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H I G H L I G H T S

• We empirically analyze twelve electricity tariffs for residential microgrids.

• We calculate that tariffs with volumetric rates would encourage grid destabilization.

• We show that capacity charges would moderate the impact of time-varying rates.

• We find that a mix of capacity and customer charges would benefit all stakeholders.
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A B S T R A C T

Increasingly, residential customers are deploying PV units to lower electricity bills and contribute to a more
sustainable use of resources. This selective decentralization of power generation, however, creates significant
challenges, because current transmission and distribution grids were designed for centralized power generation
and unidirectional flows. Restructuring residential neighborhoods as residential microgrids might solve these
problems to an extent, but energy retailers and system operators have yet to identify ways of fitting residential
microgrids into the energy value chain. One promising way of doing so is the tailoring of residential microgrid
tariffs, as this encourages grid-stabilizing behavior and fairly re-distributes the associated costs. We thus identify
a set of twelve tariff candidates and estimate their probable effects on energy bills as well as load and generation
profiles. Specifically, we model 100 residential microgrids and simulate how these microgrids might respond to
each of the twelve tariffs. Our analyses reveal three important insights. Number one: volumetric tariffs would not
only inflate electricity bills but also encourage sharp load and generation peaks, while failing to reliably allocate
system costs. Number two: under tariffs with capacity charges, time-varying rates would have little impact on
both electricity bills and load and generation peaks. Number three: tariffs that bill system and energy retailer
costs via capacity and customer charges respectively would lower electricity bills, foster peak shaving, and
facilitate stable cost allocation.

1. Introduction

The microgrid idea mirrors the first self-contained electric systems
that existed prior to the advent of utilities [1]. Conceptually, microgrids
are interconnected clusters of DG units, electrical loads, and storage
units, that can operate both in connection (grid-connected mode) and
independent (islanded mode) of the larger macrogrid [2]. They facil-
itate distributed optimization of electricity networks and can improve
system reliability, sustainability, and cost-efficiency [3–5]. To date,

they have not been widely implemented, yet numerous successful pilots
indicate technical feasibility [5–8]. Considerable efforts are still re-
quired, however, to integrate microgrids into the energy value chain
and to define viable business models [7]. This integration is especially
challenging in deregulated energy markets where microgrid operators,
energy retailers, and system operators are different entities with di-
verging economic objectives. Whereas microgrid operators1 effectively
aim to secure their energy needs at the lowest possible cost [9], dis-
tribution system operators (DSOs) and transmission system operators
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(TSOs) seek to put a cap on the microgrid’s peak loads and fully recover
their grid infrastructure investments [10,11]. Similarly, energy retailers
are concerned with full cost-recovery and stable load patterns to
minimize costs for balancing power [12]. Reconciling all of these vested
interests has certainly proven to be difficult [13,14], yet there is reason
to believe that tailored electricity tariffs might become the means of
choice for linking all players in the microgrid value chain [15–18].

The key challenge to designing effective tariffs for residential mi-
crogrids is that common pricing mechanisms for residential customers
might not be appropriate for residential microgrids. Feed-in tariff (FiT)
mechanisms, for example, offer little incentive for local demand-supply
balancing [19], while net metering enforces a single rate for energy
purchases and sales [20]. Instead, most microgrid evaluation studies
(implicitly) assume, that future policies will stipulate a net purchase
and sale approach [14,18,21–26]. This mechanism has the same prin-
cipal set-up as net metering, but it explicitly permits different prices for
times of net load and net generation.

For instance, Speidel et al. [21] evaluate a time-of-use (ToU) tariff
that charges for net load, yet does not remunerate net generation. They
show that such a tariff could effectively encourage microgrid operators
to manage their dependence on external power. In contrast, Atia et al.

[22] look at a ToU tariff that also prices net generation. They calculate
that both the net generation rate and a sufficiently large range between
the highest and the lowest ToU price would be crucial for economic
microgrid operation. Several residential microgrid studies also examine
demand charges, i.e., charges that price the highest net load peak over
the billing period. Hanna et al. [18] and Zheng et al. [23], e.g., look at
demand charges with seasonal variation. They estimate that these
charges would encourage considerable peak leveling and result in
sizeable economic benefits to microgrid operators. Li et al. [24] find
similar effects for ToU demand charges that apply only to certain per-
iods, as do Zhang et al. [25] for excess demand charges that apply only
to net loads beyond a certain threshold. Ultimately, Sreedharan et al.
[26] estimate that demand charges could also encourage microgrid
operators to increase self-supply from non-intermittent generation.
Meanwhile, Rieger et al. [14] evaluate so-called capacity charges: unlike
demand charges, which only price net load peaks, these charges apply
to the highest absolute net generation or net load peak. Hence, the
authors argue these capacity charges better reflect that residential mi-
crogrids can act both as consumers and producers and find them to be
highly effective in stabilizing load and generation profiles.

What these studies show is that electricity tariffs can have

Nomenclature

Indices and model size

h household index [–]
i appliance run index. An appliance run can be, for ex-

ample, a single use of a washing machine or one cooling
cycle of a refrigerator [–]
period index [–]

H total number of households [–]
I total number of appliance runs [–]
T total number of periods in the simulation [–]

Model variables

bc overall capacity of all microgrid batteries. Continuous
variable (non-negative) [kWh]

ct total energy used to charge the microgrid’s batteries in
period t. Continuous variable (non-negative) [kWh]

dt total energy discharged from the microgrid’s batteries in
period t. Continuous variable (non-negative) [kWh]

p maximum absolute peak over the simulation horizon:
maximum amount of electricity that is exchanged with the
grid in a single period. Continuous variable [kW]

sgct solar generation curtailment factor in period t. Continuous
variable ∈ [0,1] [kWh]

soct total state of charge of all microgrid batteries in period t.
Continuous variable [kWh]

tc total electricity costs [USD]
wgct wind generation curtailment factor in period t. Continuous

variable ∈ [0,1] [kWh]
xh,i,t appliance run activity indicator. Binary variable; one if

appliance run i in household h is active in period t [–]
yh,i,t prevents repetition of an already finished appliance run.

Binary variable; one if appliance run i in household h is
already finished in period t [–]

zdt difference between generation and usage if period t is a
period of surplus demand; to be weighted with the pur-
chasing price. Continuous variable (non-negative) [kWh]

zst difference between generation and usage if period t is a
period of surplus generation; to be weighted with the
selling price. Continuous variable (non-negative) [kWh]

Parameters

AHh,i appliance run to household indicator. Binary variable; one
if appliance run i belongs to household h [–]

BC total capacity of the microgrid’s batteries [kWh]
CapC capacity charge [USD/kW]
CusCx customer charge in the respective non-volumetric pricing

scenarios [USD]
CPPt critical peak price in period t. This price is only in effect

during a system-wide peak period and is 0 in all other
periods [USD/kWh]

FLt fixed load in period t. Residual, non-shiftable loads [kWh]
FPPx,x flat purchasing price in the respective flat and critical peak

pricing scenarios [USD/kWh]
FSP flat selling price [USD/kWh]
MCR maximum charging rate: physical limit of energy storable

in all microgrid batteries in each period t [kWh]
MDR maximum discharging rate: physical limit of energy ac-

cessible from all microgrid batteries in each period t
[kWh]

PCi energy consumed by each appliance run or electric vehicle
charging process [kWh]

