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In this paper, we propose a new classifier named kernel group sparse representation via structural and
non-convex constraints (KGSRSN) for image recognition. The new approach integrates both group spar-
sity and structure locality in the kernel feature space and then penalties a non-convex function to the
representation coefficients. On the one hand, by mapping the training samples into the kernel space,
the so-called norm normalization problem will be naturally alleviated. On the other hand, an inter-
val for the parameter of penalty function is provided to promote more sparsity without sacrificing the
uniqueness of the solution and robustness of convex optimization. Our method is computationally effi-
cient due to the utilization of the Alternating Direction Method of Multipliers (ADMM) and Majorization-
Minimization (MM). Experimental results on three real-world benchmark datasets, i.e., AR face database,
PIE face database and MNIST handwritten digits database, demonstrate that KGSRSN can achieve more
discriminative sparse coefficients, and it outperforms many state-of-the-art approaches for classification
with respect to both recognition rates and running time.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Image Classification (IC) is a fundamental and quintessential
task in pattern recognition and computer vision due to its broad
applications in human-computer interaction and security monitor-
ing. Exploration to improve upon the accuracy and efficiency of
IC approaches has been a remarkable research focus. Deep learn-
ing, as one of the popular techniques, has achieved great success
due to the facts that it is able to learn extremely powerful hier-
archical nonlinear representations of the inputs [1]. However, deep
learning based methods require massive training samples, which is
difficult to fulfill in many practical applications and computational
platforms. Alternatively, the methods via small number of training
samples are usually adopted in many specific scenarios.

Recently, sparse representation (SR) has become a very active
topic in signal processing and image classification community. So
far, it has been successfully applied in many practical problems
such as information evaluation [2], feature extraction [3,4], visual
tracking [5,6], etc. Under the assumption that natural image can be
generally represented by structural primitives, SR-based classifier
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(SRC) [7] aims to reconstruct a query image using a small set of el-
ements parsimoniously chosen out of an over-complete dictionary,
and classifies the query image into the class which results the min-
imal reconstruction error. In addition, sparse constraints (/;-norm)
not only lead to the unique solution of representation coefficients,
but also help to study the actual signal structure. Indeed, most sig-
nals admit decomposition over a reduced set of signals from the
same class and that will benefit the subsequent classification task.
SRC has shown its promise in IC problems and has received re-
markable attention.

Some scholars inquired into the reasonability of sparse regular-
ization for IC [8,9]. Zhang et al. [8] argued that it was unnecessary
to enforce sparsity constraint on linear regression problem, and
asserted it was the collaboration mechanism that makes SRC
outperform nearest neighbor based algorithms, such as NN, INNC
[10], etc. Correspondingly, they proposed a new classification
scheme, namely collaborative representation classifier (CRC). CRC
has significantly less computational cost than SRC but leads to
very competitive classification results. Both of SRC and CRC follow
a reasonable assumption that the subspaces of each objective are
independent of each other. However, this assumption is not always
held in general image distribution. This may lead to undesirable
consequences that some query samples are represented by images
from other subjects. To cope with this issue and introduce the
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essential structure information embedded in the dictionary, Ma-
jumdar et al. [11] proposed group sparse classification (GSC) that
solves the regression problem in an group way. Under the assump-
tion that the signals can be approximated by a union of a few
subspaces, GSC selects certain groups to represent the test sample
by using I,;-norm regularization. Similarly, Huang et al. [12] also
applied the group sparse coding to images classification, where
each test sample is represented by the minimum number of blocks.
Both the theoretical analysis and the experimental results have
showed the promising performance of GSC, outperforming both
SRC and CRC. More recently, it has been verified that the property
of locality preservation is more important for a classifier [13,14].
As a result, many regression-based works have been proposed,
such as integrating the data locality into the constraints of [;-norm
[15,16], Ib-norm [17,18] or group norm [19,20], for improvement.
Moreover, Tang, et al. [21] pointed out that directly involving
locality constraint in [19] may disrupt the group structure of
sparse coefficients. They further proposed a weighted group sparse
representation based on classification (WGSC) by involving the
influence of the similarity between query sample and each class.

Despite the successful implementation of regression-based al-
gorithms in IC, there still exist the following limitations: (a) As
a result of the linear characteristics, they obtain weak classifica-
tion result with uniform distribution properties, which is called
norm normalization problem in this paper. (b) The rising challenge
is to seek for feasible convex regularizations. However, it is well
known that non-convex approaches may yield more compact solu-
tions with a fixed residual energy. To deal with the first limitation,
many attempts are to introduce different metric representations to
fit the underlying structure of samples. Yang et al. [22] proposed a
nuclear norm based matrix regression (NMR) for IC, which holds
more structural information and performs better in the scenar-
ios of block-corrupted samples. However, it still suffers from the
norm normalization problem [23]. Some other works resort to ker-
nel trick to convert linear algorithms into nonlinear forms, such as
Kernel SRC (KSRC) [24,25], Kernel CRC (KCRC) [17] and Kernel GSC
(KGSC) [13,26,27]. These approaches map the original data into a
high-dimensional feature space by using a nonlinear kernel func-
tion, and then perform linear optimization in the feature space
with the inner products. It has been proved that kernel trick can
capture more nonlinear structure of the original data and its per-
formance is better than the linear methods. For the second limita-
tion, non-convex penalty functions are employed, such as the I, or
b, » pseudo-norm with p <1 [28-30].

