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Chapter 1

Introduction

More often than not, decisions that we make under uncertainty rely on our personal 

experiences with the contingencies. We often come to know about possible consequences 

of our actions from experience, or stay completely ignorant about them due to lack of 

experience, which determines our perception of the riskiness or the reliability of a source 

of uncertainty. In fact, a summary description of possible outcomes and probabilities of 

any prospect is hardly ever available to us, except in some cases such as weather reports. 

Decisions from description (henceforth, DFD) typically concern risk in the 

literature on decision making. It is identified as a case where outcome probabilities are 

objectively known. Decisions from experience (henceforth, DFE), on the other hand, 

represent a case of ambiguity. Here, the outcome probabilities are not known objectively 

but they are subjectively inferred based on finite number of observations from a (finite or 

infinite) population of outcomes. As in many real life situations, probabilistic inference and 

information search are integral parts of DFE. Thus, they provide a realistic framework to 

understand decisions under uncertainty. 

Two influential studies by Barron & Erev (2003) and Hertwig, Barron, Weber and 

Erev (2004) indicated that there is an intriguing behavioral gap between these two choice 

paradigms. In particular, these studies claimed that rare and extreme outcomes – so-called 

“black swans” – are overweighted under DFD, whereas they tend to be underweighted or 

even neglected under DFE. Both overweighting and underweighting (or neglect) stand as 

deviations from Expected Utility theory (henceforth, EU) under risk (Von Neumann & 

Morgenstern, 1944) and Subjective Expected Utility theory (henceforth, SEU) under 

uncertainty (Savage, 1954), which are considered the rational models of choice in 

Economics.  

Overweighting of rare outcomes under DFD is a robust empirical phenomenon. It is 

usually associated with separate attention induced by an explicit reminder of a good or a 

bad rare outcome, which triggers emotions of hope and fear. Nevertheless, the impact of 
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rare outcomes under DFE has not been settled yet. Previous studies suggested that the

neglect of rare outcomes while making DFE is mainly due to ignorance about them caused 

by lack of experience. However, whether a rare outcome is still neglected (or 

underweighted) when its existence is known by observation, or when it is anticipated,

under DFE has been unclear.

This dissertation explores the DFD-DFE gap, specifically the weighing of 

uncertainty under DFD and under DFE, in more detail. The main premise of this thesis is 

that the DFD-DFE gap has two components: (1) probability weighting, and (2) subjective

beliefs. The first component is essential for understanding the differences between DFD 

and DFE with respect to attitudes towards outcome probabilities. For example, a decision 

maker can assign higher or lower decision weights to favorable outcome probabilities 

(optimism vs. pessimism), or she can be more or less sensitive to changes in outcome

probabilities under DFE than under DFD. In this thesis, such attitudes towards outcome

probabilities are modelled by source dependent probability weighting functions. This 

means that the impact of learning experience and ambiguity under DFE are observable 

through a comparison of probability weighting functions that are specific to the sources of 

described risk and experienced uncertainty. 

The second component, understanding subjective beliefs, is also essential because 

DFE entail probabilistic inference while DFD does not. Specifically, the decision maker 

under DFE first has to estimate the probabilities of outcomes based on her own sampling 

observations. On the contrary, no probability estimation is required under DFD because the 

objective probabilities are readily available to the decision maker. Importantly, the

probability estimations may deviate from objective probabilities, due to sampling error

(e.g. under-observation of rare outcomes), over-or under-estimation of probabilities or 

belief updating. This discrepancy is another source of the DFD-DFE gap.

In what follows, chapters 2 and 3 aim to shed light on the DFD-DFE gap by 

disentangling beliefs from probability weighting under DFE. Chapter 2 provides an 

empirical investigation of the impact of learning experience on probability weighting while 

controlling for the impact of probability estimations and ambiguity. Different from

previous DFE studies, the experiment in this chapter examined DFE under risk rather than 

under ambiguity. Thus, DFD and DFE treatments were two different cases of risk that 

differed only with respect to information acquisition: through description or through

sampling experience. Our experimental design also resolved a number of methodological 
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difficulties in previous studies such as sampling bias, an aggregation problem, and the 

impact of utilities. This chapter starts with a critical review of the literature on the DFD-

DFE gap.

Chapter 3 examines DFE under ambiguity. It introduces a two-stage decision model 

for DFE that emphasizes the role of prior beliefs. The two-stage model assumes that (1) the 

subjective probabilities are estimated in a Bayesian manner, combining prior beliefs with 

the sampling observations, and (2) the estimated probabilities are transformed by a source 

dependent probability weighting. The first stage of the model provides a Bayesian

explanation for overestimation of infrequent outcomes that is commonly found in previous 

studies on probability judgments, as well as a natural way to estimate the probabilities of 

always-observed outcomes – i.e. outcomes with observed relative frequency of one –

whose certainty is not known for sure. A source dependent probability weighting in the 

second stage captures deviations from SEU under experienced uncertainty. The two-stage 

model was tested by reanalyzing data sets available from previous studies by Glöckner et 

al. (2016) and Erev et al. (2010).

Chapter 3 used a Bayesian method of updating as a working hypothesis, and 

estimated probability weighting functions parametrically. The Bayesian updating method 

was proved to be useful in the analysis due to its tractability, and the model was successful 

in disentangling beliefs from probability weighting. Nevertheless, the descriptive validity 

of Bayes’ rule is often questioned in empirical studies. Moreover, different parametric 

specifications of probability weighting functions are supported on empirical, axiomatic and 

meta-theoretical grounds. Following up on chapter 3, the subsequent chapters present two 

independent studies on the aforementioned components of the DFD-DFE gap that can 

inform future studies on DFE and on DFD.

Chapter 4 focuses on subjective beliefs. This chapter introduces a tractable model 

of non-Bayesian belief updating in a signal setup where the decision maker receives binary 

signals from a source of uncertainty. Assuming that a decision maker is born in a 

hypothetical state of ignorance, the model interprets her beliefs as a posterior probability 

conditional on all the perceived signals that she has received from the source of 

uncertainty. The model accommodates common updating biases such as conservatism

referring to the reluctance of extracting enough information from sampled observations, 

and confirmatory bias referring to the tendency to misread evidence contradicting prior 

beliefs. Accordingly, the model quantifies conservatism by a likelihood of missing some 
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signals regardless of its support for the prior beliefs, and confirmatory bias by a likelihood 

of misperceiving signals contradicting prior beliefs. The model was tested in a laboratory 

experiment. 

Chapter 5 focuses on probability weighting. It performs an experimental test of a 

theory of probability weighting developed by Prelec (1998). Prelec’s compound-invariant 

family provides an appealing way to model probability weighting and is widely used in 

empirical studies. Prelec (1998) gives an axiomatic foundation for this function. Luce

(2001) points out that Prelec’s behavioral condition, compound invariance, is hard to test 

empirically, and he proposes a simpler condition, reduction invariance, to characterize 

Prelec’s weighting function that is easier to test empirically. Following up on Luce’s

suggestion, this chapter investigates the empirical validity of this condition in a laboratory 

experiment.

This thesis mainly contributes to the emerging field of DFE by exploring the role of

probability weighting and subjective beliefs. First, it clarifies the controversy about the 

DFD-DFE gap by a carefully designed laboratory experiment (chapter 2). Second, it 

develops a parsimonious decision model for DFE that can successfully account for 

previous findings on the DFD-DFE gap in the literature (chapter 3). Third, it introduces a

tractable non-Bayesian updating model whose insights are expected to inform future

studies of DFE (chapter 4). Lastly, it provides an empirical test of the foundations a family 

of probability weighting function that can be used in parametric estimations under DFE as 

well as under DFD (Chapter 5).   
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Chapter 2

Are Black Swans Really Ignored? Re-examining Decisions from 

Experience

with Yu Gao

2.1 Introduction

Studies of decisions from experience (henceforth, DFE) investigate decision situations in 

which people rely on personal experiences when facing uncertainty. Decision makers often 

have no access to possible choice outcomes, let alone to the corresponding probabilities.  

Instead, they make decisions based on the past observations in their memory. DFE better 

captures real life decisions than traditional ‘Decisions from Description’ (henceforth, DFD) 

where payoffs and probabilities are fully specified, which rarely happens in real life. In the 

usual sampling paradigm of DFE (Hertwig et al. 2004), subjects learn about unknown 

payoff distributions by drawing samples with replacement. With merely these cases in 

memory, they make their final decisions. 

Since Barron & Erev (2003) and Hertwig et al. (2004), an intriguing discrepancy 

between the two decision paradigms, which is called the DFD-DFE gap, has received 

plenty of attention. The common view in the DFE literature is that people make decisions 

from experience as if they are underweighting rare and extreme events, so called “black 

swans”, which are often overweighted under the DFD paradigm (for a review, see Hertwig 

& Erev, 2009). This pattern implies a reversal of the inverse S-shaped probability 

weighting that has been documented by many empirical studies under DFD (Abdellaoui, 

2000; Bleichrodt & Pinto, 2000; Bruhin, Fehr-Duda, & Epper, 2010; Booij, van Praag, & 

van de Kuilen, 2010; Fehr-Duda, De Gennaro, & Schubert, 2006; Gonzalez & Wu, 1999; 

Tversky & Kahneman, 1992)1.

The DFE literature has suggested that the DFD-DFE gap is a robust empirical 

phenomenon. Although the under-sampling of rare events due to reliance on small samples 

(sampling error) partly explains the early findings of the gap (Fox & Hadar, 2006; Hadar & 

Fox, 2009; Hertwig et al., 2004), later studies have shown that it does not provide a 

1 See Wakker (2010), section 7.1 for a survey.  
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complete account (Barron & Ursino, 2013; Camilleri & Newell, 2009; Hau, Pleskac, 

Kiefer, & Hertwig, 2008; Hau, Pleskac, & Hertwig, 2010; Ungemach, Chater, & Stewart, 

2009). Importantly, unlike risk with known probabilities in DFD, the ambiguity in DFE 

stemming from unknown outcome probabilities – and even from unknown set of possible 

outcomes – is another cause of the gap (Abdellaoui, L'Haridon, & Paraschiv, 2011; 

Glöckner, Hilbig, Henninger, & Fiedler, 2016; Kemel & Travers, 2016).

Despite the robustness of the DFD-DFE gap, whether it actually amounts to a 

reversal of the inverse S-shaped probability weighting is still unclear in the literature. In 

addition to the sampling error and ambiguity, there are two extra confounds that render the 

inferences about probability weighting problematic in DFE studies. The first confound 

concerns an aggregation problem when there is a lack of control over the sampling 

experience of subjects. Because of the random nature of the sampling process – where the 

sampling is made with replacement and subjects decide when to stop sampling – each 

subject relies on her own distinct subjective experiences. Importantly, this heterogeneity in 

experience at the individual level causes potential distortions at the aggregate level due to 

averaging artifacts (Estes, 1956; Estes, 2002; Sidman, 1952). The problem of aggregation 

is explained in section 2.3.3.

The second confound concerns the role of utilities. Early studies in the DFE 

literature argue about the underweighting of rare outcomes in an “as-if” sense. Specifically, 

the underweighting is typically inferred from a preference for sure gains over expected-

value-equivalent lotteries involving unlikely gains (for example, a preference for a sure $1 

over a lottery with 10% chance of winning $10 and $0 otherwise).  However, the absolute 

weighting of probabilities stays unclear as the aversion to unlikely gains may as well be 

due to concave utility (possibly coupled with an unbiased probability weighting) as it may 

be due to an underweighting of unlikely events. Later studies controlled for utilities by 

estimating them together with probability weighting functions using a parametric approach. 

Nevertheless, one concern about simultaneous parametric estimations is the potential 

interactions between the parameters of utility and probability weighting functions 

(Gonzalez & Wu, 1999, p. 152; Scheibehenne & Pachur, 2015, pp. 403-404; Stott, 2006, p. 

112; Zeisberger, Vrecko, & Langer, 2012).

This paper provides a measurement of probability weighting under DFE by 

resolving the aforementioned problems, and thus improving validity. First, we used Barron 

& Ursino’s (2013) adjustment of the sampling paradigm to obtain a control over the 
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sampling experience of each individual subject. Specifically, all of our subjects were 

required to carry out complete sampling from finite outcome distributions without 

replacement. Hence, they acquired the sampling information that matched with the 

objective probabilities without any sampling error. Second, this way we also avoid the 

confounding effects of unknown probability attitudes, well documented in the literature 

(Ellsberg, 1961; Trautmann & Van de Kuilen, 2015). Third, we avoided the aggregation 

problem as explained in more detail later. 

Fourth, we measured probability weighting by a rigorous two-stage methodology 

(Abdellaoui, 2000; Bleichrodt & Pinto, 2000; Etchart-Vincent N. , 2004; Etchart-Vincent 

N. , 2009; Qiu & Steiger, 2011). In particular, this controlled for the utility curvature in the 

first stage. Thus, each choice in the second stage directly indicated overweighting or 

underweighting of probabilities. The experimental setup enabled us to identify the 

direction and the magnitude of the deviations from expected utility (henceforth, EU),

without relying on any parametric assumptions about probability weighting. Parametric 

estimations were implemented as a supplement of our nonparametric measures to test 

robustness and smooth out response errors.

2.2 Deviations from EU due to probability weighting

We restrict our attention to probability-contingent binary prospects in the gain domain. A 

binary prospect of winning with probability and otherwise is denoted . Under 

rank dependent utility (henceforth RDU), for 0, is evaluated by ( ) ( ) +1 ( ) ( ) where is the utility function and the probability weighting function. 

Throughout, we assume binary RDU. Most other non-EU theories, in particular both 

versions of Prospect Theory for gains (henceforth PT, Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1992), and Gul’s (1991) Disappointment Aversion Theory, agree 

with the binary RDU in the evaluation of binary prospects (Observation 7.11.1 in Wakker,

2010, p. 231). Hence, our analysis applies to all these theories.

RDU deviates from EU when (. ) is not the identity. Thus, the risk attitude of a 

decision maker depends not only on the utility curvature as in EU but also on probability 

weighting. The common finding with the DFD paradigm is an inverse S-shaped (first

concave and overweighting, then convex and underweighting) probability weighting 
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function (Figure 2.1).2 The steepness of the probability weighting function at both end 

points implies that the rare and extreme outcomes in general receive too much decision

weight. When a rare outcome with probability is desirable, its impact given by ( ) is 

overweighted because of the overweighting of small probabilities ( ( ) > ). This 

increases the attractiveness of the prospect, and leads to risk seeking. Similarly, when a 

rare outcome with probability is unfavorable, its impact given by 1 (1 ) is 

overweighted because of the underweighting of large probabilities ( (1 ) < 1 ). 

This decreases the attractiveness of the prospect, and leads to risk aversion. 

Figure 2.1 Inverse S-shaped probability weighting function

The pattern of inverse S-shaped probability weighting is commonly interpreted as 

the reflection of both cognitive and motivational deviations from EU (Gonzalez & Wu, 

1999). On the one hand, the simultaneous overweighting and underweighting of extreme 

probabilities implies insufficient sensitivity to intermediate probabilities. This effect is 

called likelihood insensitivity, and points to cognitive limitations in discriminating 

different levels of uncertainty. On the other hand, underweighting of moderate probabilities 

2 For evidence against inverse S, see Qiu & Steiger (2011), van de Kuilen & Wakker (2011) and Krawczyk 
(2015).

( )

1 (1 )
(. )

1Probability

(1 )
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(such as, (0.5) < 0.5) suggests a pessimistic attitude towards risk in the major part of the 

probability domain. This effect points to motivational deviations from EU. 

2.3 The DFD-DFE gap

Hertwig & Erev (2009) considers three DFE paradigms: partial feedback, full feedback, 

and sampling paradigms. The essential feature shared by all three DFE paradigms is that 

subjects learn about unknown payoff structures by solely relying on their experiences. In 

the partial feedback paradigm, subjects make repeated choices and receive feedback about 

the realized outcomes (Barron & Erev, 2003). In the full feedback paradigm, subjects also 

learn about the forgone outcomes from the unchosen options (Yechiam & Busemeyer, 

2006). Differently, the sampling paradigm involves a single – rather than repeated – choice 

preceded by a purely exploratory and inconsequential sampling period in which subjects 

draw outcomes from unknown payoff distributions with replacement, usually as many 

times as they wish (Hertwig et al, 2004; Weber , Shafir, & Blais, 2004).

All three paradigms lead to similar behavioral patterns with an apparent 

underweighting of rare and extreme outcomes, which contradicts the common empirical 

findings from DFD. Although the empirical findings with all three paradigms are alike, the 

two feedback paradigms are inherently different from the sampling paradigm (for an 

empirical comparison of three DFE paradigms, see Camilleri & Newell, 2011, also see the 

theoretical discussion of Gonzalez & Dutt, 2011). In particular, repeated choices in the two 

feedback paradigms, as opposed to single decisions in the sampling paradigm, induce long-

run payoff considerations due to accumulating income (Wullf, Hills, & Hertwig, 2015).

This predicts more expected value maximization in repeated choices by the law of large 

numbers (Keren & Wagenaar, 1987; Lopes, 1982; Tversky & Bar-Hillel, 1983).

Furthermore, distinct psychological factors, such as reinforcement learning, and the hot 

stove effect3, also play a role in repeated decisions with feedback (March, 1996; Denrell & 

March, 2001). Erev & Barron (2005) reviews the effects that lead to deviations from 

expected value maximization in repeated choice paradigms. The sampling paradigm, on the 

other hand, is more comparable with the DFD paradigm as both involve single decisions. 

Therefore, the intriguing gap between the sampling paradigm and DFD has received most 

3 The hot stove effect was first introduced by Mark Twain based on his observation that if a cat jumped on a 
hot stove, then she would never jump on a hot stove again. However, the cat would never jump even on a 
cold stove. 
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attention in the DFE literature. The current paper also focuses on the sampling paradigm of 

DFE. 

2.3.1 The information asymmetry account and the sampling error

The main premise of the DFD-DFE gap is that the way in which the information about 

uncertain prospects is acquired matters. In other words, experience matters (Hau et al., 

2008). Fox & Hadar (2006) and Hadar & Fox (2009) argue that there is an important 

caveat associated with this premise. DFE and DFD differ from each other not only in terms 

of the way that the information is acquired but also in terms of the information available to 

subjects. Indeed, whereas the objective probabilities and outcomes are known in DFD, they 

remain partially unknown in DFE. This means that subjects in DFE have to rely on their 

own subjective probability judgments based on the sampling information they acquire. 

Importantly, subjective probabilities are prone to diverge from objective probabilities due 

to potential distortions either in the sampling process or in subjective probability 

judgments. This generates an information asymmetry between DFE and DFD. Fox &

Hadar (2006) indicates that the underweighting of rare outcomes observed by Hertwig et 

al. (2004) is almost entirely caused by the sampling error as subjects often under-observe, 

or even never observe the rare outcomes due to reliance on small samples. On the other 

hand, judgment error and underestimation of rare outcomes are not found to be significant 

sources of the gap.   

Later studies test this information asymmetry account of the DFD-DFE gap by 

reducing or completely eliminating the sampling error. Several papers demonstrated that 

the gap is actually persistent when the subjects are obliged to draw large or even perfectly 

accurate samples from underlying probability distributions (Barron & Ursino, 2013; 

Camilleri & Newell, 2009; Hau et al., 2008; Hau et al., 2010; Ungemach et al., 2009).

Moreover, subjective probability judgments are usually found well calibrated although 

their correlation with observed relative frequencies is imperfect (but see also Barron & 

Yechiam, 2009). These findings suggest that the DFD-DFE gap is not just information 

asymmetry, but indeed a robust psychological phenomenon.
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2.3.2 DFE and DFD: Two different sources of uncertainty

Although drawing large or representative samples solve the problem of systematic 

sampling error, the uncertainty about the outcome probabilities as well as the set of 

possible outcomes remains.  This residual uncertainty makes DFE a case of ambiguity 

whereas DFD is a case of risk. Several studies show that the gap is reduced or even 

reversed by manipulating the degree of ambiguity in DFE. In addition to information 

provision regarding the certainty or possibility of outcomes, Glöckner et al. (2016) also 

points out the impact of the type of problems used in the experiments, which may lead to 

context dependent subjective beliefs. 

In a design that is intermediate between DFE and DFD, Abdellaoui et al. (2011)

and Kemel & Travers (2016) find inverse-S pattern in DFE with more pronounced 

pessimism than in DFD. This result reflects ambiguity aversion. Kellen, Pachur, & Hertwig

(2016) and Glöckner et al. (2016) find even more pronounced likelihood insensitivity in 

DFE. These findings are consistent with the previous ambiguity literature (Abdellaoui, 

Baillon, Placido, & Wakker, 2011; Fox & Tversky, 1998; Tversky & Fox, 1995; Wakker, 

2004).

2.3.3 Problem of aggregation in the sampling paradigm

As explained before, experienced probabilities differ from objective probabilities either 

due to sampling error or due to judgment errors. As a result, each subject makes choices

based on her own subjectively experienced probabilities. Notably, as the aggregation of 

such individual choices amounts to taking the average of the weightings – rather than the 

weighting of the average – of experienced probabilities, the concave-convex curvature of 

the inverse S-shaped probability weighting function may lead to an erroneous DFD-DFE

gap.

To illustrate, assume that all subjects in DFE and DFD have the same probability 

weighting function depicted in figure 2.2a, which is concave and overweight 10% 

probability of a rare and favorable outcome. For the sake of the example, also assume that 

each subject in DFE draws only 5 times, in which half of the subjects never observe the 

rare outcome, and the other half observe it once. Therefore, assuming that the subjects do 

not commit a judgment error, the experienced probabilities will be either 0% or 20%. In 

this case, aggregating choices over all subjects’ amounts to averaging the weightings of 0% 

and 20% rather than weighting the average 10%. This makes the aggregate choice appear 
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as if 10% is underweighted due to concavity whereas in reality it is overweighted (see 

figure 2.2a). 

The same effect, although probably smaller in size, also applies when there is no 

sampling error but only judgment error. Figure 2.2b illustrates the case where the subjects 

in DFE accurately observe 10% probability, however, half of them underestimate it as 5% 

whereas the other half overestimate it as 15%. As a result, the aggregate choice appears as 

if 10% is weighted less in DFE than in DFD (see figure 2.2b).

Figure 2.2 Distortions due to aggregation
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By the dual effect, convex probability weighting for large probabilities moves 

aggregate choices in the direction of overweighting (see figures 2.2c and 2.2d). Together 

with the concavity for small probabilities, this implies a reversed or attenuated inverse S at 

the aggregate level, which is what the DFD-DFE gap also suggests. This theoretical 

conjecture is indeed indirectly supported by the findings of Rakow, Demes, & Newell 

(2008). In their yoked design, each subject in the DFE treatment is matched with a subject 

in the DFD treatment who receives the same sampling information in description format. 

Thus, equating the heterogeneity of the sampling information across the two treatments,

they observe that the DFD-DFE gap is almost completely eliminated (also see the 

discussion of Hau et al. 2010 on the amplification effect in yoked design). 

2.3.4 Underweighting or not?

Along with the aforementioned issues, the controversy about the DFD-DFE gap concerns

whether it can actually give rise to underweighting of rare outcomes. Early studies of DFE 

infer underweighting from aggregate patterns of risk seeking and/or risk aversion. Rakow 

& Newell (2010, p. 6) points out that the gap often amounts only to a discrepancy in risk 

attitudes (e.g. different degrees of risk seeking for small probability gains), suggesting a 

less pronounced overweighting in DFE compared to DFD, rather than an absolute 

underweighting. Moreover, even a reversal in risk attitudes (e.g. risk aversion for small 

probability gains in DFE as opposed to risk seeking in DFD) may not be sufficient to 

conclude about the absolute underweighting of rare outcomes under DFE as a concave 

utility along with an unbiased weighting might also lead to risk aversion.

