
ARTICLE IN PRESS 

JID: NEUCOM [m5G; March 29, 2018;15:41 ] 

Neurocomputing 0 0 0 (2018) 1–11 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Kernel group sparse representation classifier via structural and 

non-convex constraints 

Jianwei Zheng 

a , b , Hong Qiu 

a , Weiguo Sheng 

c , Xi Yang 

a , ∗, Hongchuan Yu 

b 

a School of Computer Science and Technology, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou, Zhejiang, China 
b National Centre for Computer Animation, Bournemouth University, Bournemouth BH125BB, UK 
c Institute of Service Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang, China 

a r t i c l e i n f o 

Article history: 

Received 17 October 2016 

Revised 24 January 2018 

Accepted 12 March 2018 

Available online xxx 

Communicated by Ivor Tsang 

Keywords: 

Sparse representation 

Locality constraint 

Group sparse 

Kernel trick 

Non-convex penalty 

a b s t r a c t 

In this paper, we propose a new classifier named kernel group sparse representation via structural and 

non-convex constraints (KGSRSN) for image recognition. The new approach integrates both group spar- 

sity and structure locality in the kernel feature space and then penalties a non-convex function to the 

representation coefficients. On the one hand, by mapping the training samples into the kernel space, 

the so-called norm normalization problem will be naturally alleviated. On the other hand, an inter- 

val for the parameter of penalty function is provided to promote more sparsity without sacrificing the 

uniqueness of the solution and robustness of convex optimization. Our method is computationally effi- 

cient due to the utilization of the Alternating Direction Method of Multipliers (ADMM) and Majorization- 

Minimization (MM). Experimental results on three real-world benchmark datasets, i.e., AR face database, 

PIE face database and MNIST handwritten digits database, demonstrate that KGSRSN can achieve more 

discriminative sparse coefficients, and it outperforms many state-of-the-art approaches for classification 

with respect to both recognition rates and running time. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Image Classification (IC) is a fundamental and quintessential

ask in pattern recognition and computer vision due to its broad

pplications in human-computer interaction and security monitor-

ng. Exploration to improve upon the accuracy and efficiency of

C approaches has been a remarkable research focus. Deep learn-

ng, as one of the popular techniques, has achieved great success

ue to the facts that it is able to learn extremely powerful hier-

rchical nonlinear representations of the inputs [1] . However, deep

earning based methods require massive training samples, which is

ifficult to fulfill in many practical applications and computational

latforms. Alternatively, the methods via small number of training

amples are usually adopted in many specific scenarios. 

Recently, sparse representation (SR) has become a very active

opic in signal processing and image classification community. So

ar, it has been successfully applied in many practical problems

uch as information evaluation [2] , feature extraction [3,4] , visual

racking [5,6] , etc. Under the assumption that natural image can be

enerally represented by structural primitives, SR-based classifier
∗ Corresponding author. 
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SRC) [7] aims to reconstruct a query image using a small set of el-

ments parsimoniously chosen out of an over-complete dictionary,

nd classifies the query image into the class which results the min-

mal reconstruction error. In addition, sparse constraints ( l 1 -norm)

ot only lead to the unique solution of representation coefficients,

ut also help to study the actual signal structure. Indeed, most sig-

als admit decomposition over a reduced set of signals from the

ame class and that will benefit the subsequent classification task.

RC has shown its promise in IC problems and has received re-

arkable attention. 

Some scholars inquired into the reasonability of sparse regular-

zation for IC [8,9] . Zhang et al. [8] argued that it was unnecessary

o enforce sparsity constraint on linear regression problem, and

sserted it was the collaboration mechanism that makes SRC

utperform nearest neighbor based algorithms, such as NN, INNC

10] , etc. Correspondingly, they proposed a new classification

cheme, namely collaborative representation classifier (CRC). CRC

as significantly less computational cost than SRC but leads to

ery competitive classification results. Both of SRC and CRC follow

 reasonable assumption that the subspaces of each objective are

ndependent of each other. However, this assumption is not always

eld in general image distribution. This may lead to undesirable

onsequences that some query samples are represented by images

rom other subjects. To cope with this issue and introduce the
ation classifier via structural and non-convex constraints, Neuro- 

https://core.ac.uk/display/154422292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.neucom.2018.03.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:xyang@zjut.edu.cn
https://doi.org/10.1016/j.neucom.2018.03.035
https://doi.org/10.1016/j.neucom.2018.03.035


2 J. Zheng et al. / Neurocomputing 0 0 0 (2018) 1–11 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; March 29, 2018;15:41 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

m  

w

2

 

[  

[  

s  

n  

s

 

t  

s  

t

 

w  

t  

 

w  

w  

t  

w  

r  

i  

s  

t  

o  

b  

e

 

2

 

s  

ψ  

s

 

c  

c  

y  

s

 

c  

p  

i  

t  

l  

c

 

n  

a  

u  

u  

c  

o  

i

essential structure information embedded in the dictionary, Ma-

jumdar et al. [11] proposed group sparse classification (GSC) that

solves the regression problem in an group way. Under the assump-

tion that the signals can be approximated by a union of a few

subspaces, GSC selects certain groups to represent the test sample

by using l 2,1 -norm regularization. Similarly, Huang et al. [12] also

applied the group sparse coding to images classification, where

each test sample is represented by the minimum number of blocks.

Both the theoretical analysis and the experimental results have

showed the promising performance of GSC, outperforming both

SRC and CRC. More recently, it has been verified that the property

of locality preservation is more important for a classifier [13,14] .

As a result, many regression-based works have been proposed,

such as integrating the data locality into the constraints of l 1 -norm

[15,16] , l 2 -norm [17,18] or group norm [19,20] , for improvement.

Moreover, Tang, et al. [21] pointed out that directly involving

locality constraint in [19] may disrupt the group structure of

sparse coefficients. They further proposed a weighted group sparse

representation based on classification (WGSC) by involving the

influence of the similarity between query sample and each class. 

Despite the successful implementation of regression-based al-

gorithms in IC, there still exist the following limitations: (a) As

a result of the linear characteristics, they obtain weak classifica-

tion result with uniform distribution properties, which is called

norm normalization problem in this paper. (b) The rising challenge

is to seek for feasible convex regularizations. However, it is well

known that non-convex approaches may yield more compact solu-

tions with a fixed residual energy. To deal with the first limitation,

many attempts are to introduce different metric representations to

fit the underlying structure of samples. Yang et al. [22] proposed a

nuclear norm based matrix regression (NMR) for IC, which holds

more structural information and performs better in the scenar-

ios of block-corrupted samples. However, it still suffers from the

norm normalization problem [23] . Some other works resort to ker-

nel trick to convert linear algorithms into nonlinear forms, such as

Kernel SRC (KSRC) [24,25] , Kernel CRC (KCRC) [17] and Kernel GSC

(KGSC) [13,26,27] . These approaches map the original data into a

high-dimensional feature space by using a nonlinear kernel func-

tion, and then perform linear optimization in the feature space

with the inner products. It has been proved that kernel trick can

capture more nonlinear structure of the original data and its per-

formance is better than the linear methods. For the second limita-

tion, non-convex penalty functions are employed, such as the l p or

l 2, p pseudo-norm with p < 1 [28–30] . 

