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Zika virus (ZIKV) is a small enveloped positive-sense single-stranded RNA virus belonging to

the genus Flavivirus of the Flaviviridae family that has reemerged in recent years as a human

pathogen with epidemic potential. To date, the ongoing epidemic in the Americas has led to

tens of thousands of confirmed cases in Brazil alone (Pan American Health Organization

Zika-Epidemiological Report, 2 March 2017). More concerning are the reports of severe neu-

rological disorders such as Guillain-Barré syndrome and congenital Zika syndrome (micro-

cephaly and other neurodevelopmental defects), which led the World Health Organization to

declare the ZIKV epidemic as a Public Health Emergency of International Concern in 2016.

Phylogenetic analyses show that ZIKV can be classified into 2 main lineages: the African

lineage and the Asian lineage, the latter of which is responsible for the recent epidemics.

Because recent ZIKV infections were associated with the development of congenital and neu-

rological disorders, a key question was raised as to whether Asian-lineage ZIKV strains were

phenotypically different from the African lineage strains. It is well described that mutations

acquired during Flavivirus evolution can alter their virulence and/or tropism [1]. ZIKV is pri-

marily transmitted by the mosquito species Aedes aegypti and Aedes albopictus. Several studies

show that vector transmission can differ between ZIKV strains, as the overall ZIKV infection

prevalence and transmission rates of African strains may be higher in A. aegypti than Asian

strains [2], suggesting that viral adaptation may have occurred—similar to a single mutation in

the chikungunya virus envelope protein that affected vector specificity and epidemic potential.

During the recent outbreak, it became clear that ZIKV is sometimes able to cause a pro-

longed infection. Numerous studies showed that Asian-lineage strains isolated in South Amer-

ica replicate at low levels in tissues months after the initial infection. For example, viral

genome can be found in stillborn babies who were infected early during gestation [3], weeks

after initial infection in sperm, and in rhesus monkeys, ZIKV can be found in the cerebral spi-

nal fluid (CSF) 42 days after infection, weeks after the virus was cleared from the blood [4].

However, to date, no data are available on the ability of African-lineage strains to cause pro-

longed infections, but early studies in 2016 suggested that an African ZIKV strain was highly

pathogenic and led to cell death; when the first reports on a potential link between microceph-

aly and ZIKV emerged, laboratories started to study the effect of ZIKV on human neural pre-

cursor cells (hNPCs)/human neural stem cells (hNSCs) with MR766, the most available strain

at the time (Fig 1 and Table 1). These first studies showed strong tropism and deleterious

effects on NSC homeostasis and growth (e.g., [5]). However, some inconsistencies between

this rather strong virulence and the long-term developmental effects associated with ZIKV

infections led researchers to question the biological validity of this strain, which has been
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passaged many times in animals and in cells and acquired mutations and deletions at multiple

positions during passaging (Table 1) [6–8]. The relevance of this strain was also questioned in

a study that showed reduced toxicity and long-term persistence in human neural progenitors

of an Asian-lineage ZIKV strain from Puerto Rico, which seemed more consistent with clinical

manifestations [9]. Consequently, we compared the neurovirulence ex vivo of 2 low-passaged

African- and Asian-lineage ZIKV strains [6]. The African ArB41644 strain was isolated in

Central African Republic in 1989, whereas the Asian H/PF/2013 strain was isolated in 2013

during the French Polynesian epidemic (Table 1). We showed that the African ZIKV strain

displayed a higher infectivity and replication rate in hNSCs than the Asian ZIKV strain.

ArB41644 triggered more defects in proliferation and more apoptosis, which correlated with a

stronger induction of the antiviral response [6]. In a subsequent study, we compared 2 Asian-

lineage ZIKV strains (H/PF/2013 and ZIKVNL00013, isolated during the current epidemic in

2015) with 2 African-lineage ZIKV strains (MR766 and Uganda 927) in human neural progen-

itor cells and confirmed the phenotypic differences between ZIKV strains from the Asian and

African lineages [10]. Both African strains infected more cells, replicated to higher titers, and

induced early cell death more frequently than the Asian-lineage ZIKV strains [10]. The milder

virulence of the Asian strains in these studies could be consistent with a persistent infection

and effect of the Asian ZIKV lineage in developing neural cells. In addition, in dendritic cells,

infection by African (MR766 and Dakar-1984) and Asian (PR-2015) strains led also to a differ-

ence in pathogenicity, as African strains triggered more cellular death [8]. Notably, this study

also showed that despite differences in viral replication rates between the extensively passaged

MR766 strain and the more recently isolated Dakar-1984 strain, the inductions of cell death

were similar, suggesting that the ability to cause cell death seen in various cellular models with

Fig 1. Phylogenetic analyses of ZIKV strains discussed.

https://doi.org/10.1371/journal.pntd.0005821.g001
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Table 1. Passage history of ZIKV strains.