Later studies report quantitative estimations of probability weighting under DFE, 

also by controlling for the role of utilities. However, the present evidence on the shape of 

probability weighting functions is mixed. Hau et al. (2008) and Ungemach et al. (2009) 

document linear weighting and underweighting respectively, based on the same set of 

problems used by Hertwig et al. (2004). Among those studies that used larger problem sets, 

Abdellaoui et al. (2011b), Kemel & Travers (2016), and Cubitt, Kopsacheilis, & Starmer 

(2016) report less pronounced overweighting whereas Barron & Ursino (2013) and Frey, 

Mata, & Hertwig (2015) report underweighting. Other recent studies by Glöckner et al. 

(2016) and Kellen et al. (2016) reports even more pronounced overweighting under DFE. 

Differences in methodologies and the use of different choice tasks are possible sources of 
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the discrepancy (Glöckner et al. 2016). For a further discussion of these discrepant results, 

see a recent meta-analysis by Wulff, Canseco, & Hertwig (2016).

Our experiment aims to clarify the controversy by resolving the aforementioned 

four confounds. Different from previous studies, our adjustment of the sampling paradigm 

turns the DFD-DFE comparison into a pure comparison of two cases of risk that differ only 

in terms of information acquisition, being experience or description.

2.4 Method

Our experimental procedure consists of two stages. In the first stage, the utility function of 

each subject is elicited using the trade-off (TO) method of Wakker and Deneffe (1996).

The TO method is a well-established method that has been commonly used in studies 

investigating probability weighting (Abdellaoui, 2000; Abdellaoui, Vossmann, & Weber, 

2005; Bleichrodt & Pinto, 2000; Etchart-Vincent N. , 2009; Etchart-Vincent N. , 2004; Qiu 

& Steiger, 2011). The method entails the elicitation of a standard sequence of outcomes 

that are equally spaced in utility units. The elicitation procedure consists of a series of 

adaptive indifference relations. For two fixed gauge outcomes G and g, and a selected 

starting outcome with > > , > is elicited such that the subject is 

indifferent between prospects and . Then, is used as an input to elicit >
such that the subject is indifferent between and . This procedure is repeated 

times in order to obtain the standard sequence ( , … , ) with 

indifferences  ~ for 0 1. Under RDU, these indifferences result

in ( ) ( ) = ( ) ( ) = = ( ) ( ) (for the derivation, see 

Appendix 2.1). A remarkable feature of the TO method is that it elicits these equalities 

irrespective of what the probability weighting is. Therefore, it is robust against most

distortions due to non-expected utility maximization.   

Once the standard sequence of outcomes has been obtained, we obtain the utility 

function of each individual by parametrically estimating the power specification ( ) =
with > 0 after scaling of as =  . We use parametric estimation in order to 

smooth out errors, and better capture the utility curvature. The parameter is calculated 

using an ordinary least squares regression without intercept, log ( ) = log( ) +
where (0, ).
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In the second stage of our procedure, we measure probability weighting using 

several binary choice questions. The questions are constructed based on the subject-

specific outcome sequences obtained from the first stage. Subjects choose between a risky 

prospect and a sure outcome , where and are two distinct elements of the 

elicited outcome sequence with > , and is equal to the certainty equivalent 

of under EU based on the power utility function estimated in the first stage:

= ( ) + (1 ) .                                                       (2.1)
That is, would be equivalent to if the subject with the given utility did not weigh 

probabilities. Hence by construction, the following logical equivalences hold for given 

preference relations under RDU. 

 ( ) <  (  )                                   (2.2)  ( ) =  ( )                                                                (2.3)  ( ) >  ( )                                        (2.4) 
Because we do not allow indifference in our experiment, each individual choice 

will reveal either overweighting or underweighting of probability . Our method makes the 

deviations from EU observable at the aggregate level. For instance, an overweighting of 

can be detected when the majority of subjects choose the risky as in (4). 

Barron & Ursino (2013) also investigates the DFD-DFE gap under risk (their 

experiment 1) similar to our study by using a different two-stage experimental procedure. 

Their procedure replicates the well-known DFD-DFE gap. However, it does not make 

inferences about the actual over- or under- weighting of rare outcomes under DFE and 

DFD4.

4 Their first stage obtains an indifference relation under DFD which implies (1 ) ( ) = ( )($40), where the probability is either 0.1 or 0.2, depending on the treatment, and is elicited. Their 
second stage looks at deviations from this indifference under DFE and DFD. Their findings indicate 
deviations only under DFE, suggesting less weighting of and/or more weighting of (1 ) under DFE, 
i.e. (1 ) ( ) > ( ) ($40), consistent with the DFD-DFE gap.   
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2.5 Experimental design

Subjects and Incentives

The experiment was performed at the ESE-EconLab at Erasmus University in 5 group 

sessions. Subjects were 89 Erasmus University students from various academic disciplines 

(average age 23 years, 40 female). All subjects were recruited from the pool of subjects 

who had never participated in any economic experiment in our lab before, to avoid 

experienced subjects in TO method. We paid each subject a €5 participation fee. In 

addition, at the end of each session, we randomly selected two subjects who could play out 

one of their randomly drawn choices for real. The ten subjects who played for real received 

€60.70 on average. Over the whole experiment, the average payment per subject was 

€12.37.

Procedure

The experiment was run on computers. Subjects were separated by wooden panels to 

minimize interaction. To prevent the impact of variations in memory limitations, all 

subjects were provided with paper and pen in case they wished to take notes.  Before they 

started with the main parts of the experiment, they read the general instructions with 

detailed information about the payment procedure, the user interface, and the type of 

questions they would face. The subjects could ask questions at any time during the 

experiment. The experiment consisted of two successive stages without a break in between. 

Each stage started with its corresponding instructions, and several training questions to 

familiarize subjects with the stimuli. Each session took 45 minutes on average, including 

the payment phase after the experiment.

Stimuli

Stage 1: measuring utility. In the first stage of the experiment, a standard sequence 

of outcomes was elicited using the TO method. We measured , , , ,  from 

the following five indifferences, with = 0.33, = 17, = 9, and = 24:

~ ,   ~ ,   ~ ,   ~ ,   ~ .

Indifferences were obtained by a bisection method requiring 7 iterations for each .

In addition, the last iteration of one randomly chosen was repeated at the end of stage 1, 
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in order to test the reliability of the indifferences. Hence, subjects answered a total of 36 

questions in this part. The bisection iteration procedure is described in Appendix 2.2. The 

prospects were presented on screen as in Figure 2.3.

In this part, risk was generated by two ten-faced dice each generating one digit of a 

random number from 00 to 99. The outcome of prospects depended on the result of two 

dice physically rolled by subjects in case the question was played for real at the end of the 

experiment.

Figure 2.3 Choice situation in the TO part

Stage 2: DFD and DFE. Before the start of the second part, each subject was 

randomly assigned to one of the two treatments: DFE or DFD. Subjects in both treatments 

answered 7 subject-specific binary choice questions. Each question entailed a choice 

between a risky prospect  and the safe prospect as described in the method section.

Note that both and were endogenously determined, and varied between subjects.5

Values of were always rounded to the nearest integer. The seven probabilities used for 

the investigation of probability weighting were 0.05, 0.10, 0,20, 0.50, 0.80, 0.90  0.95.

Within each treatment, the orders of the seven questions were counterbalanced. The 

position of the risky prospect and the safe prospect were also randomized in each question.

Prospects were represented by Ellsberg-type urns containing 20 balls with different 

monetary values attached to them. This means that all the aforementioned probabilities 

5 We used the elicited as the minimum outcome of the risky prospects to avoid problems related to the 
extreme behavior of power utility near its origin (Wakker 2008), i.e. in our design. In particular, for <1, the slope of the power utility converges to infinity as tends to the origin. This implies extreme risk 
aversion near the origin. Similarly, > 1 implies extreme risk seeking near the origin. 
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were fractions of 20; i.e. 5% is 1 out of 20, 10% is 2 out of 20, etc. The two treatments 

differed from each other in terms of how the contents of the urns were learnt. In the DFD 

treatment, the contents of the urns were explicitly described to the subject. Figure 2.4

shows a screen shot of a choice situation for DFD. 

Figure 2.4 Choice situation in DFD

Subjects in the DFE treatment were initially given no information about the 

contents of the urns except for the total number of balls. They could only learn about the 

outcome compositions of the urns by sampling each and every ball one-by-one without 

replacement, and observing the monetary values attached. Figure 2.5 shows a screen shot 

of the sampling phase in the DFE treatment. Subjects sampled balls from urns by clicking 

“Sample left” or “Sample right” on the screen. Each time, the monetary outcome attached 

to the ball sampled was shown to the subject for 1.5 seconds, and then disappeared. Subject 

could sample at their own speed, in whichever order they preferred, and switch as many 

times as they wanted, but they could only proceed to the choice stage after sampling all the 

balls in both urns. 

Figure 2.6 shows the screen shot of the choice stage in DFE. In case a question in 

this part was drawn for the payment at the end of the experiment, the experimenters 

physically created the relevant urn seen on the screen by filling an opaque urn with 20 

ping-pong balls painted to dark blue or light blue, each associated with the payoffs in 

question (see Figure 2.4). Then, the subject drew a ball from the urn, which determined her 

payoffs.
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Figure 2.5 Sampling stage in DFE

Figure 2.6 Choice stage in DFE

Subjects in the DFD treatment faced 21 extra questions following the main set of 7 

questions to equalize the length of the two treatments. These extra questions were for 

another research project.

2.6 Results

Reliability and Consistency of Utility Elicitation

In the TO part, each subject repeated one choice faced in one of the five elicitations. The 

repeated choice was randomly selected among the last steps of the iterations. Because the 
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subjects were very close to indifference at the last step, this was the strongest test of 

consistency.  Subjects made the same choice in 70.8% of the cases. Reversal rates up to 

one third are common in the literature (Stott, 2006; Wakker, Erev, & Weber, 1994).

Especially, if the closeness to indifference is taken into account, our reversal rates are 

satisfactory. Among the reversed cases, repeated indifferences were higher than the 

original indifference values in 42.3% of the times, which did not indicate any systematic 

pattern (p=0.56, two-sided binomial). Overall, repeated indifference values did not differ 

from original elicitations (p=0.44, Wilcoxon sign-rank).

In our data, one subject reached the possible lower bound of ’s in all 5 cases. 

Consequently, her standard sequence was not well spaced enough for the estimations of 

with Equation 2.1.6 We excluded this subject from the following analysis. The analysis 

with this subject included does not alter our conclusions. 

Utility Functions

Table 2.1 gives the descriptive statistics for the elicited outcome sequence. The parameter 

of the power utility u(x) = x was estimated at the individual level by ordinary least 

squares regression. The average over all individual utility estimations was 0.985 which 

indicated that our estimations fit the data well. 

Table 2.1. The aggregate data did not deviate from linearity (p=0.92, Wilcoxon sign-rank). 

Although the mean alpha suggested slight convexity, this was due to the outliers in our 

data. Three subjects exhibited extreme convexity with > 2, and the Skewness/Kurtosis 

test rejected the normality of the distribution of s (p=0.00). Utilities did not differ across 

the two treatments (p=0.84, Wilcoxon rank-sum) as the first stage of the experiment was 

the same for all subjects.

Our data suggested slightly more evidence for concavity at the individual level. 

Based on the parameters that were significantly different than 1 at 5% significance level,

30 subjects exhibited concavity ( < 1), and 23 subjects exhibited convexity ( > 1). The 

proportions of concave and convex utilities did not differ from each other (p=0.41, two-

sided binomial). 

6 She got ( = 8). Therefore, the resulted estimations, . = and . = , made the preference 
for .  over .  and the preference for . over .  trivial because of the domination of the safe 
or the risky prospect.
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Table 2.1 Descriptive statistics of the elicited outcome sequence (N=88)

  Mean S. Dev Min Median Max 

 24.00 0.00 24.00 24.00 24.00 

 60.36 23.48 30.00 58.00 118.00 

 90.36 42.58 36.00 80.00 212.00 

 125.23 65.89 46.00 102.00 306.00 

 164.18 91.13 52.00 134.00 400.00 

 204.14 116.25 58.00 160.00 494.00 

 1.05 0.36 0.41 0.99 2.65 

Probability Weighting: DFE vs. DFD

Aggregate data. In this section, we report the aggregate choices in the direction of 

overweighting and underweighting according to (2) and (4) in the Method section. The 

proportions of overweighting and underweighting of small and large probabilities are given 

in Figures 2.7 and 2.8 respectively.

The aggregate choices replicated the common DFD-DFE gap at the extreme 

probabilities. Overall, the DFD-DFE gap indicated significantly less overweighting of rare 

outcomes based on a repeated measures logistic regression ( = 2.15, p=0.031).7 Based 

on individual hypothesis tests, the gap was significant at 0.95 (p=0.02, ); and marginally 

significant at 0.10, and 0.90 (p=0.06, and p=0.07 respectively, ). The gap at probability 0.05 was not significant (p=0.20, ), although the trend suggested reduced overweighting 

in DFE. There was also no apparent DFD-DFE gap in the middle range, 0.20 0.80
(p=0.35, p=0.92, and p=0.37 for = 0.20, 0.50, and 0.80 respectively, ).

7 Note that the overweighting of good rare outcomes amounts to overweighting of 0.05, 0.10, and 0.20 
whereas the overweighting of bad rare outcomes amounts to underweighting of 0.80, 0.90, and 0.95.   
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Figure 2.7 Weighting of Small Probabilities

Notes: p-values are for the two-sided binomial tests. Bayes factors (BF) indicate evidence 
for the null hypothesis that the probability is overweighted. Higher BF indicates higher 
support for overweighting of the given probability. The numbers above bars are the number 
of subjects who revealed the correspondent probability weighting patterns in choices. 
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Figure 2.8 Weighting of Large Probabilities

Notes: p-values are for the two-sided binomial tests. Bayes factors (BF) indicate evidence 
for the null hypothesis that the probability is overweighted. Higher BF indicates higher 
support for overweighting of the given probability. The numbers above bars are the 
number of subjects who revealed the correspondent probability weighting patterns in 
choices. 
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In what follows, we focus on absolute overweighting and underweighting of 

probabilities under DFD and DFE. We first test the deviations from unbiased weighting in 

either directions with the classical two-sided binomial tests for proportions. In addition, to 

interpret the relative evidence for overweighting and underweighting, we report Bayes 

factors for the null hypothesis of overweighting against the alternative hypothesis of 

underweighting. Bayes factors state the relative evidence for the null hypothesis. For 

instance, a Bayes factor of 10 indicates that overweighting is 10 times more likely than 

underweighting for the given probability. Following Jeffreys (1961), a Bayes factor 

between 3 and 10 is interpreted as “some evidence”, a Bayes factor between 10 and 30 is 

interpreted as “strong evidence”, and a Bayes factor larger than 30 is interpreted as “very 

strong evidence” for the null of overweighting. Similarly, Bayes factors between 0.1 and 

0.33, between 0.03 and 0.1, and less than 0.03 are interpreted respectively as “some 

evidence”, “strong evidence”, and “very strong evidence” for the alternative hypothesis of 

underweighting.8

As shown in Figure 2.7, for small probabilities, we found a marginally significant 

deviation from unbiased weighting at 0.05 (p=0.07) under DFD. Interpreting from Bayes 

factors, there was strong evidence of overweighting 0.05 (BF=28.04), some evidence of 

overweighting 0.1 (BF=8.54) and some evidence of underweighting 0.2 (BF=0.2). Under 

DFE, we only found a significantly biased weighting at 0.2 (p=0.03). Interpreting from 

Bayes factors, there was very strong evidence of underweighting 0.2 (BF=0.02) and some 

evidence of underweighting 0.1 (BF=0.11). There was no evidence for the underweighting 

or the overweighting of 0.05 (BF=1.25).

For large probabilities as shown in Figure 2.8, under DFD, we found significant 

biases in weighting of probabilities 0.8, 0.9 and 0.95 (p=0.00 for all). The Bayes factors 

indicated very strong evidence for underweighting of 0.8, 0.9 and 0.95 (BF=0.00 for all). 

Under DFE, we found significant bias only at 0.8 (p=0.00). The Bayes factors suggested 

very strong evidence of underweighting of 0.8 (BF=0.00), strong evidence of 

underweighting 0.9 (BF=0.06) and some evidence of underweighting 0.95 (BF=0.11).

Lastly, we examined the weighting of the moderate 0.5 probability. 38 out of 45 

subjects in the DFD treatment and 36 out of 43 subjects in the DFE treatment 

underweighted 0.5. Hence, the deviations from unbiased weighting was highly significant 

8 Bayes factors are computed with the package BayesFactor in R (Morey, Rouder, Jamil, & R Core Team, 
2015) 
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at 0.5 in both treatments (p=0.00 for both treatments, two-sided binomial tests). The Bayes 

factors also indicated very strong evidence in favor of underweighting at 0.5 (BF<0.03 for 

both treatments). 

To summarize, while replicating the common inverse-S pattern under DFD, our 

aggregate data did not provide evidence for a reversal of inverse-S pattern under DFE. In 

particular, we did not observe significant deviations from unbiased weighting at extreme 

probabilities 0.05, 0.1, 0.9 and 0.95 under DFE. Notably, there was no convincing evidence 

for the underweighting of small probabilities 0.05 and 0.1, and there was more evidence for 

underweighting than overweighting at large probabilities.

Individual data. Next, we examine the shape of probability weighting functions at

the individual level. We classify each subject’s probability weighting function as inverse S-

shaped, S-shaped, pessimistic or optimistic based on the number of over – and under –

weightings at three small and three large probabilities examined in Figures 2.7 and 2.8.

Specifically, a probability weighting function is inverse S-shaped if it overweights at least 

two out of three small probabilities and underweights at least two out of three large 

probabilities, at the same time. An S-shaped probability weighting function is implied by 

the opposite pattern. Similarly, a pessimistic probability weighting function underweights 

at least two small and two large probabilities at the same time, and the opposite pattern 

implies an optimistic probability weighting function.

Table 2.2 Type of Probability Weighting Functions

 
Inverse S-

shaped 
S-Shaped Pessimistic Optimistic 

DFD 51% (23) 9% (4) 36% (16) 4% (2) 

DFE 42% (18) 23% (10) 33% (14) 2% (1) 

Gap 9% (p=0.40) -14% (p=0.08) 3% (p=0.82) 2% (p=1) 

Notes: The number of probability weighting functions is given in the parenthesis. p-values are for 
the (two-sided) Fisher’s exact test. 
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The classification results are in Table 2.2. The probability weighting functions 

were mainly classified as inverse S-shaped, S-shaped or pessimistic while the proportion of 

optimistic weighting functions was negligible in both treatments. Among the three main 

types, the majority of the probability weighting functions was inverse S-shaped in the DFD 

treatment (p=0.00, one-sided binomial, H0: Proportion of inverse S is among inverse S, S 

and pessimistic types). The inverse S-shape was also the most frequent type in the DFE 

treatment but it was not the majority (p=0.13, one-sided binomial, H0: Proportion of 

inverse S is among inverse S, S and pessimistic types).  

Overall, our individual level analysis suggested reduced, but persistent, inverse S 

pattern in the DFE treatment. The preceding results are valid without requiring any 

parametric assumptions or specification of the stochastic nature of errors. The parametric 

analysis in the next section supplements our nonparametric results.

Parametric estimations. We made the parametric analysis of probability weighting 

functions by implementing Bayesian hierarchical estimation procedure. This procedure 

enables reliable aggregate and individual level estimations with limited data available per 

subject. It was recommended by Nilsson, Rieskamp, & Wagenmakers (2011) and 

Scheibehenne & Pachur (2015), and employed by several other studies for estimating RDU 

and cumulative PT components (Balcombe & Fraser, 2015; Kellen, Pachur, & Hertwig, 

2016; Lejarraga, Pachur, Frey, & Hertwig, 2016).

We estimated Goldstein & Einhorn’s (1987) weighting function given by ( ) =
( ) . The parameter determines the curvature and captures the sensitivity towards 

changes in probabilities. Here, < 1 indicates inverse S-shape and likelihood insensitivity, 

and > 1 indicates S-shape and extreme likelihood sensitivity. The parameter

determines the elevation, and captures the degree of pessimism. For = 1, we 

have (0.5) = 0.5. Lower (higher) values of indicates less (more) elevation and more 

(less) pessimism. Following Kruschke (2011), we evaluate the credibility of likelihood 

insensitivity and pessimism based on the ranges of 95% intervals from posterior 

distribution of parameters. The details on estimation procedures are in Appendix 2.3.
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Table 2.3 Group level mean parameters

   

DFD 
0.430  

[0.234, 0.675] 

0.407  

[0.259, 0.590] 

DFE 
0.611 

[0.372, 0.868] 

0.331  

[0.198, 0.508] 

Gap 
-0.181  

[-0.517, 0.160] 

0.076  

[-0.152, 0.304] 

Notes: Estimated parameters are the means of the posterior distributions of the group level means. 
95% credibility intervals are given in square brackets. 

We report the estimated group level mean parameters and corresponding 95% 

credibility intervals in Table 2.3. Figure 2.9 shows the estimated probability weighting 

functions. The estimated parameters indicated credible likelihood insensitivity and 

pessimism in both treatments as = 1 and = 1 fell on the right side of 95% credibility 

intervals. The DFD-DFE gap in terms of likelihood insensitivity and pessimism was not 

credible, although the difference in likelihood insensitivity was suggestive. Hence, we 

observed a less pronounced inverse S-shape in the DFE weighting function, while the 

elevation was comparable across the two treatments (black curves in Figure 9). 

At the individual level, pessimism ( < 1) was credible for all the subjects in both 

treatments. Likelihood insensitivity was credible for 51% (23 out of 45) of the subjects in 

the DFD treatment and for 29% (13 out of 43) of the subjects in the DFE treatment. While 

there was no subject with likelihood sensitivity ( > 1) in the DFD treatment, 23% (10 out 

of 43) subjects in the DFE exhibited likelihood sensitivity, although it was never credible. 
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Figure 2.9 Probability weighting functions

Notes: Blue/dashed curves are individual level probability weighting functions based on the means 
of individual level posterior distributions. Black curve is the group level probability weighting 
function based on the mean of the posterior distribution of the group level mean.

2.7 Discussion

Our adjustment of the sampling paradigm with complete sampling of outcomes allowed us 

to observe the pure impact of sampling experience on risk attitudes. Both nonparametric 

and parametric analysis indicated that the sampling experience attenuates but does not 

reverse biases at extreme probabilities. Our results suggested that sampling experience 

mainly attenuates likelihood insensitivity but it does not have much impact on pessimism 

towards risk.

The de-biasing effect of sampling experience can be explained by two possible 

factors.  First, the two informationally-identical treatments may suggest distinct cognitive 

processes for different information formats as argued by Gigerenzer & Hoffrage (1995). In 

particular, insensitivity to probabilities diminishes, similar to deviations from Bayesian 

updating, when the probabilistic information is acquired through sequential sampling in 

terms of natural frequencies. Other studies by Hogarth & Soyer (2011) and Hogarth, 
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Lejarraga, & Soyer (2015) also emphasize the importance of the structure of the learning 

environment for reduction of biases in judgment and decision making. In particular, a kind 

learning environment, where the samples collected by the decision maker provide an 

accurate representation of the target population, is a necessary condition for unbiased 

judgments and choices. Our experimental design provides a kind learning environment in 

the absence of sampling biases and ambiguity. 

As regards the second factor, the DFD-DFE gap can signify other internal biases 

due to memory limitations and/or inattention (Camilleri & Newell, 2011). To avoid these 

potential confounds in our experiment, we provided our subjects with paper and pen and 

reminded them that they can keep track of the outcomes during the sampling stage in DFE. 

We observed that more than half of the subjects in the DFE treatment took notes. Hence,

our results were less likely to be driven by misremembering the past observations.

