
Modular and Generic IoT Management on the Cloud

Konstantinos Douzis

Department of Electronic and Computer Engineering,
Technical University of Crete (TUC)
Chania, Crete, GR-73100, Greece

e-mail: kostasdouzis@gmail.com

Stelios Sotiriadis

Department of Electronic and Computer Engineering,
Technical University of Crete (TUC)
Chania, Crete, GR-73100, Greece

e-mail: s.sotiriadis@intelligence.tuc.gr

Euripides Petrakis

Department of Electronic and Computer Engineering,
Technical University of Crete (TUC)
Chania, Crete, GR-73100, Greece

e-mail: petrakis@intelligence.tuc.gr

Cristiana Amza

The Edward Rogers Sr. Department of Electrical and Computer Engineering,
University of Toronto, Bahen Centre for Information Technology

St. George Campus, 40, Toronto, ON M5S 2E4, Canada
e-mail: amza@ece.utoronto.ca

Abstract

Cloud computing and Internet of the things encompasses various physical
devices that generate and exchange data with services promoting the inte-
gration between the physical world and computer-based systems. This work
presents a novel future Internet cloud service for data collection from Internet
of the things devices in an automatic, generalized and modular way. It in-
cludes a flexible API for managing devices, users and permissions by mapping
data to users, publish and subscribe to context data as well as storage capa-
bilities and data processing in the form of NoSQL big data. The service has
been implemented in OpenStack platform and is easily deployable, reusable

Preprint submitted to Future Generation Computer Systems May 21, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/154422685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and reconfigurable. The contributions of this work includes the on the fly
data collection from devices that is stored in cloud scalable databases, the
vendor agnostic Internet of things device connectivity (since it is designed to
be flexible and to support device heterogeneity), and finally the modularity
of the event based publish/subscribe service for context oriented data that
could be easily utilized by third party services without worrying about how
data are collected and stored and managed.

Keywords: Cloud computing, Internet of Things, FIWARE

1. Introduction

Over the years various services and applications have been developed in
the concept of future Internet (FI) (9), (17). In particular such services
are available by different cloud platform nodes such as FIWARE lab1 that
is a non-commercial sandbox environment. The services follow the form of
RESTFul architecture (14) that allow to talk to each other easily and in a
decoupled way. In addition, the Internet of Things (IoT) involves various
sensors that are embedded to every day devices ans monitor data produced
by humans or by the environment in an automatic way (20). The combi-
nation of cloud computing and IoT generates a new opportunity for wide
discovery (18) and such data, since more and more FI applications are avail-
able. The development of such applications that are using cloud resources
becomes more efficient (scalable storage) and create a significant impact on
the economic benefits e.g. because of cloud elasticity and pay on demand
model (11). In addition, the data transmission speed and the large volume
of data (since cloud has the ability to store and process it) makes it even
more attractive.

In this work we focus on the FI concept and especially on the FIWARE
platform2 that offers public services followed by simple application program-
ming interfaces (APIs) to facilitate the process of developing smart appli-
cations. FIWARE motivates new entrepreneurs and software developers to
implement such applications in health, environment and smart city concepts
by providing Generic Enablers (GEs) (3) that are the building blocks of FI
applications (20). In the general concept of a smart city many IoT devices

1https://www.fiware.org/lab/
2https://www.fiware.org

2

and sensors are associated with cloud computing services. For example in
cases of data processing produced in order to avoid natural disasters (fires,
floods, etc.), control of environmental conditions, energy saving, control of
patient status and other. The sheer volume of data generated by sensors, has
forced the transfer of the Internet of Things concept entirely on cloud com-
puting since traditional systems could not handle the large volume of data
as well as to guarantee remote access to other systems, e.g. for integration
purposes.

The FIWARE lab3 provides software to developers that use such services
to develop smart applications/services within the smart city and thus includ-
ing idea of the Internet of Things. Already in recent years, the community of
FIWARE has taken important steps in the development of such services that
help in creating more complex applications, however all these services are ori-
ented with vendors, IoT devices and protocols. Having said that, this work
proposes a Sensor Data Collection (SDC) cloud service that focuses on the
problem of collecting data from different devices and their sensors, thus mov-
ing to a vendor agnostic solution. SDC developed as a gateway among IoT
devices and cloud, enabling the collection of the different sensor signals that
are eventually send to various other services. The service is designed to be
extensible and generalized, so IoT devices could be easily connect and com-
municate without any programming intervention. Also, it is modular based
on the service oriented architecture (2), that allows (a) support of multiple
sensors belonging to different domains (for example medical, environmental
etc.), and (b) support of network gateway devices.

The work is ordanized as follows. Section 2 presents the motivation and
Sections 3 the related approaches to this study, Section 4 demonstrates the
architecture of the SDC service, Section 5 presents an analysis of the im-
plementation aspects and demonstration of the service API and Section 6
present the experimental analysis based on the simulation of two IoT devices
that are (a) the Netatmo environmental sensor4 and the Zephyr HxM Blue-
tooth Heart Rate Monitor medical sensor5. Finally, in Section 7 we conclude
with the summary of this work and the future research directions.

3https://www.fiware.org
4https://www.netatmo.com/en-US/site
5http://www.zephyranywhere.com

3

2. Motivation

This work is based on FIWARE that is a non-commercial platform that
offers general purpose services called Generic Enablers (GEs) that are in the
form of APIs. In particular, GEs are provided by cloud computing infras-
tructure as SaaS (4) and if combined can constitute a special-purpose service
called Specific Enablers (SEs), which could be used for developing solutions
for more complex problem. FIWARE enables developers to obtain services
as infrastructure (IaaS), creating virtual machines and allocating computing
resources in the FIWARE lab (23).

FIWARE lab is based on the Openstack (5) platform that is an open
source software, which allows the creation of a cloud computing systems.
The latter are designed according to Openstack standards, thus consisting
of a centralized architecture encompassing various smaller pieces of services
that are responsible for controlling and managing the high volume computing
resources (16). In this work we utilize and OpenStack system and FIWARE
GEs to propose an architecture for a sensor data collection service on the
cloud. The solution is modular, decentralized and reusable (19) thus allows
IoT devices to easily to attach over the service. We are motivated by the
works in publish/subscribe systems in clouds and inter-clouds as in (1), (8),
(22), (7), (10) and (15).The basic characteristic of the proposed service is the
simplicity of use at any time requested by the user. Such reusable services are
very important in a cloud computing because it allows developers to model
complex systems. Another important advantage is the modularity, that is to
say the replacement of one individual service (GE) in case of a new version
or a failure.

We implement our service within the IoT concept based on a service
centric architecture as in (6) that is based on the fact that a large problem
can be solved optimally and efficiently if it is divided into smaller parts. The
advantages of such modular architectures are:

i. The services are reusable and can be made available on a larger scale.

ii. It provides faster and more efficient debugging and leading to improved
fault tolerance.

iii. It involves shorter time with regards to the distribution of new products
and applications.

iv. The services are not bounded to the system, thus can be easily replaced.

v. In case of integrating to a new system it does not require changes to the
internal procedures of the service.

