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Abstract

In this paper, we analyze the trade-off between perceived fairness and perceived at-

tractiveness in crew rostering. First, we introduce the Fairness-oriented Crew Ros-

tering Problem. In this problem, attractive cyclic rosters have to be constructed,

while respecting a pre-specified fairness level. Then, we propose a flexible mathemat-

ical formulation, able to exploit problem specific knowledge, and develop an exact

Branch-Price-and-Cut solution method. The solution method combines Branch-and-

Bound with column generation, where profitable columns are separated by solving

resource constrained shortest path problems with surplus variables. We also derive

a set of valid inequalities to tighten the formulation. Finally, we demonstrate the

benefit of our approach on practical instances from Netherlands Railways, the largest

passenger railway operator in the Netherlands. We are able to construct the explicit

trade-off curve between fairness and attractiveness and show that a sequential ap-

proach can lead to suboptimal results. In particular, we show that focusing solely

on fairness leads to rosters that are disproportionally less attractive. Furthermore,

this decrease in attractiveness is heavily skewed towards the most flexible employees.

Thus, in order to generate truly fair rosters, the explicit trade-off between fairness

and attractiveness should be considered.

Keywords: Fairness, Crew Rostering, Integrated Crew Planning, Column Genera-

tion, Branch-Price-and-Cut, Distributive Justice

1 Introduction

In recent years, the Netherlands has seen numerous strikes from personnel of Netherlands

Railways (NS). Reasons for these strikes were, for example, little variation in work (adding
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the infamous ‘rondje om de kerk’1 to the Dutch vocabulary), or demand for higher staffing

levels for certain rolling stock. One of such conflicts led to the development of the ‘Sharing-

Sweet-and-Sour’ rules (‘Lusten-en-Lasten-Delen’ in Dutch), a new set of scheduling rules

aimed at increasing the quality of work. As mentioned in Abbink et al. [2005], one of

the key success factors of the project was the openness and transparency during the

development of the new rules. Using state-of-the-art Operations Research techniques, NS

was able to generate schedules satisfying the new rules for all employees, leading to a new

agreement between NS and the labor unions. These events highlight the importance of

a participative approach to crew planning. In particular, they show the importance of

incorporating the demands of personnel in the planning process.

The construction of rosters (i.e., the precise assignment of duties to the employees) is a

major part of the personnel planning process. Unlike many operational problems, the goal

when creating rosters is not to minimize expenses. Instead, the rosters are evaluated on

two different aspects: perceived fairness and perceived attractiveness. Perceived fairness

considers the distribution of work among personnel. In line with the ‘Sharing-Sweet-and-

Sour’ rules, the aim is to balance certain attributes as fairly as possible. A first step in

achieving this is the use of roster groups. That is, to use groups of employees that are

assigned the same work. This approach leads to cyclic rosters, as often seen at railway

operators and other public transport companies. In a cyclic roster, each employee of the

roster group ‘cycles’ through the same roster, which implies that each employee performs

exactly the same work in the long term. Although within each group every employee

does the same work (and hence the distribution is fair), it is not necessarily the case

that the distribution of work among roster groups is fair. Perceived fairness therefore

takes the distribution among the different groups into account, leading to an overall fair

allocation of duties. Perceived attractiveness, on the other hand, focuses on the rosters

on an individual level, that is, on the actual work scheduled. In the attractiveness of

the roster, one can take, for example, the workload over the different weeks into account.

Furthermore, sufficient rest time and other (un)desirable properties can be incorporated.

It is important to note that fairness and attractiveness are distinct concepts: Fairness

considers solely the allocation of work to roster groups, without any regard to the actual

quality of the rosters. Attractiveness, on the other hand, considers solely the quality of

the rosters, without any regard to the bigger picture (i.e., the distribution of work over

the groups). Hence, one can have a very fair, but unattractive, set of rosters, and vice

versa. For example, one can have a balanced distribution of the total workload over the

groups (i.e., a fair allocation), but at the same time a set of rosters where certain weeks

have a very high workload (i.e., unattractive rosters). Hence, crew rostering is a trade-off

between perceived fairness and perceived attractiveness. On the one hand, the allocation

of duties should be as fair as possible, while on the other hand, the attractiveness of the

rosters should be maximized.

1Translated as ‘circling the church’, a mocking reference to repetitive work.
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In this paper, we present a unified approach to crew rostering. This approach allows for a

simultaneous optimization of the perceived fairness and the perceived attractiveness. We

call this problem the Fairness-oriented Crew Rostering Problem, abbreviated as FCRP.

In current approaches, crew rostering is solved in a sequential fashion. First, an assign-

ment of duties to the groups is made. Then, the attractiveness of the separate rosters is

optimized. In such a sequential optimization procedure, possible good solutions might be

lost: Focusing solely on fairness in the first stage can lead to rosters that turn out dispro-

portionally unattractive in the second stage. As a consequence, the resulting rosters can

be perceived undesirable by the employees. In the FCRP, on the other hand, we aim at

finding the explicit trade-off between fairness and attractiveness for the rostering problem

as a whole.

The contribution of this paper is fourfold. First, we formalize the FCRP and propose a

mathematical formulation to solve the problem. The formulation we propose is versatile,

and can be easily adapted to different settings. Secondly, we develop an exact Branch-

Price-and-Cut solution method for the FCRP. Thirdly, we apply the solution method

to real life instances at NS, where we show the benefits of our integrated approach. In

particular, we generate multiple rosters with a different trade-off between fairness and

attractiveness, and show that the roster with the highest fairness might not be the most

desirable one. Fourthly, we decompose the unattractiveness of the rosters over the different

groups, and show that tight fairness levels lead to a decrease in the attractiveness that is

unevenly distributed over the groups.

The remainder of the paper is organized as follows. In Section 2, we discuss crew rostering

in detail and formalize the FCRP. In Section 3, we give an overview of related research.

Our mathematical model is introduced in Section 4. In Section 5, we propose a Branch-

Price-and-Cut approach to solve the FCRP. In Section 6, we show the benefits of our

approach in a case study at NS, and discuss the acquired managerial insights. The paper

is concluded in Section 7.

2 Problem Description

We will now discuss crew rostering in more detail. We first give a description of the input

for the crew rostering phase, and discuss the concept of cyclic rostering. We then discuss

how perceived fairness and perceived attractiveness are measured, and end with a formal

statement of the FCRP.

The input to the crew rostering phase, as considered in this paper, is a basic schedule

for each roster group, and a set of generic duties (often simply referred to as duties).

Each basic schedule specifies the key elements of the roster. This schedule, for example,

could specify when employees have a day-off or what type of work will be scheduled on a

certain day (the level of detail may vary according to the application). Figure 1 shows an
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example of a set of basic schedules. In this example, the foremost basic schedule specifies

that the first week of the roster starts with a late duty, followed by two night duties, and

then a day off (indicated by L, N and R in the basic schedule, respectively).