In this paper, group sparsity with data locality, kernel trick,
and the non-convex regularization are further explored, and a joint
regression-based approach, named kernel group sparse represen-
tation via structural and non-convex constraint (KGSRSN) is pro-
posed. The advantage of integrating all these properties is that
more structural information embedded in the dictionary can be
captured and then a more discriminative representation can be
achieved. Compared to the related works, this paper

(1) Investigates the role of norm normalization step, illuminates
the reason for better performance with unit l,-norm data,
and solves this problem by the aid of kernel trick;

(2) presents a formulation of the group sparse coding as a con-
vex optimization problem though defined in terms of non-
convex constraint;

(3) derives an efficient iterative approach, using the alternating
direction method of multipliers (ADMM) and majorization-
minimization (MM), which monotonically decreases the cost
function.

The rest of this paper is organized as follows. The previous
works are introduced in Section 2. Section 3 explains the reasons
why the kernel trick can improve classification performance and

then presents our KGSRSN method. Section 4 reports the experi-
ment results on two popular face datasets and the MNIST hand-
written dataset. Our conclusions are given in Section 5.

2. Related works

Suppose that we have c classes of subjects, and let X =
[X1,X5,...,Xc] e R™M be the set of training samples, where X; =
[%i1, Xi, ..., Xip, ] € R™"i is the subset of the training samples from
subject i, x;; represents the jth training sample from the ith class,

n; is the number of training samples in class i, n = i n; is the total
i=1
sample size and y e R™ represents a test sample.

All representation type algorithms have similar principle, i.e.
they are premised on over-complete dictionary, all the training
samples are distributed in certain subspace. In other words, the
test sample y can be represented as a linear combination of X

y=X10; + X0, + -+ X0,
=X11011 + X126012 + - - + Xen Ocn, (1)
=X0

where 0=[01, 613, ...0n. ] € R" is a coefficient vector corresponding
to X. Therefore, the sparse solution of Eq. (1) can be recovered as

min |y — 2013 + £ (11 © 0]l,) 2)

where ® means element-wise multiplication, 5 €R" is the locality
weights, ¥ and Z are the transformation of the test sample and the
training samples, respectively, f{||0]|,) leads to the penalty function
with a l,-norm constrained variable, and A >0 is a trade-off pa-
rameter. Empirically, a larger A leads to a sparser solution. Accord-
ing to the variation of Z, 5 and p, (2) can be turned into different
sparse representation algorithms. When (2) is minimized, we ob-
tain the resulting coefficient vector 6*. Let §;(6*) be a vector whose
only nonzero entries are associated with class i. Then the class la-
bel of y can be decided as k that gives the minimum reconstruction
error, i.e.,

k= argmin| [ - 25,8l 3)
2.1. Linear representation classification

The classical SR-based approaches are developed with different
setting of penalty functions f and norm constraints p, by utilizing
¥ =y,Z = X directly and having no consideration of weights con-
straint (g = 1p).

For f being the absolute function and p=1, (2) turns to the
classical SRC [7]. Its coding coefficients @ is sparse under [;-norm
constraint and over-complete dictionary. Suppose the test sample
y belongs to the ith subject, then all the coding coefficients will
shrink to be zero except 0.

For f being the square function and p=2, then (2) becomes the
classical CRC [8]. While the importance of sparsity is much em-
phasized in SRC, Zhang et, al. [8] argued that the success of SRC
is attributed to collaborative mechanism rather than sparsity. Fur-
thermore, CRC has significantly less complexity than SRC by using
l,-minimization. It is noteworthy that CRC is not sparse since its
coding coefficient will not tend to absolute zero.

SRC and CRC are all unsupervised learning algorithms, they ig-
nore the label information during model establishment. GSC selects
a few groups to represent the query sample by using l,;-norm reg-
ularizer. Setting p=2, 1 and still with the absolute function f; it
uses lj-norm in inter-class samples while using l,-norm in intra-
class samples. Previous studies indicate that the recognition rate
of GSC is superior to that of SRC and CRC [12], but its efficiency is
inferior to the closed solution of CRC.
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2.2. Weighted representation classification

As described above, SRC, CRC and GSC construct the classifica-
tion model respectively by sparsity, collaboration and supervision.
They ignore the locality structure of the training samples. Recently,
scholars have proposed many locality preserving methods. Similar
to the classical ones, weighted representation approaches involve
the considerations of » while keeping other terms consistently. 5
measures the Euclidean distance between the test samples and the
training samples as

mij = exp(|| x; -y |13 /o) (4)

where 7;; denotes the jth weights from the ith class, and o is a
scalar parameter.

The weighted extensions of SRC, CRC and GSC are weighted SRC
(WSRC) [15,16], weighted CRC (WCRC) [17,18], and locality group
sparse representation (LGSR) [19], respectively. These approaches
make the coding coefficient of remote samples shrink to zero while
neighbor samples obtain larger coding coefficient, which means
that they have the properties of locality and noise-resistance. In
addition, WGSC [21] turns the regularization term of (2) to be
Y1 1illn; © 6;|2, which further include the weight factor r; for
better holding the group structure.

2.3. Kernel representation classification

Kernel-based methods adopt the kernel trick to map the origi-
nal data into a high-dimensional feature space by using an implicit
nonlinear mapping function, and then perform linear processing in
this high-dimensional space with inner products. Particularly, as
for SRC, CRC, and GSC, their kernel versions hold the same regu-
larization term but with y and X be implicitly mapped.

