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Abstract. In a recent paper we have defined an analytic tableau calculus PL16 for a

functionally complete extension of Shramko and Wansing’s logic based on the trilattice

SIXTEEN3. This calculus makes it possible to define syntactic entailment relations that

capture central semantic relations of the logic—such as the relations |=t, |=f , and |=i that

each correspond to a lattice order in SIXTEEN3; and |=, the intersection of |=t and |=f .

It turns out that our method of characterising these semantic relations—as intersections

of auxiliary relations that can be captured with the help of a single calculus—lends itself

well to proving interpolation. All entailment relations just mentioned have the interpolation

property, not only when they are defined with respect to a functionally complete language,

but also in a range of cases where less expressive languages are considered. For example, we

will show that |=, when restricted to Ltf , the language originally considered by Shramko

and Wansing, enjoys interpolation. This answers a question that was recently posed by

M. Takano.
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Introduction

In Muskens and Wintein [4] we have presented an analytic tableau calcu-
lus PL16 for a functionally complete extension of the logic considered in
Shramko and Wansing [8]. Both Shramko and Wansing’s original logic and
our extension are based on the trilattice SIXTEEN 3 and PL16 can capture
three semantic entailment relations, |=t, |=f , and |=i, that each correspond
to one of SIXTEEN 3’s three lattice orderings.1The calculus has a relatively
simple formulation—only one rule scheme is needed for each of the three
negations present in the logic, while each of the three conjunctions and each
of the three disjunctions comes with two rule schemes.

In this paper we build upon [4] and study interpolation in Shramko and
Wansing’s trilattice logics. Using what is essentially Maehara’s method we
will prove a variant of his lemma for PL16. Interpolation theorems for |=t,
|=f , |=i, and the intersection |= of |=t and |=f readily follow if these notions

1 The relations |=t and |=f were already present in Shramko and Wansing [8], |=i is
an obvious analogon.
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are interpreted as relations between sentences of the functionally complete
language Ltfi . We will also consider restrictions of these relations to those
sublanguages of Ltfi that have the property that if one of the conjunctions or
disjunctions of the language is present then so is its dual. All these restric-
tions enjoy interpolation. In particular, |= is shown to have the (perfect)
interpolation property on Shramko and Wansing’s original language Ltf ,
which answers a question by Takano [11].

The rest of the paper will be set up as follows. We will first give concise
definitions of SIXTEEN 3, of the functionally complete language Ltfi and
its semantics, and of the tableau system PL16. Once the stage is set in this
way we will state and prove our interpolation results—first for logics based
on Ltfi and then for the restrictions. A short conclusion will end the paper.

1. The Trilattice SIXTEEN 3

The introduction of SIXTEEN 3 in Shramko and Wansing [8] was motivated
by a wish to generalise the well-known four-valued Belnap–Dunn logic (Bel-
nap [1,2], Dunn [3]). The latter is based on the values T = {1} (true and
not false), F = {0} (false and not true), N = ∅ (neither true nor false),
and B = {0, 1} (both true and false) and can be viewed as a generalisation
of classical logic—a move from {0, 1} with its usual ordering to P({0, 1})
with two lattice orders. Shramko and Wansing in fact repeat this move,
going from the set of truth-values P({0, 1}) = {T,F,N,B} to its power set
P(P({0, 1})), now with three lattices. While the four-valued logic is meant
to model the reasoning of a computer that is fed potentially incomplete or
conflicting information, the 16-valued logic that results models networks of
such computers (for more complete information, see the papers cited above,
Wansing [12], or Shramko and Wansing [9], for example).

While the logic is thus based on P({T,F,N,B}) and can have a direct
formulation on the basis of this set of truth-values, it is in fact slightly more
convenient to follow Odintsov [5], who represents subsets of {T,F,N,B}
with the help of matrices of the following form.

∣
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∣
∣
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Here each element of the matrix is a 0 or a 1 and signals the presence
or the absence of an element of {T,F,N,B}. Rivieccio [7] linearises this
notation, obtaining the more manageable 〈b, f, t, n〉. We shall follow him in
this and define 16 as {0, 1}4. Any A ⊆ {T,F,N,B} will be represented by
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a quadruple 〈SB, SF, ST, SN〉 ∈ 16 such that SX = 1 iff X ∈ A, for X ∈
{T,F,N,B}. With this representation in place, the three lattice orderings
of the trilattice can be defined as follows (we let ≤f be the inverse of the
relation originally defined in [8], so that it becomes a nonfalsity ordering,
not a falsity ordering, see also [5,6]).

Definition 1. Let ≤ be the usual order on {0, 1}. Define the orderings
≤t, ≤f , and ≤i on 16 by letting, for each S = 〈SB, SF, ST, SN〉 and S′ =
〈S′

B, S′
F, S′

T, S′
N〉 ∈ 16:

S ≤t S′ iff SB ≤ S′
B, S′

F ≤ SF, ST ≤ S′
T, S′

N ≤ SN

S ≤f S′ iff S′
B ≤ SB, S′

F ≤ SF, ST ≤ S′
T, SN ≤ S′

N

S ≤i S′ iff SB ≤ S′
B, SF ≤ S′

F, ST ≤ S′
T, SN ≤ S′

N

Figure 1 depicts the orderings ≤t and ≤f on 16, while Figure 2 shows ≤i

and the intersection ≤t ∩ ≤f . The node names employed in these pictures
belong to the object language defined in Table 1 below (with tb denoting
〈1, 0, 1, 0〉, for example).

While the definition above provides lattice orderings, the next definition
gives the lattices via their meet and join operations. The official definition
of SIXTEEN 3 is based upon these operations.

Definition 2. Let ∨ and ∧ be the usual join and meet on {0, 1}. The
operations 
t, �t, 
f , �f , 
i, and �i on 16 are defined by letting, for each
S = 〈SB, SF, ST, SN〉 and S′ = 〈S′

B, S′
F, S′

T, S′
N〉 ∈ 16:

S 
t S′ = 〈SB ∧ S′
B, SF ∨ S′

F, ST ∧ S′
T, SN ∨ S′

N〉,
S �t S′ = 〈SB ∨ S′

B, SF ∧ S′
F, ST ∨ S′

T, SN ∧ S′
N〉,

S 
f S′ = 〈SB ∨ S′
B, SF ∨ S′

F, ST ∧ S′
T, SN ∧ S′

N〉,
S �f S′ = 〈SB ∧ S′

B, SF ∧ S′
F, ST ∨ S′

T, SN ∨ S′
N〉,

S 
i S′ = 〈SB ∧ S′
B, SF ∧ S′

F, ST ∧ S′
T, SN ∧ S′

N〉,
S �i S′ = 〈SB ∨ S′

B, SF ∨ S′
F, ST ∨ S′

T, SN ∨ S′
N〉.

The trilattice SIXTEEN 3 is defined to be 〈16, 
t, �t, 
f , �f , 
i, �i〉.
It is easily checked that, for each x ∈ {t, f, i}, the function 
x just defined

is meet in the ≤x ordering, while �x is the corresponding join.
SIXTEEN 3 can be further enriched with the following operations.

Definition 3. For each S = 〈SB, SF, ST, SN〉 ∈ 16 the operations −t, −f ,
and −i, are defined as follows.