L L N N
;

R L N

N

R

N

L

N

N

N

R N N R N N N

N

R

R

N

R R N N L R R

N N R N L N

L R E R E E

L N N R N L N

R L R E R E E

L L R E E E R

L L R E E E R

R R N N L R R

L N N R N L N

N L R E R E E

N R L E R E E

Figure 1: Example of basic schedules. The schedules specify the early (E), late (L), and
night (N) duties; and rest days (R).

The use of generic duties is a consequence of the cyclic rosters. Recall that in a cyclic

roster multiple employees cycle through the weeks of the same roster. Hence, scheduling a

duty on a given day in the roster means that the duty is performed every week, only each

week by a different employee of the roster group. The duties are therefore generic, which

means that each duty belongs to, for example, Wednesday, and not to, say, Wednesday

the 11th of October. A detailed example of a cyclic roster is shown in Figure 2. Each of

the boxes represents a day of work, and each of the numbers indicate a different duty. The

roster consists of four weeks, meaning that it belongs to a roster group of four employees.

The cyclicity of the roster implies that the second employee starts in week 2, and, after

completing this week, he or she carries out the duties of week 3. Similarly, the duty

indicated by 118 on Monday, is first carried out by the third employee, and then a week

later by the second employee. Note that the cyclicity implies that after four weeks each

employee has carried out each duty shown in Figure 2 exactly once. Furthermore, note

that some overlap between weeks can be present. For example, the last duty of week 3

starts on Sunday night and ends on Monday morning.

In practice multiple rosters need to be constructed simultaneously. That is, the given

set of duties should be assigned to the different basic schedules at once. The goal is to

find a fair assignment of the duties such that the resulting rosters are feasible and of

high quality. This implies that a trade-off has to be made between perceived fairness and

perceived attractiveness.

The perceived fairness of the rosters is based on duty attributes. Since a duty consists
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Mon Tue Wed Thur Fri Sat Sun

4

3

2

1
L

126
L

124
R E

54
E

13
E

40
R

R R N

105
N

111
L

123
R R

L

118
N

107
N

115
R N

108
L

121
N

103

N

112
L

123
R E

44
R E

7
E

25

Figure 2: Example of a cyclic roster for four employees.

of multiple tasks, it has certain characteristics. Hence we can say that some duties are

‘desirable’ and some are not (e.g., a duty with many short trips is undesirable, while a

duty with fewer but longer trips is considered desirable). We refer to these characteristics

as duty attributes. Examples of duty attributes at NS are the duty length and the

percentage of work on double decker trains. A fair allocation means that the spread (i.e.,

the difference between the maximum and minimum average value) over the groups is

minimized. Furthermore, certain bounds on the allocation must be respected, following

labor regulations.

The perceived attractiveness and the feasibility of a roster are expressed using roster

constraints. These constraints impose restrictions on the assignment of the duties to

the roster. Rest constraints, for example, are often present in crew rostering. Rest

constraints enforce that an employee has a certain minimum time to rest after a duty (if

it is a hard constraint), or penalize rest times shorter than a certain threshold (if it is a

soft constraint). Another classical example are workload constraints, enforcing a maximal

amount of work within a week. The perceived attractiveness is maximized by minimizing

the penalty incurred from the soft roster constraints. As we will show in Section 4, the

developed model allows for a broad range of roster constraints. In Section 6, we discuss

how the duty attributes and roster constraints are applied at NS.

The FCRP can now be stated as follows: Given a set of duties, a set of basic schedules

and a predefined minimum fairness level, create cyclic rosters based on the basic schedules

such that the attractiveness of the rosters is maximized, whilst respecting the required

fairness level. The goal of the FCRP is to present a set of solutions, each optimal for a

different trade-off between fairness and attractiveness. We note that the FCRP, although

formulated for a cyclic context, naturally extends to domains where acyclic rostering is

common practice (e.g., nurse rostering, airline crew planning). A fair allocation for cyclic

rostering means that the duties should be fairly allocated over the different roster groups,

as each employee in the group performs the same work. Hence, a fair allocation for acyclic

rostering means that the duties should be fairly allocated over the individual employees,

as each employee is assigned a personal roster. It is not difficult to see acyclic rostering

as a special case of cyclic rostering with regard to the FCRP: each basic schedule could
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correspond to an individual employee, instead of a group of employees. Hence, although

we focus on cyclic rostering, the solution approach presented in this research can be readily

extended to acyclic rostering problems.

3 Literature Review

In this section we give an overview of related literature. We first discuss the literature

related to crew planning, thereby focusing on crew rostering in particular. Then, we give

a brief overview of the literature related to perceived fairness. Finally, we discuss the

research that integrates some form of fairness concept in crew rostering, i.e., the research

that relates most closely to our work.

Crew planning appears in a wide variety of contexts, such as the railway sector, the airline

industry and the healthcare sector. The railway sector focuses mainly on cyclic rosters,

whereas the airline industry almost exclusively works with acyclic rosters. Ernst et al.

[2004] and Van den Bergh et al. [2013] give extensive overviews of different staff scheduling

problems, discussing both applications and solution methods. Kohl and Karisch [2004]

give a detailed overview of applications and techniques for crew planning at an airline

operator. Burke et al. [2004] present the state-of-the-art for nurse rostering, i.e., the

rostering of personnel at medical facilities. Huisman et al. [2005] and Caprara et al. [2007]

review popular models and solution methods for crew planning at a railway operator.

Crew planning is generally decomposed into two consecutive planning problems: crew

scheduling, and crew rostering. The crew scheduling problem consists of constructing the

duties, given the tasks, whereas the crew rostering problem consists of constructing the

rosters, given the duties (which are the output of the crew scheduling problem). The

crew scheduling problem is well-studied, and appears in the literature in many variants

(see, for example, Stojković and Soumis [2001] and Abbink et al. [2005] for an operational

variant and a strategic variant of the problem, respectively).

In crew rostering, many complex labor rules have to be taken into account (e.g., maximum

total workload and sufficient rest time for each employee). The crew rostering problem

occurs in roughly two variants: either the basic schedules are considered input, or the

construction of the basic schedules is part of the optimization problem (i.e., the rosters

are constructed without a pre-specified basic schedule). Proposed algorithms for crew

rostering vary according to the considered objective and constraint structure (see Van den

Bergh et al. [2013] for a detailed overview).