Lineage Strain name GenBank Country of origin Year Reference Passage histories

African MR766 NC_012532; HQ234498.1; AY632535 Uganda 1947 [8] Unknown + 1x Vero

[11] Not indicated

[12] Not indicated

[13] Not indicated

[10] Not indicated

[14] Not indicated

[15] Not indicated

[16] Not indicated

[17] Not indicated

[18] 146x SM, 1x C6/36, 1x Vero

[19] 146x SM, 3x Vero

[20] Not indicated

[21] Not indicated

Uganda 976 Uganda 1962 [10] 6x Vero

P6-740 HQ234499.1 Malaysia 1966 [8] Unknown + 1x Vero

[18] 6x SM, 1x BHK, 1x C6/36, 3x Vero

IbH30656 HQ234500 Nigeria 1968 [16] Not indicated

Dakar41519 HQ234501 Senegal 1984 [14] Not indicated

[18] 1x AP61, 1x C6/36, 3x Vero

Dakar 41671 Senegal 1984 [14] Not indicated

Dakar 41677 Senegal 1984 [14] Not indicated

DakAr41524 KX198134; KY348860; KX601166 Senegal 1984 [8] Unknown + 1x Vero

DakAr41525 KU955591 Senegal 1985 [22] 5x Vero, 1x C6/36, 2x Vero

[2] 1x AP61, 1x C6/36

ArB41644 Central African Republic 1989 [10] 5x Vero

[6] 5x Vero

HD78788 KF383039 Senegal 1991 [13] Not indicated

MP1751 Uganda 1962 [23] 3x SM,4x unknown methods, 1x Vero

Asian FSS13025 KU955593; JN860885.1 Cambodia 2010 [15] Not indicated

[22] 1x AP-1, 1x C6/36, 5x Vero

[2] 1x Vero, 1x C6/36

[17] Not indicated

[18] 5x Vero

[21] Not indicated

H/PF/2013 KX369547; KJ776791 French Polynesia 2013 [12] Not indicated

[10] 4x Vero

[14] Not indicated

[24] 6x C6/36

[6] 5x Vero

[20] Limited passages in Vero

BeH815744 KU365780 Brazil 2015 [24] 3x C6/36

BeH819015 KU365778.1 Brazil 2015 [20] Not indicated

FB-GWUH-2016 KU870645 Guatemala 2015 [12] Not indicated

FLR KU820897; KX087102 Colombia 2015 [16] Not indicated

Mex1-7 Mexico 2015 [22] 3x Vero

[2] 4x Vero

PRVABC59 KU501215; KU501215.1 Puerto Rico 2015 [8] Unknown + 1x Vero

(Continued )
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MR766 could still in certain circumstances be representative for African ZIKV lineage strains

[8].

Since infection with ZIKV strains from the Asian lineage is associated with microcephaly in

humans, it is likely that ZIKV crosses the placental barrier early in gestation, when the brain is

starting to develop. Some studies showed that cells of the placenta are susceptible to ZIKV

infection, in line with the congenital infections and neurological symptoms associated. Because

infections early in gestation seem to be more linked to microcephaly [25], it was hypothesized

that the placenta vulnerability could differ depending on the gestational stage. While the pla-

cental syncytiotrophoblast, which is found in mature placenta, appears mostly resistant to

ZIKV, a study that compared an African strain (MR766) to an Asian strain (FSS13025, Cam-

bodia) showed that embryonic stem cell (ESC)-derived trophoblasts, which recapitulate primi-

tive placenta cells during implantation, are highly susceptible to ZIKV infection [17].