In this paper, group sparsity with data locality, kernel trick,

and the non-convex regularization are further explored, and a joint

regression-based approach, named kernel group sparse represen-

tation via structural and non-convex constraint (KGSRSN) is pro-

posed. The advantage of integrating all these properties is that

more structural information embedded in the dictionary can be

captured and then a more discriminative representation can be

achieved. Compared to the related works, this paper 

(1) Investigates the role of norm normalization step, illuminates

the reason for better performance with unit l 2 -norm data,

and solves this problem by the aid of kernel trick; 

(2) presents a formulation of the group sparse coding as a con-

vex optimization problem though defined in terms of non-

convex constraint; 

(3) derives an efficient iterative approach, using the alternating

direction method of multipliers (ADMM) and majorization–

minimization (MM), which monotonically decreases the cost

function. 

The rest of this paper is organized as follows. The previous

works are introduced in Section 2 . Section 3 explains the reasons

why the kernel trick can improve classification performance and
Please cite this article as: J. Zheng et al., Kernel group sparse represen

computing (2018), https://doi.org/10.1016/j.neucom.2018.03.035 
hen presents our KGSRSN method. Section 4 reports the experi-

ent results on two popular face datasets and the MNIST hand-

ritten dataset. Our conclusions are given in Section 5 . 

. Related works 

Suppose that we have c classes of subjects, and let X =
 X 1 , X 2 , . . . , X c ] ∈ R 

m ×n be the set of training samples, where X i =
 x i 1 , x i 2 , . . . , x in i ] ∈ R 

m ×n i is the subset of the training samples from

ubject i , x ij represents the j th training sample from the i th class,

 i is the number of training samples in class i , n = 

c ∑ 

i =1 

n i is the total

ample size and y ∈ R 

m represents a test sample. 

All representation type algorithms have similar principle, i.e.

hey are premised on over-complete dictionary, all the training

amples are distributed in certain subspace. In other words, the

est sample y can be represented as a linear combination of X 

y = X 1 θ1 + X 2 θ2 + · · · + X c θc 

= x 11 θ11 + x 12 θ12 + · · · + x cn c θcn c 

= X θ

(1)

here θ= [ θ11 , θ12 , ..., θcn c ] ∈ R 

n is a coefficient vector corresponding

o X . Therefore, the sparse solution of Eq. (1) can be recovered as

min 

θ
|| ψ − Z θ|| 2 2 + λ f (|| η � θ|| p ) (2)

here � means element-wise multiplication, η∈ R 

n is the locality

eights, ψ and Z are the transformation of the test sample and the

raining samples, respectively, f (|| θ|| p ) leads to the penalty function

ith a l p -norm constrained variable, and λ> 0 is a trade-off pa-

ameter. Empirically, a larger λ leads to a sparser solution. Accord-

ng to the variation of Z , η and p , (2) can be turned into different

parse representation algorithms. When (2) is minimized, we ob-

ain the resulting coefficient vector θ∗. Let δi ( θ
∗) be a vector whose

nly nonzero entries are associated with class i . Then the class la-

el of y can be decided as k that gives the minimum reconstruction

rror, i.e., 

k = arg min 

i 
|| ψ − Z δi ( θ

∗
) || 2 (3)

.1. Linear representation classification 

The classical SR-based approaches are developed with different

etting of penalty functions f and norm constraints p , by utilizing

 = y , Z = X directly and having no consideration of weights con-

traint ( η = 1 n ). 

For f being the absolute function and p = 1, (2) turns to the

lassical SRC [7] . Its coding coefficients θ is sparse under l 1 -norm

onstraint and over-complete dictionary. Suppose the test sample

 belongs to the i th subject, then all the coding coefficients will

hrink to be zero except θi . 

For f being the square function and p = 2, then (2) becomes the

lassical CRC [8] . While the importance of sparsity is much em-

hasized in SRC, Zhang et, al. [8] argued that the success of SRC

s attributed to collaborative mechanism rather than sparsity. Fur-

hermore, CRC has significantly less complexity than SRC by using

 2 -minimization. It is noteworthy that CRC is not sparse since its

oding coefficient will not tend to absolute zero. 

SRC and CRC are all unsupervised learning algorithms, they ig-

ore the label information during model establishment. GSC selects

 few groups to represent the query sample by using l 2,1 -norm reg-

larizer. Setting p = 2, 1 and still with the absolute function f , it

ses l 1 -norm in inter-class samples while using l 2 -norm in intra-

lass samples. Previous studies indicate that the recognition rate

f GSC is superior to that of SRC and CRC [12] , but its efficiency is

nferior to the closed solution of CRC. 
tation classifier via structural and non-convex constraints, Neuro- 
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.2. Weighted representation classification 

As described above, SRC, CRC and GSC construct the classifica-

ion model respectively by sparsity, collaboration and supervision.

hey ignore the locality structure of the training samples. Recently,

cholars have proposed many locality preserving methods. Similar

o the classical ones, weighted representation approaches involve

he considerations of η while keeping other terms consistently. η
easures the Euclidean distance between the test samples and the

raining samples as 

ηi j = exp (‖ x i j − y ‖ 

2 
2 /σ

2 ) (4) 

here ηij denotes the j th weights from the i th class, and σ is a

calar parameter. 

The weighted extensions of SRC, CRC and GSC are weighted SRC

WSRC) [15,16] , weighted CRC (WCRC) [17,18] , and locality group

parse representation (LGSR) [19] , respectively. These approaches

ake the coding coefficient of remote samples shrink to zero while

eighbor samples obtain larger coding coefficient, which means

hat they have the properties of locality and noise-resistance. In

ddition, WGSC [21] turns the regularization term of (2) to be
 c 
i =1 r i || ηi � θi || 2 , which further include the weight factor r i for

etter holding the group structure. 

.3. Kernel representation classification 

Kernel-based methods adopt the kernel trick to map the origi-

al data into a high-dimensional feature space by using an implicit

onlinear mapping function, and then perform linear processing in

his high-dimensional space with inner products. Particularly, as

or SRC, CRC, and GSC, their kernel versions hold the same regu-

arization term but with y and X be implicitly mapped. 