4

The SDC service has been developed in the form of the so called protocol
adapters6 that are implementations developed specifically for communication
protocol (for example Wi-Fi, ZigBee, Bluetooth, etc.) as well as for specific
devices. These services provide APIs, with functionalities such as data send-
ing and alerting in case that a stimulus is generated from the systems. Also,
it is possible to retrieve the characteristics of a device. Usually, the resulting
response in a method that calls the service API is a standard data JSON
(JavaScript Object Notation).

In this work we aim to develop a more generalized service that will allow
data collection and storage from various IoT devices without worrying about
protocols or device specifications. Thus, we aim to ”transform” sensors to
flexible APIs so data could easily be flown over the Internet to other services.
Two main issues that the SDC service is focused are as follows.

i. The issue of having many different communication protocols between
devices and network gateway. The main communication protocols on
modern sensors are the Wi-Fi, Bluetooth, ZigBee, etc. Thus there is
a need for a service that implements interfaces according to these stan-
dards, so to allow easily integration and communication between services
and IoT devices.

ii. There is a huge variety of devices because companies provide proprietary
APIs to collect data from the sensors, so the implementation of a service
for commercial sensors seems quite tricky.

iii. The large volume of data produced by devices requires a new solution
for scalable data storage. In addition, big data that are collected from
different devices have different schemas thus a more sophisticated way is
required for data storage.

The motivation of our work is based on the fact that to the best of
our knowledge there is not a FIWARE service capable of managing, storing
and sharing information in such way. Users who use this service may be
persons, services and applications developed in FIWARE and other develop-
ment environments. The proposed solution manages users and sensors for the
immediate updating and subscribes users on data updates for each sensor.
The basic functions supported are (a) add, remove and update sensors by
the administrator, (b) add, remove and update user subscriptions, (c) add,

6http://catalogue.fiware.org/enablers/protocol-adapter-mr-coap

5

remove and update user rights in sensors assistance from the administrator,
(d) update subscribers’ sensors, (e) identification and delete users from the
administrator and (f) database support with historical data belonging to
different sensors.

Having said that, the contribution of this work includes the following.

i. The proposed architecture is dynamic and expandable, for example it
could be easily integrated with services such as data analysis and pro-
cessing.

ii. The service it self it could be used easily, is generalized to support multi-
ple IoT devices and protocols and provides a flexible RESTFul API (14).
This allows third party services and users to take advantage of the cloud
technology and subscribe to IoT devices and their data remotely and on
demand.

iii. The service is modular by separating front-end (IoT devices) and back-
end (cloud system) and supports big data storage since it includes a
scalable NoSQL database.

iv. It is compatible with any any service that supports a REST API e.g.
with FIWARE services, thus it hides the internal service implementation
details, its stateless and therefore easily scalable and provides loosely
coupling.

Next Section 3 presents the works and technologies directly related with
our study.

3. Related Works

As mentioned before, FIWARE platform provides software developers the
necessary tools to build FI applications within the context of the smart city
and of the IoT. FIWARE offers important benefits over the traditional sys-
tems including (a) elasticity as the platform could allow various levels of
resource provisioning, (b) there is no need for software updates and main-
tenance, (c) increase accessibility and collaboration in terms of availability
of services to 3rd party users and developers, (d) centralized security of-
fered by the FIWARE platform (21) , (e) remote access from everywhere and
anywhere through its powerful API that allows technology shift to seamless
application development, and (f) customization and user tailored orientation
through user personalized features (e.g., shared cloud storage collections for
users) as described in (19) and (13).

6

In this work we utilize the following FIWARE GEs in order to integrate
our solution:

i. Identity Management GE: This service covers certain aspects of users’
access to networks, services and applications. Moreover, it is used for
the authentication of third party service so to gain access to personal
data stored in a secure environment. The KeyRock identity manage-
ment7 includes REST API interfaces for use by application developers.
In our case the SDC service must register to the the KeyRock identity
manager. It provides secure and private authentication from users to de-
vices, networks and services, authorization and trust management, user
profile management, privacy preserving disposition of personal data, Sin-
gle Sign-On (SSO) to service domains and Identity Federation towards
applications. Identity Management is used for authorizing foreign ser-
vices to access personal data stored in a secure environment.

ii. JSON Storage GE: This GE supports information storage in JSON for-
mat through more abstract base type Mongo DB8. The service includes
an API designed based on REST architecture. This GE provides NoSQL
database management services through a REST API. Its users can per-
form CRUD (Create-Read-Update-Delete) operations on resources by
using the basic HTTP methods (POST, GET, PUT, DELETE). In ad-
dition, it allows users to query over the stored resources.

iii. Publish/Subscribe Context Broker-Orion Context Broker GE9: The Orion
Context Broker provides a publish/subscribe mechanism. Using the
Orion Context Broker, users can subscribe to context elements (e.g.,
a room whose temperature and atmospheric pressure are measured) and
get updated on context changes. In addition, they can use predefined
conditions (e.g., an interval of time has passed or the context element?s
attributes have changed) so they get context updates only when the con-
dition is satisfied. This module allows users to subscribe to other users
gesture collections to use them for building applications or to subscribe
to a user who is broadcasting information.
In this work we utilize the subscription request solution and we create

7http://catalogue.fiware.org/enablers/identity-management-keyrock
8https://www.mongodb.org
9http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-orion-context-

broker

7

a different entity for each sensor added to the system. Then users have
the ability to make subscriptions to many features that are mapped to
different sensors. In addition, by setting predetermined time interval or
configure an on change paramater they can get data directly from the
context broker. After a successful subscription, the user receives a re-
sponse from the context broker with a unique subscription identification
(id) since the system supports multiple requests from different users.

iv. Event Service Specific Enabler10: This SE is based on two entities namely
as event senders and event receivers. The event senders are responsible
for sending events in the SE and the event receivers (brokers) can make
subscriptions to the SE. The Event Service model is demonstrated in
Figure 1 and it supports publishing data in REST and XML-RPC for-
mat. This service is similar to the context broker and uses an API with
graphical user interface support. However, security considerations have
resulted in the extension of the service, as the current version does not
guarantee the security of potentially sensitive data and how is managed
and stored.

Figure 1: Event Service SE modular architecture

Also, it does not necessarily ensure data security due to non-use en-
cryption algorithms (AES) for local storage. By contrast, during the
conceptualization of the SDC model we use specific services offered by

10http://fistarcatalogue.fiware.eng.it/enablers/event-service

8

the FIWARE platform for the identification of users and data storage
to ensure system security. By using remote storage e.g. utilizing the
JSON Storage GE the SDC service made possible the creation of a pub-
lic archive, where all instances can be accessed by the service. This was
not possible in the Event Service GE because of the local storage. There-
fore, the main differences of the SDC service with service Event Service
GE are:

i. Identification of users who have an account in the FIWARE
ii. Remote Storage data service using a special storage service

iii. Ability licensing sensors, as not every user can be subscribed to spe-
cific sensors that determine the ”administrator” of the ”snapshot.”

