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Abstract

A promising new delivery model involves the use of a delivery truck that collaborates with

a drone to make deliveries. Effectively combining a drone and a truck gives rise to a new

planning problem that is known as the Traveling Salesman Problem with Drone (TSP-D).

This paper presents an exact solution approach for the TSP-D based on dynamic program-

ming and present experimental results of different dynamic programming based heuristics.

Our numerical experiments show that our approach can solve larger problems than the

mathematical programming approaches that have been presented in the literature thus far.

Moreover, we show that restrictions on the number of operations can help significantly re-

duce the solution times while having relatively little impact on the overall solution quality.

Keywords: Traveling salesman problem, Vehicle routing, Drones, Dynamic Programming

1 Introduction

Several Internet retailers and logistics service providers including Amazon, Singapore post

and DHL are experimenting with the use of drones to support the delivery of parcels

and mail. One promising new operating model is the use of a regular delivery truck that

collaborates with a drone to make deliveries. This way, the high capacity and long range

of the truck can be combined with the speed and flexibility of a drone.

Together with the University of Cincinnati, Amp Electric Vehicles supports this new

operating model by developing a drone that deploys from a compartment in the roof of

an electric delivery truck. A new Mercedes Benz concept vehicle called ‘Vision Van’ also

includes roof-top drones (Condliffe, 2016) and UPS recently tested launching a drone from

the roof of a delivery van (Steward, 2017).
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Type of approach Solution procedure

Exact methods Integer linear programming (Agatz et al., 2017)

Dynamic programming (this paper)

Approximation algorithms (Agatz et al., 2017)

Heuristic methods Simple heuristics (Murray and Chu, 2015; Ha et al., 2015)

Genetic algorithms (Ferrandez et al., 2016)

Simulated annealing (Ponza, 2016)

Table 1: Solution procedures proposed for the TSP-D

Effectively combining a drone and a truck gives rise to a new planning problem that

we call the Traveling Salesman Problem with Drone (TSP-D). The problem aims to find

a route for both the delivery vehicle and the drone that minimizes the total joint time to

serve all delivery tasks. Due to its limited capacity, the drone has to return to the vehicle

to pick up the parcel before each new delivery. For this reason, the route of the drone

need to be synchronized with that of the truck.

The problem has only recently started to receive some attention from the transporta-

tion optimization community. Wang et al. (2016) and Poikonen et al. (2017) analyze the

theoretical benefits of using one or more drones together with one or more delivery vehicles

to make deliveries. Carlsson and Song (2017) use continuous approximation to derive an-

alytical formulas to estimate the expected delivery costs in this setting. Table 1 provides

an overview of the different solution approaches that have been proposed in the literature

for several variants of the problem. We see that so far, most research has solely focused

on heuristic approaches. Exact solution approaches based on mathematical programming

so far are only capable of solving small instances of the problem, i.e. up to ten locations

(Agatz et al., 2017). In this contribution, we propose an exact approach based on dynamic

programming that is able to solve larger instances.

For the classic Traveling Salesman Problem (TSP) Held and Karp (1962); Bellman

(1962) first proposed a dynamic programming approach. For the general TSP without ad-

ditional assumptions, this is the exact algorithm with the best known worst-case running

time to this day (Applegate et al., 2011). Dynamic programming approaches have been

proposed for various variants of the TSP, including the single vehicle dial-a-ride problem

(Psaraftis, 1980), the time-dependent TSP (Malandraki and Daskin, 1992) and the TSP

with time window and precedence constraints (Mingozzi et al., 1997). Dynamic program-

ming approaches also have been used as the basis for heuristics for various TSP and VRP

problems (Malandraki and Dial, 1996; Kok et al., 2010).

In this paper, we introduce a dynamic programming approach to solve the TSP-D

problem and extend this approach to develop an A* algorithm. Furthermore, we inves-

tigate the impact of restrictions on the number of locations the truck may visit while



the drone is performing an delivery on the computation time and solution quality by an

extensive computational study.

The remainder of this paper is organized as follows. In Section 2, we formally define

the TSP-D. In Section 3, we present a dynamic programming algorithm for the TSP-D

and also present two ways to speed up the algorithm. Section 4 presents the results of an

extensive numerical study. Finally, in Section 5, we offer some final remarks and directions

for future research.