Hartog et al. [2009] propose an assignment model with side constraints to solve the crew

rostering problem at NS. They first optimize the basic schedules, and then the assignment

of the duties to the schedules (as first proposed in Sodhi and Norris [2004]). Their

results were (blindly) presented to the NS workforce, which preferred their generated
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rosters over manually constructed ones (see Hartog et al. [2009] for the details of this

experiment). Xie and Suhl [2015] propose a multi-commodity flow formulation for the

cyclic and non-cyclic crew rostering problem. They consider both the sequential approach

of Sodhi and Norris [2004] and an integrated approach (i.e., constructing the rosters

directly without first constructing basic schedules). The developed methods are applied

to practical instances of a German bus company, for which reasonable sized instances

could be solved using a commercial solver. Mesquita et al. [2013] develop a model for

the integrated vehicle scheduling and crew rostering problem, for which they develop a

non-exact Benders decomposition approach.

Caprara et al. [1997] propose alternative formulations for crew rostering. They develop a

multi-commodity flow model and a set partitioning model. The usefulness of the models

is related to the constraint set (e.g., a set partitioning model is preferred when many high

level constraints are imposed). The developed models are applied to crew rostering at

an Italian railway operator. Freling et al. [2004] develop a flexible Branch-Price-and-Cut

algorithm based on a set covering formulation. The performance of their approach is

evaluated on different practical instances. Borndörfer et al. [2015] discuss both a network

flow model and a set partitioning model. They propose a heuristic solution method based

on the well-known Lin-Kernighan heuristic (Lin and Kernighan [1973]). Their algorithm is

evaluated for cyclic rostering in public transport and for the rostering of toll enforcement

inspectors.

Perceived fairness as considered in this paper closely relates to distributive justice (see

e.g., Greenberg [1990]). This concept originates from equity theory, and relates to the

equitability of resource distributions. Although often limited to monetary compensation,

the concept readily extends to other domains (e.g., desirable and undesirabe work). As

mentioned before, a similar concept was applied in Abbink et al. [2005] in the context

of crew scheduling, thereby ending a seemingly unresolvable conflict between NS and the

labor unions. The effects of distributive justice are well-established in the literature. In

different meta-analytical studies (Colquitt et al. [2001], Colquitt et al. [2013]) a significant

relation is found between distributive justice and, for example, task performance and or-

ganizational trust. Similar results are presented in Rhoades and Eisenberger [2002], where

a significant relation is found between distributive justice and perceived organizational

support.

Relatively little crew rostering literature takes the equitabililty of the duty allocation into

account. Hartog et al. [2009] propose to allocate the duties using an assignment model

with side constraints. The allocation is determined a priori creating the rosters, hence

no direct trade-off is made between fairness and attractiveness. Their fairness concept

is identical to the one considered in this paper. Borndörfer et al. [2015] incorporate

fairness in their solution approach by penalizing undesirable sequences of duties (e.g.,

changing starting times on consecutive days). Especially interesting is their incorporation
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of fatigue measures, a highly non-linear concept, in a rostering application for airline

traffic. Nishi et al. [2014] propose a decomposition approach for crew rostering with fair

working conditions. Their concept of fairness solely concerns the distribution of workload.

Their decomposition approach splits the problem into assigning the duties to groups and

creating the rosters (similar to Hartog et al. [2009]). The resulting problem is solved

using Benders decomposition. Finally, Maenhout and Vanhoucke [2010] propose a hybrid

scatter search heuristic for crew rostering with fair working conditions.

Summarizing, crew rostering and perceived fairness are both well studied in the literature.

The integration of these two concepts, however, is, to the best of our knowledge, relatively

unexplored. Although some approaches incorporate (parts of) a fairness concept in crew

rostering, none of these approaches consider a joint optimization of the attractiveness of

the rosters and the equitability of the duty allocation, so that an explicit trade-off can be

made.

4 Mathematical Model

In this section we present a mathematical formulation of the FCRP. In Section 4.1, we

introduce the concept of roster sequences, and in Section 4.2 we discuss roster constraints

in detail. We introduce the necessary notation in Section 4.3, and we conclude by giving

a mathematical formulation for the FCRP in Section 4.4.

4.1 Roster Sequences

We develop a mathematical model based on the weeks of each roster. That is, we simul-

taneously assign a number of duties to a week, instead of assigning a duty to each day

separately. For the ease of explanation, we will assume that a week always starts on Mon-

day and ends on Sunday. Constraints regarding the weeks occur naturally in rostering

(e.g., workload constraints). Many roster constraints at NS, for example, consider the

weeks of the roster (we will discuss these in detail in Section 6). Hence, modeling the

rostering problem based on the weeks often leads to a strong formulation, as it implies

that many of the roster constraints can be modeled implicitly. Initial experiments showed

that modeling based on the weeks of the roster improved the performance of the algorithm

substantially compared to modeling based on the days of the roster.2

The key concept of our modeling approach is the use of roster sequences. Modeling the

problem based on the weeks of a roster implies we need to simultaneously assign multiple

duties to all days in a week. We call such an assignment of duties a roster sequence (or

2We note that a week based model is not a prerequisite for our approach: the approach can be used
to develop a model for every partition of the days in the basic schedule. For the clarity of the exposition,
however, we will focus on weeks.
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simply a sequence, if there is no ambiguity). Note that the roster sequences should always

satisfy the basic schedule.

Mon Tue Wed Thur Fri Sat Sun

s1

s2

L L R E E E R

L

126
L

124
E

54
E

13
E

40

L

118
L

123
E

44
E

13
E

40

Figure 3: Example Sequences.

Figure 3 shows an example of possible roster sequences. The first row in Figure 3 shows

the basic schedule of Week 1 (as shown in Figure 2), and the second and third row show

two roster sequences s1 and s2 for this week. The first sequence is obtained from the

assigned duties in Figure 2, while the second sequence is obtained by swapping some

duties currently assigned to Week 1 with those assigned to Weeks 3 and 4. Note that

both sequences satisfy the given basic schedule, and that the sequences only specify the

assigned duties (i.e., the rest days are not specified in the sequences, as these are input

to the problem).

4.2 Roster Constraints

Roster constraints impose restrictions on the assignment of duties in the roster, and are

used to quantify the attractiveness of the roster. We consider both hard roster constraints

(i.e., constraints that must always be satisfied) and soft roster constraints (i.e., constraints

that may be violated against a certain penalty). Each roster constraint is fully specified

by a coefficient for each possible assignment of a duty to a day in the basic schedule,

a threshold value, and a violation interval. It is assumed that each violation interval

is a closed interval on the real line (this assumption is important when developing the

Branch-Price-and-Cut approach, as will be noted in Section 5.2).

A roster constraint restricts the possible assignment of duties by enforcing that if the

sum of coefficients of assigned duties exceeds the threshold value (i.e., the constraint is

violated), then the difference between the sum and the threshold lies within the violation

interval. Note that this general form allows both for hard and soft constraints. Hard con-

straints can be modeled by setting the violation interval equal to {0} (i.e., no violation is

allowed), whereas soft constraints can be modeled by picking a suitable violation interval,
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such as the interval [0, 1] (i.e., a violation is allowed, but of at most one unit). Each

constraint is given a penalty, which is used to penalize deviations above the threshold

value.