4. Architecting the Sensor Data Collection (SDC) Cloud Service

This section presents the reference architecture (Section 4.1) as a best
practice model for IoT systems, the SDC architecture that derives from the
reference model (Section 4.2) and the identification of the possible users
(Section 4.3).

4.1. Reference Architecture

The reference architecture follows the service centric conceptualisation
model as presented in (13). The reference architecture modules include pro-
ducers (IoT devices), front-end (data collectors), back-end (resources for data
storage and analysis) and consumers (third party users) and it is demon-
strated in Figure 2.

Figure 2: The reference architecture for sensor data collection in IoT systems

9

The architecture is divided into four parts that interact with each other
in order to implement a generic IoT solution. The architecture parts are (a)
the producers that include sensors that generate the information (e.g. data
collection), (b) the front-end side, that plays the role of a gateway between
the data sent by the sensor and the data managed by the application, (c) the
back-end is the actual system and includes the general purpose services for
user authentication, create subscription, data storage application and other
(these integrate the application logic, which makes use of standards, controls
and conditions for the transfer of information on individual services) and (d)
the consumers are either end users or other applications that communicate
with the SDC API. The architecture of the SDC service is derived from the
reference model and is described bellow.

4.2. Architecture of the Sensor Data Collection (SDC) Cloud Service

This section presents the architecture of the SDC service that is based
upon the following concepts.

i. Requires to maintain user data security based on validated user identifi-
cation service.

ii. Provides scalable remote storage of user data, sensors and licenses by
using a JSON storage service for secure and quick retrieval of data stored
in the service.

iii. It is build upon the RESTFul architecture for efficient and flexible com-
munication with other services. This will facilitate the development of
more complex services and applications with extra functionality. Also it
uses the JSON standard for information exchange.

iv. It exploits the benefits of cloud computing in the development of services
such as elasticity, flexibility, and low infrastructure and maintenance
costs.

To design the system we use the top-down approach, that is to begin with
the overall system architecture and then analyze in detail the subsystems that
compose it (2). The overall architecture is derived from the reference archi-
tecture and consists of different modules. The user interface (Front-End)
connected directly to the system management interface (Back-End) and fol-
low Users (Users) application following the conceptual model of Figure 2.
Starting with the front-end this part is responsible for the connection of sen-
sors and export of data to the cloud. As mentioned in the introduction,
the communication protocol used by the sensors to communicate with the

10

SDC service varies from sensor to sensor, thus it is necessary to use a mech-
anism that will properly encode the data according to the standards set by
the SDC service. This part includes the service functions implemented as
insert/delete/update description of sensors and connect/disconnect of sen-
sor. It further includes the method by which data are sent and related with
administrator rights.

The back-end part is the system management interface that consists of
general purpose services that we develop for the processing and storage of
data and are the same for all sensors that interact with the system. More
specifically, these are the Publish/Subscribe Orion Context Broker GE and
JSON Storage GE (12), which is responsible for managing user subscriptions
and storing information and data respectively. Furthermore, this part con-
tains the mechanism for identification of users that enter the application,
for example the KeyRock Identity Management GE. Finally the Application
Logic orchestrates the transferring of the information to the appropriate in-
dividual parts (storage, identification and information manager). Figure 3
demonstrate the detailed architecture of the service. The four segments in-
clude user identification (authentication process), management information
framework (context management), application logic and storage.

Figure 3: The sensor data collection service architecture

11

The modules of Figure 3 are described as follows.

i. The user identification (authentication) takes place on two levels, first
through KeyRock Identity Management GE and then through the SDC
service. In fact, the system administrator is responsible for identifying
the consumer to access the functions of the SDC. This is due to the fact
that the administrator should have full control of the snapshot system
created.

ii. The context nanagement module ensures all the necessary processes such
as creation of entity sensor (entity creation process), entity framework
renewal (update context), create/update/delete user subscriptions and
entity deletion/sensor. All these functions are included in RESTFul API
offered by the publish subscribe Orion Context Broker GE.

iii. The application logic module includes the control, regulation and neces-
sary API calls that the system is operating.

iv. The storage is used to store information about users (administrator and
consumers), sensors and additional stored data history that have been
sent from a sensor and user subscriptions history.

An important aspect of a generic IoT system is the orchestration of users
with regards to their privileges for data accessibility. Next Section 4.3 details
such conceptualization.

4.3. Users Orchestration

Here we identify the various user catagories that interact with the SDC
and are either persons or IoT devices. Also we include services and appli-
cations that require to integrate functions of the SDC service in their own
functionality offered via the API. In particular, users entering the system are
twofold; the manager and the consumer. The first user who enters the system
automatically receives administration rights, that is responsible for entering
data into the system, as well as the management of sensors and users. The
manager is therefore unique for each snapshot (instance) of the SDC service.
On the other hand, the consumer is able to collect data from several sensors
simultaneously or when sensors change some features (attributes) either on
a threshold change or based on an interval. The user accessibility require-
ments are divided among managers and consumers and depending on the
functionality that the developer want to map to each user.

Initially the manager is enrolled into the cloud platform and is the first
user who logs into the system. In includes the following parameters.

12

i. It is unique for each snapshot of the SDC service and is responsible for
the identification of users after the users have been identified by KeyRock
IDM GE. If the user is not identified by the ”manager” has no access to
any function the API.

ii. It has the possibility of fixing permits the sensors to allow certain users
to make contribution to specific sensors. Permission each sensor can
include multiple users simultaneously and is unique.

iii. It has the possibility of accessing all sensors. It can also renew or delete
the subscription. In case of renewal can only change the type of sub-
scription and not the sensor data that wants to be informed.

iv. It is responsible for sending the data of the sensors in the system sensors
management module.

v. It provides to connect or disconnect sensors in the system

vi. It recovers the schema of all connected sensors or a particular sensor.

vii. It creates a new sensor schema or deletes a particular sensor schema.

viii. It provides renewal of a particular sensor schema or recovers a specific
sensor schema.

ix. It recovers all schemas of sensors and it provides recovering history of a
particular schema.

The users management module includes the following parameters.

i. It provides recovery of all users of this ”snapshot”.

ii. It provides identification of a particular user to access the SE ”con-
sumer”.

iii. It deletes a specific ”consumer” of the SDC service.

iv. It provides recovery of all identified ”consumer”.

v. It provides retrieval of all unidentified ”consumers”.

vi. It authorizes a ”consumer” with rights ”administrator” and change rights
of ”manager” with rights ”consumer”.

The subscription management module includes the following parameters.

i. It retrieves all contributions made by all users.

ii. It recovers a specific subscription of a ”consumer”.

iii. It deletes a specific subscription of a ”consumer”.

iv. It creates a new own subscription.

v. It provides recovery mechanism.

13

vi. It deletes its own subscription.

vii. It provides renewal of its own subscription.

The license management module regards the permissions of users and it
includes the following parameters.

i. It creates a license for a particular sensor.

ii. It recovers a license of a particular sensor.

iii. It deletes a license of a particular sensor.

iv. It permits renewal of a particular sensor.