−t S = 〈SF, SB, SN, ST〉
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Figure 1. The trilattice SIXTEEN 3 with the truth order ≤t (left) and

with the nonfalsity order ≤f (right). Vertices are accompanied by Ltfi
formulas denoting them. The top and bottom elements of ≤t are tb and

nf, while those of ≤f are nt and fb
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Figure 2. The trilattice SIXTEEN 3 with the information order ≤i (left ;

top: nftb, bottom: ∅) and with the intersection of truth and nonfalsity

orders ≤t ∩ ≤f (right)

−f S = 〈ST, SN, SB, SF〉
−i S = 〈1 − SN, 1 − ST, 1 − SF, 1 − SB〉

It is worthwhile to observe that, for each pairwise distinct x, y ∈ {t, f, i},
the following contraposition, monotonicity, and involution properties hold.

a ≤x b =⇒ −x b ≤x −x a

a ≤y b =⇒ −x a ≤y −x b

a = −x −x a
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Table 1. Formulas denoting elements of 16

Form. Definition Value

tb ¬p0 ∨t p0 〈1, 0, 1, 0〉
nf ¬p0 ∧t p0 〈0, 1, 0, 1〉
nt ¬p0 ∨f p0 〈0, 0, 1, 1〉
fb ¬p0 ∧f p0 〈1, 1, 0, 0〉
nftb ¬p0 ∨i p0 〈1, 1, 1, 1〉
∅ ¬p0 ∧i p0 〈0, 0, 0, 0〉
b tb ∧f ∅ 〈1, 0, 0, 0〉
ntb tb ∨f nftb 〈1, 0, 1, 1〉
f nf ∧f ∅ 〈0, 1, 0, 0〉
nft nf ∨f nftb 〈0, 1, 1, 1〉
t tb ∨f ∅ 〈0, 0, 1, 0〉
n nf ∨f ∅ 〈0, 0, 0, 1〉
ftb tb ∧f nftb 〈1, 1, 1, 0〉
nfb nf ∧f nftb 〈1, 1, 0, 1〉
nb b ∧t ntb 〈1, 0, 0, 1〉
ft t ∧t ftb 〈0, 1, 1, 0〉
Here ¬ abbreviates ∼t ∼f ∼i

2. The Language Ltfi and its Semantics

The language Ltfi is defined by the following BNF form (where p comes
from some countably infinite set of propositional constants).

ϕ ::= p | ∼t ϕ | ∼f ϕ | ∼i ϕ | ϕ ∧t ϕ | ϕ ∧f ϕ | ϕ ∧i ϕ |
ϕ ∨t ϕ | ϕ ∨f ϕ | ϕ ∨i ϕ

This language receives an interpretation as follows.

Definition 4. A valuation function is a function V from the sentences of
Ltfi to 16 such that

V (ϕ ∧t ψ) = V (ϕ) 
t V (ψ); V (∼t ϕ) = −t V (ϕ);

V (ϕ ∧f ψ) = V (ϕ) 
f V (ψ); V (∼f ϕ) = −f V (ϕ);

V (ϕ ∧i ψ) = V (ϕ) 
i V (ψ); V (∼i ϕ) = −i V (ϕ);

V (ϕ ∨t ψ) = V (ϕ) �t V (ψ); V (ϕ ∨f ψ) = V (ϕ) �f V (ψ);

V (ϕ ∨i ψ) = V (ϕ) �i V (ψ).

Ltfi sentences ϕ and ψ are logically equivalent if V (ϕ) = V (ψ), for all V .
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Muskens and Wintein [4] show that Ltfi is functionally complete. Indeed,
it is possible to denote each of the elements of 16 with the help of an Ltfi
sentence, as in the following definition.

Definition 5. Let p0 be some fixed propositional constant. The formulas
in the first column of Table 1 will be defined by the corresponding entries
in the second column. For any of these abbreviations ξ and any p, we will
write ξp for the result of replacing each p0 in ξ by p.

It is not difficult to verify that, for any valuation V , any ξ in the first
column of Table 1, and any p, V (ξp) equals the corresponding entry in the
third column.

We now come to the definition of the semantic consequence relations. As
was already announced in the introduction, the relations |=t, |=f , and |=i are
directly based upon ≤t, ≤f , and ≤i respectively, while |= is the intersection
of |=t and |=f .

Definition 6. Let the relations |=t, |=f , |=i, and |= be defined as follows.

ϕ |=t ψ ⇐⇒ V (ϕ) ≤t V (ψ), for all valuations V

ϕ |=f ψ ⇐⇒ V (ϕ) ≤f V (ψ), for all valuations V

ϕ |=i ψ ⇐⇒ V (ϕ) ≤i V (ψ), for all valuations V

ϕ |= ψ ⇐⇒ ϕ |=t ψ and ϕ |=f ψ

Further decomposition of these relations is in fact possible and useful.
This decomposition will be in terms of the relations |=B, |=F, |=T, and |=N,
defined below. We follow the convention that, for any V and ϕ, VB(ϕ) refers
to the first element of V (ϕ), VF(ϕ) to its second element, VT(ϕ) to its third,
and VN(ϕ) to its fourth (so that V (ϕ) = 〈VB(ϕ), VF(ϕ), VT(ϕ), VN(ϕ)〉).
Definition 7. For each x ∈ {T,B,F,N}, define the auxiliary entailment
relation |=x by letting, for each two Ltfi sentences ϕ and ψ, ϕ |=x ψ iff for
all V : Vx(ϕ) ≤ Vx(ψ).

It is not difficult to see, on the basis of these definitions and the ones in
Definition 1, that the equivalences in the following proposition hold.

Proposition 1.

ϕ |=t ψ ⇐⇒ ϕ |=B ψ, ψ |=F ϕ, ϕ |=T ψ, ψ |=N ϕ

ϕ |=f ψ ⇐⇒ ψ |=B ϕ, ψ |=F ϕ, ϕ |=T ψ, ϕ |=N ψ

ϕ |=i ψ ⇐⇒ ϕ |=B ψ, ϕ |=F ψ, ϕ |=T ψ, ϕ |=N ψ

ϕ |= ψ ⇐⇒ ϕ |=B ψ, ψ |=B ϕ, ψ |=F ϕ, ϕ |=T ψ, ϕ |=N ψ, ψ |=N ϕ
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3. The Calculus PL16 and Satisfiability

In order to capture these semantic entailment relations, Muskens and Win-
tein [4] define the calculus PL16. Entries in this calculus are signed formulas
x : ϕ, where ϕ is an Ltfi formula and x is one of the signs b, f, t, n, b, f, t,
and n. While the role of these signed sentences in the calculus is a purely
formal one, they also have an intuitive meaning. b : ϕ, for example, can be
read as saying that the first (i.e. B) component of the value of ϕ is 1; that
of b : ϕ is that it is 0. The other signs can be interpreted similarly.

Definition 8. The following are expansion rules of the calculus PL16.

x : ϕ ∧t ψ
(∧1

t )
x : ϕ, x : ψ

x : ϕ ∧t ψ
(∧2

t )
x : ϕ | x : ψ

where x ∈ {n, f, t, b} where x ∈ {n, f, t, b}
x : ϕ ∧f ψ

(∧1
f )

x : ϕ, x : ψ

x : ϕ ∧f ψ
(∧2

f )
x : ϕ | x : ψ

where x ∈ {n, f, t, b} where x ∈ {n, f, t, b}
x : ϕ ∧i ψ

(∧1
i )

x : ϕ, x : ψ

x : ϕ ∧i ψ
(∧2

i )
x : ϕ | x : ψ

where x ∈ {n, f, t, b} where x ∈ {n, f, t, b}
x : ϕ ∨t ψ

(∨1
t )

x : ϕ, x : ψ

x : ϕ ∨t ψ
(∨2

t )
x : ϕ | x : ψ

where x ∈ {n, f, t, b} where x ∈ {n, f, t, b}
x : ϕ ∨f ψ

(∨1
f )

x : ϕ, x : ψ

x : ϕ ∨f ψ
(∨2

f )
x : ϕ | x : ψ

where x ∈ {n, f, t, b} where x ∈ {n, f, t, b}
x : ϕ ∨i ψ

(∨1
i )

x : ϕ, x : ψ

x : ϕ ∨i ψ
(∨2

i )
x : ϕ | x : ψ

where x ∈ {n, f, t, b} where x ∈ {n, f, t, b}
x : ∼t ϕ

(∼t)
y : ϕ

where {x, y} ∈ {{n, t}, {f, b}, {n, t}, {f, b}}
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x : ∼f ϕ
(∼f )

y : ϕ
where {x, y} ∈ {{n, f}, {t, b}, {n, f}, {t, b}}

x : ∼i ϕ
(∼i)

y : ϕ
where {x, y} ∈ {{n, b}, {f, t}, {n, b}, {f, t}}

The general form of these rules is ϑ/B1, . . . , Bn, where ϑ is a signed
sentence, called the top formula of the rule, and each Bi is a set of signed
sentences, called a set of bottom formulas of the rule. For example, using
this general form one instantiation of the (∧1

i ) rule can be expressed as
f : ϕ ∧i ψ / {f : ϕ, f : ψ}, while t : ϕ ∧t ψ / {t : ϕ}, {t : ψ} instantiates the
(∧2

t ) rule.

