finally, it is interesting to analyze how an increase in the utility from living, measured by 

the ν in Hall and Jones (2007) non-homothetic CRRA utility function: 

𝑈(𝑐(𝑎)) = 𝜈 +
𝑐(𝑎)1−𝜎

1 − 𝜎
 

where ν>1 if 𝜎 > 1 (the case of intertemporal elasticity of substitution being less than one) 

such that 𝜈 > 0 holds, affects the optimal spending on old-age health care. This gives the 

following results: 

𝜕𝜏

𝜕𝜈
=
−(𝑁𝑤 + 𝑁𝑜)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)

Ψ
> 0 

Not surprisingly, when life becomes more valuable (an increase in ν), it is socially optimal to 

respond by spending more on life-extending health care. 

 

5  Individual decision making 

We now leave the social planner’s problem and describe the decision by a representative 

agent on how much to spend on life-extending health care.  

Due to the uncertain lifetime of an individual, it is assumed that there exists an annuities 

market (as in Yaari, 1965) providing an individual with an instrument to insure himself 

against an uncertain lifetime (see, for example, Blanchard (1985) and Sheshinski (2008)). 

This implies that an individual buys annuities at any age a from an insurance company 

earning rate of return  arb  and the insurance company invests at an exogenous rate of return 
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r for the amount of annuities bought. A zero-profit condition for the insurance company – due 

to the assumption of free entry into the competitive annuity market – gives the following in 

equilibrium;  

𝑟𝑏(𝑎) = 𝑟 + 𝜌(𝑎, 𝐴)                                                          (32)                                                    

where 𝜌(𝑎, 𝐴) = −
𝜕𝑚(𝑎,𝐴)

𝜕𝑎

𝑚(𝑎,𝐴)
 is the hazard rate for an individual aged a, i.e. the probability that 

an individual dies at age a conditional on being alive at age a. It follows that the higher the 

mortality rate the higher is rb. Hence, using equation (11) gives 

       𝜌(𝑎, 𝐴) = {
0

−
𝜕𝑓(𝑎,𝐴)

𝜕𝑎

𝑓(𝑎,𝐴)

    𝑓𝑜𝑟 𝑎 ∈
[0, 𝑅]

(𝑅,𝐴]
                                             (33)                                   

and, hence, in equilibrium: 

𝑟𝑏(𝑎) = {
𝑟

𝑟 + 𝜌(𝑎, 𝐴)  𝑓𝑜𝑟 𝑎 ∈
[0, 𝑅]

(𝑅,𝐴]
                                       (34)  

The preceding equations show that the higher the mortality rate among retirees, the higher are 

the earnings on the annuity in equilibrium.  

An individual‘s expected lifetime utility is 

𝑈 = ∫ 𝑒−𝛿𝑎𝑚(𝑎, 𝐴)𝑈(𝑐(𝑎))𝑑𝑎

𝐴

𝑎=0

 

where  > 0 is the subjective rate of time preference. Using (11), the equation can be written 

as 

𝑈 = ∫ 𝑒−𝛿𝑎𝑈(𝑐(𝑎))𝑑𝑎 + ∫ 𝑒−𝛿𝑎𝑓(𝑎, 𝐴)𝑈(𝑐(𝑎))𝑑𝑎

𝐴

𝑎=𝑅

𝑅

𝑎=0

                          (35) 

An individual consumes when young and old, works and earns labor income when young and 

spends on old-age health care when old. His budget constraint therefore reads; 
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∫ 𝑒−Γ(𝑎)
𝑅

𝑎=0

𝑦𝑑𝑎 = ∫ 𝑒−Γ(𝑎)
𝑅

𝑎=0

𝑐(𝑎)𝑑𝑎 + ∫ 𝑒−Γ(𝑎)

𝛾𝐵(𝜏)

𝑎=𝑅

𝑐(𝑎)𝑑𝑎 + ∫ 𝑒−Γ(𝑎)

𝛾𝐵(𝜏)

𝑎=𝑅

𝜏𝑑𝑎            (36) 

where  Γ(𝑎) = ∫ 𝑟𝑏(𝑧)𝑑𝑧
𝑎

𝑧=0
. 

An individual’s problem is to choose {𝑐(𝑎)}𝑎=0
𝐴  and  such that (35) is maximized subject 

to (36) and (19) taking the annuity contract rb as given (hence, it is independent of longevity A 

in an individual’s optimization problem). The Lagrangian for the problem is: 

Λ = ∫ 𝑒−𝛿𝑎𝑈(𝑐(𝑎))𝑑𝑎 + ∫ 𝑒−𝛿𝑎𝑓(𝑎, 𝛾𝐵(𝜏))𝑈(𝑐(𝑎))𝑑𝑎 + 𝜆

𝛾𝐵(𝜏)

𝑎=𝑅

𝑅

𝑎=0

[ ∫ 𝑒−Γ(𝑎)
𝑅

𝑎=0

𝑦𝑑𝑎

− ∫ 𝑒−Γ(𝑎)
𝑅

𝑎=0

𝑐(𝑎)𝑑𝑎 − ∫ 𝑒−Γ(𝑎)

𝛾𝐵(𝜏)

𝑎=𝑅

𝑐(𝑎)𝑑𝑎 − ∫ 𝑒−Γ(𝑎)

𝛾𝐵(𝜏)

𝑎=𝑅

𝜏𝑑𝑎] 

Assuming an interior solution, this gives the following first-order conditions (in addition to 

the budget constraint in (36)). The first is the first-order condition for consumption during 

working years: 

𝜕Λ

𝜕𝑐(𝑎)
= 𝑒−𝛿𝑎

𝜕𝑈

𝜕𝑐(𝑎)
− 𝜆𝑒−𝑟𝑎 = 0    𝑓𝑜𝑟   𝑎 ∈ [0, 𝑅]                                 (37) 

The second condition gives optimal consumption in retirement; 

𝜕Λ

𝜕𝑐(𝑎)
= 𝑒−𝛿𝑎𝑓(𝑎, 𝐴)

𝜕𝑈

𝜕𝑐(𝑎)
− 𝜆𝑒−Γ(𝑎) = 0     𝑓𝑜𝑟 𝑎 ∈ [𝑅, 𝐴]                         (38) 

where (19) has been used. In both cases the marginal utility of consumption is set equal to the 

shadow price of wealth. The main difference is that the old face a higher interest rate because 

the annuity companies pay them a higher return on their savings due to their falling numbers.  

