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Abstract

This paper introduces a theory of signal perception to study how peo-

ple update their beliefs. By allowing perceived signals to deviate from

actual signals, we identify the probability that people miss or misread sig-

nals, giving indices of conservatism and confirmatory bias. In an experi-

ment, we elicited perceived signals from choices and obtained a structural

estimation of the indices. The subjects were conservative and acted as if

they missed 65% of the signals they received. Also they exhibited con-

firmatory bias by misreading 17% of the signals contradicting their prior

beliefs.

Keywords: non-Bayesian updating; conservatism; confirmatory bias; perceived

signals; belief elicitation.

1 Introduction

In standard economic models, from game theory to macroeconomics, decision

makers incorporate new information using the rational gold standard of belief

updating: the Bayes’ rule. Yet, studies from the psychology literature high-

lighted regular deviations from Bayesian updating. Famous examples are the
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confirmatory bias (see Oswald and Grosjean, 2004, for a review), in which people

tend to neglect or even misinterpret signals contradicting their prior beliefs, and

the conservatism bias (Phillips and Edwards, 1966; Edwards, 1968), in which

people fail to sufficiently incorporate new information, resulting in posteriors

that are too close to their priors.

Since the end of the 1990s, economists have proposed models to incorporate

deviations from Bayesian updating. For instance, Rabin and Schrag (1999)

modeled confirmatory bias as decision makers misreading signals that contradict

their priors, which may give rise to behavioral biases such as overconfidence.

Epstein (2006) provided an axiomatic foundation for non-Bayesian updating

through a retroactively changing prior. Wilson (2014) modeled a decision maker

with bounded memory, which can lead to the emergence of confirmatory bias

and conservatism in belief formation.

Alternatively, the literature on motivated beliefs (see Bénabou et al., 2016,

for a review) models deviations from Bayesian updating through the decision

maker’s tradeoff between the accuracy and desirability of their beliefs. Strategies

to cope with this tradeoff includes reality denial and wishful thinking. The

motivated-belief approach is appealing in situations when people are motivated

to attach values to their beliefs, such as when they think of their own abilities

or of important aspects of their life (Bénabou and Tirole, 2002, 2006). It is not

obvious though whether it would predict deviations from Bayesian updating

when beliefs concern external, ’neutral’ factors.

In this paper, we propose a theory of signal perception to model belief up-

dating. We introduce two indices that are derived from the difference between

people’s perceived signals, revealed from their choices, and the actual signals re-

ceived. Rabin and Schrag (1999) models the confirmatory bias as a probability of

misreading a contradicting signal as confirming. Our first index, q, captures the

same confirmatory tendency in belief updating. In particular, when 0 < q < 1,

it has the same interpretation as in Rabin and Schrag’s model. Empirical ev-

idence shows that people can also exhibit the opposite pattern (Eil and Rao,

2011). Our index captures disconfirmatory bias as well. Our second index p

captures people’s tendency of missing a signal, regardless of its agreement with

the prior. Our model, combining q and p, is a portable extension of Bayesian
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updating in the sense of Rabin (2013). It can be incorporated in any model

from macroeconomics or game theory by re-coding actual signals into perceived

signals using transformations based on q and p.

After presenting our model, we show how perceived signals can be revealed

from choices. In an experiment, we elicited subjects’ beliefs and obtained a

structural estimation of the indices, demonstrating the tractability of the model.

We found clear evidence for both conservatism and confirmatory bias, showing

that deviations of Bayesian updating may occur even in the absence of clear

motivation. On average, subjects missed 65% of the signals and misread 17%

of the signals contradicting their prior beliefs. We further explored factors

influencing the indices. Consistent with previous findings (Griffin and Tversky,

1992), moderately informative signals led to more conservatism.

2 Perceived signal theory

2.1 Setup and perceived signals

We model a simple signal setup, in which a decision maker faces a mechanism

producing independent and identically distributed binary signals. It produces

successes with an unknown probability s (and failures with probability 1− s).

The decision maker is interested in learning about the success rate s. We con-

sider an initial state of ignorance, represented by a uniform probability measure

Prob(s) defined over S ⊂ (0, 1). We assume that the support S is symmetric

around 0.5, i.e., p ∈ S ⇒ (1− p) ∈ S.

Before receiving a specific set of signals, the decision maker has a prior

sample with α0 successes and β0 failures in his memory. Hence, his prior beliefs

are Λ(s;α0, β0) = Prob(s|α0, β0), abbreviated as Λ(α0, β0). When α0 = β0,

the mean of Λ(α0, β0) is equal to 0.5. The initial state of ignorance is an

hypothetical construct that allows us to interpret the decision maker’s beliefs

in terms of signals. Departures from uniformity in prior beliefs are modeled by

(possibly hypothetical) signals in the decision maker’s mind.

After receiving a sequence of signals, his posterior beliefs becomes Λ(α1, β1).

Define α = α1 − α0, β = β1 − β0, and η = α + β. These parameters measure

how much the decision maker has updated his beliefs and therefore, how many

3



signals (successes, failures) he has perceived. We call η the perceived number

of signals, α the perceived number of successes, and β the perceived number of

failures.