On the basis of these rules tableaux can be obtained in the usual way (see
[4] for a precise definition). A tableau branch will be closed if it contains
signed sentences x : ϕ and x : ϕ for x ∈ {n, f, t, b}, while a tableau is closed
if all its branches are closed.

As we shall see shortly there is an intimate connection between the PL16
rules just given and the following notion of satisfiability.

Definition 9. Let Θ be a set of signed Ltfi sentences and let V be an Ltfi
valuation. V satisfies Θ iff the following statements hold.

t : ϕ ∈ Θ ⇒ VT(ϕ) = 1 t : ϕ ∈ Θ ⇒ VT(ϕ) = 0

f : ϕ ∈ Θ ⇒ VF(ϕ) = 1 f : ϕ ∈ Θ ⇒ VF(ϕ) = 0

n : ϕ ∈ Θ ⇒ VN(ϕ) = 1 n : ϕ ∈ Θ ⇒ VN(ϕ) = 0

b : ϕ ∈ Θ ⇒ VB(ϕ) = 1 b : ϕ ∈ Θ ⇒ VB(ϕ) = 0

A set of signed sentences will be called satisfiable if some V satisfies it,
unsatisfiable otherwise.

It is shown in [4] that a finite set of sentences is unsatisfiable if and only
if it has a closed tableau. In this paper we will stay entirely on the semantic
side of this equation, but will make use of the following relation between
the PL16 rules and satisfiability. It follows from an easy inspection of the
relevant definitions.

Proposition 2. Let ϑ/B1, . . . , Bn be an instantiation of a PL16 rule and
let V be a valuation. Then V satisfies ϑ iff V satisfies some Bi (1 ≤ i ≤ n).
Hence if Θ is a set of signed Ltfi sentences and ϑ/B1, . . . , Bn is a PL16 rule,
then Θ ∪ {ϑ} is unsatisfiable iff Θ ∪ Bi is unsatisfiable for all i.

We also note that the following connection between unsatisfiability and
our auxiliary entailment relations obtains.
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Proposition 3. Let ϕ and ψ be Ltfi sentences. Then

ϕ |=T ψ ⇐⇒ {t : ϕ, t : ψ} is unsatisfiable;

ϕ |=F ψ ⇐⇒ {f : ϕ, f : ψ} is unsatisfiable;

ϕ |=N ψ ⇐⇒ {n : ϕ, n : ψ} is unsatisfiable;

ϕ |=B ψ ⇐⇒ {b : ϕ, b : ψ} is unsatisfiable.

4. A Maehara Style Theorem and Interpolation in Ltfi

Interpolation theorems usually come in two flavours, depending on whether
the logical language that was defined is capable of naming truth-values with
the help of zero-place connectives or not. Classical propositional logic, for
example, has the property that whenever ϕ |=2 ψ (with |=2 the classical
entailment relation), there is an interpolant χ such that ϕ |=2 χ, χ |=2 ψ,
and all propositional letters occurring in χ also occur in both ϕ and ψ. If
the language that was defined contains ⊥ or � as zero-place connectives,
that is, otherwise a condition is needed that excludes cases where ϕ and ψ
have no propositional letters in common. The usual condition is that ϕ is
not a contradiction and that ψ is not a tautology.

A similar condition will not always work here. Consider the relation |=t

and let p and q be two (distinct) propositional letters. Then fp |=t ftbq

clearly holds, fp is not a contradiction in any sense (fp �|=t nf for example),
ftbq is not a tautology (tb �|=t ftb

q), but since there are no formulas that do
not contain any propositional letters there cannot be an interpolant. One
obvious way to get rid of this somewhat artificial conundrum would be to
reintroduce, say, tb as a zero-place connective, but here we will stick to our
earlier set-up of the language in [4] and will state conditions on interpolation
where necessary. These conditions will be stated in terms of the existence of
shared vocabulary.

We will prove a general Maehara-style theorem in this section, but will
first prepare the ground and start with laying down conventions with respect
to signs.

Definition 10. If x ∈ {n, f, t, b} then x is the opposite of x, and x is the
opposite of x. The opposite of any sign x ∈ {n, f, t, b, n, f, t, b} will be denoted
by x′. If S is any set of signs, then {x′ | x ∈ S} will be denoted as S ′ and
will also be called the opposite of S. A signed sentence x : ϕ will be called
S-signed or signed in S if x ∈ S and a set of signed sentences Θ will be said
to be S-signed or signed in S if each of its elements is signed in S.
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Figure 3. A cube summarizing the negation rules of PL16. If x and y are

vertices connected with an edge labeled ∼k then y : ϕ can be obtained

from x : ∼k ϕ with the help of (∼k)

We will formulate our theorem not just for the functionally complete
language, but also for (virtually) all sublanguages of Ltfi . Languages will be
identified with their basic set of connectives, as usual.

Note that the only rules in PL16 that change the signs of signed formulas
are the negation rules (∼t), (∼f ), and (∼i). In Figure 3 we have summarised
them. The eight signs of the calculus form the nodes of a labelled graph that
is arranged in such a way that whenever x and y are vertices connected with
an edge labeled ∼k, any signed sentence x : ϕ can be obtained from y : ∼k ϕ
with the help of rule (∼k)—and vice versa, the graph is undirected. We see
at a glance, for example, that b : ϕ can be obtained from t : ∼t ∼i ϕ, since
there is a path from b to t labelled ∼t ∼i.

There clearly are an infinite number of paths between any two nodes x
and y, but we find it expedient to define canonical short paths between them
and canonical strings of negations labelling these paths.

Definition 11. We denote the empty string with ε. Define C to be the
following set of strings of negations.

{ε,∼t, ∼f , ∼i, ∼t ∼f , ∼t ∼i, ∼f ∼i, ∼t ∼f ∼i}
If τ ∈ C then τ is called a canonical string of negations. Consider Figure 3
and let x and y be signs. There is a unique σ ∈ C labelling a path in Figure
3 from x to y. σ is called the (canonical) x, y-string.

If in Figure 3 there is a path labelled ∼k∼� from x to y (k, 
 ∈ {t, f, i}),
there is also a path labelled ∼�∼k from x to y. Also, if there is a path
labelled ∼k∼k from x to y, then x = y. It follows that if there is any string
of negations from a language L ⊆ Ltfi , labelling a path from x to y, there
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Table 2. The partition {[x]L | x is a sign} for the eight possible values of

L ∩ {∼t, ∼f , ∼i}

L ∩ {∼t, ∼f , ∼i} {[x]L | x is a sign}
{∼t, ∼f , ∼i} {{n, f, t, b, n, f, t, b}}
{∼t, ∼f} {{n, f, t, b}, {n, f, t, b}}
{∼t, ∼i} {{n, f, t, b}, {n, f, t, b}}
{∼f , ∼i} {{n, f, t, b}, {n, f, t, b}}
{∼t} {{n, t}, {f, b}, {n, t}, {f, b}}
{∼f} {{n, f}, {t, b}, {n, f}, {t, b}}
{∼i} {{n, b}, {f, t}, {n, b}, {f, t}}
∅ {{n}, {f}, {t}, {b}, {n}, {f}, {t}, {b}}
Note that the first partition corresponds to the cube in Figure 3 as a whole, the next

three partitions each correspond to opposing faces of that cube, the following three to

sets of edges, and the last to its set of vertices

is also a canonical x, y-string of L negations. Another observation is that,
for any x and y, the x, y-string is identical to the x′, y′-string. The following
proposition is easily seen to be true.

Proposition 4. Let x and y be signs, let p be a propositional letter, and let
σ be the x, y-string. Then, for all V , V satisfies x : p iff V satisfies y : σp,
while V satisfies x′ : p iff V satisfies y′ : σp.

Of course, if one or more negations are not present in L ⊆ Ltfi , there may
be no x, y-string of L negations (and hence no path labelled with negations
from L at all) between two given nodes. We introduce the notion of L-
reachability.

Definition 12. Let L ⊆ Ltfi , and let x and y be signs. x and y are in the
L-reachability relation if the x, y-string contains only negations from L.

L-reachability clearly is an equivalence relation. For each L and each
sign x, let [x]L be the set {y | y is L-reachable from x}. For ease of reference,
Table 2 gives an overview of the various partitions {[x]L | x is a sign}. Note
that S ∈ {[x]L | x is a sign} if and only if S ′ ∈ {[x]L | x is a sign}, for all L.