Contrary to our findings under risk, more pronounced pessimism and likelihood 

insensitivity were reported by some previous studies of DFE concerning ambiguity 

(Abdealloui et al., 2001; Glöckner et al., 2016; and Kellen et al., 2016). Such impacts of 

ambiguity are prevalent in the literature, and will be the topic of Chapter 3. Here, our 

conclusions on the impact of sampling experience on probability weighting are consistent 

with some other previous findings. Gottlieb, Weiss, & Chapman (2007), Hilbig & 

Glöckner (2011), and Humphrey (2006) also report reduced probability weighting with 

different variants of the sampling paradigm under risk. Erev, Ert, Plonsky, Cohen, & 

Cohen (2015, pp. 7-11), Jessup, Bishara, & Busemeyer (2008), van de Kuilen & Wakker

(2006), and van de Kuilen (2009) report significant convergence to EU maximization 

under risk in repeated choice settings, when immediate feedback after each choice is 

available but not when it is unavailable. These results also suggest the distinct impact of 

experience in repeated choice settings (also see Lejarraga & Gonzalez, 2011 on strong 

impact of experience).

Two-Stage Design, Non-parametric and Parametric Analysis

Our two stage experimental design avoided potential interdependencies between utility and 

probability weighting components of RDU, which was reported by previous studies. 

Moreover, it enabled a reliable non-parametric analysis of probability weighting functions 

without relying on specific functional forms, which can be subject to distortions. Our 

parametric estimations were consistent with our nonparametric analysis. To further test the 
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descriptive adequacy of the parametric Bayesian estimations, we compared posterior 

predictions of the estimated model with the actual data observed (see Appendix 2.3, Figure 

A2.2). The model was accurate in predicting choices. 

Despite the aforementioned advantages of the nonparametric approach, one might 

still have concerns about our two-stage design. One concern is the error propagation in the 

chained procedure. In particular, the stimulus for the measurement of probability weighting 

in the second stage is determined based on the utilities elicited in the first stage. Thus, any 

error in the calculation of from the first stage may result in a bias in probability 

weighting measurements. However, studies investigating this point have shown that this 

problem is indeed negligible (Abdellaoui et al. 2005; Bleichrodt and Pinto 2000). 

Moreover, high goodness of fit in estimations of utility functions, and the replication of 

common qualitative patterns of probability weighting under DFD confirm the validity of 

our procedure. 

Another concern is incentive compatibility of the TO method due to its adaptive

nature (later stimuli being determined by previous choices). However, no previous studies 

have found this to be a problem in experiments (Abdellaoui, 2000; Bleichrodt, Cillo, & 

Diecidue, 2010; Qiu & Steiger, 2011; Schunk & Betsch, 2006; Van de Kuilen & Wakker, 

2011). Hence, in the terminology of Bardsley et al. (2010), there is only a concern for 

theoretical incentive compatibility but not for behavioral incentive compatibility (p. 265).

Still, as a precautionary measure, our bisection procedure also included filler questions in 

the iteration process, aiming to make the detection of our adaptive design even more 

difficult. Our data did not show any evidence of strategic choices (Appendix 2.2).

Lastly, our experimental design makes an implicit assumption that the sampling 

experience has an impact on the probability domain but not on utilities. This assumption

enabled us to measure utilities under the more efficient DFD paradigm in the first stage.

The assumption was empirically supported in previous studies by Abdellaoui, L'Haridon, 

& Paraschiv (2011) and by Cubitt et al. (2016), where the utilities were estimated under 

DFE separately. It was also supported in estimations with the data sets of Glöckner et al. 

(2016) and of Erev et al. (2010). These two studies are investigated in Chapter 3.  
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2.8 Conclusion

This paper clarifies the controversy about the DFD-DFE gap. Our strictly controlled 

sampling paradigm isolates the impact of the sampling experience from other confounds,

and the two stage design reveals the exact weighting of probabilities under DFE. The 

experimental findings support the DFD-DFE gap. However, the gap does not amount to a 

reversal of the inverse S-shaped probability weighting, and there is no actual 

underweighting of rare and extreme outcomes in DFE. Our findings illustrate the 

importance of the learning experience in reducing irrationalities. Decisions from 

experience do not reverse an irrationality into another irrationality but rather reduce the 

cognitive impairment of likelihood insensitivity. Black swans are not ignored under DFE.
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Appendix 2.1

Derivation of the Standard Sequence of Outcomes in TO Method

Under RDU, indifferences   ~ imply ( ) ( ) + (1 ( )) ( ) =( ) ( ) + 1 ( ) ( ). A rearrangement of this equation shows ( )( ) = ( )( ) [ ( ) ( )] for all 0 1. Because the right hand side of the 

equation is fixed by the design, the indifferences result in ( ) ( ) = ( )( ) = = ( ) ( ).

Appendix 2.2

Bisection Procedure

The iteration process serves to measure , , , , and from the following 

indifferences, with = 0.33, = 17, = 9, = 24:~ ,  ~ ,  ~ ,  ~ ,  ~ 
For each , it took five choice questions to reach the indifference point. Subjects 

always chose between two prospects: and for = 1, … ,5. The procedure was 

as follows.

1. The initial value of was determined as + 4( ) = + 32.

2.  was increased by a given step size when was chosen over , and 

decreased when was chosen over as long as > . In case 
, was increased in order to ensure outcome monotonicity.      

3. The initial step was 4( ) =32. The step sizes were halved after each choice. 

4. The indifference point was reached after five choices.   

5. The largest possible value of was + 32 + 32 + 16 + 8 + 4 + 2 = +94.

6. The smallest possible value of was + 32 32 + 16 8 4 2 = +2. The fourth term on the left hand side (+16) ensured the outcome monotonicity 

(see point 2).

One concern for the TO method and the bisection iteration process is the incentive 

compatibility due to the adaptive design. A subject who is fully aware of the adaptive 

design can strategically drive the value upwards by pretending to be extremely risk 
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averse in the bisection questions. In this way, he or she can increase the expected values of 

prospects in the subsequent questions for the elicitation of . To make it more difficult 

for our subjects to fully grasp the process, we included two filler questions in the iteration 

process of each . The two filler choices were after the first and the third choice questions 

for every . In these questions, was changed in the direction that is opposite to the 

changes described in point 2 above. These questions had no further impact on the flow of 

the procedure. 

Our data did not suggest any strategic behavior. While an awareness of the adaptive 

design from the outset is fairly unlikely, learning during the experiment would lead to 

increasing distances between s. This means that a systematic learning of the strategic 

choice during the experiment would give us larger distances between and than 

between and . On the contrary, the median distances in our data were 26 and 34 

respectively, and did not differ significantly (Wilcoxon sign-rank, p-value=0.54).

Appendix 2.3

Bayesian Hierarchical Estimation Procedure

We implemented the Bayesian hierarchical estimation procedure as follows. Goldstein & 

Einhorn’s (1987) probability weighting function is ( ) = ( ) . The probability of 

choosing the risky prospect was calculated using Luce’s (1959) stochastic choice function, 

which gave a better fit to our data than the logit function. It 

is Pr (   ) = , where is the noise parameter. After 

normalizing ( ) = 0, and ( ) = 1; = ( ) ( ) + 1 ( )( ) = ( ), and = = by construction. Thus, the choice function 

implies random choice when  ( ) = , consistent with (3) in the Method section.

In the estimations, individual level parameters and were constrained by using 

plausible ranges based on the previous findings in the literature and on the findings from 

our nonparametric analysis. Given the limitations of the dataset, and especially the small 

number of observations at individual level, to ensure the identifiability, mildly small ranges 

were used for constraining individual level parameters. The ranges of the prior 

distributions were from 0.1 to 2 for and from 0.1 to 1.5 for . The range chosen for 
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allows a wide array of curvature ranging from strong inverse S-shape to strong S-shape. 

The range chosen for implies that (0.5) is between and , which is considered as a 

reasonable range given the previous findings in the literature and our nonparametric results 

suggesting strong underweighting at 0.5. 

To facilitate hierarchical modelling, following Rouder and Lu (2005), Nilsson et al. 

(2011) and Scheibehenne & Pachur (2015), we used probit transformations of individual 

level parameters and with linear linkages, i.e. = 1.9 ( ) + 0.1 and = 1.4( ) + 0.1 where is the cumulative distribution function of the standard normal 

distribution. The probitized parameters and are assumed to come from normal 

distributions with ( , ) and ( , ) respectively. The priors of the group level 

means, and , were assumed to follow standard normal distributions, which result in 

uniform distributions with the aforementioned ranges when they are transformed back to 

rate scale. The priors of the group level standard deviations, and , were uniformly 

distributed ranging from 0 to 10. 

The individual level noise parameters were assumed to come from a lognormal 

distribution. Similarly, to facilitate the hierarchical modelling, we used logarithmic 

transformations of , i.e. = ( ), where the prior of was assumed to 

follow ( , ). The group level mean, , was assumed to be uniformly distributed 

ranging from -2.3 to 2.3, which results in a uniform distribution ranging from 0.1 to 10 in 

the exponential scale. The group level standard deviation was uniformly distributed 

ranging from 0 to 1.33. The upper bound of 1.33 was determined as the standard deviation 

of the prior distribution of the group level mean, ( 2.3, 2.3), following Nilsson et al. 

(2011, p. 88).

The MCMC algorithm was implemented in WinBUGS run through R software. 

Three chains, each with 60000 iterations were run, after a burn-in of 10000 iterations. To 

reduce the autocorrelation, only every 10th sample was recorded. Convergence was verified 

by Gelman-Rubin statistics, and by visual inspection of trace plots. 

Figure A2.1 shows the posterior histograms for the group level mean parameters. 

Figure A2.2 shows the predictive performance of the estimations by comparing the median 

numbers of overweighting predicted by the posterior distributions of group level 

parameters with the actual numbers of overweighting observed in our data. The model 

predictions match with the observed data for 0.2 and 0.9 in the DFD treatment, and for 
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0.05 and 0.1 in the DFE treatment. The predictions for the other probabilities were close to 

the actual data in the DFE treatment. The predictions for 0.05 and 0.8 in the DFD treatment 

indicated some misalignment with the actual data, although they performed well in the rest 

of the probabilities.        

Figure A2.1 Posterior histograms for group level means
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Figure A2.2 Posterior predictions based on group level parameters
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Chapter 3

The Role of Prior Beliefs in Decisions from Experience

3.1 Introduction

Early studies of decisions from experience (henceforth, DFE) suggested that people make 

choices as if they underweight the impact of rare outcomes. This empirical observation is 

inconsistent with the findings from traditional decisions from description (henceforth, 

DFD) and with the predictions of prospect theory (Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992), the most prominent theory for risk and uncertainty. Since the influential 

studies by Barron & Erev (2003) and Hertwig et al. (2004) introducing the intriguing DFD-

DFE gap, an ever-growing DFE literature has clarified two main factors underlying the 

gap.

First, under-observation of the rare outcomes in small samples, also known as the 

sampling error, is a major factor underlying the underweighting. This implies that observed 

relative frequencies of outcomes rather than the objective probabilities, which are unknown 

to the decision maker, should count in DFE (Fox & Hadar, 2006). Controlling for sampling 

error, the DFD-DFE gap still amounts to less overweighting, but not to underweighting,

under DFE as it was claimed originally (Ungemach et al., 2009; Hau et al., 2009;

Camilleri et al., 2009).

The second factor concerns the information asymmetry between DFD and DFE 

(Hadar & Fox, 2009). Whereas DFD involves risk (known probabilities), DFE involves 

ambiguity due to incomplete information about the set of possible outcomes and 

probabilities. Importantly, the decision maker also lacks a priori knowledge about certainty 

or possibility of outcomes, which is relevant in the presence of always – or never –

sampled outcomes. Indeed, several studies have shown that the gap is reduced or even 

reversed if the information asymmetry is reduced by providing information about the 

possible outcomes in prospects or in the absence of sure outcomes in choice problems 

(Abdellaoui, L'Haridon, & Paraschiv, 2011; Glöckner, Hilbig, Henninger, & Fiedler, 2016; 

Hadar & Fox, 2009; Kemel & Travers, 2016; Kellen, Pachur, & Hertwig, 2016). The

recently found reversed DFD-DFE gap, implying even more pronounced overweighting of 
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rare outcomes under DFE, is consistent with the previous literature on ambiguity 

(Abdellaoui, Vossmann, & Weber, 2005; Abdellaoui, Baillon, Placido, & Wakker, 2011; 

Fox & Tversky, 1998; Fox, Rogers, & Tversky, 1996; Tversky & Fox, 1995; Tversky & 

Wakker, 1995). The decreased likelihood sensitivity9 under ambiguity is commonly 

attributed to the overestimation of infrequent outcomes due to sub-additive subjective 

beliefs or regression to the mean effects in probability estimations (Erev, Wallsten, & 

Budescu, 1994; Fiedler, Unkelbach, & Freytag, 2009; Fiedler & Unkelbach, 2014; 

Rottenstreich & Tversky, 1997; Tversky & Koehler, 1994).

This paper points to the role of prior beliefs as another important factor in the DFD-

DFE gap. Except for a few studies eliciting introspective judged probabilities (Hau et al. 

2008; Camilleri & Newell 2009; Ungemach et al. 2009), previous studies usually 

approximate subjective probabilities with observed relative frequencies neglecting the role 

of prior beliefs. However, the importance of the subjective prior beliefs is particularly 

evident in the face of the ambiguous nature of DFE because every subject brings his own 

prior expectations about the experimental setting into the laboratory. For example, even 

though not specified explicitly, a subject can reasonably anticipate the range of possible 

outcomes, and predict that extreme losses or gains do not occur very frequently for ethical 

reasons or the budgetary constraints of the experimenter. The ecological rationality account 

of Pleskac & Hertwig (2014) illustrates the importance of such intuitions under ambiguous 

situations. If prior beliefs are not incorporated into the analysis of subjective probabilities,

then the estimations of probability weighting may be confounded because the impact of 

prior beliefs will incorrectly be modeled through probability weighting.

This study puts forward a more complete account of subjective probabilities under 

DFE, which involves a combination of prior beliefs with observed relative frequencies. As 

a working hypothesis, the present account proposes a Bayesian updating method for the 

estimation of subjective probabilities. Notably, the Bayesian updating of an ignorance prior 

will estimate the probability of an infrequent outcome higher than its observed relative 

frequency. This gives a rational basis for the regressions to the mean effects in probability 

estimations, also documented in the previous DFE studies eliciting judged probabilities. 

Hence, I introduce a two-stage decision model for DFE according to which (1) 

subjective probabilities are estimated using a Bayesian updating method developed by

Rudolf Carnap (1952); (2) and the estimated probabilities are transformed using prospect 

9 The concept of likelihood insensitivity was explained in section 2.2.  
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theory’s rank- and sign-dependent probability weighting (Tversky & Kahneman, 1992).

Besides being a normative method for belief updating, Carnap’s method, introduced in the 

next section, is also psychologically natural. Following the source method of Abdellaoui et 

al. (2011), the probability weighting in the second stage captures deviations from Bayesian 

rationality, and it is assumed to be source dependent. This means that having revealed the 

subjective probabilities, the model allows for different attitudes towards described and 

experienced probabilities observable through different probability weightings. It should be 

noted that the current model differs from the two-stage model of Tversky & Fox (1995) 

and Fox & Tversky (1998), which attributes ambiguity attitudes to sub-additive beliefs 

under uncertainty. Another distinguishing feature of the current account is that it adheres to 

the revealed preference approach of (behavioral) economics by relying on choice-based 

probabilities rather than introspective probability judgments.        

The two-stage model is empirically tested by reanalyzing the data sets of Glöckner 

et al. (2016), as well as the Technion Prediction Competition data set of Erev et al. (2010).  

As will be illustrated later, the model successfully disentangles the role of beliefs from 

preferences in DFE. Accordingly, the reversed DFD-DFE gap in probability weighting is 

estimated to be considerably smaller when prior beliefs are controlled for. Moreover, the 

classic DFD-DFE gap is also reduced, or even reversed, under some plausible assumptions 

on subject’s prior expectations about the set of possible outcomes. Overall, the robust 

likelihood insensitivity under DFE suggests further deviations from Bayesian rationality 

due to ambiguity. Lastly, model comparisons based on Bayesian Information Criteria 

(BIC) scores also indicate that the two-stage model performs better than the single stage 

approach using observed relative frequency approximation of subjective probabilities. 

Thus, the two-stage model provides a parsimonious way to analyze DFE by adding only 

one extra parameter to the preceding models.

3.2 Carnap’s updating method and the two-stage model

The current paper makes use of the inference method that Rudolf Carnap10 put forward to 

quantify the degree of confirmation of a hypothesis stating that the next observation from a 

10 Rudolf Carnap is a well-known philosopher of science who also contributed to the theory of probability by 
providing a logical definition of probability (Carnap, 1945; 1950; 1952). Briefly, his theory views probability 
as a logical relation between two statements, namely the degree of confirmation of a hypothesis h on the 
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population will be the outcome based on the evidence that a previous sample of 

observations contains observations from the outcome :

= ++   .
Thus, as in every Bayesian approach, the method combines a prior probability of 

the outcome  with the observed relative frequency . The respective weights are 

proportional to a constant > 0 and the total number of observations . The prior 

probability together with the constant represents the complete prior knowledge of the 

decision maker. A common intuitive interpretation is that the prior knowledge of the 

decision maker can be thought to be roughly equivalent to a hypothetical sample consisting 

of observations with relative frequency . In Bayesian inference, the method is also 

known from the updating of the conjugate beta family and the conjugate Dirichlet family 

for its multinomial extension (Winkler, 1972; Wilks, 1962; Zabell, 1982).

Carnap’s method is empirically appealing. First, the posterior probability of an 

outcome always lies between the prior and the observed relative frequency. The estimation

converges to the relative frequency as more and more observations are accumulated, 

reflecting increasing confidence in empirical probabilities. In the case where there are two

possible outcomes, a “flat” prior representing ignorance is captured by = and = 2,

which turns the formula into the posterior mean of a uniform beta prior (Winkler, 1972).

This case is illustrated in Figure 3.1. The posterior estimations tend to the 50/50 prior 

especially when the number of observations is small. This tendency reduces significantly

as the number of observations increases from 5 to 40.

Second, the method reduces to relative frequency when converges to 0. Carnap 

(1945, p. 86) points out the major problem of using relative frequencies in estimations of 

probabilities concerning always – or never – observed outcomes. This problem is also 

commonly encountered in DFE experiments. In particular, assigning 1 or 0 probability to 

these outcomes may be implausible. A famous historical example of this issue is Laplace’s 

(1825) sunrise problem, asking the likelihood of the sun rising tomorrow. Laplace’s rule of 

succession for dealing with the problem, = , is simply the restricted version of 

evidence e (Carnap, 1945, p. 72), which is analogous to the concept of the degree of belief in the theory of 
subjective probability. 
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Carnap’s method under ignorance illustrated in Figure 3.1.11 For example, the method 

results in = = 92% when the observed relative frequency is 10/10. The 

posterior estimation converges to certainty when increases. 

Carnap (1952) justifies the appropriateness of the method by providing logical 

axioms for it. Wakker (2002) presents the axioms in a decision theoretic context, and 

highlights the normative status of the method. The first property is positive relatedness of 

the observations. It means that an extra observation from an outcome only increases its 

likelihood. The second property is exchangeability. It means that only the number of 

observations from the outcomes matters, regardless of the order of observations. The third 

property is disjoint causality. It means that there is no causal relationship between different 

outcomes. Therefore, the probability of an outcome depends only on the number of 

observations of itself ( ) and of not-itself ( ), regardless of which other outcomes 

were observed among the ( ) other outcomes.    

Figure 3.1 Posterior estimations with Carnap’s method when p = and c = 2

11 A historical review of the rule of succession is in Zabell (1989). 
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In principle, Carnap’s properties are applicable to the DFE experiments, where the 

sample information is obtained from a fixed outcome distribution with replacement, i.e. 

from a stationary and independent process. It is worth noting that the properties can be 

violated due to subjects’ unjustified beliefs about the random processes and the cognitive 

illusions such as the hot hand and gambler’s fallacies (Tversky & Kahneman, 1971; 

Kahneman & Tversky, 1972; Ayton & Fischer, 2004; Sundali & Croson, 2006). However, 

these effects have been mainly documented in repeated settings such as in feedback 

paradigms of DFE (Barron & Yechiam, 2009) and in probability matching tasks (Sundali 

& Croson, 2006) but not in the sampling paradigm, where the observations are made only 

for the purpose of information acquisition.

Having constructed beliefs using Carnap’s method, the two-stage model assumes 

that prospects are evaluated by prospect theory (Tversky & Kahneman, 1992) in the second 

stage. In what follows, I denote a prospect with outcomes , … , with respective 

probabilities , … , by ( : , … , : ). The prospect theory value of an experienced

prospect with > > > 0 > > > is( : , … , : )
= ( ) [ ( + + ) ( + + )]
+ + + + + . 12               

The utility (. ) is strictly increasing and continuous with (0) = 0. The probability 

weighting functions (.) for gains ( = +) and losses ( = ) are strictly increasing with (0) = 0 and (1) = 1. Here, the subscript designates the experienced source of 

ambiguity. Specifically, (.) measures the weighting of subjective probabilities under 

DFE. Prospects under DFD are similarly evaluated by prospect theory, where (.) is 

replaced by (. ) measuring the weighting of objective probabilities. Hence, different 

attitudes towards experienced ambiguity and described risk can be captured by differences 

between (.) and (. ).

12 Here + + = 0 when = 1, and + + = 0 when = . 
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3.3 Testing the two-stage model

The following sections provide an empirical test of the two-stage model by parametric 

estimations of the prospect theory components under the two-stage model. I use Goldstein 

& Einhorn’s (1987) two-parameter family for probability weighting, and the commonly 

used power family for utility. The choice probabilities are calculated using the stochastic 

logit rule. 

( ) = + (1 )( ) = + (1 )( ) =               0( )   < 0 ( , ) = 11 + ( ( ) ( ))
The parameter determines the elevation of probability weighting, and measures 

the pessimism/optimism of the decision maker. Higher leads to more elevation, and thus 

more optimism in the gain domain and more pessimism in the loss domain. The parameter 

determines the curvature of the probability weighting function and it captures sensitivity 

towards probabilities. For, < 1 the probability weighting is inverse S-shaped reflecting 

likelihood insensitivity. The parameter determines the degree of loss aversion. To avoid 

extra complexity, utility curvature in the gain and in the loss domain is assumed to be the 

same by constraining = . This assumption avoids an identification problem in the 

estimation of loss aversion (Wakker, 2010, section 9.6), and it is empirically supported by 

previous findings (Tversky & Kahneman, 1992). For , < 1, the utility curve is concave 

in the gain domain and it is convex in the loss domain. Lastly, the parameter in the logit 

formula determines the sensitivity to differences in prospect theory values of prospects.

Three different cases of subjective priors are considered in the estimations. The first 

case assumes symmetric prior probabilities, , equally distributed over all the outcomes

that are believed to be possible in a prospect, and the constant in Carnap’s formula is 

treated as a free parameter to be estimated together with the other parameters. Hereafter, 

this will be called the Carnap prior case. The second case concerns the ignorance prior



44

that was already mentioned in the previous section. The ignorance prior is a special case of 

the Carnap prior case. It assumes that the prior knowledge of the subject is equivalent to a 

hypothetical sample that contains one and only one observation from each of the possible 

outcomes. For instance, for a prospect with possible outcomes, the prior probability of 

every outcome is and = . The third case suppresses prior beliefs altogether and simply 

approximates subjective probabilities with observed relative frequencies. In other words, 

this is Carnap’s method with = 0. Following the Bayesian terminology, this case will be 

called the diffuse prior (Winkler, 1972, p. 178). This case has been commonly used in the 

previous DFE studies. 

3.3.1 Accounting for the reversed DFD-DFE gap: A reanalysis of Glöckner et
al. (2016)

Contrary to previous studies of DFE, Glöckner et al. (2016) reports reversed DFD-DFE

gap based on an analysis of four experimental data sets. They find more pronounced 

overweighting of small probabilities under DFE than under DFD. The authors attribute the 

discrepancy to information asymmetry between DFD and DFE conditions in early DFE

studies, especially in the presence of sure outcomes whose certainty is not known by 

subjects in DFE conditions. They explain the reversal of the gap in the absence of such 

outcomes by regression to the mean effects in probability estimations due to noise and 

reduced evaluability under uncertainty. They also point out the possibility of an alternative 

explanation with updating of ignorance priors in a footnote (footnote 8, p. 490). This 

section tests this alternative explanation by re-examining the four data sets using the two-

stage model. The data sets are made available by the authors at Open Science Framework: 

https://osf.io/d9f8q/.

