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Frontostriatal Dysfunction During Decision
Making in Attention-Deficit/Hyperactivity
Disorder and Obsessive-Compulsive Disorder

Luke J. Norman, Christina O. Carlisi, Anastasia Christakou, Clodagh M. Murphy,
Kaylita Chantiluke, Vincent Giampietro, Andrew Simmons, Michael Brammer,
David Mataix-Cols, and Katya Rubia
ABSTRACT
BACKGROUND: The aim of the current paper is to provide the first comparison of computational mechanisms and
neurofunctional substrates in adolescents with attention-deficit/hyperactivity disorder (ADHD) and adolescents with
obsessive-compulsive disorder (OCD) during decision making under ambiguity.
METHODS: Sixteen boys with ADHD, 20 boys with OCD, and 20 matched control subjects (12–18 years of age)
completed a functional magnetic resonance imaging version of the Iowa Gambling Task. Brain activation was
compared between groups using three-way analysis of covariance. Hierarchical Bayesian analysis was used to
compare computational modeling parameters between groups.
RESULTS: Patient groups shared reduced choice consistency and relied less on reinforcement learning during de-
cision making relative to control subjects, while adolescents with ADHD alone demonstrated increased reward
sensitivity. During advantageous choices, both disorders shared underactivation in ventral striatum, while OCD pa-
tients showed disorder-specific underactivation in the ventromedial orbitofrontal cortex. During outcome evaluation,
shared underactivation to losses in patients relative to control subjects was found in the medial prefrontal cortex and
shared underactivation to wins was found in the left putamen/caudate. ADHD boys showed disorder-specific
dysfunction in the right putamen/caudate, which was activated more to losses in patients with ADHD but more to
wins in control subjects.
CONCLUSIONS: The findings suggest shared deficits in using learned reward expectancies to guide decision
making, as well as shared dysfunction in medio-fronto-striato-limbic brain regions. However, findings of unique
dysfunction in the ventromedial orbitofrontal cortex in OCD and in the right putamen in ADHD indicate additional,
disorder-specific abnormalities and extend similar findings from inhibitory control tasks in the disorders to the
domain of decision making under ambiguity.
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Attention-deficit/hyperactivity disorder (ADHD) is defined by age-
inappropriate problems with inattention, impulsivity, and hyper-
activity (1) and affects 3% to 8% of children worldwide as well as
4% of adults (2). Obsessive-compulsive disorder (OCD), on the
other hand, is characterized by obsessions, defined as recurrent
and intrusive thoughts (e.g., on themes of contamination,
checking, orderliness, and symmetry), and compulsions, i.e.,
repetitive, ego-dystonic, and time-consuming behavioral and
mental rituals (e.g., repetitive washing or checking) (1). OCD has
a lifetime prevalence of 2% to 3% (3).

In early models, ADHD and OCD were placed at opposing
ends of a hypothesized impulsivity-compulsivity spectrum
(4,5). However, the high level of comorbidity between the
disorders in particular during adolescence does not fit with this
model and suggests a potential overlap in the two disorders in
ª 2018 Society of Biological Psychiatry. Published by Elsevier Inc.
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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genetic and neuroendophenotypic features (3–7). For instance,
both ADHD and OCD patients show neural dysfunction during
decision making and reward processing (8–14), with this pro-
posed to underlie impulsive behaviors in ADHD and compul-
sive behaviors in OCD (15–17). Recent efforts including the
Research Domain Criteria emphasize the importance of
investigating transdiagnostic phenotypes that may be under-
pinned by shared and/or disorder-specific neurofunctional
mechanisms (18).

One of the most commonly used tasks to measure reward-
based decision making is the Iowa Gambling Task (IGT), in
which participants are instructed to select cards one at a time
from one of four possible decks (19,20). Each card is associated
with a monetary win or loss, and participants must learn to
choose from advantageous decks and avoid disadvantageous
This is an open access article under the
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decks (21). Computational models of IGT performance suggest
that a number of cognitive functions underlie individual differ-
ences in task performance, including the ability to learn and
utilize the reinforcement contingencies of each deck, reinforce-
ment learning rates, reward and loss sensitivity, relative use of a
win-stay/lose-shift–based versus expectancy-based choice se-
lection strategy, and a tendency to exploit advantageous decks
versus continued exploration of alternative options (22,23).