We define a general notion of interpolant. In the following, as in the rest
of the paper, Voc(ϕ) will be used for the set of propositional letters occurring
in ϕ and Voc(Θ) will be the set of propositional letters occurring in signed
sentences in Θ.

Definition 13. Let L ⊆ Ltfi , let Θ1 and Θ2 be sets of signed L-sentences,
let z be any sign, and let p be a proposition letter. An L-sentence χ is called
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a z, p-interpolant of Θ1 and Θ2 in L if Θ1 ∪ {z′ : χ} and Θ2 ∪ {z : χ}
are unsatisfiable while Voc(χ) ⊆ (Voc(Θ1) ∩ Voc(Θ2)) ∪ {p}. If, moreover,
Voc(χ) ⊆ Voc(Θ1) ∩ Voc(Θ2) then χ is called a z-interpolant of Θ1 and Θ2

in L.

We now state and prove a general theorem for the calculus. The proof is
in fact an adaptation of Maehara’s method—most often used in the context
of Gentzen sequent calculi—to the present setting.

Theorem 1. (Maehara Theorem) Let L ⊆ Ltfi and L �= {∼t, ∼f , ∼i}. Let
S ∈ {[x]L | x is a sign} and let Θ1 be a set of S-signed sentences, while
Θ2 is a set of S ′-signed sentences, and Θ1 ∪ Θ2 is unsatisfiable. Let z ∈ S
and let p be a proposition letter. Then there is a z, p-interpolant of Θ1 and
Θ2 in L. Hence if Voc(Θ1) ∩ Voc(Θ2) �= ∅ there is a z-interpolant of Θ1

and Θ2 in L. For languages L such that {∼t, ∼f , ∼i} �⊆ L the condition
Voc(Θ1) ∩ Voc(Θ2) �= ∅ is satisfied and there is a z-interpolant of Θ1 and
Θ2 in L.

Proof. We will proceed by induction on the number of connectives occur-
ring in signed sentences in Θ1 ∪ Θ2. For the base step, assume that Θ1 ∪ Θ2

only contains signed propositional letters.
In general, if a set of signed sentences Ξ has only elements of the form

y : q, with q a propositional variable, and, for no q and y, {y : q, y′ : q} ⊆ Ξ,
then Ξ is easily shown to be satisfiable. By contraposition we find that
{x : r, x′ : r} ⊆ Θ1 ∪ Θ2, for some x and r.

We consider two main subcases and in each define a z, p-interpolant χ.

I. x : r ∈ Θ1 and x′ : r ∈ Θ2, for some x and r. In this case we can let
χ = σr, where σ is the x, z-string. Since x and z are both elements of S,
σ only contains negation symbols from L. Note that in this case χ is in
fact a z-interpolant of Θ1 and Θ2 in L.

II. {x : r, x′ : r} ⊆ Θ1 or {x : r, x′ : r} ⊆ Θ2, for some x and r. Then
S ∩ S ′ �= ∅, from which we can conclude that {∼t, ∼f , ∼i} ⊆ L. Since
L �= {∼t, ∼f , ∼i}, L must contain at least one conjunction or disjunction
and so either tb, or nf, or nt, or fb, or nftb, or ∅ is definable in L (compare
Table 1). In the first case (in which ∨t ∈ L) we can consider the following
further subcases.

(a) If {x : r, x′ : r} ⊆ Θ1 and z ∈ {t, b, n, f}, let χ = ∼t tb
p;

(b) If {x : r, x′ : r} ⊆ Θ1 and z ∈ {t, b, n, f}, let χ = tbp;
(c) If {x : r, x′ : r} ⊆ Θ2 and z ∈ {t, b, n, f}, let χ = tbp;
(d) If {x : r, x′ : r} ⊆ Θ2 and z ∈ {t, b, n, f}, let χ = ∼t tb

p.
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In each of these subcases Voc(χ) ⊆ (Voc(Θ1)∩Voc(Θ2))∪{p}, while Θ1∪
{z′ : χ} and Θ2 ∪{z : χ} are unsatisfiable. The cases where conjunctions
or disjunctions other than ∨t are present in L are entirely similar and
left to the reader.

For the induction step, assume that Θ1 and Θ2 satisfy the constraints
mentioned in the theorem, while the unsatisfiable Θ1 ∪ Θ2 contains n + 1
connectives and the theorem holds for all Θ′

1 and Θ′
2 such that Θ′

1 ∪ Θ′
2

contains at most n connectives. Let ϑ ∈ Θ1 ∪ Θ2 be a signed sentence
containing at least one connective. There is a unique tableau rule ρ such
that ϑ is an instantiation of its top formula. We prove the induction step
by cases, taking into account 1) which rule ρ matches ϑ and 2) whether
ϑ ∈ Θ1 or ϑ ∈ Θ2. This gives 30 cases, but they cluster in two similarity
groups. Note that all rules have the property that if their top formula is an
L sentence signed in S, their bottom formulas will also be signed in S.

If ρ = (∧1
t ) and ϑ ∈ Θ1, then ϑ has the form x : ϕ ∧t ψ. Since Θ1 ∪ Θ2

is unsatisfiable, (Θ1\{ϑ}) ∪ {x : ϕ, x : ψ} ∪ Θ2 is also unsatisfiable by
Proposition 2. Since the latter contains n connectives, induction provides a
z, p-interpolant χ of (Θ1\{ϑ}) ∪ {x : ϕ, x : ψ} and Θ2 in L. Hence the sets
(Θ1\{ϑ})∪{x : ϕ, x : ψ, z′ : χ} and Θ2 ∪{z : χ} are unsatisfiable. But then
Θ1 ∪ {z′ : χ} is unsatisfiable by Proposition 2. We conclude that χ is also a
z, p-interpolant for Θ1 and Θ2 in L. The case that ϑ ∈ Θ2 is entirely similar.
In case ρ is any of the rules (∼t), (∼f ), (∼i), (∧1

f ), (∧1
i ), (∨1

t ), (∨1
f ), or (∨1

i ),
a z, p-interpolant in L is obtained in a similar way.

If ρ = (∧2
t ) and ϑ ∈ Θ1, then ϑ again has the form x : ϕ ∧t ψ. This time

the unsatisfiability of Θ1 ∪ Θ2 implies that (Θ1\{ϑ}) ∪ {x : ϕ} ∪ Θ2 and
(Θ1\{ϑ})∪{x : ψ}∪Θ2 are unsatisfiable. The induction hypothesis gives χ1

and χ2 so that the following are unsatisfiable.

a. (Θ1\{ϑ}) ∪ {x : ϕ, z′ : χ1}
b. Θ2 ∪ {z : χ1}
c. (Θ1\{ϑ}) ∪ {x : ψ, z′ : χ2}
d. Θ2 ∪ {z : χ2}

Since a. and c. are unsatisfiable, e. and f. below are too, and from this we
deduce that g. is unsatisfiable.

e. (Θ1\{ϑ}) ∪ {x : ϕ, z′ : χ1, z′ : χ2}
f. (Θ1\{ϑ}) ∪ {x : ψ, z′ : χ1, z′ : χ2}
g. Θ1 ∪ {z′ : χ1, z′ : χ2}
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There are now two possibilities. The first is that z is one of the signs men-
tioned in the side condition of (∧2

t ), i.e. z ∈ {n, f, t, b}. Then z′ ∈ {n, f, t, b},
i.e. z is one of the signs mentioned in the side condition of (∧1

t ). Using
(∧1

t ) we see that h. is unsatisfiable since g. is and using (∧2
t ) it follows that

i. is unsatisfiable because b. and d. are. We conclude that χ1 ∧t χ2 is a
z, p-interpolant of Θ1 and Θ2 in this case.

h. Θ1 ∪ {z′ : χ1 ∧t χ2}
i. Θ2 ∪ {z : χ1 ∧t χ2}

If, on the other hand, z ∈ {n, f, t, b}, we reason as follows. Since x ∈
{n, f, t, b}, while x ∈ S and z ∈ S, it must be the case that ∼t ∈ L. This
means that ∼t(∼t χ1 ∧t ∼t χ2), a sentence equivalent to χ1 ∨t χ2 (note that
we have not assumed that ∨t ∈ L), is an L sentence. Using (∨1

t ) we conclude
from g. that Θ1 ∪ {z′ : χ1 ∨t χ2} is unsatisfiable, while from b. and d. it
follows with the help of (∨2

t ) that Θ2∪{z : χ1 ∨t χ2} is. Therefore the sets j.
and k. are unsatisfiable and hence ∼t(∼t χ1 ∧t ∼t χ2) is the z, p-interpolant
that was sought after.

j. Θ1 ∪ {z′ : ∼t(∼t χ1 ∧t ∼t χ2)}
k. Θ2 ∪ {z : ∼t(∼t χ1 ∧t ∼t χ2)}

We conclude that either ∼t(∼t χ1 ∧t ∼t χ2) or χ1 ∧t χ2 is a z, p-interpolant
of Θ1 and Θ2 in L.

