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ABSTRACT
Live-cube compact storage systems realize high storage space utilization and high throughput, due to
full automation and independent movements of unit loads in three-dimensional space. Applying an opti-
mal two-class-based storage policy where high-turnover products are stored at locations closer to the
Input/Output point significantly reduces the response time. Live-cube systems are used in various sectors,
such as warehouses and distribution centers, parking systems, and container yards. The system stores unit
loads, such as pallets, cars, or containers, multi-deep at multiple levels of storage grids. Each unit load is
located on its own shuttle. Shuttles move unit loads at each level in the x and y directions, with a lift taking
careof themovement in the z-direction.Movementof a requestedunit load to the lift location is comparable
to solving a Sam Loyd’s puzzle game where 15 numbered tiles move in a 4 × 4 grid. However, with multi-
ple empty locations, a virtual aisle can be created to shorten the retrieval time for a requested unit load.
In this article, we optimize the dimensions and zone boundary of a two-class live-cube compact storage
system leading to a minimum response time. We propose a mixed-integer nonlinear model that consists of
36 sub-cases, each representing a specific configuration and first zone boundary. Properties of the optimal
system are used to simplify the model without losing any optimality. The overall optimal solutions are then
obtained by solving the remaining sub-cases. Although the solution procedure is tedious, we eventually
obtain two sets of closed-form expressions for the optimal system dimensions and first zone boundary for
any desired system size. In addition, we propose an algorithm to obtain the optimal first zone boundary for
situations where the optimal system dimensions cannot be achieved. To test the effectiveness of optimal
system dimensions and first zone boundary on the performance of a two-class-based live-cube system, we
perform a sensitivity analysis by varying the ABC curve, system size, first zone size, and shape factor. The
results show that for most cases an optimal two-class-based storage outperforms random storage, with up
to 45% shorter expected retrieval time.

1. Introduction

Warehouses form vital nodes in any supply chain, decoupling
supply from demand. Unfortunately, land for warehouses has
become increasingly scarce in many parts of Europe, Asia, and
the United States, particularly in areas with major customer
concentrations. Traditional storage systems, not only low-bay
warehouses but also Automated Storage and Retrieval (AS/R)
systems, occupy a considerable amount of space, as they require
transport aisles between any two racks. These aisles may con-
sume about 35% of all storage space and contribute to high
building costs (Gue, 2006). Shortage of land has driven many
companies to search for more compact storage systems.

To solve this shortage of land problem, so-called live-cube
compact storage systemshave recently been introduced.A grow-
ing number of implementations can be found in automated
parking systems, warehousing and cross-docking, container
handling, and pharmacy automation (see, for example, Automo-
tion Parking Systems (2013), Eweco (2013), EZ-Indus (2013),
Hyundai Elevator (2013), OTDH (2013), Swisslog (2013), and
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Wöhr (2013)). The main components of a live-cube compact
storage system are multiple levels of storage grids, shuttles, a lift,
and an Input/Output (I/O)-point. These shuttles can move in
the x and y directions. Each unit load is stored on its own shuttle
and holds only one product type. The shuttles move unit loads
into the empty locations tomaneuver the desired unit load to the
lift location at the same storage level. A lift takes care of move-
ments across different levels in the z-direction. We assume that
the I/O point is located at the lower-left corner of the system.
The lift waits at the I/O point when idle. Figure 1 shows a live-
cube compact storage system.

In storage systems, retrieval requests are often more critical
than storage jobs, as they are directly linked to customer orders
(Bartholdi and Hackman, 2014). In live-cube storage systems,
the interfering unit loads on the move path of a requested unit
load can slow down the retrieval process. In practice, however,
utilizations of not more than 90% are common in systems con-
taining 1000 unit loads or more. This implies that there are suf-
ficient empty locations at each level to create a virtual aisle for
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Figure . A live-cube compact storage system with a lift.

any desired unit load. By creating a virtual aisle, the requested
unit load can freely move to the lift location without interfering
with other unit loads. A sufficient condition to create such a vir-
tual aisle is that the number of empty locations on a level equals
at least the maximum of the number of rows and the number
of columns (Zaerpour et al., 2017). Figure 2 represents the top
view of a five by five, single-level live-cube system. The I/O point
is located at the lower-left corner. Figure 2(a) shows a situation
where a unit load needs to bemoved out of a live-cube system. In
this case, a virtual aisle can be created by simultaneouslymoving
some interfering unit loads (Fig. 2(b)). The desired unit load can
then be moved to the I/O point without any interference. Thus,
the retrieval time of any load at location (x, y), T(x, y) can then
be approximated by x+ y (i.e.,T(x, y)= x+ y), where x and y are
the travel times to the I/O point in the x and y directions, respec-
tively. For amulti-level live-cube system, the retrieval time of any
load at location (x, y, z) can be approximated bymax{x+ y, z}+
z (i.e., T(x, y, z) = max{x + y, z} + z), where z is the travel time
of the lift to level z.

A virtual aisle can significantly reduce the response time of
a live-cube system compared with (for instance) a system with
one empty location (in the case where only one empty location is
available Gue and Kim (2007) show that T (x, y) = 4x + 2y − 8
(if x > y)).

Although random storage has been widely used in practice,
it has been shown that two-class-based storage can significantly
reduce the response time of a storage system (Hausman et al.,
1976; Eynan and Rosenblatt, 1994; Kouvelis and Papanicolaou,

1995; Ruben and Jacobs, 1999; Park, 2006; Yu and de Koster,
2009). Two-class-based storage can simply be implemented in
practice by classifying unit loads into high-turnover and low-
turnover classes. The high-turnover unit loads are assigned to
the first zone containing a set of locations closer to the I/O
point. Designing a two-class-based live-cube system with opti-
mal first zone boundary and optimal systemdimensions can fur-
ther reduce the system’s response time (Hausman et al., 1976;
Yu and de Koster, 2009). In addition, questions on the effec-
tiveness of an optimal first zone boundary and optimal system
dimensions for varying skewness of the ABC curve, system size,
first zone size, and shape factor need to answered. For instance,
how does the skewness of the ABC curve impact the perfor-
mance of a two-class-based live-cube system with optimal first
zone boundary and optimal dimensions? How does the size of a
live-cube system influence the performance of an optimal
two-class-based live-cube system? Can an existing live-cube
system (i.e., with given dimensions) still benefit by optimizing
its first zone boundary?

In this article, we study a live-cube compact storage system
where virtual aisles can be created for any requested load. We
optimize the system dimensions and the first zone boundary of
a two-class system minimizing the response time. Our contri-
butions are as follows:

1. We obtain the optimal boundaries of a two-class live-
cube system leading to minimum response times.

2. We extend our model to obtain the optimal first zone
boundary of a two-class-based live-cube system with

Figure . A virtual aisle in a live-cube system.
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given dimensions and for a live-cube systemunder build-
ing dimension constraints.

3. We investigate the impact of varying skewness of the
ABC curve, system size, first zone size, and shape factor
on the performance of an optimal two-class-based live-
cube system.

4. We consider situations where constraints are imposed on
system dimension and propose the steps to optimize the
first zone boundary.

To optimize the boundaries, we propose a mixed-integer
nonlinear model. The objective is to minimize the expected
retrieval time of an arbitrary unit load. To derive a closed-
form formula for the objective function, the system needs to be
decomposed in 36 complementary sub-cases based on the sys-
tem configuration and first zone boundary. Each sub-case corre-
sponds to a different objective function (Zaerpour et al., 2012).
This results in a mathematical model with many constraints
and also nonlinearity in both objective function and constraints.
In addition, the annual demand of inventoried unit loads (i.e.,
the skewness of the ABC curve) affects the optimal solution.
Although the model is complex, it can still be solved optimally.
We first show that some sub-cases do not include the optimal
solution. This reduces the solution space without losing any
optimality. The remaining sub-cases can then be solved individ-
ually to obtain the optimal solution of themodel. Eventually, two
sets of closed-form solutions for the optimal dimensions and
first zone boundary can be obtained for any desired ABC curve.
The results show that an optimal two-class live-cube system
can reduce the response time up to 45% compared with a ran-
dom storage policy. Moreover, for a system with given dimen-
sions, we propose a simple algorithm to obtain the optimal first
zone boundary leading to a minimum response time. We also
investigate the effectiveness of optimal system dimensions and
first zone boundary on the performance of a two-class live-cube
system using a sensitivity analysis.

