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Abstract Neurological disorders include a wide variety of
mostly multifactorial diseases related to the development,
survival, and function of the neuron cells. Single-nucleotide
polymorphisms (SNPs) have been extensively studied in neu-
rological disorders, and in a number of instances have been
reproducibly linked to disease as risk factors. The RIT2 gene
has been recently shown to be associated with a number of
neurological disorders, such as Parkinson’s disease (PD) and

autism. In the study reported here, we investigated the asso-
ciation of the rs12456492 and rs16976358 SNPs of the RIT2
gene with PD, essential tremor (ET), autism, schizophrenia
(SCZ), and bipolar disorder (BPD; total of 2290 patients), and
1000 controls, by using polymerase chain reaction-restriction
fragment length polymorphism (PCR-RFLP) method.
Significant association was observed between rs12456492
and two disorders, PD and ET, whereas rs16976358 was
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found to be associated with autism, SCZ, and BPD. Our
findings are indicative of differential association between
the RIT2 SNPs and different neurological disorders.
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Introduction

Neurological disorders include a wide variety of dis-
eases consisting of neurodevelopmental, neurodegenera-
tive, and psychiatric disorders. In the majority of those
disorders, a multifactorial pattern of etiology is influ-
enced by both environmental and genetic factors, which
may overlap in this group of disorders [1–7]. Similarly,
from the phenotypic point of view, overlapping and dis-
tinct features are seen across different groups of neuro-
logical disorders, such as the brain regions involved, or
alterations of specific neurotransmitters [8–11].
Parkinson’s disease (PD), essential tremor (ET), autism,
schizophrenia (SCZ), and bipolar disorder (BPD) are
among the most common and severe neurological disor-
ders, belonging to the neurodegenerative or psychiatric
disorders. Several genes or genetic determinants have
been identified to be risk factors for neurological disor-
ders; only a minority of which are single-gene causes.
The majority of the risk factors have small effects,
which in an additive pattern, and in cooperation with
environmental factors, make an overall great effect ca-
pable of altering the phenotype [12–14]. One of the
recently identified genes associated with neurological
disorders is RIT2 [15]. This gene has an important role
in neurodevelopment, neuron cell differentiation, and
survival. RIT2 is mainly expressed in the brain and
preferentially in the dopaminergic neurons, and its pro-
tein product, Rin, is a member of the RAS GTPase
superfamily, involved in many important cellular pro-
cesses, either by directly interacting with other proteins
or by indirectly affecting the downstream proteins in the
pathway [16–18]. Two single-nucleotide polymorphisms
(SNPs) in the RIT2 gene have been recently linked to
the pathophysiology of PD and autism; the rs12456492
SNP was identified to be associated with PD in a
genome-wide association study (GWAS) [19] and con-
sequently replicated in several studies and populations
[20–23], and the rs16976358 SNP was found to be in
significant association with autism disorder in another
GWAS [24]. In the current study, we investigated the
association of the two mentioned SNPs in several neu-
rological disorders with overlapping clinical and patho-
physiological features.

Materials and Methods

Subjects

This study was performed on a total of 3290 unrelated
Iranian human subjects, consisting of patients, PD
(N = 520) , ET (N = 350) , aut ism (N = 470) , SCZ
(N = 510), and BPD (N = 440), and a total of 1000
healthy control subjects. For each disease group, the cor-
responding control group was selected based on the sex,
age, and ethnicity of the patients (Table 1). Patients were
diagnosed and confirmed by two neurologists. Written
informed consent was taken from all participants. The
study was approved by the ethic committee at Shahid
Beheshti University of Medical Sciences, Tehran, Iran.

DNA Extraction and SNP Genotyping

Genomic DNA was extracted from peripheral blood of
all subjects following a standard salting-out protocol.
The rs12456492 and rs16976358 polymorphisms of the
RIT2 gene were genotyped using polymerase chain
reaction-restriction fragment length polymorphism
(PCR-RFLP) method (Table 2). The PCR reactions were
performed in a reaction containing 150–400 ng of ge-
nomic DNA, 0.3 mM of each primer, 0.2 mM dNTPs,
2 mM MgCl2, and 0.6 U Taq polymerase. Following
digestion, PCR products were separated on a 3 % aga-
rose gel to determine the genotypes. The accuracy of
the genotyping method was confirmed by sequencing
of 45 PCR products (15 sample of each genotype) for
each disorder groups.