The case in which ρ = (∧2
t ) and ϑ ∈ Θ2 leads to very similar reasoning

and in case ρ is (∧2
f ), (∧2

i ), (∨2
t ), (∨2

f ), or (∨2
i ), z, p-interpolants can be found

in ways analogous to that in the (∧2
t ) case.

Note that if {∼t, ∼f , ∼i} �⊆ L the z, p-interpolant that is constructed is
a z-interpolant, so that Θ1 and Θ2 must have common vocabulary.

Let us turn to the entailment relations we are interested in and to the
auxiliary relations in terms of which they are characterised. We first define
what it means for these relations to have the interpolation property on a
sublanguage of Ltfi .

Definition 14. Let R ∈ {|=T, |=F, |=N, |=B, |=t, |=f , |=i, |=} and let L be a
sublanguage of Ltfi . We say that R has the interpolation property on L if,
for any ϕ,ψ ∈ L such that ϕRψ and Voc(ϕ) ∩Voc(ψ) �= ∅, there is a χ ∈ L
with Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ) such that ϕRχ and χRψ.

R is said to have the perfect interpolation property on L if the condition
that Voc(ϕ)∩Voc(ψ) �= ∅ can be dropped, i.e. if, for any ϕ, ψ ∈ L such that
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ϕRψ, there is a χ ∈ L with Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ) such that ϕRχ and
χRψ.

The auxiliary relations |=T, |=F, |=N, and |=B indeed have the interpo-
lation property on all sublanguages L of Ltfi (note that for the functionally
complete language itself this also follows from Takano [10]). If at least one of
the negations is missing from L, they have the perfect interpolation property.

Lemma 1. Let L ⊆ Ltfi and let x ∈ {T,F,N,B}. Then |=x has the interpo-
lation property on L. If {∼t, ∼f , ∼i} �⊆ L, |=x has the perfect interpolation
property on L.

Proof. Let ϕ and ψ be L-sentences such that Voc(ϕ) ∩ Voc(ψ) �= ∅ and
ϕ |=T ψ. Then {t : ϕ, t : ψ} is unsatisfiable. If L = {∼t, ∼f , ∼i}, then ϕ and
ψ must have their only proposition letter in common and ϕ is an interpolant.
Otherwise, Theorem 1 provides a χ in L with Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ)
such that {t : ϕ, t : χ} and {t : χ, t : ψ} are unsatisfiable, whence ϕ |=T χ
and χ |=T ψ. The other three cases are entirely similar. If {∼t, ∼f , ∼i} �⊆ L,
Theorem 1 allows dropping the assumption that Voc(ϕ) ∩ Voc(ψ) �= ∅.

Can this result be extended to the entailment relations |=t, |=f , |=i, and |=
that we are after? The answer is that in many cases we can find interpolants
for these entailment relations that are certain truth-functional combinations
of interpolants for the auxiliary relations in terms of which they can be
analysed. Before we show the general procedure, let us first make a few
simple observations. The first has to do with perfect interpolation.

Lemma 2. If R ∈ {|=t, |=f , |=i, |=} has the interpolation property on L ⊆
Ltfi and {∼t, ∼f , ∼i} �⊆ L then R has the perfect interpolation property on
L.

Proof. Let R be as described. Suppose ϕ and ψ are L sentences such
that ϕRψ. Then ϕ |=T ψ and Lemma 1 gives an interpolant χ such that
Voc(χ) ⊆ Voc(ϕ)∩Voc(ψ). Since no sentence can have an empty vocabulary,
it follows that Voc(ϕ) ∩ Voc(ψ) �= ∅. So, since R has the interpolation
property on L, it has the perfect interpolation property on L.

The second observation concerns the relation |=.

Proposition 5. If ϕ |= ψ and either ϕ |=t χ |=t ψ or ϕ |=f χ |=f ψ then
ϕ |= χ |= ψ.

Proof. The proof makes repeated use of Proposition 1. Note that, in gen-
eral, one can conclude ϕ |= ψ from the conjunction of ϕ |=t ψ, ψ |=B ϕ,
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and ϕ |=N ψ. Suppose ϕ |= ψ and ϕ |=t χ |=t ψ. From ϕ |=t χ |=t ψ it
follows that ϕ |=B χ |=B ψ and from ϕ |= ψ it follows that ψ |=B ϕ. Hence
ψ |=B χ |=B ϕ. In a similar way ϕ |=N χ |=N ψ is shown, so that ϕ |= χ |= ψ
can be concluded.

The case in which ϕ |= ψ and ϕ |=f χ |=f ψ is entirely similar.

From this proposition the following useful lemma follows directly.

Lemma 3. If |=t or |=f has the (perfect) interpolation property on a language
L, then |= likewise has the (perfect) interpolation property on L.

The following theorem gives interpolation for the language Ltfi . Its proof
shows how interpolants for the auxiliary entailment relations can be ‘glued
together’ in order to obtain interpolants for the relations |=t, |=f , and |=i.

Proposition 6. The entailment relations |=t, |=f , |=i, and |= each have
the interpolation property on Ltfi.

Proof. Suppose ϕ |=t ψ, while Voc(ϕ)∩Voc(ψ) �= ∅. Then ϕ |=T ψ, ϕ |=B

ψ, ψ |=F ϕ, and ψ |=N ϕ. Lemma 1 shows that there are interpolants χ1,
χ2, χ3, and χ4 such that ϕ |=T χ1 |=T ψ, ϕ |=B χ2 |=B ψ, ψ |=F χ3 |=F ϕ,
and ψ |=N χ4 |=N ϕ. Let p ∈ Voc(ϕ) ∩ Voc(ψ) and let χ be the sentence

(χ1 ∧i t
p) ∨i (χ2 ∧i b

p) ∨i (χ3 ∧i f
p) ∨i (χ4 ∧i n

p) . (1)

Note that V (χ) = 〈VB(χ2), VF(χ3), VT(χ1), VN(χ4)〉 for any V . From this
ϕ |=T χ |=T ψ, ϕ |=B χ |=B ψ, ψ |=F χ |=F ϕ, and ψ |=N χ |=N ϕ follow.
Hence ϕ |=t χ |=t ψ and χ is an interpolant for ϕ |=t ψ. The proofs for
|=f , and |=i follow very similar lines, both using the formula schema in (1),
with the χj possibly instantiated differently. That the statement holds for
|= follows from Lemma 3 above.

5. Interpolation Results for Sublanguages of Ltfi

The language Ltfi is functionally complete and hence maximally expressive
given the underlying semantics. This makes it relatively easy to construct
interpolants. Do less expressive languages still have the interpolation prop-
erty? The question is not without interest, as it concerns languages such
as Ltf := {∧t, ∧f , ∨t, ∨f , ∼t, ∼f}, defined in Shramko and Wansing [8], and
L∼i

tf := {∧t, ∧f , ∨t, ∨f , ∼t, ∼f , ∼i}, which in [4] we have shown to be expres-
sively equivalent to the languages L→t

tf and L→f

tf considered in Odintsov [5].
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We will give affirmative answers for these and a range of other languages
here, but will restrict attention to those sublanguages of the functionally
complete one that are closed under duals in the following sense.

Definition 15. Let L ⊆ Ltfi . L is closed under duals if ∧k ∈ L ⇐⇒ ∨k ∈ L,
for k ∈ {t, f, i}.

