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Abstract

Caspofungin (CAS) which is used as salvage therapy in patients with invasive pulmonary

aspergillosis (IPA) inhibits the 1,3-β-D-glucan synthesis in Aspergillus fumigatus. Inhibiting

1,3-β-D-glucan synthesis induces a stress response and in an invertebrate model it was

demonstrated that inhibiting this response with geldamycin enhanced the therapeutic effi-

cacy of CAS. Since geldamycin itself is toxic to mammalians, the therapeutic efficacy of

combining geldamycin with CAS was not studied in rodent models. Therefore in this study

we investigated if the geldamycin derivate 17-(allylamino)-17-demethoxygeldanamycin (17-

AAG) was able to enhance the therapeutic efficacy of CAS in vitro and in our IPA model in

transiently neutropenic rats. In vitro we confirmed the earlier demonstrated synergy between

17-AAG and CAS in ten A. fumigatus isolates. In vivo we treated A. fumigatus infected neu-

tropenic rats with a sub-optimal dose of 0.75 mg/kg/day CAS and 1 mg/kg/day 17-AAG for

ten days. Survival was monitored for 21 days after fungal inoculation. It appeared that the

addition 17-AAG delayed death but did not improve overall survival of rats with IPA. Increas-

ing the doses of 17-AAG was not possible due to hepatic toxicity. This study underlines the

need to develop less toxic and more fungal specific geldamycin derivatives and the need to

test such drugs not only in invertebrate models but also in mammalian models.

Introduction

Invasive pulmonary aspergillosis (IPA), mainly caused by the fungus Aspergillus fumigatus, is a

difficult to treat, life-threatening fungal infection observed in severely immunocompromised

patients. Mortality rates up to 50%-90% are observed in these patients [1]. The standard
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therapy for IPA remains voriconazole, an inhibitor of the ergosterol synthesis. Unfortunately,

voriconazole resistance is emerging necessitating the search for novel therapeutic options [1,

2].

When patients do not respond to voriconazole, caspofungin (CAS) is used as salvage ther-

apy [3, 4]. CAS inhibits the 1,3-β-D-glucan synthesis, an essential component of the fungal cell

wall, which provides osmotic stability to fungi and is essential in fungal growth and division

[5, 6]. Inhibition of 1,3-β-D-glucan synthesis by the echinocandins causes loss of cell wall

integrity and induces an acute stress response [7], in which the chaperone molecule heat shock

protein 90 (Hsp90) plays a key role [8–10]. Hsp90 belongs to a group of evolutionarily con-

served proteins which can be found in a large group or organisms including humans. In all

organisms, including fungi and human, they act as sensors and guardians of cell integrity by

preventing mis-folding or aggregation of proteins and triggering adaptive responses under

stress conditions [11]. Hsp90 is essential for the survival of eukaryotes, and increased expres-

sion of Hsp90 above the level observed in normal tissues is a common feature of human can-

cers [12]. Therefore Hsp90 is explored as a target for anticancer medication [12]. As such, 17

different Hsp90 inhibitors have entered clinical trials to determine the therapeutic activity

against various cancers [13]. Most of these are synthetic inhibitors based on the natural prod-

uct geldanamycin [13]. The most studied derivatives are 17-dimethyl aminoethylamino-

17-demethoxygeldanamycin (17-DMAG) and 17-allylamino-17-demethoxygeldanamycin

(17-AAG), which are considerably less toxic than geldanamycin itself. Since Hsp90 plays such

an important role in the A. fumigatus stress response, it was already demonstrated that adding

17-DMAG or 17-AAG to CAS in in vitro susceptibility assays, induces synergy against A. fumi-
gatus [14, 15]. In vivo, the therapeutic efficacy of combining geldamycin or one of its deriva-

tives and CAS has hardly been studied. Only one study within the invertebrate Galleria
mellonella has been published [14]. Detailed data in mammalian models are currently lacking.

Within the G. mellonella model, combination of CAS and geldanamycin resulted in signifi-

cantly improved survival of larvae infected with a lethal dose of A. fumigatus compared to

mono-therapy treated larvae [14]. However, the invertebrate model does not represent the

complexity of the mammalian body. We therefore wondered if the same effect would be

obtained in a mammalian host. In the current study, we investigated if combining CAS with

geldamycin derivative 17-AAG would enhance the therapeutic efficacy of CAS in our well

known animal model of unilateral invasive pulmonary aspergillosis in neutropenic rats [16–

23].