Interestingly, infection with the African strain again resulted in higher viral replication and

cell lysis. These data might indicate that infection with African-lineage ZIKV strains—if they

enter the fetus—could result in an early termination of pregnancy, while infection with an

Asian-lineage ZIKV strain would be less destructive and more chronic, thereby allowing the

pregnancy to continue, leading to the development of congenital malformations [17].

While these ex vivo data suggested that African ZIKV lineage strains are more virulent, it

was important to confirm the difference in (neuro)virulence of these 2 lineages in vivo. Inter-

feron-α/β receptor (Ifnar)-/- mice injected subcutaneously with African ZIKV strains (MR766

and 3 strains from Senegal) or with the Asian-lineage H/PF/2013 strain all presented with

weight loss and succumbed to the infection after 6 (for Senegal strains) to 10 (H/PF/2013)

days. Interestingly, infection with the African-lineage strain MR766 resulted in 20% survival at

2 weeks [14]. Another study compared the symptoms induced by African (Uganda and Sene-

gal) and Asian (Cambodia, Malaysia, and Puerto Rico) ZIKV strains in signal transducer and

activator of transcription (Stat2)-/- and Ifnar-/- mice infected subcutaneously [18]. Importantly,

infections with African strains resulted in more weight loss, mortality, and severe prolonged

neurological symptoms compared to Asian strains. Moreover, induction of type 1 and 2 inter-

feron (IFN) were higher following infection with African strains associated with enhanced lev-

els of inflammatory cytokines such as interleukin 6 (IL6) or tumor necrosis factor (TNF).

These observations were confirmed in another study showing that an African strain (MP1751)

is pathogenic in A129 mice, contrary to an Asian strain (PRVABC59) that did not cause signs

of illness [26]. These studies confirm the ex vivo results in neural and nonneural cells regarding

Table 1. (Continued)

Lineage Strain name GenBank Country of origin Year Reference Passage histories

[23] 4x Vero

[15] Not indicated

[16] Not indicated

[18] 3x Vero

[19]

ZIKVBR Brazil 2015 [11] Not indicated

ZKV2015 KU497555 Brazil 2015 [4] Not indicated

ZIKVNL00013 KU937936 Surinam 2016 [10] 4x Vero

GZ01 KU820898 Venezuela 2016 [15] Not indicated

SZ01 KU866423 Samoa 2016 [16] Not indicated

Abbreviations: BHK, baby hamster kidney, SM suckling mice

https://doi.org/10.1371/journal.pntd.0005821.t001
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Table 2. Comparative analyses of ZIKV African and Asian lineages.

Model Lineage: Strain Findings Reference

Ex

vivo

Endothelial cells African: MR766, IbH30656; Asian: PRVABC59, FLR Asian-lineage strains replicate faster and isolates

induced significant cell death compared to African-

lineage strains.

[16]

Astrocytes African: HD78788, ArB41644; Asian: H/PF/2013 African-lineage strains led to a higher infection rate

and viral production infection. Asian-lineage strain

led to the expression of these innate immune

response genes early, while their induction by the

African strain was delayed.

[6][13]

Neuronal stem cells African: DakAr41525, MR766, ArB41644, Uganda 976;

Asian: H/FP/2013, Mex1-7, FSS13025, FB-GWUH-2016,

ZIKVNL00013

African-lineage strains led to a higher infection rate

and virus production as well as stronger cell death

and antiviral response compared to Asian-lineage

strains. Protein 53 (p53) plays an important role in

apoptosis induced by Asian-lineage strains but not

by African-lineage strains.

[22][12][6].

[21][10]

Cerebral organoids African: MR766; Asian: ZIKVBR Asian-lineage strain led to a higher viral production

as well as stronger cell death compared to the

African strain.

[11]

Embryonic stem

cell–derived

trophoblast

African: MR766; Asian: FSS13025 African-lineage strain led to a higher viral production

as well as stronger cell death compared to Asian-

lineage strains.

[17]

Monocyte-derived

dendritic cells

African: DakAr41524, P6-740, MR766; Asian:

PRVABC59

African-lineage strains led to a higher infection rate

and viral production as well as stronger cell death

and antiviral response compared to Asian-lineage

strains.

[8]

Neuronal cell lines

(SK-N-SH, U87

MG)

African: MR766, Uganda 976; Asian: H/FP/2013,

ZIKVNL00013

African-lineage strains led to a higher infection rate

and virus production.