In the brain, performance during decision making on the IGT
recruits activation in the ventromedial orbitofrontal cortex
(vmOFC) and the ventral striatum (VS), regions that are closely
interconnected as part of a dopaminergic mesolimbic circuit
(21,24–26). In tandem, these brain regions support flexible
emotional learning and guide decision making by encoding
prospective values for available options (21,24,27,28). Perfor-
mance on the IGT also requires assessment of rewards and
losses, which recruits the vmOFC, VS, and adjacent limbic
regions (21,24,29,30). During adolescence, performance on
decision-making tasks such as the IGT improves in a linear
fashion, independently from maturations in dorsolateral pre-
frontal cortex (PFC)–dependent executive functioning, and in
line with maturation of the vmOFC and VS (24,31–34).

The aim of this study was to conduct a comparison of
neurofunctional abnormalities during performance of the IGT in
adolescent ADHD and OCD patients. In both patient groups
we anticipated an impaired ability to align deck choice with
expected values (13,35), as well as altered striatal activation
during decision making (9,36,37). Given the previous literature
on orbitofrontal dysfunction in OCD, it was predicted to be
more pronounced in or disorder-specific to adolescents with
OCD in the current study (7,38–40). During outcome pro-
cessing, decreased VS responses to rewards were anticipated
in adolescents with OCD, while ADHD adolescents were ex-
pected to show increased VS responses to rewards (8,41–44).

METHODS AND MATERIALS

Participants

Fifty-six (16 ADHD, 20 OCD, 20 control subjects) right-handed
(45) male adolescents aged between 12 and 18 years of age
participated, with an IQ .80 as measured by the Wechsler
Abbreviated Scale of Intelligence-Revised short form (46). ADHD
boys met DSM-IV criteria for inattentive/hyperactive-impulsive
combined subtype, as assessed using the standardized
Maudsley diagnostic interview (1,47), scored above clinical cutoff
on the Conners’ Parent Rating Scale-Revised (48) as well as the
inattention/hyperactivity scale of the Strengths and Difficulties
Questionnaire (49), and were recruited from local Child and
Adolescent Mental Health Services. Medicated ADHD patients
underwent a 48-hour washout period before scanning. Patients
with ADHD were free of comorbidities besides conduct disorder,
as determined by a consultant psychiatrist. Boys with OCD were
recruited from a national specialist clinic for childhood OCD and
local Child and Adolescent Mental Health Services and had
clinical diagnoses of OCD, as assessed according to the ICD-10
criteria and the Children’s Yale-Brown Obsessive Compulsive
Scale (CY-BOCS) (49). Following a detailed clinical assessment,
consisting of in-depth interviews with both patient and parents,
patients with OCD were determined by a consultant psychiatrist
to be free of comorbid diagnoses, including comorbid ADHD.
Biological Psychiatry: Cognitive Neuroscience and Ne
Control participants had no diagnoses of any psychiatric
conditions and were recruited using local advertising. Data for
some participants have been published elsewhere (21,24,35).

The study was conducted in accordance with the Declara-
tion of Helsinki. Ethical approval was obtained from the local
Research Ethics Committee (05/Q0706/275). Study details
were explained to both child and guardian, and written
informed consent was obtained for all participants.

IGT Paradigm

Participants were presented with four decks of cards (labeled
A, B, C, and D) on a computer screen and asked to select one
of the decks by pressing with their right hand one of four
buttons. Participants completed 80 trials and were instructed
to win as much money as possible and lose as little money as
possible. Participants were not informed of how many trials
they would perform. There was a 50% probability of winning
on each deck. Decks A and B (disadvantageous decks) gave
relatively large gains (£190, £200, or £210) but even larger
losses (£240, £250, or £260), whereas decks C and D (ad-
vantageous decks) gave small gains (£90, £100, or £110) but
even smaller losses (£40, £50, or £60). A £2,000 “loan” and
running total were presented at the bottom of the task display.

Each trial of the IGT is divided as follows: 1) the choice
phase, 2) a 6-second delay between choosing a deck and
being presented with the outcome, and 3) the 3-second
outcome evaluation phase. Total trial length was 15 seconds,
ending with a blank screen after outcome presentation that
served as an implicit baseline in the functional magnetic
resonance imaging (fMRI) analysis (Supplemental Figure S1).