Mon Tue Wed Thur Fri Sat Sun

L L R E E E R

1

2

Figure 4: Example Roster Constraints.

A wide variety of practical constraints can be expressed in this general form (for a thorough

discussion we refer to Hartog et al. [2009]). To illustrate this, consider the set of days

depicted in Figure 4, which corresponds to the first week shown in Figure 2. Two different

roster constraints are indicated.

• The first constraint considers the rest time between the duties scheduled on Tuesday

and Thursday. A certain minimal rest time is required between these two days. This

is done by introducing a roster constraint for each possible duty assigned to Tuesday

in this week. Consider d124, a possible duty for Tuesday. The assignment of d124 to

Tuesday in this week, and all assignments of duties to Thursday that would violate

the rest time with respect to d124 are given coefficient 1. All other assignments

are given coefficient 0. By setting the threshold value equal to 1 and the violation

interval equal to {0} we model the rest time as a hard constraint. An alternative

choice would be the violation interval [0, 1], thereby modeling the rest time as a soft

constraint.

• The second constraint considers the average duty length measured over the week.

We penalize those assignments of duties where the average duty length in the week

exceeds the average duty length measured over all duties. This can be done as

follows. The coefficient for each assignment to a day in this week equals the length

of the assigned duty, divided by 5. All other assignments are given coefficient 0.

The scaling factor 5 follows from the number of duties that need to be assigned

to this week (note that this number is known a priori, as the basic schedules are

considered input). The threshold value is the average duty length measured over all

duties, and the violation interval is [0,∞).

Roster constraints concerning solely a single week of the basic schedule are modeled

implicitly. That is, these roster constraints are incorporated in the penalties associated

with the sequences, instead of explicitly modeled as a constraint in the model. Note that

this holds for both roster constraints depicted in Figure 4.
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4.3 Notation

We are now ready to introduce the notation for the mathematical formulation. Let D

denote the set of duties, and let R denote the set of basic schedules. A basic schedule r

is defined by a set of days Tr, where for each day t ∈ Tr it is known which duties can be

assigned. An assignment of a duty d to a day t in a basic schedule will be denoted by the

pair (t, d). We define nr as the total number of duties to be assigned to basic schedule r.

The set Kr denotes the set of weeks for basic schedule r ∈ R, and the set K denotes the

set of all weeks. We define the set Sk as the set of all roster sequences for week k ∈ K.

Each roster sequence can be seen as a sequence of assignments (t, d). We define Sdk ⊆ Sk
as the set of all roster sequences for week k that contain duty d (i..e, the duty d appears

in one of the assignments describing the roster sequence). Finally, we define cks as the

penalty associated with sequence s ∈ Sk.

The set of duty attributes, used to define the fairness of the constructed rosters, is denoted

by A. The parameter gad denotes the value of attribute a for duty d. Each attribute has

a lower bound la and an upper bound ua, which are considered input. Furthermore,

each attribute has an associated weight wa, representing the relative importance of the

different duty attributes when calculating the fairness level. Finally, the desired fairness

level is denoted by ζ.

The set of roster constraints, used to define the attractiveness and feasibility of the roster,

is denoted by P . The coefficient for the assignment (t, d) for roster constraint p is denoted

by fptd. The threshold value for p is denoted by bp, and the violation interval for p is denoted

by ∆p. The penalty corresponding to roster constraint p is denoted by cp. Let PK ⊆ P

denote the set of roster constraints fully contained in one of the weeks k ∈ K, and let Pk

denote those fully contained in week k. The constraints in PK are exactly those that are

modeled implicitly using the sequence penalties. Hence, the penalty cks associated with

sequence s ∈ Sk is the sum of all violations in the sequence s, restricted to the roster

constraints Pk. Note that the roster constraints in P \ PK need to be modeled explicitly.

4.4 Mathematical Formulation

We now formalize the FCRP. We introduce the following decision variables.

• xks for all k ∈ K and s ∈ Sk. The binary variable xks takes value 1 if sequence s is

assigned to week k, and value 0 otherwise.

• δp for all p ∈ P \ PK . The variable δp models the violation of the roster constraint

p. The variable is restricted to the violation interval ∆p.

• za for all a ∈ A. The variable za expresses the maximum average value of duty

attribute a among all roster groups. This variable is used to determine the perceived
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fairness of the solution.

• va for all a ∈ A. Similar to za, the variable va models the minimum average value

among all roster groups with respect to attribute a.

The FCRP can be expressed as a mixed integer linear program as follows.

min
∑
k∈K

∑
s∈Sk

cksx
k
s +

∑
p∈P\PK

cpδp (1)

s.t.
∑
a∈A

wa (za − va) ≤ ζ (2)∑
s∈Sk

xks = 1 ∀k ∈ K (3)

∑
k∈K

∑
s∈Sd

k

xks = 1 ∀d ∈ D (4)

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δp ∀p ∈ P \ PK (5)

∑
k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≤ nrza ∀a ∈ A, r ∈ R (6)

∑
k∈Kr

∑
s∈Sk

∑
(t,d)∈s

gadx
k
s ≥ nrva ∀a ∈ A, r ∈ R (7)

za ≤ ua ∀a ∈ A (8)

va ≥ la ∀a ∈ A (9)

xks ∈ B ∀k ∈ K, s ∈ Sk (10)

δp ∈ ∆p ∀p ∈ P \ PK (11)

va, za ∈ R ∀a ∈ A. (12)

The objective (1) expresses that we minimize the sum of the sequence penalties, together

with the cost of all explicitly modeled roster constraints. Constraint (2) assures that

the desired fairness level is achieved. Recall that the desired level ζ is assumed to be

exogenous. As discussed in Section 2, the perceived fairness is calculated as a weighted

sum of the spread (i.e., the difference between the maximum and minimum average values)

of the duty attributes with respect to the roster groups. Note that (2) can be interpreted

as an epsilon-constraint for the bi-objective problem (see Ehrgott [2000]). Constraints

(3) and (4) assure that the duties are assigned correctly to the basic schedules. That is,

each week is assigned exactly one roster sequence, and each duty is assigned exactly once.

Constraints (5) consider the roster constraints. Note that (5) assures that δp takes the

value of the constraint violation. Constraints (6) and (7) assure that the variables va and

za are set to the minimum and maximum value, respectively, while (8) and (9) enforce the

lower and upper bounds on the attribute values. Finally, Constraints (10)-(12) express

the domains of the decision variables.
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5 Solution Approach

We develop an exact solution method for the FCRP based on Branch-Price-and-Cut.