In the kernel space, ψ and Z are expressed as φ( y ) and �( X ) ,

espectively, where φ( · ) denotes the mapping function and � rep-

esents its matrix form. Thus, (2) can be rewritten as 

min 

θ
‖ φ( y ) − �( X ) θ ‖ 

2 
2 + λ f (‖ θ ‖ p ) (5) 

here the weight constraint is temporarily ignored, i.e. set η = 1 n .

ince φ is unknown, (5) can be reformulated by some kernel func-

ions as 

|| φ( y ) − �( X ) θ|| 2 2 + λ f (|| θ|| p ) 
= (φ( y ) − �( X ) θ) T ( φ( y ) − �( X ) θ) + λ f (|| θ|| p ) 
= k ( y , y ) + θ

T 
K θ − 2 k (•, y ) T θ + λ f (|| θ|| p ) 

(6) 

here K = �( X ) T �( X ) ∈ R 

n ×n is a symmetric positive semi-

efinite kernel matrix. k i j = k ( x i , x j ) is the given kernel function,

nd k (•, y ) = [ k ( x 1 , y ) , . . . , k ( x n , y )] = �( X ) T φ( y ) . There are some

ommonly used kernel functions, i.e., the linear kernel, polynomial

ernel as well as the most frequently used Gaussian kernel that is

efined as 

k ( x i , x j ) = exp (−|| x i − x j || 2 2 / 2 σ 2 ) (7) 

here σ is a tunable parameter. 

Integrating (7) and (4) into (2) can lead to kernel weighted

ersion of SR-based approaches, such as Kernel WCRC (KWCRC)

17] . Literature [17] and [24] demonstrate that the performance of

ernel weighted representation classification is superior to that of

ther representation type classification empirically. 

. Kernel group sparse representation classifier via structural 

nd non-convex constraints 

To improve the weighted group constraint and further enforce

t in the kernel space, a new non-convex penalty function and the

ernel trick is adopted to present a joint-sparsity SR-based method,
Please cite this article as: J. Zheng et al., Kernel group sparse represent

computing (2018), https://doi.org/10.1016/j.neucom.2018.03.035 
amely kernel group sparse representation classifier via structural

nd non-convex constraints (KGSRSN). In KGSRSN, the locality met-

ics are measured in the kernel space, thus the nonlinear struc-

ure of input samples would be better explored. In this section, we

rst explain the relationship between data normalization and sam-

le selection, and then present the kernel-based method to deal

ith the norm normalization problem. Second, we chose a specific

on-convex constraint in parametric form, so that the complete

bjective function would be strictly convex. Finally, we derive the

ptimization algorithm according to the principle of ADMM and

M. 

.1. The norm normalization problem 

In the practical IC problems, some normalization steps, such as

ean normalization [31] or norm normalization [23] , always con-

ucted in advance. These steps can regulate the distribution of in-

ut data and enhance the numerical stability of classifiers, but the

onsequence has not been analyzed in theory and empirically. By

 concrete example, we investigate the impact of norm normaliza-

ion on sparse representation algorithms in this section. 

Consider the samples in Fig. 1 (a) as an example, where the

ataset consists of 150 points from three classes. all of them are

iven by standard Gaussian distribution and without any normal-

zation. We choose the red dot (1, 2) as the test sample and the

thers as training samples. From Fig. 1 (b) and 1 (c), it can be seen

hat the selected samples for representing the red dot mainly in-

olves the ones from different classes, which indicates that the

parse representation has no discriminality in this case. We call

his phenomenon as the norm normalization problem. The reason

s that the data points in the data set may have different l 2 -norm

or l 1 -norm), so the sparse representation of one point may be in-

lined to select the data with larger l 2 -norm if possible. For this

ataset, the l 2 -norm of round samples, square samples and star

amples, respectively range from 0.433 to 17.668, 13.194 to 48.659

nd 3.494 to 31.602. It is concluded that the l 2 -norm of square

amples and star samples is significantly higher than that of round

amples. Thus the sparse representation of the red dot may be in-

lined to select the square points and star points. In Fig. 1 (b), the

elected samples with nonzero coefficients of SRC are marked with

ne blue square and one blue star, not the right round data. It vio-

ates the basic idea of SRC that is to represent a query sample as an

ntra-class sparse linear combination of the training samples. For

RC and GSC, we choose the 15% largest elements of their repre-

entation coefficients for output, since they are not sparse in strict

ignificance. Although the effective samples of CRC involve three

ifferent kinds of input data, the majority is the square and star

oints in Fig. 1 (c). In Fig. 1 (d), GSC eliminates square samples by

roup constraint, but the number of star points is still much more

han that of round points. In Fig. 1 (e), WSRC represents the query

ample as an intra-class sparse linear combination of the training

amples benefiting from the property of locality. However, the se-

ected representation samples are relatively with larger l 2 -norms,

he norm normalization problem still exists. 

To illustrate the importance of l 2 -norm, we further take the

wo-dimensional case as an example. Suppose that there are two

lasses X 1 = [ x 1 , x 2 , x 3 ] and X 2 = [ x 4 , x 5 , x 6 ] which are normalized

o have unit l 2 -norm and distributed on a unit sphere in Fig. 2 .

ere x 1 is regarded as a test sample while the rest as training sam-

les. Denote q 1 as the junction of the line linking x 2 to x 3 with

he line linking x 1 to the origin, and denote b 1 as the Euclidean

istance from q 1 to the origin. Similarly, denote q 2 as the junction

f the line linking x 2 to x 4 with the line linking x 1 to the origin,

nd denote b 2 as the distance from q 2 to the origin. Assume that

 can be represented as a linear combination of x and x . Then
1 2 3 

ation classifier via structural and non-convex constraints, Neuro- 
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(f) KGSRSN

Fig. 1. Representation results of some non-normalized data from typical SR-based methods. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 2. The illustration of norm normalization problem. 
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x 1 can be denoted as 

x 1 = 

1 

b 1 
( q 1 ) = 

1 

b 1 
(θ2 x 2 + θ3 x 3 ) 

= [ x 1 , x 2 , . . . , x 6 ][0 , 
θ2 

b 1 
, 
θ3 

b 1 
, . . . , 0] T 

where θ2 and θ3 are some positive numbers satisfying θ2 + θ3 =
1 . For SRC, x 1 = [ X 1 X 2 ] θ and || θ|| 1 = 1 / b 1 . Similarly, if x 1 can

be represented as a linear combination of x 2 and x 4 by θ′ =
[0 , θ2 

′ / b 2 , 0 , θ2 
′ / b 2 , 0 , 0] T , then x 1 = [ X 1 X 2 ] θ

′ and || θ′ || 1 = 1 / b 2 .

From Fig. 2 , it can be observed that b 1 > b 2 , hence || θ|| 1 < θ′ || 1 ,
which makes SRC select x 2 and x 3 as the representation samples.

In other words, when all samples have the same l 2 -norm, the lin-

ear representation of a test data will be declined to select neighbor

points from the same class, which leads to the property of discrim-

inability under the well-known assumption that intra-class sam-

ples always agglomerated closer than inter-class samples. Further-

more, triangle data in Fig. 2 are normalized to have unit l 1 -norm.

It is obvious that this pretreatment can also regulate the structure

of input data, but the output data all lie on one line [32] , which
Please cite this article as: J. Zheng et al., Kernel group sparse represen

computing (2018), https://doi.org/10.1016/j.neucom.2018.03.035 
akes q 1 and q 2 overlap to a single point (the yellow star), i.e.,

 1 = b 2 . Therefore, l 1 -norm has less discriminality than l 2 -norm. 