[10]

In Vivo

Mosquito: Aedes

aegypti

African: DAKAR41525, MR766; Asian: MEX1–7,

PRVABC59, GZ01, FSS13025, H/PF/2013, BeH815744

Infection prevalence and transmission rate of

African-lineage strains is higher compared to Asian-

lineage strains. Infection prevalence and

transmission rate of Asian-lineage strains from the

Americas are higher compared to Asian-lineage

strains from Asia.

[15][24][2]

[19]

Mouse: A129 African: MR766, P6-740, DAKAR41519,41667,41671,

MP1751; Asian: H/PF/2013, PRVABC59, FSS13025,

BeH819015, PRVABC59

African lineage is pathogenic whereas Asian

lineage does not cause sign of illness.

[23]

Ifnar1-/- Irf3-/- Irf5-/-

Irf7-/-
African-lineage strains induced higher mortality and

severe neurological symptoms in a short period as

compared to Asian-lineage strains.

[14]

Stat2-/- Ifnar1-/- Among Asian-lineage strains, the Cambodia strain

presented more severe symptoms including front

limb paralysis and lethality, followed by the

Malaysia and Puerto Rico strains. The Brazilian

strain is least severe. The Uganda strain showed

orders of magnitude higher viral RNA level

compared to all other strains including Senegal,

especially in brain tissue.

[18]

Ifngr1-/- Higher levels of interferon type I and type II and

inflammatory cytokine induction by African-lineage

strains as compared to the Asian-lineage strains.

[20]

Nonhuman primate Asian: ZKV2015, PRVABC59 No differences observed [4]

https://doi.org/10.1371/journal.pntd.0005821.t002
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the higher virulence of African strains and could suggest that different ZIKV strains may also

display phenotypic differences in human subjects (Fig 1) (Table 2). Many of the findings from

immunocompromised mice have been recapitulated in nonhuman primates, such as rhesus

and cynomolgus macaques. The development of these different animal models led to new

knowledge concerning the pathogenesis of ZIKV. However, these systems have limitations, in

particular, studying viral pathogenesis using animals lacking a key component of antiviral

immunity, which makes it still difficult to derive definitive conclusions regarding ZIKV viru-

lence in humans. Therefore, many unanswered questions remain, in particular, regarding the

mechanisms of host restriction, immune evasion, and inflammatory response as well as the

long-term neurodevelopmental implications of congenital infection in humans.

However, one major challenge in interpreting and comparing the data from these studies is

the lack of harmonization of the virus strains used. In this review alone, in which we focused

on studies that compared multiple ZIKV strains, at least 12 African and 13 Asian strains were

found (Fig 1, Tables 1 and 2). While most studies include the African lineage MR766 strain,

this strain cannot be considered as a standard, as it has been extensively passaged and at least 3

MR766 strains exist with genetic differences, including a 4–6 codon deletion in the envelope

(E) protein [7]. For other strains, multiple sequences exist, or in some cases, no sequence data

are available (Table 1). Therefore, when comparing ZIKV lineages, the strains should be

sequenced and experiments more standardized to allow proper comparison between studies.

Ideally, more recent African ZIKV strains should become available (as the most recent isolate

so far is from 1991) (Table 1).

In conclusion, the data reviewed here indicate that there are intrinsic differences in the

pathogenicity/virulence of African- and Asian-lineage ZIKV strains. Whether these differences

are responsible for differences in clinical presentations should be confirmed, but one can spec-

ulate that the phenotype of Asian ZIKV strains (lower infection rate, less virus production, and

poor induction of early cell death) might contribute, at least in part, to the ability to cause per-

sistent infections within the CNS of fetuses, while African-lineage ZIKV strains could result in

more acute infection. However, even though ex vivo and in vivo data point towards a stronger

virulence for African strains, it is still premature to conclude that if an African epidemic

declares itself (due to an African ZIKV strain), neurological symptoms with similar or worse

gravity than those observed in South America will be found. If confirmed, recent reports of

African ZIKV strain infection and potential microcephaly in Guinea Bissau may be proof of

what could be expected in this continent [27]. Determining the virulence factors for ZIKV

using reverse genetic systems that have now been developed for both African and Asian strains

will be crucial to identify the molecular and cellular mechanisms behind differences in ZIKV

pathogenicity and also those of other emerging arboviruses.
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