In Branch-Price-and-Cut algorithms, the solution space is searched using a Branch-and-

Bound procedure, in which the linear relaxation is solved using column generation in each

node of the Branch-and-Bound tree. Furthermore, valid inequalities (i.e., cuts) are added

to strengthen the linear relaxation. The concept of column generation has been applied

succesfully to a large variety of problems (see e.g., Desaulniers et al. [1997], Löbel [1998],

Potthoff et al. [2010]). For detailed surveys on column generation we refer to Barnhart

et al. [1998], Lübbecke and Desrosiers [2005], Desaulniers et al. [2006] and Lübbecke

[2011]. An extensive overview of Branch-Price-and-Cut algorithms is given in Desrosiers

and Lübbecke [2011].

The lay-out of this section is as follows. In Sections 5.1 and 5.2, we discuss the master

problem and the resulting pricing problems, respectively. In Section 5.3 we discuss the

branching strategy. We conclude in Section 5.4 with a discussion on how we obtain all

efficient solutions of the FCRP.

5.1 Master Problem

In Branch-Price-and-Cut algorithms the problem is decomposed in a master problem and

a set of pricing problems. The Master Problem is obtained from (1)–(12) by relaxing

the integrality condition for the xks variables. That is, Constraints (10) are replaced with

xks ≥ 0, for all k ∈ K and s ∈ Sk. Note that (3) assures that xks ≤ 1. Because the

number of sequences can be very large, we use column generation to solve the Master

Problem. This means that only a subset of the sequences is considered instead of the

entire set of sequences. As this might lead to suboptimal solutions, profitable sequences

are added based on their reduced cost. Deciding whether such sequences exist is done

in the pricing problems, where sequences with negative reduced cost are separated. The

linear relaxation of (1)–(12) is tightened by adding valid inequalities (see Appendix A).

5.2 Pricing Problem

The pricing problems can be modeled as resource constrained shortest path problems

(RCSPP) with surplus variables on dedicated graphs (see e.g., Irnich and Desaulniers

[2005] for a detailed survey on this topic). For each week k ∈ K, we construct a directed

graph in which each vertex represents an assignment of a duty to a day in the basic

schedule. An arc in the graph indicates a possible follow-up duty.

An example of such a graph is shown in Figure 5. Here we show the pricing graph for the

week depicted in Figure 4. Each vertex specifies a combination of a day and a duty. The
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duties are obtained from the roster in Figure 2. Note that certain days can be assigned

multiple duties (e.g., Monday of type L can be assigned duties d126 and d118). Clearly,

each s− t path in such a graph corresponds to a roster sequence.

Mon Tue Wed Thur Fri Sat Sun

s t

L

126

L

118

L

124

L

123

E

54

E

44

E

13

E

40

E

7

Figure 5: Example Pricing Graph.

The reduced cost of a sequence can be modeled using the arc set and the resource con-

straints. The dual multipliers are readily incorporated in the arc costs (see Appendix B).

The difficulty lies in expressing the primal cost, that is, in expressing the cost related to

the different roster constraints that are implicitly modeled. This is done using the resource

constraints. Each roster constraint p relates to a resource with consumption fptd at node

(t, d) and consumption limit bp. The violation interval ∆p is modeled using the domain

of the surplus variables. Here we use the fact that each ∆p represents a closed interval on

the real line. We note that binary constraints (i.e., constraints involving two subsequent

duties) are a special case, as they can be directly incorporated into the arcs. An example

of this is the ‘missing’ arc between the duties d124 and d44 on Tuesday and Thursday,

respectively. The time between duties d124 and d44 is insufficient for a proper rest day on

Wednesday, hence no sequence can have these two duties scheduled sequentially.

We solve the RCSPP using an enumerative best first search approach, thereby using La-

grangian distance labels to prune provably suboptimal paths (cf. Beasley and Christofides

[1989], Grötschel et al. [2003], Dumitrescu and Boland [2003]). The solution approach

exploits the dual formulation of the RCSPP to obtain valid lower bounds on optimal

path lengths (see Appendix C). This approach resembles the well-known A* algorithm,

introduced by Hart et al. [1968].

5.3 Obtaining Integer Solutions

To obtain integer solutions we apply a bi-level branching strategy. In the first branching

rule, we consider the assignment of duties to the basic schedules, i.e., pairs (r, d). We

branch if a duty is only partially assigned to a basic schedule. That is, we construct a

branch where the duty is assigned only to this schedule, and a branch where the duty

is excluded from this schedule. Note that partially assigning a duty to a schedule is

equivalent to assigning a duty to multiple schedules (a direct consequence of (3) and (4)).
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If multiple branching possibilities are present, we branch on the most fractional value.

The assignment of duties to the basic schedules is determined whenever no branching

opportunities of this form are available. It is possible, however, that the solution is still

fractional, since a duty could be assigned to multiple days within one basic schedule. The

second branching rule therefore considers the assignment of duties to days, i.e., pairs (t, d).

That is, we branch if a duty is only partially assigned to a day in the basic schedule. Also

for the second branching rule we branch on the most fractional value, whenever multiple

branching possibilities are present. Note that no branching opportunities exist only if

each duty is assigned to a unique day, and hence an integer solution is found.

The branching rules are always executed in a sequential fashion. This means that the

second branching rule is applied only if there are no branching possibilities for the first

rule. Since the first branching rule divides the solution space more evenly than the second,

this sequential strategy leads to a more balanced search tree.

5.4 Finding Pareto-optimal Solutions

We want to identify all Pareto-optimal solutions for the FCRP. A solution is Pareto-

optimal if there exists no solution that is better in all criteria. In the FCRP this means

that there can be no solution with higher attractiveness and higher fairness level. We

refer to Ehrgott [2000] for an introduction to multi-objective optimization.

All Pareto-optimal solutions to a bi-objective optimization problem can be found by

imposing a bound on one objective, while optimizing the other. In the FCRP, this bound

is the desired fairness level ζ in (2). By varying ζ iteratively, we obtain all Pareto-optimal

solutions (up to a certain precision). That is, we solve the problem for a sequence of

strictly decreasing fairness levels, until a feasible solution can no longer be found. In

doing so, we are able to re-use the Branch-and-Bound tree of previous iterations, thereby

avoiding the repeated exploration of the same part of the solution space.

6 Case Study at NS

To show the practical benefits of the FCRP we apply our solution method to a set of

rostering instances of NS. The instances are based on roster groups of guards at depot

Utrecht, one of the major crew depots in the Netherlands. In Section 6.1, we discuss our

experimental set-up, and all attributes and roster constraints that NS takes into account.