Using that in equilibrium (using (32) - (34)): 
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𝑒−Γ(𝑎) = 𝑒−∫ [𝑟+𝜌(𝑧,𝐴)]𝑑𝑧
𝑎
𝑧=0 = 𝑒

−∫ [𝑟+
−
𝛿𝑓(𝑧,𝐴)
𝛿𝑧

𝑓(𝑧,𝐴)
]

𝑎
𝑧=0 𝑑𝑧

= 𝑒
−𝑟𝑎+∫ [

𝛿𝑓(𝑧,𝐴)
𝛿𝑧

𝑓(𝑧,𝐴)
]

𝑎
𝑧=0 𝑑𝑧

= 𝑒
−𝑟𝑎+∫ [

𝑑𝑙𝑛𝑓(𝑎,𝐴)
𝑑𝑧

]
𝑎
𝑧=0

𝑑𝑧
= 𝑒−𝑟𝑎+∫ 𝑑𝑙𝑛𝑓(𝑧,𝐴)

𝑎
𝑧=0  

= 𝑒−𝑟𝑎+[𝑙𝑛𝑓(𝑎,𝐴)−𝑙𝑛𝑓(0,𝐴)] = 𝑒−𝑟𝑎𝑒𝑙𝑛𝑓(𝑎,𝐴) = 𝑒−𝑟𝑎𝑓(𝑎, 𝐴)             

where it is used that 𝑓(0, 𝐴) = 1, gives the condition: 

𝜕Λ

𝜕𝑐(𝑎)
= 𝑒−𝛿𝑎

𝜕𝑈

𝜕𝑐(𝑎)
− 𝜆𝑒−𝑟𝑎= 0   for all 𝑎 ∈ [0, 𝐴]                      (39)  

Since we are only interested in comparing allocation under individual decision making with 

the steady state social planner allocation, we ignore the possibility of a time-varying 

consumption profile for an individual being optimal and assume that that the real interest rate 

r equals the subjective rate of time preference δ and, hence; 

𝜕𝑈

𝜕𝑐(𝑎)
= 𝜆 for all 𝑎 ∈ [0, 𝐴]                                                        

and: 

 𝑐(𝑎) = 𝑐 for 𝑎 ∈ [0, 𝐴]                                                   (40) 

The first order condition with respect to  is:  

𝜕Λ

𝜕𝜏
= 𝑒−𝛿𝑎𝑓(𝐴, 𝐴)𝑈(𝑐(𝐴))𝛾𝐵´(𝜏) + 𝛾𝐵´(𝜏) ∫ 𝑒−𝛿𝑎

𝜕𝑓

𝜕𝐴
𝑈(𝑐(𝑎))𝑑𝑎
 

𝐴

𝑎=𝑅

 

−𝜆𝑒−Γ(𝐴)𝑐(𝐴)𝛾𝐵´(𝜏) − 𝜆𝑒−Γ(𝐴)𝛾𝐵´(𝜏) − 𝜆 ∫ 𝑒−Γ(𝑎)𝑑𝑎

𝐴

𝑎=𝑅

= 0                               

where (19) has been used. Using (32) - (34) gives in equilibrium: 

𝜕Λ

𝜕𝜏
= 𝑒−𝛿𝑎𝑓(𝐴, 𝐴)𝑈(𝑐(𝐴))𝛾𝐵´(𝜏) + 𝛾𝐵´(𝜏) ∫ 𝑒−𝛿𝑎

𝜕𝑓

𝜕𝐴
𝑈(𝑐(𝑎))𝑑𝑎
 

𝐴

𝑎=𝑅
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−𝜆𝑒−𝑟A𝑓(𝐴, 𝐴)𝑐(𝐴)𝛾𝐵´(𝜏) − 𝜆𝑒−𝑟A𝑓(𝐴, 𝐴)𝛾𝐵´(𝜏) − 𝜆 ∫ 𝑒−𝑟𝑎𝑓(𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

= 0               

or, since 𝑓(𝐴, 𝐴) = 0: 

𝛾𝐵´(𝜏) ∫ 𝑒−𝛿𝑎
𝜕𝑓

𝜕𝐴
𝑈(𝑐(𝑎))𝑑𝑎
 

𝐴

𝑎=𝑅

= 𝜆 ∫ 𝑒−𝑟𝑎𝑓(𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

= 0                               

Finally, using (40) and making the real interest rate r equal the subjective rate of time 

preference δ, gives: 

𝑈(𝑐) [ ∫ 𝑒−𝑟𝑎
𝜕𝑓

𝜕𝑎
𝑑𝑎

𝐴

𝑎=𝑅

] 𝛾𝐵´(𝜏) =
𝜕𝑈

𝜕𝑐
[ ∫ 𝑒−𝑟𝑎𝑓(𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

]                      (41) 

The left-hand side gives the increased expected lifetime utility from increased spending on 

old-age health care and the right-hand side gives the marginal costs in terms of increased 

spending on old-age health care. Note that the Methuelah’s Paradox does not arise, the 

individual will not desire to have a very long life at a low level of consumption. As 

consumption approaches zero, the marginal utility of consumption will approach infinity and 

so exceed the value of living an extra year.  