Consider a Bayesian updater with a uniform prior over (0, 1), which is equiv-

alent to Beta(1, 1). If he observes a success, his posterior will also be a beta

distribution, given by Beta(2, 1). It would be Beta(1, 2), had he observed a

failure. After each success (failure), the first (second) parameter of the beta

distribution is incremented by one. If the prior belief is Beta(α0, β0), with α0

and β0 possibly different from 1, then the expected probability of success is

given by α0

η0
with η0 = α0 + β0. Hence, the decision maker will expect success

and failure to be equally likely iff α0 = β0. In our application, we will use such

a setting with beta distributions but the theory below does not rely on it.1

For a Bayesian updater, all signals are perceived without distortion: receiv-

ing n signals consisting of a successes and b failures implies α = a, β = b, and

η = n. However, this is not true for non-Bayesian updaters. Deviations from

Bayesian updating can therefore be captured by differences between people’s

perceived signals (α,β, and η) and the actual signals they observe (a, b, and

n). We study two sources of deviations: confirmatory bias and conservatism

bias. Confirmatory bias captures people’s tendency to “misread evidence as

additional support for initial hypotheses” (Rabin and Schrag, 1999), whereas

conservatism captures people’s tendency to miss evidence and to not update

enough their beliefs, without discriminating different types of signals.

2.2 Confirmatory bias

Following Rabin and Schrag (1999), we model the confirmatory bias as the

probability qc to misread a contradicting signal as confirming prior expecta-

tions. By symmetry, the opposite bias, that we called disconfirmatory bias, can

be modelled as the probability qd to misread a signal as contradicting prior ex-

pectations. If, according to the decision maker’s prior belief, successes are more

1For instance, the support S can be discrete.
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likely than failures (i.e. α0 > β0), the confirmatory bias gives:

α = a+ qcb

β = (1− qc)b
, (1)

whereas the disconfirmatory bias givesα = (1− qd)a

β = b+ qda

. (2)

If, according to the decision maker’s prior belief, successes are less likely than

failures (i.e. α0 < β0), the confirmatory bias gives:

α = (1− qc)a

β = b+ qca

. (3)

whereas the disconfirmatory bias givesα = a+ qdb

β = (1− qd)b
, (4)

If successes and failures are equally likely according to the decision maker’s prior

belief, the perceived number of success and failure is not affected by confirmatory

bias.

From observing perceived signals, either qc or qd can be determined whenever

α0 6= β0. Consider the case α0 > β0. If a ≤ α ≤ η, there is evidence for

confirmatory bias and qc can be computed. In practice, we may even observe

qc > 1 when η < α (and therefore β < 0). In such a case, qc is not a probability

anymore but can still be used as an index of confirmatory bias. The case qc > 1

indicates that the decision maker exhibits an extreme form of confirmatory

bias, in which he even recodes the signals from his prior. We call such a case

prior-signal confirmatory recoding. Figure 1 depicts all possible cases. The

interpretation of the decision maker’s perceived signals depend on his prior

beliefs (α0 and β0) and his perceived number of successes α. Moreover, we can
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combine qc and qd into a unique index of confirmatory bias q defined as:

q =

qc if (α0 > β0 and a ≤ α) or (α0 < β0 and b ≤ β)

−qd if (α0 > β0 and a ≥ α) or (α0 < β0 and b ≥ β)

. (5)

Values of q in [0, 1] can be directly interpreted as probabilities to misread

signal in a confirmatory way and values in [−1, 0] as minus probabilities to mis-

read signal in a disconfirmatory way. The global index q is useful for empirical

purposes. For instance, its distribution for the population can be estimated at

once, without separating confirmatory biases from disconfirmatory biases (as is

done for other attitude measures such as risk aversion).

Figure 1: Interpretation of q and relationship with α

2.3 Conservatism bias

We expand the confirmatory bias model by also considering a conservative de-

cision maker’s tendency to ignore signals. In this subsection, we introduce a

measure of conservatism bias, and in the next subsection, we present a model

in which both biases are combined in one model.

A conservative decision maker places too little weight on the sample infor-

mation while updating and thereby tends to ignore some of the relevant infor-

mation. We model the conservatism bias as a probability p to miss a signal.

Hence, η = (1 − p)n. The conservatism bias can affect both types of signals
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indistinguishably, leading to α = (1− p)a and β = (1− p)b. Bayesian updating

implies p = 0. If p = 1, there is no updating at all.

Interestingly, p can also be interpreted if it lies outside the unit interval,

but obviously not as a probability. The case p > 1 captures situations where

the perceived number of signal is negative, suggesting that the decision maker

received information that undermined his prior. For instance, a decision maker

whose prior was too extreme, expecting successes almost exclusively, might be

less confident in his beliefs after observing a few failures. In our perceived signal

theory, such behavior corresponds to prior signal destruction.

By contrast, p < 0 means that the decision maker perceived too many signals.