2 Problem description

The TSP-D can be modeled as a set V of n locations, which include a depot v0 and n-1

customer locations. Furthermore, two cost functions c, cd : V 2 → R model distances or

travel times between the locations. We generally assume that c(v, w) stands for the driving

time of the truck driving from v to w, and cd(v, w) stands for the time it takes the drone

to fly from v to w, but other types of non-negative cost functions can be considered as

well.

The objective of the TSP-D is to find the minimum cost tour which serves all customer

locations by either the truck or the drone. We assume that the drone has unit-capacity

and has to pick up a new parcel at the truck after each delivery. Moreover, the pickup of

parcels from the truck can only take place at the customer locations, i.e. the drone can

only land on and depart from the truck while it is located at a node.

We define a constant α, that relates the speed of the drone and the speed of the truck

to each other such that the drone can be at most α times faster than the truck for a pair

of locations. Formally, we say that α is the minimum value for which αcd(v, w) ≥ c(v, w)

for every pair of locations v, w ∈ V that have non-zero drone costs cd(v, w). The special

case where αc(v, w) = cd(v, w) for any pair of locations can be interpreted as a situation

where the drone and truck travel via the same network, but the drone is a factor α faster

than the truck.

For a given tour, we distinguish between the following types of nodes:

Drone node: a node that is visited by the drone separated from the truck

Truck node: a node that is visited by the truck separated from the drone

Combined node: a node that is visited by both truck and drone

To compute the time needed for a tour, we have to consider that the two vehicles need

to be synchronized, i.e., they have to wait for each other at the combined nodes. Hence,

we decompose the tour into a sequence of operations (o1, o2, . . . , ol).

An operation ok consists of two combined nodes, called start node and end node, at

most one drone node, and potentially several truck nodes. In an operation, the drone



departs from the truck at the start node, then serves the drone node and meets up with

the truck again at the end node. Figure 1 provides an example of an operation (Agatz

et al., 2017). The truck can travel directly from the start node to the end node or can

visit any number of truck nodes in between. Moreover, the truck can also wait at the start

node for the drone to return. In this case, the start node is equal to the end node. We

obtain the time duration t(o) of an operation o as the maximum over the truck driving

time needed to drive between the nodes as described above, and the drone flying time

from start node to fly node to end node.

To compute the time duration of the full tour, we simply sum up the time durations

of all operations it contains.
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Figure 1: An operation with a combined node serving as start node (1), a combined node

serving as end node (4), a drone node (3) and a truck node (2)

3 Solution approaches

3.1 Dynamic Programming approach

This sections presents a dynamic programming approach for the TSP-D based on the

well-known Bellman-Held-Karp dynamic programming algorithm for the TSP (Held and

Karp, 1962; Bellman, 1962). Our approach consists of the following three passes.

1. Enumerate the shortest paths for the truck for every start node, end node and set

of truck nodes covered by the path.

2. Combine these truck paths with drone nodes to obtain efficient operations, i.e. op-

erations where the truck nodes are covered using a shortest path along the truck

nodes, for any given combination of start node, end node and set of nodes covered.

3. Compute the optimal sequence of these operations such that all locations are covered

and the sequence start and ends at the depot.

Dynamic Programming can be used to find optimal solutions to problems, if the optimal

solutions have an optimal substructure, i.e. they can be split up in an optimal solution to



a smaller sub-problem and some cost or profit that is independent from that optimal

solution. In our exposition, we focus on the recursive structure of the optimal solution of

the TSP-D, and provide pseudo-code for the implementation of this structure to compute

the optional solutions.

The optimal solution for the regular TSP can be considered as a path that starts at

an arbitrary origin point, which we assume to be v0 without loss of generality, visits all

locations in V and ends at the point where it started. Let us call DTSP(S, v) the sub-

problem of finding the shortest path that starts at the origin point, visits all locations

in S and ends at location v. The shortest path of a sub-problem can be broken down

into two parts: the last arc on the path that goes from some location w ∈ S to v, and a

shortest path that starts at the origin point, visits all locations in S \ {v}, and ends in w.