 

6 Social optimum and individual decision making compared 

Equation (41) can be compared to equation (42) below that gives the optimal (that is the 

social planner) level of spending on the health care. Using equations (11), (12) and (15) in 

(27), multiplying through with 𝑒−𝑛𝑡 and dividing by the parameter φ gives that spending on 

old-age health care in social optimum has to fulfill: 
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𝑈(𝑐) [ ∫ 𝑒−𝑛𝑎
𝜕𝑓

𝜕𝐴
𝑑𝑎

𝐴

𝑎=𝑅

] 𝛾𝐵′(𝜏) 

=
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏) [∫ 𝑒−𝑛𝑎

𝜕𝑓

𝜕𝐴
𝑑𝑎

𝐴

𝑎=𝑅
] 𝛾𝐵′(𝜏) +

𝜕𝑈

𝜕𝑐
[∫ 𝑒−𝑛𝑎𝑓(𝑎, 𝐴)𝑑𝑎
𝐴

𝑎=𝑅
]                 (42)                  

The left-hand side has the utility of the individuals who survive due the increased health care 

spending. The first term on the right has the utility effect of reduced consumption due to the 

consumption of these individuals as well as their health care spending. The second term 

denotes the marginal cost of increased health care for all individuals over retirement age. This 

can be compared to equation (41) above.   

The main differences between equations (41), showing the private decision on health care, 

and equation (42), showing the social optimum lies (i) in the first term on the right-hand side 

of equation (42) that is missing from equation (41) and (ii) in differences in discounting. First, 

assuming that r=n, the missing term in equation (41) measures the effect of lower mortality 

on the rate of interest paid by insurance companies rb. In essence, individuals ignore the effect 

their increased longevity has on the income of other members of their cohort. It follows that 

people overinvest in life-extending health care by ignoring the negative externality their own 

longevity has on the consumption of other members of their cohort.  

When we relax the assumption that r =  = n we get some additional reasons why the 

individual decisions may differ from the social optimum. An impatient individual whose  > n 

will discount the benefits of a longer life with a discount rate that exceeds the rate used by the 

social planner. The social planner uses the population growth rate n because the higher is n 

the larger are the cohorts or generations and the greater is the benefit from extending the lives 

of every cohort. The individual, in contrast, discounts the future utility from a longer life by 

his subjective rate of time preference, which could be different from n. Conversely, if 
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individuals are very patient, have a low , then they may discount the benefits of a longer life 

with a lower discount rate than the social planner. It follows that individuals may spend less 

or more on life-extending health care than the socially optimal amount. In particular, patient 

individuals – those having a rate of time preference that is lower than the rate of population 

growth  < n – will spend “too much” on life-extending health care compared to the social 

planner’s solution. 

Second, the costs of increased health care in terms of the lower consumption of the old are 

discounted by the rate of population growth n in the social planner’s problem but by the real 

interest rate r in the individual optimization. The reason is that the individual finds the 

discounted future sum of increased health care spending and uses the interest rate to discount 

this future stream. It follows that if r < n then the future costs for the individual will be greater 

than those calculated by the social planner and conversely if r > n. It follows that in a 

dynamically efficient economy, where r > n, individuals will spend more on life-extending 

health care than the socially optimal amount.  

 

7 Discussion 

We have derived a golden rule for the amount that a nation should sacrifice in terms of the 

consumption of individuals in order to extend the life of generations. The results show that 

more productive societies should spend more per capita on health care because the utility loss 

of individuals is smaller due to a lower marginal utility of consumption. Also, an increase in 

the retirement age and the rate of population growth raises the optimal level of health care 

spending, the latter if it accelerates the effects of increased longevity on the number of old and 

decreases the dependency ratio. However, increased efficiency in health care provision has an 

ambiguous effect.  
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Comparing the social optimum with the outcome of utility maximization by individuals 

shows that there is no guarantee that economies will invest the socially optimal amount in 

life-extending health care and indeed this would only happen by chance. The main reason for 

our results is that individuals do not take into account the negative effect their own longevity 

has on the return to annuities of other members of their cohorts, hence the consumption and 

lifetime utility of these individuals. This effect is strengthened if individuals have a low rate 

of time preference ( < n), and thus do not discount additional time of life heavily, and the 

rate of interest is high (r > n), which makes them discount the costs of extra health care at a 

higher rate. 

There remains the issue what can be done so that a market economy spends the socially 

optimal amount on life-extending health care. In the case when the rate of time preference 

equals the interest rate, which equals the rate of population growth, there is excessive 

spending on health care because individuals do not take the crowding of their longevity into 

account. Each long life beyond retirement age contributes to a changed demography that 

entails lower lifetime income and consumption for everyone. Clearly, it is privately optimal in 

our model for an individual to outlive his cohort and enjoy simultaneously a long life and 

higher consumption caused by the passing away of many members of his cohort.
20

 To 

paraphrase, devoting resources to extend one’s life imposes a financial burden on the rest of 

society but this is not taken into account by each individual because the alternative would be 

death or at least a higher probability of death. There are few individuals that are so selfless as 

to want to die to raise the standard of living of those surviving. This would also involve 

problems of collective action: One death would not improve the standard of living of anyone 

much, while if many people are dying one can put it off knowing that one’s own decision will 

not matter! The tendency to spend excessively on health care is then exacerbated by a 

                                                           
20

 Note that our model omits any positive effect on utility from mingling with people in one’s own age group!   
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dynamic efficient economy with a rate of interest higher than the rate of population growth in 

a growing economy. In such an economy, individuals discount future spending on health care, 

hence the marginal costs of extending lives, at a rate which is higher than the population 

growth rate. Finally, a low rate of time preference would make each individual appreciate 

more the prospects of longer lives and as a result spend more on health care. So what can a 

government do in this case? 