In Section 6.2, we present the result of our experiments. We conclude in Section 6.3 with

the practical insights obtained from the case study.
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6.1 Rostering at Base Utrecht

Each rostering instance specifies a set of basic schedules and a set of duties. The instances

in our experiments are based on a set of roster groups and their corresponding basic

schedules. The duties are obtained from the original rosters, to assure compatibility with

the basic schedules. We consider three different types of duties: early, late and night.

These are denoted by E, L and N, respectively. Furthermore, a day in the roster can be

an official rest day (denoted by R), or an unofficial rest day. For the latter, no constraints

have to be taken into account. The basic schedules specify one of these types for each

day in the roster. Figure 1 gives an example of a basic schedule.

The roster groups are divided into three categories, based on their basic schedules. The

first category consists of groups performing solely early duties, the second category of

groups performing solely late and night duties, and the third category of groups perform-

ing all three types of duties. The first two instances consist of two large groups of the

first two categories, and a relatively small group of the third category. The other two in-

stances consist of one group of each category, each representing roughly the same number

of employees. The details are shown in Table 1. The group size refers to the number of

employees in the group (i.e., the number of weeks that need to be rostered).

Table 1: Rostering Instances Base Utrecht.

Instance Groups Group sizes Duties E/L/N

U1 3 14/12/4 113 55/29/29
U2 3 12/12/4 115 58/33/24
U3 3 6/6/6 71 38/22/11
U4 3 8/6/6 69 37/17/15

NS considers a large variety of duty attributes and roster constraints, leading to a complex

rostering problem. A total of five duty attributes have to be taken into account.

• Duty length. For each of the duties, the length is defined as the difference between

the start and end time of a duty.

• Percentage of type-A work. Trips with type-A work are desirable, and hence this

work needs to be fairly distributed.

• Percentage of aggression work. Certain trips have a higher chance of passenger

aggression (due to e.g., passengers not having a ticket). Trips where such situations

frequently occur are undesirable and therefore need to be fairly distributed.

• Percentage of work on double decker trains. Work on double decker trains is con-

sidered undesirable, as it is physically more demanding (due to the high amount of

stairs an employee has to climb during work on such a train). We therefore want to

distribute this type of work equally.
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• RWD values. The Repetition Within Duty (RWD) values are defined as the total

number of routes divided by the total number of distinct routes in the duty. From

an employee point of view, variation is desirable (reflected by a low RWD value),

and hence we want to balance the RWD values among the groups.

Table 2: Specification Duty Attributes.

Attribute Av. U1 Av. U2 Av. U3 Av. U4 LB UB Weight

Duty length (hours) 7.97 7.97 7.89 7.98 - 8 30
Type-A 40.28 44.91 42.07 42.10 35 - 1
Aggression 14.08 15.17 12.02 9.40 - 18 1
Double Decker 34.36 34.79 35.24 38.54 - 40 1
RWD 2.06 2.09 2.05 2.12 - 2.5 25

Each attribute has a pre-specified lower or upper bound which should be respected for

each group (see Table 2). Furthermore, each attribute is given a weight to model the

relative contribution to the fairness measure. For example, a spread of 5% in aggression

work and a spread of 10 minutes in duty length are penalized equally. Table 2 also shows

the average value for each of the instances, displaying the tightness of the imposed bounds.

The roster constraints considered at NS can be roughly classified into two categories:

those concerning pairs of days and those concerning entire weeks.

• Rest Constraints. After completing a duty it is required that an employee has a

certain minimum time to rest. A rest time of 14 hours is required after a night

duty. For the other types of duties the required rest time is 12 hours. Rest times

shorter than 16 hours are undesirable, and are therefore penalized with a penalty

of 30. Note that this penalty is independent of the shortage in rest time.

• Rest Day Constraints. If two work days have one rest day in between, there should

be at least 30 hours between the end of the first duty and the start of the second.

Furthermore, for each additional rest day that is between the duties, another 24

hours are required.

• Workload Constraints. We require that the total workload in one week should not

exceed 45 hours. Here, workload is measured as the difference between start and

end time (i.e., including the meal break). The workload is always measured from

Monday to Sunday (i.e., a ‘regular week’).

• Variation Constraints. It is considered desirable if e.g., aggression work is dis-

tributed evenly over the weeks. Therefore, variation constraints penalize positive

deviations from the average for each of the duty attributes. Furthermore, we take

duties with a duration longer than 9 hours and a set of (un)desirable routes into

account. This gives a total of 10 variation constraints per week. Similar to the

workload constraints, the variation is always measured from Monday to Sunday.
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By assigning roster sequences to the weeks, we can model all workload and variation

constraints implicitly using the sequence penalties. Furthermore, most rest and rest day

constraints can also be modeled implicitly. The set of explicitly modeled roster constraints

consists of only those rest and rest day constraints spanning two weeks (e.g., constraints

modeling the rest time from Sunday to Monday).

6.2 Computational Results

We solved each of the instances using our proposed solution approach. We first discuss the

computation times for the different instances. Thereafter, we present the Pareto-optimal

curves, and we conclude with a detailed analysis of the found solutions.

6.2.1 Computation Times

All experiments were done on a computer with a 1.6 GHz Intel Core i5 processor. We

used the LP solver embedded in CPLEX 12.7.1 to solve the master problems. Recall from

Section 5.4 that we re-use the Branch-and-Bound tree, hence all solutions are obtained in

one execution of the algorithm. The time to find a Pareto-optimal point is therefore cu-

mulative, i.e., depends on the solutions previously found. Table 3 shows for each instance

the number of Pareto-optimal points, and the total computation time of the algorithm

(in minutes). Furthermore, Table 3 shows for each instance the time until the point with

minimum attractiveness penalty (i.e., the rightmost point of the curve) is obtained. Note

that this is always the first point found by the algorithm. We used a step-size of 0.1 for

iteratively updating the fairness level.

Table 3: Computation times per instance.

Instance Nr. Points Min Attr. Pen. (min) Total Time (min)

U1 23 7.9 287.9
U2 12 37.0 236.8
U3 17 0.1 132.2
U4 22 3.9 470.8

Each of the Pareto-optimal curves could be determined in reasonable time. The Pareto-

optimal curve for instance U4 took most time to compute (about 8 hours). The other

three Pareto-optimal curves were found in substantially less time (at most 5 hours).

Furthermore, the solution with minimal attractiveness penalty was found quickly for all

instances. For three out of four instances the corresponding Pareto-optimal point was

found in only a few minutes.
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6.2.2 Pareto-optimal Curves

The Pareto-optimal curves for the four instances are depicted in Figure 6. From hereon

we refer to the objective value (i.e., the measure of perceived attractiveness) as the at-

tractiveness penalty and to ζ as the fairness penalty.
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Figure 6: Pareto curve for instances U1 (top left), U2 (top right), U3 (bottom left) and
U4 (bottom right).