It can be further illustrated in the case of a Beta distribution. The posterior

mean α0+α
η0+η can be decomposed in terms of prior mean and sample mean:

α0 + α

η0 + η
=
α0 + (1− p)a
η0 + (1− p)n

=
η0

η0 + (1− p)n
· α0

η0
+

(1− p)n
η0 + (1− p)n

· a
n

=
η0

η0 + (1− p)n
· prior mean +

(1− p)n
η0 + (1− p)n

· sample mean

. (6)

Bayes rule requires p = 0, i.e. the actual and the perceived number of signals

match. A positive p(< 1) decreases the impact of the sample mean, implying

conservatism. The decision maker underweights the sample information and

overweights the prior information. Negative p corresponds to base rate neglect,

the decision maker assigning too much weight to the sample and neglecting his

prior beliefs. Such behavior can be explained by the representativeness heuristic

(Tversky and Kahneman, 1974), when decision makers assume that a sample

must resemble the process it originates from and therefore tend to equate the

process mean too much with the sample mean.
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Figure 2: Interpretation of p and relationship with η

Figure 2 depicts the relationship between the perceived number of signal η

and the conservatism index p. It shows that p is a simple rescaling of η such

that p is independent of the actual sample size n.

2.4 Combining biases

In the combined model, the decision maker may miss signals (conservatism bias)

and then misread those he did not miss (confirmatory bias). If, according to the

decision maker’s prior belief, successes are more likely than failures (α0 > β0),

the confirmatory bias in presence of conservatism bias gives (replacing qc by q):

α = (1− p)a+ q(1− p)b

β = (1− q)(1− p)b
, (7)

whereas the disconfirmatory bias gives (replacing qd by −q)

α = (1 + q)(1− p)a

β = (1− p)b− q(1− p)a
. (8)

The case α0 < β0 is symmetric. If successes and failures were equally likely

according to the decision maker’s prior belief:α = (1− p)a

β = (1− p)b
. (9)

In terms of observability, p can always been obtained by comparing η with

n. Further, if α0 6= β0 and p 6= 1, then q can be obtained by first correcting
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a and b for conservatism (multiplying them by 1 − p) and then applying the

adequate equation of (dis)confirmatory bias. If after a first round of signals, the

decision maker receives a second round of signals, p and q can be determined

again using the posterior of the first round as the prior of the second round.

2.5 Measuring informativeness

Literature shows that deviations from Bayesian updating depend on various sit-

uational factors such as the strength of evidence. Griffin and Tversky (1992)

find that moderate signals lead to insufficient updating while extreme signals

lead to overreaction. The same set of signals may be deemed extremely informa-

tive by a decision maker but less so by another. The informativeness of signals

thus depends both on the signals themselves and the prior of the decision maker.

Hence a measure of informativeness should depend on α0, β0, a, and b.

We define our measure of informativeness as the information gain (IG), also

known as relative entropy or Kullback-Leibler divergence, between the prior

Λ(α0, β0) and the posterior the decision maker would have if he were Bayesian

Λ(α0 + a, β0 + b). Let g(s) be the density function of prior, and h(s) be the

density of the Bayesian posterior. The IG is calculated as:

IG(α0, β0, a, b) =

ˆ
[0,1]

h(s) log
h(s)

g(s)
ds. (10)

The IG measure captures how much the signals should influence the decision

maker’s beliefs. It allows us to examine the impact of signal informativeness on

belief updating biases.

3 Revealing perception through choices

To reveal people’s perception of signals, it is necessary to make their beliefs

observable. Belief elicitation methods in the literature, such as proper scoring

rules (see Schotter and Trevino, 2014, for a survey in economics), often rely on

the descriptive validity of expected value or expected utility to reveal people’s

true beliefs. In this paper, we consider two methods that do not rely on expected

utility.
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We are interested in the decision maker’s belief about the unknown success

rate s. Let P denote the σ-algebra on (0, 1), which is the domain of s. Events,

E ∈ P, of interest to the decision maker are subsets of (0, 1). The decision

maker faces (binary) acts, denoted by γEδ, which pays a positive money amount

γ if event E happens and δ otherwise. The decision maker also faces (binary)

lotteries γλδ, yielding γ with probability λ and δ otherwise.

Assume that the decision maker whose behavior towards lotteries can be

represented by a function V satisfying first order stochastic dominance. The

function V need not be expected utility and it therefore allows for deviations

from expected utility such as in the paradoxes suggested by Allais (1953). The

decision maker is probabilistically sophisticated (Machina and Schmeidler 1992)

if his behavior towards acts can be entirely explained by V and a probability

measure Λ over P. In other words, the assumption of a probabilistically sophis-

ticated decision maker guarantees that choices are consistent with a probability

measure and therefore is a sufficient condition to observe beliefs from choices.

We present two methods to elicit Λ irrespective of V . The first method to

observe belief involves measuring matching probabilities, i.e. λ such that γEδ ∼

γλδ. Under probabilistic sophistication, this indifference implies V (γΛ(E)δ) =

V (γλδ) and thus, Λ(E) = λ, thereby revealing beliefs. Many studies used match-

ing probabilities to elicit people’s beliefs (Raiffa, 1968; Spetzler and Stael von

Holstein, 1975; Holt, 2007; Karni, 2009). The second method we consider in-

volves elicitation of exchangeable events, events E and F , such that γEδ ∼ γF δ.