Leighton and Hughes (1955) describe how Eskimo societies from Greenland to Alaska 

solved the collective action problem by practicing senicides. In a hunter society people 

become a burden on society when they stopped being able to hunt. These authors quote 

Weyer (1932)
21

 that “A native of Angmagasalik will throw himself into the sea, often 

prompted by the admonition from his relatives that he has nothing to live for.” Leighton and 

Hughes describe how in Eskimo literature the killing of aged parents by dutiful children was a 

common occurrence. An early account of the death of elders by suicide among the Igluik Inuit 

is that of Rasmussen (1929, 1931).
22

 He describes how religious beliefs encouraged old men 

and women to hang themselves in the belief that the transition from life to death and on to the 

world of sprit was both brief and painless. The elderly were very rarely coerced to commit 

suicide, rather they took the initiative propelled by cultural factors and religious beliefs. This 

is explained by the very low level of production per member of the household, an outcome 

that comes out of our equation (27) for a low value of consumption per capita when τ is 

allowed to take a negative value. In this case the marginal benefit of increasing health care 

expenditures is very low and the marginal cost very high due to low consumption so that the 

optimal level of τ is zero (or negative when allowed).  

                                                           
21

 Page 248. 

22
 Taken from Kirmayer et al. (1998). 
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In modern societies, the obvious solution to the externality described in our model would 

be to levy taxes on private old-age health care increasing the private cost from spending on 

old-age health care and the private cost from increasing longevity. Another way would be to 

levy taxes on annuities return so as to decrease the return from increasing longevity. A third 

solution to the problem would be to subsidize health care if individuals do not save 

adequately for health care due to a high rate of time preference. It would be too low if people 

are short sighted and do not think much about the last few years of life and also if interest 

rates are very low so that the expected discounted cost of health care is very high. A public 

health care system could also be used to provide the socially optimal level of health care.  

Currently, most developed countries are either already experiencing or expecting 

budgetary problems because of the aging of the population. The crowding effects described in 

this paper would apply both to the rate of return to annuities, retirement schemes and pension 

funds, which affect the level of private consumption but also, in an extended model, to the 

provision of public consumption such as old-age care. Public debate in many European 

countries is centered on these issues. There is the question about taxation, public debt and 

public services, the return to pension funds’ assets, public services, the retirement age and, 

last but not least, immigration. One case for accepting immigrants is based on the observation 

that they tend to be working age and so will increase the lifetime consumption of the 

indigenous population. As our model has shown, increased population growth due to 

immigration could actually increase the level of optimal health care spending due lower 

dependency ratio, making it possible for the native population to live longer. Omitting the 

consideration of population growth, the age structure and the size of the working-age 

population from a discussion of health care, immigration, public services and taxation may 

lead to incorrect or misleading policy conclusions.  
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Appendix 

A1. Second-order conditions for the simple model 

Given consumption smoothing in (5), the first-order derivatives of the Lagrangian can be 

written as:  

𝜕Γ

𝜕𝑐
= (

𝜕𝑈

𝜕𝑐
− 𝜆)𝛾𝐵(𝜏) 

𝜕Γ

𝜕𝜏
= [𝑈(𝑐) − 𝜆(𝑐 + 𝜏)]𝛾𝐵′(𝜏) − 𝜆(𝛾𝐵(𝜏) − 𝑅) 

𝜕Γ

𝜕𝜆
= 𝑅𝑦 − 𝛾𝐵(𝜏)𝑐 − (𝛾𝐵(𝜏) − 𝑅)𝜏     

and the second-order derivatives are (after evaluating those at maximum, using the health care 

production function and rewriting): 

 
𝜕2Γ

𝜕𝑐2
=

𝜕2𝑈

𝜕𝑐2
𝐴                     

𝜕2Γ

𝜕𝜏2
=
𝜕𝑈

𝜕𝑐
[(𝐴 − 𝑅)

𝐵′′(𝜏)

𝐵′(𝜏)
− 2𝛾𝐵′(𝜏)] 

𝜕2Γ

𝜕𝜆2
= 0           

 
𝜕2Γ

𝜕𝑐𝜕𝜏
= 0 

𝜕2Γ

𝜕𝑐𝜕𝜆
= −𝐴                     

𝜕2Γ

𝜕𝜏𝜕𝜆
= −[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]     

Hence, for the bordered Hessian to be positive definite and the first-order conditions being 

necessary and sufficient for a maximum, the following must hold: 

−𝐴2 < 0 
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which always holds, and: 

−𝐴{𝐴
𝜕𝑈

𝜕𝑐
[(𝐴 − 𝑅)

𝐵′′(𝜏)

𝐵′(𝜏)
− 2𝛾𝐵′(𝜏)] +

𝜕2𝑈

𝜕𝑐2
[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]2} > 0 

For the second condition to hold it must hold that: 

𝐴
𝜕𝑈

𝜕𝑐
[(𝐴 − 𝑅)

𝐵′′(𝜏)

𝐵′(𝜏)
− 2𝛾𝐵′(𝜏)] +

𝜕2𝑈

𝜕𝑐2
[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]2 < 0 

which always holds. 

 

A2. Comparative static analysis for the simple model 

Taking total difference of (6) and (7) with respect to the endogenous variables c and τ and the 

exogenous variables/parameters R, y and γ after using  the health care production function 

gives: 

 
𝜕𝑈

𝜕𝑐
𝛾𝐵′(𝜏)𝑑𝑐 + 𝑈(𝑐)𝛾𝐵′′(𝜏)𝑑𝜏 + 𝑈(𝑐)𝐵′(𝜏)𝑑𝛾 

=
𝜕2𝑈

𝜕𝑐2
(𝑐 + 𝜏)𝛾𝐵′(𝜏)𝑑𝑐 +

𝜕𝑈

𝜕𝑐
𝛾𝐵′(𝜏)𝑑𝑐 +

𝜕𝑈

𝜕𝑐
𝛾𝐵′(𝜏)𝑑𝜏 +

𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)𝛾𝐵′′(𝜏)𝑑𝜏

+
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)𝐵′(𝜏)𝑑𝛾 +

𝜕2𝑈

𝜕𝑐2
(𝐴 − 𝑅)𝑑𝑐 +

𝜕𝑈

𝜕𝑐
𝛾𝐵′(𝜏)𝑑𝜏 +

𝜕𝑈

𝜕𝑐
𝐵(𝜏)𝑑𝛾 

−
𝜕𝑈

𝜕𝑐
𝑑𝑅 

and: 