Statistical Analysis

Pearson’s χ2 test was applied to test the significance of
genotype distribution and allele frequency between pa-
tient and control groups. Odds ratio with 95 % confi-
dence interval (CI) was estimated, and P value of less
than 0.05 (two-tailed) was considered to be significant.
The Hardy–Weinberg equilibrium test was performed
using Fisher’s exact test. The distribution of genotype
frequencies was analyzed under the following three dif-
ferent genetic models: additive (T/T = 0, C/T = 1, and
C/C = 2 for rs16976358 and A/A = 0, G/A = 1, and
G/G = 2 for rs12456492), recessive (T/T and C/T vs.
CC for rs16976358 and A/A and G/A vs. G/G for
rs12456492), and dominant (C/C and C/T vs. T/T for
rs16976358 and G/G and G/A vs. A/A for rs12456492),
using SNPassoc package of R version 3.2. The power
calculations were performed using Quanto [25].
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Results

There was no evidence of deviation from Hardy–
Weinberg equilibrium in any of the studied groups for
the two SNPs studied. Distribution of genotypes and
allele frequencies of rs12456492 were significantly dif-
ferent in patients with PD and ET comparing with con-
trol groups (Table 3). Those differences were also sig-
nificant under recessive and additive models (Table 4).
The data for association analysis of rs12456492 with
PD was retrieved from our previous article [20]. No
association was observed between the rs12456492 geno-
types or allele frequencies and autism, SCZ, and BPD
(Table 3). The genotype distribution and allele frequen-
cies were significantly different in rs16976358 between
normal controls and patients with autism, SCZ, and
BPD (Table 5). The association of rs16976358 with au-
tism, SCZ, and BPD was also significant under additive
and recessive models (Table 6). There was no associa-
tion between rs16976358 and PD or ET (Table 5).
Given the sample sizes available, we have 80 % power
to detect an odds ratio of 1.45 for PD, 1.58 for ET,
1.48 for autism, 1.44 for schizophrenia, and 1.49 for
bipolar disorder for rs16976358 using an additive model
and OR of 1.28 for PD, 1.36 for ET, 1.3 for autism,
1.29 for schizophrenia, and 1.31 for bipolar disorder for
rs12456492.

Discussion

Accumulating evidence suggests new genes, alterations,
and variants, associated and related in various ways, to
complex disorders. Each of those minor factors can con-
tribute risk to disease susceptibility, importance of
which, even small, is not negligible. The RIT2 gene
was recently identified as a new locus for both PD
and autism, in two distinct GWAS reports [19, 24]. In
each study, one SNP was identified to be significantly
associated with its correlated disease, i.e., rs12456492
with PD and rs16976358 with autism. Later, the
rs12456492 SNP was studied in the Taiwanese popula-
tion and found not to be associated with PD [26]. We
showed its significant association with PD in the Iranian
population [20], and subsequently, three different studies
in Chinese, Han Chinese, and mainland China popula-
tions replicated and confirmed our results [21–23].
Three meta-analysis studies also showed similar results
and confirmed the overall association of the G-allele of
this SNP with PD [27–29].

The rs16976358 polymorphism has been identified to be
associated with autism in a recent GWAS report [24]. This
SNP revealed the most significant association with autism in
our study. In conclusion, we found differential association of
the two SNPs with the spectrum of neurological disorders
studied. The rs12456492 SNP was significantly associated

Table 1 Demographic data including age and sex distribution in study groups

Disorder Age (mean ± SD) P value Gender P value

Case Control Case Control

Male Female Male Female

Parkinson (n= 520) 59.5 ± 12.5 58.12± 12.22 0.07 278 242 268 252 0.38

Essential tremor (n= 350) 45.6 ± 8.3 46.8 ± 9.1 0.07 192 158 184 166 0.39

Autism (n= 470) 7.9 ± 2.7 8.2 ± 2.5 0.08 286 184 279 191 0.22

Schizophrenia (n= 510) 43.34± 7.21 44.11 ± 8.84 0.13 321 189 306 204 0.28

Bipolar (n= 440) 45.02± 9.38 44.81± 8.24 0.72 263 177 276 174 0.23

Table 2 The primer sequences and PCR and digestion conditions for studied polymorphisms

Polymorphisms Primer sequences (5→3) PCR conditions (°C/s) Restriction enzyme
digestion

Alleles DNA fragment
size (bp)

Denature Annealing Extension

rs12456492 F: CCTGAGTCTATTGGAGTGGG 95/30 55/30 72/30 AluI at 37 °C overnight G A 60 + 189 60+ 69 + 120
R: TCTCCCAACAACCTCCAGTT

rs16976358 F: TTCAAGATGAGATTTGGGTG 95/30 50/30 72/30 HinfI at 37 °C overnight T C 213 104 + 109
R: TGGACTTCATTTCCAGATTCA