Participants were informed that performance on the task
determined the amount of money they would receive at the end
of the session. In fact, all participants received the full amount
(£30). Participants were acclimatized to the scanner environment
in a “mock” scanner. This practice session consisted of 12 trials
that presented equal payoffs across all decks. Participants were
informed of this difference between the practice and experimental
sessions. After completing the practice session, the researcher
ensured that all participants understood the task through dis-
cussion with the participant and accompanying parent.

Analysis of Performance Data

IGT net score was calculated for all 80 trials and separately for
each of four blocks of 20 trials. Analysis of performance data
was conducted using Bayesian analysis in JASP (v0.7.5.6;
https://jasp-stats.org/). Models were favored if Bayesian factor
(BF)10 . 10 (35). Three-way analysis of variance (ANOVA) was
used to compare groups on net score. To examine differences
in learning over the course of the task, a 3 (group) 3 4 (block)
within-between repeated-measures ANOVA was performed on
net scores separated into four blocks of 20 trials. Three
separate 3 (group) 3 2 (advantageous/disadvantageous, post-
wins/post-loss, or stay/switch choices) within-between
repeated-measures ANOVAs were used to examine potential
group differences in reaction times.

Computational Modeling

A hierarchical Bayesian analysis was implemented within
hBayesDM (50). We first compared three established models
uroimaging August 2018; 3:694–703 www.sobp.org/BPCNNI 695
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using the Watanabe-Akaike Information Criterion (51). Details
of the models and the model comparison are given in the
Supplement.

The winning value-plus-perseverance model is a hybrid rein-
forcement learning and perseverance model. In this eight-
parameter model, a represents feedback/magnitude sensitivity;
l represents loss-aversion; c represents choice consistency; A
represents learning rate; k determines perseverance strength; εp
and εn indicate loss/gain impact, respectively, on choice
behavior (i.e., stay/switch tendency); and u is the reinforcement
learning weight (52). Group differences in mean parameter esti-
mates were assessed by each parameter’s highest density in-
terval (HDI), i.e., the range of parameter values that spans 95% of
the distribution in a pairwise comparison (22,50). Parameter es-
timates were considered to differ between groups if the HDI did
not overlap zero (22,50).

MRI Image Acquisition

The fMRI images were acquired at King’s College London on a
3T General Electric Signa Horizon HDx MRI scanner (GE
Healthcare, Milwaukee, WI) (see Supplement).

fMRI Data Analysis

Data were analyzed using the nonparametric XBAM (v4.1)
software (53), which overcomes many issues associated with
parametric software packages (e.g., poor control of family-
wise error–corrected false positive clusterwise inference
rates) (54,55). Modeled events of interest included advanta-
geous choices, disadvantageous choices, the anticipation
period, win outcomes, and loss outcomes. fMRI analysis
examined the decision phase (advantageous vs. disadvan-
tageous choices), defined as the moment that the four decks
are presented until choice execution (maximum: 6 seconds)
and the outcome phase (wins vs. losses), during which the
outcome appears on screen for 3 seconds (see Supplement
for details).

For the group-level comparisons, analysis of covariance
analyses with group as factor and head displacement in
Euclidian 3D space and age as covariates were performed to
compare groups. An examination of the effects of head
displacement and age on brain activation is provided in the
Supplement. The voxel-level threshold was set to p , .05; so
as to maximize detection power, we used the highest threshold
that we have shown empirically to give good type I error
control at the cluster level under the null hypothesis using our
permutation-based method (53–56). A cluster-level p value
threshold was computed from the data using our permutation-
based method such that the final expected number of type I
error clusters was , 1 (see Supplement).

Primary analyses were performed using regions of inter-
est (ROIs) based on regions shown to play a role in IGT
performance and/or to differ between ADHD and OCD
groups or between patient groups and control subjects
(7,21,24,30,40,57–60). A single ROI search space included
the bilateral OFC, medial frontal gyrus, inferior frontal gyrus,
insula, putamen, caudate, and nucleus accumbens. Regions
were extracted from the Harvard-Oxford Atlas using FSL
(61,62). Within this search space, ,1 false activated cluster
was expected at p , .05 for voxel comparisons and p , .02
696 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
for cluster comparisons during decision and outcome
phases.