If probabilistic sophistication holds, the elicited indifference implies, V (γΛ(E)δ) =

V (γΛ(F )δ), and thus, Λ(E) = Λ(F ), providing constraints on the belief func-

tion. For instance, if they are complementary, then Λ(E) = Λ(F ) = 1
2 . This

method is based on the original idea of Ramsey (1931) (called ethically neutral

events) and of De Finetti (1937) and has been long-known in decision analy-

sis (Raiffa, 1968; Spetzler and Stael von Holstein, 1975). Recent experimental

implementations can be found in Baillon (2008) and Abdellaoui et al. (2011).

Both methods have advantages and are therefore implemented in our ex-

periment. Matching probabilities directly reveals the probability of an event

whereas exchangeable events only reveal that two events are equally likely. Yet,

matching probabilities require that the function V is the same for lotteries and
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for acts. If the decision maker tend to prefer lotteries to acts, exhibiting ambi-

guity aversion (Ellsberg, 1961), matching probabilities may be biased. Eliciting

exchangeable events, which do not require the use of lotteries, is robust to this

problem.2 Implementing both methods will allow us to assess the possible im-

pact of ambiguity attitude.

For empirical tractability, we assume that decision makers’ beliefs follow a

beta distribution. The beta family is both natural to model beliefs over a success

rate and very tractable. Beta distributions are flexible and can take a wide array

of shapes with different locations and dispersion for different parameters. Before

and after they receive a set of signals, we elicit their priors and posteriors using

the methods described above. We then estimate their perceived signals and are

able to construct measures of their conservatism and confirmatory biases.

4 Experimental design

4.1 Subjects

Seven experimental sessions were conducted at the Erasmus School of Economics

Rotterdam. The number of participants in each session varied between 20 and

27, summing up to 157 in total. Subjects were bachelor and master students

at Erasmus University Rotterdam, with an average age of 21.3. Each session

lasted one hour and fifteen minutes including instructions and payment.

4.2 Stimuli

During the experiment, subjects faced choice situations about acts whose payoffs

depended on the actual color composition of a spinning wheel. The spinning

wheel was covered by two (and only two) colors: yellow and brown. The color

composition was randomly drawn from an opaque bag at the beginning of the

experiment in front of all subjects by an implementer – one randomly selected

2Ambiguity is sometimes assumed to be equivalent to the absence of probabilistic beliefs.
As demonstrated theoretically by Chew and Sagi (2008) and empirically by Abdellaoui et al.
(2011), one can preserve the existence of a belief function expressed in probabilistic terms
and allow for the Ellsberg paradox. The decision maker is within-source probabilistically
sophisticated if there exists a probability measure Λ defined over P and a function W satisfying
first order stochastic dominance such that γEδ is evaluated W (γΛ(E)δ). Under this model,
exchangeable events E and F still satisfy Λ(E) = Λ(F ).
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subject.

The experiment consisted of alternating periods of choice and sampling (see

Figure 3 for the flow). It started with a choice period in which subjects made

choices without any knowledge about the color composition of the wheel. Then,

the implementer spinned the wheel three times and reported the resulting colors.

Having acquired this new information, subjects made choices in the same choice

situations (but potentially in different orders) again. The same procedure was

repeated two more times.

Figure 3: Experimental flow

The color composition of the wheel stayed the same and unknown throughout

the experiment, which means that in later choice periods, subjects made choices

based on accumulated knowledge about the same wheel. For example, the last

questionnaire was filled relying on the information of nine spins in total.

4.2.1 Matching probabilities

Figure 4 presents a choice list to elicit a matching probability. In each choice

question, subjects had to choose between option W(heel) whose payoff depended

on the actual color composition of the same spinning wheel, and option C(ard)

whose payoff depended on a random draw from a deck of four cards of different

suits: aces with heart, diamond, club, and spade, each with 25% probability.
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Figure 4: Choice list to elicit matching probabilities

The choice in the first line was pre-ticked for the subjects by the experi-

menters, as in this case, option C dominates option W since the proportion of

brown cannot be 0% (otherwise there is only one color on the wheel). Similarly,

the last line was also pre-ticked. Subjects were informed that as they move down

the list, option W became better while option C stayed the same. Therefore, at

one point, they may switch from preferring option C to option W.

The subjects’ switching pattern in Figure 4 gave an interval [y−0.25, y
+
0.25]

for y0.25 such that 20[0,y−0.25]0 ≺ 200.250 and 20[0,y+0.25]0 � 200.250, implying

that 0.25 was the matching probability of event [0, y0.25]. We also elicited the

corresponding intervals for y0.5 and y0.75. The choice lists were similar, except

that the card options had more winning suits – two winning suits for 50% and

three for 75%.

4.2.2 Exchangeable events

Figure 5 presents a choice list used to elicit exchangeable events. In each choice

question, subjects had to choose between two lotteries. Payoffs of both lotteries

depended on the actual color composition of the spinning wheel. Take line 4 of

the list as an example, Option L(eft) pays e20 if the actual brown proportion

is no more than 12%, whereas Option R(ight) pays e20 if it is more than
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12%. Subjects had to choose between the two lotteries in each line of the list,

depending on their subjective judgment of the actual color composition of the

wheel.

Figure 5: Choice list to elicit exchangeable events

The first and the last lines were pre-ticked by similar dominance arguments

as for matching probabilities, and subjects were told that as they move down

from the list, option L became better and option R became worse. At some

point, they may switch from preferring option R to option L.