Optimizing zone boundaries for class-based storage in tra-
ditional automated two-dimensional (2D) storage systems (e.g.,
AS/R systems) has been extensively studied in the literature.
Hausman et al. (1976) derive a travel time formula for a 2D
AS/R system with class-based storage, which has been used
by many researchers (Park and Webster, 1989; Rosenblatt and
Eynan, 1989; Eynan and Rosenblatt, 1994; Kouvelis and Papani-
colaou, 1995; van den Berg, 1996; Thonemann and Brandeau,
1998; Ruben and Jacobs, 1999; Park, 2006). Researchers have
used different methods to obtain the optimal zone boundaries
for class-based storage policies. Hausman et al. (1976) use a grid
search method to minimize the S/R one-way travel time in a
Square-In-Time (SIT) 2D system. Rosenblatt and Eynan (1989)
propose a solutionmethod to determine the optimal boundaries
for any desired number of zones in a 2D system. They show that
a relatively small number of zones can lead to similar savings as
full-turnover storage. Eynan and Rosenblatt (1994) determine
the optimal zone boundaries for a Non-Square-In-Time (NSIT)
system. Park (2006) determines optimal zone boundaries for a
2D SIT system numerically. He also determines the mean and
variance of the travel times for AS/R systems for the two-class
NSIT case. Recently, Yu et al. (2015) determined optimal zone
boundaries and showed that an optimal (small) number of zones
exist, if space requirements are taken into account.

Stadtler (1996), Sari et al. (2005), Gue and Kim (2007), De
Koster et al. (2008), Yu and de Koster (2009), and Zaerpour et al.
(2015b) study compact storage systems using different depth
handling systems. Stadtler (1996) and Zaerpour et al. (2015b)
study unit-load storage assignment in a satellite-based compact
storage system. Sari et al. (2005) study unit-load storage assign-
ment and De Koster et al. (2008) study the optimal design of
a conveyor-based compact storage system. Yu and de Koster
(2009) study optimal two-class-based storage in a conveyor-
based compact storage system. They formulate a mixed-integer
nonlinear model and develop a decomposition algorithm and
one-dimensional search to solve the model, leading to optimal
zone boundaries. Gue and Kim (2007) study a single-level
live-cube storage system, which they call a puzzle-based storage
system, at an operational decision level. For systems with a
single and multiple empty locations, they develop a method to
maneuver unit loads to the I/O point yielding short retrieval
times. Zaerpour et al. (2017) study a multi-level live-cube com-
pact storage system considering a random storage policy at a
design decision level. They decompose the live-cube system into
four complementary sub-cases based on system dimensions
and propose a mixed-integer nonlinear mathematical model
for determining the optimal system dimensions by minimizing
the expected retrieval time. Zaerpour et al. (2012) study the
performance of a two-class live-cube compact storage system.
They derive closed-form formulas of the expected retrieval
time of a live-cube system with any configuration and zone
boundary. The formulas, obtained based on a continuous space
assumption, appear to evaluate the performance of the discrete
systems with a high precision. This article builds on that work.

In two-class-based storage, it is necessary to obtain the opti-
mal dimensions of the system, as well as the optimal first zone
boundary. Adding the first zone boundary variable increases the
complexity of the problem significantly, leading to 36 sub-cases
that have to be distinguished (compared with four sub-cases in
the random storage problem studied in Zaerpour et al. (2017)).
However, solving such a complex problem is still worthwhile, as
up to a 45% reduction in response time can be achieved by using
optimal two-class storage instead of optimal random storage.

The remainder of this article is organized as follows. Section 2
proposes themathematicalmodels and obtains the optimal zone
boundaries for a live-cube system. Section 3 extends the pro-
posed model in two directions. Section 4 discusses the results of
our sensitivity analysis based on a real case. Section 5 concludes
the article and proposes avenues for future research.

2. General model and optimization

In this section, we propose themathematicalmodels for amulti-
level live-cube system under a two-class-based storage policy.
The closed-form travel time formulas, each corresponding to a
specific configuration (36 sub-cases in total), are obtained from
Zaerpour et al. (2012). These formulas are used in the objective
function of the model. The main notations are as follows:

Objective:
E[T] The expected retrieval time of a two-class-based live-

cube system
E[T j

i ] The expected travel time of an arbitrary load in zone j
( j = 1, 2) for sub-case I ( i ∈ {A1, . . . ,P3})
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Figure . Instances of ABC curves with different values for the skewness parameter.

Decision variables:
l System length in time (i.e., shuttle travel time from/to the
I/O point to/from the farthest location in the x-direction
in an empty lane, l > 0)

w System width or depth in time (i.e., shuttle travel time
from/to the I/O point to/from the farthest location in the
y-direction in an empty lane, w > 0)

h System height in time (i.e., lift travel time from/to the
I/O point to/from the farthest level in the z-direction, h
> 0)

b First zone boundary in time (b � 0)
yi yi = 1, if sub-case i ( i ∈ {A1, . . . ,P3}) is considered,

otherwise, yi = 0
Parameters:
s Skewness of the ABC curve, 0 < s � 1
V System volume in cubic time, V > 0

We assume a continuous space. This assumption is com-
monly used in the literature (see, for example, Hausman et al.
(1976), Bozer and White (1984), Rosenblatt and Eynan (1989),
and Yu and de Koster (2009)) and leads to an accurate approxi-
mation if the number of loads per level and the number of lev-
els is sufficiently large. For the sake of convenience, and without
loss of generality, we suppose that the length of the system is
not less than the width of the system; i.e., l ≥ w (see also Bozer
and White (1984), Eynan and Rosenblatt (1994), and Yu and de
Koster (2009)). The system volume (V) is constant. E[T j

i ] rep-
resents the expected travel time of zone j ( j = 1, 2) and sub-
case i ( i ∈ {A1, . . . ,P3}). The conditions of all 36 sub-cases
(A1, . . . , P3) are illustrated in Appendix A. The ABC curve
function is represented by A(p) = ps (0 < s � 1) where p is the
fraction of inventoried products, which are ranked in descend-
ing order based on their annual demand. A smaller skewness
parameter (s) means a more skewed curve (Hausman et al.,
1976). For instance, s = 0.065 represents the ABC curve 20–
90%, in which 20% of highest turnover products denote the 90%
of annual demand. Figure 3 illustrates some instances of differ-
ent ABC curves. Section 2.1 gives the mathematical model for a
two-class-based live-cube system and solves it optimally.

2.1. Optimization of a two-class-based live-cube system

To optimize the boundaries of a two-class-based storage system
in a multi-level system, a Model MLS (multi-level system) can
be built:

Model MLS

minE[T] =
∑

i∈{A1,...,P3}
yi
(
G2s/(s+1)
1 E

[
T 1
i
]

+ (1 − G2s/(s+1)
1

)
E
[
T 2
i
])

, (1)

subject to:

l × w × h = V, (2)
l − w ≥ 0, (3)∑
i∈{A1,...,P3}

yi = 1, (4)