Follow-up whole-brain comparisons of between-group dif-
ferences were performed. For the between-group compari-
sons, ,1 false activated cluster was expected at a cluster
threshold of p , .004 for the choice phase and p , .0045 for
the outcome phase.

To interpret the group differences in brain activation from
the between-group analysis of covariance, statistical measures
of blood oxygen level–dependent response for each partici-
pant were extracted from significant clusters, plotted, and
subjected to pairwise (ADHD vs. OCD, ADHD vs. control
subjects, OCD vs. control subjects) post hoc t tests (corrected
for multiple comparisons for three groups using the least sig-
nificance difference method). Within-group findings are pre-
sented in Supplemental Figures S5 and S6. Correlational
analyses were performed between blood oxygen level–
dependent response and performance and symptom mea-
sures (ADHD: Conners T; OCD: CY-BOCS) (see Supplement).

RESULTS

Participant Characteristics

There were no group differences in age (Table 1). Groups
differed on IQ (BF10 = 3.29, F2,53 = 4.48, p = .02), which
was lower in patients with ADHD relative to control subjects
(p = .007) and patients with OCD (p = .02), although all groups
scored in the normal range for IQ, and no participant had IQ
,85. Eight ADHD boys were medication naïve, and 8 were
receiving stimulant medication. Sixteen boys with OCD were
medication naïve, while 4 were being treated with selective
serotonin reuptake inhibitor medication, and 1 patient was
receiving risperidone augmentation treatment.

Performance Data

A 3 (group) 3 4 (block) within-between repeated measures
ANOVA showed no credible main effect of group in overall net
score (BF10 = 0.56, F2,53 = 1.18, p = .17), no main effect of
block (BF10 = 0.35, F3,159 = 2.02, p = .11), and no group by
block interaction effect (BF10 = 0.2, F6,159 = 1.59, p = .15).
There were no group differences in reaction time or group by
choice type interactions on reaction time (Table 1). Findings
were unchanged after controlling for IQ, and there were no
credible or significant correlations between symptoms (ADHD:
Conners T; OCD: CY-BOCS) and net score or reaction time (all
BF10 , 10, p . .05).

Between-Groups Comparison of Value-Plus-
Perseverance Model Parameters

Control subjects showed greater choice consistency (c)
compared with patients with ADHD (95% HDI from 1.4 to 4.3,
mean of HDI = 2.85; t34 = 28.27, p , .001) and patients with
OCD (95% HDI from 1.7 to 4.5, mean of HDI = 3.1; t38 = 35.33,
p , .001), as well as higher reinforcement learning weights (u)
than patients with ADHD (95% HDI from 0.02 to 0.57, mean of
HDI = 0.3; t34 = 25.53, p , .001) and patients with OCD (95%
HDI from 0.15 to 0.88, mean of HDI = 0.52, t38 = 33.56, p ,

.001). Patients with ADHD showed increased feedback sensi-
tivity relative to control subjects (95% HDI from21.99 to –0.02,
ugust 2018; 3:694–703 www.sobp.org/BPCNNI
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Table 1. Participant Characteristics and Behavioral Performance

Control Subjects ADHD OCD Statistics Direction

n 20 16 20 —

Age, Years 15.15 (1.99) 14.61 (1.87) 15.76 (1.43) BF10 = 0.55, F2,53 = 1.88, p = .16

IQ 119.7 (11.9) 107.6 (12.89) 117.7 (13.36) BF10 = 3.29, F2,53 = 4.48, p = .02 C, OCD . ADHD

SDQ Hyperactivity/Inattention 2 (1.67) 8.5 (1.21) 4.4 (3.03) Log(BF10) = 18.9,
F2,52 = 39.1, p , .001

ADHD . OCD . C

CY-BOCS — — 22.32 (5.97)

Conners T — 80.94 (7.65) —

Net Score 10.45 (24.45) 22.69 (18.7) 4.75 (17.4) BF10 = 0.52, F2,53 = 1.18, p = .17

Omissions % 0.75 (1.37) 2.56 (4.72) 0.75 (1.16) BF10 = 0.84, F2,53 = 2.52, p = .09

RT Advantageous, ms 1063.3 (443.2) 1133.0 (409.4) 1029.3 (220.2) BF10 = 0.18, F2,53 = 0.36, p = .7