Data

The first data set is obtained from a previous study by Glöckner, Fiedler, Hochman, Ayal, 

& Hilbig (2012). The second and the third data sets are based on the Experiments 1 and 2 

in Glöckner et al. (2016). These experiments replicate the experiment by Glöckner et al. 

(2012) with slight procedural variations. The choices concern only the gain domain in 

these three data sets.  The fourth data set is based on Experiment 3 in Glöckner et al. 

(2016). This data set contains choices in the gain, loss, and mixed domains. All the choice 
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problems in the study of Glöckner et al. (2012) and in Experiment 2, and a large majority 

of the choice problems in Experiment 1 and in Experiment 3 involve a choice between two 

two-outcome prospects. The rest of the problems involves a choice between a two-outcome 

prospect and a sure outcome. Subjects in DFE conditions were informed about the number 

of possible outcomes in prospects, except for half of the subjects in Experiment 2. In what 

follows, I will refer to these two conditions within the DFE condition of Experiment 2 as 

DFE-informed and DFE-uninformed. Readers are referred to Glöckner et al. (2016) for 

more details on the experimental design.

Analysis

Parameters are estimated by the method of maximum likelihood using the estimation 

routine in STATA software described by Harrison (2008). Standard errors are cluster-

corrected at the individual subject level. The DFD-DFE gap is tested by the significance of 

dummy variables for DFE treatment. Model comparisons are based on BIC scores. 

To control for potential interactions between utility curvature and elevation of 

probability weighting commonly documented in previous studies (Gonzalez & Wu, 1999, 

p. 152; Scheibehenne & Pachur, 2015, pp. 403-404; Stott, 2006, p. 112; Zeisberger, 

Vrecko, & Langer, 2012), same utility functions under DFD and DFE conditions are 

assumed in the estimations. This avoids a problem of identification in ambiguity aversion 

that trends in utility and probability weighting elevation across DFD and DFE conditions 

may pose. For instance, in the gain domain, whereas less (more) utility curvature under 

DFE than under DFD implies ambiguity seeking (aversion), less (more) elevated 

probability weighting under DFE than under DFD implies ambiguity aversion (seeking).

Unconstrained estimations are reported in Appendix 3. Constrained estimations 

outperform unconstrained estimations in all data sets based on the BIC scores. Consistent 

with the previous studies by Abdellaoui, L'Haridon, & Paraschiv (2011) and by Cubitt et 

al. (2016), equality of utilities across DFD and DFE are supported in all data sets of 

Glöckner et al. (2016), only except for the DFE-uninformed condition of Experiment 2. 

Differences in unconstrained estimations are mentioned in the discussion.
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Results

The estimation results based on diffuse, ignorance and Carnap priors are in Table 3.1a, 

Table 3.1b, and Table 3.1c. Last columns report the estimation results with the pooled data 

set.

Comparison of BIC scores across different prior assumptions under DFE are in Table 3.2.

The resulting probability weighting functions are in Figure 3.2.

The estimations based on diffuse priors indicate significant DFD-DFE gap with 

respect to the likelihood sensitivity parameters / in all data sets (Table 3.1a). There is 

less likelihood sensitivity in the DFE condition than in the DFD condition. No significant 

DFD-DFE gap is observed in other model components, except for the error parameter in 

Experiment 1. Here, we observe significantly more error proneness under DFE than under

DFD. Trends in Experiment 2 also suggest less elevated probability weighting under DFE-

informed condition than under DFD condition, and more elevated probability weighting 

under DFE-uninformed condition than under DFD condition, although these effects are not 

significant (p=0.144, and p=0.259 respectively). The elevation of probability weighting

differs across DFE-informed and DFE-uninformed conditions (p=0.031).    

Table 3.1a. Estimations based on diffuse priors

Notes: Stars indicate DFD – DFE gap. * < 0.05. ** < 0.01. *** < 0.001. The first numbers 
in cells indicate the estimated parameters for DFD condition. In the column for Experiment 2, the 
second numbers are based on DFE-informed condition and the third numbers are based on DFE-
uninformed condition.   

 

Glöckner et 
al. (2012)(DFD / DFE) Experiment 1(DFD / DFE) Experiment 2(DFD /  DFE /DFE )

Experiment 3(DFD / DFE) Pooled(DFD / DFE)
 0.647 0.965 0.763 0.971 0.826
 - / 0 - / 0 - / 0 - / 0 - / 0
 0.557/0.558 0.369/0.330 0.595/0.472/0.706 0.617/0.683 0.527/0.519
 0.732/0.560* 0.720/0.579* 0.983/0.512***/0.571*** 0.560/0.424** 0.806/0.540***
 1.081/1.202 1.154/1.257
 0.868/0.458*** 0.792/0.374***

 0.960 1.156
 2.157/2.012 0.844/0.617* 1.287/1.289/1.379 1.472/1.307 1.188/1.117

N 2581 3049 6092 5069 16791
LL -1143.92 -1436.374 -2837.71 -2653.457 -8282.492

BIC 2342.832 2928.906 5762.568 5409.286 16681.73
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Table 3.1b. Estimations based on ignorance priors

Notes: Stars indicate DFD – DFE gap. * < 0.05. ** < 0.01. *** < 0.001. The first numbers 
in cells indicate the estimated parameters for DFD condition. In the column for Experiment 2, the 
second numbers are based on DFE-informed condition and the third numbers are based on DFE-
uninformed condition.   

The gap in likelihood sensitivity is reduced under the two-stage model using the

ignorance priors (Table 3.1b). In particular, the gap is less pronounced in all the data sets,

and insignificant in Glöckner et al. (2012), in Experiment 1, and in the gain domain of 

Experiment 3. The DFD-DFE gap in error parameter in Experiment 1, and the trends in the 

elevation of probability weighting are replicated here. The elevation of probability 

weighting differs only across DFE-informed and DFE-uninformed conditions (p=0.035). 

The estimations under the two-stage model demonstrate further reductions of the

DFD-DFE gap in likelihood insensitivity when the Carnap priors are used (Table 3.1c). In 

this case, the gap is insignificant in all data sets except for Glöckner et al. (2012) and for 

the DFE-uninformed condition of Experiment 2. Surprisingly, Carnap’s is found

significantly negative in the data set of Glöckner et al. (2012). This result resembles 

representativeness in probability updating where too much weight is assigned to the 

relative frequencies at the expense of prior probabilities (Grether, 1980; Griffin & Tversky, 

1992). As the negative induces underestimation of rare outcomes, the reversed gap is 

more pronounced here. In the rest of the estimations, the constant is estimated positive 

although not significantly different from 0. The estimations with the pooled data set 

indicates > 0 ( = 0.08), and the gap is accommodated in the gain domain but not in the 

 

Glöckner et 
al. (2012)(DFD / DFE) Experiment 1(DFD / DFE) Experiment 2(DFD /  DFE /DFE )

Experiment 3(DFD / DFE) Pooled(DFD / DFE)
 0.648 0.972 0.770 0.966 0.828
 - / 2 - / 2 - / 2 - / 2 - / 2
 0.556/0.557 0.365/0.331 0.590/0.474/0.705 0.621/0.690 0.525/522
 0.732/0.670 0.721/0.715 0.984/0.623***/0.676** 0.559/0.502 0.806/0.651***
 1.085/1.225 1.149/1.272
 0.868/0.540** 0.791/0.445**

 0.961 1.162
 2.149/1.971 0.826/0.610* 1.258/1.280/1.342 1.486/1.332 1.181/1.114

N 2581 3049 6092 5069 16791
LL -1147.33 -1433.739 -2833.117 -2648.986 -8274.346

BIC 2349.651 2923.63 5753.382 5400.349 16665.43



48

loss domain. The gap in the error parameter in Experiment 1, and the trends in probability 

weighting elevation are also observed here. The elevation of probability weighting differs 

across DFE-informed and DFE-uninformed conditions (p=0.038).

Table 3.1c. Estimations based on Carnap Priors

Notes: Stars indicate DFD – DFE gap. * < 0.05. ** < 0.01. *** < 0.001. The first numbers 
in cells indicate the estimated parameters for DFD condition. In the column for Experiment 2, the 
second numbers are based on DFE-informed condition and the third numbers are based on DFE-
uninformed condition.   

Table 3.2. Comparison of Diffuse, Ignorance and Carnap Priors under DFE

Notes: indicates relative evidence for the null hypothesis against the 
alternative. BF values higher than 1 indicate evidence in favor of the null hypothesis. BF values 
smaller than 1 indicate evidence in favor of the alternative hypothesis.

 

Glöckner et 
al. (2012)(DFD / DFE) Experiment 1(DFD / DFE) Experiment 2(DFD /  DFE /DFE )

Experiment 3(DFD / DFE) Pooled(DFD / DFE)
 0.647 0.981 0.768 0.962 0.829
 - / -1.603*** - / 7.618 - / 6.626 / 0.501 - / 10.192 - / 2.833
 0.556/0.538 0.360/0.328 0.592/0.477/0.704 0.625/0.697 0.525/0.522
 0.732/0.428** 0.723/1.013 0.984/0.815/0.600** 0.559/0.735 0.806/0.690
 1.089/1.263 1.147/1.277
 0.868/0.788 0.791/0.470*

 0.962 1.164
 2.156/2.033 0.804/0.591* 1.266/1.286/1.356 1.499/1.335 1.179/1.110

N 2581 3049 6092 5069 16791
LL -1140.568 -1432.486 -2830.442 -2645.871 -8273.931

BIC 2343.984 2929.152 5765.460 5402.644 16674.33

Glöckner 
et al. 

(2012)

Experiment 
1

Experiment 
2

DFE-
informed

Experiment 
2

DFE-
uninformed

Experiment 
3 Pooled

Diffuse 
Prior

LL -558.416 -775.766 -626.460 -660.924 -1340.574 -4056.785
BIC 1138.302 1573.724 1274.696 1343.771 2720.436 8158.757

Ignorance 
Prior

LL -561.826 -773.264 -621.364 -661.202 -1336.142 -4048.726
BIC 1145.124 1568.721 1264.504 1344.328 2711.572 8142.64

Carnap 
Prior

LL -555.065 -772.175 -619.279 -660.674 -1333.061 -4048.339
BIC 1138.757 1573.939 1267.591 1350.580 2713.266 8150.903

N 1283 1632 1420 1492 2585 8412
30.296 0.082 0.006 1.321 0.012 0.0003
1.255 1.113 0.029 30.099 0.028 0.020
0.041 13.585 4.681 22.783 2.333 62.271
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The comparisons of the BIC scores indicate that the two-stage model accounts for 

the data at least as good as the model based on the diffuse prior. The two-stage model with 

ignorance priors outperforms the model with diffuse priors in all data sets except for the 

data set of Glöckner et al. (2012) and for DFE-uninformed condition of Experiment 2.

Interpreting from Bayes Factors13 in Table 3.2, there is strong evidence in Experiment 1;

and very strong evidence in DFE-informed condition of Experiment 2, in Experiment 3,

and in the pooled data set in favor of ignorance priors over diffuse priors (for derivation of 

Bayes Factors from BIC scores, see Wagenmakers, 2007). There is almost no evidence in 

favor of diffuse or ignorance priors in DFE-uninformed condition of Experiment 2. There 

is also very strong evidence in favor of two stage model with Carnap priors over the 

model with diffuse priors in DFE-uninformed condition of Experiment 2, in Experiment 3, 

and in the pooled data set. There is almost no evidence in favor of diffuse or Carnap priors

in Glöckner et al. (2012) and in Experiment 1. We find more evidence in favor of 

ignorance priors over Carnap priors in all data sets except in Glöckner et al. (2012). This 

suggests that using a free updating parameter does not make a significant contribution in 

accounting for the data compared to using a constrained = 2 (ignorance prior). 

Discussion

The aforementioned results support the updating account under DFE. The two-stage model 

with ignorance prior provides the best account of the data, and the gap in likelihood 

insensitivity is persistent as shown in Figure 3.2. This is consistent with ambiguity-

generated likelihood insensitivity reported in previous studies (Abdellaoui, Baillon, 

Placido, & Wakker, 2011; Dimmock, Kouwenberg, & Wakker, 2015). No significant 

DFD-DFE gap is observed in any other prospect theory parameters. 

While our main conclusions are replicated in unconstrained estimations without 

assuming equal utilities across DFD and DFE conditions, we only observe further 

differences in utility and elevation of probability weighting in Experiment 2 (Appendix 3, 

Table A3.1). Here, the trends suggest more utility curvature, and more elevation of 

probability weighting under DFD than under both DFE-informed and DFE-uninformed

conditions. The trend in utility is found significant for the DFE-uninformed condition, and 

the trend in elevation is found significant for the DFE-informed condition. It should be 

noted that these trends in utility and probability weighting elevation imply opposite effects 

13 See section 2.6 in Chapter 2, for interpretation of Bayes Factors.  
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in terms of ambiguity aversion as mentioned previously. A reversed pattern, i.e. less utility 

curvature and less elevation under DFD than under DFE, is also observed in Experiment 1, 

although these are not significant.          

Figure 3.2 Probability weighting functions based on the pooled data set of Glöckner et al.

Notes: Solid black lines show probability weighting under DFD. Dashed blue lines show 
probability weighting under DFE when the diffuse prior is used. Dotted red lines show probability 
weighting under DFE when the ignorance prior is used. Dot-dash green lines show probability 
weighting under DFE when the Carnap prior is used.

3.3.2 Accounting for the classic DFD-DFE gap: A reanalysis of Erev et al. 
(2010)

The study by Erev et al. (2010) reports the classic DFD-DFE gap. The ambiguity in the 

DFE (sampling) condition of this study is augmented by the lack of information about the 

certainty and possibility of outcomes. Whereas the ambiguity due to unknown probabilities 

can be easily studied in a tractable manner as illustrated in the previous section, the 

additional ambiguity about the set of possible outcomes poses a more complex problem to 

deal with. In particular, the subject’s prior beliefs about the ambiguous outcome space are 
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not easily observable. This section first introduces some plausible assumptions about prior 

beliefs under such ambiguous situations to explain the classic DFD-DFE gap. Then, the 

assumptions are empirically tested under the two-stage model by reanalyzing the Technion 

choice prediction competition data set of Erev et al. (2010).

Prior beliefs over ambiguous outcome space

Here, I describe two possible considerations in a subject’s mind. The first is called context-

dependent expectations, and it was put forward by Glöckner et al. (2016). To illustrate, 

consider the following choice problem under DFD involving two options: Option A is a

sure outcome of 8.7 and Option B is a risky prospect (0.91: 9.6, 0.09: 6.4) (taken from 

figure 3 in Glöckner et al.). Under DFE, the subject does not know the number of possible 

outcomes in the options, and therefore she is not aware of the certainty of the outcome 8.7
that she observes from Option A successively. Glöckner et al. (2016) argues that while 

forming beliefs about an option, the subject will not only use the information that she 

sampled from the very same option but also the information that she gathered from the 

other option. Accordingly, the rare outcome observed from Option B may be projected 

upon Option A. Specifically, the experience of the rare outcome 6.4, along with the 

common outcome 9.6 in Option B, can create an expectation that a similarly bad and rare 

outcome also exists in Option A. Hence, her belief about Option A involves an ambiguous 

prospect with two outcomes, 8.7 and ~ 6.4, rather than a sure outcome 8.7. Notably, this 

makes Option A less attractive, and therefore she may prefer Option B. However, if her 

prior beliefs are not taken into account, her preference for Option B gives the impression 

that she is underweighting the small probability of 6.4 in Option B.

More specifically, suppose that the subject updates her beliefs according to 

Carnap’s method, and she uses an ignorance prior.  Furthermore, she makes 10 

observations from each option, always observes the outcome of 8.7 from Option A, and

observes the outcome of 9.6 with relative frequency of and the outcome of 6.4 with 

relative frequency of from Option B. Thus, the relative frequency approximation of her

subjective beliefs misleadingly implies that she is making a choice between the sure 

outcome : ( : 8.7) and a two-outcome prospect : ( : 9.6, : 6.4), whereas she

might indeed be making a choice between two two-outcome prospects, : ( : 8.7,
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: ~ 6.4) and : ( : 9.6, : 6.4), as implied by context dependent 

expectations and Carnap’s updating method.

The second scenario is a natural extension of the context-dependent expectations. It 

assumes that the subject will have more comprehensive beliefs by expecting that any 

outcome that she is aware of within a given problem can in principle exist in both options.

Hence, all the outcomes observed from the two options are considered to be possible in 

both options. This scenario will be called comprehensive expectations. Continuing with the 

previous example, it leads to a choice between option : : 9.6, :  8.7,: 6.4 and option : ( : 9.6, : 8.7 , : 6.4), where the probabilities are

calculated based on the Carnap’s method with = and = 3. This scenario has a less 

clear prediction for the attractiveness of the sure prospect. In the present problem, adding 

good and bad outcomes, 9.6 and 6.4, to Option A will impact its attractiveness depending 

on the relative steepness of the lower parts of the probability weighting curves in the gain 

and in the loss domains. For instance, more overweighting of in the loss domain than in 

the gain domain decreases the attractiveness.

In the following analysis, the perceived set of possible outcomes is constructed 

based on the context-dependent or comprehensive expectations. Then, the parametric 

estimations will be done under the two stage model by using Carnap, ignorance and

diffuse priors.

Data

I focus on the DFD and DFE sampling conditions in Erev et al. (2010). The study consists 

of an estimation data set and a competition data set. The two data sets are pooled in the 

current analysis. The pooled data set contains 40 subjects in the DFD condition and 80 

subjects in the DFE condition. Each subject makes 60 choices in the DFD condition and 30 

choices in the DFE condition. The problems always involve a choice between a sure 

outcome and a two-outcome risky prospect. Prospects were equally divided into gain, loss, 

and mixed domains. Subjects in the DFE condition were provided with minimal 

information about the content of the two prospects. Importantly, unlike in Glöckner et al. 

(2016), they do not know the number of possible outcomes in prospects, and therefore they 

lack the information about the certainty of an always-observed outcome. They make a 
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single choice after an exploratory sampling stage. The readers are referred to Erev et al. for 

more details on the experimental design.

Analysis

The same estimation method is used as in the reanalysis of Glöckner et al. (2016). Utility is 

assumed to be the same across different conditions. Results from unconstrained estimations 

without assuming the same utility is reported in Appendix 3. Constrained estimations 

outperform unconstrained estimations based on BIC scores. Differences in unconstrained 

estimations are discussed.   

Results

The estimation results are in Table 3.3. Comparison of BIC scores across different prior 

assumptions are in Table 3.4. The resulting probability weighting functions under the 

Carnap prior assumption are in Figure 3.3.

The parameter estimations under the DFE condition using the diffuse prior replicate 

the classic DFD-DFE gap. Specifically, the DFE condition indicates more likelihood 

sensitivity compared to the DFD condition. This means that the rare outcomes are less 

overweighted under DFE than under DFD. It should be noted that the underweighting of 

rare events claimed in the early DFE studies is not found here. This happens mainly 

because of the correction of the sampling error by using observed relative frequencies 

rather than unknown objective probabilities. There is no DFD-DFE gap with respect to 

other prospect theory parameters. 

The estimation results based on context-dependent expectations imply different 

conclusions about the gap in likelihood sensitivity depending on the prior assumptions. 

Under the assumption of ignorance prior, the gap in likelihood sensitivity is persistent in 

the gain domain; and it is insignificant in the loss domain. Under the assumption of Carnap 

prior, the gap in likelihood sensitivity is insignificant in the gain domain; and it is 

significantly reversed in the loss domain. Carnap’s constant is marginally different from 0 ( =0.055). The estimated = 0.212 means that for the median number of 5 draws, a 

never-observed rare outcome receives 2% probability. No significant gap is observed in 

other model parameters.

The estimations based on comprehensive expectations consistently indicate 

insignificant DFD-DFE gap in likelihood sensitivity both in the gain and in the loss 



54

domain. However, the trends indicate a reversal of the classic DFD-DFE gap as we observe 

less likelihood sensitivity under DFE than under DFD. The reversal is particularly 

noticeable in the case of Carnap priors. Under the assumption of Carnap prior, the 

parameter is different from 0 ( = 0.007). The estimated = 0.994 means that a never-

observed rare outcome receives 5.5% probability for the median sample size. The trends in 

the elevation of probability weighting indicate less elevation under DFE than under DFD in 

the gain domain, and more elevation under DFE than under DFD in the loss domain. These 

imply ambiguity aversion in both domains.  

Table 3.3 Estimation results with the data set of Erev et al. (2010)

Notes: Stars indicate DFD – DFE gap. * < 0.05. ** < 0.01. *** < 0.001. The first numbers 
in the cells indicate the estimated parameters for the DFD condition. 

The two stage model with Carnap prior account for the data better than the model 

with diffuse prior. Interpreting from Bayes Factors in Table 3.3, there is very strong 

evidence in favor of Carnap priors over diffuse priors under both accounts. The two-stage

model with ignorance priors did considerable worse than the models with Carnap and 

diffuse priors. With Carnap priors, comprehensive expectations perform only slightly 

better than context-dependent expectations ( = 2.419).

  Context-Dependent Expectations Comprehensive Expectations 

 
Diffuse Prior 
(DFD/DFE) 

 

Ignorance Prior 
(DFD/DFE) 

Carnap Prior 
(DFD/DFE)

 

Ignorance Prior 
(DFD/DFE) 

Carnap Prior 
(DFD/DFE) 

 
 

0.926 0.851 0.904 0.857 0.892 

 

1.143 1.133 1.211 1.125 1.118 

 

-/0 -/2 -/0.212  -/3 -/0.994** 

 

0.779/0.799 0.784/0.600 0.780/0.766 0.784/0.512 0.782/0.542 

 

0.594/0.891** 0.588/0.943** 0.581/0.778 0.590/0.532 0.595/0.387 

 

1.167/1.266 1.186/1.184 1.168/1.453 1.185/1.421 1.177/1.570 

 

0.592/0.921** 0.584/0.691 0.597/0.289** 0.584/0.453 0.587/0.345 

 

1.054/1.424 1.246/1.798 1.071/1.671 1.238/2.569 1.153/2.177 

 

4800 4800 4800 4800 4800 

 

-2516.465 -2590.941 -2505.980 -2524.151 -2505.262 

 

5134.647 5283.599 5122.152 5150.019 5120.717
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Table 3.4. Comparison of Diffuse, Ignorance and Carnap Priors under DFE

Notes: indicates relative evidence for the null hypothesis against the 
alternative. BF values higher than 1 indicate evidence in favor of the null hypothesis. BF values 
smaller than 1 indicate evidence in favor of the alternative hypothesis.

Discussion

The reanalysis of Erev et al. (2010) indicates that the classic DFD-DFE gap can be 

reversed when the prior beliefs are taken into account. The reversal is consistent with the 

findings of Glöckner et al. (2016). Different from our estimations with the data sets of 

Glöckner et al., Carnap prior performed better than the ignorance priors. This discrepancy 

can be attributed to the differences in the experimental procedures. In particular, in the 

studies reported in Glöckner et al., subjects were informed about the number of possible 

outcomes in prospects. This might have reinforced the use of ignorance priors. No such 

information was available to the subjects in the experiments of Erev et al. (2011).

Our main conclusions are replicated in the unconstrained estimations (Appendix 3, 

Table A3.3). Furthermore, here, we also observe more utility curvature under DFE than 

under DFD under the assumption of ignorance priors. However, the assumption of

ignorance prior accounts for the data considerably worse than Carnap priors and no

significant gap in utility is observed under the assumption of Carnap priors (Table A3.4).