PTi processing time of each appliance run or electric vehicle
charging process [–]

RTPPt,x real-time purchasing price in period t in the respective
real-time pricing scenarios [USD/kWh]

RTSPt real-time selling price in period t [USD/kWh]
RTE aggregated round-trip efficiency of the microgrid batteries

[–]
SGent solar energy generated in period t [kWh]
SoCinit total initial state of charge of all microgrid batteries [kWh]
SoCmin total minimum state-of-charge of all microgrid batteries to

avoid undue degradation [kWh]
ToUPPt,x time-of-use purchasing price in period t in the respective

time-of-use pricing scenarios [USD/kWh]
ToUSPt time-of-use selling price in period t [USD/kWh]
UPi,t user preference indicator providing the permissible ex-

ecution windows for appliances. A value of one states that
appliance run i can be scheduled in period t [–]

VolCx,x volumetric charge in the respective volumetric and par-
tially volumetric pricing scenarios [USD/kWh]

WGent wind energy generated in period t [kWh]
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considerable effects. They do not, however, attempt to systematically
review tariff design options beyond one or two selected tariffs.
Firestone et al. [27], on the other hand, take an important initial step in
this direction by empirically evaluating how different tariffs would
influence a microgrid operator’s decision to install distributed genera-
tion. Unfortunately, these tariffs do not stipulate remuneration for net
generation and the authors only provide results for a single hospital. A
more recent study by Schreiber et al. [28] also reviews several tariff
options for residential microgrids, yet the evaluated tariffs all share the
same basic design and price net generation at a constant flat rate.

Consequently, our study’s principal objective is to take this analysis
a step further by systematically reviewing tariff options for residential
microgrids. To this end, we singled out the most common tariff ele-
ments for commercial, residential, and DG-backed customers, which we
then combined into twelve potential net purchase and sale tariffs. These
tariffs differ in two regards: how dynamically they price power (flat,
time-of-use, critical peak, and real time) and how they charge the mi-
crogrid for distribution and transmission costs as well as energy retailer
service (based on volumetric, capacity, and customer charges).
Importantly, they reflect two key challenges in designing effective
tariffs for residential microgrids. Number one, future tariffs should re-
flect that residential microgrids can systematically alternate between
demanding and supplying power from and to the macrogrid. Number
two, residential microgrid tariffs should minimize incentives to discard
excess power or game the system. These tariffs therefore include ca-
pacity charges rather than demand charges and price power, i.e., both
net generation and net load, at the same (time-varying) rate.

To compare their effects on load profiles and their economic po-
tential, we analyzed these twelve tariffs with an empirical evaluation
framework. Conceptually, this framework starts by building an artificial
residential microgrid from real-world load and distributed generation
data. It then simulates how the microgrid operator would minimize its
overall electricity costs by scheduling smart loads, deciding on battery
charging trajectories, and curtailing distributed generation.

To instantiate the evaluation framework, we primarily leveraged

data from the Pecan Street Dataport [29], which provides per-appliance
power demand and residential photovoltaic (PV) generation measure-
ments (down to a 15 s level) for more than 1,300 households in the US.
Of these, we selected 263 homes located in Austin, Texas which had
complete hourly data for their installed appliances, electric vehicles
(EVs), and PV units in 2015. To supplement this data, we used the
power curve of a Fortis Alizé type small wind turbine by Fortis Wind
B.V. [30] to translate Austin wind speeds into wind power output. We
also factored in battery storage by replicating the technical parameters
of the Powerwall 2 home battery by Tesla, Inc. [31].

The intended purpose of this paper is to inform energy retailers,
DSOs, and TSOs on the probable effects of different tariff designs.
Furthermore, it is our hope that microgrid investors will likewise reflect
our results in the planning process of future microgrid projects. Our
tariff designs can easily be integrated, for example, with the Hybrid
Optimization of Multiple Energy Resources (HOMER) model or the
Distributed Energy Resources Customer Adoption Model (DER-CAM),
two popular solutions for microgrid planning [32].

The remainder of this paper is structured as indicated in Fig. 1.
Section 2 introduces the selected twelve tariffs and their characteristics.
Section 3 describes our evaluation framework, its residential microgrid
model, and the mixed integer linear program (MILP) that the frame-
work uses to balance loads and generation. In Section 4, we discuss our
input data and the adjustments required to fit them into our framework.
Section 5 presents our simulation results and translates these into tariff
design recommendations. Section 6 closes with a summary of our
study’s key results and a review of its limitations.

2. Electricity tariffs under consideration

Although many countries in Europe, North America, and Asia have
joined efforts to promote green distributed generation, there is little
consensus on the ideal pricing mechanism for residential customers
with DG, let alone residential microgrids. For instance, feed-in tariffs
are popular in Europe. Many US states apply net metering. Meanwhile,

Fig. 1. Schematic overview of our tariff evalua-
tion study.
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Japan has opted for a net purchase and sale approach [33]. While each
of these alternatives has pros and cons, the deciding factor in im-
plementing them is the level of control policy-makers want to exert.
Feed-in tariffs, for example, allow policy-makers to set individual de-
velopment trajectories for each power source. However, these feed-in
rates are risky and can result in non-negligible cross-subsidies from
customers without DG to those with DG if policy-makers do not ‘get
them right’ [34]. Net metering mechanisms in turn allow less control as
they simply pay the local residential rate for each form of distributed
generation [20,35]. Net purchase and sale approaches, on the other
hand, promote far-reaching self-regulation as they neither stipulate a
regulated DG rate (as with feed-in tariffs), nor lock in high residential
rates (as with net metering) [36].

Net purchase and sale, also known as net billing, employs two se-
parate meters to independently track net distributed generation and net
load [33,36]. As indicated in Fig. 2, these two meters record the cus-
tomer’s precise energy flows and thus allow energy retailers to account
for net generation and net load separately, dynamically, and at different
prices. This policy is especially interesting for residential microgrids as
these (a) represent a single aggregate unit of loads and distributed
generation and (b) systematically alternate between periods of net
generation and net load. Hence, most microgrid evaluation studies
(implicitly) stipulate net purchase and sale pricing [14,18,21–26].

Although net purchase and sale pricing allows various tariff options
for residential microgrids, certain practical considerations limit this
pricing flexibility. Tariffs that do not price net generation, for example,
are not economically efficient and encourage downsizing of DG units
[22,27]. Moreover, selling prices should also not exceed wholesale
market levels to avoid cross-subsidies [37]. Similarly, we suggest not to
vary pricing for net load and net distributed generation. Although doing
so might be beneficial in specific scenarios, it logically breeds asym-
metric risk positions that benefit either energy retailers or microgrid
operators [12].

Based on these considerations, we selected twelve potential net
purchase and sale tariffs for our evaluation. As indicated in Fig. 3, we
examined four common electricity rate structures and three options to
bill residential microgrid operators for system (distribution and trans-
mission) and energy retailer services.

2.1. Examined electricity rate structures

Over the last century, energy retailers have developed various ap-
proaches to billing customers for power generation and supply. Of these
electricity rate structures, we included the four most prominent in our
analysis: flat and time-of-use pricing (two static alternatives), as well as
critical peak and real-time pricing (two dynamic options).