In the kernel space, ¥ and Z are expressed as ¢(y) and ®(X),
respectively, where ¢( -) denotes the mapping function and & rep-
resents its matrix form. Thus, (2) can be rewritten as

min || $(y) - @X)0 [I7 +AS (1l 6 1l,) (5)

where the weight constraint is temporarily ignored, i.e. set § = 1,.
Since ¢ is unknown, (5) can be reformulated by some kernel func-
tions as

¢ — DX)BI1% + A£(11611,)
= (@) — X)) () — 2X)0) +1f(|16]],) (6)
= k(y.y) +0'K0 — 2k(e.3)"0 + 1£(|10]],)

where K =®(X)T®(X) e R™" is a symmetric positive semi-
definite kernel matrix. k;; = k(x;,%;) is the given kernel function,
and k(e,y) = [k(x1,y), ..., k(xn,¥)] = ®(X) ¢ (y). There are some
commonly used kernel functions, i.e., the linear kernel, polynomial
kernel as well as the most frequently used Gaussian kernel that is
defined as

k(x;, %)) = exp(—||x; — x;13/202) (7)

where o is a tunable parameter.

Integrating (7) and (4) into (2) can lead to kernel weighted
version of SR-based approaches, such as Kernel WCRC (KWCRC)
[17]. Literature [17] and [24] demonstrate that the performance of
kernel weighted representation classification is superior to that of
other representation type classification empirically.

3. Kernel group sparse representation classifier via structural
and non-convex constraints

To improve the weighted group constraint and further enforce
it in the kernel space, a new non-convex penalty function and the
kernel trick is adopted to present a joint-sparsity SR-based method,

namely kernel group sparse representation classifier via structural
and non-convex constraints (KGSRSN). In KGSRSN, the locality met-
rics are measured in the kernel space, thus the nonlinear struc-
ture of input samples would be better explored. In this section, we
first explain the relationship between data normalization and sam-
ple selection, and then present the kernel-based method to deal
with the norm normalization problem. Second, we chose a specific
non-convex constraint in parametric form, so that the complete
objective function would be strictly convex. Finally, we derive the
optimization algorithm according to the principle of ADMM and
MM.

3.1. The norm normalization problem

In the practical IC problems, some normalization steps, such as
mean normalization [31] or norm normalization [23], always con-
ducted in advance. These steps can regulate the distribution of in-
put data and enhance the numerical stability of classifiers, but the
consequence has not been analyzed in theory and empirically. By
a concrete example, we investigate the impact of norm normaliza-
tion on sparse representation algorithms in this section.

Consider the samples in Fig. 1(a) as an example, where the
dataset consists of 150 points from three classes. all of them are
given by standard Gaussian distribution and without any normal-
ization. We choose the red dot (1, 2) as the test sample and the
others as training samples. From Fig. 1(b) and 1(c), it can be seen
that the selected samples for representing the red dot mainly in-
volves the ones from different classes, which indicates that the
sparse representation has no discriminality in this case. We call
this phenomenon as the norm normalization problem. The reason
is that the data points in the data set may have different l,-norm
(or l;-norm), so the sparse representation of one point may be in-
clined to select the data with larger l,-norm if possible. For this
dataset, the l,-norm of round samples, square samples and star
samples, respectively range from 0.433 to 17.668, 13.194 to 48.659
and 3.494 to 31.602. It is concluded that the l,-norm of square
samples and star samples is significantly higher than that of round
samples. Thus the sparse representation of the red dot may be in-
clined to select the square points and star points. In Fig. 1(b), the
selected samples with nonzero coefficients of SRC are marked with
one blue square and one blue star, not the right round data. It vio-
lates the basic idea of SRC that is to represent a query sample as an
intra-class sparse linear combination of the training samples. For
CRC and GSC, we choose the 15% largest elements of their repre-
sentation coefficients for output, since they are not sparse in strict
significance. Although the effective samples of CRC involve three
different kinds of input data, the majority is the square and star
points in Fig. 1(c). In Fig. 1(d), GSC eliminates square samples by
group constraint, but the number of star points is still much more
than that of round points. In Fig. 1(e), WSRC represents the query
sample as an intra-class sparse linear combination of the training
samples benefiting from the property of locality. However, the se-
lected representation samples are relatively with larger l,-norms,
the norm normalization problem still exists.

To illustrate the importance of l,-norm, we further take the
two-dimensional case as an example. Suppose that there are two
classes X1 = [%1,X;,x3] and X, = [X4, X5, X5] which are normalized
to have unit L,-norm and distributed on a unit sphere in Fig. 2.
Here x; is regarded as a test sample while the rest as training sam-
ples. Denote q; as the junction of the line linking x, to x3 with
the line linking x; to the origin, and denote b; as the Euclidean
distance from q; to the origin. Similarly, denote g, as the junction
of the line linking x, to x4 with the line linking x; to the origin,
and denote b, as the distance from g, to the origin. Assume that
X1 can be represented as a linear combination of x, and x3. Then
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(d) GSC

(e) WSRC

(f) KGSRSN

Fig. 1. Representation results of some non-normalized data from typical SR-based methods. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 2. The illustration of norm normalization problem.