The sensors data management module regards the permissions of users
and it includes the following parameters.

i. Identifying the email address and password of the ”manager”, it is pos-
sible to send sensor data to the system.

ii. Recovery of data sensors depending on the contribution it has made.

The consumers are also enrolled into the cloud platform and their role
includes the following parameters.

i. To access any of the following functions to be initially identified by Key-
Rock Identity Mangement GE with the email address and password, and
secondly from the ”manager” of the ”snapshot (instance).

ii. To make a sybscription to the sensor data will first need to have the
permission of the ”manager”

iii. Has the possibility of subscription to all sensors depending on the man-
ager aproval. It can also renew or delete the subscription. In case of
renewal can only change the type of assistance and not the sensor data
that wants to be informed.

iv. It is the user who has the right to subscribe sensors, for which he has
been given permission from the ”manager”. There is the possibility of
sending data of the sensors in the system.

The consumers sensor management module includes the following param-
eters.

i. Recovery of shapes all connected sensors

ii. Recover the shape of a particular associated sensor

iii. Recover a specific sensor shape

14

iv. Recover all shapes of sensors

v. Recovering history of a particular sensor

The consumers subscription management module includes the following
parameters.

i. Create a new own assistance

ii. Recovery of own contribution

iii. Delete its own assistance

iv. Renewal of its own assistance License Management (Permissions Man-
agement)

v. Recovery licenses for a particular sensor

The consumers data management module includes the following parame-
ters.

i. Recovery of data sensors depending on the subscriptions it has made.

Next Section 5 details the implementation aspects and configurations of
the SDC service.

5. Implementation of the Sensor Data Collection Cloud Service

This section presents the implementation of the solution and the REST-
Ful API. We detail the methods and the functionality that each of which
performs. To characterize the API, we classify its functionalities into five
categories similar to the requirements analysis phase. These categories of
the API methods are (a) the management of sensors, (b) the management of
users, (c) the management of subscriptions,(d) the management of licenses
and (e) the management of sensor data. Finally, we present a discussion of
the implementation of the user authentication functionality.

5.1. Management of sensors

This section presents the functionalities of the module related with the
management of devices (and their sensors) e.g. on how to create, read, update
and delete sensors. These are presented in the form of the method (e.g. GET
/sensors) and the explanation of its functionality.

• GET /sensors

15

(1) It check if the user is identified by the manager, the HTTP call is
GET http://URL:3000/users/public_user/dbs/Predefined

Sensors/collections/predefinedSensors/records to the JSON
Storage GE for retrieving the available schemes of the sensors. In
case of a call failure, the system replies back with a CurlException
type error.

(2) The method returns the result of the call to the user.

• GET /sensors/sensorId

(1) It checks if the user is identified by the manager.

(2) It check if there is a sensor with unique identifier sensorId at http:
//URL:3000/users/public_user/dbs/PredefinedSensors/

collections/predefinedSensors/finds. If there is a result this
returns to the user, otherwise the system responds with Not-
FoundException type error.

• POST /sensors

(1) It checks if the user is the administrator.

(2) It checks if the data received by the SDC via POST, are in JSON
format and additionally in the form determined by the user. The
data in this method should be of the form: ”name”: ”Atmo”, ”at-
tributes”: [”name”: ”temperature”, ”type”: ”celsius”, ”name”:
”pressure”, ”type”: ”bar”] In this example Atmo is the sensor
name followed by the characteristics of which the user takes mea-
surements. Also the method checks if the names of the features
are unique to avoid a mistake on possible errors of such a feature.
If the data are not in JSON format system responds with JsonEx-
ception type error and if they are not in the above format or the
names of features are not unique it replies with DataFormatEx-
ception type error.

(3) The system automatically given a unique identifier (id) for this
sensor, so that we can have multiple sensors of the same type for
example for sensor named as Atmo will assign a different identifier
e.g. Atmo1.

(4) After hte call is made at http://URL:3000/users/public_user/
dbs/PredefinedSensors/collections/predefinedSensors

16

http://URL:3000/users/public_user/dbs/Predefined
Sensors/collections/predefinedSensors/records
http://URL:3000/users/public_user/dbs/ PredefinedSensors/
http://URL:3000/users/public_user/dbs/ PredefinedSensors/
collections/predefinedSensors /finds
http://URL:3000/users/public_user/dbs/PredefinedSensors/collections/predefinedSensors
http://URL:3000/users/public_user/dbs/PredefinedSensors/collections/predefinedSensors

/records. The POST method is in the JSON Storage GE and
the sent (e.g. to insert a new sensor) are stored in the collection
predefined sensors that is a collection available to all users so to
avoid duplicate entries of the same sensors. In case of any error
in the method call the JSON Storage GE system responds with
CurlException type error. In case of a successful POST call, the
system responds with message ”response”: ”The sensor added
successfully”.

• PUT /sensors/sensorId

(1) It checks if the user is the system administrator.
(2) It check if the sensor with unique ID (sensorId), is in the collection

predefinedSensors. If not, the system replies with NotFoundExcep-
tion type error.

(3) If the sensor ID sensorId is connected, the system responds with
NotAllowedException type error. If it is not connected it checks
the data received from the user. Also, if it is in the form of JSON
or it is not in the form determined by the user (according to
the sensor schema) the system responds with aJsonException or
DataFormatException respectively. The user data must be in the
following JSON form: ”name”: ”Atmo”, ”attributes”: [”name”:
”temperature”, ”type”: ”celsius”, ”name”: ”pressure”, ”type”:
”bar”]

(4) If the data is in accordance with the specifications then the service
refreshes the schema of the sensor to collect predefinedSensors of
JSON storage GE and the system responds with ”response”:”The
sensor updated successfully”.

• DELETE /sensors/sensorId

(1) It checks if the user is the administrator.
(2) It checks if the sensor with unique ID (sensorId), is at the collec-

tion predefinedSensors. If not then the system replies with Not-
FoundException type error.

(3) If the sensor ID (sensorId) is validated correctly, then the system
deletes the connected sensor from the collection connectedSensors
and from the collection predefinedSensors. If deleted without er-
ror the system ”reponds ”response”: ”Sensor has been deleted
successfully”, otherwise it displays a CurlException type error.

17

/records

• GET /connected/sensorId

(1) It checks if the user is identified by the manager.

(2) It checks if the sensor with unique ID (sensorId), is at the collec-
tion connectedSensors. If not the system replies with NotFoundEx-
ception type error. If there a result, the particular sensor is dis-
played to the user.

• GET /connected

(1) It checks if the user is identified by the manager.

(2) It makes a call the the JSON storage and its connectedSensors
collection and the result of the call is displayed to the user. If
there is an error the system responds with CurlException type
error.

• DELETE /connected/sensorId

(1) It checks if the user is manager.

(2) It checks if the sensor with unique ID (sensorId), belongs at the
collecting connectedSensors. If not the system replies with Not-
FoundException type error. If there a result, the particular sensor
is displayed to the user.

(3) After the call is directed to the JSON Storage GE for deletion from
the collection connectedSensors. In case of an error, the system
responds with a CurlException type error.