One: flat pricing. Here, the energy retailer offers a simple time-in-
variant rate for energy purchases (net load) and energy sales (net dis-
tributed generation). This approach closely mirrors current residential
practice where customers pay a pre-set rate for each delivered kWh,
irrespective of the time of usage. Two: time-of-use pricing. In this case,
the electricity rate varies with the time of day. Typically, time-of-use
schemes include a low off-peak rate that applies during night hours, a
higher shoulder rate for morning hours, and a peak rate during the
afternoon and early evening [38]. Like the flat-rate structure, these
rates are fixed contractually, i.e., energy retailers cannot adjust them
dynamically. Three: critical peak pricing. This combines a simple and
time-invariant flat rate with an energy retailer option to switch to an
elevated rate during so-called peak events. These can be periods of
threatened macrogrid stability or high wholesale market prices. In
practice, energy retailers may call peak periods for a certain number of
hours each year; however, they have to notify their customers up to a
day ahead of the upcoming peak pricing schedule [39]. And lastly, four:
real-time pricing. This option implements fully dynamic rates that track
wholesale market prices [38]. Accordingly, they differ from hour to
hour and from day to day.

2.2. Billing for system and energy retailer services

As with power generation, the electric power industry also devel-
oped particular options to charge customers for transmission and dis-
tribution as well as energy retailer services. For our analysis, we
adapted the most common alternatives for residential, commercial, and
DG customers.

Our first option is based on current residential practice where cus-
tomers pay a single and aggregate volumetric (USD/kWh) charge for
each kWh of electricity delivered to them. We call this approach fully
volumetric. We inferred the second option, termed partially volumetric,
from common pricing practices for commercial and industrial custo-
mers. These customers generally pay both volumetric (USD/kWh)
charges and a demand (USD/kW) charge on the highest peak load
during the billing period [37]. Our partially volumetric tariffs work on
the basis of this two-part approach: they feature a volumetric charge for
energy retailer services and a capacity charge for system costs. This
capacity charge extends the demand charge concept by factoring in
both demand and generation peaks, and it applies to the highest ab-
solute (generation or load) peak. Our third charging option (non-volu-
metric) is inspired by Consolidated Edison’s standby tariff for customers
with distributed generation, which only stipulates customer (fixed US
dollar) and demand charges [40]. The non-volumetric tariffs mirror this
idea and employ a customer and a capacity charge for energy retailer
and system services respectively.

3. Evaluation framework

Prior studies on residential tariff design have taken various eva-
luation approaches, from generic analytical models [19] to complex
empirical evaluations with the prominent Distributed Energy Resources
Customer Adoption Model (DER-CAM) [27]. Conversely, our study
builds on an empirical framework by Rieger et al. [14], which offers a
good tradeoff between computational overhead, flexibility, and eva-
luation robustness. This framework has two key components: a sim-
plified representation of the structure and behavior of a residential
microgrid, and a detailed mixed integer linear programming (MILP)
mechanism, which simulates cooperative energy management.

We made three adjustments to this framework to improve its ap-
plicability as well as its functionality. Number one, we extended the
residential microgrid model by adding a new element for community
wind energy and equipped all homes that own PV units with residential
battery storage. Number two, we extended the simulation engine with
six new constraints for battery storage management and enabled dis-
tributed generation curtailment, i.e., the mechanism could curtail dis-
tributed generation if this was cost-effective. Number three, we gen-
eralized the objective function to accommodate each of the twelve
tariffs examined. Details about these adjustments and explanations
about our residential microgrid model are provided below.

3.1. Residential microgrid model

As illustrated in Fig. 4, our residential microgrid model features two
overlapping networks: an electrical grid and an information network.

Fig. 2. Principal configuration of the net purchase and sale mechanism. The basic set-up
features two different meters that independently track and bill net distributed generation
and net load.
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The microgrid’s basic building blocks are two types of homes. Those
belonging to type I represent customers with smart household devices
but without microgeneration. Those belonging to type II, on the other
hand, have solar panels. To leverage the full potential of residential
solar [41] and to increase readiness for peak-based charges [23], all our
model’s type II homes also feature battery storage. Certain type I and
type II households also own electric vehicles,2 and the microgrid ad-
ditionally incorporates several small (communally owned) micro wind
turbines. As a whole, the microgrid is connected to the macrogrid
through a single point of common coupling.

The information network interlinks all these energy sources and
residential loads. Each homeowner has a home energy management
system (HEMS) that tracks the home’s basic electric parameters and
sends this information to the central energy management system. This
central controller subsequently combines this information with data on
the storage and generation levels of the community installations,
whereupon it curtails distributed generation, initiates battery (dis-)
charging, and triggers load shifting. The resulting operational para-
meters are frequently sent back to the individual management systems
to regulate power generation and consumption.

3.2. Central control mechanism

The central control mechanism optimizes the residential microgrid’s
electricity bill. While its details vary slightly with each tariff offered by
the energy retailer, its key objective is to minimize costly energy pur-
chases, maximize revenues from energy sales, and reduce costs from
capacity charges. To this end, the mechanism considers distributed
generation curtailment, schedules the microgrid’s shiftable loads, and
selects the battery-charging trajectory that best matches demand and
the available distributed generation from wind and solar energy. We
explain how we implemented these functions with a mixed integer
linear program below.

3.2.1. Battery storage modeling
Eq. (1) guarantees that the mechanism correctly accounts for the

initial state-of-charge of all battery units. Starting in the second opti-
mization period, Eq. (2) maps the state-of-charge trajectory of all bat-
teries over the simulation horizon. Constraint (3) imposes limits on the
amount of energy the battery units can hold, reflecting the fact that
batteries cannot charge beyond their physical capacity. It also limits the
depth of discharge if a minimum state-of-charge is required to avoid
early or otherwise undue degradation. Constraint (4) limits the char-
ging and discharging rate to the parameters specified by the battery
manufacturer. Constraints (5) and (6) ensure that batteries cannot
charge and discharge at the same time and that charging cannot be
modeled as negative discharging and vice versa.

= =soc SoC if t 1t init (1)

= + − ∀ >−soc soc RTE·c d t: t 1t t 1 t t (2)

Fig. 3. Classification of the analyzed twelve net purchase and sale tariffs. Each tariff features a different combination of service charges and electricity rate structures.

Fig. 4. High-level model of the simulated centrally controlled residential microgrids. The
constituent homes and the community wind turbines are connected via a distributed
electricity grid and an information network managed by the central controller. Both type I
and type II homes can (optionally) feature an electric vehicle.

2 As detailed in Section 4, we modeled electric vehicles whenever we had EV charging
data for the sampled Pecan Street home.
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⩾ ⩽ ∀soc SoC , soc BC tt min t (3)

⩽ ⩽ ∀c MCR, d MDR tt t (4)

= ∀c ·d 0 tt t (5)

⩾ ⩾ ∀c 0, d 0 tt t (6)

3.2.2. Smart household appliance and electric vehicle modeling
Constraints (7)–(13) model the load-shifting process for smart

household appliances and electric vehicles. Each of these smart loads is
represented by a set of binary decision variables xh i t, , and yh i t, , . The x
variables are one if smart load i is scheduled in period t and can be
attributed to home h. The y variables are one when the smart load has
terminated, which prevents repeated scheduling. Constraint (7) mat-
ches the smart loads to the respective home they belong to. Constraints
(8) and (9) ensure that the mechanism schedules each smart load and
does not interrupt it. Constraint (10) limits the scheduling windows to
the user-defined timeframes specified in the UPi t, parameters. Con-
straints (11) and (12) ensure that the mechanism does not reschedule a
terminated load. Finally, constraint (13) defines the activation variables
x and y as binary.