If the path for the full set S does not contain the shortest sub-path for S \ {v}, we can

obtain a better solution by replacing this sub-path with the shortest one, contradicting

the fact that the path for S was shortest. As a consequence, the sub-problem DTSP(S, v)

can be solved by considering all arcs (w, v) : w ∈ S \ {v}, and adding each of those arcs

to the solution for the smaller sub-problem DTSP(S \ {v}, w). This structure, in which the

optimal solution of a sub-problem can be expressed in terms of smaller sub-problems can

be formalized by means of a recursive formula as follows:

DTSP(S,w) =


c(v0, w) if S = {w}
∞ if w /∈ S

min
v∈S\{w}

DTSP(S \ {w}, v) + c(v, w) otherwise

(1)

We can see that there are n · 2n sub-problems to solve here, as S can be any subset

of V . For each sub-problem in the recurrence relation we only consider at most n smaller

sub-problems, and as a result this algorithm can be run in O(n2 · 2n) time. A possible

implementation of an algorithm that exploits this structure in a bottom up fashion is

presented in Algorithm 1.

In order to construct an optimal sequence of operations for the TSP-D, we only need

to consider operations that start and end at a pair of locations and cover a set of locations

with the lowest cost possible. As mentioned earlier, an operation for which the truck path

is the shortest path visiting all the truck-only nodes of that operation is called an efficient

operation. An optimal TSP-D tour can be constructed using efficient operations only as a

TSP-D tour will not become longer when an inefficient operation is replaced by an efficient

operation. As a consequence, we need only consider the sub-problem of finding an efficient

operation associated with every triplet (S, v, w), where the operation starts at location v,

ends at location w and visits all locations in S.

As the first pass of our three pass approach, we adapt the dynamic programming

approach for the regular TSP to include a sub-problem of finding the shortest truck path



Algorithm 1: Dynamic Programming algorithm for the original TSP

Data: A set of locations V , an arbitrary location v0 ∈ V and cost function c

Result: A shortest tour that visits all locations in V

1 Initialize DTSP with values ∞ ;

2 Initialize a table P to retain predecessor arcs ;

3 foreach w ∈ V do

4 DTSP({w}, w)← c(v0, w) ;

5 for i = 2, . . . , |V | do
6 for S ⊆ V where |S| = i do

7 foreach w ∈ S do

8 foreach u ∈ S \ {w} do
9 v ← DTSP(S \ {w}, u) + c(u,w) ;

10 if v < DTSP(S,w) then

11 DTSP(S,w)← v ;

12 P (S,w)← (u,w) ;

13 return path obtained by backtracking over arcs in P starting at P (V, v0) ;

for each of these triplets. Each of these sub-problems can be solved based on smaller

sub-problems using the same idea as for the regular TSP:

Dt(S, v, w) =


0 if v = w ∧ S = {v}
c(v, w) if v 6= w and S = {v, w}

max
u∈S\{v,w}

Dt(S \ {w}, v, u) + ct(u,w) otherwise

(2)

The number of sub-problems we need to solve to compute table DT is 2n · n2. By

extending the approach presented in Algorithm 1, the computation of the table can be

performed in O(2n · n3) time.

In the second pass, we expand the table of truck paths to create a table of operations,

by adding the drone movement on top of the truck paths, if that improves the costs

required to cover the same set of nodes. The problem of finding an efficient operation that

starts in v, ends in w and visits all locations in S can be broken down into the problem of

selecting a single drone d location from S \{v, w} and combining the flight of the drone via

this location with the shortest truck path that starts in v, ends in w and visits all locations

in S \ {d}. As the sub-problem of finding a shortest truck path was already solved when

we constructed table DT, the table Dop containing the value of an efficient operation for

every triplet (v, w, S) can be computed as follows:



Dop(S, v, w) =


Dt(S, v, w) if S = {v, w}
∞ if v /∈ S ∨ w /∈ S

min
d∈S\{v,w}

max
{
cd(v, d) + cd(d,w), Dt(S \ {d}, v, w)

}
otherwise

(3)

When we assume that all truck tours Dt have been computed prior to the construction

of Dop, we can compute the Dop table in O(2n ·n3) time, as there are 2n ·n2 sub-problems,

that all can be solved in O(n) time.

In the third and final pass, we compute the optimal TSP-D paths in a table D using

the same sub-problems as those of the regular TSP in Equation 1.In a sub-problem D(S, v)

we look for a minimum cost sequence of efficient operations that starts at v0, ends at v

and visits all locations in S. Let us now consider the final operation of such a minimum

cost sequence, which begins at some location u ∈ S, ends at v and visits locations T ⊆ S.