  Context-Dependent Expectations Comprehensive Expectations 

Diffuse Prior 
LL -1202.812 -1202.812 
BIC 2444.541 2444.541 

Ignorance Prior LL -1274.809 -1208.356 
BIC 2588.534 2455.628 

Carnap Prior 
LL -1191.92 -1191.037 
BIC 2430.54 2428.773 

N 2400 2400 
 > 10  255.571 

 < 10  < 10  
   < 10  < 10  
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Figure 3.3 Probability weighting functions from the data set of Erev et al. (2010)

Notes: Solid black lines show probability weighting under DFD. Dashed blue lines show 
probability weighting under DFE when the diffuse prior is used. Dotted red lines show probability 
weighting under DFE based context dependent expectations. Dot-dash green lines show probability 
weighting under DFE based on comprehensive expectations.

3.4 General Discussion

DFD-DFE gap

The weighing of uncertainty under DFE concerns both probabilistic inference and 

probability weighting. The aforementioned two-stage model gives a refined analysis of 

probability weighting under DFE by modelling probabilistic inference with a Bayesian 

method of updating. The findings with the two-stage model showed that the rational 

updating of symmetric priors accommodates the commonly found regressive probability 

estimations, and it explains a considerable part of the reversed DFD-DFE gap. The 

remaining gap is explained by the source dependent probability weighting. The reanalysis 

of the classic DFD-DFE gap confirmed the validity of the two-stage model by revealing

the persistence of the enhanced likelihood insensitivity under DFE, which is consistent 

with the reversed DFD-DFE gap. 
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There are two possible factors that may give rise to different probability weighting 

under DFD and DFE: sampling experience and ambiguity. Contrary to the reversed DFD-

DFE gap, previous studies by van de Kuilen & Wakker (2006), van de Kuilen (2009) and 

Humphrey (2006) on experienced risk; and studies by Ert & Trautmann (2014) and Kemel 

& Travers (2016) on experienced ambiguity report that the sampling experience reduces, 

rather than enhances, likelihood insensitivity. While the experienced ambiguity in the 

present study can explain the discrepancy with the former studies on experienced risk, a

possible reason for the discrepancy with the previous studies on experienced ambiguity can

be different methodologies used in these studies. Kemel & Travers (2016) uses certainty 

equivalents of experienced prospects, rather than binary choice data, to elicit PT 

parameters. Therefore, their method requires comparisons of experienced prospects with 

explicitly described certain outcomes. Similarly, Ert & Trautmann (2014) focuses on 

choices between experienced ambiguous prospects and described risky prospects. Future 

research can clarify the impact of sampling experience when the choice is between two 

experienced ambiguous prospects as in Glöckner et al. (2016) and Erev et al. (2010).

The enhanced likelihood insensitivity is a common finding in the ambiguity 

literature (Wakker, 2010, p. 292). This residual deviation from Bayesian rationality can be 

explained by perceived ambiguity in estimated probabilities (Dimmock, Kouwenberg, 

Mitchell, & Peijnenburg, 2015). Specifically, acknowledging the uncertainty about his 

probability estimation, the decision maker can consider a range of possible probabilities 

around his estimate. However, the range is very likely to be asymmetric around small 

probabilities such as 5% because there is much more room between 5% and 100% than 

between 0% and 5%. As a result, a decision maker who is weighting the rare outcome with 

an average of minimum and maximum of the perceived range of probabilities – as in 

the model (Hurwicz 1951; Luce & Raiffa 1957) – is likely to assign a weight 

higher than the small probability estimate of 5%. Such multiple prior accounts of 

ambiguity are common in the behavioral economics literature (Baillon, Bleichrodt, Keskin, 

L'Haridon, & Li , in press; Chateauneuf, Eichberger, & Grant, 2007; Ghirardato, 

Maccheroni, & Marinacci, 2004; Gilboa & Schmeidler, 1989; Marinacci, 2015).

The Bayesian method of updating

This paper uses a tractable Bayesian updating method in analyzing subjective probabilities 

under DFE. Despite its promising performance in accounting for the previous empirical 
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findings, the descriptive validity of the method can be questioned. First, as in any Bayesian 

approach, in Carnap’s method, the strength and the weight of evidence, i.e. and ,

receive equal emphasis in evaluation. Notwithstanding this normative property, an 

influential study by Griffin & Tversky (1992) indicates that people systematically focus on

the strength of evidence while paying insufficient attention to the credibility. This tendency

results in either representativeness (overconfidence) or conservatism (underconfidence) in 

probability judgments. A recent study by Kvam & Pleskac (2016) replicates these findings 

in an environment where the information is accumulated by observation similar to the 

sampling paradigm. 

Although Carnap’s method cannot differentiate the relative impact of the strength 

and the weight of evidence, biases similar to representativeness and conservatism can still 

be observed by negative values of . In particular, < < 0 implies too much updating 

in the direction of sample information resembling to representativeness, and <
implies too much updating in the direction of prior beliefs resembling to an extreme case of

conservatism.

Second, the Bayesian updating method assumes perfect memory, and hence, no

recency effects in probability judgments. Although some early studies report recency 

effects in DFE, the evidence is still mixed (see the comprehensive meta-analysis by Wulff 

et al. 2016). Nonetheless, there are also ways to capture these effects within Carnap’s 

formula. One way is to simply use the sampling information from the second half of the

observed sequence of outcomes as if the first half has been forgotten. Such modelling of 

recency effects is discussed in Ashby & Rakow (2014) and in Wulff & Pachur (2016) (the 

sliding window model). Another way is to assign different weights to the relative 

frequencies observed in the first and in the second half of the sequence. For example, 

taking and , the sample sizes of the first and second half the observations with += , one can use = and = where > 1 implies recency.

3.5 Conclusion

The preceding literature on DFE has extensively argued for the role of sampling error and 

ambiguity in the DFD-DFE gap. This study points to another important factor, being prior 

beliefs. The Bayesian approach, taken as a working hypothesis in this study, is shown to be 
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useful in resolving the controversy about the gap by offering a tractable way to analyze 

prior beliefs. Importantly, the DFD-DFE gap is almost fully accommodated when prior 

beliefs are taken into account. The residual gap is explained by perceived ambiguity. 

Bayesian updating does remarkably well in explaining experimental data despite its 

normative nature. A promising topic for future research will concern more descriptive 

methods for analyzing beliefs under DFE.   
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Appendix 3

Table A3.1 Unconstrained estimations with the data sets in Glöckner et al. (2016)

Notes: Stars indicate DFD – DFE gap. * < 0.05. ** < 0.01. *** < 0.001. In the column for 
Experiment 2, the first numbers are based on DFE-informed condition and the second numbers are 
based on DFE-uninformed condition. There is no significant difference across DFE-informed and 
DFE-uninformed conditions.

  
Glöckner 

et al. 
(2012) 

Experiment 
1 

Experiment          
2 

Experiment 
3 Pooled 

 

DFD 0.652 1.058 0.617 0.954 0.850 
DFE – Diffuse prior 0.642 0.853 0.836/1.015** 0.991 0.796 
DFE – Ignorance prior 0.644 0.871 0.845/1.040** 0.981 0.800 
DFE – Carnap prior  0.642 0.890 0.851/1.028** 0.972 0.801 

 

DFD - - - - - 
DFE – Diffuse prior 0 0 0 0 0 
DFE – Ignorance prior 2 2 2 2 2 
DFE – Carnap prior  -1.602*** 6.456 6.661/0.881 10.117 2.768 

 

DFD 0.553 0.320 0.695 0.637 0.511 
DFE – Diffuse prior 0.561 0.392 0.432*/0.527 0.661 0.541 
DFE – Ignorance prior 0.565 0.386 0.433*/0.517 0.673 0.542 
DFE – Carnap prior  0.541 0.376 0.431*/0.522 0.684 0.542 

 

DFD 0.732 0.736 0.961 0.559 0.810 
DFE – Diffuse prior 0.560* 0.552* 0.521***/0.595*** 0.423* 0.536*** 
DFE – Ignorance prior 0.670 0.684 0.634**/0.707** 0.502 0.645*** 
DFE – Carnap prior  0.427** 0.919 0.833/0.648* 0.733 0.682 

 

DFD    1.074 1.091 
DFE – Diffuse prior    1.211 1.341 
DFE – Ignorance prior    1.243 1.357 
DFE – Carnap prior     1.288 1.361 

 

DFD    0.856 0.787 
DFE – Diffuse prior    0.462*** 0.371*** 
DFE – Ignorance prior    0.544** 0.443** 
DFE – Carnap prior     0.793 0.467* 

 

DFD    1.001 1.237 
DFE – Diffuse prior    0.916 1.068 
DFE – Ignorance prior    0.917 1.081 
DFE – Carnap prior     0.920 1.084 

 

DFD 2.117 0.639 2.123 1.512 1.099 
DFE – Diffuse prior 2.045 0.865 1.023/0.625* 1.268 1.232 
DFE – Ignorance prior 1.997 0.825 1.009/0.578* 1.308 1.218 
DFE – Carnap prior  2.066 0.778 0.991/0.601* 1.326 1.212 

LL 
Diffuse prior -1143.916 -1434.251 -2831.996 -2652.874 -8281.178 
Ignorance prior -1147.327 -1431.981 -2826.839 -2648.487 -8273.231 
Carnap prior -1140.565 -1431.107 -2824.415 -2645.445 -8272.874 

BIC 
Diffuse prior 2350.680 2932.683 5768.568 5425.181 16698.56 
Ignorance prior 2357.502 2928.142 5758.254 5416.407 16682.66 
Carnap prior 2351.833 2934.417 5770.836 5418.853 16691.68 



61

Table A3.2 Comparison of Diffuse, Ignorance and Carnap Priors under DFE, based on 

unconstrained estimations with the data sets in Glöckner et al. (2016)

Notes: indicates relative evidence for the null hypothesis against the 
alternative. BF values higher than 1 indicate evidence in favor of the null hypothesis. BF values 
smaller than 1 indicate evidence in favor of the alternative hypothesis.  

 
Glöckner 

et al. 
(2012) 

Experiment 
1 

Experiment  
2 

DFE-
informed 

Experiment  
2 

DFE-
uninformed 

Experiment 
3 Pooled 

Diffuse 
Prior 

LL -558.414 -774.531 -626.225 -657.932 -1340.263 -4056.058 
BIC 1145.456 1578.653 1281.483 1345.096 2735.529 8175.377 

Ignorance 
Prior 

LL -561.825 -772.261 -621.113 -657.887 -1335.877 -4048.111 
BIC 1152.279 1574.111 1271.259 1345.006 2726.755 8159.483 

Carnap 
Prior 

LL -555.063 -771.387 -618.974 -657.602 -1332.834 -4047.754 
BIC 1145.911 1579.762 1274.240 1351.743 2728.528 8167.807 

N 1283 1632 1420 1492 2585 8412 
 30.311 0.103 0.006 0.956 0.012 0.0003 

 1.255 1.741 0.027 27.757 0.030 0.023 
 0.041 16.869 4.439 29.035 2.427 64.199 
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Table A3.3 Unconstrained estimations with the data sets of Erev et al. (2010)

Notes: Stars indicate DFD – DFE gap. * < 0.05. ** < 0.01. *** < 0.001.

  Context-Dependent 
Expectations 

Comprehensive 
Expectations 

 

DFD 0.932 0.932 
DFE – Diffuse prior 0.917 0.917 
DFE – Ignorance prior 0.720** 0.734** 
DFE – Carnap prior  0.859 0.815 

 

DFD - - 
DFE – Diffuse prior 0 0 
DFE – Ignorance prior 2 3 
DFE – Carnap prior  0.202 1.038* 

 

DFD 0.779 0.779 
DFE – Diffuse prior 0.803 0.803 
DFE – Ignorance prior 0.670 0.501 
DFE – Carnap prior  0.790 0.512 

 

DFD 0.599 0.599 
DFE – Diffuse prior 0.891* 0.891* 
DFE – Ignorance prior 0.925* 0.461 
DFE – Carnap prior  0.795 0.338 

 

DFD 1.167 1.167 
DFE – Diffuse prior 1.268 1.268 
DFE – Ignorance prior 1.301 1.565 
DFE – Carnap prior  1.504 1.686 

 

DFD 0.589 0.589 
DFE – Diffuse prior 0.924**     0.924** 
DFE – Ignorance prior 0.626 0.403 
DFE – Carnap prior  0.265** 0.307 

 

DFD 1.111 1.111 
DFE – Diffuse prior 1.158 1.158 
DFE – Ignorance prior 1.179 1.145 
DFE – Carnap prior  1.283 1.123 

 

DFD 1.055 1.055 
DFE – Diffuse prior 1.450 1.450 
DFE – Ignorance prior 2.681** 3.853* 
DFE – Carnap prior  1.874 2.871 

LL 
Diffuse prior -2516.406 -2516.406 
Ignorance prior -2584.025 -2518.27 
Carnap prior -2505.965 -2503.452 

BIC 
Diffuse prior 5151.481 5151.481 
Ignorance prior 5286.72 5155.209 
Carnap prior 5137.076 5134.05 
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Table A3.4 Comparison of Diffuse, Ignorance and Carnap Priors under DFE, based on 

unconstrained estimations with the data set of Erev et al. (2010)

Notes: indicates relative evidence for the null hypothesis against the 
alternative. BF values higher than 1 indicate evidence in favor of the null hypothesis. BF values 
smaller than 1 indicate evidence in favor of the alternative hypothesis.  

  Context-Dependent Expectations Comprehensive Expectations 

Diffuse Prior 
LL -1202.785 -1202.785 
BIC 2460.053 2460.053 

Ignorance Prior 
LL -1270.405 -1204.659 
BIC 2595.292 2463.781 

Carnap Prior LL -1191.344 -1189.832 
BIC 2444.955 2441.929 

N 2400 2400 
 > 10  6.449 

 < 10  < 10  
   < 10  < 10  
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Chapter 4

Signal Perception and Belief Updating

with Aurelien Baillon, Emmanuel Kemel, and Chen Li

4.1 Introduction

In standard economic models, from game theory to macroeconomics, decision makers 

incorporate new information using the rational gold standard of belief updating: the Bayes

rule. Yet, studies from the psychology literature highlighted regular deviations from 

Bayesian updating. Famous examples are the confirmatory bias (see Oswald & Grosjean, 

2004, for a review), in which people tend to neglect or even misinterpret signals 

contradicting their prior beliefs, and the conservatism bias (Phillips & Edwards, 1966; 

Edwards, 1968), in which people fail to sufficiently incorporate new information, resulting 

in posteriors that are too close to their priors. 

Since the end of the 1990s, economists have proposed models to incorporate 

deviations from Bayesian updating. For instance, Rabin and Schrag (1999) modelled

confirmatory bias as decision makers misreading signals that contradict their priors, which 

may give rise to behavioral biases such as overconfidence. Epstein (2006) provided an 

axiomatic foundation for non-Bayesian updating through a retroactively changing prior. 

Wilson (2014) modelled a decision maker with bounded memory, which can lead to the 

emergence of confirmatory bias and conservatism in belief formation.

Alternatively, the literature on motivated beliefs (see Bénabou & Tirole, 2016, for a 

review) models deviations from Bayesian updating through the decision maker’s tradeoff 

between the accuracy and desirability of their beliefs. Strategies to cope with this tradeoff 

includes reality denial and wishful thinking. The motivated-belief approach is appealing in 

situations when people are motivated to attach values to their beliefs, such as when they 

think of their own abilities or of important aspects of their life (Bénabou & Tirole, 2002; 

2006). It is not obvious though whether it would predict deviations from Bayesian updating 

when beliefs concern external, ‘neutral’ factors. 

In this paper, we propose a theory of signal perception to model belief updating. 

We introduce two indices that are derived from the difference between people’s perceived 
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signals, revealed from their choices, and the actual signals received. Rabin and Schrag 

(1999) models the confirmatory bias as a probability of misreading a contradicting signal 

as confirming. Our first index, , captures the same confirmatory tendency in belief 

updating. In particular, when 0 < < 1, it has the same interpretation as in Rabin and 

Schrag’s model. Empirical evidence shows that people can also exhibit the opposite pattern 

(Eil & Rao, 2011). Our index captures disconfirmatory bias as well. Our second index 

captures people’s tendency of missing a signal, regardless of its agreement with the prior. 

Our model, combining and , is a portable extension of Bayesian updating in the sense of 

Rabin (2013). It can be incorporated in any model from macroeconomics or game theory 

by re-coding actual signals into perceived signals using transformations based on  and .

After presenting our model, we show how perceived signals can be revealed from 

choices. In an experiment, we elicited subjects’ beliefs and obtained a structural estimation 

of the indices, demonstrating the tractability of the model. We found clear evidence for 

both conservatism and confirmatory bias, showing that deviations of Bayesian updating 

may occur even in the absence of clear motivation. On average, subjects missed 65% of the 

signals and misread 17% of the signals contradicting their prior beliefs. We further 

explored factors influencing the indices. Consistent with previous findings (Griffin & 

Tversky, 1992), moderately informative signals led to more conservatism.

4.2 Perceived signal theory

4.2.1 Setup and perceived signals

We model a simple signal setup, in which a decision maker faces a mechanism producing 

independent and identically distributed binary signals. It produces successes with an 

unknown probability (and failures with probability 1  ). The decision maker is

interested in learning about the success rate . We consider an initial state of ignorance, 

represented by a uniform probability measure ( ) defined over   (0, 1). We 

assume that the support is symmetric around 0.5, i.e.     (1  )   .

Before receiving a specific set of signals, the decision maker has a prior sample 

with successes and failures in his memory. Hence, his prior beliefs

are ( ;  , )  =  ( | , ), abbreviated as ( , ). When  =  , the mean 

of ( , ) is equal to 0.5. The initial state of ignorance is a hypothetical construct that 



67

allows us to interpret the decision maker’s beliefs in terms of signals. Departures from 

uniformity in prior beliefs are modelled by (possibly hypothetical) signals in the decision 

maker’s mind. 

After receiving a sequence of signals, his posterior beliefs becomes ( , ).

Define  =    ,  =    , and  =   +  . These parameters measure how 

much the decision maker has updated his beliefs and therefore, how many signals 

(successes, failures) he has perceived. We call the perceived number of signals, the 

perceived number of successes, and the perceived number of failures.

Consider a Bayesian updater with a uniform prior over (0, 1), which is equivalent 

to (1, 1). If he observes a success, his posterior will also be a beta distribution, given 

by (2, 1). It would be (1, 2), had he observed a failure. After each success 

(failure), the first (second) parameter of the beta distribution is incremented by one. If the 

prior belief is ( , ), with and possibly different from 1, then the expected 

probability of success is given by with = + . Hence, the decision maker will 

expect success and failure to be equally likely iff =  . In our application, we will use 

such a setting with beta distributions but the theory below does not rely on it.14

For a Bayesian updater, all signals are perceived without distortion: receiving 

signals consisting of successes and failures implies  =  ,  =  , and  =  .

However, this is not true for non-Bayesian updaters. Deviations from Bayesian updating 

can therefore be captured by differences between people’s perceived signals ( , , and )

and the actual signals they observe ( , , and ). We study two sources of deviations: 

confirmatory bias and conservatism bias. Confirmatory bias captures people’s tendency to 

“misread evidence as additional support for initial hypotheses” (Rabin & Schrag, 1999),

whereas conservatism captures people’s tendency to miss evidence and to not update 

enough their beliefs, without discriminating different types of signals.

4.2.2 Confirmatory bias 

Following Rabin and Schrag (1999), we model the confirmatory bias as the probability 

to misread a contradicting signal as confirming prior expectations. By symmetry, the 

opposite bias, that we called disconfirmatory bias, can be modelled as the probability to 

misread a signal as contradicting prior expectations. If, according to the decision maker’s 

14 For instance support can be discrete
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prior belief, successes are more likely than failures (i.e. > ), the confirmatory bias 

gives:

= += (1 )     ,                                                              (4.1)

whereas the disconfirmatory bias gives

= (1 )= +          .                                                          (4.2)

If, according to the decision maker’s prior belief, successes are less likely than failures 

(i.e. < ), the confirmatory bias gives:

= (1 )= +          ,                                                          (4.3)

whereas the disconfirmatory bias gives

= += (1 )          .                                                          (4.4)

If successes and failures are equally likely according to the decision maker’s prior belief, 

the perceived number of success and failure is not affected by confirmatory bias. 

From observing perceived signals, either or can be determined 

whenever  . Consider the case > . If     , there is evidence for 

confirmatory bias and can be computed. In practice, we may even observe  >  1
when  <  (and therefore  <  0). In such a case, is not a probability anymore but 

can still be used as an index of confirmatory bias. The case > 1 indicates that the 

decision maker exhibits an extreme form of confirmatory bias, in which he even recodes 

the signals from his prior. We call such a case prior-signal confirmatory recoding. Figure 

4.1 depicts all possible cases. The interpretation of the decision maker’s perceived signals 

depends on his prior beliefs ( and ) and his perceived number of successes .
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Moreover, we can combine and into a unique index of confirmatory bias defined 

as:

=              ( >   )  ( <   )          ( >   )  ( <   )          .      (4.5)

Values of in [0,1] can be directly interpreted as probabilities to misread signal in a 

confirmatory way and values in [ 1,0] as minus probabilities to misread signal in a 

disconfirmatory way. The global index is useful for empirical purposes. For instance, its 

distribution for the population can be estimated at once, without separating confirmatory 

biases from disconfirmatory biases (as is done for other attitude measures such as risk 

aversion).

Figure 4.1 Interpretation of and relationship with 

4.2.3 Conservatism bias

We expand the confirmatory bias model by also considering a conservative decision 

maker’s tendency to ignore signals. In this subsection, we introduce a measure of 

conservatism bias, and in the next subsection, we present a model in which both biases are 

combined in one model. 
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A conservative decision maker places too little weight on the sample information 

while updating and thereby tends to ignore some of the relevant information. We model the 

conservatism bias as a probability to miss a signal. Hence, = (1  ) . The 

conservatism bias can affect both types of signals indistinguishably, leading to  =  (1  ) and  =  (1  ) . Bayesian updating implies  =  0. If  =  1, there is no 

updating at all. 

Interestingly, can also be interpreted if it lies outside the unit interval, but 

obviously not as a probability. The case  >  1 captures situations where the perceived 

number of signal is negative, suggesting that the decision maker received information that 

undermined his prior. For instance, a decision maker whose prior was too extreme, 

expecting successes almost exclusively, might be less confident in his beliefs after 

observing a few failures. In our perceived signal theory, such behavior corresponds to prior 

signal destruction.

By contrast,  <  0 means that the decision maker perceived too many signals. It 

can be further illustrated in the case of a Beta distribution. The posterior mean  can be 

decomposed in terms of prior mean and sample mean:

++ = + (1 )+ (1 )= + (1 )   + (1 )+ (1 ) .                                             (4.6)      
= + (1 )    + (1 )+ (1 )  

Bayes rule requires =  0, i.e. the actual and the perceived number of signals 

match. A positive  (<  1) decreases the impact of the sample mean, implying 

conservatism. The decision maker underweights the sample information and overweights 

the prior information. Negative corresponds to base rate neglect, the decision maker 

assigning too much weight to the sample and neglecting his prior beliefs. Such behavior 

can be explained by the representativeness heuristic (Tversky & Kahneman, 1974), when 

decision makers assume that a sample must resemble the process it originates from and 

therefore tend to equate the process mean too much with the sample mean.
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Figure 4.2 Interpretation of and relationship 

Figure 4.2 depicts the relationship between the perceived number of signal and 

the conservatism index . It shows that is a simple rescaling of  such that is 

independent of the actual sample size .

4.2.4 Combining biases

In the combined model, the decision maker may miss signals (conservatism bias) and then 

misread those he did not miss (confirmatory bias). If, according to the decision maker’s 

prior belief, successes are more likely than failures (  >  ), the confirmatory bias in 

presence of conservatism bias gives (replacing by ):

= (1 ) + (1 )= (1 )(1 )          ,                                              (4.7)

whereas the disconfirmatory bias gives (replacing by )

= (1 + )(1 )= (1 ) (1 )          .                                             (4.8)

The case  <  is symmetric. If successes and failures were equally likely according to 

the decision maker’s prior belief:

= (1 )= (1 )          .                                                          (4.9)
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In terms of observability, can always be obtained by comparing with . Further, 

if and   1, then can be obtained by first correcting and for conservatism 

(multiplying them by 1  ) and then applying the adequate equation of (dis)confirmatory 

bias. If after a first round of signals, the decision maker receives a second round of signals, 

and can be determined again using the posterior of the first round as the prior of the 

second round.