⩽ ∀x AH h,i,th,i,t h,i (7)

∑ = ∀
=

x PT h,i
t 1

T

h,i,t i
(8)

− − ⩽ ∀ >−(x x ) y 0 h,i,t: t 1h,i,t 1 h,i,t h,i,t (9)

⩽ ∀x UP h,i,th,i,t i,t (10)

+ ⩽ ∀x y 1 h,i,th,i,t h,i,t (11)

− ⩽ ∀ >−y y 0 h,i,t: t 1h,i,t 1 h,i,t (12)

∈ ∈ ∀x {0;1},y {0;1} h,i,th,i,t h,i,t (13)

3.2.3. Distributed generation, power balance, and peak load modeling
Constraints (14) and (15) safeguard that the demand-supply balance

always holds. Additionally, they define zdt as the microgrid’s external
net demand and zst as the amount of net supply in period t. Constraints
(16) and (17) are introduced so that p represents the highest absolute
net imbalance (net load or generation peak). Constraint (18) defines sgct
and wgct as distributed generation curtailment factors for solar and
wind power respectively.

∑ − + − + − = + ∀PC ·x z z d c FL sgc ·SGen wgc ·WGen t
h,i

i h,i,t d s t t t t t t tt t

(14)

= ⩾ ⩾ ∀z ·z 0,z 0,z 0 td s d st t t t (15)

− ⩽ ∀z p 0 tdt (16)

− ⩽ ∀z p 0 tst (17)

⩽ ⩽ ⩽ ⩽ ∀0 sgc 1,0 wgc 1 tt t (18)

3.2.4. Objective functions for the 12 microgrid tariffs
The central controller’s basic objective is to minimize the micro-

grid’s electricity costs. Eq. (19) highlights the general blueprint we used
to specify this objective for all twelve tariffs. Each period’s power im-
balance is remunerated at the applicable selling price SPt, provided the
microgrid is a net producer. Surplus demand, on the other hand, is
billed at the respective purchasing price PPt. The partially and non-
volumetric tariffs additionally incur a capacity charge (CapC) multi-
plied with the highest absolute net imbalance p over the optimization
horizon T. The non-volumetric objective functions also incorporate a
fixed customer charge (CusC). Table 1 details the exact specifications
for each tariff.

∑ ∑= − + +min tc PP· z SP· z CapC· p CusCt
t

d t
t

st t
(19)

4. Evaluation framework instantiation

To provide statistically meaningful results, while limiting compu-
tational overhead, we built 100 microgrid simulations, each covering a
new 10-home residential microgrid during a randomly selected week in
2015. Our stylized microgrids are based in Austin, Texas. For their
parametrization, we drew on the Pecan Street Dataport [29] for hourly
load data and PV micro-generation. Pecan Street Inc. is an Austin,
Texas-based research and development organization focused on ex-
amining residential water and energy usage. Its core database tracks
disaggregated (measured per-device) customer energy data from more
than 1300 volunteer homes, located mainly in Austin but also in Col-
orado and California. However, to approximate local microgrids, we
only focused on Austin and filtered out those 263 Austin homes that
had complete hourly load data for 2015. When evaluating different
microgrid sizes, we found that size-related benefits considerably abate
when a residential microgrid comprises more than ten homes. To keep a
check on computational complexity, we thus limited our microgrids to
10 randomly selected homes each.

Similarly, we used Pecan Street’s hourly wind speed measurements
to infer wind generation from nine Fortis Alizé type small wind turbines
by Fortis Wind B.V. [30]. We selected this configuration because, on
average, the combined output of the homes’ solar panels and of nine of
these turbines was equal to the energy needs of our microgrids. To
incorporate battery storage, we equipped each PV system owner in our
microgrids with a Powerwall 2 by Tesla, Inc. [31]. Furthermore, we used
Austin-specific wholesale electricity prices from the Electric Reliability

Table 1
Instantiation of the objective function for the examined twelve tariffs.

Tariff PPt SPt CapC CusC

Fully volumetric – Flat pricing FPPFP,FV FSP – –
Partially volumetric – Flat pricing FPPFP,PV FSP CapC –
Non-volumetric – Flat pricing FPPFP,NV FSP CapC CusCFP
Fully volumetric – Time-of-use pricing ToUPPt,FV ToUSPt – –
Partially volumetric – Time-of-use pricing ToUPPt,PV ToUSPt CapC –
Non-volumetric – Time-of-use pricing ToUPPt,NV ToUSPt CapC CusCToUP
Fully volumetric – Critical peak pricing max(FPP ,CPP )CPP,FV t max(FSP,CPP )t – –
Partially volumetric – Critical peak pricing max(FPP ,CPP )CPP,PV t max(FSP,CPP )t CapC –
Non-volumetric – Critical peak pricing max(FPP ,CPP )CPP,NV t max(FSP,CPP )t CapC CusCCPP

Fully volumetric – Real-time pricing RTPPt,FV RTSPt – –
Partially volumetric – Real-time pricing RTPPt,PV RTSPt CapC –
Non-volumetric – Real-time pricing RTPPt,NV RTSPt CapC CusCRTP
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Council of Texas (ERCOT) [42] and Austin Energy tariffs [43] to cali-
brate and instantiate the twelve evaluation tariffs. Below, we detail
these data points and explain how we fit them into our empirical eva-
luation model.

4.1. Load data

To transform electricity consumption of the sample homes from
Austin into smart loads, we leveraged a recently popularized appliance
classification [44–46]. In doing so, we distinguished between three
types of loads. One, devices like refrigerators that run constantly and do
not depend on user interaction, which is to say they produce fully au-
tomatically controllable loads. Since these loads are attributable to spe-
cific devices, they are flexible and can be run preemptively or delayed
without inconvenience to users. Two, dishwashers and comparable
appliances that run independently yet require initial activation. Such
devices produce semi-automatically controllable loads, which are simi-
larly flexible and can be scheduled within user-specified bounds. Three,
any device that constantly ‘interacts’ with the user, such as a TV set,
produces unshiftable fixed loads.

In contrast to semi-automatically controllable loads, which are
highly flexible, fully automatically controllable loads can, as a general
rule, only be shifted within a timeframe of less than a single hour [47].
Because of computational complexity, we limited our evaluation to an
hourly scale and therefore simplified this classification by treating both
the fully automatically controllable and the fixed loads as unshiftable.
Only for the semi-automatically controllable loads did we infer flex-
ibility. While we believe that this simplified approach can provide a
conservative estimate of the potential of shiftable loads, we expect the
operational effects, especially of shifting air conditioning (AC), to be
even higher. Table 2 summarizes our revised device classification.

As shiftable devices generally remain plugged in even when idle,
they generate a non-shiftable base load. We approximated this base
load for each device by averaging all loads that fell below its overall
mean load. We then subtracted this base load from the device’s load
curve and treated it like a non-shiftable load. To simply load sche-
duling, we ultimately turned the remaining shiftable loads into shiftable
blocks as exemplified for a random dishwasher in Fig. 5. Each shiftable
block has the same start and end point as well as the same total energy
need as the shiftable load it approximates.