RT Disadvantageous, ms 935.4 (323.2) 999.1 (285.8) 1041.8 (258.7) BF10 = 0.23, F2,53 = 0.68, p = .51

RT After Win, ms 935.2 (355.3) 1023.0 (319.3) 957.4 (238.9) BF10 = 0.19, F2,53 = 0.38, p = .69

RT After Loss, ms 1046.7 (351.6) 1119.7 (375.3) 1088.1 (246.2) BF10 = 0.17, F2,53 = 0.23, p = .8

RT Stay, ms 841.0 (396.9) 1161.1(655.6) 1040.4 (380.0) BF10 = 0.63, F2,53 = 2.07, p = .14

RT Shift, ms 1025.1 (355.2) 1057.3 (277.1) 1043.2 (255.1) BF10 = 0.15, F2,53 = 0.05, p = .95

Values are mean (SD) unless otherwise indicated.
ADHD, attention-deficit/hyperactivity disorder; BF, Bayesian factor; C, control subjects; CY-BOCS, Children’s Yale-Brown Obsessive

Compulsive Scale; OCD, obsessive-compulsive disorder; RT, reaction time; SDQ, Strengths and Difficulties Questionnaire.
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mean of HDI = 21.01; t34 = 8.37, p , .001). There were no
credible or significant correlations between symptoms (ADHD:
Conners T; OCD: CY-BOCS) and model parameters (all BF10 ,
10, p . .05). Complete tables of differential distributions and
mean parameter estimates from the value-plus-perseverance
model are presented in Supplemental Tables S1 and S2.

Movement

The ANOVA analysis showed no group differences in mean
Euclidean displacement (BF10 = 0.34, F2,53 = 1.2, p = .31).

Between-Group Differences

For the decision phase, within the ROI, left VS underactivation
during advantageous choices was shared in patient groups
relative to control subjects, while vmOFC underactivation was
disorder specific to patients with OCD. In the whole brain,
ADHD and OCD patients shared abnormal activation in pos-
terior cingulate cortex/precuneus/supplementary motor area
relative to control subjects. In control subjects, this cluster was
more active to disadvantageous choices, while in patients it
was more active during advantageous choices.

In the outcome phase, within the ROI, left putamen/caudate
underactivation to wins was found in ADHD and OCD patients
relative to control subjects. In right putamen/caudate, ADHD
patients showed disorder-specific dysfunction relative to
control subjects and patients with OCD. Patients with ADHD
showed greater activation to losses, while control subjects
showed greater activation to wins, and OCD patients showed
little difference between conditions. In the whole brain, ADHD
and OCD patients shared precuneus underactivation during
wins relative to control subjects, as well as underactivation
during losses in medial PFC (MPFC) (Table 2, Figures 1 and 2).
After controlling for IQ, findings in the vmOFC, VS, and left
putamen remained significant at the standard threshold (,1
error cluster). Findings in the posterior cingulate cortex/pre-
cuneus/supplementary motor area (p = .009), right putamen
(p , .05), precuneus (p = .02), and MPFC (p = .03) remained
Biological Psychiatry: Cognitive Neuroscience and Ne
significant only at relaxed cluster thresholds. An exploratory
analysis using a whole-brain cluster threshold of p , .05 is
included in the Supplement.
DISCUSSION

The study investigated shared and disorder-specific neural
and computational abnormalities during the IGT in adoles-
cent ADHD and OCD. During decision making, both patient
groups shared VS underactivation during advantageous
choices, but patients with OCD showed disorder-specific
underactivation in vmOFC relative to both control subjects
and patients with ADHD. During the outcome phase, shared
underactivation in patients to wins was found in the left
putamen, and shared underactivation to losses was seen in
the MPFC. Disorder-specific dysfunction was found in the
right putamen/caudate, which was activated more to wins in
control subjects but more to losses in patients with ADHD.

There were no significant group differences in net scores,
unlike in previous work in both disorders in adolescent sam-
ples (63,64). This may be due to a highly medicated sample
(65–67), due to the relatively high IQ across all groups that may
have compensated for suboptimal performance in patient
groups (68,69), or due to our use of a shortened version of the
IGT. Indeed, the previous report of performance differences on
the IGT in adolescents with OCD found significant differences
only on the final 20 trials (63). Computational modeling and
neuroimaging may be more sensitive measures of abnormal-
ities in reward and decision-making brain networks than net
score, as normal overall performance may be maintained
despite underlying neural dysfunction and more subtle cogni-
tive abnormalities (35,60).