∑
i∈{A1,...,P3}

yi(Vi(b)/V ) = G1, (5)

yA1(w − h) ≥ 0, (6)
yA1(2h − b) ≥ 0, (7)
yA1(w − b) ≥ 0, (8)
yA2(h − w) ≥ 0, (9)
yA2(l − h) ≥ 0, (10)
yA2(2h − b) ≥ 0, (11)
yA2(w − b) ≥ 0, (12)
yA3(h − l) ≥ 0, (13)
yA3(l + w − h) ≥ 0, (14)
yA3(2h − b) ≥ 0, (15)
yA3(w − b) ≥ 0, (16)
yA4(h − l − w) ≥ 0, (17)
yA4(2h − b) ≥ 0, (18)
yA4(w − b) ≥ 0, (19)
yB1(w − h) ≥ 0, (20)
yB1(2h − b) ≥ 0, (21)
yB1(b− w) ≥ 0, (22)
yB1(l − b) ≥ 0, (23)
yB2(h − w) ≥ 0, (24)
yB2(l − h) ≥ 0, (25)
yB2(2w − b) ≥ 0, (26)
yB2(b− w) ≥ 0, (27)
yB2(l − b) ≥ 0, (28)
yB3(h − l) ≥ 0, (29)
yB3(l + w − h) ≥ 0, (30)
yB3(2w − b) ≥ 0, (31)
yB3(b− w) ≥ 0, (32)
yB3(l − b) ≥ 0, (33)
yB4(h − l − w) ≥ 0, (34)
yB4(2w − b) ≥ 0, (35)
yB4(b− w) ≥ 0, (36)
yB4(l − b) ≥ 0, (37)
yC1(w − h) ≥ 0, (38)
yC1(2h − b) ≥ 0, (39)
yC1(b− l) ≥ 0, (40)
yC2(h − w) ≥ 0, (41)
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yC2(l − h) ≥ 0, (42)
yC2(2w − b) ≥ 0, (43)
yC2(b− l) ≥ 0, (44)
yC3(h − l) ≥ 0, (45)
yC3(l + w − h) ≥ 0, (46)
yC3(2w − b) ≥ 0, (47)
yC3(b− l) ≥ 0, (48)
yC4(h − l − w) ≥ 0, (49)
yC4(2w − b) ≥ 0, (50)
yC4(b− l) ≥ 0, (51)
yD2(h − w) ≥ 0, (52)
yD2(l − h) ≥ 0, (53)
yD2(2h − b) ≥ 0, (54)
yD2(b− 2w) ≥ 0, (55)
yD2(l − b) ≥ 0, (56)
yD3(h − l) ≥ 0, (57)
yD3(l + w − h) ≥ 0, (58)
yD3(2h − b) ≥ 0, (59)
yD3(b− 2w) ≥ 0, (60)
yD3(l − b) ≥ 0, (61)
yD4(h − l − w) ≥ 0, (62)
yD4(2h − b) ≥ 0, (63)
yD4(b− 2w) ≥ 0, (64)
yD4(l − b) ≥ 0, (65)
yE2(h − w) ≥ 0, (66)
yE2(l − h) ≥ 0, (67)
yE2(2h − b) ≥ 0, (68)
yE2(b− 2w) ≥ 0, (69)
yE2(b− l) ≥ 0, (70)
yE2(l + w − b) ≥ 0, (71)
yE3(h − l) ≥ 0, (72)
yE3(l + w − h) ≥ 0, (73)
yE3(2h − b) ≥ 0, (74)
yE3(b− 2w) ≥ 0, (75)
yE3(b− l) ≥ 0, (76)
yE3(l + w − b) ≥ 0, (77)
yE4(h − l − w) ≥ 0, (78)
yE4(2h − b) ≥ 0, (79)
yE4(b− 2w) ≥ 0, (80)
yE4(b− l) ≥ 0, (81)
yE4(l + w − b) ≥ 0, (82)
yF2(h − w) ≥ 0, (83)
yF2(l − h) ≥ 0, (84)
yF2(2h − b) ≥ 0, (85)
yF2(b− l − w) ≥ 0, (86)
yF3(h − l) ≥ 0, (87)
yF3(l + w − h) ≥ 0, (88)

yF3(b− l − w) ≥ 0, (89)
yF3(2l − b) ≥ 0, (90)
yF4(h − l − w) ≥ 0, (91)
yF4(b− l − w) ≥ 0, (92)
yF4(2l − b) ≥ 0, (93)
yG3(h − l) ≥ 0, (94)
yG3(l + w − h) ≥ 0, (95)
yG3(2l − b) ≥ 0, (96)
yG3(b− 2h) ≥ 0, (97)
yG4(h − l − w) ≥ 0, (98)
yG4(2l − b) ≥ 0, (99)
yG4(b− 2(l + w)) ≥ 0, (100)
yH4(h − l − w) ≥ 0, (101)
yH4(b− 2(l + w)) ≥ 0, (102)
yH4(2h − b) ≥ 0, (103)
yI1(w − h) ≥ 0, (104)
yI1(b− 2h) ≥ 0, (105)
yI1(w − b) ≥ 0, (106)
yJ1(w − h) ≥ 0, (107)
yJ1(b− 2h) ≥ 0, (108)
yJ1(b− w) ≥ 0, (109)
yJ1(w + h − b) ≥ 0, (110)
yJ1(l − b) ≥ 0, (111)
yK1(w − h) ≥ 0, (112)
yK1(b− 2h) ≥ 0, (113)
yK1(b− l) ≥ 0, (114)
yK1(w + h − b) ≥ 0, (115)
yL1(w − h) ≥ 0, (116)
yL1(b− w − h) ≥ 0, (117)
yL1(l − b) ≥ 0, (118)
yL2(h − w) ≥ 0, (119)
yL2(l − h) ≥ 0, (120)
yL2(b− 2h) ≥ 0, (121)
yL2(l − b) ≥ 0, (122)
yM1(w − h) ≥ 0, (123)
yM1(b− w − h) ≥ 0, (124)
yM1(b− l) ≥ 0, (125)
yM1(l + h − b) ≥ 0, (126)
yM2(h − w) ≥ 0, (127)
yM2(l − h) ≥ 0, (128)
yM2(b− 2h) ≥ 0, (129)
yM2(b− l) ≥ 0, (130)
yM2(l + w − b) ≥ 0, (131)
yN2(h − w) ≥ 0, (132)
yN2(l − h) ≥ 0, (133)
yN2(b− 2h) ≥ 0, (134)
yN2(b− l − w) ≥ 0, (135)
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yN2(l + h − b) ≥ 0, (136)
yO1(w − h) ≥ 0, (137)
yO1(b− l − h) ≥ 0, (138)
yO1(l + w − b) ≥ 0, (139)
yP1(w − h) ≥ 0, (140)
yP1(b− l − w) ≥ 0, (141)
yP1(l + w + h − b) ≥ 0, (142)
yP2(h − w) ≥ 0, (143)
yP2(l − h) ≥ 0, (144)
yP2(b− l − h) ≥ 0, (145)
yP2(l + w + h − b) ≥ 0, (146)
yP3(h − l) ≥ 0, (147)
yP3(l + w − h) ≥ 0, (148)
yP3(b− 2h) ≥ 0, (149)
yP3(l + w + h − b) ≥ 0, (150)

Decision variables: b � 0, l > 0, w > 0, h > 0
and yi ∈ {0, 1} for i ∈ {A1, . . . ,P3}, where Vi is a func-
tion that gives the volume of the first zone of sub-
case i (i ∈ {A1, . . . ,P3}) retrieved from Zaerpour et al.
(2012) and V is the given volume of the system. G1
represents the size of the first zone divided by the size of the
system. yi = 1 if sub-case i is considered; otherwise, yi = 0.
Equation (1) minimizes the expected retrieval time, E[T]. In
Equation (1), if case i is considered (i.e., yi = 1), G2s/(s+1)

1 E[T 1
i ]

and (1 − G2s/(s+1)
1 )E[T 2

i ] represent the weighted expected
retrieval times of the first and second zones, respectively (Yu
and de Koster, 2009; Zaerpour et al., 2012). Constraint (2)
makes sure that the given system size is achieved. Constraint (3)
ensures that the length of the system is at least equal to the width
of the system. As the sub-cases are complementary, Constraint
(4) makes sure that only one sub-case is considered. Constraint
(5) relates any value of boundary b to its corresponding value
of G1 (G1 is the relative size of the first zone). Constraints (6)
to (150) are used to distinguish 36 different sub-cases. For
example, the conditions of sub-case A1 are b � 2h, b � w, and h
�w. Therefore, Constraints (6) to (8) make sure that if sub-case
A1 is considered these conditions are met. In order to obtain
the optimal solutions of Model MLS we first give the following
theorems.

Lemma 1. In a given system, if there are two candidate shapes of
the system that have the same zone volume and height, the system
with a shape closer to square at each storage level has the shorter
expected retrieval time.