Fig. 6 depicts the weekly load profile of a 10-home microgrid before
and after we turned these smart loads into shiftable blocks. The
‘blockification’ causes minor smoothing; the overall load curves, how-
ever, remain almost identical and highly correlated at 99 %.

To infer flexibility, we stipulated that users would allow shifting
windows of various lengths in which the shiftable blocks could be
scheduled. We calculated these windows by multiplying the block’s
duration with a normally distributed random factor (shifting
window = N(μ, σ2) × duration). In a preliminary analysis, we found
that scaling the variance had negligible effects. We thus kept it constant
at a value of 1 and varied only the expected value from 0 to 5 as dis-
cussed in Section 5.2.

4.2. Distributed generation data

Aside from disaggregated load data, Pecan Street also tracks power
output levels of residential PV systems. Of the examined Austin homes,
56 % (N = 148) had such a system. The top row in Fig. 7 shows that
while the average output (bold red3 line) was rather low at 0.5 kW, it
was noticeably higher during summer months and generally peaked in
the early afternoon.

While Pecan Street homes do not own micro wind turbines, the

dataport does track Austin wind speeds. We translated these wind
speeds into power outputs of stylized micro turbines by using the power
curve of a popular small wind turbine model. Specifically, we selected
the Fortis Alizé [30] as its power output most closely matched the en-
ergy needs of our sample microgrids. When equipped with nine Fortis
Alizé, our microgrids, on average, self-generated 100 % of their overall
power needs and only required a macrogrid connection to cover tem-
poral imbalances. The bottom panel of Fig. 7 shows the resulting wind
power output in 2015. The average hourly output equaled 6.55 kW, its
highest levels occurring between the months of April and September.
Winds increased especially during the day and peaked at approximately
6 pm. Although the daily output patterns look similar for solar and
wind power, we only found a moderate correlation of 14 % which rose
to 22 % between April and September.

4.3. Battery storage parameters

Selecting both the right energy storage technology and the right size
generally requires a thorough analysis of several factors, such as
economies of scale, local electricity prices and tariffs, subsidies, and the
power generation profiles of coupled microgeneration units [48,49]. To
manage the complexity of our evaluation study, we simplified these
considerations and assumed that each of the modeled type II homes
would own a single default energy storage unit. For this unit, we chose
the Powerwall 2, Tesla, Inc.’s current home battery model [31] as re-
cent studies indicate its growing profitability [50,51]. The Powerwall 2
is a lithium-ion battery with 13.5 kWh of usable capacity and a power
level of 5 kW that effectively represents the maximum charging and
discharging rate. The Powerwall 2’s depth of discharge equals 100 %
and its round-trip efficiency amounts to 90 %. To minimize potential
biases, we assumed that each Powerwall 2 was empty at the beginning
of the simulation timeframe.

4.4. Tariff calibration

While calibrating the twelve tariffs, we faced two challenges which
energy retailers will also need to tackle in the future. First, they will not
know beforehand how residential microgrids will respond to a new
tariff. Second, they will need to rely on potentially erroneous predic-
tions of demand and supply patterns. We approached this double
challenge by using a representative calibration load profile which an
energy retailer might use to set new tariffs. Specifically, we built an
average 10-home microgrid from all eligible 263 Austin homes and
equipped this calibration microgrid with 9 Fortis Alizé type wind tur-
bines to simulate a residential microgrid which serves 100 % of its
energy needs with DG and only relies on the macrogrid for inter-
temporal balancing. For an overview of the parameters used, please
refer to Table 3.

To specify the twelve tariffs, we first calculated the annual elec-
tricity bill this calibration microgrid would have incurred in 2015. This
bill then served as a cost reference for all twelve tariffs, i.e., we cali-
brated all tariffs to produce the same annual costs as the calibration bill.
This benchmark bill had two components: number one, the electricity
cost pursuant to Austin Energy’s tiered volumetric retail tariff [43] and

Table 2
Classification of available Pecan Street devices.

Shiftable devices Non-shiftable devices

Washing machines Lighting
Dishwashers Kitchen appliances
Dryers Generic smart plugs
Electric vehicles Air conditioning

Freezers
Furnaces
Refrigerators

3 For interpretation of color in Fig. 7, the reader is referred to the web version of this
article.
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number two, a generation credit (i.e., a feed-in tariff). As our residential
microgrids do not qualify as small residential producers, we did not
apply Austin’s subsidized and elevated feed-in tariff, but instead re-
munerated distributed generation at the 2015 average wholesale
market price.

For the fully volumetric flat tariff, we then proceeded as indicated in
the first column of Table 4. We began by calculating the total uncovered
costs, i.e., the sum of the reference bill plus the costs and revenues of all
net purchases and sales at the flat selling rate (set at the average
wholesale market price). We subsequently derived the tariff’s volu-
metric charge by dividing the uncovered costs by the amount of energy
purchased from the energy retailer in 2015. The resulting flat pur-
chasing price (including the volumetric charge) amounts to twice the
current Austin Energy rate and exemplifies the “death spiral” of volu-
metric system service pricing [37]. As self-sufficient homes and mi-
crogrids draw ever less electricity from the grid, system operators will
be tempted to considerably inflate peak-based charges to cover their
macrogrid investments. This in turn raises the microgrid’s incentives to
reduce its electricity purchases, thus creating a “death spiral” of esca-
lating prices and eroding revenues.

The calculation of the partially volumetric tariff mirrors the fully
volumetric procedure. However, it also includes the impact of capacity
charges on the calculation of the uncovered costs. We specified these
capacity charges based on Austin Energy’s applicable demand charges
for commercial customers with a peak load greater or equal to 50 kW
[43]. As shown in the second column of Table 4, costs from capacity
charges contribute the largest part of the overall electricity bill, thus the
resulting volumetric charge is only a third of its fully volumetric
counterpart. The calculation of the non-volumetric alternative in the
third column differs from the two volumetric approaches, as it does not
break down the uncovered costs into a volumetric charge, instead
billing them directly as a weekly customer charge. As in the partially
volumetric scenario, the calculation starts with the reference bill and
adjusts it for revenues from energy sales, costs of energy purchases, and
costs related to the capacity charge. We spread these costs over all

52 weeks to arrive at a weekly customer charge of approximately
90 USD. Per home, this charge is three times higher than Austin En-
ergy’s current charge, which might elicit customer dissatisfaction if it is
not properly related to the final electricity bill as indicated in Section 5.

To calculate the respective charges for the time-of-use tariffs, we
stipulated different rates for off-peak (12 am–6 am& 10 pm–12 am),
mid-peak (6 am–2 pm& 8 pm–10 pm) and peak (2 pm–8 pm) hours.
This schedule mirrors Austin Energy’s current ToU tariff for residential
customers [43]. It also reflects typical ToU schedules [38]. Like the flat
tariff rate, we defined these ToU selling rates as the average wholesale
prices during each of the three periods. Based on these rates, we then
calculated the uncovered costs and condensed them into a volumetric
or customer charge respectively.