(4) Then the method deletes the entity of this sensor from the Con-
text Broker GE by making a call at http://URL:1026/NGSI10/

contextEntities/{id} with id the sensor that the user wants to
delete. If the deletion was successful then the system responds
with ”response”: ”The connected sensor deleted successfully”. In
case of an error in the call to the Context Broker GE system it
responds with CurlException type error.

• /sensors/sensorId/log

(1) It checks if the user is the manager.

(2) It checks if the sensor with unique ID (sensorId), belongs at the
collecting connectedSensors. If not the system replies with Not-
FoundException type error. If there a result, the particular sensor
is displayed to the user.

18

http://URL:1026/NGSI10/contextEntities/{id}
http://URL:1026/NGSI10/contextEntities/{id}

(3) Then the method makes a call is in JSON Storage GE based on
the log collection and the sensor id so the data is displayed to the
user. In case of an error in the call it responds with CurlException
type error.

5.2. Management of users

This section presents the functionalities of the module related with the
management of users e.g. on how to create, read, update and delete users.
These are presented in the form of the method (e.g. GET /users) and the
explanation of its functionality.

• GET /users

(1) It checks if the user is the manager.

(2) It makes a call in the JSON Storage GE and in the collection of
users Base Users, the method displays all the users of that snap-
shot. In case of an error in the call it responds with CurlException
type error.

• GET /user/userId

i. It checks if the user is the manager.

ii. It checks if the user with unique ID userId, is in the collection
users. In case of an error in the call it responds with NotFoundEx-
ception type error.

• POST /user/admin

(1) It checks if the user is the manager.

(2) It checks if the data sent by the user by calling the POST method
in the form of JSON and according to the system specifications.
User data must be of the form: ”email”: ”123@gmail.com”

(3) It checks if the email that gives the user exists in the collection of
users via a call on JSON Storage GE. If there is no user by email
the system responds with NotFoundException type error. If there
is an error in the validation of the user from the administrator, the
system responds with InvalidTypeException type error. In case of
a successful call to get users from JSON Storage GE, the sys-
tem change the rights for an administrator to consumer based on
the given email and it displays back to the user the message ”re-
sponse”: ”The change of administrator completed successfully”.

19

• GET /users/unauthorized

(1) It checks if the user is the manager.
(2) It makes a call to the JSON Storage GE collection Base Users,

and the system displays all users that are authorized. In case of
an error in the call it responds with CurlException type error.

• GET /users /authorized

(1) It checks if the user is the manager.
(2) It makes a call to the JSON Storage GE collection Base Users,and

the system displays all users that are authorized. In case of an
error in the call it responds with CurlException type error.

• POST /user /authorize

(1) It checks if the user is the manager.
(2) Check if the data sent by the user by calling the POST method

in the form of JSON and according to the system specifications.
User data must be of the form: ”email”: ”123@gmail.com”

(3) Check if the email that gives the user exists in the collection of
users via a call on JSON Storage GE. If there is no user by email
the system responds with NotFoundException type error. If you
find a user with this email then it checks if it is the manager or is
identified by the manager as a consumer. If it is not one of both,
the system responds with NotAllowedException type error. Then,
in a successful call to collect users from the JSON Storage GE, it
identifies the consumer with the email and displays back to the
user the message ”response”: ”User has been authorized”.

• DELETE /user/userId

(1) It checks if the user is the manager.
(2) It checks if the user with unique ID userId in the collection users.

If not, then the system replies with NotFoundException type error.
If there is then it checks if the user is consumer or administrator.
If is manager, it appears NotAllowedException type error if is con-
sumer then with two calls to JSON Storage GE deleted the user
from the collection of users, and then deletes the historical data of
the subscriptions the user has from the collection SubscriptionLog.
Finally, the user is shown the message ”response”: ”The user has
been successfully deleted”.

20

5.3. Subscription Management

This section presents the functionalities of the module related with the
management of subscriptions e.g. on how to create, read, update and delete
subscriptions. These are presented in the form of the method (e.g. GET
/subscriptions) and the explanation of its functionality.

• GET /subscriptions

(1) It checks if the user is the manager.

(2) It makes a call to the JSON Storage GE to collect subscriptions
from collection Users, adn the method displays the user subscrip-
tions. In case of an error in the call it responds with CurlException
type error.

• GET /subscriptions/subscriptionId

(1) It checks if the user is the manager.

(2) It checks if there is a record with unique ID subscriptionId at
the collection subscriptionsof JSON Storage GE. If not then the
system replies with NotFoundException type error. If there is
then it responds back to the user. In case of an error in the call
it responds with CurlException type error.

• GET /subscriptions/log

(1) It checks if the user is the manager.

(2) Using the function getUserInfo(), the method gets the data of
the user for its unique ID userId. Then there is a call in JSON
Storage GE collection to identify the userId in the collection Sub-
scriptionLog. Finally, the method responds with the history of
data for sensor usage that the user has been subscribed in the
past.

• DELETE /subscriptions/subscriptionId

(1) It checks if the user is the manager.

(2) It checks if the record with unique ID subscriptionId is at the
collection subscriptions of the JSON Storage GE. If not then the
system replies with NotFoundException type error.

21

(3) It calls the JSON Storage GE to delete the subscription from
the collection subscriptions. Then makes a call at http://URL:

1026/NGSI10/unsubscribeContext that is the Context Broker
GE to delete the user’s subscription.

• GET /subscription

(1) It checks if the user is the manager.

(2) Initially it gets data for the identified user using the cache and
it checks if the user already is on the subscription system. If not
then the system replies with NotFoundException type error. But
if the user is subscribed then it call the JSON Storage GE and
the collection subscriptions to retrieve and display the subscrip-
tion data of the specific user. If an error occurs during the call
to the JSON Storage GE system responds with error type Curl
Exception.

• POST /subscription

(1) It checks if the user is the manager.

(2) It checks if the data sent to the user by calling the POST method
in the form of JSON and according to the system specifications.
The user’s data is twofold, depending on the type of the required
subscription. If the user wants to receive sensor data when chang-
ing the value of a characteristic of the sensor, the characteristic
(property) subType data sent by the user must be ONCHANGE.
The attribute, belonging to the sensor that we want to change is
specified as condAttributes. In condAttributes the user can enter
more than one characteristics and when one of them is changed,
the user is informed. For subType = ONCHANGE, the form
of user data must be: ”subAttributes”: [”name”: ”a1”, ”sen-
sorid”: ”test1”, ”name”: ”a2”, ”sensorid”: ”test1”], ”subType”:
”ONCHANGE”, ”condAttributes”: [”name”: ”a1”, ”sensorid”:
”test1”] However, if the user wishes to be updated on a time in-
terval the characteristic (property) subType requires to have the
property ONTIMEINTERVAL. In this case it is required to define
another attribute (property) interval. Interval is the time in sec-
onds after the conclusion of which the user receives updates from
the Context Broker GE for sensor data that has subscribed. For

22

http://URL:1026/NGSI10/unsubscribeContext
http://URL:1026/NGSI10/unsubscribeContext

subType = ONTIMEINTERVAL, the form of user data must be:
”subAttributes”: [”name”: ”a1”, ”sensorid”: ”test1”, ”name”:
”a2”, ”sensorid”: ”test1”], ”subType”: ”ONTIMEINTERVAL”,
”interval”: ”3”

(3) Then, making sure that the data you provide us with the user in
accordance with the standards that tje service has set, a check
regarding the special permits established by the manager. If for
example a sensor that the user is subscribes has not been deter-
mined to have subscription license to the user then the system
responds with SubscribeException type error. If could perform
subscription then execution continues at the next step.