(𝑦 − 𝑐)𝑑𝑅 + 𝑅𝑑𝑦 − 𝑅𝑑𝑐

= (𝐴 − 𝑅)𝑑𝑐 + (𝐴 − 𝑅)𝑑𝜏 + (𝑐 + 𝜏)𝛾𝐵′(𝜏)𝑑𝜏 + (𝑐 + 𝜏)𝐵(𝜏)𝑑𝛾

− (𝑐 + 𝜏)𝑑𝑅 

Rearranging and collecting terms gives: 
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𝜕2𝑈

𝜕𝑐2
[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]𝑑𝑐 

− [(𝑈(𝑐) −
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)) 𝛾𝐵′′(𝜏) − 2

𝜕𝑈

𝜕𝑐
𝛾𝐵′(𝜏)] 𝑑𝜏 

= [(𝑈(𝑐) −
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏))𝐵′(𝜏) −

𝜕𝑈

𝜕𝑐
𝐵(𝜏)] 𝑑𝛾 +

𝜕𝑈

𝜕𝑐
𝑑𝑅 

and: 

𝐴𝑑𝑐 + [(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]𝑑𝜏 = 𝑅𝑑𝑦 − (𝑐 + 𝜏)𝐵(𝜏)𝑑𝛾 + (𝜏 + 𝑦)𝑑𝑅 

  Using from (6) that: 

𝑈(𝑐) −
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏) =

𝜕𝑈
𝜕𝑐
(𝐴 − 𝑅)

𝛾𝐵′(𝜏)
    

gives: 

𝜕2𝑈

𝜕𝑐2
[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]𝑑𝑐 

−
𝜕𝑈

𝜕𝑐
[(𝐴 − 𝑅)

𝐵′′(𝜏)

𝐵′(𝜏)
− 2𝛾𝐵′(𝜏)] 𝑑𝜏 

= −
𝜕𝑈

𝜕𝑐

𝑅

𝛾
𝑑𝛾 +

𝜕𝑈

𝜕𝑐
𝑑𝑅 

and: 

𝐴𝑑𝑐 + [(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]𝑑𝜏 = 𝑅𝑑𝑦 − (𝑐 + 𝜏)𝐵(𝜏)𝑑𝛾 + (𝜏 + 𝑦)𝑑𝑅 

where the health care production function is used. The equation system in matrix terms is 

therefore: 
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(

𝜕2𝑈

𝜕𝑐2
[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)] −

𝜕𝑈

𝜕𝑐
[(𝐴 − 𝑅)

𝐵′′(𝜏)

𝐵′(𝜏)
− 2𝛾𝐵′(𝜏)]

𝐴 (𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)

) (
𝑑𝑐
𝑑𝜏
)

= (
0 −

𝜕𝑈

𝜕𝑐

𝑅

𝛾

𝜕𝑈

𝜕𝑐

𝑅 −(𝑐 + 𝜏)𝐵(𝜏) 𝜏 + 𝑦

)(
𝑑𝑦
𝑑𝛾
𝑑𝑅

) 

Using Cramer’s rule gives: 

𝜕𝜏

𝜕𝑦
=

𝜕2𝑈
𝜕𝑐2

[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]𝑅

Λ
 

which gives equation (8); 

𝜕𝜏

𝜕𝛾
=
𝐴
𝜕𝑈
𝜕𝑐
𝑅
𝛾 −

𝜕2𝑈
𝜕𝑐2

[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)](𝑐 + 𝜏)𝐵(𝜏)

Λ
 

which gives equation (9), and: 

𝜕𝜏

𝜕𝑅
=

𝜕2𝑈
𝜕𝑐2

[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)](𝜏 + 𝑦) − 𝐴
𝜕𝑈
𝜕𝑐

Λ
 

which gives equation (10), where: 

Λ ≡ 𝐴
𝜕𝑈

𝜕𝑐
[(𝐴 − 𝑅)

𝐵′′(𝜏)

𝐵′(𝜏)
− 2𝛾𝐵′(𝜏)] +

𝜕2𝑈

𝜕𝑐2
[(𝐴 − 𝑅) + (𝑐 + 𝜏)𝛾𝐵′(𝜏)]2 

which is negative assuming that the second order conditions for maximum are satisfied (see 

Appendix A1) and, hence, there exist implicit functions 𝜏 = 𝑓(𝑦, 𝛾, 𝑅) and 𝑐 = 𝑔(𝑦, 𝛾, 𝑅). 
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A3. Effects of an increase in n on the number of working and retired individuals 

 

Using equations (14) and (15) gives: 

𝜕𝑁𝑤
𝜕𝑛

−
𝜕𝑁𝑜
𝜕𝑛

= ∫(𝑡 − 𝑎)𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎 − ∫(𝑡 − 𝑎)𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

𝑅

𝑎=0

 

Since 
𝜕𝑙

𝜕𝑎
< 0 and 𝑡 > 𝑎, it holds that: 

𝜕[(𝑡 − 𝑎)𝑙(𝑡, 𝑛, 𝑎, 𝐴)]

𝜕𝑎
= −𝑙(𝑡, 𝑛, 𝑎, 𝐴) + (𝑡 − 𝑎)

𝜕𝑙

𝜕𝑎
< 0 

This implies that: 