.2. The proposed method 

For any data point x , we have || φ( x ) || 2 
2 

= k ( x , x ) = 1 from (7) ,

o the data point φ( x ) naturally have unit l 2 -norm. Since kernel

rick can make the data points in high-dimensional feature space

inearly separable, the kernel-based sparse representation of data

an be a reasonable strategy to solve the norm normalization prob-

em. From Fig. 1 (f), we can see that KGSRSN obtains the accurate

epresentation data that distributes around the test samples. 

For the penalty function on the other hand, many works

nvolved l p -norm regularizer for more compact representation.

owever, this non-convex constraint generally suffers from many

umerical problems such as suboptimal local solutions, slow

onvergence rate, and some initialization issues. In this section, we

ntroduce a new penalty function for more accurate data recon-

truction, while maintaining convexity of the total cost function.

or this purpose, the logarithmic penalty [33] , 

f (x ) = 

log (1 + a | x | ) 
a 

(8)

s adopted, where a > 0 is a scalar parameter. 

Integrate (2), (7) , and (8) into WGSC, the cost function of our

GSRSN is 

min 

θ

1 

2 

|| φ( y ) − �( X ) θ|| 2 2 + λ
c ∑ 

i =1 

r i 
log (1 + a || d i � θi || 2 ) 

a 
(9)

here d i is locality metric, whose entry d ij measures the distance

etween y and training sample x ij in the kernel space as 

d i j = || φ( x i j ) − φ( y ) || 2 2 

= φ( x i j ) 
T φ( x i j ) − 2 φ( x i j ) 

T φ( y ) + φ( y ) T φ( y ) 

= 2 − 2 k ( x i j , y ) 

(10)
tation classifier via structural and non-convex constraints, Neuro- 
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 i is the group weight to indicate how well X i can represent

 . A smaller r i denotes larger probability of y belonging to the i th

lass. By learning from the idea of LRC [34] , r i can be defined as 

r i = || φ( y ) − �( X i ) θ
∗
i || 2 2 

= 1 − 2 k i (•, y ) T θ∗
i + θ∗

i 

T 
K i θ

∗
i 

θ∗
i = arg min || φ( y ) − �( X i ) θi || 2 2 = K 

−1 
i k i (•, y ) 

(11) 

here K i = �( X i ) 
T �( X i ) ∈ R 

n i ×n i is the i th kernel matrix,

 i (•, y ) = �( X i ) 
T φ( y ) is the kernel vector between y and the train-

ng samples from the i th class. 

Similar as (3) , the final decision rule can be formulated as 

k = arg min 

i 
|| φ( y ) − �( X i ) δi ( θ

∗
) || 2 

= 1 − 2 k i (•, y ) T θ∗
i + θ∗

i 

T 
K i θ

∗
i 

(12) 

.e., the class label of y is decided as the class which gives the min-

mum residual error in the kernel feature space. 

Notice that the chosen kernel needs to satisfy k ( x , y ) = c for

voiding norm normalization problem, where c is a constant. This

an be satisfied when it is an isotropic kernel k ( x , y ) = k (‖ x , y ‖ )
r any normalized kernel k ( x , y ) = k ( x , y ) / (k ( x , x ) 1 / 2 × k ( y , y ) 1 / 2 ) .

n this paper, we adopt the Gaussian kernel in our experiments. 

.3. Optimization algorithm 

Although some well-known algorithms, such as Homotopy

35] and sparse projections [36] , have been deliberatively devel-

ped for SR-based approaches, they cannot be used directly for our

ethod since it integrates both locality group sparsity and non-

onvex penalty in the kernel space. We derive our optimization al-

orithm jointly under the framework of ADMM [37,38] and MM

39,40] . The former is efficient for most convex coding problems,

nd the later replaces some tough problems by simpler ones. For

onvenience, we introduce matrix D = diag([ d 1 , d 2 , . . . , d c ]) ∈ R 

n ×n 

nd define β = D θ. Then our KGSRSN algorithm can be rewritten

s 

min 

β

1 

2 

|| φ( y ) − �( X ) D 

−1 β|| 2 2 + λ
c ∑ 

i =1 

r i 
log (1 + a || βi || 2 ) 

a 

= min 

β

1 

2 

β
T ˜ K β − β

T ˜ k (•, y ) + λ
c ∑ 

i =1 

r i 
log (1 + a || βi || 2 ) 

a 

(13) 

o solve (13) , we first define the augmented Lagrangian function as

L ρ ( β, z , μ) = 

1 

2 

β
T ˜ K β − β

T ˜ k (•, y ) + λ
c ∑ 

i =1 

r i 
log (1 + a || z i || 2 ) 

a 

+ μT ( β − z ) + 

ρ

2 

‖ β − z ‖ 

2 
2 

(14) 

here μ is the Lagrange multiplier and ρ > 0 is a penalty param-

ter. Solving (14) is equivalent to tracing the solutions ( β∗, z ∗, μ∗)

f the saddle-point problem [38]: 

L ( β
∗
, z ∗, μ) ≤ L ( β

∗
, z ∗, μ∗) ≤ L ( β, z , μ∗) (15) 

With the computed (or initialized) vector z k and μk , by apply-

ng the ADMM iterative scheme to (15) , the update of each variable

oes as 

β
k +1 ← arg min 

β
L ( β, z k , μk ) (16a) 

z k +1 ← arg min 

z 
L ( β

k +1 
, z , μk ) (16b) 

μk +1 ← μk + ρ( β
k +1 − z k +1 ) (16c) 
Please cite this article as: J. Zheng et al., Kernel group sparse represent
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Fixing z k and μk , the subproblem for β
k +1 

can be rewritten as

β
k +1 ← arg min 

β

(
1 

2 

β
T ˜ K β − β

T ˜ k (•, y ) + 

ρ

2 

‖ β − z k + 

μk 

ρ
‖ 

2 
2 

(17) 

here the constant terms have been omitted. The first-order opti-

ality conditions of quadratic minimization problem (17) lead to

β
k +1 = ( ̃  K + ρI ) −1 ( ̃ k (•, y ) + ρz k − μk ) (18) 

Fixing β
k +1 

and μk , the update of z k +1 is given by minimizing

he following subproblem: 

z k +1 ← arg min 

z 

( 

ρ

2 

‖ z −β
k +1 − μk 

ρ
‖ 

2 
2 + λ

c ∑ 

i =1 

r i 
log (1 + a || z i || 2 ) 

a 

) 

(19) 

olving subproblem (19) is difficult due to the involving of

roup constraint and non-convex logarithmic penalty. We use

he MM procedure to derive a method minimizing (19) . Firstly,

roposition 1 is presented to specify a majorizer of the logarith-

ic function. 

roposition 1. The function q defined by 

q (x, v ) = 

x 2 

2 v (1 + a v ) 
+ 

log (1 + a v ) 
a 

− v 
2(1 + a v ) 