Similarly, the calibration of the critical peak tariffs mirrors the flat
pricing procedure, yet it also includes a critical peak price for system-
wide peak events. We based this price and the acceptable number of
peak hours on a Pecan Street pilot in 2013/14 which evaluated critical
peak pricing for single homes [52]. Specifically, we set a critical peak
price of 0.64 USD/kWh (identical for electricity purchases and sales) for
the 45 hours in 2015 with the highest wholesale market prices. These
critical peak hours resulted either in additional costs, if the calibration
microgrid had to buy electricity, or in further revenues, if it was sup-
plying to the energy retailer at these hours. We subsequently reduced
the uncovered costs by the resulting net critical peak costs, then fol-
lowed the rest of the flat pricing routine.

As for the real-time tariff calibration, this adhered to the ToU pro-
cedure, but substituted wholesale market prices for the ToU rates.
Please refer to the Appendix A for a more detailed step-by-step cali-
bration of the time-of-use, critical-peak, and real-time tariffs.

5. Evaluation results and tariff design implications

In the following, we discuss the results of our 100 microgrid simu-
lations. We also present a set of sensitivity analyses to illustrate the
effects of varying levels of solar generation, wind generation, battery

Fig. 5. Processed shiftable loads of a Pecan Street dishwasher.
Each block approximates a shiftable load and has the same
overall energy need as the original.

Fig. 6. Effects of transforming flexible loads into shiftable blocks.
The figure shows the weekly load curve of a sample residential
microgrid before and after ‘blockification’ of shiftable loads.
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Fig. 7. Overview of the simulated distributed generation outputs. The top two panels show the hourly output levels of an average Pecan Street PV system over the course of the year (left)
and over an average day in 2015 (right). The bottom panels illustrate the power outputs of a Fortis Alizé type wind turbine, calculated from Austin wind speeds. For better comparability,
the bottom left panel does not depict power output levels beyond 4 kW.

Table 3
Tariff calibration parameters.

Calibration parameters Instantiation Source

Predictive load profile Load profile of an average 10-home residential microgrid equipped with nine Fortis Alizé type wind turbines Pecan Street [29]
Benchmark electricity tariff Tiered Austin Energy volumetric tariff for residential customers Austin Energy [43]
Wholesale market prices ERCOT Real-Time Settlement Point Prices (RTSPPs) calculated for the Austin Load Zone ERCOT [42]
Capacity charge Condensed Austin Energy demand charges as applicable to commercial customers with a peak load greater or equal to

50 kW
Austin Energy [43]

Critical peak pricing parameters Parameters from a critical peak pricing pilot by Pecan Street in 2013 and 2014 Pecan Street [52]
ToU schedule Simplified version of Austin Energy’s residential ToU schedule Austin Energy [43]

Table 4
Calibration of the three flat tariffs.

Fully volumetric Partially volumetric Non-volumetric

Definition of the flat selling price

= ∑ =FSP [USD/kWh] · RTSPP1
T t 1

T
t

0.0247 0.0247 0.0247

Definition of the weekly capacity charge
CapC [USD/kW] – 3.7598 3.7598

Calculation of the total uncovered costs
Total 2015 electricity costs to be allocated [USD] 13,953.1965 13,953.1965 13,953.1965
+ 2015 revenues from net DG sales at FSP [USD] 1227.3886 1227.3886 1227.3886
− 2015 costs from net demand purch. at FPP = FSP [USD] 1205.2956 1205.2956 1205.2956
− 2015 costs from 52 weekly CapCs [USD] – 9325.9412 9325.9412

= Total uncovered costs [USD] 13,975.2895 4649.3483 4649.3483

Calculation of the flat purchasing price
Total uncovered costs [USD] 13,975.2895 4649.3483 –
/ Total amount of energy purchased in 2015 [kWh] 48,840.6188 48,840.6188 –

= VolCFP,x [USD/kWh] 0.2861 0.0952 –
+ FSP [USD/kWh] 0.0247 0.0247 0.0247

= FPPFP,x [USD/kWh] 0.3108 0.1199 0.0247

Calculation of the weekly customer charge
Total uncovered costs [USD] – – 4649.3483
/ 52 weeks – – 52.0000

= Weekly CusCFP [USD] – – 89.4105
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size, and consumer flexibility. Specifically, we scaled all these compo-
nents from 0 % to 200 %, re-simulating all 100 microgrid simulations
for each new scenario. In total, we performed 61,200 simulation runs
(12 tariffs × 51 parameter combinations × 100 residential microgrid
instances). Each of these runs took approximately 3 s to solve on an
8 GB RAM computer with an Intel® Core™ i5-4200U CPU with two cores
@ 1.60 GHz, running Gurobi® 7.0.0.

5.1. Baseline analysis

To compare the twelve tariffs, we stipulated that an ideal tariff
would have to reconcile the interests of energy retailers, residential
microgrid operators, and system operators. First, we looked at the re-
sulting electricity costs (key financial determinant for microgrid op-
erators) and the degree to which the tariffs facilitated cost-effective
pricing (important to energy retailers). We then analyzed the absolute
peak load and the crest factor, i.e., the quotient of the absolute peak
load and the root mean square of all loads. With these two measures,
system operators can gauge capacity requirements for the point of
common coupling (absolute peak loads) and the average degree of grid
utilization (crest factors). Even though these measures are primarily
relevant to system operators, it is essential that energy retailers and
microgrid operators also take these two measures into account, since
system operators will charge them for their contribution to system
costs. We have summarized the results as averaged over the initial 100
simulation runs in Table 5.

These figures suggest that fully volumetric tariffs are the least at-
tractive alternative, as they fall short on all counts: in terms of energy
bill savings, cost-effectiveness, and grid stabilization. Most microgrid
operators would prefer partially volumetric tariffs. These tariffs offer
the largest incentive for smart load management and promise two op-
tions for energy bill savings. Option one, reduce absolute peak loads.
Option two, limit externally purchased energy. Energy retailers and
system operators, on the other hand, would favor the more expensive
non-volumetric alternatives as they (a) ensure that microgrid operators
pay for system services as soon as they rely on the macrogrid, (b)
warrant stable customer charge revenues, and (c) effectively reduce
absolute peak loads and crest factors.

Meanwhile, the electricity rate structure has mere secondary effects.
Certainly, critical peak pricing seems to promise the highest cost sav-
ings potential, followed by real-time, ToU, and finally flat pricing, but
these minor cost benefits are essentially acquired at the cost of higher
absolute peak loads and crest factors.

5.2. Sensitivity analyses

To test these findings for different microgrid configurations, we
systematically varied the level of solar generation, wind generation,
battery size, and consumer flexibility as indicated in Fig. 8.

5.2.1. Electricity costs
Panels ‘1a’ and ‘2a’ of Fig. 8 indicate that the overall electricity costs

are lower for microgrids with higher solar and wind generation capa-
city. However, each additional unit offers comparatively fewer energy
bill reductions (i.e., decreasing marginal savings). This deceleration has
various causes, depending on the employed charges. With volumetric
billing, each kWh of distributed generation that supersedes power im-
ports saves volumetric charges. Yet with higher levels of DG, there are
fewer imports to supersede, so marginal volumetric charge savings
decrease. Similarly, capacity charges lead to decreasing marginal cost
savings. They encourage generation curtailment whenever generation
levels rise considerably beyond the overall average. The microgrid
operator thus chooses to waste peak generation to save on capacity
costs. While the microgrid operator cannot eliminate these costs
without disconnecting from the macrogrid, panel ‘3a’ nevertheless in-
dicates that they can be lowered by leveraging battery storage. This
effect, however, is counteracted by the fact that battery storage has a
decreasing marginal impact on electricity costs, i.e., each further ad-
dition of battery capacity reduces electricity bills by a smaller margin.