X, can be denoted as

1 1
X = —(qy) = — (0%, + O3x3)
b, b,

6, 65

J2 7S T
b g0l

= [Xl#XZs o »XG][O’

where 6, and 63 are some positive numbers satisfying 6, + 03 =
1. For SRC, x; = [X1X;]0 and [|f||; = 1/by. Similarly, if x; can
be represented as a linear combination of x, and x4 by 6 =
[0,92//b2, 0, 92//b2, 0, O]T, then X1 = [X]Xz]”l and ||0/||1 = 1/b2
From Fig. 2, it can be observed that b; > b,, hence ||0]|; <@'||1,
which makes SRC select x, and x3 as the representation samples.
In other words, when all samples have the same l,-norm, the lin-
ear representation of a test data will be declined to select neighbor
points from the same class, which leads to the property of discrim-
inability under the well-known assumption that intra-class sam-
ples always agglomerated closer than inter-class samples. Further-
more, triangle data in Fig. 2 are normalized to have unit [{-norm.
It is obvious that this pretreatment can also regulate the structure
of input data, but the output data all lie on one line [32], which

makes q; and q, overlap to a single point (the yellow star), i.e.,
bi=b,. Therefore, [;-norm has less discriminality than l,-norm.

3.2. The proposed method

For any data point X, we have ||¢(x)||2 = k(x,x) =1 from (7),
so the data point ¢(x) naturally have unit /,-norm. Since kernel
trick can make the data points in high-dimensional feature space
linearly separable, the kernel-based sparse representation of data
can be a reasonable strategy to solve the norm normalization prob-
lem. From Fig. 1(f), we can see that KGSRSN obtains the accurate
representation data that distributes around the test samples.

For the penalty function on the other hand, many works
involved [,-norm regularizer for more compact representation.
However, this non-convex constraint generally suffers from many
numerical problems such as suboptimal local solutions, slow
convergence rate, and some initialization issues. In this section, we
introduce a new penalty function for more accurate data recon-
struction, while maintaining convexity of the total cost function.
For this purpose, the logarithmic penalty [33],

f(x) = M (8)
is adopted, where a> 0 is a scalar parameter.

Integrate (2), (7), and (8) into WGSC, the cost function of our
KGSRSN is

1 ~, log(1+al|d; ©6;
min 2[16) - ®C00|3 +2. Y5 BT AGOO) g,

: a
i=1

where d; is locality metric, whose entry d;; measures the distance
between y and training sample x;; in the kernel space as

dij =l|opxij) —d W13
=p (X)) P (X)) — 20 %) "OW) + d W) DY) (10)
=2 —2k(xij,y)
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r; is the group weight to indicate how well X; can represent
y. A smaller r; denotes larger probability of y belonging to the ith
class. By learning from the idea of LRC [34], r; can be defined as

ri =llp®) — ®(X)0;13
=1—2k;(s,y)"0; + 0;"K.0; (11)
0; =argmin ||$p(y) — ®(X,)0i| |2 = K; 'ki(e.y)

where K; = ®(X;)T®(X;) e R%*" is the ith kernel matrix,
ki(e,y) = ®(X;))Tp(y) is the kernel vector between y and the train-
ing samples from the ith class.

Similar as (3), the final decision rule can be formulated as

k= argmiin [lp(y) — ®(X)5:(0)]l2

(12)
=1-2k;(e,y)"0; + 0:"K,0;

i.e., the class label of y is decided as the class which gives the min-
imum residual error in the kernel feature space.

Notice that the chosen kernel needs to satisfy k(x,y) =c for
avoiding norm normalization problem, where c is a constant. This
can be satisfied when it is an isotropic kernel k(x,y) = k(||x.¥]|)
or any normalized kernel k(x,y) = k(x,y)/(k(x,%)1/2 x k(y,y)1/?).
In this paper, we adopt the Gaussian kernel in our experiments.

3.3. Optimization algorithm

Although some well-known algorithms, such as Homotopy
[35] and sparse projections [36], have been deliberatively devel-
oped for SR-based approaches, they cannot be used directly for our
method since it integrates both locality group sparsity and non-
convex penalty in the kernel space. We derive our optimization al-
gorithm jointly under the framework of ADMM [37,38] and MM
[39,40]. The former is efficient for most convex coding problems,
and the later replaces some tough problems by simpler ones. For
convenience, we introduce matrix D=diag([dq, d, ..., d:]) e R™"
and define § = D@. Then our KGSRSN algorithm can be rewritten
as

min J116) - 200D g3+ 5. 380+ UAR)
i=1
(13)
P 7 ~ log(1+4||Bill2)
:mﬁll‘ljﬂ Kﬂ—ﬂ k(o,y)+)»§ri7

To solve (13), we first define the augmented Lagrangian function as

Ly(B.z, ) =%ﬂTl~(ﬂ — ﬂTI}(.,y) +A Zriw ”
i=1

0
+u'(B-2)+ 5B -zl5
where p is the Lagrange multiplier and p > 0 is a penalty param-

eter. Solving (14) is equivalent to tracing the solutions (8%, z*, u*)
of the saddle-point problem [38]:

LBz, p) <L(B".z". p*) <L(B.z. n) (15)

With the computed (or initialized) vector z¢ and uk, by apply-
ing the ADMM iterative scheme to (15), the update of each variable
goes as

B! arg minL(B.z", ) (16a)
21— arg min LB, z, k) (16b)
P kg p (BT - 2k (16¢)

k+1

Fixing z¥ and u*, the subproblem for " can be rewritten as

5 k
B argmin (38K - fk(e.9) + D112+ 203
g \2 2 1Y
(17)

where the constant terms have been omitted. The first-order opti-
mality conditions of quadratic minimization problem (17) lead to

B! = (K + pD)~' (k(e.y) + p2* — p¥) (18)

Fixing B! and pX, the update of zK+1 is given by minimizing

the following subproblem:

k C
k1 . Py, pkst Ko 410g(1+a||zi||2)
Z <—argmzln(2||z B ?Ilz—i—)\;nf
(19)

Solving subproblem (19) is difficult due to the involving of
group constraint and non-convex logarithmic penalty. We use
the MM procedure to derive a method minimizing (19). Firstly,
Proposition 1 is presented to specify a majorizer of the logarith-
mic function.