Proof. See the online supplement 1. �
Theorem1. The optimal system configuration is square for a two-
class live-cube system at every level; i.e.,

l∗ = w∗. (151)

Proof. Assuming d = l/w, since ∂E[T]/∂d > 0, ∀d ≥ 1, the
minimum value of expected retrieval time occurs at d = 1
(i.e., l = w). �
Corollary 1. Sub-cases A2, B2, C2, D2, E2, F2, L2, M2, N2, P2
(i.e., with condition w ≤ h < l) and sub-cases B1, B3, B4, D3,

D4, E3, E4, F3, F4, J1, L1, M1 (i.e., with condition w ≤ b < l)
do not include the optimal solution of the Model MLS and their
corresponding constraints can be relaxed in the model.

Thus, y∗
i = 0 ∀i ∈ {A2,B2,C2,D2,E2, F2, L2,M2,N2,P2,

B1,B3,B4,D3,D4,E3,E4, F3, F4, J1, L1,M1}.
Proof. From Theorem 1, l∗ = w∗ and so the constraints corre-
sponding to the sub-cases that do not meet this condition can
be relaxed. �
Theorem2. Within each case, the sub-case with condition h ≤ w
leads to shorter E[T] compared to sub-cases with conditions l <

h ≤ l + w and l + w < h.

Proof. In order to prove this, it suffices to compare the opti-
mal solutions of sub-cases with condition l < h ≤ l + w and
l + w < h with the optimal solution of sub-case with condi-
tion h ≤ w in each case. For the detailed proof see the online
supplement 2.

Based on Theorem 2, facility managers are advised to design
a two-class-based live-cube system such that the system height
(in time units) is at most equal to the system width (in time
units). �
Corollary 2. Sub-cases A3, A4, C3, C4, and P3 do not include
the optimal solution of the Model MLS and their corresponding
constraints can be relaxed in the model.

Therefore, y∗
i = 0 ∀i ∈ {A3,A4,C3,C4,P3}.

Proof. From Theorem 2, constraints representing sub-cases
with conditions l < h ≤ l + w and l + w < h can be relaxed as
they do not include the overall optimal solution. �
Theorem 3. Sub-case C3 compared with sub-case G3 and sub-
case C4 compared with sub-cases G4 and H4 lead to shorter E[T].

Proof. See the online supplement 3. �
Corollary 3. Sub-cases G3, G4, and H4 do not include the opti-
mal solution of the Model MLS and their corresponding con-
straints can be relaxed in the model.

Therefore, y∗
i = 0, ∀i ∈ {G3,G4,H4}.

Proof. From Theorem 3, constraints corresponding to the cases
G3,G4, andH4 can be relaxed as they do not include the overall
optimal solution. �

Thus, the total 36 sub-cases can be reduced to six sub-cases
(see Fig. 4). Based on Theorem 1, since l∗ = w∗, these six sub-
cases are simplified by replacingwwith l. The conditions of each
sub-case can be derived from the shape of the first zone (e.g., see
sub-case A1 in Fig. 4).

In order to solve Model MLS, we first solve each of the six
remaining sub-cases individually and obtain the optimal solu-
tion in each sub-case. Next, by comparing the optimal solutions
obtained from the six sub-cases the overall optimal solution
of Model MLS can be found. To simplify the calculations, the
volume of the system is normalized to one (V = 1).

2.2. Optimizing the dimensions in each of the six
sub-cases individually

The optimization process is explained for sub-cases A1 and C1.
For the rest we refer to the online supplement 4.
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Figure . Sub-cases to be optimized individually. R represents the first zone closer to I/O point and R represents the second zone.

Sub-case A1. b/2 � h & b � l & h � l
The objective function in this case is (obtained from

Zaerpour et al. (2012))

E [TA1] = G1
2s
1+s

3b
4

+
(
1 − G1

2s
1+s

)

× 21b4 − 8h
(
h3 + 12hlw + 12lw (l + w)

)
4 (7b3 − 48hlw)

.

(152)

Based on Theorem 1, in an optimal solution, w∗ = l∗. In
addition, the volume of the system is normalized to one and so
hl2 = 1. Moreover, based on the volume formula of the shape of
the first zone in sub-case A1,G1 = 7b3/48. Therefore, the objec-
tive function can be simplified to a function of two-variables
(b, l), shown in Equation (153):

E [TA1] = 1
4

⎛
⎝(7b3

16

) 2s
1+s

31−
2s
1+s b

+

(
1 −

(
7b3
48

) 2s
1+s
) (

21b4 − 8
( 12
l2 + 1

l8 + 24l
))

−48 + 7b3

⎞
⎟⎟⎠ .

(153)

In order to obtain the optimal value of length of the system
(l∗), we solve the following equation:

dE[TA1]
dl

=
16
(
−1 + (7b3/48)2s/(1+s)

) (−1 − 3l6 + 3l9
)

(−48 + 7b3) l9
= 0.

(154)

AlthoughE[TA1] is a function of two variables l and b, solving
Equation (154) leads to a single optimal value for l. Comparing
the one critical point obtained by solving Equation (154) with
any other feasible point shows that the critical point is an abso-
lute minimum. The following equation gives the optimal values
of l and w:

w∗ = l∗ =
⎛
⎝(−2 +

(
1
2

(
11 − 3

√
13
))1/3

+
(
1
2

(
11 + 3

√
13
))1/3

)1/3
⎞
⎠

−1/2

= 1.069 37

(155)

Consequently, from hl2 = 1, we obtain the optimal value of
h, which satisfies the condition 0 < h � l:

h∗ =
(

−2 +
(
1
2

(
11 − 3

√
13
))1/3

+
(
1
2

(
11 + 3

√
13
))1/3

)1/3

= 0.874 46. (156)

In order to obtain the optimal boundary, b∗, the following
equation should be solved for l∗ and any given s:

dE[TA1]
db

= 0, ∀0 < s ≤ 1 and l = l∗. (157)

b∗ can be obtained analytically for any given value of s. Since
b∗ is the only critical point, comparing the value of the objec-
tive function at b∗ with any other feasible solution proves that
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b∗ is the absoluteminimum.However, a closed-form formula for
the optimal boundary (b∗(s)) cannot be obtained analytically. To
solve this problem, we obtain the optimal boundary as a func-
tion of s by fitting the function b∗

fit(s) = a ArcTan[c s + d] + e
to optimal values of boundary b for 1000 different values of
s. The fit function minimizes the sum of squared residuals.
Equation (158) gives the closed-form formula of the optimal
boundary as a function of s:

b∗
fit (s) = 80 854 ArcTan[429 284 s + 56 451] − 127 004.

(158)

It appears that b is an increasing function of s, while accord-
ing to the condition of sub-case A1, b � l. Therefore, s is
bounded: s ≤ s′ (s′ is the maximum value for s where the condi-
tion b � l of sub-case A1 can still be met). s′ can be obtained by
solving the following equation:

b∗
fit (s) = l∗, which gives s′ = 0.354 907. (159)

Figure 5 shows the plotted optimal values of b for 1000 dif-
ferent s values (b∗(s)) and the corresponding fitted function
(b∗

fit(s)) for s � s′.
For s > s′, optimizing the dimensions in sub-case A1 is

explained in online supplement 5. However, it turns out that
the overall optimal solution of Model MLS for s > s′ is obtained
from sub-case C1.

Sub-case C1. b/2 � h & l � b � 2l & h � l
The objective function in this case is

E[TC1] = G1
2s
1+s

27b4 − 64b3(l + w) + 48b2(l2 + w2) − 8(l4 + w4)

4 (9b3 − 24b2(l + w) + 24b(l2 + w2) − 8(l3 + w3))

+(1 − G1
2s
1+s )

27b4 − 64b3 (l + w) + 48b2
(
l2 + w2)+ 8

(
h4 − l4 + 12h2lw − w4 + 12hlw (l + w)

)
4 (9b3 − 24b2 (l + w) + 24b (l2 + w2) − 8 (l3 − 6hlw + w3))

. (160)

Figure . Fitted function b∗
f it (s) versus optimal values b∗(s) for s� s′ in sub-case A.

From Theorem 1 we know that in an optimal solution,
w∗ = l∗. In addition, the volume of the system is normal-
ized to one and so hl2 = 1. Moreover, based on the vol-
ume formula of the shape of the first zone in this sub-case,
we have

G1 = 1
48

(−b3 − 8(b− l)3 + 24b(b− w)w + 8w3).