Clearly, the sequence of operations prior to this operation must be of minimum cost, start

at v0, end at u and visit locations S \ (T \ {u}). Thus, the sub-problem D(S, v) can be

solved by combining operations that end at v and cover a subset of S with the solution

to a smaller sub-problem. The relation between these sub-problems can be expressed as

follows:

D(S, v) =


0 if S = {v0}, v = v0

∞ if v /∈ S
min
w∈S

min
T⊂S

D(S \ T,w) +Dop(T,w, v) otherwise

(4)

A straightforward analysis of the runtime of this algorithm tells us that there are 2n ·n
sub-problems and that we have to do at most 2nn work to solve a sub-problem (assuming

the smaller sub-problems have been solved), resulting in a runtime of O(4n ·n2). However,

with a more careful analysis we can see the algorithm actually performs better. To prove

this, we apply the binomial theorem, which reads:

Theorem 3.1 (Binomial Theorem, folklore)

(x+ y)r =
r∑

k=0

(
r

k

)
xkyr−k (5)

Theorem 3.2 The TSP-D with n locations can be solved in O(3nn2) time using dynamic

programming.

Proof In Equation 4 we can see that there are
(
n
1

)
) sub-problems where |S| = 1, 2

(
n
2

)
sub-problems where |S| = 2 and in general at most n

(
n
i

)
sub-problems where |S| = i. If



we know that a certain sub-problem has an S with |S| = i, we can see that the amount of

work we need to do to solve it is n · 2i, as we are only considering subsets of S. Putting

these two facts together we can apply the binomial theorem to obtain a tighter analysis

of the runtime:

n∑
i=0

(
n

i

)
2in2 = n2

n∑
i=0

(
n

i

)
2i · 1n−i (6)

= 3n · n2 (7)

Here we first include a factor 1n−i in the analysis, which allows us to apply the binomial

theorem to the result. We have three passes needed to compute the final TSP-D tour,

where the first pass and second pass both take O(2n · n3) time. However, we can rewrite

O(3n) as O(2n ·
(
3
2

)n
) and argue that a factor n grows asymptotically slower than

(
3
2

)n
.

As a result, the O(3nn2) running time is the dominant one among the three pass. Pseudo

code that implements this approach is presented in Algorithm 2

Algorithm 2: Algorithm to compute an optimal solution to the TSP-D

Data: A set of locations V , a depot v0 and precomputed table Dop

Result: A table D(S, v) with optimal TSP-D paths that starts at the depot v0,

end at location v and covers all locations in S.

1 D({v0}, v0)← 0 ;

2 for i = 1, . . . , |V | do
3 for S ⊆ V where |S| = i do

4 for T ⊆ V \ S do

5 for u,w ∈ V 2 do

6 z ← D(S, u) +Dop(T ∪ {u,w}, u, w) ;

7 if z < D(S ∪ T,w) then

8 D(S ∪ T,w)← z ;

One advantage of the dynamic programming approach is that practical restrictions on

the feasibility of different operations can easily be incorporated by forbidding infeasible

operations in the first and second pass by setting their costs to infinity. This means we

can ignore these operations when computing a minimum cost sequence of operations.

A disadvantage of the approach is that practical running times and storage require-

ments prevent solving larger problems. In the next subsections, we discuss two ways to

speed up the running times of the algorithm. In section 3.2, we discuss heuristically re-

stricting the number of operations and in section 3.3 guiding the search for the optimal

path in the final pass of the algorithm.



3.2 Restricting the number of operations

As the operations can involve an arbitrary number of nodes this results in an exponential

number of sets. Instead of creating all possible drone operations, we may limit the set

of operations to reduce the number of sub-problems we need to consider in the first and

second passes. This directly influences memory requirements and the running times of the

algorithm. In particular, we consider restricting the number of truck nodes per operation

to k < |V |. This helps reduce the amount of required work in all passes of the algorithm.

It seems reasonable to assume that the number of truck nodes per operation in most

good solutions for most instances will be relatively small. This is especially the case if the

drone travels faster than the truck. That is, fewer truck nodes per operation implies that

more work is preformed by the drone and thus the advantage of parallelization is greater.

Unfortunately, restrictions on the number of truck nodes may prevent finding an op-

timal solution. That is, it is not difficult to construct a problem instance in which the

optimal solution consists of just one operation with many truck nodes. This is for example

the case if all but one node (the designated drone node) are close to the depot, while the

designated drone node is located sufficiently far from all other nodes.