(4) In the next step the user data is appropriately configured to make
the call to the Context Broker GE for requesting subscription to
the http:/URL:1026/NGSI10/subscribeContext.

(5) After of a successfully performed call to the Context Broker, the
method call the JSON Storage GE to collect subscriptions.

• DELETE /subscription

(1) It checks if the user is the manager.

(2) It uses the function getUserInfo(), the method gets the user’s
unique identifier subscription subId. If the user is not subscribed
(subId = NULL) the system responds with NotFoundException
type error, while if there is then execution continues to the next
step.

(3) It makes a call to the JSON Storage GE to delete the subscrip-
tion from the collection named as subscriptions. Then call is
at http://URL:1026/NGSI10/unsubscribeContext the Context
Broker GE to delete the user’s subscription and it does not sent
more data updates for subscription.

• PUT /subscription

(1) It checks if the user is the manager.

(2) It uses the function getUserInfo(), the method gets the items as
the user’s unique identifier assistance subId.If the user is not sub-
scribed (subId = NULL) the system responds with NotFoundEx-
ception type error, while if there is then execution continues to
the next step.

23

http:/URL:1026/NGSI10/subscribeContext
http://URL:1026/NGSI10/unsubscribeContext

(3) It checks if the data sent to the user by calling the POST method
in the form of JSON and according to the system specifications.
The user’s data is twofold, depending on the type of the required
subscription. If the user wants to receive sensor data when chang-
ing the value of a characteristic of the sensor, the characteristic
(property) subType data sent by the user must be ONCHANGE.
The attribute, belonging to the sensor that we want to change is
specified as condAttributes. In condAttributes the user can enter
more than one characteristics and when one of them is changed,
the user is informed. For subType = ONCHANGE, the form
of user data must be: ”subType”: ”ONCHANGE”, ”condAt-
tributes”: [”name”: ”a1”, ”sensorid”: ”test1”] However, if the
user wishes to be updated on a time interval the characteristic
(property) subType requires to have the property ONTIMEIN-
TERVAL. In this case it is required to define another attribute
(property) interval. Interval is the time in seconds after the con-
clusion of which the user receives updates from the Context Bro-
ker GE for sensor data that has subscribed. For subType = ON-
TIMEINTERVAL, the form of user data must be: ”subType”:
”ONTIMEINTERVAL”, ”interval”: ”3” The sensor data which
subscribed can not be renewed by calling that method since the
Context Broker GE does not offer this feature. The method can
only update the type of subscription.

(4) After the user data is appropriately configured to make the call to
the Context Broker GE for the renewal of an existing subscription
at http://URL:1026/NGSI10/subscribeContext.

(5) After successfully performed the call to Context Broker, then call
is in JSON Storage GE to collect subscriptions, to renew the ex-
isting subscription.

5.4. Management of licenses

This section presents the functionalities of the module related with the
management of licenses e.g. on how to create, read, update and delete li-
censes. These are presented in the form of the method (e.g. GET /sen-
sors/sensorId/permissions) and the explanation of its functionality.

• POST /sensors/sensorId/permissions

(1) It checks if the user is the manager.

24

http://URL:1026/NGSI10/subscribeContext

(2) It checks if the sensor with the unique ID sensorId exists in the
collection predefinedSensors in the JSON Storage GE. If not the
method returns a NotFoundException type error. Then it check if
the particular sensor has been used by some users. If a license is
not stored it displays a user PermissionException since the license
of each sensor is an entry in the JSON Storage GE. Otherwise,
execution continues to the next step.

(3) It controls data given by the user through ta validation process, to
be in JSON format and conform to specifications. User data must
be of the form: ”users”: [”123@gmail.com”, ”kdmortal@gmail.com”]
In characteristic (property) of JSON users are given all emails of
the users allows the mamager to make subscription for sensor data
with ID sensorId.

(4) It checks if the emails are mapped to the users who are actually
application users. If not the system responds with a NotFoundEx-
ception type error.

(5) The final step of this process is to store the license of this sensor
on the collection Permissions and collects the sensorId from the
JSON Storage GE.

• GET /sensors/sensorId/permissions

(1) It checks if the user is the manager.

(2) It checks if the sensor with unique ID sensorId exists in the col-
lection predefinedSensors JSON Storage GE. If there not there is
a NotFoundException type error. Then it checks if the particular
sensor has been used by some users. If there is it displays back to
the user, all the users who can make contribution in this sensor.

• DELETE /sensors/sensorId/permissions

(1) It checks if the user is the manager.

(2) It checks if the sensor with unique ID sensorId exists in the col-
lection predefinedSensors in the JSON Storage GE. If there is not
it responds with a NotFoundException type error. Then it checks
if the particular sensor has been used by some users. If there is,
then makes a call to the JSON Storage GE to delete the collection
for sensorId sensor .

25

• PUT /sensors/sensorId/permissions

(1) It checks if the user is the manager.

(2) It checks if the sensor with unique ID sensorId exists in the collec-
tion predefinedSensors in the JSON Storage GE. If there is not it
responds with a NotFoundException type error. Then check if the
particular sensor has been used by some users. If there is no stored
license then it responds with a PermissionException. Otherwise,
execution continues to the next step.

(3) The method validates the data given by the user through the pro-
cess, to be in JSON format and conform to specifications. User
data must be of the form: ”users”: [”123@gmail.com”, ”kdmor-
tal@gmail.com”] In characteristic (property) of JSON users are
given all emails of the users and the manager makes subscription
for sensor data with ID sensorId.

(4) It checks if emails are users who are actually given access to ap-
plications. If not the system responds with NotFoundException
type error.

(5) Then renew the already existing authorization of this sensor on
the collection Permissions and collecting the sensorId from the
JSON Storage GE.

5.5. Management of sensors data

This section presents the functionalities of the module related with the
management of sensors data e.g. on how to create, read, update and delete
sensors data. These are presented in the form of the method (e.g. GET
/contextNotifications) and the explanation of its functionality.

• GET /contextNotifications

(1) Using this method the user is informed in real time for sensor data
to which it has been subscribed. For the operation of the function
we use the notifyContext() which is connected to the updates of
the Context Broker GE. To implement the notifyContext we used
server side events that asynchronously sends data to the user when
on request from the Context Broker GE. The operation of this
method is demonstrated in figure 4.

(2) It checks if the user is identified by the manager.

26

Figure 4: Context notifications on real time

(3) The method checks if the user has already a subscription in the
SDC service, in any other case the system displays a NotFoundEx-
ception type error.