2236 Mol Neurobiol (2017) 54:2234–2240



with PD and ET and showed no associations with autism,
SCZ, or BPD. On the contrary, the second SNP, rs16976358,
was significantly associated with autism, SCZ, and BPD and
had no association with PD or ET. There are several studies
showing similarities between PD and ET vs. autism, SCZ, and
BPD [8, 9, 30]. PD and ET are grouped as neurodegenerative
movement disorders, whereas autism, SCZ, and BPD are
grouped as psychiatric disorders. Despite the differences,
there are similarities between the two groups and among the
disorders of each group, evidenced by shared etiology and co-
incidence of those disorders [8, 31–35]. One of the remarkable
examples of the shared etiology among the studied disorders
is the imbalance of the dopamine neurotransmitter in the brain,
which is a common feature in all the mentioned disorders,
albeit in different patterns. It is well established that the

dopamine levels are decreased in PD [36], and several studies
have reported malfunction of the dopamine transporter (DAT)
in ET [37]. Conversely, the dopamine levels are elevated in
autism, SCZ, and BPD, and DAT is hyperactive, where dopa-
mine antagonists are sometimes used for treatment [38–41].
From the molecular point of view, an important protein in-
volved in the dopaminergic pathway is DAT, a membrane
transporter of dopamine molecules [42], and found to have
association with neurological disorders such as PD, SCZ,
BPD, and autism spectrum disorder [43–46]. On the other
hand, it has been found that the Rin protein, encoded by
RIT2, is bound to DAT, at the cell membrane, so that they
co-precipitate in immunohistochemistry assays [18]. Other di-
rect physical interaction of Rin includes its attachment with
calmodulin 1 [47], which is found to be linked to the

Table 3 Comparison of genotypes and allele frequencies of rs12456492

Subjects Genotype frequencies (%) P value Allele frequencies (%) P value OR 95 % CI

GG GA AA G A

Parkinson (n= 520) 111 (21) 247 (47) 162 (32) 0.001* 469 (45) 571 (55) 0.007* 1.27 1.06–1.51
Control (n = 520) 72 (14) 265 (51) 183 (35) 409 (39) 631 (61)

Essential tremor (n= 350) 81 (23) 156 (45) 113 (32) 0.0004* 318 (45) 382 (55) 0.003* 1.37 1.11–1.70
Control (n = 350) 42 (12) 180 (51) 128 (37) 264 (38) 436 (62)

Autism (n= 470) 72 (15) 235 (50) 163 (35) 0.05 379 (40) 561 (60) 0.06 1.21 0.99–1.46
Control (n = 470) 52 (11) 236 (50) 182 (19) 340 (36) 600 (64)

Schizophrenia (n= 510) 74 (15) 261 (51) 175 (34) 0.66 409 (40) 611 (60) 0.37 1.09 0.90–1.31
Control (n = 510) 66 (13) 258 (50) 186 (36) 390 (38) 630 (62)

Bipolar (n= 440) 83 (19) 231 (52) 126 (29) 0.43 397 (45) 483 (55) 0.21 1.13 0.94–1.38
Control (n = 440) 75 (17) 222 (50) 143 (33) 372 (42) 508 (58)

*Considered as significant

Table 4 Comparison of genotype frequencies of rs12456492 under three genetic models

Subjects Additive
(A/A= 0, G/A= 1, and G/G= 2)

Dominant
(G/G and G/A vs. A/A)

Recessive
(A/A and G/A vs. G/G)

Parkinson P value 0.007* 0.166 0.001*

OR 1.27 1.20 1.69

95 % CI 1.07–1.52 0.93–1.55 1.22–2.34

Essential tremor P value 0.003* 0.232 <0.0001*

OR 1.37 1.21 2.21

95 % CI 1.11–1.70 0.88–1.65 1.47–3.3

Autism P value 0.055 0.198 0.053

OR 1.21 1.19 1.45

95 % CI 0.99–1.46 0.91–1.55 0.99–2.13

Schizophrenia P value 0.372 0.471 0.466

OR 1.09 1.10 1.14

95 % CI 0.90–1.31 0.85–1.42 0.80–1.63

Bipolar P value 0.218 0.213 0.482

OR 1.13 1.20 1.13

95 % CI 0.93–1.37 0.90–1.60 0.80–1.60

*Considered as significant
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pathophysiology of SCZ in several studies [48]. The above
may partially explain the mechanisms by which RIT2 influ-
ences the risk of those disorders. The expression pattern of
RIT2 has been investigated in several studies, and results of
the postmortem studies have shown its decreased expression
in PD patients [49]. However, there is no expression data on
other neural disorders in the literature.