Theorem 3.3 For any instance of the TSP-D with symmetric drone costs, i.e. cd(v, w) =

cd(w, v), there is a TSP-D tour without truck nodes (that is, every operation consists of a

start node, an end node, and possibly a drone node), whose time duration is at most twice

the time duration of the optimal TSP-D tour for that instance.

Proof Let Ô = (ô1, ô2, . . . , ôl) be an optimal TSP-D tour for the considered instance. We

construct a TSP-D tour without truck nodes from Ô by replacing each operation o = ôi

for i = 1, . . . , l by a sequence of operations without truck nodes with at most double

completion time.

Let o be an operation with k truck nodes v1, . . . , vk, start node v0, end node vk+1, and

drone node vd. If cd(v0, vd) ≤ cd(vd, vk+1), we replace o by the sequence (o0, o1, o2, . . . , ok+1)

where in operation o0 the drone flies from v0 to vd while the truck stays at v0 and in oj

for j = 1, . . . , k+ 1 the truck drives from vj−1 to vj (without the drone leaving the truck).

Otherwise, we replace o by the sequence (o1, o2, . . . , ok+1, o0) where in operation o0 the

drone flies from vk+1 to vd while the truck stays at vk+1 and oj for j = 1, . . . , k + 1 as

above. In both cases we obtain

k+1∑
j=0

t(oj) = 2cd(v0, vd)︸ ︷︷ ︸
≤cd(o)

+

k+1∑
j=0

c(vj−1, vj)︸ ︷︷ ︸
=c(o)

≤ 2 ·max{c(o), cd(o)} = 2t(o).

We can see that this bound is tight from the example in Figure 2, where we have a

depot and two customers v1 and v2. In this example, we assume that the speed of the



drone is equal to the speed of the truck and both customers have the same travel time

from the depot. In the optimal solution, one node is served by the drone and one by the

truck as both vehicles start and end at the depot. As the drone and the truck can serve

the nodes simultaneously, this gives a solution value of 2. In case truck nodes are not

allowed in an operation, it is not possible to parallelize the deliveries. This means that

in the optimal restricted solution, we either serve the nodes sequentially with one of the

vehicles or the truck has to wait for the drone at one of the locations. Both cases result in

a solution value of 4. In the numerical experiments in Section 4, we evaluate the impact

of these restrictions in more practical instances than the presented example.

v1 v2
1 1

Figure 2: Two customers (circle) that need to be served from the depot (rectangle).

Assuming that the truck and drone are equally fast, the optimal solution in case no truck-

only nodes are allowed has twice the costs of a solution without restrictions.

It is relatively straightforward to adopt our DP-approach to take into account these

restrictions, as we need to consider only truck paths of at most 2 + k, as the start and

end nodes of an operation do not count as truck nodes. Thus, we need to only compute

the solution to the sub-problems DT(S, v, w) where |S| ≤ 2 + k. When we compute the

table Dop(S, v, w), we must take care to consider only the sub-problems where |S| ≤ k+ 2

if v 6= w and |S| ≤ k + 1 otherwise.

This implies that for the first two passes we get O(
∑k+2

i=1 i
2
(
n
k

)
) sub-problems rather

than O(n2 · 2n) for the unrestricted case. For the third pass, we unfortunately still need

to consider all O(2n ·n) sub-problems, but the amount of work required to solve each sub-

problem can be reduced: instead of considering all subsets of S we only need to consider

subsets T of size k+ 2, rather than all subsets of S. If for example k = 0, this implies that

every sub-problem can be solved in O(nk+2) time and thus all solutions can be computed

in O(2n · nk+3) time, rather than in O(3nn2) time.

3.3 A* approach

One possible disadvantage of dynamic programming approaches, is that their run time

if often very consistent: even if an instance clearly has many sub-problems that are not

relevant to the optimal solution, they are still solved. For this reason we also consider an

approach that attempts to ignore irrelevant sub-problems, based on ideas from informed

search. In informed search algorithms, one typically searches through a graph of (partial)

solutions to sub-problems, often referred to as states, exploiting additional information

about the state space to direct the search. The states in such a search problem are

connected to each other by the same recurrence relationship that connect the sub-problems,



in such a way that an arc which goes from state a to b has costs equal to the difference of

the sub-problems corresponding to states b and a. If we take the relationship of Equation 4

as an example, and arc from (S, v) to (T,w) would have costs Dop(T \ S, v, w).