Figure 6 shows that many Pareto-optimal solutions are lost in a sequential approach. Note

that a sequential approach, where perceived fairness is optimized first, results (at best) in

the solution represented by the leftmost point in the curve (those highlighted in Figure 6).

The set of Pareto-optimal points, however, covers a broad spectrum of solutions, each of

which might be optimal depending on the given preferences. The curve of instance U1,

for example, ranges from 1104 to 1175 (a relative spread of about 6%) with respect to the

attractiveness penalty and from 16 to 30 (a relative spread of about 85%) with respect to

the fairness penalty.

By computing a large set of ‘best’ solutions, the decision maker gets a comprehensive

image of the problem. In particular, it gives a better indication of the consequences of

managerial decisions, such as imposed fairness bounds. A striking example of such a

consequence is given by the two leftmost Pareto-optimal points in the curve of instance

U3, where a small decrease of the fairness penalty leads to a disproportionally large
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increase of the attractiveness penalty. As mentioned above, this leftmost point would be

found using a sequential approach. It is clear that this solution (and hence this approach)

is optimal only when fairness is extremely highly valued.

6.2.3 Trade-Off Analysis

The Pareto curves in Figure 6 exhibit a clear ‘tail-off’ effect. That is, decreasing the

fairness penalty close to the minimum leads to a disproportionally large increase in the

attractiveness penalty, and vice versa. To highlight this behavior, we standardize each

solution based on the attained minimum and maximum penalties. For example, if some

solution attains a fairness penalty of ζ, we compute the relative decrease of ζ. That is,

we compute the quantity

ζmax − ζ
ζmax − ζmin

∈ [0, 1], (13)

where ζmin and ζmax denote the lowest and highest observed fairness penalties, respec-

tively. Note that ζmin and ζmax correspond to the left- and rightmost points in the curve.

We transform the observed attractiveness penalties similarly. The result is shown in Fig-

ure 7. The horizontal axis shows the relative decrease of the fairness penalty and the

vertical axis shows the relative increase of the attractiveness penalty.
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Figure 7: Relative Trade-Off Fairness and Attractiveness.

The transformed curves clearly show an increasing rate. We see, for example, that 60% of

the fairness gap, i.e., the difference between the minimum and maximum, can be closed

against a relative small increase of the attractiveness penalty. This 60% decrease leads

to a relative increase of the attractiveness penalty of at most 38% (for instance U1) and

sometimes even of as little as 8% (for instance U4). These points are highlighted in Figure
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7. Similarly, we see that for almost all instances the first 25% can be closed at almost

no additional increase in attractiveness penalty. On the other hand, Figure 7 also shows

that the final improvements of the fairness penalty often come at a disproportionally large

increase of the attractiveness penalty.

6.2.4 Attractiveness Per Group

Using an integrated approach allows to analyze the change in attractiveness per group for

the different levels of fairness. This implies we can analyze the trade-off between fairness

and attractiveness on a local level, i.e., for each group separately, instead of only on a

global level, i.e., seeing the three groups as a whole. We compute for each group the

average incurred attractiveness penalty per week. The groups are classified based on the

types of duties they contain (recall the classification discussed in Section 6.1). The result

is shown in Figure 8.
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Figure 8: Average attractiveness penalty per group for instances U1 (top left), U2 (top
right), U3 (bottom left) and U4 (bottom right).

Figure 8 shows that solutions with a low fairness penalty might be perceived as ‘skewed’

with respect to the attractiveness penalty. When the attractiveness penalty is averaged
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and decomposed per group, we see that the different types of group have, in general, a

different attractiveness. This can be attributed to the different duty types defining each

group (e.g., rosters alternating between late and night duties often have more rest time

violations). When considering solutions with a low fairness penalty, we see a clear increase

in the average attractiveness penalty for groups of the third category, and, for the equally

sized instances, also for the groups of the first category. On the other hand, we see that

for the groups of the second category, the average attractiveness penalty hardly increases,

or even decreases. Especially for groups of the third category, those most flexible with

respect to the duty allocation, we observe a disproportionally large increase.

6.3 Managerial Insights

Our experiments indicate the necessity of a simultaneous optimization of fairness and

attractiveness. The sequential approach is inadequate for analyzing the trade-off between

fairness and attractiveness. By using an integrated approach, we could analyze this trade-

off in detail. The analysis in Section 6.2 led to the following important insights.

Firstly, decision makers should be careful not to ‘over-optimize’ fairness. The trade-

off analysis of Section 6.2.3 showed that tight fairness levels lead to a rapid decrease

of the attractiveness of the rosters. In our experiments, we observed cases where an

almost negligible increase in fairness led to a major decrease in attractiveness. Hence,

fully prioritizing fairness over attractiveness should be considered only when fairness is

extremely highly valued.

Secondly, it is questionable whether a set of rosters with high perceived fairness will be

perceived as desirable by all employees. Our analysis in Section 6.2.4 showed that the

decrease in attractiveness is unevenly distributed over the different roster groups. That

is, for some groups the attractiveness of the roster deteriorates rapidly, while for other

groups the attractiveness of the roster might actually improve. This skewed distribu-

tion of attractiveness is an implicit consequence of minimizing perceived fairness. The

decrease of attractiveness occurs most rapidly for those roster groups that are willing to

accept an irregular roster (i.e., those groups flexible with respect to the work that can be

assigned). A rapid decrease in attractiveness for these roster groups is highly undesirable

from a practical point of view, as the employees in these groups already ‘accept’ a loss of

attractiveness by working an irregular roster.

Our experiments show that the current practice should be revised. In particular, the trade-

off between fairness and attractiveness should be incorporated in the construction of the

rosters. Furthermore, the current metric for perceived fairness, as discussed in Section 2,

should be reconsidered. For example, the skewed distribution of attractiveness could be

incorporated in a new fairness metric. Such adjustments would have a great impact in

practice, as fairness plays a major role in the negotiations with the labor unions.
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7 Conclusion

In this paper, we introduced the Fairness-oriented Crew Rostering Problem (FCRP). In

the FCRP, attractive cyclic rosters have to be constructed, while achieving a pre-specified

fairness level. The goal of the FCRP is to make an explicit trade-off between fairness and

attractiveness. That is, to present a set of solutions, where each solution is optimal for a

different trade-off between fairness and attractiveness.

We developed an exact Branch-Price-and-Cut solution method, based on a novel mathe-

matical formulation. By partitioning the days of a basic schedule in weeks, and assigning

sequences of duties to these weeks, we obtain a flexible model in which different roster

constraints can be easily incorporated in the sequence penalties.