(20) 

s a majorizer of the logarithmic function except for v = 0, i.e., 

q (x, v ) ≥ log (1 + ax ) 

a 
, ∀ x ∈ R, v ∈ R \{ 0 } (21a) 

q (v , v ) = 

log (1 + a v ) 
a 

, ∀ v ∈ R \{ 0 } (21b) 

roof. (21b) can be verified by a simple substitution. For (21a) , us-

ng Talors expansion, we get 

log (1 + ax ) 

a 
= 

log (1 + a v ) 
a 

+ 

(x − v ) 
(1 + a v ) 

− a (x − v ) 2 

2 (1 + a v 0 ) 
2 

(22) 

or v 0 between v and x . Since a > 0, we have 

log (1 + ax ) 

a 
≤ log (1 + a v ) 

a 
+ 

(x − v ) 
(1 + a v ) 

(23) 

sing x ≤ x 2 / 2 v + v / 2 , we further get 

log (1 + ax ) 

a 
≤ x 2 

2 v (1 + a v ) 
+ 

log (1 + a v ) 
a 

− v 
2(1 + a v ) 

= q (x, v ) 

(24) 

hich completes the proof. �

From Proposition 1 , the total function 

Q( z , z k ) = 

ρ

2 

‖ z − β
k +1 − μk 

ρ
‖ 

2 
2 + 

λ

2 

c ∑ 

i =1 

r i 
‖ z i ‖ 

2 
2 

‖ z k 
i 
‖ 2 (1 + a ‖ z k 

i 
‖ 2 ) 

+ C 

= 

c ∑ 

i =1 

(
ρ

2 

‖ z i − β
k +1 
i − μk 

i 

ρ
‖ 

2 
2 + 

λr i ‖ z i ‖ 

2 
2 

2 ‖ z k 
i 
‖ 2 (1 + a ‖ z k 

i 
‖ 2 ) 

)
+ C

(25) 

s a majorization surrogate function of subproblem (19) with C

eing a constant term independent of z . We then can obtain all

 

k +1 
i 

, i = 1 , . . . , c, as follows: 

z k +1 
i 

= 

(
ρ + 

λr i 

‖ z k 
i 
‖ 2 (1 + a ‖ z k 

i 
‖ 2 ) 

)−1 (
ρβ

k +1 
i + μk 

i 

)
(26) 

he details of our KGSRSN are given in Algorithm 1 . 
ation classifier via structural and non-convex constraints, Neuro- 
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Algorithm 1 KGSRSN. 

Input: D , K , k (•, y ) , r , λ, a , ρ , ε 1 , and ε 2 . 
Initialize z = μ = 0 , i o = i i = 0 . 

Repeat 

1. i o = i o + 1 . 

2. Update β by (18) 

Repeat 

3. Initialize z = β + μ/ρ . 

4. i i = i i + 1 . 

5. Update z j , j = 1 , 2 , . . . , c, by (26). 

Until the value of subploblem (19) satisfies that (norm(cost( i i )- 

cost( i i − 1 ))/norm(cost( i i )) < ε 2 
6. Update μ by (16 c). 

Until norm( β − z ) < ε 1 
Output: θ

∗ = D 

−1 β. 
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2 
3.4. Convergence and complexity analysis 

The convergence properties of ADMM have been exten-

sively studied [22,37,38] . Following the ideas of Ref. [38] ,

Proposition 2 holds under the assumption that the functions of

(16a) and (16b) are closed, proper, and convex. 

Proposition 2 ( [38] ) . The ADMM iterates satisfy that 

(1) Residual convergence. β
k − z k → 0 as k → ∞ , i.e., the iterates

approach feasibility. 

(2) Objective convergence. The cost function (13) of the iterates ap-

proaches the optimal value. 

(3) Dual variable convergence. μk → μ∗ as k → ∞ , where μ∗ is a

dual optimal point. 

With the fact that the closedness and properness of our cost func-

tion (13) are clear, we further need to make sure that all the sub-

problems be convex and have convergent solutions. It is evident that

subproblem (17) is strictly convex and with closed-form solution (18) ,

the remaining issue for us is to prove the convexity and convergence

of subproblem (19) . Above all, we introduce Proposition 3 to assert the

condition for convexity. 

Proposition 3. Subproblem (19) is strictly convex under the condition

that 

0 < a < 

ρ

λ max ( r i ) 
(27)

Proof. For any v ≥ 0, define function g : R → R with parameter a > 0

as 

g(v ) = 

ρ

2 

v 2 + λr f (v ) (28)

Since the logarithmic function f ( v ) is continuous and twice differ-

entiable for v ≥ 0, the convexity of g can be ensured by a positive

second derivative on v ≥ 0. This leads to the condition 

g ′′ (v ) = ρ + λr f ′′ (v ) > 0 ⇒ f ′′ (v ) > −ρ/ (λr) (29)

Moreover, since f ′′ (v ) = −a/ (1 + a v ) 2 , and the minimum second-

order derivative of f ( v ) resides in f ′′ (0) = −a, we can obtain that

−a > −ρ/ (λr) ⇒ a < ρ/ (λr) (30)
Please cite this article as: J. Zheng et al., Kernel group sparse represen
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ased on the convexity of ‖ x ‖ 2 , g ( ‖ x ‖ 2 ) is also strictly convex. By

xpanding and decomposing (19) into 

ρ

2 

‖ z − β
k +1 − μk 

ρ
‖ 

2 
2 + λ

c ∑ 

i =1 

r i 
log (1 + a ‖ z i ‖ 2 ) 

a 

= 

ρ

2 

‖ z ‖ 

2 
2 −

ρ

2 

z T 
(

β
k +1 + 

μk 

ρ

)
+ λ

c ∑ 

i =1 

r i 
log (1 + a ‖ z i ‖ 2 ) 

a 
+ C 

= 

c ∑ 

i =1 

g(‖ z i ‖ 2 ) − ρ

2 

z T 
(

β
k +1 + 

μk 

ρ

)
+ C, 

(31)

e can see that it is a linear combination of g ( ‖ z i ‖ 2 ), a con-

ex term z T ( β
k +1 + μk /ρ) , and a constant term C . Hence, (19) is

trictly convex with condition (27) . �

To analyze the convergence of z subproblem, we first charac-

erize a δ strongly convexity of the surrogate function Q ( z , z k ) in

25) as Proposition 4 . Then by the important property shown in

emma 1 [40] , we give convergence results for subproblem z as in

roposition 5 . 

roposition 4. The surrogate function Q ( z , z k ) in (25) is δ strongly

onvex, i.e., function Q( z , z k ) − 0 . 5 δ|| z || 2 
2 

is convex, where δ > 0 . 