By only generating states if they seem relevant to finding a good solution, it may

not be necessary to solve all 2n · n sub-problems, but significantly less. The idea is to

heuristically estimate how good a partial solution is, and guide the search toward the path

to the optimal solution. This way we potentially limit the number of states that needs to

be considered in the third pass of the algorithm.

One well known algorithm within the scope of informed search is the A∗ algorithm,

first introduced by Hart et al. (1968, 1972). Let us consider a graph based on Equation 4.

A∗ can be regarded as an algorithm looking for the shortest path in this graph from the

starting state ({v0}, v0) to the goal state (V, v0). The key idea is that A∗ introduces an

admissible heuristic function l that provides a lower bound on the path from a given state

to the goal state.

By only expanding states for which the sum of the path to that state and the value of

the heuristic function is minimal, the algorithm does not generate states that are far from

the optimal path to the goal state. It was proven by Dechter and Pearl (1985) that if the

heuristic function l never over-estimates the distance to the goal state, this approach finds

the optimal solution.

In Agatz et al. (2017), we show that the minimum spanning tree provides a lower

bound on the costs of the TSP-D, for instances where the triangle inequality holds.

Theorem 3.4 (Agatz et al., 2017) A solution (R,R), consisting of a TSP tour R con-

structed with the minimum spanning tree heuristic is a (2 + α)-approximation for the

TSP-D.

Based on Theorem 3.4, we can compute a lower bound using a minimum spanning tree

which spans the last location visited in our current state, the locations that are not covered

yet, and the depot. This lower bound function can be provided for the pseudo-code of an

A∗ algorithm for the TSP-D as presented in Algorithm 3.

4 Numerical experiments

Using the uniform instances presented in Agatz et al. (2017) and several new ones gen-

erated using the same approach, we conduct various experiments. The instances consist

of points uniformly distributed in a 100 × 100 two dimensional square with the depot at

one of the corners, and we take the Euclidian distance between pairs of locations. As a

consequence the triangle inequality holds, so we can use the minimum spanning tree lower

bounds for the A* algorithm. With these instances, we assess our exact dynamic program-

ming approaches: the basic approach (DP) and the A*. Moreover, we also evaluate the



Algorithm 3: Outline of the A* algorithm for the TSP-D

Data: A set of locations V , a depot v0, a precomputed table Dk
op, a restriction on

truck-only nodes k, a lower bound function l

Result: The optimal TSP-D tour that can be constructed using only the operation

in Dk
op

1 Q← new Priority Queue ;

2 P ← ∅ ;

3 Add state ({v0}, v0) with costs 0 and key l(V ) to Q ;

4 while Q not empty do

5 Remove state (S, u) with costs c and minimum key from Q ;

6 Add (S, u) to P ;

7 if S = V ∧ u = v0 then

8 return Backtrack path of operations to state (S, u)

9 foreach w ∈ V do

10 foreach operation o ∈ Dk
op starting in w ending in u with no truck-only or

drone-only nodes in S, costs co and covering nodes Vo do

11 s′ ← (S ∪ Vo ∪ {w}, w) ;

12 if s’ not in P then

13 Add s′ with costs c+ co and key c+ co + l(s′) to Q ;
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Figure 3: Solution times for different approaches and different number of allowed truck

nodes per operation k. Averages over 10 instances with 10 nodes.

impact of restricting the number of truck nodes per operation k, i.e. 0, 1, 2, 4. We will

refer to the unrestricted case as k = ∞. All experiments assume that the drone is twice

as fast as the truck (α = 2).

Experiments were executed on the Lisa computer cluster of SURFsara. During each

run, 10 instances were solved in parallel by a cluster node equipped with an Intel R© Xeon R©

E5-2650 v2 CPU. Depending on the size of the instances solved, nodes with either 32GB

or 64GB of RAM were used, with either 2GB or 6GB of RAM assigned per instance. The

computer cluster runs on Debian Linux. The algorithms were implemented in Java, and

executed using the Oracle JDK version 1.8.0 40 on the cluster. The IP was solved using

CPLEX 12.6.3. Minimum spanning trees were computed using Kruskal’s algorithm on

the Delaunay triangulation of the geometric instances. The Delaunay triangulations were

computed using the Java Topology Suite version 1.13.