Materials and methods

Aspergillus fumigatus strains

The A. fumigatus strain EMC01was used in all experiments. This strain is originally isolated

from a hematological patient with IPA. To maintain its virulence it was regularly passed

through neutropenic rats and maintained on Sabouraud maltose agar slants. To determine the

in vitro interaction between CAS and 17-AAG, another eight clinical A. fumigatus isolates

from different patients and the A. fumigatus reference strain ATCC 204305 were included.

The clinical strains were isolated from the lower airways of patients with IPA seen admitted to

the Erasmus University Medical Center, Rotterdam, the Netherlands in 2005. The strains were

maintained on Sabouraud maltose agar.

In vitro susceptibility test

The combination of 17-AAG (LC Laboratories Inc, Woburn MA, USA) and CAS (Cancidas;

Merck & Company, Rahway NJ, USA) was investigated for synergism against strain EMC01

17-AAG and caspofungin in rats with IPA

PLOS ONE | https://doi.org/10.1371/journal.pone.0180961 July 24, 2017 2 / 13

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0180961


and strain ATCC 204305, as well as the other eight clinical A. fumigatus isolates. Experiments

were performed in duplicate using the broth microdilution checkerboard titration technique

based on the Clinical and Laboratory Standards Institute (CLSI) methods [24]. The final con-

centration of the antifungal agents ranged from 4–128 μg/ml for 17-AAG, and from 0.025–

128 μg/ml for CAS. MIC endpoints after 48h of incubation at 37˚C were determined visually.

Also another assessment was used in which the substrate 2,3-bis(2-methoxy-4-nitro-5-[(sul-

phenylamino)carbonyl]-2H-tretrazolium-hydroxide (XTT) was added as described previously

[25]. In this assay, the inhibitory concentration endpoints were defined as the first concentra-

tion at which spectrophotometrically 80% or more reduction of mitochondrial dehydrogenase

activity occurred. The fractional inhibitory concentration indexes (FICI) were calculated using

method one according to Bonapace et al. [26]. In this method, the FIC index is calculated

using the concentrations in the first non-turbid (clear) well found in each row and column

along the turbidity/non-turbidity interface with the formula FICI = [(MICA in combination)/

MICA] + [MICB in combination/MICB] and then averaged. For each isolate, FICIs were deter-

mined in triplicate. Drug interactions were classified as synergistic (FICI� 0.5), indifferent

(0.5< FICI > 4), or antagonistic (FICI� 4)[24, 27].

Infection model

The neutropenic rat model of IPA used was described previously [16, 18, 19, 21]. In brief, tran-

sient neutropenia in female pathogen albino RP rats (18–25 weeks old, 185–250 grams) was

induced by intraperitoneal administration of cyclophosphamide (Endoxan, Baxter, Utrecht,

The Netherlands) in doses of 75 mg/kg during five days before fungal inoculation, followed by

administration of 60 mg/kg one day before inoculation and 50 mg/kg and 40 mg/kg on days

three and seven after inoculation, respectively. A left-sided pulmonary infection was estab-

lished by intubation of the left main bronchus, while the rats were under general anaesthesia.

A cannula was passed through the tube and the left lung was inoculated with 20 μl phosphate

buffered saline (PBS) containing 6 ×104 A. fumigatus conidia of strain EMC01. To prevent bac-

terial superinfections, rats were given ciprofloxacin (500 mg/L) in their drinking water and tei-

coplanin intramuscularly in doses 30 mg/kg on day five and day one before fungal inoculation,

and 15 mg/kg on days one, three, six, eight and ten after inoculation. During the experiment,

the researchers monitored the animals once a day, except for severe infection period, from day

three to day seven, than the animals were at least checked every eight hours during the whole

experiment and if needed several times a day. Rats were monitored according to a discomfort

scale, that is a well-being score in which parameters are scored by appearance (fur coat stand-

ing up, extremely pale, temperature reduction, red-rimmed eyes, dirty nose), behaviour

(wheezing, gasping, instability), reaction to stimuli and body weight. The extent of the score-

scale consists of scoring the parameters; no discomfort (score one), minor (poor (score three);

serious (score four) and severe (score five). During the severe infection period the animals

have difficulty breathing and may die of the infection. In order to limit the suffering, in case of

high discomfort of a seriously ill animal (score four-five), the rats were euthanized by CO2. To

calculate the average discomfort per group of rats at day three, day ten and day 21, the average

discomfort per group was taken. For calculation purposes, rats already died previously during

the experiment received score six. If at a certain time all rats had died, the average over that

time point was six. Due to the extensive monitoring, the duration of severe distress is usually

less than eight hours, and always less than one day.