Therefore, the objective function can be simplified to
a function of two variables (b, l), shown in Equation
(161):

E[TC1] = 1
4

⎛
⎜⎜⎜⎝
(
2304− s

1+s (−9b3 + 48b2l − 48bl2 + 16l3)
−1+s
1+s (−27b4 + 128b3l − 96b2l2 + 16l4)

)

+

(
1 − (− 3b3

16 + b2l − bl2 + l3
3 )

2s
1+s

) (
27b4 − 128b3l + 96b2l2 + 8

( 1
l8 + 12

l2 + 24l − 2l4
))

48 + 9b3 − 48b2l + 48bl2 − 16l3

⎞
⎟⎟⎟⎠ . (161)

In order to obtain the optimal value of length of the system
(l∗), we solve the following equation:

dE[TC1(l, b)]
dl

= 0. (162)

Although Equation (162) is a function of two variables l
and b, solving dE[TC1]/dl = 0 leads to the optimal length l∗
given by Equation (155). Consequently, the optimal value of
height h∗ can be obtained by using Equation (156). The optimal
dimensions satisfy the condition of sub-case C1 that is 0 <

h � l. The analysis of sub-cases A1 and C1 show that the
optimal dimensions of a two-class-based live-cube system are
the same for both sub-cases. In addition, results show that the
optimal system dimensions are independent of the ABC curve
considered (i.e., skewness parameter s).

In order to obtain the optimal boundary b, the following
equation should be solved for l∗ and any given s:

dE[TC1]
db

= 0, ∀0 < s < 1 and l = l∗. (163)

It appears, for s � s′, that the overall optimal solution of
Model MLS is obtained from sub-case A1. Therefore, it suffices
to consider the solution of sub-case C1 for s > s′.

For s > s′, solving Equation (163) leads to b∗. Since b∗ is
the only critical point, comparing the objective value at b∗ with
any other feasible solution shows that b∗ is the absolute mini-
mum. However, a closed-form formula for the optimal bound-
ary (b∗(s)) cannot be obtained analytically. Thus, we obtain the
optimal boundary as a function of s by fitting the function
b∗
fit(s) = a ArcTan[c s + d] + e to optimal values of boundary b
for 1000 different s. Equation (164) gives the optimal boundary
for any given skewness parameter, s > s′:

b∗
fit (s) = 0.479 841 ArcTan[3.430 86 s − 0.224 308]

+ 0.691 496. (164)
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Figure . Fitted function b∗
f it (s) versus optimal values b∗(s) for s> s′ in sub-case C.

Figure 6 shows the plotted optimal values of b for 1000 dif-
ferent s values (b∗(s)) and the corresponding fitted function
(b∗

fit(s)) for s > s′.
The optimal solutions of the remaining four sub-cases can

be obtained similarly (see Appendix B for the optimal solution
of each sub-case). By comparing the optimal solutions of the six
sub-cases, it turns out that sub-casesA1 andC1 include the over-
all optimal solution.

Table 1 gives the optimal solution of Model MLS (l∗, w∗, h∗,
b∗, in time units) for different values of s and system volume
V (in cubic time). Table 1 shows that the skewness of the ABC
curve has no impact on the optimal dimensions of a two-class-
based live-cube system. This makes the system very robust to
changes in demand patterns of products. The system can opti-
mally be used for different customer demandABC curves. How-
ever, the optimal zone boundary is affected by the skewness of
the ABC curve leading to different zone shapes and zone sizes.

Table . Theoptimal solutions for some selected skewnessparameters (ABC curve).

s ABC curve Sub-case l∗(=w∗) (s) h∗ (s) b∗ (s) G
∗(%) E[TG∗

1
] (s)

. –% A .  .  . . .
. –% A .  .  . . .
. –% A .  .  . . .
. –% A .  .  . . .
. –% C .  .  . . .
. –% C .  .  . . .
. –% C .  .  . . .
 –% / .  .  / / .

“/”: for b∗ is any value between  and . (max{l∗ + w∗ , h∗} + h∗); “/” for G
∗ is

any value between % and %.

By using the formulas from Table 1 and for some selected
skewness parameters s and for a normalized system volume
(V = 1), we obtain the optimal dimensions of the system (l∗,
w∗, h∗), the optimal first zone boundary (b∗), the optimal rela-
tive size of the first zone (0% < G1

∗ ≤ 100%), and the optimal
expected retrieval time (E[TG∗

1
]). Table 2 presents the results.

In addition, Figure 7 illustrates the optimal dimensions
(in time units) and the surface representing the optimal first
zone boundary (in time units) for different values of skewness
parameter s. As Figure 7 shows, the optimal shape of the first and
second zones differs for s� 0.354 907 and s> 0.354 907.All loca-
tions (x, y, z) that satisfy the condition max{(x + y), z} + z = b∗

form the surface representing the optimal first zone boundary.

3. Extensions where constraints are imposed on
system dimensions

The optimal dimensions of a live-cube system obtained in
Section 2 can be realized in a greenfield project. In a brown-
field project, however, constraints such as building dimensions

Table . The optimal dimensions and zone boundary (in time units) for any s and V.

Subcase
Skewness

parameter (s) Optimal length (l∗), width (w∗), and height (h∗)
Estimated optimal boundary (bf it∗ (s))
b∗
f it (s) = (aArcTan[c s + d] + e)V 1/3

A1. b/� h & b� l
& h� l

s� .  l∗ = w∗ = ((−2 + ( 1
2 (11 − 3

√
13))

1/3 + ( 1
2 (11 + 3

√
13))

1/3
)
1/3

)−1/2 V 1/3

h∗ = (−2 + ( 1
2 (11 − 3

√
13))

1/3 + ( 1
2 (11 + 3

√
13))

1/3
)1/3 V 1/3

a = 80 854.302 478 881 52
c = 429 283.786 397 505 84
d = 56 450.996 031 939 074
e = −127 004.177 887 010 07

C1. b/� h & l� b
� l & h� l

s> .  l∗ = w∗ = ((−2 + ( 1
2 (11 − 3

√
13))

1/3 + ( 1
2 (11 + 3

√
13))

1/3
)
1/3

)−1/2 V 1/3

h∗ = (−2 + ( 1
2 (11 − 3

√
13))

1/3 + ( 1
2 (11 + 3

√
13))

1/3
)1/3 V 1/3

a = −0.479 841 475 937 920 54
c = −3.430 861 801 050 49
d = 0.224 307 689 764 147 53
e = 0.691 496 322 187 672

Figure . Optimal dimensions and first zone boundary in time units for different values of s.
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exist. In this section, we extend our problem in two directions.
First, we consider a situation where a new live-cube system of a
desired size needs to be installed in awarehousewith fixed build-
ing dimensions. The system dimensions and zone boundary
that minimize the expected retrieval time can still be obtained
(Section 3.1). Second, we consider an existing live-cube system
with fixed dimensions. The expected retrieval time of such a sys-
tem can still be minimized by optimizing the boundary of the
first zone (Section 3.2).

Illustrative example: To further explain the steps in this sec-
tion, we use an illustrative example. A live-cube parking system
needs to be designed given the following constraints:
Constraint 1: The length of the system should be at least four

times larger than the width (in meters).
Constraint 2: The system height should be nine tiers.

Table 3 gives the input parameters.

3.1. Designing a new live-cube systemwithin an existing
warehouse building

A live-cube system can be installed in an existing warehouse.
In this case, the building dimensions might prevent the realiza-
tion of the live-cube system with optimal dimensions. The sys-
tem dimensions and the first zone boundary that minimize the
expected retrieval time can still be obtained using the following
steps:

Step 1. Calculate the optimal system dimensions using
Table 1.

Step 2. Transform the optimal system dimensions from time
units to distance units (e.g., from seconds to meters).

Step 3. Identify the number of system dimensions that are
constrained by the building dimensions.
� If the number of constrained system dimensions
equals zero, building constraints are not limiting
and the optimal live-cube system can be realized.

� If the number of constrained system dimensions
is one or more, these constraints can be used to
obtain the feasible sub-cases within 36 sub-cases.
We then follow a similar optimization process as
that in Section 2.

Note: Based on Lemma 1, determine the dimensions
such that the system length andwidth at each level are
closest to SIT. The optimal first zone boundary can be
found by following the steps in Section 3.2.