(4) The system replies to the user based on the notifyContext(), based
on the reception of updates from the Context Broker GE (these
are sensor data that are collected in real time). The data displayed
in response of the user is in the form of JSON.

• POST /event

By using this method the manager has the ability to send sensor data
to the system. It includes two functions the checkEvent, which controls
whether the data sent by the manager is JSON, are in accordance
with the specifications and additional line if the sensor shape. The
second function is the dataReciever, which makes the necessary calls to
Context Broker to create or update the entity and the JSON Storage
GE sensor for storing collection connectedSensors, storing sensor data,

27

etc. Detailed implementation of the method described in the following
steps:

(1) It checks if the user is a manager.

(2) It controls the data sent by the user through the function check-
Event, to be in JSON format, according to the sensor format and
according to the standards we set. User data must be of the form:
”id”: ”Atmo”, ”attributes”:[”name”:”temperature”,”type”:
”celsius”,”value”:”20”,
”name”:”humidity”,”type”:”percentage”,”value”:”75”] The id is
the unique sensor ID and the characteristic attributes include sen-
sor data with the latest prices.

(3) Then a check is made whether the sensorid is given by the user is
stored in the collection of predefinedSensors of the JSON Storage
GE. If you do not find shape sensor with id it is sent by the user,
it shows a NotFoundException type error. Otherwise, execution
continues to the next step.

(4) Then it checks if the sensor is already connected. If not then there
is a call in the Context Broker to create the entity. Otherwise
simply renew the stored entity by performing a call to Context
Broker at http://URL:1026/NGSI10/updateContext.

5.6. Implementation of the user authentication functionality

This sections presents the user authentication middleware that is offered
by the SDC service. The middleware is called HttpBasicAuth and allows us to
identify the user at every call of a method of API. Whenever the user makes
call to a method of the API, it requires to provide credentials (in the form
of username and password). The username and password are coded in the
form of base64 (username: password) and be placed as a header to the HTTP
request made by the user. We implement the SDC to utilize two middleware,
(a) the first is used for identification and the second for caching. In our own
service using a Middleware for identifying users. Figure 5 demonstrates the
authentication middleware for user identification.

The middleware it self consists of functions to authenticate and store
the user. Originally the function specifies that the requested API address
URL/api/ does not required user authentication. After the function is called
to authenticate through the appropriate method of the KeyRock Identity
Management GE https://account.lab.fiware.org/api/v1/tokens.json?

28

http://URL:1026/NGSI10/updateContext
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123

Figure 5: Utilization of authentication middleware for user identification

email=123@gmail&password=123 using the email and password. According
to the API of the KeyRock call this method has resulted in the identification
of the user and gives a response to the user with a session token and a status
code 200 OK.

Once the user is identified it checks if it has already been stored in the
Users collection. If it is already stored then ends the execution of middleware
and the implementation of the program shifted to the execution of API. If
the user is not stored in the users collection then first a check is made to
determine whether it has rights as manager or not and then stored in the
collection. At that point ir ends the execution of the middleware and called
the function for the execution of the main API.

6. Experimental Analysis

This section presents the experimental analysis of the work in order to
demonstrate the effectiveness of the proposed solution. We utilize two IoT de-

29

https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123
https://account.lab.fiware.org/api/v1/tokens.json?email=123@gmail&password=123

vices that are (a) the Netatmo (Environmental sensor)11 and (b) the Zephyr
HxM Bluetooth Heart Rate Monitor (medical sensor)12. The Netatmo sensor
is monitoring climatic changes (temperature, humidity, etc. pressure). The
device supports services for storage and processing of data to a private cloud
infrastructure. The sensor is met in applications for remote environmental
control and anticipation of natural disasters such as fire or frost. The Zephyr
HxM Bluetooth Heart Rate Monitor uses the Bluetooth communication pro-
tocol, and sends to a mobile device medical data of the person who wears
it. It can take measurements such as heart rate, speed, distance and time
between two peaks in an electrocardiogram.

We test the performance of the SDC iby simulating the two IoT devices
and we check whether can the SDC to respond fully functional on a continu-
ous sensor data. The experiment we conducted is performed in four phases.
Each phases includes two users who subscribe to data provided by two sen-
sors in the system, the Zephyr is medical sensor and measures the heart rate
in bpm (beats per minute) and environmental Atmo sensor, which measures
the temperature in centigrades and humidity in percentage. To simulate the
operation of these sensors we created a simulation software for each of which
and we send sensor data to a 5 minutes window at a time set by each phase
of the experiment.

The time data refresh intervals of the sensors cover a wide range of 15
seconds in the first phase until 2 seconds in 4th phase. Table 1 demonstrates
the experimental analysis and results.

Table 1: Experimental results for simulations of sensors Zephyr and Atmo

Device Zephyr Atmo Results Zephyr Results Atmo
1st phase 15 15 1.6 1.6
2nd phase 10 10 1.6 1.6
3rd phase 5 5 1.7 1.7

4th phase
Random
(2 to 4)

Random
(2 to 4)

1.8 1.8

Notably, the lower limit to determine the time was 2 seconds as a shorter
period would mean losing the data sent to the SDC (by the execution of the

11https://www.netatmo.com/en-US/site
12http://www.zephyranywhere.com

30

method POST /event with an average response time of 1.6 to 1.8 seconds).
Below we present the results of the experiment, which is the time difference
between the time that the call is made in the SDC (call POST /event) for
sending sensor data and timing data that is displayed to the user (GET
/contextNotifications).

We conclude that in a small refresh interval data, and if we do not greatly
affected the difference in times between the sending data and display to the
user, we notice a little difference because of the burden of the continuous
data. This time difference is between 1.6 to 1.8 seconds. This is because the
function is executed POST /event to the API. Also is because of the checks
done in JSON for the user and because the calls to the various modules has a
fixed time delay of 1.6 to 1.8 seconds. This delay is justified by the requests
made, in the Context Broker GE with an average response time of 700 ms
and the two requests made in the JSON Storage GE with an average response
time of 500 ms. Finally, if we include in these the delays due to the network
it is apparently that the time delay of 1.6 to 1.8 seconds could be considered
as realistic.

7. Conclusions

The SDC service developed to allow efficient, fast and on the fly IoT
data collection and storage to a cloud system. Our solution allows the ef-
ficient management of users and sensors and an on the fly updating of the
subscribers (users) with regards to data updates of each sensor. We take
advantage of the benefits offered from the combination of these technologies.
The next list demonstrates the basic functionality of the services.

1. The service allows to add/remove/update sensors by the administrator.

2. It allows to add/remove/update user subscriptions.

3. Administrator can add/remove/update user rights for sensors.

4. It includes a database with historical data for the sensors. Since the
database is scalable (e.g. MongoDB) it could easily include big data.

5. The service is expandable and can be added to other services that
require to expand their functionality such as data analysis tools.

6. The architecture is modular and the solution is easy to use, based on
the RESTFul API that is available for utilization over the Internet.