The computational modeling showed that patient groups
made more exploratory choices from decks with lower ex-
pected rewards and were more likely to make decisions based
on feedback from the most recent trial rather than based on
reward expectancies formed over successive trials relative to
uroimaging August 2018; 3:694–703 www.sobp.org/BPCNNI 697
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Table 2. ANCOVA Differences in Brain Activation Between Adolescents With ADHD and OCD and Healthy Comparison
Adolescents

Brain Regions of Activation BA Tal Coord Voxels Cluster p Value Pairwise p Values

Advantageous Choices . Disadvantageous Choices

Control Subjects . ADHD and OCD Subjects

L VSa 211, 4, 4 35 .014 C vs. ADHD (p = .02)
C vs. OCD (p , .001)
ADHD vs. OCD (p = .08)

Control and ADHD Subjects . OCD Subjects

vmOFCa 11 4, 41, 213 28 .011 C vs. ADHD (p = .61)
C vs. OCD (p , .001)
ADHD vs. OCD (p = .02)

Disadvantageous Choices . Advantageous Choices

Control Subjects . ADHD and OCD Subjects

SMA/PCC/precuneus 4/23/5 29, 226, 48 138 .003 C vs. ADHD (p = .001)
C vs. OCD (p , .001)
ADHD vs. OCD (p = .8)

Wins . Losses

Control Subjects . ADHD and OCD Subjects

L/R precuneus 19/7 36, 274, 37 185 .002 C vs. ADHD (p = .001)
C vs. OCD (p , .001)
ADHD vs. OCD (p = .77)

L putamen/caudatea 222, 0, 9 44 .009 C vs. ADHD (p = .001)
C vs. OCD (p = .001)
ADHD vs. OCD (p = .4)

Control and OCD Subjects . ADHD Subjects

R putamen/caudatea 22, 24, 9 48 .012 C vs. ADHD (p , .001)
C vs. OCD (p = .08)
ADHD vs. OCD (p = .001)

Losses . Wins

Control Subjects . ADHD and OCD Subjects

MPFC 32 24, 48, 9 121 .004 C vs. ADHD (p , .001)
C vs. OCD (p = .002)
ADHD vs. OCD (p = .49)

ADHD, attention-deficit/hyperactivity disorder; ANCOVA, analysis of covariance; BA, Brodmann area; C, control subjects; L, left; MPFC, medial
prefrontal cortex; OCD, obsessive-compulsive disorder; PCC, posterior cingulate cortex; R, right; SMA, supplementary motor area; Tal Coord,
Talairach coordinates; vmOFC, ventromedial orbitofrontal cortex; VS, ventral striatum.

aSignificant in region-of-interest search space.
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control subjects (although all groups tended to make decisions
based on reinforcement contingencies).

Previous work has reported reduced choice consistency in
ADHD (13). ADHD symptoms and neuropsychological perfor-
mance patterns, including impaired choice consistency, may
be explained in terms of low neural gain, that is, an altered
balance between the neural signals supporting the chosen or
optimal goals, behaviors, and attentional targets and
competing signals that support alternative actions and cogni-
tions, in which the goal-directed signals are insufficiently
strong and the competing signals are poorly suppressed, thus
resulting in behavioral and attentional instability (70).

In OCD, increased exploration of nonoptimal decks may be
related to greater intolerance of uncertainty, reduced confi-
dence in memories and decisions, and increased need for in-
formation sampling in the disorder (71–74). In other words,
OCD patients may have decreased confidence in their
assessment of deck expectancies and their memories of pre-
vious outcomes, with this underlying an increased tendency to
recheck the alternative decks (75).
698 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
A disorder-specific finding was that ADHD patients alone
showed heightened feedback sensitivity. Although sensitivity
to the magnitude of deck outcomes is important for IGT per-
formance, increased sensitivity may lead to a tendency to
chase large wins on the disadvantageous decks. Heightened
feedback sensitivity on the IGT has been associated with
impulsivity related behaviors and disorders (22,76,77), which
are more prevalent in ADHD (78–80), and the current findings
provide further support for a relationship between feedback
sensitivity and impulsivity related disorders.