So, in all languages under consideration conjunctions and disjunctions
come in pairs. Let us first discuss languages that do not contain all of these
pairs. For these certain dualities arise. First a definition.

Definition 16. For each sign x and each k ∈ {t, f, i}, x∗k will denote the
unique sign such that

{x, x∗i} ∈ {{n, b}, {f, t}, {n, b}, {f, t}},

{x, x∗t} ∈ {{n, t}, {f, b}, {n, t}, {f, b}},

{x, x∗f } ∈ {{n, f}, {t, b}, {n, f}, {t, b}}.

The reader may want to compare this definition with the side conditions
of the (∼k) tableau expansion rules. On languages that do not have all
conjunction/disjunction pairs some entailment relations are coextensive.

Proposition 7. Let L ⊆ Ltfi be a language such that, for some k ∈ {t, f, i},
L ∩ {∧k, ∨k} = ∅. For any set Θ of signed L-sentences, Θ is unsatisfiable
iff Θ∗k = {x∗k : ϕ | x : ϕ ∈ Θ} is unsatisfiable. Hence, if ϕ and ψ are
L-sentences, we have

if k = i: ϕ |=N ψ ⇐⇒ ψ |=B ϕ and ϕ |=F ψ ⇐⇒ ψ |=T ϕ;

if k = t: ϕ |=N ψ ⇐⇒ ϕ |=T ψ and ϕ |=F ψ ⇐⇒ ϕ |=B ψ;

if k = f : ϕ |=N ψ ⇐⇒ ϕ |=F ψ and ϕ |=T ψ ⇐⇒ ϕ |=B ψ.

Proof. For each valuation V and k ∈ {t, f, i}, let V −k be the valuation such
that V −k(p) = −k V (p), for all propositional variables p. A straightforward
induction gives that V −k(ϕ) = −k V (ϕ), for all ϕ not containing ∧k or ∨k,
so that V satisfies x : ϕ iff V −k satisfies x∗k : ϕ, for such ϕ.

An immediate consequence of this duality (and Proposition 1) is that
certain entailment relations collapse to equivalence and as a consequence
have the interpolation property.

Proposition 8. Let L ⊆ Ltfi be a language such that L ∩ {∧k, ∨k} = ∅

(k ∈ {t, f, i}). Then ϕ |=k ψ implies V (ϕ) = V (ψ), for all valuations V and
L sentences ϕ and ψ. It follows that |=k enjoys interpolation on L.
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Proof. Let L, ϕ, ψ, and k be as described. That ϕ |=k ψ implies V (ϕ) =
V (ψ), for all V , follows from Proposition 7. Suppose ϕ |=k ψ and hence
V (ϕ) = V (ψ), for all V . Suppose that Voc(ϕ) ∩ Voc(ψ) �= ∅. Let p ∈
Voc(ϕ) ∩ Voc(ψ) and let ϕ′ be the result of replacing each q /∈ Voc(ψ) in ϕ
by p. For any valuation V , let V ′ be the valuation such that V ′(r) = V (r)
if r ∈ Voc(ψ) and V ′(r) = V (p) otherwise. Then, for any V ,

V (ϕ′) = V ′(ϕ) = V ′(ψ) = V (ψ) = V (ϕ) .

It follows that ϕ |=k ϕ′ |=k ψ and that Voc(ϕ′) ⊆ Voc(ϕ) ∩ Voc(ψ), so that
ϕ′ is the required interpolant.

From this the following proposition about the limiting case of languages
only containing negations follows immediately.

Proposition 9. If L ∩ {∧i, ∨i, ∧t, ∨t, ∧f , ∨f} = ∅ then |=t, |=f , and |=i

enjoy interpolation on L.

Another consequence of Propositions 1 and 7 is that in the absence of
∧k and ∨k (k ∈ {t, f, i}) the characterisations of entailment relations |=�,
where 
 �= k, can be simplified.

Proposition 10. Let L ∩ {∧k, ∨k} = ∅, as before, and let ϕ and ψ be L
sentences. Then the following equivalences hold.

If k = i :

{

ϕ |=t ψ ⇐⇒ ϕ |=B ψ and ϕ |=T ψ

ϕ |=f ψ ⇐⇒ ψ |=B ϕ and ϕ |=T ψ

If k = t :

{

ϕ |=i ψ ⇐⇒ ϕ |=B ψ and ϕ |=T ψ

ϕ |=f ψ ⇐⇒ ψ |=B ϕ and ϕ |=T ψ

If k = f :

{

ϕ |=i ψ ⇐⇒ ϕ |=F ψ and ϕ |=T ψ

ϕ |=t ψ ⇐⇒ ψ |=F ϕ and ϕ |=T ψ

Moreover, if two conjunction/disjunction pairs are missing, the only
remaining entailment relation that does not collapse to equivalence will in
fact be coextensive with |=T, as the following proposition shows.

Proposition 11. Let L∩{∧i, ∨i, ∧t, ∨t, ∧f , ∨f} = {∧k, ∨k}, for k ∈ {t, f, i}.
Then |=t, |=f , and |=i enjoy interpolation on L.

Proof. Let ϕ and ψ be L sentences. Again use Propositions 1 and 7 in order
to show that ϕ |=k ψ ⇐⇒ ϕ |=T ψ. That |=k has the interpolation property
follows from Lemma 1. That |=� enjoys interpolation, for 
 ∈ {t, f, i} and
k �= 
, follows from Proposition 8.
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Propositions 9 and 11 imply that |=t, |=f , and |=i enjoy interpolation on
all relevant L that have at most one conjunction/disjunction pair. So, from
this point on we can focus on languages closed under duality that contain
at least two conjunction/disjunction pairs.

But what if negations are missing? We have already seen that inter-
polation results for languages lacking one or more negations can immedi-
ately be strengthened to results about perfect interpolation, but now must
take into account that it is no longer a given that formulas constantly
denoting elements of 16 are definable. Suppose, for example, that L is
a language not containing ∼i and ϕ is an L-sentence. Then a straight-
forward induction on sentence complexity gives that if V (p) = 〈0, 0, 0, 0〉
for every p ∈ Voc(ϕ), we also have that V (ϕ) = 〈0, 0, 0, 0〉. Similarly,
V (ϕ) = 〈1, 1, 1, 1〉, if V (p) = 〈1, 1, 1, 1〉 for every p ∈ Voc(ϕ). It follows
that no L-formula can have a constant denotation. Since formulas with con-
stant denotation were used to ‘glue’ interpolants together in Proposition 6,
we need to adapt the method.

In languages that contain only a single negation we see a property similar
to the one just described. Consider, for example, a language L that only
contains the ∼i negation and let ϕ be any sentence of L. Then we see
that, if VB(p) = 0 and VN(p) = 1 for every p occurring in ϕ, we also have
VB(ϕ) = 0 and VN(ϕ) = 1.

Let us analyse the situation a bit further. Here are some useful definitions.

Definition 17. A form is a partial function F : {B,F,T,N} ⇀ {0, 1} with
a non-empty domain. If V is a valuation and ϕ is a formula then V is called
an F -valuation on ϕ if, for all x ∈ dom(F ), Vx(ϕ) = F (x). If P is a set of
propositional letters then V is an F -valuation on P if V is an F -valuation
on all p ∈ P . A form F is fixed for a formula ϕ if V is an F -valuation on ϕ
whenever V is an F -valuation on Voc(ϕ), for all V . F is fixed for a language
L if F is fixed for all L-sentences.

Table 3 gives, for each L ⊆ Ltfi , a collection of forms fixed for L, depend-
ing on the value of L ∩ {∼t, ∼f , ∼i}. For example, {〈B, 0〉, 〈N, 1〉} is a form
fixed for languages containing only the ∼i negation, while for languages
that contain only ∼t and ∼f {〈B, 0〉, 〈F, 0〉, 〈T, 0〉, 〈N, 0〉} is fixed. This cor-
responds to two of the situations just described. The proof of the following
proposition is a straightforward induction on the complexity of L formulas
in each case.