Where subject switched in Figure 5 provided an interval [y−median, y
+
median] for

ymedian such that 20[0,y−median]0 ≺ 20(y−median,100]0 and 20[0,y+median]0 � 20(y+median,100]0.

Therefore, for some ymedian ∈ [y−median, y
+
median], we have 20[0,ymedian]0 ∼ 20(ymedian,100]0.

The events [0, ymedian] and (ymedian, 1] were both exchangeable and complemen-

tary, meaning that the subjects assigned them probability 1
2 . Similarly, we

elicited intervals for ylow and yhigh such that 20[0,ylow]0 ∼ 20(ylow,0.5]0, and

20[0.5,yhigh]0 ∼ 20(yhigh,1]0, following the method of Abdellaoui et al. (2014).

Choice lists to elicit ylow and yhigh were similar, but with different start and

end points of proportion intervals (from 0% to 50% for the former, and 50% to

100% for the latter).
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4.3 Incentives

Each subject received a e5 show-up fee and a variable amount of e20 depending

on one of his choices in one choice period (the implementer received a flat pay-

ment of e15). A prior incentive system (Johnson et al., 2015) was implemented

to determine for each subject which choice would matter for his final payment.

Before the experiment started, each subject randomly drew a sealed envelope

from a pile of 156 sealed envelopes each containing one choice question (sub-

jects faced in total 6 choice situations, each with 26 choice questions). Subjects

were informed that the question that would matter for their payment was in

their envelope, and were told not to open their envelopes until the end of the

experiment. To determine which choice period would matter, the implementer

randomly drew a number from one to four. Further implementation detailed

are reported in the appendix.3

5 Raw data

Session # Subjects
Received signals between rounds:

1&2 2&3 3&4

1 24 BBB BBB BBB
2 27 BYY YYY BYB
3 20 BBB BYB YYB
4 20 BYB BYB BYY
5 23 BBY YYY BBY
6 20 YYY YYY YYY
7 23 YYY YBB YYY

Table 1: Description of sessions

Table 1 summarizes the number of subjects and the color of spins in sampling

periods in each session. For results reported in this section, we take the mid

point of the elicited intervals as the indifference values. For instance, we take

ymedian =
y−median+y+median

2 .

Take the belief of a Bayesian updater with a uniform prior as the Bayesian

benchmark. Figure 6 plots the difference between subjects’ median belief (ymedian

in the exchangeability method and y50 in the matching method) of the yellow

3In particular, we also controlled for possible suspicion effects by letting the subjects choose
on which color they would be betting.
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proportion and the Bayesian benchmark. A positive (negative) difference cor-

responds to an overestimation (underestimation) of the yellow proportion. In

sessions with balanced signals, subjects’ median beliefs did not deviate much

from the Bayesian benchmark, however, in sessions (e.g. session 1 and 7) where

they received extreme signals, deviations were high. For instance, in session

1, subjects only received Brown signals. Their median deviations were posi-

tive, suggesting an overestimation of the yellow proportion on the wheel. The

overestimation can be caused by conservatism: subjects did not incorporate the

signals sufficiently. A similar pattern was observed in session 6 where subjects

only received yellow signals and underestimated the yellow proportion on the

wheel.
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Figure 6: Median Deviation From the Bayesian Benchmark
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Similarly, Figure 7 shows how the dispersion in subjects’ beliefs (shigh− slow

for the exchangeability method and s75 − s50 for the matching method) differs

from the Bayesian benchmark. A positive (negative) difference shows that sub-

jects are under-precise (over-precise) as compared to the Bayesian benchmark.

For both median and dispersion deviations, we observed persistent individual

heterogeneity. In our structural model, we estimate the confirmation and con-

servatism indices while taking individual differences into account.
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Figure 7: Dispersion Deviation From Bayesian updating
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6 Econometric Analysis

6.1 Econometric model

6.1.1 Measuring beliefs and deviations from Bayesian updating

The beliefs of a subject i at round j are assumed to follow a Beta distribution

Beta(.|αi,j , βi,j). The prior of subject i at round 1, determined by αi,1 and βi,1,

is assumed to be exogenous and will be estimated. Then, for rounds j > 1:

αi,j = αi,j−1 + s(ai,j , bi,j , αi,j−1, βi,j−1, pi,j , qi,j)

βi,j = βi,j−1 + f(ai,j , bi,j , αi,j−1, βi,j−1, pi,j , qi,j)

where s and f are the functions that determine respectively the perceived suc-

cesses and failures, as modeled by equations 7 to 9. These functions depend on

the current beliefs parameters αi,j−1 and βi,j−1, the received signals ai,j and

bi,j and the indices of deviations from Bayesian updating, pi,j and qi,j . For a

Bayesian, s(ai,j , bi,j , αi,j−1, βi,j−1, pi,j , qi,j) = ai,j and f(ai,j , bi,j , αi,j−1, βi,j−1, pi,j , qi,j) =

bi,j .