The experimental protocols used in this study adhered to the rules laid down in the Dutch

Animal Experimentation Act and the EU Animal Directive 2010/63/EU. The Institutional
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Animal Care and Use Committee of the Erasmus University Medical Centre Rotterdam

approved the present protocols (permit number: EMC 2692).

Therapeutic efficacy of antifungal treatment

For the treatment of rats with IPA CAS was diluted in saline and 17-AAG was suspended in

20% cremophor1EL (Sigma-Aldrich Co. LLC, St. Louis MO, USA). CAS at a sub-optimal

dose of 0.75 mg/kg and 17-AAG at 1 mg/kg were administered intraperitoneally at 16h after

fungal inoculation and from then once daily for ten days. A sub-optimal dosage was chosen to

investigate the potential increase in therapeutic efficacy following the addition of 17-AAG. In

other groups of animals CAS and 17-AAG were given as monotherapy. Vehicle treated rats

served as controls. All groups consisted of 13 rats.

The survival of rats was monitored for 21 days after fungal inoculation. Venous blood was

obtained from the tail vein to assess the fungal load in blood on days three and ten by measur-

ing serum galactomannan (GM-index), using a commercially available system according to

the manufacturer’s instructions (Platelia Aspergillus EIA Platelia Aspergillus system of BioRad,

Marnes-la-Coquette, France). In addition, from rats with severe disease progression and

euthanized, lungs were obtained, fixed in buffered formalin and embedded in paraffin. They

were processed for histology using standard techniques. A single cross section of the lung was

taken and slides were stained with Grocott to visualize the fungal burden at the site of infec-

tion. To describe the burden, the overall fungal mass was described and the density of the fun-

gal mass was assessed at 40x and 200x magnification.

Toxic side effects of antifungal treatment

To assess renal and hepatic function, serum creatinine (CREAT), blood urea nitrogen (BUN),

alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) (median ± SD) lev-

els were determined on day three and day ten in animals given mono- or combination therapy.

The upper limits of normal were 7.6 mmol/L, 60.2 μmol/L, 86.4U/L and 118.5 U/L for BUN,

CREAT, ALAT and ASAT, respectively. They were determined in previous studies [16, 21].

Mild toxicity was defined as parameters levels exceeding the boundary of three times the upper

limit of normal, which were 22.8 mmol/L, 180.6 μmol/L, 259.1U/L and 355.5 U/L for BUN,

CREAT, ALAT and ASAT, respectively. Severe toxicity was defined as parameter levels

exceeding the boundary of five times the upper limit of normal, which were 38.0 mmol/L,

301.0 μmol/L, 431.9 U/L and 592.5 U/L for BUN, CREAT, ALAT and ASAT, respectively [16,

21].

Statistical analysis

Kaplan-Meier survival curves were generated, and the differences in rat survival rates were

assessed by the log rank test (GraphPad Prism 5.0). A value of p<0.05 was considered statisti-

cally significant. The quantitative parameters of fungal infection were assessed by using the

nonparametric Mann-Whitney U-test (GraphPad Prism 5.0).

Results

In vitro susceptibility of A. fumigatus strains

As shown in Table 1, all tested A. fumigatus strains were inhibited in growth by 128 μg/ml of

CAS. No inhibitory effect was found for 17-AAG (MICs > 128 μg/ml), except for strain Af42,

which had a MIC of 128 μg/ml. A synergistic interaction (FICI� 0.5) was observed when

17-AAG was combined with CAS, for the EMC01 strain, the ATCC strain and four clinical

17-AAG and caspofungin in rats with IPA
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isolates (Af45, Af46, Af47 and Af48). An indifferent effect was observed for the remaining clin-

ical isolates, Af38, Af41, Af42 and Af44.

In vivo therapeutic effect of 17-AAG in combination with CAS on survival

of rats with IPA

As shown in Fig 1, all vehicle-treated control rats died between day three and day eight after

fungal inoculation. Treatment with CAS alone resulted in a rat survival rate of 31%, as

expected. Treatment with 17-AAG alone did not improve rat survival compared to the vehicle

treated rats (p = 0.35). Treatment with the combination of 17-AAG and CAS did not result in

a significantly increased rat survival compared to rat survival obtained with CAS monotherapy

(p = 0.52). However, a delay was observed in the median time to death in rats treated with the

combination of 17-AAG and CAS (Fig 1).