Steps for the illustrative example:
Step 1: The optimal dimensions of the systems and optimal

first zone boundary can be obtained using Table 1
(h∗ = 15.70 s, l∗ = 19.20 s, w∗ = 19.20 s, b∗ =
13.86 s).

Step 2: Based on the speed of the shuttles and lift, the opti-
mal system dimensions in time units (s) can be trans-
formed to the distance unit (m) (H∗ = 26.50 m, L∗ =
38.40 m,W∗ = 19.20 m).

Step 3: The optimal system height satisfies Constraint (2)
as at least nine tiers can be achieved (# height tiers
= H∗/location height = 26.50/2.945 = 9). However,
the optimal length and width violate Constraint (!)
(L∗/W∗ = 38.4/19.20 = 2�4). Thus, according to
Lemma 1, the system dimensions that minimize the
expected retrieval time, achieve the desired system

size (324 locations), and satisfy Constraints (1) and
(2) equal h∗ = 15.70 s, l∗ = 30.72 s,w∗ = 11.52 s. The
optimal first zone boundary can be found using the
steps in Section 3.2.

3.2. Optimizing the first zone boundary of an existing
live-cube system

The response time of an existing live-cube system with a fixed
configuration can still beminimized by optimizing the first zone
boundary. In this section, we propose an algorithm to find the
optimal first zone boundary for a live-cube system with fixed
system dimensions.

Step 1. Using Appendix C find a set of sub-cases whose con-
ditions can be met given the system dimensions.

Step 2. For each sub-case, replace the values of l, w, h,
and s in the corresponding closed-form formula
of E[T(l, w, h, b)] yielding a one-variable objective
function (E[T(b)]). For instance, if sub-case A1 is
considered, replace the values of l, w, h, and s in the
corresponding closed-form formula of E[TA1].

Step 3. For each sub-case, solve d E[T]/d b = 0. Among all
sub-cases where the obtained b satisfies the condition
of the sub-case, the onewith theminimum E[T] gives
the optimal boundary (b∗).
Note: For a new live-cube system (discussed in
Section 3.1), use the building dimension constraints
to simplify E[T(l, w, h, b)] to E[T(l, b)]) and follow
the same procedure as explained above.

Steps for the illustrative example:
With the system dimensions obtained in Section 3.1(h∗ =

15.70 s, l∗ = 30.72 s, w∗ = 11.52 s), we follow the next steps to
obtain the optimal first zone boundary.

Step 1: Using Appendix C (Table A3) and given the sys-
tem dimensions, these conditions are satisfied (w ≤
h ≤ l, l + w ≥ 2h, 2w ≤ l ≤ 2h). Thus, the follow-
ing sub-cases need to be considered: A2 (b � w),
B2 (w � b � 2w), D2 (2w � b � l), E2 (l � b � 2h),
M2 (2h � b � l + w), N2 (l + w � b � l + h), P2
(l + h � b � l + w + h).

Step 2: For each sub-case (e.g., A2), replace the values of l∗,
w∗, h∗, and s (s = 0.139 for 20–80% ABC curve) in
the corresponding closed-form formula of E[T] (e.g.,
E[TA2]).

Step 3: For each sub-case, solve d E[T]/d b = 0. The results
for the expected retrieval time (E[T]) and the first
zone boundary (b) of each sub-case are as follows:
A2 (E[T] = 20.40, b = 11.52), B2 (20.14, 14.59),
D2 (21.50, 23.04), E2 (24.20, 30.72), M2 (24.48,
31.40), N2 (27.81, 42.24), P2 (28.70, 46.42). Among
all sub-cases, sub-case B2 results in minimum E[T]
(E[T] = 20.14) and so b∗ = 14.59.

4. The effectiveness of the optimal dimensions and
zone boundary

In this section, we present numerical results to investigate the
effectiveness of optimal dimensions and optimal first zone
boundary. For different ABC curves, system size, first zone
size, and shape factor, the results of an optimal two-class-based
storage policy are compared with the results of an optimal
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Table . Parameters describing storage system and storage policy derived from Hyundai Elevator ().

Fixed parameters Data

Dimensions of a standard vehicle (mm) Height= , length= , width= ∗
Dimensions of a location (mm) Height= , length= , width= 
Shuttle speed in the x-direction (vx) (m/min) 
Shuttle speed in the y-direction (vy) (m/min) 
Lift speed (vz) (m/min) 

Varying parameters Base example data Range for scenarios

Dimensions of system (s) ∗∗ Height= ., length= ., width= .
Dimensions of system (m) Height= ., length= ., width= .
ABC curve (percentage) –% [–%, –%]
First zone size (percentage of system size) .%∗∗∗ [%, %]
System size (no. of slots)∗∗∗∗  [, ]
Length/width (no. of tiers)  [., ]

∗Length and width denote the size in the x- and y-directions, respectively.
∗∗Optimal dimensions of the system for the given system size.
∗∗∗Optimal first zone size for the base example.
∗∗∗∗Size of the system including empty slots= Length×Width× Height= × × =  (in number of tiers).

Table . The optimal expected retrieval time for the base case.

ABC curve Sub-case Optimal first zone size (%) Optimal boundary (b) (s) E[TO] (s)
∗

E[TD] (s) GapD (%)
∗∗

E[TC] (s) GapC (%) E[TR] (s) GapR (%)

–% A . . . . . . . . .

∗E[Tx] is the expected retrieval time for method x (in seconds), where x = O (Optimal two-class-based), D (Discrete live-cube system), C (two-class-based system with
Cuboid first zone), R (a system with Random storage).

∗∗Gapx=((|E[Tx ] − E[TO]|)/E[TO]) × 100%, represents the gap between the expected retrieval time of the optimal two-class-based live-cube system and the expected
retrieval time of method x. For GapC , the first zone size and system dimensions of the cuboid two-class-based system are the same as the optimal two-class-based
live-cube system.

random storage policy and a “cuboid” two-class-based storage
policy of the same dimensions and first zone size (a cuboid
two-class-based storage policy is a straightforward, practical
implementation of a two-class policy with a rectangular-cube-
shaped first zone). In a cuboid two-class-based live-cube system,
the first zone dimension ratios are equal to the system dimen-
sion ratios; i.e., l1/w1 = l/w, l1/h1 = l/h. The results for optimal
random storage and cuboid two-class storage are obtained from
Zaerpour et al. (2017) and Zaerpour et al. (2012), respectively.
In addition, for each instance, we evaluate the accuracy of the
closed-form formulas obtained based on a continuous system
assumption by using a real discrete live-cube system. For the
discrete system in each instance, we calculate the expected
retrieval time by considering the probability of requesting each
product, the probability of retrieving the requested product
from each storage location, and the travel distance from each
storage location to the I/O point.

For the base example, we consider a medium-sized live-cube
system with optimal system dimensions and optimal first zone
size and with a moderate ABC curve as described in Table 3.
First, we present the results for the base example. Then, we per-
form a sensitivity analysis to investigate the effect of optimizing
system dimensions and first zone size on the performance of a

two-class-based live-cube system for different sources of varia-
tion in the input parameters. In each instance, we vary one of
the parameters of the base example while the other parameters
are fixed.

Table 4 shows the results for the base case. In succeeding
tables, we vary the ABC curve (Table 5), system size (Table 6),
first zone size (Table 7), and shape factor of the system innumber
of tiers (Table 8). In Table 6, for all instances the system dimen-
sions and the first zone size are optimal. To make a fair compar-
ison in Table 8, when varying the shape factor, the system height
and system size are fixed and the optimal first zone boundary is
obtained using Section 3.

The results in Tables 4 to 8 show that an optimal two-class-
based storage can significantly reduce the expected retrieval
time of a live-cube system compared with optimal random stor-
age (up to 45%). This reduction is less significant compared
with a cuboid two-class-based storage (up to 10%). Note that an
optimal two-class-based storage policy, as an alternative to other
storage policies (e.g., optimal random storage), needs no system
configuration adjustment. It only suffices to re-program the soft-
ware that controls the live-cube system such that the system is
virtually divided into two zones (first and second zones) by the
locations with travel time b to the I/O point. Depending on the

Table . Results of sensitivity analysis when varying skewness parameter.