Proposition 12. Let L ⊆ Ltfi. If L ∩ {∼t, ∼f , ∼i} is as in the left column
of Table 3, then the corresponding forms on the right are fixed for L.
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Table 3. Languages L ⊆ Ltfi and forms fixed for L, depending on L ∩
{∼t, ∼f , ∼i}

L ∩ {∼t, ∼f , ∼i} Forms fixed for L
{∼t, ∼f , ∼i} —

{∼t, ∼f} {〈B, 0〉, 〈F, 0〉, 〈T, 0〉, 〈N, 0〉},
{〈B, 1〉, 〈F, 1〉, 〈T, 1〉, 〈N, 1〉}

{∼t, ∼i} {〈B, 1〉, 〈F, 1〉, 〈T, 0〉, 〈N, 0〉},
{〈B, 0〉, 〈F, 0〉, 〈T, 1〉, 〈N, 1〉}

{∼f , ∼i} {〈B, 0〉, 〈F, 1〉, 〈T, 0〉, 〈N, 1〉},
{〈B, 1〉, 〈F, 0〉, 〈T, 1〉, 〈N, 0〉}

{∼t} {〈B, 0〉, 〈F, 0〉}, {〈B, 1〉, 〈F, 1〉},
{〈T, 0〉, 〈N, 0〉}, {〈T, 1〉, 〈N, 1〉}

{∼f} {〈B, 0〉, 〈T, 0〉}, {〈B, 1〉, 〈T, 1〉},
{〈F, 0〉, 〈N, 0〉}, {〈F, 1〉, 〈N, 1〉}

{∼i} {〈B, 0〉, 〈N, 1〉}, {〈B, 1〉, 〈N, 0〉},
{〈F, 0〉, 〈T, 1〉}, {〈F, 1〉, 〈T, 0〉}

∅ {〈B, 1〉}, {〈B, 0〉}, {〈F, 1〉}, {〈F, 0〉},
{〈T, 1〉}, {〈T, 0〉}, {〈N, 1〉}, {〈N, 0〉}

We will use certain conjunctions and disjunctions of literals for ‘glueing’
interpolants together. Here is a definition.

Definition 18. A literal over the propositional letter p is any formula σp,
where σ is a (possibly empty) string of negations. A literal σp is in canonical
form if σ ∈ C, where C is as in Definition 11. Let L ⊆ Ltfi . A literal over
p in canonical form that is also an L-formula is called a canonical L-literal
over p. If P is a set of propositional letters, we let

LitL(P ) := {ϕ | ϕ is a canonical L-literal over some p ∈ P} .

The following proposition makes a connection between values that are
not fixed by some form and literals witnessing that fact.

Proposition 13. Let L ⊆ Ltfi while p is a propositional letter and x ∈
{B,F,T,N}. For each valuation V , one of the two following statements
holds.

(a) For some F that is fixed for L, V is an F -valuation on p and x ∈
dom(F ).

(b) There is a canonical L-literal λ over p such that Vx(p) �= Vx(λ).

Proof. Note that (a) holds in case L∩{∼t, ∼f , ∼i} = ∅ and that (b) holds
if {∼t, ∼f , ∼i} ∈ L (since Vx(p) �= Vx(∼t ∼f ∼i p), for all x ∈ {B,F,T,N}).
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In all other cases, we suppose that (a) does not hold, pick the unique form
F that is fixed for L such that 〈x, Vx(p)〉 ∈ F , conclude that V is not an
F -valuation on p, and construe the desired literal that witnesses (b). We
give two examples.

• Consider the case that L ∩ {∼t, ∼f , ∼i} = {∼i}, x = B, and VB(p) = 0.
Since V is not a {〈B, 0〉, 〈N, 1〉}-valuation on p it must be the case that
VN(p) = 0. We conclude that VB(∼i p) = 1.

• Now let L ∩ {∼t, ∼f , ∼i} = {∼t, ∼i}, while x = B, and VB(p) = 0.
Since V (p) �= 〈0, 0, 1, 1〉 it must be the case that either VF(p) = 1, or
VT(p) = 0, or VN(p) = 0. In the first case VB(∼t p) = 1; in the second
VB(∼t ∼i p) = 1; and in the third VB(∼i p) = 1.

Other cases are left to the reader, but are each very similar to one of these
two.

While we will not use the fact, it is worthwile to note that whenever
L ∩ {∼t, ∼f , ∼i} is as in the left column of Table 3 and some form F is
fixed for L, F is the union of corresponding forms on the right. This can be
proved in a way akin to the proof of the preceding proposition. Here is a
sketch. If {∼t, ∼f , ∼i} ⊆ L then no F is fixed for L (for the reason we have
just seen) and the statement is trivially true. Suppose that {∼t, ∼f , ∼i} �⊆ L
and F is not a union of forms in the entry for L on the right of Table 3.
Then there is a 〈x, y〉 ∈ F , such that the unique form F ′ on the right with
〈x, y〉 ∈ F ′ is not a subset of F . This means that there is a 〈x′, y′〉 ∈ F ′ such
that 〈x′, y′〉 /∈ F . In each concrete case it is now easy to find an F -valuation
V on some p and a canonical L literal λ over p such that Vx(λ) �= y, which
shows that F is not fixed for L. Details are left to the reader. It is now easy
to see that the forms fixed for a given L are exactly those unions of forms
mentioned in the entry for L in Table 3 that are functions.

Proposition 13 can be used to show that, while it is impossible to define
the top and bottom elements of the three lattices if not all negations are
present, we can have approximations.

Proposition 14. Let L ⊆ Ltfi be a language such that {∧k, ∨k} ⊆ L, for
some k ∈ {t, f, i}. Let �k = 〈�k

B, �k
F, �k

T, �k
N〉 be the top of the k lattice

and let ⊥k = 〈⊥k
B, ⊥k

F, ⊥k
T, ⊥k

N〉 be its bottom. For each nonempty but finite
set P of propositional letters, there are L-formulas τk

P and βk
P , containing

only propositional letters from P , such that, for each x ∈ {B,F,T,N} and
each valuation V , one of the following two statements holds.
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(a) There is an F that is fixed for L, x ∈ dom(F ) and V is an F -valuation
on P . [In this case Vx(τk

P ) = Vx(βk
P ) = F (x).]

(b) Vx(τk
P ) = �k

x and Vx(βk
P ) = ⊥k

x.

Proof. Define τk
P as

∨

k LitL(P ) and βk
P as

∧

k LitL(P ). Let V be a val-
uation, let x ∈ {B,F,T,N}, and suppose that (a) does not hold, so that
V is not an F -valuation on P for any F fixed for L with x ∈ dom(F ). By
Proposition 13 there are a p ∈ P and a canonical L-literal λ over p such
that Vx(p) �= Vx(λ). Inspection of Definition 2 reveals that (b) holds.

Let us stress that in the (b) case of the preceding proof it is not necessarily
the case that V (τk

P ) = �k or V (βk
P ) = ⊥k. Counterexamples are easily

arrived at. The ‘pointwise’ formulation is really essential here, as it is in the
applications of the proposition below.

So we have formulas that approximate the constantly denoting formu-
las that we want, modulo certain exceptions. Will the exceptions spoil our
game? They will not and the following proposition gives the essential reason.

Proposition 15. Let L ⊆ Ltfi and let ϕ, ψ, and χ be L formulas such that
ϕ |=x ψ for some x ∈ {T,F,N,B}, while Voc(χ) ⊆ Voc(ϕ) ∩ Voc(ψ). Let
F be fixed for L and let V be an F -valuation on Voc(ϕ) ∩ Voc(ψ). Then, if
x ∈ dom(F ), Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ).

Proof. We show Vx(ϕ) ≤ Vx(χ). That Vx(χ) ≤ Vx(ψ) is shown similarly. If
F (x) = 1 then Vx(χ) = 1 and we are done. Assume that F (x) = 0. Define the
valuation V ′ by letting, for each y ∈ {T,F,N,B} and each p, V ′

y(p) = F (y)
if p ∈ Voc(ψ) and y ∈ dom(F ), while V ′

y(p) = Vy(p) otherwise. Then V ′

is an F -valuation on Voc(ψ) and V ′
x(ψ) = 0. Since ϕ |=x ψ, it follows that

V ′
x(ϕ) = 0. But V and V ′ agree on Voc(ϕ), so Vx(ϕ) = 0 and the statement

holds.

We now have enough material to prove the remaining interpolation state-
ments. Let us first consider the case that all conjunctions and disjunctions
are present. We then get a generalisation of Proposition 6 whose proof is
close to the latter’s, but with the twist that it uses the considerations above
in order to get the necessary ‘glue’.