Proposition 1. The function q defined by

X2 log(1 + av) v
= — 20
1) = S+ aw) a 2(1+av) (20)
is a majorizer of the logarithmic function except for v=0, i.e.,
qx.v) = MT*‘”‘),VxeR,ueR\{O} (21a)
q,v) = M%‘w), Vv e R\{0} (21b)

Proof. (21b) can be verified by a simple substitution. For (21a), us-
ing Talors expansion, we get

log(1+ax) log(1+av) (x-v)  ax-v)* (22)
a a (I+av)  2(1 +avg)?

for vo between v and x. Since a > 0, we have

log(1 + ax) - log(1+av) (x—v) (23)
a - a (1+av)

Using x < x2/2v + v/2, we further get

2

log(1 + ax) - X log(1 + av) 3 v — q(x.v)

a 2v(1 + av) a 2(1+av)
(24)

which completes the proof. O
From Proposition 1, the total function

0 TR T TL S R AL
Qz.2)=LPlz—p" By, Ml
2 o 1o 2 LI i)

- ’ WNAFAE
=Z(pllzi— R i} S ilzil; . )+C
o \2 P 2[|zll2(1 + allzl2)

(25)

is a majorization surrogate function of subproblem (19) with C
being a constant term independent of z. We then can obtain all
zi.‘“,i: 1,...,c, as follows:

-1
AT k-t
Zk1 = (p + ’) (IO'[-}.Jr + IL’,‘) (26)
l Izf112(1 + allzfll2) l 1

The details of our KGSRSN are given in Algorithm 1.
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Algorithm 1 KGSRSN.
Input: D, K, k(e,y), 1, A, @, p, &1, and &;.
Initialize z=p =0, i, = i; = 0.
Repeat
1ip=1ip+ 1.
2. Update B by (18)
Repeat
3. Initialize z = B+ u/p.
4, ii = i,‘ + 1.
5. Update z;, j=1,2,...,¢, by (26).
Until the value of subploblem (19) satisfies that (norm(cost(i;)-
cost(i; — 1))/norm(cost(i;)) < &,
6. Update u by (16¢).
Until norm(B — 2z) < &
Output: " =D 'B.

3.4. Convergence and complexity analysis

The convergence properties of ADMM have been exten-
sively studied [22,37,38]. Following the ideas of Ref. [38],
Proposition 2 holds under the assumption that the functions of
(16a) and (16b) are closed, proper, and convex.

Proposition 2 ([38]). The ADMM iterates satisfy that

(1) Residual convergence. ﬁk —2z¢ > 0 as k— oo, ie, the iterates
approach feasibility.

(2) Objective convergence. The cost function (13) of the iterates ap-
proaches the optimal value.

(3) Dual variable convergence. X — p* as k — oo, where u* is a
dual optimal point.

With the fact that the closedness and properness of our cost func-
tion (13) are clear, we further need to make sure that all the sub-
problems be convex and have convergent solutions. It is evident that
subproblem (17) is strictly convex and with closed-form solution (18),
the remaining issue for us is to prove the convexity and convergence
of subproblem (19). Above all, we introduce Proposition 3 to assert the
condition for convexity.

Proposition 3. Subproblem (19) is strictly convex under the condition
that

0

0 << maxm

(27)

Proof. For any v> 0, define function g: R— R with parameter a >0
as

gv) = L7 4 2rf () (28)

Since the logarithmic function f{v) is continuous and twice differ-
entiable for v> 0, the convexity of g can be ensured by a positive
second derivative on v > 0. This leads to the condition

gWy=p+irf'v)>0= f'(v) > —p/(Ar) (29)

Moreover, since f”(v) = —a/(1 +av)?, and the minimum second-
order derivative of f{v) resides in f”(0) = —a, we can obtain that

—a>—p/(Ar) = a < p/(Ar) (30)

Based on the convexity of ||x||», g(||%]|2) is also strictly convex. By
expanding and decomposing (19) into

P, k+l_ﬂ7k 2 - log(1 +al|zill,)
T AN
C

k
—Pyzz = L gt 4 B log(1 + allzill,)
ST 22<B +p)+)»;n ) ¢

c k
=S ezl - 227 (A" + £ ) +c
i=1 2 P

(31)

we can see that it is a linear combination of g(||z;||;), a con-
vex term zT(ﬂk“ + pk/p), and a constant term C. Hence, (19) is
strictly convex with condition (27). O

To analyze the convergence of z subproblem, we first charac-
terize a & strongly convexity of the surrogate function Q(z, z¥) in
(25) as Proposition 4. Then by the important property shown in
Lemma 1 [40], we give convergence results for subproblem z as in
Proposition 5.

Proposition 4. The surrogate function Q(z, z¥) in (25) is § strongly
convex, i.e., function Q(z,z¥) — 0.55||z||§ is convex, where § > 0.

The proof is omitted here since its derivation is very similar as the
proof of Proposition 3.

Lemma 1 [40]. Let J(x): R — R be a § strongly convex function, and
x* be the minimizer of J(x), then inequality O.58||x—x*||§ <J(x) —
J(x*) holds for any x < R".