In the brain, the VS was underactive during advantageous
choices in patient groups relative to control subjects. The VS
responds to reinforcers including monetary reward (25,26) and
contributes information about the motivational properties and
magnitudes of available rewards, initially biasing decision
making toward impulsive, immediate, or larger but riskier
rewarding actions (81,82). During learning, dopamine cell re-
sponses within the VS shift from primary reinforcers to cues or
behaviors that predict rewarding outcomes (83–85). VS re-
sponses during advantageous choices in control subjects may
ugust 2018; 3:694–703 www.sobp.org/BPCNNI
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Figure 1. Analysis of covariance results for the
between-group differences in brain activation for the
contrast comparing advantageous and disadvanta-
geous choices. (A) Axial slices for the group activa-
tion maps for the three groups. Red indicates regions
showing significant between-group differences. Dif-
ferences in the ventromedial orbitofrontal cortex
(vmOFC) and ventral striatum (VS) were significant
only within the region-of-interest search space. The
difference in the posterior cingulate cortex (PCC)
was significant in the whole brain. Talairach z co-
ordinates are indicated for slice distance (in mm)
from the intercommissural line. The right side of the
brain corresponds to the right side of the image. (B)
Bar chart showing mean blood oxygen level–
dependent response for each group in each cluster.
Control subjects = blue, attention-deficit/
hyperactivity disorder (ADHD) = red, obsessive-
compulsive disorder (OCD) = green.
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represent the positive expected values for the advantageous
decks. In other words, in control subjects robust mesolimbic
signaling during decision making may have guided choices
toward the optimally rewarding decks.

In ADHD, the dopamine response in the VS to previously
neutral cues or behaviors that are now associated with reward
is hypothesized to be disrupted, meaning that the motivational
features and underlying VS activation that these cues take on
in control subjects may be decreased in ADHD (12,15). In the
IGT, weaker representations of deck reinforcement history
within the VS may underlie impairments in patients in selecting
decks associated with the highest expected values.

In OCD, findings of VS underactivation are consistent with
previous reports of reduced VS response to cues that predict
reward (10,11,42). Patients with OCD show increased VS and
Biological Psychiatry: Cognitive Neuroscience and Ne
dorsal striatal responses during symptom provocation and
habitual responding (86–88), enlarged basal ganglia structure
(57,89), and altered activity/connectivity at rest (90,91). Alter-
ations in VS-mediated salience, habit, and motivation functions
may underlie an imbalance between competing unrewarded
OCD behaviors and goal-related behaviors in the disorder, with
VS hypoactivation during decision making underlying deficits
in representing outcome contingencies and an impaired se-
lection of goal-related choices and behaviors.

As hypothesized, adolescents with OCD showed disorder-
specific underactivation in vmOFC during advantageous
choices. The vmOFC is closely interconnected with VS and is
a key structure for flexible emotional learning and decision
making (21,24,28). The vmOFC is highly implicated in OCD
(9,39,57,86,91). The current results extend previous findings
Figure 2. Analysis of covariance results for the
between-group differences in brain activation for the
contrast comparing win and loss outcomes. (A) Axial
slices for the group activation maps for the three
groups. Red indicates regions showing significant
between-group differences. Differences in left and
right putamen/caudate were significant only within
the region-of-interest search space. Differences in
the medial prefrontal cortex (MPFC) and precuneus
were significant in the whole brain. Talairach z co-
ordinates are indicated for slice distance (in mm)
from the intercommissural line. The right side of the
brain corresponds to the right side of the image. (B)
Bar chart showing mean blood oxygen level–
dependent response for each group in each cluster.
Control subjects = blue, attention-deficit/
hyperactivity disorder (ADHD) = red, obsessive-
compulsive disorder (OCD) = green. L, left; R, right.
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by suggesting a role for vmOFC dysfunction in decision
making under ambiguity in the disorder. The findings also
extend our comparative meta-analysis of voxel-based
morphometry studies and fMRI studies of inhibitory control
tasks that showed disorder-specific underactivation and
reduced structure in vmOFC in OCD relative to ADHD (40), as
well as our recent finding of disorder-specific vmOFC
underactivation during temporal discounting in adolescents
with OCD relative to adolescents with ADHD and control
subjects (7).