We applied our solution approach to practical instances of NS. We showed that our

integrated approach leads to a diverse set of solutions. The analysis of these solutions

led to two important insights. Firstly, decision makers should be careful not to ‘over-

optimize’ fairness. We observed that by loosening the fairness requirements slightly, the

attractiveness could be greatly improved, thereby showing the possible suboptimality of

a sequential approach. Secondly, we found that the decrease in attractiveness caused by

a tight fairness level is unevenly distributed over the different roster groups.

Based on our findings we recommend to revise the current approach. The trade-off be-

tween fairness and attractiveness should be incorporated in the construction of the rosters.

This will give a more comprehensive image of the problem. Furthermore, additional prop-

erties (e.g., the distribution of attractiveness over the groups) should be taken into account

when determining the fairness level of a solution.

A promising avenue for further research would be to extend our approach to large scale

instances (e.g., containing hundreds of duties). Such instances should most likely be solved

using a heuristic approach, as the problems will become too difficult to solve to optimality.

From a theoretical point of view, exactness is necessary to analyze the trade-off between

fairness and attractiveness. From a practical point of view, however, a set of ‘good’, not

necessarily optimal, solutions can already improve the decision process greatly.
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A Valid Inequalities

The linear relaxation of (1)–(12) can be tightened by adding valid inequalities. We con-

sider the set of roster constraints P \ PK . Recall from Section 6 that in our experiments

the set P \ PK contains the rest constraints (both the strict version regarding the 12/14

hour rest period and the penalized version regarding the 16 hour rest period) and rest

day constraints involving more than one week. We derive a set of valid inequalities to

bound the penalty incurred from the rest constraints regarding the 16 hour rest period.

For each Q ⊆ R let PQ ⊆ P \ PK be the set of 16 hour rest constraints related to the set

of basic schedules Q. We derive a lower bound for the incurred penalty by minimizing∑
p∈PQ

cpδp, (14)

subject to (3)–(4) and ∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fptdx
k
s ≤ bp + δp (15)

for all p ∈ PQ. That is, we ignore the sequence penalties, and hence the roster constraints

PK , thereby greatly simplifying the problem. Many roster sequences can be aggregated

in the above problem, as the rest patterns in PQ depend solely on the first and last duty

scheduled in each sequence.

The above optimization problem can be solved ‘efficiently’ for practical instances using

a commercial solver. In our experiments, for example, the valid inequalities could be

obtained in only a fraction of the time needed to obtain the Pareto-optimal curves, and

they strengthened the formulation greatly: For all but one instance the penalty incurred

in the root node solution was equal to the actual penalty incurred in the found optimal

integer solution. We note that the above procedure leads to 2|R|−1 valid inequalities, and

hence should only be applied when the number of basic schedules is relatively small. In

case of a large set of basic schedules, a more economical alternative is to derive the above

bound only for all basic schedules simultaneously (i.e., Q = R). Although this can lead

to a slightly weaker formulation, we observed that this valid inequality still strengthened

the formulation greatly.

B Modeling Reduced Cost

In this section we show how to model the reduced cost of a sequence. We first introduce

the necessary notation. Let µk denote the dual variables corresponding to (3), ηd those

corresponding to (4) and σp those corresponding to (5). Furthermore, let γar and θar

denote the dual variables corresponding to (6) and (7), respectively. The reduced cost c̄ks
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of sequence s ∈ Sk, with k ∈ Kr, is given by

c̄ks = cks − µk −
∑

(t,d)∈s

ηd −
∑

p∈P\PK

∑
(t,d)∈s

fptdσp −
∑
a∈A

∑
(t,d)∈s

gad(γar − θar).

Note that we can aggregate the dual variables on the vertex level and rewrite the above

expression as

c̄ks = cks − µk −
∑

(t,d)∈s

λktd,

where the aggregated dual variables λktd are defined as

λktd = ηd +
∑

p∈P\PK

fptdσp +
∑
a∈A

gad(γar − θar).

C Lagrangian Distance Labels

As discussed in Section 5.2, the pricing problem can be modeled as a RCSPP with surplus

variables. Consider a RCSPP with surplus variables on the graph G = (V,E). Let R

denote the set of resources and let wrij be the consumption of resource r over arc ij. Each

resource has a threshold br, and surplus variable δr restricted to a closed interval ∆r.

The cost of exceeding br is given by qr. Let V +
i denote all vertices j for which ij ∈ E,

and define V −i analogously. Let yij denote the flow over arc ij. The problem can be

formulated as follows.

min
∑
ij∈E

cijyij +
∑
r∈R

qrδr (16)

s.t.
∑
ij∈E

wrijyij ≤ br + δr ∀r ∈ R (17)

∑
j∈V +

i

yij −
∑
j∈V −

i

yji = 0 ∀i ∈ V \ {s, t} (18)

∑
j∈V +

s

ysj = 1 (19)

∑
j∈V −

t

yjt = 1 (20)

yij ∈ B ∀ij ∈ E (21)

δr ∈ ∆r ∀r ∈ R. (22)

The objective (16) is to minimize the path cost plus the cost of the surplus variables.

Constraints (17) model the resource consumption. Constraints (18)-(20) describe the

shortest path polytope (see Ahuja et al. [1993]). Constraints (21) and (22) specify the
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domain of the decision variables.

Constraints (17) are relaxed in a Lagrangian fashion, giving rise to the Lagrangian dual

problem maxλ≥0 Θ(λ), where

Θ(λ) = min
∑
ij∈E

(
cij +

∑
r∈R

λrw
r
ij

)
yij + Ω(λ)

s.t. (18)− (21),

and

Ω(λ) = min

{∑
r∈R

(qr − λr) δr −
∑
r∈R

λrbr : δr ∈ ∆r

}
.

Note that the Lagrangian subproblem has the integrality property. Let θi(λ) denote the

shortest i − t path length with respect to the cost coefficients cij +
∑

r∈R λrw
r
ij . The

value θi(λ) can be obtained by solving an all-to-one shortest path problem. The following

lemma (see e.g., Borndörfer et al. [2015]) shows the main idea behind the approach.

Lemma C.1. Let λ ≥ 0 and let p be an s − i path in G. The cost of any s − t path

containing p is at least

∑
jk∈p

(
cjk +

∑
r∈R

λrw
r
jk

)
+ θi(λ) + Ω(λ). (23)

Proof. Note that (23) expresses exactly the objective value for the Lagrangian subprob-

lem, conditional on the solution containing p. As this is a lower bound on the actual path

cost for any set of admissible dual multipliers, the result follows.

The values θi(λ) + Ω(λ) are also known as Lagrangian distance labels, and can be inter-

preted as conservative cost estimates of the remaining path cost. To obtain the tightest

bound on the s − t path length the optimal dual multipliers of (16)–(22) are used to

compute the distance labels.
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A. Löbel. Vehicle scheduling in public transit and lagrangean pricing. Management

Science, 44(12-part-1):1637–1649, 1998.
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