Panel ‘5a’ conjoins the individual analyses by simultaneously
scaling all four components to pinpoint the effects of different levels of
collective “capacity investment” by the microgrid’s participants. As
shown, non-volumetric tariffs incur a sizeable customer charge, yet
they are the most economical option up to 80 % of capacity investment.
In this interval, the benefits of cheaper purchasing rates seem to out-
weigh the volumetric charge savings that the microgrid can obtain by
minimizing energy purchases. In the 80 % to 160 % interval, the vo-
lumetric charge elimination strategy pays off and partially volumetric
tariffs are cheaper than their non-volumetric counterparts. For capacity
investment beyond 160 %, residual power imports are so low that flat
tariffs (without capacity charges for generation peaks) are the cheapest
option.

5.2.2. Absolute peak loads
As indicated in panels ‘1b’ to ‘5b’, absolute peak loads coincide al-

most perfectly for all tariffs with capacity charges. With increasing le-
vels of capacity investments, absolute peak loads rapidly drop and re-
main at a stable, low level. In contrast, the fully volumetric tariffs
feature a markedly different pattern and absolute peak loads escalate

Table 5
Baseline simulation results.

Pricing scheme Electricity costs [in USD] (and in % of the reference bill) Absolute peak load [in kW] Crest factor

Fully Volumetric – Flat 189.29 (75 %) 50.19 3.78
Fully Volumetric – ToU 186.83 57.99 4.14
Fully Volumetric – RT 181.83 64.05 4.37
Fully Volumetric – CP 179.84 51.26 3.80

Non-Volumetric – Flat 133.82 9.67 1.20
Non-Volumetric – ToU 132.65 9.67 1.09
Non-Volumetric – RT 128.35 10.56 1.08
Non-Volumetric – CP 127.26 10.73 1.23

Partially Volumetric – Flat 109.79 9.67 1.35
Partially Volumetric – ToU 109.54 9.67 1.33
Partially Volumetric – RT 107.75 10.12 1.34
Partially Volumetric – CP 104.86 (43 %) 10.63 1.39

Especially relevant to Microgrid operators System operators
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perceptibly. This steep rise is most apparent in the case of real-time
pricing, which systematically encourages microgrid operators to exploit
temporal price differences with little regard for their load and genera-
tion profile. Higher levels of distributed generation and battery storage
reinforce these peak effects (panels ‘1b’ to ‘3b’), whereas consumer
flexibility tends to have negligible effects (panel ‘4b’).

5.2.3. Crest factors
While the partially volumetric and non-volumetric tariffs hardly

differ in their effect on peak loads, they do vary, if only slightly, in their
impact on crest factors (panels ‘1c’ to ‘5c’). As the non-volumetric tariffs
offer the same purchasing and selling prices, they effectively encourage
more energy trading, thus inflating crest factors.

Fig. 8. Sensitivity analyses of key economic and load measures. The ‘a’, ‘b’, and ‘c’ labelled panels represent the respective electricity cost, abs. peak load, and crest factor sensitivities to
changing microgrid configurations. The panels ‘1’, ‘2’, ‘3’, and ‘4’ depict the results of varying solar generation capacity, wind generation capacity, battery size, or consumer flexibility.
Panels marked ‘5’ simultaneously scale all four parameters.

G. Fridgen et al. Applied Energy xxx (xxxx) xxx–xxx

11



Unlike peak loads, the crest factors of the fully volumetric tariffs do
not escalate indefinitely. Instead, they reach a plateau where the mi-
crogrid turns into a relatively stable net producer. Even though this
renders the microgrid’s load profile more balanced, it does little to re-
duce its drastic generation peaks.

5.3. Tariff design implications

Based on these findings, we argue that any future residential mi-
crogrid tariff should avoid volumetric billing in favor of capacity and
customer charges.

Capacity charges in particular will incentivize microgrid operators
to balance their load and generation profiles. They should therefore
apply to any microgrid that connects to the macrogrid, whether it acts
as an independent power producer (IPP) or a large consumer. Effective
distribution grid management might furthermore require variable ca-
pacity charges. These charges could, e.g., increase linearly with abso-
lute peak loads and/or include jumps for breaking personalized peak
barriers [28]. Such variations, however, should fairly account for the
benefits of reduced peaking infrastructure and allocate network costs
equitably [27,28,35,53].

Furthermore, customer charges would allow energy retailers to lock
in stable cash-flows. In competitive retail markets, however, energy
retailers will need to adapt these charges to their service levels.
Customer charges could thus be higher for microgrids which request
flat rates (i.e., wholesale price risk intermediation) and significant
electricity deliveries. This customer segment could, for instance, in-
clude many urban apartment buildings with too little roof area to install
large arrays of solar panels or a micro wind turbine. Meanwhile, the
customer charge should be lower for self-sufficient microgrids that re-
quire little or no macrogrid support and price intermediation. Microgrid
operators with significant distributed generation which only rely on
their energy retailer for wholesale market brokerage might ultimately
demand an even lower charge.

As for tariffs with capacity and customer charges, these would also
enable energy retailers and microgrid operators to freely negotiate rate
structures without negatively affecting local macrogrid stability or
threatening the energy retailer’s revenue base. Ultimately, however, we
expect that critical peak pricing will play a prominent role, as it poses
very moderate price risks to microgrid operators and yet encourages
demand reductions during the few extreme peaks which determine
most macrogrid costs [35]. We also caution against touting real-time
pricing as an economic panacea for residential tariff design [19,54], as
many microgrid operators might be reluctant to assume the implicit
price risk. Energy retailers, on the other hand, can easily manage this
risk by creating sufficiently large customer portfolios and trading in the
wholesale market [55]. Nevertheless, real-time wholesale pricing might
become the preferred option for microgrids that mainly act as IPPs. In
this case, energy retailers would act as aggregators and permit whole-
sale market integration, even if the individual power outputs would not
meet minimum size requirements for wholesale market participation.

6. Conclusion

Residential microgrids could resolve many technical challenges in-
herent to distributed residential power generation [3]. Energy retailers,
however, still lack effective tariffs for these prospective customers. Our

study attempts to fill this gap and empirically reviews twelve net pur-
chase and sale tariffs with a residential microgrid simulation frame-
work.

Based on these simulations, we made a series of discoveries. Number
one, fully volumetric billing would encourage shortsighted load man-
agement at the expense of drastic absolute peak loads and macrogrid
instability. Ultimately, it might also threaten the energy retailer’s rev-
enue base, as microgrid operators can easily circumvent volumetric
charges by reducing macrogrid imports. Number two, our study in-
dicates that time-varying rates (ToU, critical peak, and real-time) may
offer certain financial benefits for microgrid operators, yet can also
result in more extreme load profiles. However, if residential microgrid
tariffs were to bill system costs via capacity charges, time-varying rates
would have little impact on energy bills, energy loads, and generation
profiles. Number three, our analyses indicate that a combination of
capacity and customer charges would ensure that microgrid operators
present stable load and generation profiles, while also guaranteeing
that they pay their share of overall system costs. This share would fairly
reflect the microgrid’s actual dependence on the macrogrid and the
energy retailer’s services. Energy retailers might therefore want to offer
residential microgrid tariffs with capacity and customer charges as well
as negotiable rate structures. Such tariffs could lower the microgrid
operator’s electricity bill and foster peak shaving, while also facilitating
stable allocation of energy retailer and system costs (distribution and
transmission).