4.2.5 Measuring informativeness

Literature shows that deviations from Bayesian updating depend on various situational 

factors such as the strength of evidence. Griffin and Tversky (1992) find that moderate 

signals lead to insufficient updating while extreme signals lead to overreaction. The same 

set of signals may be deemed extremely informative by a decision maker but less so by 

another. The informativeness of signals thus depends both on the signals themselves and 

the prior of the decision maker. Hence a measure of informativeness should depend on , , , and .

We define our measure of informativeness as the information gain (IG), also known 

as relative entropy or Kullback-Leibler divergence, between the prior ( , ) and the 

posterior the decision maker would have if he were Bayesian (  +  ,  +  ). Let ( ) be the density function of prior, and ( ) be the density of the Bayesian posterior. 

The IG is calculated as: ( , , , ) = ( ) ( )( )[ , ] .                                         (4.10)

The IG measure captures how much the signals should influence the decision maker’s 

beliefs. It allows us to examine the impact of signal informativeness on belief updating 

biases.

4.3 Revealing perception through choices

To reveal people’s perception of signals, it is necessary to make their beliefs observable. 

Belief elicitation methods in the literature, such as proper scoring rules (see Schotter & 

Trevino, 2014, for a survey in economics), often rely on the descriptive validity of 

expected value or expected utility to reveal people’s true beliefs. In this paper, we consider 

two methods that do not rely on expected utility. 
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We are interested in the decision maker’s belief about the unknown success rate .

Let denote the -algebra on (0, 1), which is the domain of . Events,   , of interest 

to the decision maker are subsets of (0, 1). The decision maker faces (binary) acts, denoted 

by , which pays a positive money amount if event  happens and otherwise. The 

decision maker also faces (binary) lotteries , yielding with probability and 

otherwise. 

Assume that the decision maker whose behavior towards lotteries can be 

represented by a function satisfying first order stochastic dominance. The function 

need not be expected utility and it therefore allows for deviations from expected utility 

such as in the paradoxes suggested by Allais (1953). The decision maker is 

probabilistically sophisticated (Machina & Schmeidler, 1992) if his behavior towards acts 

can be entirely explained by and a probability measure over . In other words, the 

assumption of a probabilistically sophisticated decision maker guarantees that choices are 

consistent with a probability measure and therefore is a sufficient condition to observe 

beliefs from choices. 

We present two methods to elicit irrespective of . The first method to observe 

belief involves measuring matching probabilities, i.e. such that   . Under 

probabilistic sophistication, this indifference implies ( ( ) )  =   ( ) and 

thus, ( ) = , thereby revealing beliefs. Many studies used matching probabilities to 

elicit people’s beliefs (Raiffa, 1968; Spetzler & Stael von Holstein, 1975; Holt, 2007; 

Karni, 2009). The second method we consider involves elicitation of exchangeable events,

events and , such that   . If probabilistic sophistication holds, the elicited 

indifference implies,  ( ( ) )  =  ( ( ) ), and thus, ( )  =  ( ), providing 

constraints on the belief function. For instance, if they are complementary, then ( ) = ( ) = . This method is based on the original idea of Ramsey (1931) (called ethically 

neutral events) and of De Finetti (1937) and has been long-known in decision analysis 

(Raiffa, 1968; Spetzler & Stael von Holstein, 1975). Recent experimental implementations 

can be found in Baillon (2008) and Abdellaoui, Baillon, Placido, & Wakker (2011).

Both methods have advantages and are therefore implemented in our experiment. 

Matching probabilities directly reveals the probability of an event whereas exchangeable 

events only reveal that two events are equally likely. Yet, matching probabilities require 

that the function is the same for lotteries and for acts. If the decision maker tend to prefer 
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lotteries to acts, exhibiting ambiguity aversion (Ellsberg, 1961), matching probabilities 

may be biased. Eliciting exchangeable events, which do not require the use of lotteries, is 

robust to this problem.15 Implementing both methods will allow us to assess the possible 

impact of ambiguity attitude. 

For empirical tractability, we assume that decision makers’ beliefs follow a beta 

distribution. The beta family is both natural to model beliefs over a success rate and very 

tractable. Beta distributions are flexible and can take a wide array of shapes with different 

locations and dispersion for different parameters. Before and after they receive a set of 

signals, we elicit their priors and posteriors using the methods described above. We then 

estimate their perceived signals and are able to construct measures of their conservatism 

and confirmatory biases.

4.4 Experimental design

Subjects

Seven experimental sessions were conducted at the Erasmus School of Economics 

Rotterdam. The number of participants in each session varied between 20 and 27, summing 

up to 157 in total. Subjects were bachelor and master students at Erasmus University 

Rotterdam, with an average age of 21.3. Each session lasted one hour and fifteen minutes 

including instructions and payment.

Stimuli

During the experiment, subjects faced choice situations about acts whose payoffs depended 

on the actual color composition of a spinning wheel. The spinning wheel was covered by 

two (and only two) colors: yellow and brown. The color composition was randomly drawn 

from an opaque bag at the beginning of the experiment in front of all subjects by an 

implementer – one randomly selected subject. 

The experiment consisted of alternating periods of choice and sampling (see Figure 

4.3 for the flow). It started with a choice period in which subjects made choices without 

any knowledge about the color composition of the wheel. Then, the implementer spinned 

15 Ambiguity is sometimes assumed to be equivalent to the absence of probabilistic beliefs. As demonstrated 
theoretically by Chew and Sagi (2008) and empirically by Abdellaoui et al. (2011), one can preserve the 
existence of a belief function expressed in probabilistic terms and allow for the Ellsberg paradox. The 
decision maker is within-source probabilistically sophisticated if there exists a probability measure defined 
over and a function satisfying first order stochastic dominance such that is evaluated ( ( ) ).
Under this model, exchangeable events E and F still satisfy ( )  =  ( ). 
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the wheel three times and reported the resulting colors. Having acquired this new 

information, subjects made choices in the same choice situations (but potentially in 

different orders) again. The same procedure was repeated two more times.

Figure 4.3 Experimental flow

The color composition of the wheel stayed the same and unknown throughout the 

experiment, which means that in later choice periods, subjects made choices based on 

accumulated knowledge about the same wheel. For example, the last questionnaire was 

filled relying on the information of nine spins in total.

Matching probabilities

Figure 4.4 presents a choice list to elicit a matching probability. In each choice question, 

subjects had to choose between option W(heel) whose payoff depended on the actual color 

composition of the same spinning wheel, and option C(ard) whose payoff depended on a 

random draw from a deck of four cards of different suits: aces with heart, diamond, club, 

and spade, each with 25% probability.

The choice in the first line was pre-ticked for the subjects by the experimenters, as 

in this case, option C dominates option W since the proportion of brown cannot be 0% 

(otherwise there is only one color on the wheel). Similarly, the last line was also pre-

ticked. Subjects were informed that as they move down the list, option W became better 

while option C stayed the same. Therefore, at one point, they may switch from preferring 

option C to option W. 

The subjects’ switching pattern in Figure 4.4 gave an interval [ . , . ] for .
such that 20[ , . ] 0  20 . 0 and 20 , .  0  20 . 0, implying that 0.25 was the

matching probability of event [0, . ]. We also elicited the corresponding intervals for . and . . The choice lists were similar, except that the card options had more winning 

suits – two winning suits for 50% and three for 75%.
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Figure 4.4 Choice list to elicit matching probabilities

Exchangeable events

Figure 4.5 presents a choice list used to elicit exchangeable events. In each choice 

question, subjects had to choose between two lotteries. Payoffs of both lotteries depended 

on the actual color composition of the spinning wheel. Take line 4 of the list as an 

example, Option L(eft) pays €20 if the actual brown proportion is no more than 12%, 

whereas Option R(ight) pays €20 if it is more than 12%. Subjects had to choose between 

the two lotteries in each line of the list, depending on their subjective judgment of the 

actual color composition of the wheel.

The first and the last lines were pre-ticked by similar dominance arguments as for 

matching probabilities, and subjects were told that as they move down from the list, option 

L became better and option R became worse. At some point, they may switch from 

preferring option R to option L. 
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Where subject switched in Figure 4.5 provided an interval [ , ] for 

such that 20 ,  0  20 , 0 and 20 , 020 , 0. Therefore, for some [ , ], we 

have 20[ , ]0  20( , ]0. The events [0, ] and ( , 1] were 

both exchangeable and complementary, meaning that the subjects assigned them 

probability . Similarly, we elicited intervals for and such that 20[ , ]0  20( , . ]0, and 20 . , 0  20 , 0, following the method of Abdellaoui, 

Bleichrodt, Kemel, & L'Haridon (2014). Choice lists to elicit  and were similar, 

but with different start and end points of proportion intervals (from 0% to 50% for the 

former, and 50% to 100% for the latter).

Figure 4.5 Choice list to elicit exchangeable events

Incentives

Each subject received a €5 show-up fee and a variable amount of €20 depending on one of 

his choices in one choice period (the implementer received a flat payment of €15). A prior 

incentive system (Johnson, et al., 2014) was implemented to determine for each subject 
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which choice would matter for his final payment. Before the experiment started, each 

subject randomly drew a sealed envelope from a pile of 156 sealed envelopes each 

containing one choice question (subjects faced in total 6 choice situations, each with 26 

choice questions). Subjects were informed that the question that would matter for their 

payment was in their envelope, and were told not to open their envelopes until the end of 

the experiment. To determine which choice period would matter, the implementer

randomly drew a number from one to four. Further implementation detailed are reported in 

the appendix.16

4.5 Raw data

Table 4.1 summarizes the number of subjects and the color of spins in sampling periods in 

each session. For results reported in this section, we take the midpoint of the elicited 

intervals as the indifference values. For instance, we take  =  ( ) .
Take the belief of a Bayesian updater with a uniform prior as the Bayesian 

benchmark. Figure 4.6 plots the difference between subjects’ median belief ( in the 

exchangeability method and in the matching method) of the yellow proportion and the 

Bayesian benchmark. A positive (negative) difference corresponds to an overestimation 

(underestimation) of the yellow proportion. In sessions with balanced signals, subjects’ 

median beliefs did not deviate much from the Bayesian benchmark, however, in sessions 

(e.g. session 1 and 7) where they received extreme signals, deviations were high. For 

instance, in session 1, subjects only received Brown signals. Their median deviations were 

positive, suggesting an overestimation of the yellow proportion on the wheel. The 

overestimation can be caused by conservatism: subjects did not incorporate the signals 

sufficiently. A similar pattern was observed in session 6 where subjects only received 

yellow signals and underestimated the yellow proportion on the wheel.

16 In particular, we also controlled for possible suspicion effects by letting the subjects choose on which color 
they would be betting. 
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Table 4.1 Description of sessions 

Session # Subjects
Received signals between rounds

1&2 2&3 3&4

1 24 BBB BBB BBB

2 27 BYY YYY BYB

3 20 BBB BYB YYB

4 20 BYB BYB BYY

5 23 BBY YYY BBY

6 20 YYY YYY YYY

7 23 YYY YBB YYY

Similarly, Figure 4.7 shows how the dispersion in subjects’ beliefs (  
for the exchangeability method and   for the matching method) differs from the 

Bayesian benchmark. A positive (negative) difference shows that subjects are under-

precise (over-precise) as compared to the Bayesian benchmark. For both median and 

dispersion deviations, we observed persistent individual heterogeneity. In our structural 

model, we estimate the confirmation and conservatism indices while taking individual 

differences into account.
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Figure 4.6 Median deviation from the Bayesian benchmark
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Figure 4.7 Dispersion deviation from Bayesian updating
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4.6 Econometric Analysis

4.6.1 Econometric model

Measuring beliefs and deviations from Bayesian updating

The beliefs of a subject at round are assumed to follow a Beta 

distribution (. | , , , ). The prior of subject at round 1, determined by , and , ,

is assumed to be exogenous and will be estimated. Then, for rounds  >  1:

,  =  ,  +  ( ,  , ,  , , , , , , , , )  
,  =  ,  +  ( ,  , ,  , , , , , , , , )  

where and  are the functions that determine respectively the perceived successes and 

failures, as modelled by equations 4.7 to 4.9. These functions depend on the current beliefs 

parameters , and , , the received signals , and , and the indices of deviations 

from Bayesian updating, , and , . For a Bayesian, we 

have ( , , , , , , , , ,  , , )  =  , and ( ,  , ,  , , , , , ,  , , )  = , .

According to Figure 4.6, there is little or no heterogeneity in prior beliefs as 

measured in round 1. We therefore assume that and are constant across subjects. 

Much more heterogeneity in beliefs is observed for later rounds, both between and within 

sessions. Heterogeneity between sessions can be due to session-specific received signals 

that can be more or less surprising. Heterogeneity within sessions can be due to subjects’

characteristics. Eventually, biases may also vary from one round to another, due to learning 

or fatigue. We attempt to account for these three possible sources of heterogeneity in our 

econometric analysis. To do so, we built a structural model that includes several 

explanatory variables of the deviation indices. Specifically, we assume that, =   + ,  , =   + ,
where and are the intercepts of the deviation indices. When  =  0, these intercepts 

measure the aggregated indices over sessions, individuals and rounds. They should be 

equal to 0 if subjects perceived signals according to Bayes rule. (respectively ) is the 
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vector of coefficients that measure the impact of variables , on index  (respectively ). 

The following explanatory variables are considered: 

• a categorical variable denoting the round of the experiment,17

• the information gain of the received signals based on the individual specific prior, 

• the squared information gain, 

• subjects characteristics: including gender, and field of studies (economics or 

econometrics versus other). 

We denote , the vector of coefficients to be estimated, with  =  (  ,  , , , , ).

4.6.2 Estimating the model

Under our specification, the beliefs of a subject at round take the form of a probability 

distribution (. | , , ) where is a vector of coefficients and and are the received 

signals. This probability distribution is revealed by a series of choices, grouped within 

choice lists. Two types of choices lists are used. The first type, eliciting matching 

probabilities, considers a series of quantiles and measures their corresponding values 

such that ( )  =  . More precisely, these choice lists determine two values and 

such that 20 ,  0  20  0 and 20 ,   0 20 0, i.e.   [  ;   ].
The other type of choice lists, eliciting exchangeable events, considers intervals [ , ] and measures the corresponding values such that ( )   ( )  =( )   ( ) i.e. ( )  = ( ) ( ) . Here again, the choice lists determine two 

values and such that 20 ,   0  20  , 0 and 20 , 0 20[ , ]0 i.e. [  ;  ].
For each individual , round and choice list , the structural equation model 

provides a theoretical value ( , ) where is the vector of coefficients of our decision 

model, and is the set of variables containing choice lists characteristics and other 

explanatory variables. In order to account for subject and/or specification errors, we 

assume that  =   +  with   (0,  ). Using this error specification, the

likelihood of the observations provided by a given choice list is 

17 For we consider round 2 as the reference and introduce dummy variables for round 3 and round 4. For ,
preliminary analysis revealed that = , meaning that is not defined for round 2. We considered round 3 
as the reference and introduced a dummy variable for round 4.
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(   [  ;  ])  = (   [    ( , );   ( , )]  =   ( , )   ( , )               = ( |  ,  , ).
This equation defines the likelihood of the vector of coefficients to be estimated, given the 

observations provided by choice lists and exogenous variables. 

For a given individual , the likelihood of a series of responses to choice lists 

(indexed by ), for each rounds (indexed by ), writes 

( )  =  ( | , , , , , , , , )  
We estimate the vector of coefficients by maximizing the sum of log-likelihoods 

over individuals: ( )  =  ( ). This log-likelihood function is maximized by the 

BFGS algorithm.18 In order to account for heterogeneity in individual error terms across 

rounds, specific error variances are estimated for each round. Inference is based on the 

(subjects) clustered standard-errors, computed from the variance-covariance matrix of 

individual scores.

4.6.3 Results

This section presents the estimated indices of deviation from Bayesian updating, and their 

explanatory variables. The results of the estimations are presented in Table 4.2.

Whatever the set of explanatory variables, the parameters and characterizing 

priors at round 1 and before receiving any signal, had very similar estimates: 1.5 and 1.4. 

The similarity of these two values suggests that the belief distribution of our representative 

subject was symmetrical. Consistently with the provided instructions, subjects did not 

expect one color to be more likely than the other, before receiving signals. It is 

nevertheless worth to note that priors were not perfectly uniform either, they exhibited a 

smaller variance and give slightly more probability weight to central than to extreme 

values of the [0,1] interval. 

18 In order to avoid local maxima, for each estimations, suitable starting values were computed using grid 
search over 1000 possible vectors. After convergence, 10 additional estimations were run around estimated 
coefficients.
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The first model introduces overall measures of conservatism bias ( ) and 

confirmatory bias ( ) for our representative subject. Both indices differed from 0. 

According to the estimated values, subjects exhibited a pronounced tendency to 

conservatism: they behaved as if they neglected 65% of the sample size of actual signals. 

Evidence for confirmatory bias was also observed: subjects behaved as if they 

misinterpreted 17% of signals contradicting their beliefs.

The other models (columns 2 to 4) enrich the analysis by introducing explanatory 

variables for the bias indices. When allowing biases to vary across rounds, we observed 

that conservatism bias was smaller for round 3 than for round 2, but the dummy variable 

for round 4 was not significant. For confirmatory bias, no significant differences were 

observed between rounds 3 and 4.19

Table 4.2 Results of Econometric Estimations

Notes: Clustered standard errors are reported between brackets. Stars report significance levels: 
ns for 0.05, * for < 0.05, ** for < 0.01, *** for < 0.001
19 The index was not estimated for round 2 because people hold (approximately) symmetric beliefs in round 
1.

Coefficients No Explanatory Rounds Rounds and 
Information

Round, information 
and subject’s 
characteristics

8.221 (0.086)*** 8.133 (0.085)*** 8.192 (0.095)*** 8.184 (0.094)***
12.143 (0.204)*** 12.121 (0.204)*** 12.237 (0.213)*** 12.081 (0.211)***
13.782 (0.27)*** 13.696 (0.266)*** 13.331 (0.263)*** 13.496 (0.283)***
13.389 (0.255)*** 13.386 (0.265)*** 13.229 (0.259)*** 13.285 (0.28)***
1.449 (0.03)*** 1.451 (0.031)*** 1.485 (0.035)*** 1.46 (0.034)***
1.368 (0.029)*** 1.369 (0.03)*** 1.378 (0.033)*** 1.363 (0.034)***
0.648 (0.009)*** 0.673 (0.012)*** 0.43 (0.053)*** 0.374 (0.075)***
0.166 (0.019)*** 0.18 (0.028)*** 0.414 (0.107)*** 0.272 (0.17)ns

-0.09 (0.024)*** -0.256 (0.03)*** -0.119 (0.024)***
-0.01 (0.043)ns -0.103 (0.069)ns 0.05 (0.063)ns
0.057 (0.075)ns -0.339 (0.212)ns -0.502 (0.108)***

2.895 (0.263)*** 1.435 (0.362)***
-4.294 (0.358)*** -1.846 (0.433)***
0.177 (0.568)ns 0.735 (3.198)ns
-0.867 (0.711)ns -2.984 (9.529)ns

0.069 (0.014)***
0.085 (0.021)***
0.047 (0.06)ns
0.156 (0.061)*
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The model of column 3 accounts for heterogeneity across rounds and across 

sessions by including information gain as an explanatory variable. Exploratory analysis 

suggested that the impact of information gain might be non-linear, and therefore a 

polynomial effect was considered. Information gain was not found to impact confirmatory 

bias, but impacted conservatism bias significantly. The coefficients associated to the two 

degrees of the polynomial were significant and suggested that the relationship was not 

monotonic, but inverse-U shaped. The shape of the estimated effect is represented in 

Figure 4.8. Moderately informative signals increased the biases, whereas very poorly or 

highly informative ones reduced them. It is noteworthy that very surprising signals were 

able to reverse the sign of the conservatism index, possibly leading to prior signals 

destruction.

Figure 4.8 Polynomial effect of information gain on 

4.6.4 Stability of results across measurement methods

Two different methods were used to measure beliefs. Estimations presented in the previous 

section pool observations from the two methods, assuming that they give similar patterns. 

We also tested this assumption. 
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The first and last models from Table 4.2 were re-estimated with all explanatory 

variables interacting with a dummy variable coding for the method used for estimations. 

For the simple model containing only intercept values of and , the dummy variable was 

found to have a significant impact on . When measured with the exchangeability method 

(that is robust to ambiguity attitudes), the index of conservatism bias was lower by 0.133 

(clustered standard error: 0.026). Regarding the confirmatory bias, the difference between 

measurement methods was estimated as 0.07 (clustered standard error: 0.10) but was not 

statistically significant. 

The aforementioned result suggest that ambiguity can amplify conservatism. Their 

posterior beliefs, measured with matching probabilities, remain too diffuse. Controlling for 

ambiguity by the use of exchangeable events leads to less deviations from Bayesian 

updating. 

The dummy variable denoting the measurement method was also included in the 

model with explanatory variables for biases (column 4), and possible interactions were 

allowed. The estimated model contains 32 coefficients. A likelihood test was run to check 

whether adding interactions between dummy variable for method and other explanatory 

variables increased the likelihood significantly. The p-value of the test is 0.07. This 

suggests that allowing for coefficients to interact with the method dummy does not 

increase the goodness of fit significantly. Therefore, the coefficients of the explanatory 

variables do not vary significantly with the measurement method.

4.7 Discussion

This paper models belief updating when a combination of conservatism and confirmatory 

bias may distort people’s perception of signals received, thus incorporating new 

information insufficiently or asymmetrically. Our model provides an intuitive

interpretation of the biases and makes them observable from revealed preferences. It 

extends Rabin and Schrag’s (1999) model by accounting for more patterns of deviations 

from Bayesian updating.

The experiment illustrated how the indices could be estimated in a tractable 

manner. Thus, it provided the first structural estimation of the two well-known biases. The 

results showed evidence for both confirmatory bias and conservatism at aggregate level. 

On average, the confirmatory bias index was estimated as 0.17 suggesting that an opposite 
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signal may be misread with 17% chance. The conservatism index was 0.65 suggesting a 

strong stickiness to priors. Furthermore, the conservatism bias also depended on the 

informativeness of signals as measured by how surprising the signals were given the prior 

beliefs. In particular, subjects were more conservative when the new signals were neither 

extremely surprising nor extremely non-surprising. This pattern is consistent with the 

previous findings indicating the tradeoff between the strength and the credibility of 

evidence (Griffin & Tversky, 1992; Massey & Wu, 2005; Kvam & Pleskac, 2016).

Our experiment contributes to the empirical investigation of confirmatory bias. 

Despite the abundance of theoretical models on confirmatory bias in economics literature, 

the main empirical findings for confirmatory bias mainly come from the psychology 

literature (for reviews, see Klayman, 1995; Nickerson, 1998; Oswald & Grosjean, 2004).

However, the subjective nature of the psychological experiments do not allow a formal 

investigation of confirmatory bias due to the lack a normative benchmark for comparison 

of revised beliefs. Although there are a few field studies documenting evidence on 

confirmatory bias (Andrews, Logan, & Sinkey, 2015; Sinkey, 2015; Christandl, 

Fetchenhauer, & Hoelzl, 2011), there is still lack of evidence in standard Bayesian 

updating experiments. Several recent studies document evidence on asymmetric processing 

of information in Bayesian updating as in confirmatory bias, when the information has a 

valence or it is self-relevant (Coutts, 2016; Eil & Rao, 2011; Ertac, 2011). Different from 

our ego-neutral setting, these studies employ ego-related settings where subjects make 

inferences about their scores on intelligence tests or their physical attractiveness rated by 

other subjects in the same experimental session. Eil and Rao (2011) argue that 

confirmation of prior beliefs happens only when the confirming evidence supports a 

positive ego image. Specifically, people are more responsive to positive feedback 

compared to negative feedback about themselves regardless of their prior beliefs. Our 

results show that confirmatory bias can also arise in an ego-neutral setting. The direction of 

the bias, however, then depends on the informativeness of signals.