ABC curve Sub-case Optimal boundary (b) (s) Optimal first zone size (%) E[TO] (s) E[TD] (s) GapD (%) E[TC] (s) GapC (%) E[TR] (s) GapR (%)

–% A . . . . . . . . .
–% A . . . . . . . . .
–% C . . . . . . . . .
–% C . . . . . . . . .
–% / / / . . . . . . .

“/”means any sub-case, any value for b or any first zone size.
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Table . Results of sensitivity analysis when varying system size.∗

System size
(No. of slots)∗∗

Relative size
change to base

case (%) Sub-case

Optimal
boundary
(b) (s)

Optimal
first zone
size (%)

E[TO]
(s)

GapO
(%)∗∗∗

E[TD]
(s)

GapD
(%)

E[TC]
(s)

GapC
(%)

E[TR]
(s)

GapR
(%)

 (× × )∗∗∗∗ − .∗∗∗∗∗ A . . . − . . . . . . .
 (× × ) . A . . . . . . . . . .
 (× × ) . A . . . . . . . . . .
 (× × ) . A . . . . . . . . . .
 (× × ) . A . . . . . . . . . .

∗For each instance, the dimensions and first zone boundary are optimal.
∗∗Including empty slots.
∗∗∗GapO=((E[TO] − E[Tbase case])/E[Tbase case]) × 100%, represents the gap between E[T] of base case (. s) and E[T] of each instance.
∗∗∗∗Length×Width× Height in number of tiers.
∗∗∗∗∗((–)/)× %.

Table . Results of sensitivity analysis when varying the first zone size.

First zone size (%) Sub-case Boundary (b) (s) E[Tst zone] (s) Gap1st zone (%)
∗ E[TD] (s) GapD (%) E[TC] (s) GapC (%) E[TR] (s) GapR (%)

 C . . . . . . . . .
 C . . . . . . . . .
 C . . . . . . . . .
 O . . . . . . . . .
 / / . . . . . . . .

∗Gap1st zone = ((E[T1st zone] − E[Tbase case])/E[Tbase case]) × 100%, represents the gap between E[T] of base case (. s) and E[T] of each instance.

turnover of the products, the system will then assign an incom-
ing load to either first or second zone. In addition, we make the
following observations:

Observation 1 (varying skewness of the ABC curve): By
increasing the skewness of the ABC curve (i.e., decreasing s),
the gaps between the optimal two-class-based storage and the
optimal random and cuboid two-class-based storage increase
(see GapR and GapC in Table 5). For instance, for the 20–
70% curve, GapR = 21.11%, whereas for the 20–30% curve,
GapR = 3.06%. This is expected, as for an increasing skew-
ness parameter, the beneficial effect of class-based storage dis-
appears. The results are consistent with ones from Zaerpour
et al. (2012). The results show that a skewed ABC curve (20–
90%) reduces the expected retrieval time up to 45% compared
with random storage for both optimal and non-optimal two-
class-based system. However, this saving decreases more rapidly
by decreasing the skewness of the ABC curve (i.e., increasing
s) for an optimal two-class-based live-cube system. In addi-
tion, a skewed ABC curve (e.g., 20–90%) can result in a larger
time saving for a non-optimal two-class-based live-cube system.
Furthermore, with increasing skewness parameter, the optimal
first zone boundary and the optimal first zone size increase.
However, the optimal dimensions do not change for different
ABC curves. This makes it possible to optimally use different
ABC curves without any need for system configuration correc-
tion. The optimal solution for the random storage policy is a

special case of optimal two-class-based storage where ABC
curve is 20–20%.

Observation 2 (varying system size): By increasing the sys-
tem size, the gaps between the optimal two-class-based storage
and the optimal random and cuboid two-class-based storage do
not change (for all instances in Table 6, GapR = 30.05% and
GapC = 2.03%). This is because for each instance in Table 6, the
system dimensions and first zone boundary are optimal (Zaer-
pour et al. (2012) do not discuss such an insight, as they do
not consider optimal two-class-based live-cube system). Thus,
facility managers can equally benefit for large- and small-sized
systems by implementing an optimal two-class-based storage.
A more-skewed ABC curve and a larger shape factor might
increase these gaps further (see Observations 3 and 4). In addi-
tion, as the system size grows, the expected retrieval time of an
optimal two-class-based system increases less rapidly (see Rel-
ative size change to base case (%) and GapO in Table 6). For
instance, for the case where the system size grows by 2600%
compared with the base case, the expected retrieval time only
increases by 200% (GapO = 200%). Thus, facility managers can
largely benefit from system size expansion without a significant
sacrifice of system performance.

Observation 3 (varying first zone size): By increasing the
first zone size, the gap between the expected retrieval time
of the optimal two-class-based storage of the base case and
two-class-based storage with the given first zone size increases

Table . Results of sensitivity analysis when varying the shape factor (length/width in number of tiers).∗

Shape factor (L/W) Sub-case Optimal boundary (b) (s) Optimal first zone size (%) E[TO] (s) E[TD] (s) GapD (%) E[TC] (s) GapC (%) E[TR] (s) GapR (%)

. (/) D . . . . . . . . .
. (/) B . . . . . . . . .
. (/) A . . . . . . . . .
. (/) B . . . . . . . . .
. (/) D . . . . . . . . .

∗The system size (in number of slots) and height (in number of tiers) are fixed for all instances.
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(see Gap1st zone in Table 7). This is because as the first zone
size increases, the closest locations to the I/O point will more
likely be occupied by low-turnover products. In addition, by
increasing the first zone size, the gap between the optimal
two-class-based storage and optimal random storage decreases
as two-class-based storage gradually converts to random stor-
age (see GapR in Table 7). Furthermore, as the first zone size
increases, unlike GapR, the gap between the optimal two-class-
based storage and cuboid two-class-based storage first increases
and then decreases (see GapC in Table 7). This is because for a
very small first zone size, optimizing the shape of the first zone is
unimportant, as few locations will be affected. By increasing the
first zone size further, larger reductions in retrieval time can be
achieved by optimizing the first zone shape. When the first zone
size becomes larger, both storage policies (two-class-based and
cuboid two-class-based) gradually transform into random stor-
age. The same pattern can be observed in Zaerpour et al. (2012),
although the savings in their case are larger. In conclusion, facil-
ity managers are advised to optimize the size of the first zone of
a two-class-based live-cube system that has given dimensions,
in order to further improve the performance of their systems.
In addition, facility managers are advised to implement the
optimal two-class-based storage instead of random storage and
cuboid two-class-based storage as further improvements can
always be achieved with no additional investment.

Observation 4 (varying shape factor): Table 8 shows that as
the length and width of a live-cube system (in number of tiers)
differ more from each other (i.e., from L/W = 1 to 4 or 0.25),
optimal two-class-based storage becomes more favorable com-
pared with optimal random storage and cuboid two-class-based
storage (this is consistent with Zaerpour et al. (2012)). This
is because the drastic situations where frequently demanded
products are assigned to far locations to the I/O point can be
avoided. Therefore, in situations where constraints are imposed
on system dimensions, facility managers are encouraged to
optimize the system’s first zone size and shape compared with
no-constraint situations. Section 3 explains the procedure
to optimize live-cube system dimensions and the first zone
boundary in situations where there exist building constraints
on system dimensions.

Observation 5 (accuracy of continuous approximation):
Tables 4 to 8 show that the results obtained by using a continuous
approximation are very close to those for real discrete systems,
even in extreme cases such as a small system size, a very steep
ABC curve, and a small first zone size (for all instances,GapD <

5% in Tables 4 to 8). In addition, by decreasing the skewness of
the ABC curve, the gap between the results of the continuous
approximation and the real discrete system decreases (see GapD
in Table 5). By increasing the system size, GapD decreases as the
relative system size to storage location size increases (see GapD
in Table 6). Furthermore, by increasing the first zone size, the
gap between the results of the continuous approximation and
the real discrete system decreases (see GapD in Table 7).