Proposition 5. Denote J(z) as subproblem (19), let {z"},ﬁo=1 be the
generated sequence by the inner loop of Algorithm 1 with any initial
20, then we have:

(1) The sequence {](z")};o=0 is monotonically non-increasing and
convergent;

(2) The property limy._,||2X —z*1||3 =0 holds for the corre-
sponding sequence {z"};ozo.

Proof. Recall Proposition 4, the surrogate function Q(z, z¥) is a 8
strongly convex majorizer of J(z) at z¥, and z¥*! is the global min-
imizer of Q(z, zX). Thus for any k>0 we can write:

J@) <@, 24 <, 2F) =] (ZY) (32)

which reveals the monotonically non-increasing property of se-
quence {J(z¥)}2 . Notice that {J(z¥)}> is bounded from below
with zero, hence convergent.

Lemma 1 with Q(z, z*) in place of J(x) and z¥'! in place of x*
yields

gllz 2113 <Q(z.2) - Q1. 2, Vze R k> 0. (33)
Furthermore, (33) with z¥ substituting for z leads to
)
Sl =213 < Q.2 - Q@ 2 <J @) -y (34)
Summing the inequalities (34) over k, we then obtain
> 2 & 2
ko k+1()2 k k+1 0 %
Dl =2 = 530 @) = 50E -1 (35)

where J* is the limit of the convergent sequence {](z")};;‘;o (the
first statement of Proposition 5). Since that {](zk)};:io is a mono-
tonically non-increasing sequence and 4 > 0, the last term of (35) is
a finite non-negative number, which proves the convergence of the
first term and verifies the property limy_, . |[2¥ — 21|32 =0. O
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Fig. 3. The recognition rate of GSC and KGSRSN under different norm normalization.

For the computational complexity of Algorithm 1, it is clear to
see that the main running time lies in updating 8 and z. Since
(K+ pD~! can be computed in advance and cached offline, the
complexity of performing (18) is O(n?). Besides, with the fact that
eacchz;,i=1,..., ¢, can be updated in parallel as in (26), then the
complexity of z subproblem costs O(i;cn;). Therefore, the overall
time complexity of Algorithm 1 is O(i,(n? + iicn,.z)). In our experi-
ments, KGSRSN always reaches the convergence condition (we set
&1 =&y = 1le —3) with i; <10 and i, <30.

4. Experimental analysis
4.1. Datasets and experimental settings

(1) Datasets. Three real-world benchmark datasets, i.e., MNIST
handwritten digits database, AR and PIE face databases,
are used for evaluation. For AR database, we use a subset
[17] including 100 individuals for a total of 700 training and
700 testing images of 60 x 43 pixels. The PIE database con-
tains 41368 face images collected from 68 subjects. In accor-
dance with AR database, we select 700 training samples and
700 test samples at random in our experiments. For MNIST
database, we randomly select 50 training images for each
of the 10 digits from the training set and 70 from the test
set. All images in PIE and MNIST are manually cropped to
28 x 28 pixels.

Form of input data. Our experiments are conducted on orig-
inal gray-valued pixels and subspace projections. For the
original pixels, each image is concatenated by its columns,
and then all samples are arranged in a tandem array. For
subspace projection samples, dimension reduction methods,
including principal component analysis (PCA) and iterative
nearest neighbors linear projections (INNLP) [10], are used
for feature extraction. We set the regularization parameter
of INNLP to be 0.05 permanently.

Competing methods. The selected competing classifiers in-
clude linear algorithms SRC [7], CRC [8], and GSC [12],
weighted algorithms WSRC [16], WCRC [17], and WGSC [21],
kernel-based algorithms KSRC [24], KCRC [17], KGSC [27],
and KWCRC [17]. In addition, the performance of KGSRSN
is also compared with other classical algorithms, including
INNC [10], NMR [22] and KINNC [10]. In the implementation,
we adopt 5-fold cross validation to confirm optimal value
of the regularization parameters. For arbitrary classifica-
tion algorithms, we search A from {le —6,1e -5, ..., 1e0},
and select the highest average recognition rate as the ul-
timate model parameters in different feature dimension.
Without special declaration, in our method we set p=1 and
a=0.9p/(A max(r;)).

—
N
—

—
w
—

4.2. The behavior of normalization and non-convex penalty

As described in Section 3.1, different normalization of input
data affects the performance of SR-based approaches. In this sec-
tion, we take GSC and KGSRSN as examples to evaluate the recog-
nition rate versus different norm normalization on MNIST, AR
and PIE databases in Fig. 3. PCA is used for feature extraction.
Fig. 3 shows the recognition rate of GSC varies greatly with the
change of norm normalization, where its gap reaches 2-6% un-
der different subspace dimensions. Among them, GSC-I, reaches
the highest recognition rate with l,-norm while GSC_none per-
forms poorest. Besides, KGSRSN takes advantage of kernel trick
to overcome the normalization problem described in Section 3.1,
so its recognition rate changes less (about 1%) under different
datasets and different subspace dimensions. Overall, the experi-
mental results in Fig. 3. agree well with the theoretical analysis in
Section 3.1. In the following experiments, we adopt l,-norm nor-
malization for better recognition rate of linear algorithms.