4.8 Conclusion

This paper studies biases in people’s belief updating from a descriptive perspective. We 

modelled deviations from Bayesian updating by allowing perceived signals to differ from 

the signals people actually receive. It provides a natural interpretation of well-known 
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biases and makes them observable from choices. Our model thus adheres to the revealed-

preference approach of economics. 

In our experiment, confirmatory bias and conservatism were dominant at the 

aggregate level, while individual heterogeneity persisted. The opposite of conservatism 

arose in situations where the signals were extremely surprising. This finding illustrates the 

relevance of allowing for different deviation patterns. Overall, our results replicated 

previous findings on Bayesian updating, suggesting that our model and the method are 

empirically valid.
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Appendix 4

Detailed Experimental Procedure

Every subject received a subject ID upon arrival. In each session the subject whose ID 

started with M was invited to the front and introduced to all subjects as the implementer of 

that session. The implementer was then guided to a desk at the rear end of the room 

isolated by a wooden panel. The implementer would implement the randomization tasks to 

make sure that they were conducted in a fair and transparent manner. 

Each session started with oral instructions by one of the experimenters – the 

instructor – using slides. Throughout the experiment, subjects could ask questions when 

anything was unclear. A training wheel was used during the instructions for illustration 

purpose. The training wheel was covered by blue and red, instead of brown and yellow to 

avoid potential misunderstandings and biases. The implementer first confirmed that the 

training wheel hidden behind the panel was covered by brown and brown, and there were 

no other colors on the wheel. He then spinned the wheel three times and reported the 

resulting colors. These colors were written down on the white board so that all subjects 

could see during the instruction. Subjects then received a training questionnaire with all 

choice situations that they would face during the experiment. The instructor went through 

them with the subjects, and the subjects filled in the training questionnaires based on the 

sample information from the practice wheel as a practice.

After all subjects were familiarized with the experimental tasks, the instructor 

explained to the subjects how their final payment would be determined with an example 

envelope content. The oral instructions ended with the explanation of the structure of the 

experiment. 

After the instructions and before the start of the actual experiment, each subject 

drew a sealed envelope and the implementer randomly drew a period number from 1 to 4. 

Then, the implementer randomly drew a card from the deck of four cards. The selected 

period number and the card were sealed in two envelopes and only revealed at the end of 

the experiment. The implementer then drew a color composition for the wheel. He

confirmed to all subjects that the wheel was covered by two and only two colors: yellow 

and brown. 

Before handing out the questionnaires for the first choice period, each subject could 

state his preference between betting on yellow proportion and betting on brown proportion 
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during the experiment. He received questionnaires with that color throughout the 

experiment. The subjects were requested to write their subject IDs on every questionnaire 

that they filled in so that their choices could be tracked down over the periods. The 

questionnaires were collected at the end of every choice period, and the sampling period 

proceeded. The outcome of every spin were announced by the implementer, and written 

down on the white board by the experimenter. New questionnaires were handed out after 

each sampling period. 

At the end of the experiment, the color composition of the wheel, the card suit, and 

the choice period drawn for the payment stage was revealed to the subjects by the 

implementer. The subjects were requested to open their envelopes, and to proceed to the 

payment desk, where they got paid according to the outcome of their preferred lottery in 

the choice question that came out of their envelopes.
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Chapter 5

An Experimental Test of Reduction Invariance20

with Han Bleichrodt and Yu Gao

5.1 Introduction

Probability weighting is an important reason why people deviate from expected utility (Fox 

& Poldrack, 2014; Luce, 2000; Wakker, 2010). Prelec (1998) proposed a functional form 

for the probability weighting function that is widely used in empirical research and that

usually gives a good fit to empirical data (Chechile & Barch, 2013; Sneddon & Luce, 

2001; Stott, 2006).

Although other functional forms have also been used (e.g. Currim & Sarin, 1989; 

Goldstein & Einhorn, 1987; Karmarkar, 1978; Lattimore, Baker, & Witte, 1992; Tversky 

& Kahneman, 1992), Prelec was the first to give an axiomatic foundation for a form of the 

probability weighting function.21 His central condition, compound invariance (defined in 

Section 2), is, however, complex to test empirically as it involves four indifferences and 

may be subject to error cumulation. To the best of our knowledge, it has not been tested 

yet.

Luce (2001) proposed a simpler condition, reduction invariance. Luce (2000, p. 278)

identified testing reduction invariance as an important open empirical problem. The 

purpose of this paper is to follow up on Luce’s suggestion and to test reduction invariance 

in an experiment. Our data support the validity of reduction invariance. At the aggregate 

level, we found evidence for the condition and at the individual level it was clearly the 

dominant pattern. 

A special case of reduction invariance is the rational case of reduction of compound 

gambles, which implies that the probability weighting function is a power function. Our 

data on reduction of compound gambles are mixed. At the aggregate level reduction of 

compound gambles was clearly violated. However, 60% of our subjects behaved in line 

with it. The subjects who deviated, did so systematically and found compound gambles 

more attractive than simple gambles.

20 This chapter appeared in Journal of Mathematical Psychology (2016) Vol. 75: 170-182
21 For a more recent axiomatic analysis of probability weighting see Diecidue et al. (2009).
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5.2 Background

Let ( , ) denote a gamble which gives consequence with probability and nothing 

otherwise. Consequences can be pure, such as money amounts, or they can be a gamble ( , ) where is a pure consequence. The set of pure consequences is a nonpoint interval 

in that contains 0. Preferences are defined over the set of gambles. We identify 

preferences over simple gambles ( , ) from preferences over ( , ), 1 and preferences 

over consequences from preferences over ( , 1).

A function  represents  if it maps gambles and pure consequences to the reals and 

for all gambles ( , ), ( , ) in , ( , ) ( , ) ( , ) ( , ). If a 

representing function exists, then must be a weak order: transitive and complete. The 

representing function is multiplicative if there exists a function : [0,1] [0,1] such 

that:

i. ( , ) = ( ) ( ).

ii. (0) = 0 and is continuous and strictly increasing.

iii. (0) =  0 and is continuous and strictly increasing. 
The functions and W are unique up to different positive factors and a joint positive 

power: and , , , > 0. This uniqueness implies that we can 

always normalize such that (1) = 1.22 Luce (1996, 2000) and Marley & Luce (2002)

gave preference foundations for the multiplicative representation. A central condition in 

these results is consequence monotonicity, which we also assume here.23

The multiplicative representation is general and contains many models of decision 

under risk as special cases. Examples are expected utility, rank- and sign-dependent utility 

(Quiggin, 1981; 1982), prospect theory (Tversky & Kahneman, 1992), disappointment 

aversion theory (Gul, 1991), and rank-dependent utility (Luce, 1991; Luce & Fishburn, 

1991; 1995).

22 Aczél & Luce (2007) analyzed the case where (1) 1 to model non-veridical responses in 
psychophysical theories of intensity (Luce, 2002; 2004). 
23 Consequence monotonicity means that if two gambles differ only in one consequence, the one having the 
better consequence is preferred. As Luce (2000, p. 45) points out, it implies a form of separability for 
compound gambles. It also implies backward induction, where each simple gamble in a compound gamble 
can be replaced by its certainty equivalent. Von Winterfeldt, Chung, Luce, & Cho (1997) found few 
violations of consequence monotonicity for choice-based elicitation procedures, as used in our experiment, 
and what there was seemed attributable to the variability in certainty equivalence estimates. 



95

Prelec (1998) axiomatized the following family of weighting functions:

DEFINITION 5.1: ( ) is compound-invariant if there exist > 0 and > 0 such that ( ) = exp ( ( ) ).

Prelec’s compound-invariant weighting function has several desirable properties. 

First, it includes the power functions ( ) = as a special case. The class of power 

weighting functions is the only one that satisfies reduction of compound gambles, which is 

often considered a feature of rational choice:

( , ), ( , ).
A second advantage of the compound-invariant family is that for < 1, it can 

account for inverse S-shaped probability weighting, which has commonly been observed in 

empirical studies (Fox & Poldrack, 2014; Wakker, 2010). Finally, the parameters and 

have an intuitive interpretation (Gonzalez & Wu, 1999). The parameter reflects a 

decision maker’s sensitivity to changes in probability, with higher values representing 

more sensitivity, while reflects the degree to which a decision maker is averse to risk, 

with higher values reflecting more aversion to risk.

The compound-invariant family of weighting functions satisfies the following 

condition:

DEFINITION 5.2: Let be any natural number. N-compound invariance holds if ( , )~( , ), ( , )~( , ), and ( , )~( , ) imply ( , )~( , ) for all nonzero 

consequences , , , and nonzero probabilities , , and .
Compound invariance holds if -compound invariance holds for all . Prelec (1998) 

showed that if compound invariance is imposed on top of the multiplicative representation 

then ( ) is compound-invariant. Bleichrodt, Kothiyal, Prelec, & Wakker (2013) showed 

that compound invariance by itself implies the multiplicative representation and, 

consequently, that the assumption of a multiplicative representation is redundant.

Compound invariance is difficult to test empirically. It requires four indifferences 

and elicited values appear in later elicitations, which may lead to error cumulation. For 
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example, we could fix , , , , and . The first indifference would then elicit , the 

second , and the third . If each of these variables is measured with some error then this 

will affect the final preference between ( , ) and ( , ).

To address the problem of error cumulation, Luce (2001) proposed a simpler 

condition. 

DEFINITION 5.3: Let be any natural number. N-reduction invariance holds if ( , ), ~( , ) implies ( , ), ~( , ) for all nonzero consequences and 

nonzero probabilities , , and .
Reduction invariance holds if -reduction invariance holds for all . Reduction invariance 

is easier to test than compound invariance as it requires only two indifferences. Luce 

(2001, Proposition 1) showed that if -reduction invariance for = 2,3 is imposed on top 

of the multiplicative representation then the weighting function ( ) is compound-

invariant. To the best of our knowledge, Bleichrodt et al.’s (2013) result cannot be 

generalized to reduction invariance and the multiplicative representation still has to be 

assumed in this case.

5.3 Experimental design

The purpose of our experiment was to test reduction invariance (for = 2,3) to obtain 

insight into the descriptive validity of the compound-invariant weighting function. The 

simplest way to test reduction invariance would be to fix , , and , to elicit the 

probability such that a subject is indifferent between ( , ), and ( , ), and then to 

check whether he is indifferent between ( , ), and ( , ). However, as Luce 

(2001) pointed out, a danger of this procedure is that many subjects may realize that =
is a sensible response. This may distort the results as empirical evidence suggests that 

subjects do not satisfy reduction of compound gambles (Abdellaoui et al., 2015; Bar-Hillel, 

1973; Bernasconi & Loomes, 1992; Keller, 1985; Slovic, 1969). Luce (2001) suggested 

another approach for testing reduction invariance, which we adopted in our experiment. 

Instead of asking for probability equivalents, we elicited the certainty equivalents 

of ( , ), , denoted ( , ), , and several ( , ) for a range of values of 
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centered on . Using interpolation, we then determined the value for 

which ( , ), = ( , ). We then elicited ( , ), and ( , ),
and tested whether ( , ), = ( , ( ) ) and ( , ), = ( , ( ) )
where ( , ( ) ) and ( , ( ) ) were, again, determined using interpolation. 

Procedure

The experiment was run on computers. Subjects were seated in cubicles with a computer 

screen and a mouse and could not communicate with each other. Once everyone was 

seated, the instructions were displayed, followed by three comprehension questions. 

Subjects could only proceed to the actual experiment when they had correctly answered all 

three comprehension questions. Copies of the instructions and the comprehension 

questions are in Appendix 5.1.

Table 5.1 Compound gambles used in the experiment
Compound 

gambles Gamble Type Reduced 
probability Expected value

C1 (€200, 82%), 67% Original 54.94% €109.88
C2 (€200, 45%), 67% Original 30.15% €60.30
C3 (€200, 63%), 90% Original 56.70% €113.40
C4 (€200, 82%), 39% Original 31.98% €63.96
C5 (€200, 67%), 45% Square of C1 30.15% €60.30
C6 (€200, 20%), 45% Square of C2 9.00% €18.00
C7 (€200, 40%), 81% Square of C3 32.40% €64.80
C8 (€200, 67%), 15% Square of C4 10.05% €20.10
C9 (€200, 55%), 30% Cube of C1 16.50% €33.00

C10 (€200, 9%), 30% Cube of C2 2.70% €5.40
C11 (€200, 25%), 73% Cube of C3 18.25% €36.50
C12 (€200, 55%), 6% Cube of C4 3.30% €6.60

We measured the certainty equivalents of 12 compound gambles and of 6 simple 

gambles. The order in which these gambles were presented was random. The winning 

amount was always €200. Table 5.1 displays the compound gambles that we used. 

Compound gambles C1-C4 were the original gambles, gambles C5-C8 were derived from 

C1-C4 by taking the squares of the probabilities, and gambles C9-C12 were derived from 

C1-C4 by taking the cubes of the probabilities. Because taking the square and the cube of 

probabilities usually does not give round numbers, we selected the probabilities in the 

compound gambles C1-C4 such that only little rounding was necessary in the derived 



98

compound gambles. We could have avoided rounding altogether by presenting fractions. 

However, we observed in the pilot sessions that subjects found complex fractions harder to 

handle than probabilities. 

By comparing the certainty equivalents of C2 and C5 and (roughly) those of C4 and 

C7 we could test whether subjects preferred to have most of the uncertainty resolved in the 

first stage or in the second stage. Luce (1990, p. 228) already drew attention to modeling 

the order in which events are carried out and Ronen (1973) and Budescu & Fischer (2001)

found that people prefer gambles with high first-stage probabilities and lower second-stage 

probabilities to gambles with high second-stage probabilities and lower first-stage 

probabilities. On the other hand, Chung, Von Winterfeldt, & Luce (1994) concluded that 

with a choice-based procedure most subjects were indifferent to the order in which events 

were carried out.

Table 5.2 Simple gambles used in the experiment

Simple gambles Gamble Expected value
S1 (€200, 3%) €6
S2 (€200, 9%) €18
S3 (€200, 17%) €34
S4 (€200, 32%) €64
S5 (€200, 57%) €114
S6 (€200, 77%) €154

Table 5.2 shows the simple gambles that we used in the experiment. The 

probabilities in the simple gambles were close to the reduced probabilities of the 

compound gambles.

To determine the certainty equivalents of the compound and the simple gambles, 

subjects made a series of choices between these gambles and sure amounts of money. 

Simple risk and compound risk were represented by urns containing colored balls. The 

color of the ball determined subjects’ payoffs. We used one urn for the simple gambles and 

two urns for the compound gambles. Appendix 5.1 displays the way the simple and the 

compound gambles were presented.

All certainty equivalents were elicited using a choice-based iterative procedure, 

which is close to the PEST procedure used by, amongst others, Cho & Luce (1995) and 

Cho, Luce, & Von Winterfeldt (1994). We did not ask subjects directly for their certainty 

equivalents as this tends to lead to less reliable measurements (Bostic, Herrnstein, & Luce, 
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1990), but instead used a series of choices to zoom in on them. The iteration procedure is 

described in Appendix 5.2.

We included two types of consistency tests. First, we repeated the third choice in 

the iteration procedure for four randomly selected questions. Subjects were usually close to 

indifference in the third choice and, consequently, this was a rather strong test of 

consistency. Second, we repeated the entire elicitation of two certainty equivalents, one for 

a randomly selected simple gamble and one for a randomly selected compound gamble.

Subjects and incentives

The experiment was performed at the ESE-Econlab at Erasmus University in 5 group 

sessions. Subjects were 79 Erasmus University students from various academic disciplines 

(average age 23.4 years, 43 female). We paid the subjects a €5 participation fee. In 

addition, at the conclusion of each session we randomly selected two subjects who could 

play out one of their randomly drawn choices for real. If a subject had chosen the sure 

amount in that choice then we paid him that amount. If he had chosen the simple or the 

compound gamble then we created the relevant urn(s) and the subject drew the ball that 

determined his payoffs. The 10 subjects who played out one of their choices for real earned 

on average €49.60 per person. Sessions lasted 45 minutes on average including 10 minutes 

to implement payment.

Analysis

To test reduction invariance, we followed Luce’s (2001) suggestion. We determined for 

each compound gamble (€200, ), the probability such that (€200, ), =(€200, ) using the certainty equivalents of the simple gambles and linear interpolation. 

Subjects’ certainty equivalents of the simple gambles did not always increase with the 

probability of winning €200 and, consequently, the value of for which (€200, ), = (€200, ) could not always be uniquely determined. If there were 

multiple values of for which (€200, ), = (€200, ) then we used the average 

of these values in our analysis. We also analyzed the results using only those responses for 

which  could be uniquely determined, but this did not affect our conclusions. Finally, we 

also estimated the weighting function by smoothing splines (Hastie, Tibshirani, & 
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Friedman, 2008, Section 5.4) and used this estimation to predict .24 We discuss the results 

of this nonparametric regression analysis in the subsection Robustness analysis.

People’s preferences are typically stochastic and the elicited certainty equivalents 

are subject to noise. Moreover, the choice-based procedure determined certainty 

equivalents up to €1 precision and it was in theory possible that the absolute difference 

between (€200, ), and (€200, ), = 2,3, was equal to 2 even though a 

subject satisfied reduction invariance exactly. For these reasons and because (€200, ), = 2,3, had to be approximated, which introduced further imprecision, we 

considered a test of equality of the certainty equivalents too stringent. Instead, we followed 

Cho & Luce’s (1995) approach in testing preference conditions and compared the 

proportions of respondents for whom (€200, ), > (€200, ) with those for 

whom (€200, ), < (€200, ), = 2,3. Under reduction invariance with 

random error, deviations from equality between (€200, ), and (€200, )
should be nonsystematic and we should observe that the proportion of subjects for whom (€200, ), > (€200, ) does not differ systematically from the proportion 

for whom  (€200, ), < (€200, ). Because our elicitation method only 

determined certainty equivalents up to €1 precision we took (€200, ),  and (€200, ) equal if  (€200, ),(€200, ) 2.25 We also analyzed the results using the exact equality. This did not 

affect our conclusions at the aggregate level but, obviously decreased support for reduction 

invariance at the individual level.26

Our null hypothesis is that reduction invariance holds, which involves testing the 

invariance (€200, ), > (€200, ) = (€200, ), <(€200, ) . As pointed out by Rouder, Speckman, Sun, Morey, & Iverson (2009) and 

Rouder, Morey, Speckman, & Province (2012) classic null-hypothesis significance tests 

are less suitable when testing for invariances for two reasons. First, they do not allow 

24 For these estimations we used the smooth splines function in R (R Core Team, 2015) which estimates 
prediction error by generalized cross-validation.
25 Hence, we also defined (€200, ), >  (€200, ) if (€200, ), (€200, ) >2 and (€200, ), <  (€200, )if (€200, ), (€200, ) < 2.
26 In the consistency tests and the tests of reduction of compound gambles that we report in Section 4 we used 
Bayesian t-tests. In these tests we did not have to use interpolation and a substantial proportion of the subjects 
stated the same certainty equivalents. Using tests of proportions here would make the analysis less 
informative and underestimate the support for the null hypothesis. 
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researchers to state evidence for the null hypothesis and, second, they overstate the 

evidence against the null hypothesis. We therefore used Bayes factors to test our null 

hypotheses. The Bayes factors describe the relative probability of the observed data under 

the null and the alternative hypothesis. For example, a Bayes factor of 10 will indicate that 

the null is 10 times more likely than the alternative given the data. We used the package 

BayesFactor in R (Morey et al., 2015) to compute the Bayes factors. Following Jeffreys 

(1961) we interpret a Bayes factor larger than 3 as “some evidence” for the null, a Bayes 

factor larger than 10 as “strong evidence” for the null, and a Bayes factor larger than 30 as 

“very strong evidence” for the null. Similarly, a Bayes factor less than 0.33 [0.10, 0.03] is 

counted as some [strong, very strong] evidence for the alternative hypothesis.

In the individual subject analyses, we classified individual subjects based on the 

number of times they displayed the patterns (€200, ), (€200, ) <2, 2 < (€200, ), (€200, ) < 2, and (€200, ),(€200, ) > 2 for both = 2 and = 3. For 2-reduction invariance, we defined 

subjects who reported (€200, ), (€200, ) < 2 more than twice as Type 

compound<simple. We only required them to display this pattern in a majority of tests to 

account for response error. Similarly, we defined subjects who reported  (€200, ), (€200, ) > 2 more than twice as Type compound>simple.

The other subjects were assumed to behave in line with reduction invariance (plus some 

error) and were defined as Type RI. The classification for = 3 was identical.

In the individual analyses of reduction of compound gambles we defined subjects 

who reported (€200, ), (€200, ) < 2 in a majority of tests (more than 6 

times) as Type compound<simple. Subjects who reported  (€200, ),(€200, ) > 2 more than 6 times were defined as Type compound>simple and the 

other subjects were assumed to behave in line with reduction of compound gambles plus 

error and were defined as Type RCG.
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5.4 Results

We removed one subject from the analyses because her responses reflected confusion.27

The results presented next used the responses of the remaining 78 subjects.

Consistency

Each subject repeated four choices and two complete elicitations. For each subject, the 

repeated choices were randomly selected (and hence differed across subjects) but they were 

always a choice that the subject had faced in the third step of the iteration procedure. 

Subjects made the same choice in 72.8% of the repeated choices. Reversal rates up to one 

third are common in the literature (Wakker, Erev, & Weber, 1994; Stott, 2006) and we, 

therefore, consider our reversal rates as satisfactory, especially if we take into account that 

subjects were usually close to indifference in the third iteration. Fifty-four subjects (69%) 

had one reversal at most. Six subjects (8%) had more than two reversals. We also analyzed 

the data without these subjects, but this led to similar results. The proportions of reversals 

were about the same in the simple gambles and in the compound gambles: 24% versus 

29% and the Bayesian 95% credible intervals overlapped. 

We also repeated two complete elicitations, one for a simple gamble and one for a 

compound gamble. Both gambles were randomly selected and, consequently, they differed 

across subjects. The data favored the null hypothesis of equality between the original and 

the repeated measurement (the Bayes factors (BFs) were 6.48 for simple gambles and 7.07 

for compound gambles). The mean absolute deviation between the original and the 

repeated measurement was €15.38. The median was lower (€8) indicating that there were a 

few outliers with large differences, but for most subjects the differences were modest. The 

data favored the null hypothesis that the mean difference between the original and the 

repeated measurement was the same for the simple and for the compound gambles (BF = 

7.96).
Because the questions that were repeated had different expected values, we also 

looked at the absolute difference as a percentage of the expected value. The mean of these 

percentages was 60%, the median was again much lower: 18%. The data supported the null 

that the means of these percentages were equal for the simple and the compound gambles 

27 In several choices, she chose 0 for sure over a gamble, which gave a positive probability of €200 and could 
not result in a payoff less than €0.
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(BF = 6.96) and we had no indication that subjects made more errors or had less precise 

preferences in the, arguably, more complex compound gambles. 

Certainty equivalents

Figure 5.1 displays the certainty equivalents of the simple and the compound gambles. We 

divided these certainty equivalents by 200 to give a visual impression of subjects’ risk 

attitudes. For risk neutral subjects, the certainty equivalents of the simple gambles (the 

squares in the figure) will lie on the diagonal; points above the diagonal reflect risk seeking 

and points below the diagonal reflect risk aversion. The figure shows the usual pattern of 

risk seeking for small probabilities and risk aversion for moderate and large probabilities, 

which is equivalent to inverse S-shaped probability weighting if utility is linear.