To evaluate if a higher dose of 17-AAG in combination with CAS would enhanced the ther-

apeutic effect, increased dosages of 17-AAG at 5 mg/kg/day or 20 mg/kg/day in combination

with CAS were administered. Unfortunately, these higher 17-AAG dosages were not tolerated

by the rats and resulted in renal and hepatic toxicities (data not shown).

In vivo toxic side effects of the different treatment schedules

In order to investigate whether 17-AAG administration was well tolerated by the rats, we

investigated the renal and hepatic functions of the treated animals by determination of BUN,

CREAT, ALAT and ASAT levels in serum on day three and day ten of administration. As

Table 1. FICI of 17-AAG and CAS against A. fumigatus, reference strains and clinical isolates.

Strain Agent MIC (ug/ml) of each agent alone FICI* Outcome

ATCC 17-AAG >128 0.4 synergistic

Caspofungin 128

EMC01 17-AAG >128 0.5 synergistic

Caspofungin 128

Af38 17-AAG >128 1 indifferent

Caspofungin 128

Af41 17-AAG >128 1 indifferent

Caspofungin 128

Af42 17-AAG 128 2 indifferent

Caspofungin 128

Af44 17-AAG >128 0.9 indifferent

Caspofungin 128

Af45 17-AAG >128 0.3 synergistic

Caspofungin 128

Af46 17-AAG >128 0.3 synergistic

Caspofungin 128

Af47 17-AAG >128 0.4 indifferent

Caspofungin 128

Af48 17-AAG >128 0.4 synergistic

Caspofungin 128

*FICI is calculated using the concentrations in the first non-turbid (clear) well found in each row and column along the turbidity/non-turbidity interface with

the formula FICI = [(MICA in combination)/MICA] + [MICB in combination/MICB] and then averaged. FICI calculated before and after adding XTT was

identical.

https://doi.org/10.1371/journal.pone.0180961.t001
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Fig 1. Survival of neutropenic rats with invasive pulmonary aspergillosis during treatment with 17-AAG and/or

Caspofungin. Treatment with 17-AAG 1 mg/kg or Caspofungin 0.75 mg/kg alone or in combination was started 16h

after fungal inoculation at day 0 and was administered intraperitoneally to rats (n = 13 per treatment group) once daily

for ten days. The survival of rats was monitored for 21 days after fungal inoculation.

https://doi.org/10.1371/journal.pone.0180961.g001

Table 2. Renal and hepatic functions of neutropenic rats with IPA.

Antifungal

treatment

BUN (mmol/L) CREAT (μmol/L) ALAT (U/L) ASAT (U/L) Average

discomfort**

day 3 day 10 day 3 day 10 day 3 day 10 day 3 day 10 Day 3 Day 10 Day 21

Vehicle 8.9 (±
3.1)

ND 89.6 (±
42.3)

ND 48.0 (±
14.8)

ND 95.2 (± 20.5) ND 3.92 6 6

Caspofungin 5.0

(±1.2)

8.1

(±0.4)

55.5

(±24.0)

58 (±6.1) 45.5 (±5.2) 55.0 (±4.9) 122.5

(±28.2)

122.5 (±9.7) 2.58 4.50 5.00

17-AAG 8.8 (±
2.7)

ND 99.4 (±
50.4)

ND 33.4 (± 6.8) ND 75.8 (± 26.2) ND 3.15 6 6

17-AAG

+ Caspofungin

8.4 (±
3.9)

8.6

(±3.9)

96.6 (±
47.1)

50.6

(±47.7)

44.6 (±
27.1)

(48.4

±27.1)

98.6 (±
207.6)

168.6

(±207.7)

2.31 3.85 4.77

Upper limit of

normal *
7.6 60.2 86.4 118.5 NA

Mild toxicity* 22.8 180.6 259.1 355.5 NA

Severe toxicity* 38.0 301.0 431.9 592.5 NA

ND, the renal and hepatic functions could not be determined as all rats were severely ill and had to be euthanized.

NA, not applicable

*The upper limit of normal and the mild toxicity and severe toxicity boundaries were determined in previous studies [16, 21] in the same rat strain.