∫(𝑡 − 𝑎)𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎

𝑅

𝑎=0

> (𝑡 − 𝑅)𝑙(𝑡, 𝑛, 𝑅, 𝐴)𝑅 

∫(𝑡 − 𝑎)𝑙(𝑡, 𝑛, 𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

< (𝑡 − 𝑅)𝑙(𝑡, 𝑛, 𝑅, 𝐴)(𝐴 − 𝑅) 

Hence a sufficient condition for 
𝜕𝑁𝑤

𝜕𝑛
−
𝜕𝑁𝑜

𝜕𝑛
> 0 to hold is that: 

(𝑡 − 𝑅)𝑙(𝑡, 𝑛, 𝑅, 𝐴)𝑅 > (𝑡 − 𝑅)𝑙(𝑡, 𝑛, 𝑅, 𝐴)(𝐴 − 𝑅) 

or: 

𝑅

𝐴
> 1 −

𝑅

𝐴
 

 

A4. Second-order conditions for model in Section 4 

Given consumption smoothing in (26), the first-order derivatives of the Lagrangian 

(multiplied by 𝑒𝑛𝑡 > 0 a constant) can be written as (using (11), (12), (14) and (15): 
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𝜕𝑒𝑛𝑡Γ

𝜕𝑐
= (

𝜕𝑈

𝜕𝑐
− 𝜆) (𝑁𝑤 + 𝑁𝑜)                     

𝜕𝑒𝑛𝑡Γ

𝜕𝜏
= [𝑈(𝑐) − 𝜆(𝑐 + 𝜏)]

𝜕𝑁𝑜

𝜕𝐴
𝛾𝐵′(τ) − 𝜆𝑁𝑜                     

𝜕𝑒𝑛𝑡Γ

𝜕𝜆
= 𝑦𝑁𝑤 − 𝑐(𝑁𝑤 + 𝑁𝑜) − 𝜏𝑁𝑜     

and the second-order derivatives are (after evaluating those at maximum and rewriting): 

 
𝜕2𝑒𝑛𝑡Γ

𝜕𝑐2
=

𝜕2𝑈

𝜕𝑐2
(𝑁𝑤 + 𝑁𝑜)                     

𝜕2𝑒𝑛𝑡Γ

𝜕𝜏2
=

𝜕𝑈

𝜕𝑐
𝑁𝑜 [(

1
𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜

𝜕𝐴2
− 2

1

𝑁𝑜

𝜕𝑁𝑜

𝜕𝐴
) 𝛾𝐵′(τ) +

𝐵′′(𝜏)

𝐵′(𝜏)
]                    

𝜕2𝑒𝑛𝑡Γ

𝜕𝜆2
= 0           

 
𝜕2𝑒𝑛𝑡Γ

𝜕𝑐𝜕𝜏
= 0 

𝜕2𝑒𝑛𝑡Γ

𝜕𝑐𝜕𝜆
= −(𝑁𝑤 + 𝑁𝑜)                     

𝜕2𝑒𝑛𝑡Γ

𝜕𝜏𝜕𝜆
= −[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜

𝜕𝐴
𝛾𝐵′(τ)]     

Hence, for the bordered Hessian to be positive definite and the first-order conditions being 

necessary and sufficient for a maximum, the following must hold: 

−(𝑁𝑤 + 𝑁𝑜)
2 < 0 

which always holds, and: 

−(𝑁𝑤 + 𝑁𝑜) {(𝑁𝑤 + 𝑁𝑜)
𝜕𝑈

𝜕𝑐
𝑁𝑜 [(

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

− 2
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝛾𝐵′(𝜏) +
𝐵′′(𝜏)

𝐵′(𝜏)
]

+
𝜕2𝑈

𝜕𝑐2
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)]
2

} > 0 
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For the second condition to hold it must hold that: 

(𝑁𝑤 + 𝑁𝑜)
𝜕𝑈

𝜕𝑐
𝑁𝑜 [(

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

− 2
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝛾𝐵′(𝜏) +
𝐵′′(𝜏)

𝐵′(𝜏)
]

+
𝜕2𝑈

𝜕𝑐2
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)]
2

< 0 

or: 

𝜕2𝑁𝑜
𝜕𝐴2

<
2

𝑁𝑜
(
𝜕𝑁𝑜
𝜕𝐴

)
2

+

(−
𝜕2𝑈
𝜕𝑐2

)
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)]

(𝑁𝑤 + 𝑁𝑜)
𝜕𝑈
𝜕𝑐
𝑁𝑜

2

+ (−
𝐵′′(𝜏)
𝐵′(𝜏)

)

𝛾𝐵′(𝜏)

𝜕𝑁𝑜
𝜕𝐴

 

 

The right-hand side is positive because 
𝜕𝑁𝑜

𝜕𝐴
> 0, 

𝜕𝑈

𝜕𝑐
> 0, −

𝐵′′(𝜏)

𝐵′(𝜏)
> 0 and 

𝜕2𝑈

𝜕𝑐2
< 0. This 

implies that, for the first-order conditions being necessary and sufficient for a maximum, 

there must be an upper bound on 
𝜕2𝑁𝑜

𝜕𝐴2
, or an upper bound on how longevity affects the effects 

of longevity on the number of old individuals. A sufficient condition for that is achieved by 

assuming that there is an upper bound on how longevity affects the number of old individuals 

or, by using (11), (12), and (15): 

𝜕2𝑁𝑜
𝜕𝐴2

= 𝜑𝑒𝑛(𝑡−𝐴)
𝜕𝑓

𝜕𝐴𝑎=𝐴
+ ∫ 𝜑𝑒𝑛(𝑡−𝑎)

𝜕2𝑓

𝜕𝐴2
𝑑𝑎

𝐴

𝑎=𝑅

≤ 0 

which is assumed. 