According to Figure 6, there is little or no heterogeneity in prior beliefs as

measured in round 1. We therefore assume that α1 and β1 are constant across

subjects. Much more heterogeneity in beliefs is observed for later rounds, both

between and within sessions. Heterogeneity between sessions can be due to

session-specific received signals that can be more or less surprising. Heterogene-

ity within sessions can be due to subjects characteristics. Eventually, biases may

also vary from one round to another, due to learning or fatigue. We attempt

to account for these three possible sources of heterogeneity in our econometric

analysis. To do so, we built a structural model that includes several explanatory

variables of the deviation indices. Specifically, we assume that

pi,j = p+ ΓpXi,j

qi,j = q + ΓqXi,j

where p and q are the intercepts of the deviation indices. When Γ = 0, these
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intercepts measure the aggregated indices over sessions, individuals and rounds.

They should be equal to 0 if subjects perceived signals according to Bayes rule.

Γp (resp. Γq) is the vector of coefficients that measure the impact of variables

Xi,j on index p (resp. q). The following explanatory variables are considered:

• a categorical variable denoting the round of the experiment,4

• the information gain of the received signals based on the individual specific

prior,

• the squared information gain,

• subjects characteristics: including gender, and field of studies (economics

or econometrics versus other).

We denote θ, the vector of coefficients to be estimated, with θ = (α1, β1, p, q,Γp,Γq).

6.2 Estimating the model

Under our specification, the beliefs of a subject i at round j take the form of a

probability distribution Λ(.|θ, a, b) where θ is a vector of coefficients and a and

b are the received signals. This probability distribution is revealed by a series

of choices, grouped within choice lists. Two types of choices lists are used. The

first type, eliciting matching probabilities, considers a series of quantiles qk and

measures their corresponding values y?k such that Λ(y?k) = qk. More precisely,

these choice lists determine two values y−k and y+
k such that 20[0,y−k ]0 ≺ 20qk0

and 20[0,y+k ]0 � 20qk0 i.e. y?k ∈ [y−k ; y+
k ].

The other type of choice lists, eliciting exchangeable events, considers in-

tervals [mk, nk] and measures the corresponding values y?k such that Λ(mk) −

Λ(y?k) = Λ(y?k) − Λ(nk) i.e. Λ(y?k) = Λ(mk)−Λ(nk)
2 . Here again, the choice

lists determine two values y−k and y+
k such that 20[mk,y

−
k ]0 ≺ 20[y−k ,nk]0 and

20[mk,y+]0 � 20[y+,nk]0 i.e. y?k ∈ [y−k ; y+
k ].

For each individual i, round j and choice list k, the structural equation

model provides a theoretical value ythk (θ,Xk) where θ is the vector of coefficients

4for p we consider round 2 as the reference and introduce dummy variables for round 3
and round 4. For q, preliminary analysis revealed that alpha1 = beta1, meaning that q is not
defined for round 2. We considered round 3 as the reference and introduced a dummy variable
for round 4.
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of our decision model, and Xk is the set of variables containing choice lists

characteristics and other explanatory variables. In order to account for subject

and/or specification errors, we assume that y?k = ythk + εk with εk ∼ N(0, σ2).

Using this error specification, the likelihood of the observations provided by a

given choice list is

p(y?k ∈ [y−k ; y+
k ]) =p(εk ∈ [y−k − y

th
k (θ,Xk); y+

k − y
th
k (θ,Xk)]

=Φ(
y+
k − ythk (θ,Xk)

σ
)− Φ(

y−k − ythk (θ,Xk)

σ
)

=l(θ|y+
k , y

−
k , Xk)

This equation defines the likelihood of the vector of coefficients to be esti-

mated, given the observations provided by choice lists and exogenous variables.

For a given individual i, the likelihood of a series of responses to choice lists

(indexed by k), for each rounds (indexed by j), writes

li(θ) =
∏
j

∏
k

l(θ|y+
i,j,k, y

−
i,j,k, Xi,j,k)

We estimate the vector of coefficients θ by maximizing the sum of log-

likelihoods over individuals: LL(θ) =
∑
i li(θ). This log-likelihood function

is maximized by the BFGS algorithm.5 In order to account for heterogeneity

in individual error terms across rounds, specific error variances are estimated

for each round. Inference is based on the (subjects) clustered standard-errors,

computed from the variance-covariance matrix of individual scores.

6.3 Results

This section presents the estimated indices of deviation from Bayesian updating,

and their explanatory variables. The results of the estimations are presented in

Table 2.

5In order to avoid local maxima, for each estimations, suitable starting values were com-
puted using grid search over 1000 possible vectors. After convergence, 10 additional estima-
tions were run around estimated coefficients

22



Coefficients No Explanatory Rounds Rounds and Round, information and
Information subject’s characteristics