** The discomfort scale ranges from 1–5; rats had no discomfort (score 1), mild (score 2), poor (score 3), serious (score 4) and severe (score 5). For

calculation purposes, all animals who died received the number 6. So if the average discomfort states 6, this means that all animals are death at that time

point.

https://doi.org/10.1371/journal.pone.0180961.t002
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shown in Table 2, neither CAS 0.75 mg/kg monotherapy nor 17-AAG 1 mg/kg monotherapy

nor the combination therapy resulted in altered high levels as these parameters were near the

upper limit of normal.

In vivo therapeutic effect of 17-AAG in combination with CAS on fungal

burden in blood of rats with IPA

A mean GM-index of 5.96 (range 5.8–6.3) was observed in the vehicle control rats on day

three. The CAS monotherapy group had a mean GM-index of 6.11 (range 2.83–11.93), indicat-

ing that CAS at this dose did not reduce fungal burdens. In contrast on day three of therapy a

2–3 fold lower GM-index (mean 1.82, range 1.09–2.56) was observed in 17-AAG treated rats

(Mann-Whitney, p<0.0286) compared to the vehicle treated rats (Fig 2). On day ten GM-

index increased in the 17-AAG+CAS treated rats surviving to day ten (mean 4.66, range 1.68–

6.75). However, the galactomannan levels remained insignificantly below those observed in

the CAS monotherapy rats surviving day ten (mean 6.36, range 1.91–12.08)(Fig 2).

Histopathology of the lung tissue (Fig 3; Grocott stain 4x-20x) shows that there was a small

difference in size of the fungal foci between a severely ill vehicle treated rat euthanized on day

four (Fig 3A) and a CAS treated rat on day four (Fig 3B): the focus of the CAS treated rat was

smaller. No visual difference in fungal burden was observed between the vehicle treated rat

(Fig 3A) and a 17-AAG treated rat euthanized on day three (Fig 3C). However, visual compari-

son of a severely ill vehicle treated rat euthanized on day five (Fig 3D and 3H), a severely ill

CAS treated rat euthanized on day eight (Fig 3E and 3I), a severely ill 17-AAG treated rat

euthanized on day six (Fig 3F and 3J) and a severely ill CAS and 17-AAG treated rat eutha-

nized on day ten (Fig 3G and 3K) yielded a difference in fungal load in lung tissue. In all rats,

the fungal hyphae were already disseminated resulting in a lung infection. However, in the

vehicle, CAS mono- and the 17-AAG+CAS treated rat the fungal load was much denser com-

pared to the 17-AAG monotreated rat. On top of that, when the lungs of the surviving rats

were compared on day 21, it was noted that only in the CAS mono-therapy small fungal foci

remained. In the 17-AAG+CAS treated rats, no fungal foci were found.

Discussion

To determine the efficacy of a novel therapeutic regimen, it is important to tests it’s efficacy in

models in which the features observed in humans are reproduced [28]. Our rat model, charac-

terized by prolonged severe granulocytopenia, inoculation through the respiratory route, fun-

gal broncho- and angio-invasion and dissemination of the fungus from the lung to other

organs, closely mimics the pathology observed in human IPA [29]. Within this model, it was

possible to study the therapeutic efficacies of voriconazole, CAS and anidulafungin in human

pharmacokinetic equivalent dosages, further improving the predictive value of this model [16,

17, 21]. We therefore used this rat model to determine if the therapeutic efficacy of the combi-

nation geldamycin and CAS observed in the invertebrate G. mellonella model [14] could be

confirmed in a model mimicking the human disease more closely [16–23]. Although Cowen

et al. demonstrated therapeutic efficacy when CAS was combined with Hsp90 inhibitor gelda-

mycin, in their G. mellonella larvae infected with a lethal dose of A. fumiatus, we could not con-

firm this result in our unilateral IPA model in rats. The difference in outcome could have been

the result of the difference of host, but also to the difference in the drugs used in combination.

Due to the known hepatoxicity of geldanamycin for mammals [30] we used its 17-AAG deriva-

tive, which differed from the experimental set-up of Cowen et al in the G. mellonella model

[14]. Furthermore, the dosages that were used by Cowen in her larval model, greatly exceed

the dosages which can be used in mammalian models without toxic side effects. In the larval

17-AAG and caspofungin in rats with IPA
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model dosage as high as 50 mg/kg geldanamycin were tolerated. In our study in rats, the maxi-

mum tolerated dose was 1 mg/kg 17-AAG, whilst a five-fold higher dose of 17-AAG resulted

in severe toxicity, limiting further studies using higher dosages of 17-AAG. In our study, we

did not investigate doses in the range between 1–5 mg/kg, which might increase rat survival

without toxic side effects.