7. The solution is compatible with FIWARE thus could be easily inte-
grated to other cloud applications.

31

An important aspect of the system was the use of FIWARE GEs thus we
were able to develop a modular solution that meets the specifications of a
modern FI application. The future research directions include the definition
of patterns to specific sensor data thus the users could be notified according
to patterns and rules. For example, if the temperature of an internal space
continuously rises over 5 minutes then the user is alerted. Another aspect is
to ensure further security in the data management by the service. Finally,
we aim to explore scaling behaviour of the JSON storage module in order to
experiment how big data affects performance of the system.

8. References

[1] A. Antonic, M. Marjanovic, K. Pripui, and I. P. arko. A mobile crowd sensing
ecosystem enabled by cupus: Cloud-based publish/subscribe middleware for
the internet of things. Future Generation Computer Systems, 56:607 – 622,
2016.

[2] J. Bih. Service oriented architecture (soa) a new paradigm to implement
dynamic e-business solutions. Ubiquity, 2006(August):4:1–4:1, Aug. 2006.

[3] J. Brogan and C. Thuemmler. Specification for generic enablers as software. In
Information Technology: New Generations (ITNG), 2014 11th International
Conference on, pages 129–136, April 2014.

[4] V. Chang. The business intelligence as a service in the cloud. Future Gener-
ation Computer Systems, 37(0):512 – 534, 2014. Special Section: Innovative
Methods and Algorithms for Advanced Data-Intensive Computing Special
Section: Semantics, Intelligent processing and services for big data Special
Section: Advances in Data-Intensive Modelling and Simulation Special Sec-
tion: Hybrid Intelligence for Growing Internet and its Applications.

[5] A. Corradi, M. Fanelli, and L. Foschini. {VM} consolidation: A real case
based on openstack cloud. Future Generation Computer Systems, 32(0):118 –
127, 2014. Special Section: The Management of Cloud Systems, Special Sec-
tion: Cyber-Physical Society and Special Section: Special Issue on Exploiting
Semantic Technologies with Particularization on Linked Data over Grid and
Cloud Architectures.

[6] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

32

[7] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione. Interconnecting feder-
ated clouds by using publish-subscribe service. Cluster Computing, 16(4):887–
903, 2013.

[8] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione. A knowledge-based
platform for big data analytics based on publish/subscribe services and stream
processing. Knowledge-Based Systems, 79:3 – 17, 2015.

[9] A. Galis and A. Gavras. The Future Internet: Future Internet Assembly
2013 Validated Results and New Horizons. Springer Publishing Company,
Incorporated, 2013.

[10] X. Ma, Y. Wang, Q. Qiu, W. Sun, and X. Pei. Scalable and elastic event
matching for attribute-based publish/subscribe systems. Future Generation
Computer Systems, 36:102 – 119, 2014. Special Section: Intelligent Big Data
ProcessingSpecial Section: Behavior Data Security Issues in Network Infor-
mation PropagationSpecial Section: Energy-efficiency in Large Distributed
Computing ArchitecturesSpecial Section: eScience Infrastructure and Appli-
cations.

[11] D. Petcu. Consuming resources and services from multiple clouds. J. Grid
Comput., 12(2):321–345, June 2014.

[12] A. Preventis, K. Stravoskoufos, S. Sotiriadis, and E. G. M. Petrakis. Interact:
Gesture recognition in the cloud. In Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, UCC ’14, pages
501–502, Washington, DC, USA, 2014. IEEE Computer Society.

[13] A. Preventis, K. Stravoskoufos, S. Sotiriadis, and E. G. M. Petrakis. Person-
alized motion sensor driven gesture recognition in the fiware cloud platform.
In Proceedings of the 2015 14th International Symposium on Parallel and Dis-
tributed Computing, ISPDC ’15, pages 19–26, Washington, DC, USA, 2015.
IEEE Computer Society.

[14] S. Schreier. Modeling restful applications. In Proceedings of the Second In-
ternational Workshop on RESTful Design, WS-REST ’11, pages 15–21, New
York, NY, USA, 2011. ACM.

[15] A. Sfrent and F. Pop. Asymptotic scheduling for many task computing in
big data platforms. Information Sciences, 319:71 – 91, 2015. Energy Efficient
Data, Services and Memory Management in Big Data Information Systems.

33

[16] S. Sotiriadis and N. Bessis. An inter-cloud bridge system for heterogeneous
cloud platforms. Future Gener. Comput. Syst., 54(C):180–194, Jan. 2016.

[17] S. Sotiriadis, N. Bessis, and N. Antonopoulos. Towards inter-cloud schedulers:
A survey of meta-scheduling approaches. In P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), 2011 International Conference on, pages 59–
66, Oct 2011.

[18] S. Sotiriadis, N. Bessis, Y. Huang, P. Sant, and C. Maple. Towards decentral-
ized grid agent models for continuous resource discovery of interoperable grid
virtual organisations. In Digital Information Management (ICDIM), 2010
Fifth International Conference on, pages 530–535, July 2010.

[19] S. Sotiriadis, N. Bessis, and E. Petrakis. An inter-cloud architecture for future
internet infrastructures. In F. Pop and M. Potop-Butucaru, editors, Adaptive
Resource Management and Scheduling for Cloud Computing, Lecture Notes
in Computer Science, pages 206–216. Springer International Publishing, 2014.

[20] S. Sotiriadis, E. Petrakis, S. Covaci, P. Zampognaro, E. Georga, and
C. Thuemmler. An architecture for designing future internet (fi) applications
in sensitive domains: Expressing the software to data paradigm by utilizing
hybrid cloud technology. In Bioinformatics and Bioengineering (BIBE), 2013
IEEE 13th International Conference on, pages 1–6, Nov 2013.

[21] A. G. Vázquez, P. Soria-Rodriguez, P. Bisson, D. Gidoin, S. Trabelsi, and
G. Serme. Fi-ware security: Future internet security core. In Proceedings of
the 4th European Conference on Towards a Service-based Internet, Service-
Wave’11, pages 144–152, Berlin, Heidelberg, 2011. Springer-Verlag.

[22] X. Xie, H. Wang, H. Jin, F. Zhao, X. Ke, and L. T. Yang. Dta: Dynamic
topology algorithms in content-based publish/subscribe. Future Generation
Computer Systems, 54:159 – 167, 2016.

[23] T. Zahariadis, A. Papadakis, F. Alvarez, J. Gonzalez, F. Lopez, F. Facca,
and Y. Al-Hazmi. Fiware lab: Managing resources and services in a cloud
federation supporting future internet applications. In Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing,
UCC ’14, pages 792–799, Washington, DC, USA, 2014. IEEE Computer So-
ciety.

34

	Introduction
	Motivation
	Related Works
	Architecting the Sensor Data Collection (SDC) Cloud Service
	Reference Architecture
	Architecture of the Sensor Data Collection (SDC) Cloud Service
	Users Orchestration

	Implementation of the Sensor Data Collection Cloud Service
	Management of sensors
	Management of users
	Subscription Management
	Management of licenses
	Management of sensors data
	Implementation of the user authentication functionality

	Experimental Analysis
	Conclusions
	References