 

A5. Comparative static analysis for model in Section 4                        

Taking total difference of (27) and (28) with respect to the endogenous variables c and τ and 

the exogenous variables/parameters y and γ gives: 
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𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)𝑑𝑐 + 𝑈(𝑐)
𝜕2𝑁0
𝜕𝐴𝜕𝑛

𝛾𝐵′(𝜏)𝑑𝑛 + 𝑈(𝑐)
𝜕2𝑁𝑜
𝜕𝐴2

𝛾2𝐵′(𝜏)2𝑑𝜏

+ 𝑈(𝑐)
𝜕2𝑁𝑜
𝜕𝐴2

𝛾𝐵′(𝜏)𝐵(𝜏)𝑑𝛾 + 𝑈(𝑐)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′′(𝜏)𝑑𝜏 + 𝑈(𝑐)
𝜕𝑁𝑜
𝜕𝐴

𝐵′(𝜏)𝑑𝛾 

=
𝜕2𝑈

𝜕𝑐2
(𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)𝑑𝑐 +
𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)𝑑𝑐 +
𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)𝑑𝜏

+
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)

𝜕2𝑁0
𝜕𝐴𝜕𝑛

𝛾𝐵′(𝜏)𝑑𝑛 +
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)

𝜕2𝑁𝑜
𝜕𝐴2

𝛾2𝐵′(𝜏)2𝑑𝜏

+
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)

𝜕2𝑁𝑜
𝜕𝐴2

𝛾𝐵′(𝜏)𝐵(𝜏)𝑑𝛾 +
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′′(𝜏)𝑑𝜏

+
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝐵′(𝜏)𝑑𝛾 +
𝜕2𝑈

𝜕𝑐2
𝑁𝑜𝑑𝑐 +

𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝑛

𝑑𝑛 +
𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)𝑑𝜏

+
𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏)𝑑𝛾 

and: 

𝑁𝑤𝑑𝑦 − 𝑁𝑤𝑑𝑐 + (𝑦 − 𝑐)
𝜕𝑁𝑤
𝜕𝑛

𝑑𝑛

= 𝑁𝑜𝑑𝑐 + 𝑁𝑜𝑑𝜏 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝑛

 𝑑𝑛 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)𝑑𝜏

+ (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏)𝑑𝛾 

where it is used that 
𝜕𝑁𝑤

𝜕𝐴
= 0 (since survival probilities are constant and equal to 1 for 

𝑎 ∈ [0, 𝑅] (from (14), (12) and (11))). Rearranging and collecting terms gives: 

𝜕2𝑈

𝜕𝑐2
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] 𝑑𝑐 

−[(𝑈(𝑐) −
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏))(

𝜕2𝑁𝑜
𝜕𝐴2

𝛾2𝐵′(𝜏)2 +
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′′(𝜏)) − 2
𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] 𝑑𝜏 

= [(𝑈(𝑐) −
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏))(

𝜕2𝑁𝑜
𝜕𝐴2

𝛾𝐵(𝜏) +
𝜕𝑁𝑜
𝜕𝐴

)𝐵′(𝜏) −
𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏)] 𝑑𝛾 
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+[(𝑈(𝑐) −
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏))

𝜕2𝑁0
𝜕𝐴𝜕𝑛

𝛾𝐵′(𝜏) −
𝜕𝑈

𝜕𝑐

𝜕𝑁𝑜
𝜕𝑛

] 𝑑𝑛 

and: 

(𝑁𝑤+𝑁𝑜)𝑑𝑐 + [𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] 𝑑𝜏

= 𝑁𝑤𝑑𝑦 − (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏)𝑑𝛾 −  [(𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝑛

 − (𝑦 − 𝑐)
𝜕𝑁𝑤
𝜕𝑛

] 𝑑𝑛          

Using from (27) and (28) that: 

𝑈(𝑐) −
𝜕𝑈

𝜕𝑐
(𝑐 + 𝜏) =

𝜕𝑈
𝜕𝑐
𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)
    

𝑦 − 𝑐 = (𝑐 + 𝜏)
𝑁𝑜
𝑁𝑤

 

Gives: 

𝜕2𝑈

𝜕𝑐2
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] 𝑑𝑐 

−
𝜕𝑈

𝜕𝑐
𝑁𝑜 [(

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

− 2
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝛾𝐵′(𝜏) +
𝐵′′(𝜏)

𝐵′(𝜏)
] 𝑑𝜏 

=
𝜕𝑈

𝜕𝑐
𝑁𝑜 (

1

𝐴
+

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

−
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝐵(𝜏)𝑑𝛾 +
𝜕𝑈

𝜕𝑐
𝑁𝑜 (

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁0
𝜕𝐴𝜕𝑛

−
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

)𝑑𝑛 

and: 
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(𝑁𝑤+𝑁𝑜)𝑑𝑐 + [𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] 𝑑𝜏

= 𝑁𝑤𝑑𝑦 − (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏)𝑑𝛾 

−  (𝑐 + 𝜏)𝑁𝑜 (
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

 −
1

𝑁𝑤

𝜕𝑁𝑤
𝜕𝑛

)𝑑𝑛                   

where the health care production function in (19) is used. The equation system in matrix terms 

is therefore: 

(

  
 
𝜕2𝑈

𝜕𝑐2
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] −
𝜕𝑈

𝜕𝑐
𝑁𝑜 [(

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

− 2
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝛾𝐵′(𝜏) +
𝐵′′(𝜏)

𝐵′(𝜏)
]

(𝑁𝑤+𝑁𝑜) [𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] )

  
 
(
𝑑𝑐
𝑑𝜏
)

=

(

  
 0

𝜕𝑈

𝜕𝑐
𝑁𝑜 (

1

𝐴
+

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

−
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝐵(𝜏)
𝜕𝑈

𝜕𝑐
𝑁𝑜 (

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁0
𝜕𝐴𝜕𝑛

−
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

)

𝑁𝑤 −(𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏) −  (𝑐 + 𝜏)𝑁𝑜 (
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

 −
1

𝑁𝑤

𝜕𝑁𝑤
𝜕𝑛

)
)

  
 
(
𝑑𝑦
𝑑𝛾
𝑑𝑛

) 