The toxic side effects of 17-AAG as found in our rat model, were also reported by other

investigators in mammalian models e.g. mice and dogs; also in these animal models the hepa-

toxicity and galbladder toxicity as well as renal failure were the dose limiting factors [31]. In

addition to hepatic toxicity, the effect of 17-AAG on the immune system of the rat probably

might also play a role as demonstrated by other investigators. Geldanamycin was shown to be

able to interfere with the maturation of dendritic cells, which resulted in lowered proliferation

of T-cells and lower pro-inflammatory cytokine production [32, 33]. Pro-inflammatory cyto-

kines are crucial in the protective immunity against A. fumigatus. Since our rats already had an

impaired host defence, weakening the immune system even further with a geldanamycin

derivative might have contributed in the relatively low maximum tolerated dose found in our

neutropenic rat model, compared to the published maximum tolerated doses in other mam-

mals with normal functioning immune systems. Although the effect of geldanamycin deriva-

tives on the immune system of G. mellonella larvae has been not studied, it is possible that

toxic side effects will be less in view of their relatively simple immune system consisting of

hemocytes and antimicrobial peptides [34], thereby allowing higher concentrations of gelda-

namycin and its derivatives to be used without any effect on the immune system.

Although the treatment with 17-AAG at 1 mg/kg did not enhance the survival of rats with

IPA, we investigated whether this treatment resulted in a decrease in fungal growth in blood

or lungs of IPA rats. The fungal load was assessed in terms of concentrations of GM in serum

or histopathology of the lung. The detection of GM in serum mainly reflects the presence of an

Fig 2. GM-index in blood of neutropenic rats with invasive pulmonary aspergillosis during treatment with 17-AAG and/

or Caspofungin. Black diamond (♦): vehicle treatment, black square (■): monotherapy 17-AAG, cross (x): monotherapy

Caspofungin, open square (□): combination therapy of 17-AAG and Caspofungin. Data were generated by determining the

Galactomannan (GM)-index with the Platelia assay for three to four rats per group. Errors bars represent SEM. According to the

manufacturer’s manual, GM-index of >0.5 is considered positive for A. fumigatus.

https://doi.org/10.1371/journal.pone.0180961.g002
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Fig 3. Lung tissue grocott staining. Panels A, B, C, D, E, F, G, L, M (40x), H, I, J and K (200x) show Aspergillus fumigatus

infected lung tissues. Panels A, D and H were treated with the vehicle. Panels B, E, I and L were treated with CAS

monotherapy. Panels C, F and J were treated with 17-AAG monotherapy. Panels G, K and M were treated with CAS and

17-AAG combination therapy. A: A. fumigatus focus after vehicle treatment at day four (40x magnification). B: A. fumigatus

focus after CAS treatment at day four (40x magnification). C: A. fumigatus focus after 17-AAG treatment at day three (40x

magnification). D: A. fumigatus focus after vehicle treatment at day five (40x magnification). E: A. fumigatus focus after CAS

treatment at day eight (40x magnification). F: A. fumigatus focus after 17-AAG treatment at day six (40x magnification). G: A.

fumigatus focus after CAS and 17-AAG treatment at day ten (40x magnification). H: A. fumigatus focus after vehicle

treatment at day five (200x magnification). I: A. fumigatus focus after CAS treatment at day eight (200x magnification). J: A.

fumigatus focus after 17-AAG treatment at day six (200x magnification). K: A. fumigatus focus after CAS and 17-AAG

treatment at day ten (200x magnification). L: A. fumigatus focus after CAS treatment at day 21 (200x magnification). M: A.

fumigatus focus after CAS and 17-AAG treatment at day 21 (200x magnification). In the lung tissue of the infected rats,

normal morphology of alveoli is lost. Fungal hyphae of A. fumigatus are clearly seen and coloured black by the Grocott

staining. On day three (17-AAG treated rats) and day four (vehicle treated rats) similar fungal foci are seen (A and C). The

fungal focus in CAS treated rats seems smaller. On days five, six, eight and ten (D, E, F, G, H, I, J and K) the fungus has been
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active infection [16]. We observed a similar GM index in the CAS treated rats compared to the

vehicle treated rats during infection on day three. However, the fungal focus in the lung of