The proof is omitted here since its derivation is very similar as the

roof of Proposition 3 . 

emma 1 [40] . Let J ( x ) : R n → R be a δ strongly convex function, and

 

∗ be the minimizer of J ( x ), then inequality 0 . 5 δ|| x − x ∗|| 2 
2 

≤ J( x ) −
( x ∗) holds for any x ∈ R n . 

roposition 5. Denote J ( z ) as subproblem (19) , let { z k } ∞ 

k =1 
be the

enerated sequence by the inner loop of Algorithm 1 with any initial

 

0 , then we have: 

(1) The sequence { J( z k ) } ∞ 

k =0 
is monotonically non-increasing and

convergent; 

(2) The property lim k →∞ 

|| z k − z k +1 || 2 
2 

= 0 holds for the corre-

sponding sequence { z k } ∞ 

k =0 
. 

roof. Recall Proposition 4 , the surrogate function Q ( z , z k ) is a δ
trongly convex majorizer of J ( z ) at z k , and z k +1 is the global min-

mizer of Q ( z , z k ). Thus for any k ≥ 0 we can write: 

J( z k +1 ) ≤ Q( z k +1 , z k ) ≤ Q( z k , z k ) = J( z k ) (32)

hich reveals the monotonically non-increasing property of se-

uence { J( z k ) } ∞ 

k =0 
. Notice that { J( z k ) } ∞ 

k =0 
is bounded from below

ith zero, hence convergent. 

Lemma 1 with Q ( z , z k ) in place of J ( x ) and z k +1 in place of x ∗

ields 

δ

2 

|| z − z k +1 || 2 2 ≤ Q( z , z k ) − Q( z k +1 , z k ) , ∀ z ∈ R 

n , k ≥ 0 . (33)

urthermore, (33) with z k substituting for z leads to 

δ

2 

|| z k − z k +1 || 2 2 ≤ Q( z k , z k ) − Q( z k +1 , z k ) ≤ J( z k ) − J( z k +1 ) (34)

Summing the inequalities (34) over k , we then obtain 

∞ ∑ 

k =0 

|| z k − z k +1 || 2 2 ≤
2 

δ

∞ ∑ 

k =0 

(J( z k ) − J( z k +1 )) = 

2 

δ
(J( z 0 ) − J ∗) (35)

here J ∗ is the limit of the convergent sequence { J( z k ) } ∞ 

k =0 
(the

rst statement of Proposition 5 ). Since that { J( z k ) } ∞ 

k =0 
is a mono-

onically non-increasing sequence and δ > 0, the last term of (35) is

 finite non-negative number, which proves the convergence of the

rst term and verifies the property lim k →∞ 

|| z k − z k +1 || 2 = 0 . �
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(a) MNIST (b) AR (c) PIE

Fig. 3. The recognition rate of GSC and KGSRSN under different norm normalization. 
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For the computational complexity of Algorithm 1 , it is clear to

ee that the main running time lies in updating β and z . Since

( ̃  K + ρI ) −1 can be computed in advance and cached offline, the

omplexity of performing (18) is O ( n 2 ). Besides, with the fact that

acch z i , i = 1 , . . . , c, can be updated in parallel as in (26) , then the

omplexity of z subproblem costs O ( i i cn i ). Therefore, the overall

ime complexity of Algorithm 1 is O (i o (n 2 + i i cn 2 
i 
)) . In our experi-

ents, KGSRSN always reaches the convergence condition (we set

 1 = ε 2 = 1 e − 3 ) with i i ≤ 10 and i o ≤ 30. 

. Experimental analysis 

.1. Datasets and experimental settings 

(1) Datasets . Three real-world benchmark datasets, i.e., MNIST

handwritten digits database, AR and PIE face databases,

are used for evaluation. For AR database, we use a subset

[17] including 100 individuals for a total of 700 training and

700 testing images of 60 × 43 pixels. The PIE database con-

tains 41368 face images collected from 68 subjects. In accor-

dance with AR database, we select 700 training samples and

700 test samples at random in our experiments. For MNIST

database, we randomly select 50 training images for each

of the 10 digits from the training set and 70 from the test

set. All images in PIE and MNIST are manually cropped to

28 × 28 pixels. 

(2) Form of input data . Our experiments are conducted on orig-

inal gray-valued pixels and subspace projections. For the

original pixels, each image is concatenated by its columns,

and then all samples are arranged in a tandem array. For

subspace projection samples, dimension reduction methods,

including principal component analysis (PCA) and iterative

nearest neighbors linear projections (INNLP) [10] , are used

for feature extraction. We set the regularization parameter

of INNLP to be 0.05 permanently. 

(3) Competing methods . The selected competing classifiers in-

clude linear algorithms SRC [7] , CRC [8] , and GSC [12] ,

weighted algorithms WSRC [16] , WCRC [17] , and WGSC [21] ,

kernel-based algorithms KSRC [24] , KCRC [17] , KGSC [27] ,

and KWCRC [17] . In addition, the performance of KGSRSN

is also compared with other classical algorithms, including

INNC [10] , NMR [22] and KINNC [10] . In the implementation,

we adopt 5-fold cross validation to confirm optimal value

of the regularization parameters. For arbitrary classifica-

tion algorithms, we search λ from { 1 e − 6 , 1 e − 5 , . . . , 1 e 0 } ,
and select the highest average recognition rate as the ul-

timate model parameters in different feature dimension.

Without special declaration, in our method we set ρ= 1 and
a = 0.9 ρ/( λ max( r i )).  

Please cite this article as: J. Zheng et al., Kernel group sparse represent
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.2. The behavior of normalization and non-convex penalty 

As described in Section 3.1 , different normalization of input

ata affects the performance of SR-based approaches. In this sec-

ion, we take GSC and KGSRSN as examples to evaluate the recog-

ition rate versus different norm normalization on MNIST, AR

nd PIE databases in Fig. 3 . PCA is used for feature extraction.

ig. 3 shows the recognition rate of GSC varies greatly with the

hange of norm normalization, where its gap reaches 2–6% un-

er different subspace dimensions. Among them, GSC- l 2 reaches

he highest recognition rate with l 2 -norm while GSC −none per-

orms poorest. Besides, KGSRSN takes advantage of kernel trick

o overcome the normalization problem described in Section 3.1 ,

o its recognition rate changes less (about 1%) under different

atasets and different subspace dimensions. Overall, the experi-

ental results in Fig. 3 . agree well with the theoretical analysis in

ection 3.1 . In the following experiments, we adopt l 2 -norm nor-

alization for better recognition rate of linear algorithms. 

In Algorithm 1 , parameter a is used to determine the degree of

on-convexity for the logarithmic penalty. With Proposition 3 , our

xperiments adopt a = τρ/ (λmax( r i )), τ ∈ { 0 . 1 , 0 . 2 , . . . , 0 . 9 } to en-

ure the overall convexity of the total cost function. Fig. 4 illus-

rates the role of parameter a . In Fig. 4 (a), a specific parameter a

loser to 0 makes the penalty function closer to the classical l 1 -

orm constraint. On the other hand, a larger τ leads to a deeper

egree of non-convexity. Fig. 4 (b) illustrates the recognition rate of

ur method versus various choice of τ in MNIST, AR, and PIE, re-

pectively. We can see that the performance of KGSRSN improves

ith the increasing of τ to some extent. This empirically verifies

he statement that more non-convex penalty leads to a more com-

act representation. 