σ1 8.221 (0.086)*** 8.133 (0.085)*** 8.192 (0.095)*** 8.184 (0.094)***
σ2 12.143 (0.204)*** 12.121 (0.204)*** 12.237 (0.213)*** 12.081 (0.211)***
σ3 13.782 (0.27)*** 13.696 (0.266)*** 13.331 (0.263)*** 13.496 (0.283)***
σ4 13.389 (0.255)*** 13.386 (0.265)*** 13.229 (0.259)*** 13.285 (0.28)***
α1 1.449 (0.03)*** 1.451 (0.031)*** 1.485 (0.035)*** 1.46 (0.034)***
β1 1.368 (0.029)*** 1.369 (0.03)*** 1.378 (0.033)*** 1.363 (0.034)***
pIntercept 0.648 (0.009)*** 0.673 (0.012)*** 0.43 (0.053)*** 0.374 (0.075)***
qIntercept 0.166 (0.019)*** 0.18 (0.028)*** 0.414 (0.107)*** 0.272 (0.17)ns
pround=3 -0.09 (0.024)*** -0.256 (0.03)*** -0.119 (0.024)***
pround=4 -0.01 (0.043)ns -0.103 (0.069)ns 0.05 (0.063)ns
qround=4 0.057 (0.075)ns -0.339 (0.212)ns -0.502 (0.108)***
pig 2.895 (0.263)*** 1.435 (0.362)***
pig2 -4.294 (0.358)*** -1.846 (0.433)***
qig 0.177 (0.568)ns 0.735 (3.198)ns
qig2 -0.867 (0.711)ns -2.984 (9.529)ns
pgender=female 0.069 (0.014)***
pmajor=Econ 0.085 (0.021)***
qgender=female 0.047 (0.06)ns
qmajor=Econ 0.156 (0.061)*

Clustered standard errors are reported between brackets.
Stars report significance levels: ns for p ≥ 0.05, ∗ for p < 0.05, ∗ ∗ for p < 0.01,
∗ ∗ ∗ for p < 0.001.

Table 2: Results of Econometric Estimations

Whatever the set of explanatory variables, the parameters α and β char-

acterizing priors at round 1 and before receiving any signal, had very similar

estimates: 1.5 and 1.4. The similarity of these two values suggests that the

belief distribution of our representative subject was symmetrical. Consistently

with the provided instructions, subjects did not expect one color to be more

likely than the other, before receiving signals. It is nevertheless worth to note

that priors were not perfectly uniform either, they exhibited a smaller variance

and give sightly more probability weight to central than to extreme values of

the [0,1] interval.

The first model introduces overall measures of conservatism bias (p) and

confirmatory bias (q) for our representative subject. Both indices differed from

0. According to the estimated values, subjects exhibited a pronounced tendency

to conservatism: they behaved as if they neglected 65% of the sample size

of actual signals. Evidence for confirmatory bias was also observed: subjects
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behaved as if they misinterpreted 17% of signals contradicting their beliefs.

The other models (columns 2 to 4) enrich the analysis by introducing ex-

planatory variables for the bias indices. When allowing biases to vary across

rounds, we observed that conservatism bias was smaller for round 3 than for

round 2, but the dummy variable for round 4 was not significant. For con-

firmatory bias, no significant differences were observed between rounds 3 and

4.6

The model of column 3 accounts for heterogeneity across rounds and across

sessions by including information gain as an explanatory variables. Exploratory

analysis suggested that the impact of information gain might be non-linear, and

therefore a polynomial effect was considered. Information gain was not found

to impact confirmatory bias, but impacted conservatism bias significantly. The

coefficients associated to the two degrees of the polynomial were significant and

suggested that the relationship was not monotonic, but inverse-U shaped. The

shape of the estimated effect is represented in Figure 8. Moderately informative

signals increased the biases, whereas very poorly or highly informative ones

reduced them. It is noteworthy that very surprising signals were able to reverse

the sign of the conservatism index, possibly leading to prior signals destruction.

6The q index was not estimated for round 2 because people hold (approximately) symmetric
beliefs in round 1.
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Figure 8: Polynomial effect of information gain on p

.

6.4 Stability of results across measurement methods

Two different methods were used to measure beliefs. Estimations presented in

the previous section pool observations from the two methods, assuming that

they give similar patterns. We also tested this assumption.

The first and last models from Table 2 were re-estimated with all explana-

tory variables interacting with a dummy variable coding for the method used

for estimations. For the simple model containing only intercept values of p and

q, the dummy variable was found to have a significant impact on p. When mea-

sured with the exchangeability method (that is robust to ambiguity attitudes),

the index of conservatism bias was lower by 0.133 (clustered standard error:

0.026). Regarding the confirmatory bias, the difference between measurement

methods was estimated as 0.07 (clustered standard error: 0.10) but was not

statistically significant.

The aforementioned result suggest that ambiguity can amplify conservatism.

Their posterior beliefs, measured with matching probabilities, remain too dif-

fuse. Controlling for ambiguity by the use of exchangeable events leads to less
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deviations from Bayesian updating.

The dummy variable denoting the measurement method was also included

in the model with explanatory variables for biases (column 4), and possible

interactions were allowed. The estimated model contains 32 coefficients. A

likelihood test was run to check whether adding interactions between dummy

variable for method and other explanatory variables increased the likelihood

significantly. The p-value of the test is 0.07. This suggests that allowing for

coefficients to interact with the method dummy does not increase the goodness

of fit significantly. Therefore, the coefficients of the explanatory variables do

not vary significantly with the measurement method.

7 Discussion

This paper models belief updating when a combination of conservatism and con-

firmatory bias may distort people’s perception of signals received, thus incorpo-

rating new information insufficiently or asymmetrically. Our model provides an

intuitive interpretation of the biases and makes them observable from revealed

preferences. It extends Rabin and Schrag’s 1999 model by accounting for more

patterns of deviations from Bayesian updating.