These results are robust in our evaluation setting. We are aware,
however, that they are based on an evaluation study that naturally
simplifies certain aspects which would require complex modeling in
real-world settings [56]. It is important to note that our evaluation
explicitly stipulates a net purchase and sale policy rather than one of
the more common feed-in tariff or net-metering mechanisms. By the
same token, energy retailers in net metering jurisdictions could easily
mirror the suggested non-volumetric tariffs. These tariffs feature the
same (dynamic) purchasing and selling rates and would thus also
qualify for net metering. However, our tariffs are not directly trans-
ferable to jurisdictions with feed-in policies, as these directly price
distributed generation rather than net generation. Additionally, we did
not reflect the flexibility of residential loads that are shiftable for less
than an hour. Hence we did not account for shiftable thermal loads such
as refrigerators, furnaces, and air conditioning, though the latter con-
tribute significantly to summer peak loads [37,57,58]. Prior research,
on the other hand, indicates that AC units would respond quite similarly
to different rate structures [59]. We also believe that dropping our
assumption of perfect information would moderate the identified tariff
effects and paint a more ambiguous picture. Without perfect foresight,
electricity bill savings would probably be less pronounced, load peaks
and crest factors would be higher, and optimization against time-
varying rates would be more difficult. Nevertheless, we believe that our
key results would remain unchanged if we were to include “real-word”
uncertainty. Volumetric billing would still cause unstable load profiles,
capacity charges would still moderate the effects of time-varying rates,
and non-volumetric billing would still warrant stable cost-allocation
and encourage microgrid operators to cap load and generation peaks.

To put it in a nutshell, we are thus confident that, with the indicated
caveats, our study can serve as a practical and broad reference point for
future residential microgrid tariff design.

Appendix A. Tariff calibration for the ToU, critical peak, and real-time pricing tariffs

See Tables 6–8.
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Table 6
Calibration of the three time-of-use tariffs.

Fully volumetric Partially volumetric Non-volumetric

Definition of the ToU selling prices
ToUS P1 [USD/kWh] = Average RTSPP – off-peak 0.0179 0.0179 0.0179
ToUS P2 [USD/kWh] = Average RTSPP – mid-peak 0.0256 0.0256 0.0256
ToUS P3 [USD/kWh] = Average RTSPP – peak 0.0320 0.0320 0.0320

Definition of the weekly capacity charge
CapC [USD/kW] – 3.7598 3.7598

Calculation of the total uncovered costs
Total 2015 electricity costs to be allocated [USD] 13,953.1965 13,953.1965 13,953.1965
+ 2015 revenues from net DG sales at ToUSPt [USD] 1317.0199 1317.0199 1317.0199
− 2015 costs from net dem. purch. at ToUPPt = ToUSPt [USD] 1203.1101 1203.1101 1203.1101
− 2015 costs from 52 weekly CapCs [USD] – 9325.9412 9325.9412

= Total uncovered costs [USD] 14,067.1062 4741.1651 4741.1651

Calculation of the ToU purchasing prices
Total uncovered costs [USD] 14,067.1062 4741.1651 –
/ Total amount of energy purchased in 2015 [kWh] 48,840.6188 48,840.6188 –

= VolCToUP,x [USD/kWh] 0.2880 0.0971 –

ToUP P1 [USD/kWh] = ToUS P1 + VolCToUP,x 0.3060 0.1150 0.0179
ToUP P2 [USD/kWh] = ToUS P2 + VolCToUP,x 0.3137 0.1227 0.0256
ToUP P3 [USD/kWh] = ToUS P3 + VolCToUP,x 0.3201 0.1291 0.0320

Calculation of the weekly customer charge
Total uncovered costs [USD] – – 4741.1651
/ 52 weeks – – 52.0000

= Weekly CusCToUP [USD] – – 91.1763

Table 7
Calibration of the three critical peak tariffs.

Fully volumetric Partially volumetric Non-volumetric

Definition of the flat selling price

= ∑ =FSP [USD/kWh] · RTSPP1
T t 1

T
t

0.0247 0.0247 0.0247

Definition of the critical peak price
CPP [USD/kWh] 0.6400 0.6400 0.6400

Definition of the weekly capacity charge
CapC [USD/kW] – 3.7598 3.7598

Calculation of the total uncovered costs
Total 2015 electricity costs to be allocated [USD] 13,953.1965 13,953.1965 13,953.1965
+ 2015 revenues from net DG sales at FSP [USD] 1227.3886 1227.3886 1227.3886
− 2015 costs from net dem. purch. at FPP = FSP [USD] 1205.2956 1205.2956 1205.2956
+ 2015 revenues from CPP events [USD] 61.8788 61.8788 61.8788
− 2015 costs from CPP events [USD] 173.1284 173.1284 173.1284
− 2015 costs from 52 weekly CapCs [USD] – 9325.9412 9325.9412

= Total uncovered costs [USD] 13,864.0399 4538.0987 4538.0987

Calculation of the flat purchasing price
Total uncovered costs [USD] 13,864.0399 4538.0987 –
/ Total amount of energy purchased in 2015 [kWh] 48,840.6188 48,840.6188 –

= VolCCPP,x [USD/kWh] 0.2839 0.0929 –
+ FSP [USD/kWh] 0.0247 0.0247 0.0247

= FPPCPP,x [USD/kWh] 0.3085 0.1176 0.0247

Calculation of the weekly customer charge
Total uncovered costs [USD] – – 4538.0987
/ 52 weeks – – 52.0000

= Weekly CusCCPP [USD] – – 87.2711
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Table 8
Calibration of the three real-time tariffs.

Fully volumetric Partially volumetric Non-volumetric

Definition of the real-time selling prices
RTSPt [USD/kWh] = RTSPPt RTSPPt RTSPPt RTSPPt

Definition of the weekly capacity charge
CapC [USD/kW] – 3.7598 3.7598

Calculation of the total uncovered costs
Total 2015 electricity costs to be allocated [USD] 13,953.1965 13,953.1965 13,953.1965
+ 2015 revenues from net DG sales at RTSPt [USD] 1264.0604 1264.0604 1264.0604
− 2015 costs from net dem. purch. at RTPPt = RTSPt [USD] 1217.1487 1217.1487 1217.1487
− 2015 costs from 52 weekly CapCs [USD] – 9325.9412 9325.9412

= Total uncovered costs [USD] 14,000.1082 4674.1670 4674.1670

Calculation of the real-time purchasing prices
Total uncovered costs [USD] 14,000.1082 4674.1670 –
/ Total amount of energy purchased in 2015 [kWh] 48,840.6188 48,840.6188 –

= VolCRTP,x [USD/kWh] 0.2866 0.0957 –
+ RTSPt [USD/kWh] RTSPPt RTSPPt RTSPPt

= RTPPt [USD/kWh] RTSPPt + 0.2866 RTSPPt + 0.0957 RTSPPt

Calculation of the weekly customer charge
Total uncovered costs [USD] – – 4674.1670
/ 52 weeks – – 52.0000

= Weekly CusCRTP [USD] – – 89.8878
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