Figure 5.1: Mean certainty equivalents (divided by 200) of the simple and the compound

gambles
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Tests of reduction invariance

Figures 5.2.1 and 5.2.2 show the results of the eight tests of reduction invariance that we 

performed. Figures 5.2.1 shows the results of the four tests of 2-reduction invariance and 

Figure 5.2.2 those of the four tests of 3-reduction invariance. For each test we have 

indicated the BF-values. 

Figure 5.2.1 Tests of 2-reduction invariance

Notes: The figure shows the number of subjects for whom the certainty equivalent of the compound 
gamble is greater than respectively smaller than the certainty equivalent of the simple gamble 
(taking into account the imprecision in our measurements). BF stands for Bayes factor with higher 
values indicating more support for the null hypothesis that reduction invariance holds.
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Figure 5.2.2 Tests of 3-reduction invariance

Notes: The figure shows the number of subjects for whom the certainty equivalent of the 
compound gamble is greater than respectively smaller than the certainty equivalent of the 
simple gamble (taking into account the imprecision in our measurements). BF stands for 
Bayes factor with higher values indicating more support for the null hypothesis that 
reduction invariance holds.
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Pooled over all tests, the data supported the null hypothesis that reduction 

invariance held ( = 5.34). This was also true if we look at the tests of 2-RI (  = 4.77) and 3-RI ( = 5.12). If we look at the eight tests separately, the data did not 

provide much support for either the null or the alternative. The exception was the third test 

of 3-RI which provided very strong evidence for the alternative that reduction invariance 

did not hold and the first test of 3-RI which provided some evidence for reduction 

invariance. 

Table 5.3 shows the classification of the subjects. Reduction invariance was the 

dominant type with 45% of the subjects satisfying it in both tests. No other type was close 

to reduction invariance. Both in the tests of 2-RI and in the tests of 3-RI around 60% of the 

subjects satisfied reduction invariance. Two thirds of the subject could be classified the 

same way in both the 2-RI and the 3-RI tests. The data support the hypothesis that amongst 

the subjects who could be classified the same way those who behaved according to 

reduction invariance were more common than those who did not behave according to 

reduction invariance ( = 3.81). 

Table 5.3 Classification of subjects in the 2-reduction invariance (2-RI) and the 3—

reduction invariance (3-RI) tests

 
Type 

2-RI 

Total compound 
 >  

simple 
RI 

compound  <  
simple 

3-RI 

compound > simple 6 8 0 14 

RI 8 35 5 48 

compound < simple 1 4 11 16 

Total 15 47 16 78 

Tests of reduction of compound gambles

The general picture that emerges from our results is that reduction invariance was 

supported. This poses the question whether the special, rational case of reduction 

invariance, reduction of compound gambles, also held. Our results indicate that it did not
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hold at the aggregate level. Figure 5.1 gives a visual impression. The circles show the 

certainty equivalents of the compound gambles plotted against the reduced probabilities. If 

reduction of compound gambles held the circles and the squares should overlap. It is clear 

from the Figure that they did not. Bayesian tests revealed very strong evidence for the 

alternative hypothesis that reduction of compound gambles did not hold ( = 1.1423). 28

However, at the individual level we observed that around 47 (60%) of the subjects 

behaved in line with reduction of compound gambles (taking account of preference 

imprecision). The subjects who deviated from it, deviated overwhelmingly in the direction 

of higher certainty equivalents for the compound gambles than for the corresponding 

simple gambles (according to the Bayes factors the posterior probability that a subject who 

deviated from reduction of compound gambles had a higher certainty equivalent for the 

compound gamble was 5642 times as high as the probability that he had a higher certainty 

equivalent for the corresponding simple gamble). 

Robustness

We used linear interpolation in the analysis of reduction invariance to determine (200, ) and (200, ). A problem in this analysis was that we could not always 

determine uniquely. We, therefore, also used interpolation by smoothing splines, a 

nonparametric regression technique which smoothens out response errors. The fit was good 

for most subjects.

The figures for this robustness check are in Appendix 5.3. Overall, the robustness 

check led to the same conclusions as the analysis using linear interpolation. Based on the 

pooled data, the support for reduction invariance increased compared to the analysis using 

linear interpolation (  =  8.63). The results of the separate tests were largely similar to 

those under linear interpolation except that in the third test of 2-RI we now also observed 

some evidence that reduction invariance did not hold. The support against reduction 

invariance in the third test of 3-RI decreased from very strong evidence to some evidence.

28 The pairwise tests supported the alternative hypothesis that reduction of compound gambles did not hold 
with Bayes factors less than .33 except for the differences between C6 and S2 ( = 3.14) and between C8 
and S2 ( = 5.70) where the data gave some evidence for reduction of compound gambles and the 
differences between C11 and S3 ( = 0.68), C2 and S4 ( = 1.07), and C4 and S4 ( = 0.94) where 
the data supported neither the null nor the alternative hypothesis.
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At the individual level, reduction invariance was still clearly the dominant pattern 

and the numbers were close to those observed under linear interpolation. 

5.5 Discussion

Our data largely supported reduction invariance, the central condition underlying Prelec’s 

(1998) compound invariant weighting function. At the aggregate level our data provided 

some evidence in favor of reduction invariance and at the individual level reduction 

invariance was clearly the dominant pattern. The only test in which we found strong 

evidence for the alternative hypothesis that reduction invariance did not hold was the third 

test of 3-RI. We do not know why this happened. The reduced probability in the third test 

of 3-RI was similar to that in the first test of 3-RI where we found evidence for reduction 

invariance. The fact that in the third test of 3-RI was less than cannot explain the 

observed violation of reduction invariance either as this was also true in, for example, the 

second test of 2-RI where the null of reduction invariance was supported over the 

alternative. 

Our tests of reduction invariance require the use of measured certainty equivalents. 

Luce (2000) argues that certainty equivalents may lead to biased estimations of the 

subjective values of gambles due to inherently different attitudes towards gambles (multi-

dimensional entities) and certain money amounts (one-dimensional entities). Von Nitzsch 

and Weber (1988) demonstrated empirical evidence of this bias. This problem could be 

avoided by matching gambles with gambles, i.e. by directly eliciting such that (( , ), )~( , ) and then checking whether (( ,  ), )~( , ), = 2,3. As Luce 

(2001) pointed out, this test carries the risk that subjects will give the salient answer =
in spite of the many observed empirical violations of reduction of compound gambles. 

We, therefore, followed Luce’s (2001) suggestion to use certainty equivalents in the tests 

of reduction invariance. To reduce possible distortions, we used a choice-based procedure 

to determine the certainty equivalents. Previous evidence suggests that observed anomalies 

are substantially reduced when choice-based certainty equivalents are used instead of 

judged certainty equivalents (Bostic et al., 1990; von Winterfeldt el., 1997). The procedure 

we used is close to the PEST procedure used by Luce in his experimental research (Chung 

et al., 1994; Cho et al., 1994, Cho & Luce, 1995). 
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We used several ways to account for the stochastic nature of people’s preferences. 

Rather than testing equality of certainty equivalents we followed Cho & Luce (1995) and 

tested whether the proportion of subjects for whom (200, ), exceeded (200, ) was the same as the proportion of subjects for whom (200, ), was 

less than (200, ). Moreover, we accounted for the imprecision in our measurements 

and in the individual analyses we only required preference patterns to hold in a majority of 

cases. There exist different and more sophisticated procedures to model choice errors. For 

example, Davis-Stober (2009) derived statistical tests based on order-constrained inference 

techniques, which were applied, amongst others in Regenwetter, Dana, & Davis-Stober

(2011) to test transitivity and in Davis-Stober, Brown, & Cavagnaro (2015) to compare 

models based on strict weak order representations with those based on lexicographic 

semiorder representations. It is interesting to repeat our analysis using these methods, but it 

should be realized that they are, to the best of our knowledge, not yet applicable to 

matching tasks and that they require each choice to be repeated many times. In our 

experiment subjects made around 100 choices, but if we were to use the same amount of 

repetitions as Regenwetter et al. (2011) or Regenwetter & Davis-Stober (2012) did, 

subjects would have to make more than 2000 choices, which might reduce accuracy. 

We found mixed support for reduction of compound gambles, the rational special 

case of reduction invariance. The condition was clearly violated at the aggregate level, but 

60% of the subjects behaved in line with it. The violations of reduction of compound

gambles that we observed indicate that subjects generally preferred compound gambles to 

simple gambles giving the same reduced probability. This compound risk seeking is 

consistent with Friedman (2005) and Kahn & Sarin (1988). It could be explained by a 

utility of gambling (Luce & Marley, 2000; Luce, Ng, Marley, & Aczél, 2008) as the 

compound gambles offer the possibility to gamble twice. On the other hand, Abdellaoui, 

Klibanoff, & Placido (2015) observed that their subjects were compound risk averse and 

preferred simple gambles with the same reduced probability. They also observed that 

subjects became more compound risk averse for higher probabilities, while we observed 

the opposite pattern. The range of probabilities Abdellaoui et al. explored is larger than the 

range we explored. Moreover, the compound gambles for which they found compound risk 

aversion were more complex than the compound gambles we used and it was more 

difficult for their subjects to compute the reduced probabilities. Complexity aversion may 

have contributed to compound risk aversion in their study.
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We obtained some evidence that when choosing between two gambles with the 

same expected value, subjects preferred the gamble with the higher second-stage 

probability to the gamble with the higher first-stage probability. This is consistent with a 

preference to have most uncertainty resolved at the first stage and violates event 

commutativity (Luce, 2000). We found very strong evidence that the certainty equivalent 

of C7, which offered a higher probability at the second stage, was higher than the certainty 

equivalent of C4, which offered approximately the same reduced probability but a higher 

first-stage probability (according to the Bayes factors, the posterior probability that CE(C7) 

> CE(C4) was 471 times as high as the probability that CE(C7) < CE(C4)).  More support 

for a preference to have the high probability resolved later comes from a comparison of 

compound gambles C1 and C3, which were also close in reduced probability. We found 

very strong evidence that the certainty equivalent of C3, which offered a larger second-

stage probability exceeded that of C1, which offered a larger first-stage probability (odds 

56.93). On the other hand, we also found strong evidence that the certainty equivalent of 

gamble C5 exceeded the certainty equivalent of gamble C2 (odds 20.41), which is 

inconsistent with a preference to have the high probability resolved later. As mentioned 

above, Ronen (1973) and Budescu & Fischer (2001) obtained clear evidence to have the 

high probability resolved first. Budescu & Fischer (2001) observed that hope was an 

important reason why their subjects preferred higher initial probabilities. A typical reason 

subjects gave was that “the progress from one stage to the other means something, it’s 

better to lose at a later stage”. Apparently, such considerations played no role in our study 

or they were offset by other considerations such as disappointment aversion which predicts 

that the high probability will be resolved later.

5.6 Conclusion

Prelec’s (1998) compound-invariant family provides a simple way to model deviations 

from expected utility. It has a preference foundation, its parameters are intuitive, and it has 

often been used in empirical research. Luce (2001) gave an elegant simplification of 

Prelec’s central condition and our study showed evidence in support of Luce’s central 

condition, reduction invariance. This implies that Prelec’s function provides an accurate 

description of the way people weight probabilities and endorses its use in empirical 

research. Reduction of compound gambles, a special case of reduction invariance, which is 
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often considered rational, was rejected at the aggregate level, even though 60% of the 

subjects behaved in line with it implying that the power probability weighting function, 

which depends on reduction of compound gambles, should be used with caution. 
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Appendix 5.1

Instructions and comprehension questions

Instructions

Welcome!

During this experiment, you will face different choice situations involving risk. In each situation, 
you are asked to choose between two prospects: 

Prospect A gives you an amount of money contingent on the color of a ball drawn from an urn. 
Prospect B gives you an amount of money for sure. 

The outcome of Prospect A can depend on a single draw from an urn or on two consecutive draws 
from two different urns.  
 
Figure A5.1 shows an example of the first scenario where the outcomes of Prospect A is determined by 
a single draw from an urn. 

 

Figure A5.1 

 

 
In this choice situation, there are 100 balls in the urn, of which 77 are blue, and 23 are grey. If the 
drawn ball is blue, you receive €200; if it is grey, you receive €0.  
 
On the other hand, Prospect B gives you €200 for sure.  
 
In this example, you would prefer Prospect B, because it gives you €200 for sure whereas receiving 
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the same amount is not certain in Prospect A. 
Figure A5.2 presents an example of the second scenario where the outcomes of Prospect A depends on 
two draws. 

Figure A5.2 

 

 
In this choice situation, the first draw is made from the urn displayed on the top which contains 67 
green and 33 grey balls. If the ball is green, then a second ball will be drawn from the left urn below; 
otherwise it will be drawn from the right urn below.  
 
The final outcome will be determined by the second ball. For instance, if the second ball is drawn from 
the left urn, then a green ball will result in €200, and a grey ball will result in €0. If the second ball is 
drawn from the right urn, then the outcome will be €0 for sure because all balls in the right urn are 
green.  
 
On the other hand, Prospect B gives you €0 for sure.  
 
In this example, you would prefer Prospect A, because it gives you a positive chance of receiving €200 
whereas Prospect B gives you €0 for sure.  
 
Once you have made your choice between two prospects, a confirm button will appear. If you agree 
with your choice, please click on it to go to the next question. You will not be able to change your 
choice after you click on the "Confirm" button.  
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Payment 

To thank for your participation, you will receive a €5 show-up fee.  
 
In addition, two participants in this room will play out one of her choices for real. They will be selected 
randomly at the end of the experiment. For each of the selected participants, one of the choice 
situations that she faced during the experiment will be randomly selected, and his/her choice in that 
choice situation will be played for real.  

We will now test your understanding of the instructions.  
Assume that you have been selected as one of the two participants who can play a question for real 
and that the question below was randomly selected.  

Figure A5.3 

 
Please answer the following questions. 

 
Question 1 
How many balls are there in each urn? 

40 

60  

100  

81  
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Question 2 
In the top urn, how many green balls are there? 

40  

60 

100  

81 
 
Question 3 
In which case will you receive €200? 

Draw a grey ball in the top urn, OR draw a green ball in the bottom left urn. 

Draw a green ball in the top urn, OR draw a green ball in the bottom left urn. 

Draw a grey ball in the top urn, AND draw a green ball in the bottom left urn.  

Draw a green ball in the top urn, AND draw a green ball in the bottom left urn. 
 
 

 

Appendix 5.2 

Iteration procedure 

Subjects always chose between a gamble and a sure amount x. 

1. The initial value of x was the even number closest to the expected value of the 
gamble. 

2. X was decreased when it was chosen over the gamble and increased when the 
lottey was chosen. 

3. The initial step size was 4, 8, 16, or 32. By choosing powers of 2 we ensured 
that subsequent changes were also integers. The initial step size was the 
number in the set {4, 8, 16, 32} that was closest to half the initial value.  

4. The step size remained constant until the subjects switched. Then it was 
halved.  

5. The minimum step size was 2. The switching point was the midpoint between 
the largest value of x for which the gamble was preferred and the smallest 
value of x for which x was preferred. 

6. If a subject had to choose between 200 for sure and the gamble or between 0 
for sure and the gamble. If subjects chose the dominated option, a warning 
message appeared: “Please reconsider your choice”. The subject was asked to 
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choose again. If the subject continues to choose the dominated choice, we 
proceeded to the next elicitation. 

 

Table A5.1 shows the initial values and the initial step sizes for the eighteen gambles 
in the experiment. 
 

Table A5.1 Initial values and initial step sizes for the gambles in the experiment 

Gamble Expected value Initial value Initial step size 
C1 109.88 110 32 
C2 60.30 60 32 
C3 113.40 114 32 
C4 63.96 64 32 
C5 60.30 60 32 
C6 18 18 8 
C7 64.80 64 32 
C8 20.10 20 8 
C9 33 32 16 

C10 5.40 6 4 
C11 36.50 36 16 
C12 6.60 6 4 
S1 6 6 4 
S2 18 18 8 
S3 34 34 16 
S4 64 64 32 
S5 114 114 32 
S6 154 154 32 
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Appendix 5.3

Tests of reduction invariance under fitting of the certainty equivalents by smoothing 

splines

 

Figure A5.4.1 Tests of 2-reduction invariance
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Figure A5.4.2 Tests of 3-reduction invariance
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Table A5.2 Classification of subjects in the 2-reduction invariance (2-RI) and the 3-

reduction invariance (3-RI) tests

 
Type 

2-RI 

Total compound 
 >  

simple 
RI 

compound  <  
simple 

3-RI 

compound > simple 8 6 1 15 

RI 7 30 10 47 

compound < simple 1 4 11 16 

Total 16 40 22 78 
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Summary and Conclusions

The predominant view in the literature on risk and uncertainty is that people overweight 

rare outcomes. This view was challenged by Barron & Erev (2003) and Hertwig et al. 

(2004). These studies claimed that the opposite of overweighting is found when people

make decisions from experience, and that decisions from experience (DFE) is a more 

realistic representation of decisions that we often make in life than the traditional paradigm 

of decisions from description (DFD). However, the issue of when and why rare outcomes 

receive too little or too much attention has been controversial. 

To understand the intriguing behavioural gap between the two choice paradigms, 

this dissertation examines decisions from experience and from description by investigating 

the role of probability weighting and subjective beliefs. In Chapter 2 the role of probability 

weighting under DFE is clarified by controlling for the impact of beliefs, ambiguity, and 

utility curvature. The results of the experiment indicate a clear de-biasing effect of 

sampling experience when there is no sampling error or ambiguity: learning from 

experience attenuates, but does not reverse, overweighting of rare outcomes. 

In Chapter 3, the importance of prior beliefs in understanding DFE is discussed. 

Here, it is claimed that the sources of uncertainty that the subjects face in the original DFE 

experiments is a case of ambiguity, rather than of complete ignorance. Therefore, every 

subject has his own subjective prior beliefs about the decision environment. The findings 

reported in this chapter indicate that the DFD-DFE gap has two components: (1) regressive 

probability estimations due to the updating of prior beliefs and (2) overweighting of small 

probabilities due to the impact of ambiguity. The findings of Chapter 2 and Chapter 3 

suggest that the underweighting of rare and extreme outcomes, or the so-called black 

swans neglect, reported in the previous DFE studies is a problem of knowledge: when 

people come to know black swans by observation, or by anticipation, they do not neglect 

them.

The problem of probabilistic inference is investigated further in Chapter 4. The 

non-Bayesian model of updating formulated in this chapter provides a natural 

interpretation of well-known biases in belief updating. The structural estimations of the 

model parameters indicate that subjects were conservative and acted as if they missed (on 
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average) 65% of the signals generated by a random mechanism, although this rate was 

lower when the signals were more informative. The subjects also exhibited confirmatory 

bias by misreading 17% of the signals contradicting their prior beliefs.

Chapter 5 reports an empirical test of Prelec’s (1998) compound invariance family. 

Luce (2000) writes “As a meta-theoretical principle, I hold that any descriptive theory of 

decision making should always include as special cases any locally rational theory for the 

same topic” (p. 108). Thus, he gives a meta-theoretical argument for Prelec’s (1998) theory 

of probability weighting as it accommodates the normative condition of reduction of 

compound lotteries as a special case. The experiment in this chapter tests Luce’s (2001) 

reduction invariance condition characterizing Prelec’s family, which is easier to test 

empirically than Prelec’s compound invariance condition. The data supports the reduction 

invariance condition both at the aggregate and at the individual level. Hence, the results 

provide an empirical justification for Prelec’s compound invariance family. 
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Samenvatting

Summary in Dutch

Het overheersende idee in de literatuur over risico en onzekerheid is dat mensen zeldzame 

uitkomsten te zwaar wegen. Dit idee is betwist door Barron en Erev (2003) en Hertwig et 

al. (2004). Deze auteurs beweren dat het tegenovergestelde van het te zwaar wegen van 

kansen wordt gevonden wanneer mensen besluiten nemen op basis van ervaring, en dat het 

nemen van besluiten op basis van ervaring (BOE) een realistischere voorstelling is van de 

besluiten die we vaak nemen in ons leven dan het traditionele paradigma van het nemen

van besluiten op basis van een omschrijving (BOO). Het vraagstuk van wanneer en 

waarom er te veel of te weinig aandacht wordt besteed aan zeldzame uitkomsten is echter 

controversieel.

Om het intrigerende verschil in gedrag tussen de twee besluitparadigma’s te 

begrijpen, onderzoekt deze dissertatie besluiten op basis van ervaring en op basis van een 

omschrijving door de rol van het kansenweging en subjectieve opvattingen over kansen te 

bestuderen. In Hoofdstuk 2 wordt de rol van kansenweging bij BOE verduidelijkt door te 

controleren voor het effect van opvattingen, ambiguïteit, en de kromming van de 

nutsfunctie. De resultaten van het experiment tonen een duidelijke afname in onzuiverheid 

door ervaring op basis van een steekproef als er geen steekproeffout of ambiguïteit is: het 

leren op basis van ervaring vermindert het te zwaar wegen van zeldzame uitkomsten maar 

keert dit niet om.

In Hoofdstuk 3 wordt het belang van a-priori-opvattingen op het begrijpen van 

BOE besproken. Hier wordt gesteld dat de bron van onzekerheid waarmee de 

proefpersonen geconfronteerd worden in de oorspronkelijke BOE experimenten een geval 

is van ambiguïteit, in plaats van totale onwetendheid. Iedere proefpersoon heeft daarom 

zijn eigen subjectieve a-priori-opvattingen over de besluitomgeving. De bevindingen 

beschreven in dit hoofdstuk tonen dat de BOO-BOE leemte twee onderdelen heeft: (1) 

regressieve kansenramingen door het bijwerken van a-priori-opvattingen en (2) het te 

zwaar wegen van kleine kansen door het effect van ambiguïteit. De bevindingen van 

Hoofdstuk 2 en Hoofdstuk 3 suggereren dat het te licht wegen van zeldzame en extreme 

uitkomsten, ofwel het zogeheten negeren van zwarte zwanen, zoals beschreven in eerdere 
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BOE onderzoeken een kennisprobleem is: wanneer mensen zwarte zwanen leren kennen 

door observatie, of door anticipatie, negeren ze die niet.

Het probleem van probabilistische inferentie wordt verder onderzocht in Hoofdstuk 

4. Het niet-Bayesiaanse model van het bijwerken van opvattingen geformuleerd in dit

hoofdstuk biedt een natuurlijke interpretatie van bekende onzuiverheden in het bijwerken 

van opvattingen. De structurele vergelijkingen van de modelparameters suggereren dat 

proefpersonen conservatief waren en zich gedroegen alsof ze (gemiddeld) 65% van de 

signalen opgewekt door een mechanisme voor willekeurige selectie niet opmerkten, 

hoewel dit percentage lager lag wanneer de signalen informatiever waren. De 

proefpersonen vertoonden ook tunnelvisie door het verkeerd interpreteren van 17% van de 

signalen die hun a-priori-opvattingen weerspraken.

Hoofdstuk 5 bevat een empirische test van Prelec’s (1998) samenstellings-

constantheidsfamilie. Luce (2000) schrijft: “As a meta-theoretical principle, I hold that any 

descriptive theory of decision making should always include as special cases any locally 

rational theory for the same topic” (p. 108)29. Hij geeft daarmee een metatheoretisch 

argument voor Prelec’s (1998) theorie van kansenweging aangezien het de normatieve 

conditie van het reduceren van samengestelde loterijen als speciaal geval bevat. Het 

experiment in dit hoofdstuk test Luce’s (2001) conditie van reductieconstantheid die 

Prelec’s familie karakteriseert, welke makkelijker empirisch te testen is dan Prelec’s 

conditie van samenstellingsconstantheid. De data staaft de conditie van 

reductieconstantheid op zowel het geaggregeerde als op het individuele niveau. De 

resultaten bieden daarmee een empirische rechtvaardiging van Prelec’s 

samenstellingsconstantheidsfamilie.

29 “Als een metatheoretisch principe, meen ik dat elke descriptieve theorie van besluitvorming altijd 
als speciaal geval een lokaal rationele theorie voor hetzelfde onderwerp moet bevatten”
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