Proposition 16. Let {∧t, ∨t, ∧f , ∨f , ∧i, ∨i} ⊆ L ⊆ Ltfi. Then the entail-
ment relations |=t, |=f , and |=i each have the interpolation property on L.

Proof. Assume that ϕ |=t ψ and that Voc(ϕ)∩Voc(ψ) �= ∅. Then ϕ |=T ψ,
ϕ |=B ψ, ψ |=F ϕ, and ψ |=N ϕ. Lemma 1 gives us L interpolants χ1, χ2,
χ3, and χ4 such that ϕ |=T χ1 |=T ψ, ϕ |=B χ2 |=B ψ, ψ |=F χ3 |=F ϕ, and
ψ |=N χ4 |=N ϕ.



Interpolation in 16-Valued Trilattice Logics

Let P be short for Voc(ϕ) ∩ Voc(ψ) and let τ t
P , τf

P , βt
P , and βf

P be as
in Proposition 14. Let b≈ := τ t

P ∧i βf
P , f≈ := βt

P ∧i βf
P , t≈ := τ t

P ∧i τf
P ,

n≈ := βt
P ∧i τf

P , and let χ be the following sentence.

(χ1 ∧i t
≈) ∨i (χ2 ∧i b

≈) ∨i (χ3 ∧i f
≈) ∨i (χ4 ∧i n

≈)

With the help of Proposition 14 is easily seen that, for all valuations V , and
all x ∈ {B,F,T,N}, at least one of the two following statements is true.

(a) V is an F -valuation on P , for some F fixed for L with x ∈ dom(F ).

(b) Vx(b≈) = Vx(b), Vx(f≈) = Vx(f), Vx(t≈) = Vx(t), and Vx(n≈) = Vx(n).

In the (a) case ϕ |=x ψ implies Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ) and ψ |=x ϕ
implies Vx(ψ) ≤ Vx(χ) ≤ Vx(ϕ) by Proposition 15. In particular, we have
Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ), if x = B or x = T, and Vx(ψ) ≤ Vx(χ) ≤ Vx(ϕ), if
x = F or x = N.

In the (b) case, note that, in view of Definition 2, only the Vx values of
t≈, b≈, f≈, and n≈ are relevant for the value of Vx(χ), so that we have the
following.

Vx(χ) = Vx((χ1 ∧i t) ∨i (χ2 ∧i b) ∨i (χ3 ∧i f) ∨i (χ4 ∧i n))

This means that Vx(χ) = Vx(χ2) if x = B, Vx(χ) = Vx(χ3) if x = F,
Vx(χ) = Vx(χ1) if x = T, and Vx(χ) = Vx(χ4) if x = N.

It can be concluded that, for all V , Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ), if x = B or
x = T, and Vx(ψ) ≤ Vx(χ) ≤ Vx(ϕ), if x = F or x = N. So ϕ |=T χ |=T ψ,
ϕ |=B χ |=B ψ, ψ |=F χ |=F ϕ, and ψ |=N χ |=N ϕ, i.e. χ is an interpolant
for ϕ |=t ψ.

It follows that |=t enjoys interpolation on L. That |=f and |=i also do
follows by almost identical argumentation.

The remaining case is the one in which exactly one conjunction and its
dual are absent from the language. Its proof makes essential use of Proposi-
tion 10. Otherwise it is very much like the previous proof.

Proposition 17. Let L ⊆ Ltfi be a language closed under duals such that
{∧t, ∨t, ∧f , ∨f , ∧i, ∨i} �⊆ L, but {∧k, ∨k, ∧�, ∨�} ⊆ L, for some k, 
 ∈ {t, f, i}
and k �= 
. The entailment relations |=t, |=f , and |=i each have the interpo-
lation property on L.

Proof. Let L be as described. Consider the case that L ∩ {∧i, ∨i} = ∅, so
that {∧t, ∨t, ∧f , ∨f} ⊆ L.

Let ϕ and ψ be L sentences and suppose ϕ |=t ψ, while Voc(ϕ)∩Voc(ψ) �=
∅. Then ϕ |=T ψ and ϕ |=B ψ hold. Lemma 1 gives L interpolants χ1 and
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χ2 such that ϕ |=T χ1 |=T ψ and ϕ |=B χ2 |=B ψ. Let P be short for
Voc(ϕ) ∩ Voc(ψ), let τ t

P , and βt
P be as in Proposition 14, and let χ be

(χ1 ∧f τ t
P ) ∨f (χ2 ∧f βt

P ) .

We show that χ is the required interpolant. Let x ∈ {B,T} and let V be
a valuation. If V is an F -valuation on P , for some F fixed for L such that
x ∈ dom(F ), we can conclude that ϕ |=x ψ implies Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ)
and ψ |=x ϕ implies Vx(ψ) ≤ Vx(χ) ≤ Vx(ϕ), as before. In particular, we
have Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ) if x = B and Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ) if x = T
in this case. Otherwise, we can conclude that Vx(χ) = Vx(χ2) if x = B and
Vx(χ) = Vx(χ1) if x = T, so that again Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ) if x = B
and Vx(ϕ) ≤ Vx(χ) ≤ Vx(ψ) if x = T.

It follows that ϕ |=T χ |=T ψ, and ϕ |=B χ |=B ψ. By Proposition 10,
ϕ |=t χ |=t ψ and χ is an interpolant for ϕ |=t ψ.

The proof for |=f is virtually identical, and also gives an interpolant of
the form (χ1 ∧f τ t

P ) ∨f (χ2 ∧f βt
P ). That |=i enjoys interpolation on L

follows from Proposition 8.
This concludes the case that L ∩ {∧i, ∨i} = ∅. The two remaining cases

are very similar. In case L ∩ {∧f , ∨f} = ∅ one arrives at interpolants of the
form

(χ1 ∧t τ i
P ) ∨t (χ2 ∧t βi

P ) ,

while the case that L ∩ {∧t, ∨t} = ∅ leads to interpolants of the form

(χ1 ∧i τf
P ) ∨i (χ2 ∧i βf

P ) .

In all cases χ1 and χ2 are interpolants for appropriate auxiliary entailment
relations. Details are left to the reader.

We sum up our results in the following theorem, which is just a combi-
nation of Propositions 9, 11, 16, 17, and Lemmas 2 and 3.

Theorem 2. Let L ⊆ Ltfi be a language closed under duals. The entailment
relations |=t, |=f , |=i, and |= each have the interpolation property on L.
In case {∼t, ∼f , ∼i} �⊆ L, the relations |=t, |=f , |=i, and |= each have the
perfect interpolation property on L.

The theorem affirmatively answers the question that was asked in Takano
[11]—does |= enjoy perfect interpolation on Ltf ? Concrete interpolants are
easily extracted from our proofs. In particular, if ϕ and ψ are Ltf sentences
such that ϕ |= ψ, we can conclude that also ϕ |=t ψ. From the proof of
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Proposition 17 it follows that ϕ |=t χ |=t ψ, where χ is

(χ1 ∧f τ t
P ) ∨f (χ2 ∧f βt

P ) .

Here χ1 and χ2 are perfect interpolants for ϕ |=T ψ and ϕ |=B ψ respectively
and can be extracted from the proof of Theorem 1. τ t

P is the ∨t disjunction
of all canonical Ltf literals over the (nonempty) shared vocabulary P of ϕ

and ψ, while βt
P is a similar ∧t conjunction. From Lemma 3 it follows that in

fact ϕ |= χ |= ψ, so that we have extracted the interpolant that was sought
after.

6. Conclusion

The analytic tableau calculus PL16 provides several propositional logics
based on the trilattice SIXTEEN 3 with a syntactic characterisation. Entail-
ment relations of interest are typically characterisable as intersections of
certain auxiliary entailment relations and/or their converses and verifying
or disproving an entailment may require the development of several tableaux.

In this paper we have shown that several entailment relations of obvious
interest enjoy interpolation. Our methods have been constructive—in con-
crete cases interpolants can be found by first finding interpolants for some of
the relevant auxiliary entailment relations and by then glueing these together
in certain ways. The method works for a language that can express all truth
functions over PL16, but also for all sublanguages closed under duals. This
includes the language originally considered by Shramko and Wansing [8].
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