In the first set of experiments, we compare the running times of the DP and the A*

for different restrictions. As an additional benchmark, we also compare the results to the

IP as presented in Agatz et al. (2017) that uses binary decisions variables for each feasible

drone operation and constraints that ensure that the set of operations in the solution

represents can be converted to a TSP-D tour that covers all nodes. These constraints

include sub-tour elimination constraints for every subset of locations. In the unrestricted

case k = ∞, a variable for all efficient operations must be added, all of which can be

generated by the first two passes of our dynamic programming case. For restricted cases,

very operations are considered and thus fewer variables need to be added to the model.

Unfortunately, the number of sub-tour elimination constraints does not increase when the

number of truck nodes is restricted.



Figure 3 provides the solution times of the different approaches for the uniform in-

stances with 10 nodes from Agatz et al. (2017). We see that the dynamic programming

approaches consistently outperforms the IP. The main reason for this bad performance is

that the IP contains not only an exponential number of variables, obtained by passes one

and two of the DP, but also an exponential number of constraints (n · 2n to be precise).

This results in a large IP, even if the number of operations is reduced.

Comparing the running types of the dynamic programming approaches, we see that

the DP is faster than the A*. This suggest that savings of potentially finding the optimal

solution faster do not offset the costs for the numerous additional lower bound calculations

in the A* for these instances.

Table 2 presents the running times for larger instances of up to 20 nodes. As expected,

the results show that restricting the number of allowed truck nodes per operation k signif-

icantly reduces the running times. In all but one set of instances, we see that the running

times strictly increase with k. As an example, we see that it takes less than 30 minutes

to solve the n = 20 instances with k = 0 while it takes more than 10 hours to solve the

same instances with k = 2.

For the instance with ten nodes, however, the unrestricted cases (k =∞) have slightly

smaller running times, on average, than the approaches with k = 4. The reason for this

is that our implementation uses different data structures to build the table of operations

created in passes one and two depending on whether or not restrictions are in place.

For the unrestricted case it is relatively straightforward to work with an arrays indexed

by bitwise representations of the sets. In case of restrictions this approach breaks down

and hash-based sparse data structures were used. These sparse data structures have more

overhead and as the restrictions do not eliminate many operations in the smaller instances,

the savings obtained from building fewer operations are less than the additional costs due

to the overhead of the hash-based data structure.

Comparing between the different exact approaches, we see that the DP is faster for

smaller instances and A* is faster for larger instances in all cases with restrictions. How-

ever, in the unrestricted k = ∞ cases the DP always outperforms the A*. A possible

explanation for this, is that without restrictions there is already an exponential number

of operations (O(2nn)) to consider in the first step. As a consequence, all relevant sub-

problems are immediately generated. Furthermore, the lower bound for each subproblem

is immediately computed, resulting in a lot of overhead compared to the DP. For cases

with restrictions, fewer search states are reachable from the initial search state and as a

result, we observe that A* performs better than DP starting at instances of size 14 with

k = 0, while it is already faster for instances of size 11 with k = 4.

Table 3 shows the impact of the restrictions on the solution quality. Therefore, we

compare the optimal solutions of the approaches that allow at most k truck nodes per



k algo 10 11 12 13 14 15 16 17 18 19 20

0 DP 1 2 4 7 17 44 1:55 4:60 12:60 33:10 1:24:45

0 A* 3 3 6 7 11 29 1:15 1:35.3 4:59 10:39 27:29

1 DP 2 3 8 20 59 2:55 8:37 24:36 1:08:52 3:18:19 9:09:31

1 A* 2 5 8 16 26.9 1:32 4:21 6:28 21:28 55:34 2:08:04

2 DP 2 5 16 52 2:50 9:32 31:06 1:42:58 5:25:04 * *

2 A* 3 5 10 27 1:00 4:21 13:47 24:40 1:24:06 4:14:57 10:35:26

4 DP 3 9 38 3 13:07 1:00:28 4:29:48 * * * *

4 A* 4 8 19 1:14 3:47 22:05 1:33:51 4:10:13 10:13:05 * *

∞ DP 2 5 16 1:24 8:00 50:43 5:29:28 * * * *

∞ A* 4 8 25 1:59 8:43 1:13:39 8:00:01 * * * *

* the algorithm did not find a solution within 12 hours

The grey cells indicate the smallest average running time for a specific set of instances