Using Cramer’s rule gives: 

𝜕𝜏

𝜕𝑦
=

𝜕2𝑈
𝜕𝑐2

[𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)]𝑁𝑤

Ψ
 

which gives equation (29), and: 

𝜕𝜏

𝜕𝛾
= −

{
 
 

 
 
(𝑁𝑤+𝑁𝑜)

𝜕𝑈
𝜕𝑐
𝑁𝑜 (

1
𝐴 +

1
𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

−
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝐵(𝜏)

+
𝜕2𝑈
𝜕𝑐2

[𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏)}
 
 

 
 

Ψ
 

which gives equation (30), and: 
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𝜕𝜏

𝜕𝑛
= −

{
 
 

 
 

(𝑁𝑤+𝑁𝑜)
𝜕𝑈
𝜕𝑐
𝑁𝑜 (

1
𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁0
𝜕𝐴𝜕𝑛

−
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

)

+
𝜕2𝑈
𝜕𝑐2

[𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] (𝑐 + 𝜏)𝑁𝑜 (
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

 −
1
𝑁𝑤

𝜕𝑁𝑤
𝜕𝑛

)}
 
 

 
 

Ψ
 

which gives equation (31), where: 

Ψ ≡ (𝑁𝑤+𝑁𝑜)
𝜕𝑈

𝜕𝑐
𝑁𝑜 [(

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

− 2
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝛾𝐵′(𝜏) +
𝐵′′(𝜏)

𝐵′(𝜏)
]

+
𝜕2𝑈

𝜕𝑐2
[𝑁𝑜 + (𝑐 + 𝜏)

𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)]
2

 

which is negative assuming that the second order conditions for maximum are satisfied (see 

Appendix A4) and, hence, there exist implicit functions 𝜏 = 𝑓(𝑦, 𝛾, 𝑛) and 𝑐 = 𝑔(𝑦, 𝛾, 𝑛). 

 

A6. The results assuming a CRRA utility function 

As is discussed in Hall and Jones (2007), a constant relative risk aversion utility function with 

the elasticity of intertemporal substitution less than one is most common in quantitative macro 

models. Assuming such a function results in the level of utility being negative and, hence, 

Hall and Jones (2007) propose a non-homothetic constant relative risk aversion utility 

function:  

𝑈(𝑐(𝑎)) = 𝜈 +
𝑐(𝑎)1−𝜎

1 − 𝜎
                                                                             

where ν>1 and σ>1 (and elasticity of intertemporal substitution less than one 
1

𝜎
< 1). Since 

allocation in our model depends on the level of utility, it is important to make sure that 
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assuming this utility function does not change the conclusions drawn from the analysis in 

chapters 4-6 above.
23

  

Using the utility function, the social planner’s optimal condition for spending on old-age 

health care in equation (27) becomes 

(𝜈 +
𝑐1−𝜎

1 − 𝜎
)
𝜕𝑁0
𝜕𝐴

𝛾𝐵′(𝜏)  = 𝑐−𝜎(𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏) + 𝑐−𝜎𝑁𝑜(𝑡, 𝑛, 𝑅, 𝐴) 

and he comparative static analysis for the golden rule allocation in equation (29)-(31) are the 

following: 

𝜕𝜏

𝜕𝑦
=

−𝜎𝑐−𝜎−1 (𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏))𝑁𝑤

Ψ
> 0 

𝜕𝜏

𝜕𝛾
= −

{
 
 

 
 
(𝑁𝑤 + 𝑁𝑜)𝑐

−𝜎𝑁𝑜 (
1
𝐴 +

1
𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

−
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝐵(𝜏)

−𝜎𝑐−𝜎−1 [𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝐵(𝜏)}
 
 

 
 

Ψ
⋛ 0 

𝜕𝜏

𝜕𝑛
= −

{
 
 

 
 

(𝑁𝑤+𝑁𝑜)
𝜕𝑈
𝜕𝑐
𝑁𝑜 (

1
𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁0
𝜕𝐴𝜕𝑛

−
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

)

−𝜎𝑐−𝜎−1 [𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)] (𝑐 + 𝜏)𝑁𝑜 (
1
𝑁𝑜

𝜕𝑁𝑜
𝜕𝑛

 −
1
𝑁𝑤

𝜕𝑁𝑤
𝜕𝑛

)}
 
 

 
 

Ψ
⋛ 0 

where: 

Ψ ≡ (𝑁𝑤 + 𝑁𝑜)𝑐
−𝜎𝑁𝑜 [(

1

𝜕𝑁𝑜
𝜕𝐴

𝜕2𝑁𝑜
𝜕𝐴2

− 2
1

𝑁𝑜

𝜕𝑁𝑜
𝜕𝐴

)𝛾𝐵′(𝜏) +
𝐵′′(𝜏)

𝐵′(𝜏)
]

− 𝜎𝑐−𝜎−1 [𝑁𝑜 + (𝑐 + 𝜏)
𝜕𝑁𝑜
𝜕𝐴

𝛾𝐵′(𝜏)]
2

< 0 

                                                           
23

 In fact, this utility function can be seen as a special case of the utility function in (18) assuming that the utility 

level is positive 𝑈(𝑐(𝑎)) > 0 and, hence, using the utility function proposed in Hall and Jones (2007) should not 

change the results and conclusions drawn. 
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while the individual’s optimal condition for spending on old-age health care in equation (41) 

becomes: 

(𝜈 +
𝑐1−𝜎

1 − 𝜎
) [ ∫ 𝑒−𝑟𝑎

𝜕𝑓

𝜕𝑎
𝑑𝑎

𝐴

𝑎=𝑅

] 𝛾𝐵′(𝜏)  = 𝑐−𝜎 [ ∫ 𝑒−𝑟𝑎𝑓(𝑎, 𝐴)𝑑𝑎

𝐴

𝑎=𝑅

] 

Hence, these to not change the results and conclusions drawn. 
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