.3. Recognition performance 

In this section, we conduct classification on original input data

nd subspace data, respectively. The subspace dimension is set as

 = {50, 100, 150, 200, 250, 300}. Tables 1–3 show the recognition

ates and corresponding dimension on MNIST, AR, PIE, where the

est results are highlighted in bold and the second best results are

ighlighted in italics. From Tables 1–3 , we can see that 

(1) Considering diverse distribution of practical images, most

classifiers have different performance in different input fea-

ture. We cannot guarantee that any classifier has over-

whelming superiority, so we attempt to seek out the one

that is relatively more stable and more effective. 

(2) The recognition rate of INNC and KINNC is clearly lower

than other methods. Take PIE database with PCA as example,

they achieve 61.0% recognition rate while the lowest recog-

nition rate of other algorithms is 64.7%. It shows that near-

est neighbor based algorithms are suboptimal for classifica-
ation classifier via structural and non-convex constraints, Neuro- 
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Fig. 4. Plot of the penalty function defined in (8) and the recognition results with various parameter values. 

Table 1 

Recognition rates versus different dimensions on MNIST databases. 

Classifier Input Subspace dimensions from PCA Subspace dimensions from INNLP 

dimension 50 100 150 200 250 300 50 100 150 200 250 300 

SRC 91.1 91.0 91.0 91.0 91.0 91.3 91.1 65.7 65.7 65.1 65.3 65.7 65.7 

CRC 86.4 87.4 87.1 87.1 87.0 87.0 87.0 63.1 63.3 63.1 62.9 62.9 62.9 

GSC 91.6 90.9 91.0 91.1 91.1 91.2 91.3 65.3 66.1 66.0 66.4 66.3 66.3 

WSRC 89.7 90.9 90.6 90.4 90.7 91.1 90.9 65.7 64.9 63.6 65.3 65.0 65.1 

WCRC 88.0 90.3 90.4 89.9 89.7 89.4 89.4 64.4 63.9 64.3 63.3 63.0 63.0 

WGSC 91.6 91.5 91.6 91.6 91.6 91.6 91.6 65.3 66.8 66.8 67.0 67.0 67.3 

INNC 91.6 91.6 91.9 91.7 91.7 91.6 91.6 65.6 64.1 66.9 65.0 65.3 65.3 

NMR 85.8 87.2 87.2 87.2 87.1 87.1 87.1 63.2 62.2 63.2 63.0 63.0 63.0 

KSRC 91.7 91.9 92.3 91.9 91.9 92.0 92.0 66.3 66.6 66.4 67.9 67.4 67.4 

KCRC 91.7 91.7 90.6 90.0 89.3 88.3 88.5 66.7 67.9 67.1 67.9 67.3 67.4 

KGSC 91.8 91.7 92.1 92.1 92.0 91.8 91.8 66.6 67.8 67.6 67.6 67.6 67.4 

KWCRC 91.7 90.1 90.1 90.1 90.3 90.1 90.1 66.7 67.9 67.1 67.9 67.3 67.4 

KINNC 91.5 91.4 91.4 91.6 91.4 91.6 91.6 55.4 48.1 42.3 40.1 36.7 36.1 

KGSRSN 92.2 92.2 92.4 92.8 92.6 92.6 92.4 66.6 68.4 68.3 68.3 67.9 67.9 

Table 2 

Recognition rates versus different dimensions on AR database. 

Classifier Input Subspace dimensions from PCA Subspace dimensions from INNLP 

dimension 50 100 150 200 250 300 50 100 150 200 250 300 

SRC 93.6 76.4 79.4 80.5 81.4 81.6 81.8 90.6 93.3 93.9 94.3 94.4 94.1 

CRC 93.0 77.5 87.6 89.6 90.7 91.0 92.6 91.0 94.0 93.9 93.4 93.4 93.1 

GSC 94.0 83.0 88.9 90.3 91.1 91.2 91.3 92.1 94.3 94.4 94.3 94.1 94.3 

WSRC 92.3 81.7 88.8 90.4 91.7 92.0 92.0 89.6 93.3 95.3 94.6 94.0 93.8 

WCRC 93.0 80.8 88.1 89.7 91.3 91.7 92.3 93.4 94.1 94.3 94.4 94.4 94.4 

WGSC 94.0 84.0 88.9 90.4 91.3 92.1 92.4 92.3 94.3 94.4 94.4 94.2 94.3 

INNC 80.1 73.3 77.3 78.0 78.8 79.0 79.5 88.8 92.6 92.9 93.0 92.9 93.0 

NMR 93.2 78.0 88.0 89.0 90.8 91.0 92.4 91.2 93.8 93.6 94.5 93.4 93.2 

KSRC 81.9 75.5 78.3 79.4 80.5 80.7 81.3 87.8 92.1 92.3 92.4 92.4 92.4 

KCRC 93.3 82.4 88.8 90.4 91.7 91.7 91.8 92.7 93.6 93.9 93.7 93.7 93.6 

KGSC 93.8 83.0 88.9 90.6 91.7 91.8 91.8 92.6 94.0 94.0 94.2 94.6 94.4 

KWCRC 92.4 78.8 86.0 89.3 91.3 91.0 92.1 85.8 92.4 92.7 92.6 92.7 92.7 

KINNC 80.6 74.2 77.4 78.0 79.2 79.9 80.1 83.0 84.9 76.5 75.4 73.1 62.8 

KGSRSN 94.2 84.2 90.2 91.3 92.3 92.9 93.6 93.2 93.9 94.7 94.8 94.8 94.8 

Table 3 

Recognition rates versus different dimensions on PIE database. 