Table 2: Solution times (hours:minutes:seconds) for different solution approaches for dif-

ferent numbers of allowed truck nodes per operation k, uniformly distributed, α = 2,

averages over ten instances

operation Zk with the optimal solution for the problem without restrictions Z∞, i.e.,
Zk−Z∞

Z∞ × 100. We provide the following three measures for the solution quality:

• ∆ %: the average relative deviation from the optimal solution Z∞

• max %: the max relative deviation from the optimal solution Z∞

• # opt: the number of times that the algorithm with restrictions finds the optimal

solution Z∞

As expected, we see that the solution quality improves with k. The worse performance

is associated with the approach that does not allow any truck nodes (k = 0). Here, we see

an average optimality gap ranging from 2.4 percent to 5.9 percent with a maximum gap of

11 percent. While this is a substantial gap, it much better than the theoretical worse-case

gap of 50 percent from Theorem 3.2. We see that the maximum optimality gap quickly

goes down to 5.6 percent for k = 1 and only 2.8 percent for k = 2. For k = 4, we find the

optimal solution in 69 of the 70 instances and have a maximum gap of less than 1 percent.

Moreover, We see that the performance is not that sensitive to the size of the instance

n. This suggests that the costs of not allowing large operations with many truck nodes is

relatively small, even for larger instances. One potential explanation for this is that while

the larger instances may potentially involve larger operations, there are also many more

good solutions possible that involve less truck nodes.



k = 0 k = 1 k = 2 k = 4

n ∆ % max % # opt ∆ % max % # opt ∆ % max % # opt ∆ % max % # opt

10 2.4 6.4 2/10 0.4 2.7 6/10 0.0 0.2 9/10 0.0 0.0 10/10

11 3.1 10.1 3/10 1.1 5.6 7/10 0.0 0.0 10/10 0.0 0.0 10/10

12 4.8 10.3 1/10 7.0 3.8 2/10 0.4 2.2 6/10 0.0 0.0 10/10

13 3.3 6.0 0/10 1.3 1.1 7/10 0.0 0.0 10/10 0.0 0.0 10/10

14 3.6 7.7 1/10 0.2 3.5 3/10 0.1 0.6 9/10 0.0 0.0 10/10

15 4.7 10.3 0/10 1.0 3.6 5/10 0.2 1.7 8/10 0.1 0.6 9/10

16 5.9 11.0 0/10 1.0 2.8 3/10 0.4 2.8 7/10 0.0 0.0 10/10

Table 3: Solution quality for different numbers of allowed truck nodes per operation k,

uniformly distributed, α = 2, averages over ten instances

To provide more insight into the characteristics of the solutions for different truck node

restrictions, we compare the total number of drone and truck nodes in the solutions as a

percentage of the total number of nodes n in the instance in Figure 4. Overall, we see that

the number of drone nodes is much higher than the number of truck nodes. The reason

for this is that our drone is twice as fast as the truck, which allows the drone to meet up

with the truck at his next stop without leaving time for the truck to serve more nodes.

Looking at the impact of k, we see that the number of drone nodes increases when

allowing less truck nodes. This is intuitive as larger operations with one drone and several

truck nodes are replaced by several smaller operations.

Figure 5 provides a different way of looking at this behavior. Here we see the total

waiting times (summed over all operations) of the truck and the drone relative to the total

time required to serve all nodes. The results show that the drone generally incurs more

waiting time than the truck. This again is related to the fact that our drone is faster than

the truck. As expected, we see that the waiting time of the truck goes up if we restrict

the maximum number of truck nodes.

5 Conclusions and future research

We show that by using dynamic programming, we can solve larger problems than with the

mathematical programming approaches that have been presented in the literature so far.

Moreover, we show that restrictions on the number of operations can help significantly

reduce the solution times while having relatively little impact on the overall solution

quality.

While we have considered restricting the number of truck nodes per operation to

heuristically reduce the running times of our algorithm, future research could investigate
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other dynamic programming based heuristics. One promising direction for future research

is to study different ways to identify ‘bad’ operations upfront, e.g. in which either the

drone or the truck incurs a lot of waiting time.

Also, we have considered simple operations with at most one drone. If we assume that

all drones in an operation must start and end at the same node, it is straightforward to

include multi-drone operations in the second pass of our dynamic programming approach.

However, it is not that clear how to incorporate multiple drones if each drone can start

and end at different nodes. This is an interesting area for future research.
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