During outcome processing, an unexpected finding was
that unlike in some (44,92), but not all (93,94), previous studies
using the monetary incentive delay task, patients with ADHD
did not exhibit increased activation to wins in vmOFC or VS,
and instead showed disorder-specific increased activation to
losses in the right putamen/caudate and shared under-
activation in the left putamen/caudate to wins. A lack of
increased reactivity to wins may reflect differences between
the monetary incentive delay task and IGT. For instance, in the
monetary incentive delay task contingencies between cues
and reward outcomes do not need to be learned, whereas
outcome evaluation in the IGT is important for learning the
outcomes associated with each deck, and qualitatively
different orbito-fronto-striatal signaling may be involved in
passive reward receipt and active outcome evaluation (29). The
disorder specificity of the right putamen underactivation is
interesting in view of previous meta-analytic findings of
disorder-specific reduced right putamen gray matter volume
and activation in ADHD relative to OCD in voxel-based
morphometry studies and fMRI studies of inhibitory control
(40). The findings extend evidence for disorder-specific right
striatal underactivation in ADHD relative to OCD during inhib-
itory control to the domain of reward-based decision making.

The whole-brain analysis revealed that patient groups
shared reduced activation to losses in MPFC. Underactivation
to losses in the MPFC is in line with previous findings of
reduced MPFC localized feedback–related negativity to mon-
etary loss in ADHD patients (95). Reduced MPFC activation to
losses is in line with fMRI studies of reversal learning in OCD,
which report decreased activation in MPFC and adjacent OFC
when participants learn to shift responses based on negative
feedback (27,96–98), as well as with findings of reduced MPFC
gray matter volume and reduced MPFC activation during
inhibitory control (40,57). Findings support a shared blunting of
neural responses during outcome processing in adolescent
ADHD and OCD.

Limitations include, first, the fact that 50% of patients with
ADHD were receiving stimulant medication, while 20% of pa-
tients with OCD were receiving antidepressant medication and
one patient with OCD was receiving risperidone. There were
too few unmedicated patients to conduct a subgroup analysis.
These medication treatments may alter functioning in the
dopaminergic mesolimbic pathways responsible for decision
making and outcome processing, with stimulant medications
increasing striatal dopamine in ADHD, but selective serotonin
reuptake inhibitors and risperidone reducing dopaminergic
functioning in OCD (99,100). Although patients with ADHD
underwent a 48-hour washout period, there is meta-analytic
evidence for a normalization of frontostriatal activation and
alterations in dopaminergic functioning with chronic stimulant
700 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
treatment in patients with ADHD (38,101). Second, groups
differed on IQ, which was lower in patients with ADHD relative
to the other groups. However, lower IQ is typical for this
population and all groups scored in the normal range for IQ
(102). Third, structured interviews to assess common comor-
bidities including anxiety, mood, and autism spectrum disor-
ders in patients and undiagnosed conditions in control
subjects were not performed, and owing to their common co-
occurrence, subclinical comorbid ADHD and OCD symptoms
might have been present in the patient groups. However,
participants were considered by a consultant psychiatrist to be
free of comorbidities after clinical assessment. Fourth, brain
activation during the outcome phase may have been
contaminated by brain activation from the anticipation phase
owing to hemodynamic delay and a lack of jitter between the
two phases in the task design. Fifth, findings are not general-
izable to girls with ADHD or OCD. Last, although the sample
size is typical for the adolescent ADHD and OCD fMRI litera-
ture, future work should aim to confirm these findings in larger
samples.

In summary, this is the first study to compare decision
making under ambiguity in adolescent ADHD and OCD using
fMRI and computational modeling. Findings of shared choice
consistency impairments and smaller reinforcement learning
weights, as well as findings of shared VS underactivation
during advantageous choices, suggest impairment in both
disorders in representing and utilizing learned reward expec-
tancies during decision making. Findings of reduced sensitivity
to outcomes in MPFC and left putamen suggest shared al-
terations in outcome processing when outcomes must be used
to guide future behavior. Disorder-specific dysfunction in the
vmOFC in OCD and in the right putamen in ADHD parallel
previous, similar multimodal meta-analytic findings in voxel-
based morphometry studies and fMRI studies of inhibitory
control, indicating a possible preservation of disorder-specific
markers across tasks and modalities.
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