5. Conclusions

We study a two-class live-cube compact storage system. We
propose a mixed-integer nonlinear mathematical model to
optimize the first zone boundary and system dimensions
minimizing the response time. Due to the complexity of the

model, we use some properties of the optimal solution to
simplify the mathematical model. The optimal dimensions of
a live-cube system and the optimal first zone boundary can
be obtained analytically for any ABC curve. In addition, we
optimize the system dimensions and first zone boundary in
warehouses with fixed building dimensions. We also minimize
the response time of a two-class-based live-cube system with
fixed dimensions by optimizing the first zone boundary. The
results show that in a live-cube compact storage system, an
optimal two-class-based storage policy can significantly reduce
the response time, compared with a random storage policy.
For example, for a 20–90% ABC curve, a 45% reduction in
response time can be obtained. Moreover, the optimal dimen-
sions of a two-class-based live-cube system do not depend on
the skewness of the ABC curve. Therefore, if the demand pat-
tern changes, no system configuration modification is needed.
Furthermore, the results of our sensitivity analysis show that by
increasing the skewness of the ABC curve and system shape fac-
tor, the two-class-based storage policy becomes more favorable
compared with random storage and cuboid two-class-based
storage. However, varying the system size does not appear to
have any impact on the performance of two-class-based storage.
Thus, facility managers can equally benefit from an optimal
two-class-based storage policy for both small- and large-sized
systems. The results of the sensitivity analysis also show that
the continuous space assumption can approximate real discrete
systems with a high accuracy.

Several research questions regarding the live-cube compact
storage system remain open. It is possible to extend a two-class-
based storage to an n-class-based storage policy. However, due
to the shuttle and lift operation of the system, analysis of an
n-class-based system appears to be extremely difficult. It is also
interesting to study the impact of optimally sequencing a group
of retrievals on the makespan in a two-class live-cube system.
We know from AS/RS literature that savings of 20–70% can
be achieved compared with first-come first-served sequencing
(Han et al., 1987; Yu and de Koster, 2012). As shuttles can
simultaneously move unit loads on different levels to the lift,
improvements might even be larger for live-cube compact
storage systems. Although we have studied two-class-based
storage in live-cube compact storage systems with lifts, results
for other live-cube compact storage systems with different
vertical movement mechanisms may also prove worthwhile to
investigate.
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Appendices

Appendix A. Conditions of 36 sub-cases: {A1, . . . ,P3}

The conditions of 36 sub-cases are given in Table A1. Sixteen
different cases (A, . . . ,P) need to be distinguished correspond-
ing to different shapes of the first and second zones illustrated in
Zaerpour et al. (2012). However, it is still necessary to decom-
pose each case into at most four sub-cases based on system con-
figurations: configuration 1: h ≤ w, configuration 2:w ≤ h ≤ l,
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configuration 3: l ≤ h ≤ l + w, and configuration 4: l + w ≤ h.
Thus, 36 sub-cases can be obtained in total, each correspond-
ing to a specific closed-form formula for E[T]. Table A1 gives all

36 sub-cases. For instance, for the sub-case A1, the conditions of
the case A (b/2 � h and b � w) and the configuration 1 (h ≤ w)
should be considered.

Table A. The  sub-cases, each corresponding to a specific E[T] formula.

Configuration

Case (h ≤ w)  (w ≤ h ≤ l)  (l ≤ h ≤ l + w)  (l + w ≤ h)

A (b/� h and b�w) A A A A
B (b/� h andw� b� w and b� ) B B B B
C (b/� h and l� b� w) C C C C
D (b/� h  andw� b� l) — D D D
E (b/� h  andw� b and l� b� l+w) — E E E
F (b/� h and l+w� b� l) — F F F
G (b/� h  and l� b� (l+w)) — — G G
H (b/� h  and (l+w)� b� h) — — — H
I (b/� h and b�w) I — — —
J (b/� h andw� b�w+ h and b� l) J — — —
K (b/� h and l� b�w+ h) K — — —
L (b/� h andw+ h� b� l) L L — —
M (b/� h andw+ h� b and l� b�min{l+w, l+ h}) M M — —
N (b/� h and l+w� b� l+ h) — N — —
O (b/� h and l+ h� b� l+w) O — — —
P (b/� h and max{l+ h, l+w}� b� +w+ h) P P P —

Appendix B. Optimal solutions of four sub-cases I1, K1, O1, P1

The optimal solutions of the four sub-cases I1, K1, O1, and P1 are given in Table A2.
Table A. Optimal solutions of sub-cases I, K, O, P.

Subcases (conditions) s Optimal length (l∗) Optimal boundary (b∗)

I. b/� h and b� l and h� l s> . (0.5(67 986.3 ArcTan[663 825.0s
+ 50 017.7] − 106 791.0))−1/2

67 986.3 ArcTan[663 825.0s + 50 017.7] − 106 791.0

s� . .  . 
K.. h� b� l+ h and h� l s> . (0.5(39 587.7 ArcTan[18 516.9s

+ 22 176.5] − 62 181.4))−1/2
39 587.7 ArcTan[18 516.9s + 22 176.5] − 62 181.4

s� . .  . 
K.. l� b� l+ h and h� l s> . .  . 

s� . .  19.2377 ArcTan[63.4077s + 19.408] − 28.6456

O. b/� h and l+ h� b� l and h� l < s�  0.833 ArcTan[−10.333s − 2.965] + 2.315
(0.833 ArcTan[−10.333s − 2.965] + 2.315)
+(0.833 ArcTan[−10.333s − 2.965] + 2.315)−2

P. l� b� l+ h and h� l s> .  
s� . 3932.9 ArcTan[32 245.0s + 17 556.2] − 6176.6 2(3932.9 ArcTan[32 245.0s + 17 556.2] − 6176.6)
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Appendix C. Set of possible sub-cases for any given system configuration

The set of sub-cases to be considered for any given configuration is given in Table A3.
Table A. Set of possible sub-cases for any given system configuration: (a) configuration ; (b) configuration ; (c) configuration ; and (d) configuration .

Config.  Sub-config. Sub-config. Boundary Sub-case Config.  Sub-config. Sub-config. Boundary Sub-case

h�w w� h l� h b�w A w� h� l l+w� h l� w b�w A
w� b� l B w� b� l B
l� b� h C l� b� w C
h� b�w+ h K w� b� h E
w+ h� b� l+ h M h� b� l+w M
l+ h� b� l+w O l+w� b� l+ h N
l+w� b� l+w+ h P l+ h� b� l+w+ h P

h� l�w+ h b�w A w� l� h b�w A
w� b� h B w� b� w B
2h� b� l J w� b� l D
l� b�w+ h K l� b� h E
w+ h� b� l+ h M h� b� l+w M
l+ h� b� l+w O l+w� b� l+ h N
l+w� b� l+w+ h P l+ h� b� l+w+ h P

w+ h� l b�w A h� l b�w A
w� b� h B w� b� w B
h� b�w+ h J w� b� h D
w+ h� b� l L h� b� l L
l� b� l+ h M l� b� l+w M
l+ h� b� l+w O l+w� b� l+ h N
l+w� b� l+w+ h P l+ h� b� l+w+ h P

w� h h� l�w+ h b� h A l+w� h l� w b�w A
h� b�w I w� b� l B
w� b� l J l� b� w C
l� b�w+ h K w� b� l+w E
w+ h� b� l+ h M l+w� b� h F
l+ h� b� l+w O h� b� l+ h N
l+w� b� l+w+ h P l+ h� b� l+w+ h P

w+ h� l b� h A w� l b�w A
h� b�w I w� b� w B
w� b�w+ h J w� b� l D
w+ h� b� l L l� b� l+w E
l� b� l+ h M l+w� b� h F
l+ h� b� l+w O h� b� l+ h N
+w� b� l+w+ h P l+ h� b� l+w+ h P

(a) (b)

Config.  Sub-config Boundary Sub-case Config.  Sub-config Boundary Sub-case

l� h� l+w l� w b�w A l+w� h l� w b�w A
w� b� l B w� b� l B
l� b� w C l� b� w C
w� b� l+w E w� b� l+w E
l+w� b� l F l+w� b� l F
l� b� h G l� b� (l+w) G
h� b� l+w+ h P (l+w)� b� h H

l� w b�w A l� w b�w A
w� b� w B w� b� w B
w� b� l D w� b� l D
l� b� l+w E l� b� l+w E
l+w� b� l F l+w� b� l F
l� b� h G l� b� (l+w) G
h� b� l+w+ h P (l+w)� b� h H

(c) (d)
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