In Algorithm 1, parameter a is used to determine the degree of
non-convexity for the logarithmic penalty. With Proposition 3, our
experiments adopt a = 7p/(Amax(r;)), T € {0.1,0.2,...,0.9} to en-
sure the overall convexity of the total cost function. Fig. 4 illus-
trates the role of parameter a. In Fig. 4 (a), a specific parameter a
closer to 0 makes the penalty function closer to the classical [1-
norm constraint. On the other hand, a larger 7 leads to a deeper
degree of non-convexity. Fig. 4 (b) illustrates the recognition rate of
our method versus various choice of t in MNIST, AR, and PIE, re-
spectively. We can see that the performance of KGSRSN improves
with the increasing of 7 to some extent. This empirically verifies
the statement that more non-convex penalty leads to a more com-
pact representation.

4.3. Recognition performance

In this section, we conduct classification on original input data
and subspace data, respectively. The subspace dimension is set as
I={50, 100, 150, 200, 250, 300}. Tables 1-3 show the recognition
rates and corresponding dimension on MNIST, AR, PIE, where the
best results are highlighted in bold and the second best results are
highlighted in italics. From Tables 1-3, we can see that

(1) Considering diverse distribution of practical images, most
classifiers have different performance in different input fea-
ture. We cannot guarantee that any classifier has over-
whelming superiority, so we attempt to seek out the one
that is relatively more stable and more effective.

(2) The recognition rate of INNC and KINNC is clearly lower
than other methods. Take PIE database with PCA as example,
they achieve 61.0% recognition rate while the lowest recog-
nition rate of other algorithms is 64.7%. It shows that near-
est neighbor based algorithms are suboptimal for classifica-
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Table 1
Recognition rates versus different dimensions on MNIST databases.
Classifier  Input Subspace dimensions from PCA Subspace dimensions from INNLP
dimension 50 100 150 200 250 300 50 100 150 200 250 300
SRC 911 910 910 910 910 913 911 65.7 657 651 653 657 657
CRC 86.4 874 871 871 870 870 870 631 633 631 629 629 629
GSC 91.6 909 910 911 911 91.2 913 653  66.1 660 664 663 663
WSRC 89.7 909 906 904 90.7 911 909 657 649 636 653 650 651
WCRC 88.0 903 904 899 897 894 894 644 639 643 633 630 630
WGSC 91.6 915 916 916 916 916 916 653 668 668 670 670 673
INNC 91.6 916 919 917 917 916 916 656 641 669 650 653 653
NMR 85.8 872 872 872 871 871 871 632 622 632 630 630 630
KSRC 91.7 919 923 919 919 920 920 663 666 664 679 674 674
KCRC 91.7 91.7 906 900 893 883 885 667 679 671 679 673 674
KGSC 91.8 91.7 921 921 920 918 918 666 678 676 676 676 674
KWCRC 91.7 90.1 90.1 90.1 903  90.1 90.1 66.7 679 671 679 673 674
KINNC 91.5 914 914 916 914 916 916 554 481 423 401 367 361
KGSRSN 92.2 922 924 928 926 926 924 666 684 683 683 679 679
Table 2
Recognition rates versus different dimensions on AR database.
Classifier  Input Subspace dimensions from PCA Subspace dimensions from INNLP
dimension 50 100 150 200 250 300 50 100 150 200 250 300
SRC 93.6 764 794 805 814 816 818 906 933 939 943 944 941
CRC 93.0 775 876 896 907 91.0 926 91.0 940 939 934 934 931
GSC 94.0 83.0 889 903 911 91.2 913 921 943 944 943 941 94.3
WSRC 923 817 888 904 917 920 920 896 933 953 946 940 9338
WCRC 93.0 80.8 881 89.7 913 917 923 934 941 943 944 944 944
WGSC 94.0 840 889 904 913 921 924 923 943 944 944 942 943
INNC 80.1 733 773 780 788 790 795 888 926 929 930 929 93.0
NMR 93.2 780 880 89.0 908 91.0 924 912 938 936 945 934 932
KSRC 819 755 783 794 805 807 813 878 921 923 924 924 924
KCRC 933 824 888 904 917 917 918 927 936 939 937 937 936
KGSC 93.8 83.0 889 906 917 918 918 926 940 940 942 946 944
KWCRC 924 788 860 893 913 910 921 858 924 927 926 927 927
KINNC 80.6 742 774 780 792 799 801 83.0 849 765 754 731 62.8
KGSRSN 94.2 842 902 913 923 929 936 932 939 947 948 948 9438
Table 3
Recognition rates versus different dimensions on PIE database.
Classifier  Input Subspace dimensions from PCA Subspace dimensions from INNLP
dimension 50 100 150 200 250 300 50 100 150 200 250 300
SRC 89.0 707 774 784 796 796 806 886 89.7 907 904 909 911
CRC 88.0 647 801 849 859 864 876 884 894 837 89.0 891 89.0
GSC 89.0 76.1 854 869 870 879 873 837 894 896 896 89.7 899
WSRC 84.7 750 834 847 857 869 864 894 891 896 89.7 894 896
WCRC 879 666 793 836 850 854 853 897 896 897 899 900 901
WGSC 885 772 850 84 868 870 869 898 896 900 900 900 90.2
INNC 61.3 529 576 593 606 606 610 899 906 916 913 909 911
NMR 87.8 650 796 8.0 856 864 870 88l 889 838 891 891 891
KSRC 80.6 723 741 757 761 764 771 884 839 887 887 881 886
KCRC 88.7 79.7 839 859 871 877 866 886 887 89.0 891 884 886
KGSC 88.9 765 854 869 872 879 873 890 894 898 887 881 886
KWCRC 89.0 726 816 840 873 876 870 836 887 890 900 900 90.0
KINNC 43.0 336 341 331 331 343 357 833 796 826 830 807 79.0
KGSRSN 89.9 800 81 869 879 879 877 908 907 919 917 916 917
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Fig. 5. The leaned coefficients and reconstruction residuals of two failed samples, where the entries from the true subject and the mistakenly identified subject are marked
in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

tion in real world applications compared with the SR-based
algorithms.