CAS treated rats seemed smaller than the fungal focus of vehicle treated rats on day four. One

explanation could be that the high GM-index in the rats receiving CAS is due to the detach-

ment of the galactomannan chains from the β-glucan polymers in the presence of CAS as

found by some studies [35]. These detached polymers are released in the blood and thereby

resulting in a high GM-index, even when the fungal focus is still small. In contrast, monother-

apy 17-AAG resulted in a lower GM-index compared to the vehicle treatment (p = 0.0286) on

day three. Within the tissue itself, no obvious difference in fungal burden was observed histo-

logically on day three when 17-AAG treated rats were compared to vehicle treated rats at day

four. Only at days five, six, eight and ten a difference was noted. In 17-AAG treated rats (day

six), the fungal foci were less dense compared to vehicle (day five), CAS (day eight) or 17-AAG

and CAS (day ten) treated rats. This indicates, that the observed differences in GM index in

the serum could be due to the fact it was not properly released from the cell wall in the

17-AAG treated rats. 17-AAG inhibits HSP90 and low expression of HSP90 results in a low

level of calcineurin in fungal cells [36–38]. The importance of calcineurin in the release of GM

by A. fumigatus strains was demonstrated by Mennink-Kersten et al. She showed in vitro, that

an A. fumigatus strain lacking calcineurin was unable to release GM due to cell wall abnormal-

ity, instead GM was retained within the cell wall at concentrations ten- fold higher compared

to the wild-type strain [39]. Looking at the survival of CAS-, 17-AAG, CAS and 17-AAG and

vehicle treated rats it seemed that the GM index did not predict the severity of the disease in

the lung, histopathology was more informative. Unfortunately, the lungs used for the histology

comparisons were obtained from animals who had to be euthanized due to severe distress of

the fungal infection. This might not necessarily represent the burden in the lung of all animals

within that group. Furthermore this also resulted in a day difference for each pair of compari-

son, which means that there is a day difference in the evolution of the disease. It also limited

the number of rats to be used to only one rat per group per time point. The only point in

which we could make a clear comparison between the lungs of the different treatment groups

was on day 21 in which the lungs of the surviving rats treated either with CAS monotherapy or

17-AAG+CAS were compared. At that time point it apperared that only in the CAS monother-

apy treated rats, small fungal foci were still present. They were absent in the 17-AAG+CAS

treated rats, implicating that combining a Hsp90 inhibitor with CAS might still be a feasible

approach to clear the infection in a shorter time frame. To further investigate the possibilities

of targeting Hsp90 in A. fumigatus infection as an antifungal strategy, efforts need to be taken

to develop drugs which target the fungal Hsp90 more specifically in order to reduce potential

toxic side effects for the mammalian host. In the past, such an inhibitor was already designed

and tested. This inhibitor was the human recombinant antibody Mycograb directed against

Candida Hsp90. This antibody was specifically designed to work in combination with antifun-

gal agents and entered a multinational phase II clinical trial [40]. Despite these promising

results, Mycograb was never marketed, due to batch-to-batch inconsistencies in the composi-

tion of the product leading to safety concerns [40].

Although in the present study a beneficial effect in terms of 21-day increased survival of

neutropenic rats with IPA could not be demonstrated by combining the Hsp90 inhibitor

17-AAG with CAS, the successful combinations of geldanamycin and CAS in invertebrate

disseminated throughout the lung. However, in the 17AAG treated rat at day six (F, J) the fungal load is seems less dense

compared to the vehicle rat at day five (D, H) or the CAS treated rat at day eight (E, I) or the CAS and 17-AAG treated rat at

day ten (G, K). At day 21, small fungal foci were seen in CAS treated rats (L) but not in CAS and 17-AAG treated rats (M).

https://doi.org/10.1371/journal.pone.0180961.g003
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hosts and the successful combinations of mycograb with liposomal amphotericin B or CAS in

murine models, still indicate that combining Hsp90 inhibitors with antifungal agents might

open new ways to enhance antifungal efficacy. Efforts are needed to design specific inhibitors

of fungal Hsp90 resulting in reduction of toxic side effects. In addition, next to invertebrate

models, mammalian models need to be included to assess the clinical potency of these drugs.
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