SNPs can affect disease risk by altering gene expression or
protein function [50]. The rs12456492 SNP is located in an
intron of the RIT2 gene, and no binding site for any regulatory
protein has been found in this region, which implies that it
does not alter the structure of the protein product. However,
this SNP may affect the levels of the Rin protein by affecting
gene expression [51]. Consistent with this hypothesis, it has

been found that the G-allele of this SNP creates a CpG site,
and at least theoretically, it may repress expression by being
methylated [52]. The second SNP, rs16976358, is located rel-
atively far from the RIT2 gene and in its downstream region.
There is no functional or sequence analysis available for this
SNP, but overall, affecting gene expression levels by altering
distant elements such as enhancers or silencers, or bymeans of
changing the local chromatin structure, has been suggested for
this type of polymorphisms [51]. Two studies have been per-
formed in this regard, and neither of them found any signifi-
cant association between the rs12456492 polymorphism and
RIT2 expression levels [29, 53]. However, both studies were
confined by small sample sizes. Whereas conclusion of a lack
of effect on gene expression warrants including more samples

Table 5 Comparison of genotypes and allele frequencies of rs16976358

Subjects Genotype frequencies (%) P value Allele frequencies (%) P value OR 95 % CI

CC CT TT C T

Parkinson (n= 520) 11 (2) 99 (19) 410 (89) 0.49 121 (12) 919 (88) 0.25 1.16 0.89–1.52
Control (n = 520) 7 (1) 91 (18) 422 (81) 105 (10) 935 (90)

Essential tremor (n= 350) 4 (1) 89 (26) 257 (73) 0.49 97 (14) 603 (86) 0.35 1.15 0.84–1.59
Control (n = 350) 5 (1) 76 (22) 269 (77) 86 (12) 614 (88)

Autism (n= 470) 18 (4) 117 (25) 335 (71) 0.003* 153 (16) 787 (84) 0.010* 1.40 1.08–1.81
Control (n = 470) 4 (1) 106 (22) 360 (77) 114 (12) 826 (88)

Schizophrenia (n= 510) 19 (4) 126 (25) 365 (71) 0.008* 164 (16) 856 (84) 0.024* 1.33 1.04–1.70
Control (n = 510) 5 (1) 118 (23) 387 (76) 128 (13) 892 (87)

Bipolar (n= 440) 18 (4) 113 (26) 309 (70) 0.001* 149 (17) 731 (83) 0.007* 1.43 1.10–1.87
Control (n = 440) 3 (1) 103 (23) 334 (76) 109 (12) 771 (88)

*Considered as significant

Table 6 Comparison of genotype frequencies of rs16976358 under three genetic models

Subjects Additive
(T/T = 0, C/T = 1, and C/C = 2)

Dominant
(C/C and C/T vs. T/T)

Recessive
(T/T and C/T vs. CC)

Parkinson P value 0.27 0.35 0.33

OR 1.16 1.16 1.58

95 % CI 0.89–1.52 0.85–1.57 0.61–4.12

Essential tremor P value 0.37 0.29 0.73

OR 1.15 1.20 0.80

95 % CI 0.84–1.59 0.85–1.69 0.21–3.00

Autism P value 0.010* 0.063 0.001*

OR 1.40 1.32 4.64

95 % CI 1.08–1.81 0.98–1.77 1.56–3.81

Schizophrenia P value 0.024* 0.117 0.002*

OR 1.09 1.25 3.91

95 % CI 0.90–1.31 0.95–1.65 1.45–10.55

Bipolar P value 0.007* 0.057 0.0004*

OR 1.43 1.34 6.21

95 % CI 1.10–1.87 0.99–1.80 1.82–21.24

*Considered as significant
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and ideally of the brain tissue, other mechanisms should also
be explored for the involvement of the two SNPs in the devel-
opment of disease.

There are limitations to our study, such as inability to per-
form a principal component analysis for testing population
stratification, due to lack of the necessary data. However, both
the case and control samples were collected from same insti-
tutions and from several centers across Iran.

Because of the differential association observed in two dif-
ferent groups of disorders in our study, it can be suggested that
rs12456492 and rs16976358 may have differential effects on
the RIT2 gene expression or function. More studies are war-
ranted to identify the function of the two SNPs and their cor-
relation with disease phenotypes.
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