(3) Among the linear approaches, GSC outperforms SRC and CRC
in most scenarios. Specifically, GSC wins 3 bold values in
PIE database, which ties with KGSC in the second place.
This is attributed to the group constraint with supervised
I, 1-norm. Interestingly, the performance of the matrix-based
method, NMR that is developed for block corruptions, is
equally matched with CRC, since that its advantages can-
not be taken in these Gaussian or Laplacian distributed data
[23].

(4) The performance of linear representation methods can be
further improved by locality metrics and kernelization. From
Tables 1-3, it can be seen that the recognition rates of
weighted methods and kernel methods are mostly supe-
rior. Particularly, when the dimensionality of the data is re-
duced to 150 by INNLP in AR dataset, WSRC achieves 95.3%
recognition rate, which outperforms all other competing al-
gorithms.
By integrating all the merits of group constraint, local-
ity metrics, nonlinear mapping, and non-convex penalty,
KGSRSN obtains the highest recognition rates in most sce-
narios. It achieves 92.8%, 94.8%, 91.9% recognition rate in
MNIST, AR, PIE, respectively. Notice that it may not lead to
better performance in practical applications with parts of
these properties. In AR database, many results from the ker-
nel methods are poorer than those from the linear meth-
ods. KGSRSN achieves the appealing performance benefiting
from the properties of group constraint and locality metrics
in this situation. Similarly, the performance of the weighted
methods in PIE database exhibit little improvements. How-
ever, our method still performs better with the properties of
group constraint and nonlinear mapping.

—
]
-

To further improve the performance of our method, Fig. 5 ex-
hibits two failed tests in AR database. From Fig. 5 (a), we can see
that both of these two samples are with exaggerated facial expres-
sions, which makes them difficult to be accurately represented by
their intra-class samples. In Fig. 5 (b), it is clear that if we classify
the query samples to the class with the largest coefficients, then
both of these two tests will be correctly identified. In Fig. 5 (c),
the reconstructed residuals from the intra-class samples are very
close to the minimum one. Thus, the failure also can be avoided
by a majority vote from several SR-based methods. However, these
tricks only work for some special samples, and cannot make an
overall improvement. By introducing a learned convolutional neu-

Table 4
Comparison of running time for recogniz-
ing one query sample.

Methods  elapsed time(in seconds)
MNIST AR PIE
SRC 0.163 0346  0.294
GSC 0.054 0.176 0.130
WGSC 0.062 0.180 0.140
KSRC 0.182 0255 0.138
KGSC 0.112 0.210 0.142
KWCRC 0.027 0.047  0.051
KGSRSN 0.053 0.064  0.107

ral network [41] as a deep features extractor, we further improve
the recognition rate of KGSRSN to 98.5% and 98.3% in AR and PIE,
respectively. These results are close to or even better than the deep
learning based methods such as DeepFace [42]. Since our method
has more intuitive learning mechanisms and can be independently
applied with limited sample size, it has wide application prospects.

4.4. Computation efficiency

In this section, several experiments are conducted to verify the
efficiency of KGSRSN in comparison with six algorithms, i.e., SRC,
GSC, WGSC, KSRC, KGSC and KWCRC. The programming platform
is with Intel Core i5 CPU, 2.4 GHz dual-core processor, 4 GB RAM
memory, 32 bits Win 7 operating system and MATLAB 2014. The
average elapse time from 10 runs of recognizing one original in-
put data for each algorithm is illustrated in Table 4. We can ob-
serve that KWCRC is the most efficient one among all the compet-
ing methods due to the closed-form solution. KSRC, which achieves
similar accuracy as KWCRC, consumes about 3-5 times more time
than KWCRC for recognizing one query sample. The group con-
strained methods, including GSC, WGSC, KGSC, and our KGSRSN,
also need iterative computations as SRC in implementation, so
their computational efficiency is relatively lower than KWCRC. Our
KGSRSN runs faster than the other group constrained methods.
This is attributed to the newly proposed optimization algorithm,
which not only consumes little costs in each update step, but also
converges with few loops. Fig. 6 illustrates the convergence of
KGSRSN using a randomly selected sample from MNIST database.
For the outer loop i,, the objective values of our cost function
(13) decrease to below 1e-3 (in log domain) within twenty iter-
ations, and for the inner loop i;, the convergence condition can be
satisfied in around 5-10 iterations.
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5. Conclusion

In this paper, a new kernel group sparse representation ap-
proach via structural and non-convex constraints (KGSRSN) is pro-
posed for classification. Specifically, three appealing properties, i.e.,
data locality for holding more structural information, group con-
straint for penalizing inter-class representation, as well as kernel-
ization for implicitly avoiding norm normalization problem, are in-
corporated into a unified cost function for better discrimination.
Furthermore, we introduce a non-convex function with parametric
forms to penalize the representation coefficients; and we ensure an
interval for the parameter that leads to the convexity of the total
cost function. Experiments are conducted on benchmark databases
and the results verify KGSRSN outperforms many SR-based meth-
ods. Moreover, an iteratively update solution of the convex prob-
lem for KGSRSN is also presented, which can achieve the unique
solution of the algorithm within 30 iterations. Experimental results
also show that the efficiency of KGSRSN is superior to that of GSC
and SRC.
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