The experiment illustrated how the indices could be estimated in a tractable

manner. Thus, it provided the first structural estimation of the two well-known

biases. The results showed evidence for both confirmatory bias and conservatism

at aggregate level. On average, the confirmatory bias index was estimated as

0.17 suggesting that an opposite signal may be misread with 17% chance. The

conservatism index was 0.65 suggesting a strong stickiness to priors. Further-

more, the conservatism bias also depended on the informativeness of signals

as measured by how surprising the signals were given the prior beliefs. In

particular, subjects were more conservative when the new signals were neither

extremely surprising nor extremely non-surprising. This pattern is consistent

with the previous findings indicating the tradeoff between the strength and the

credibility of evidence (Griffin and Tversky, 1992; Massey and Wu, 2005).

Our experiment contributes to the empirical investigation of confirmatory

bias. Despite the abundance of theoretical models on confirmatory bias in eco-
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nomics literature, the main empirical findings for confirmatory bias mainly

come from the psychology literature (for reviews, see Klayman (1995); Nick-

erson (1998); Oswald and Grosjean (2004)). However, the subjective nature

of the psychological experiments do not allow a formal investigation of confir-

matory bias due to the lack a normative benchmark for comparison of revised

beliefs. Although there are a few field studies documenting evidence on confir-

matory bias (Andrews et al., 2015; Sinkey, 2015; Christandl et al., 2011), there

is still lack of evidence in standard Bayesian updating experiments. Several

recent studies document evidence on asymmetric processing of information in

Bayesian updating as in confirmatory bias, when the information has a valence

or it is self-relevant (Coutts et al., 2016; Eil and Rao, 2011; Ertac, 2011). Dif-

ferent from our ego-neutral setting, these studies employ ego-related settings

where subjects make inferences about their scores on intelligence tests or their

physical attractiveness rated by other subjects in the same experimental ses-

sion. Eil and Rao 2011 argue that confirmation of prior beliefs happens only

when the confirming evidence supports a positive ego image. Specifically, people

are more responsive to positive feedback compared to negative feedback about

themselves regardless of their prior beliefs. Our results show that confirmatory

bias can also arise in an ego-neutral setting. The direction of the bias, however,

then depends on the informativeness of signals.

8 Conclusion

This paper studies biases in people’s belief updating from a descriptive per-

spective. We modeled deviations from Bayesian updating by allowing perceived

signals to differ from the signals people actually receive. It provides a natural

interpretation of well-known biases and makes them observable from choices.

Our model thus adheres to the revealed-preference approach of economics.

In our experiment, confirmatory bias and conservatism were dominant at

the aggregate level, while individual heterogeneity persisted. The opposite of

conservatism arose in situations where the signals were extremely surprising.

This finding illustrates the relevance of allowing for different deviation pat-

terns. Overall, our results replicated previous findings on Bayesian updating,
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suggesting that our model and the method are empirically valid.
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Appendix

A. Detailed experimental procedure

Every subject received a subject ID upon arrival. In each session the subject

whose ID started with M was invited to the front and introduced to all subjects

as the implementer of that session. The implementer was then guided to a desk

at the rear end of the room isolated by a wooden panel. The implementer would

implement the randomization tasks to make sure that they were conducted in

a fair and transparent manner.

Each session started with oral instructions by one of the experimenters –

the instructor – using slides. Throughout the experiment, subjects could ask

questions when anything was unclear. A training wheel was used during the

instructions for illustration purpose. The training wheel was covered by blue

and red, instead of brown and yellow to avoid potential misunderstandings and

biases. The implementer first confirmed that the training wheel hidden behind

the panel was covered by brown and brown, and there were no other colors on the

wheel. He then spinned the wheel three times and reported the resulting colors.

These colors were written down on the white board so that all subjects could see

during the instruction. Subjects then received a training questionnaire with all

choice situations that they would face during the experiment. The instructor

went through them with the subjects, and the subjects filled in the training

questionnaires based on the sample information from the practice wheel as a

practice.

After all subjects were familiarized with the experimental tasks, the instruc-

tor explained to the subjects how their final payment would be determined with

an example envelope content. The oral instructions ended with the explanation

of the structure of the experiment.

After the instructions and before the start of the actual experiment, each

subject drew a sealed envelope and the implementer randomly drew a period

number from 1 to 4. Then, the implementer randomly drew a card from the

deck of four cards. The selected period number and the card were sealed in two

envelopes and only revealed at the end of the experiment. The implementer

then drew a color composition for the wheel. He confirmed to all subjects that
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the wheel was covered by two and only two colors: yellow and brown.

Before handing out the questionnaires for the first choice period, each subject

could state his preference between betting on yellow proportion and betting on

brown proportion during the experiment. He received questionnaires with that

color throughout the experiment. The subjects were requested to write their

subject IDs on every questionnaire that they filled in so that their choices could

be tracked down over the periods. The questionnaires were collected at the end

of every choice period, and the sampling period proceeded. The outcome of

every spin were announced by the implementer, and written down on the white

board by the experimenter. New questionnaires were handed out after each

sampling period.

At the end of the experiment, the color composition of the wheel, the card

suit, and the choice period drawn for the payment stage was revealed to the

subjects by the implementer. The subjects were requested to open their en-

velopes, and to proceed to the payment desk, where they got paid according to

the outcome of their preferred lottery in the choice question that came out of

their envelopes.
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