Classifier Input Subspace dimensions from PCA Subspace dimensions from INNLP 

dimension 50 100 150 200 250 300 50 100 150 200 250 300 

SRC 89.0 70.7 77.4 78.4 79.6 79.6 80.6 88.6 89.7 90.7 90.4 90.9 91.1 

CRC 88.0 64.7 80.1 84.9 85.9 86.4 87.6 88.4 89.4 88.7 89.0 89.1 89.0 

GSC 89.0 76.1 85.4 86.9 87.0 87.9 87.3 88.7 89.4 89.6 89.6 89.7 89.9 

WSRC 84.7 75.0 83.4 84.7 85.7 86.9 86.4 89.4 89.1 89.6 89.7 89.4 89.6 

WCRC 87.9 66.6 79.3 83.6 85.0 85.4 85.3 89.7 89.6 89.7 89.9 90.0 90.1 

WGSC 88.5 77.2 85.0 85.4 86.8 87.0 86.9 89.8 89.6 90.0 90.0 90.0 90.2 

INNC 61.3 52.9 57.6 59.3 60.6 60.6 61.0 89.9 90.6 91.6 91.3 90.9 91.1 

NMR 87.8 65.0 79.6 85.0 85.6 86.4 87.0 88.1 88.9 88.8 89.1 89.1 89.1 

KSRC 80.6 72.3 74.1 75.7 76.1 76.4 77.1 88.4 88.9 88.7 88.7 88.1 88.6 

KCRC 88.7 79.7 83.9 85.9 87.1 87.7 86.6 88.6 88.7 89.0 89.1 88.4 88.6 

KGSC 88.9 76.5 85.4 86.9 87.2 87.9 87.3 89.0 89.4 89.8 88.7 88.1 88.6 

KWCRC 89.0 72.6 81.6 84.0 87.3 87.6 87.0 88.6 88.7 89.0 90.0 90.0 90.0 

KINNC 43.0 33.6 34.1 33.1 33.1 34.3 35.7 83.3 79.6 82.6 83.0 80.7 79.0 

KGSRSN 89.9 80.0 85.1 86.9 87.9 87.9 87.7 90.8 90.7 91.9 91.7 91.6 91.7 

Please cite this article as: J. Zheng et al., Kernel group sparse representation classifier via structural and non-convex constraints, Neuro- 
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Fig. 5. The leaned coefficients and reconstruction residuals of two failed samples, where the entries from the true subject and the mistakenly identified subject are marked 

in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 4 

Comparison of running time for recogniz- 

ing one query sample. 

Methods elapsed time(in seconds) 

MNIST AR PIE 

SRC 0.163 0.346 0.294 

GSC 0.054 0.176 0.130 

WGSC 0.062 0.180 0.140 

KSRC 0.182 0.255 0.138 

KGSC 0.112 0.210 0.142 

KWCRC 0.027 0.047 0.051 

KGSRSN 0.053 0.064 0.107 
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tion in real world applications compared with the SR-based

algorithms. 

(3) Among the linear approaches, GSC outperforms SRC and CRC

in most scenarios. Specifically, GSC wins 3 bold values in

PIE database, which ties with KGSC in the second place.

This is attributed to the group constraint with supervised

l 2,1 -norm. Interestingly, the performance of the matrix-based

method, NMR that is developed for block corruptions, is

equally matched with CRC, since that its advantages can-

not be taken in these Gaussian or Laplacian distributed data

[23] . 

(4) The performance of linear representation methods can be

further improved by locality metrics and kernelization. From

Tables 1–3 , it can be seen that the recognition rates of

weighted methods and kernel methods are mostly supe-

rior. Particularly, when the dimensionality of the data is re-

duced to 150 by INNLP in AR dataset, WSRC achieves 95.3%

recognition rate, which outperforms all other competing al-

gorithms. 

(5) By integrating all the merits of group constraint, local-

ity metrics, nonlinear mapping, and non-convex penalty,

KGSRSN obtains the highest recognition rates in most sce-

narios. It achieves 92.8%, 94.8%, 91.9% recognition rate in

MNIST, AR, PIE, respectively. Notice that it may not lead to

better performance in practical applications with parts of

these properties. In AR database, many results from the ker-

nel methods are poorer than those from the linear meth-

ods. KGSRSN achieves the appealing performance benefiting

from the properties of group constraint and locality metrics

in this situation. Similarly, the performance of the weighted

methods in PIE database exhibit little improvements. How-

ever, our method still performs better with the properties of

group constraint and nonlinear mapping. 

To further improve the performance of our method, Fig. 5 ex-

ibits two failed tests in AR database. From Fig. 5 (a), we can see

hat both of these two samples are with exaggerated facial expres-

ions, which makes them difficult to be accurately represented by

heir intra-class samples. In Fig. 5 (b), it is clear that if we classify

he query samples to the class with the largest coefficients, then

oth of these two tests will be correctly identified. In Fig. 5 (c),

he reconstructed residuals from the intra-class samples are very

lose to the minimum one. Thus, the failure also can be avoided

y a majority vote from several SR-based methods. However, these

ricks only work for some special samples, and cannot make an

verall improvement. By introducing a learned convolutional neu-
Please cite this article as: J. Zheng et al., Kernel group sparse represent

computing (2018), https://doi.org/10.1016/j.neucom.2018.03.035 
al network [41] as a deep features extractor, we further improve

he recognition rate of KGSRSN to 98.5% and 98.3% in AR and PIE,

espectively. These results are close to or even better than the deep

earning based methods such as DeepFace [42] . Since our method

as more intuitive learning mechanisms and can be independently

pplied with limited sample size, it has wide application prospects.

.4. Computation efficiency 

In this section, several experiments are conducted to verify the

fficiency of KGSRSN in comparison with six algorithms, i.e., SRC,

SC, WGSC, KSRC, KGSC and KWCRC. The programming platform

s with Intel Core i5 CPU, 2.4 GHz dual-core processor, 4 GB RAM

emory, 32 bits Win 7 operating system and MATLAB 2014. The

verage elapse time from 10 runs of recognizing one original in-

ut data for each algorithm is illustrated in Table 4 . We can ob-

erve that KWCRC is the most efficient one among all the compet-

ng methods due to the closed-form solution. KSRC, which achieves

imilar accuracy as KWCRC, consumes about 3–5 times more time

han KWCRC for recognizing one query sample. The group con-

trained methods, including GSC, WGSC, KGSC, and our KGSRSN,

lso need iterative computations as SRC in implementation, so

heir computational efficiency is relatively lower than KWCRC. Our

GSRSN runs faster than the other group constrained methods.

his is attributed to the newly proposed optimization algorithm,

hich not only consumes little costs in each update step, but also

onverges with few loops. Fig. 6 illustrates the convergence of

GSRSN using a randomly selected sample from MNIST database.

or the outer loop i o , the objective values of our cost function

13) decrease to below 1e-3 (in log domain) within twenty iter-

tions, and for the inner loop i i , the convergence condition can be

atisfied in around 5–10 iterations. 
ation classifier via structural and non-convex constraints, Neuro- 
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i o
i i

Fig. 6. The decreasing objective values of KGSRSN versus iterations i o and i i on 

MINST database. 
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5. Conclusion 

In this paper, a new kernel group sparse representation ap-

proach via structural and non-convex constraints (KGSRSN) is pro-

posed for classification. Specifically, three appealing properties, i.e.,

data locality for holding more structural information, group con-

straint for penalizing inter-class representation, as well as kernel-

ization for implicitly avoiding norm normalization problem, are in-

corporated into a unified cost function for better discrimination.

Furthermore, we introduce a non-convex function with parametric

forms to penalize the representation coefficients; and we ensure an

interval for the parameter that leads to the convexity of the total

cost function. Experiments are conducted on benchmark databases

and the results verify KGSRSN outperforms many SR-based meth-

ods. Moreover, an iteratively update solution of the convex prob-

lem for KGSRSN is also presented, which can achieve the unique

solution of the algorithm within 30 iterations. Experimental results

also show that the efficiency of KGSRSN is superior to that of GSC

and SRC. 
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