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Dankwoord

Het is zover: het boekje (of werkstuk, zoals mijn vader het steevast blijft noemen)
is eindelijk af. Nu het einde van mijn promotietraject nadert, besef ik mij pas
goed hoe veel ik heb geleerd en gedaan de afgelopen jaren. Natuurlijk bestaat
het promoveren uit het volgen van vakken, lezen van literatuur, schrijven van
papers, presenteren van onderzoek, ontdekken van nieuwe programmeertalen en
lesgeven voor volle collegezalen op de universiteit. Maar het heeft mij ook, letter-
lijk, een bredere kijk op de wereld gegeven door mij te leiden van Rotterdam naar
Istanbul, Atlanta, Philadelphia, Baltimore, London, New York, Atlanta, Gronin-
gen, Durham, College Park, Alberta, Sydney, Tilburg en tot slot Fontainebleau
naar uiteindelijk mijn nieuwe thuis in Maryland, USA. Zonder de steun van
vrienden, familie en collega’s had ik deze reis misschien wel nooit volbracht en
was het zeker niet zo leuk geweest. Graag wil ik jullie hier voor bedanken in dit
dankwoord.

Allereerst mijn promotoren: Bas en Dennis. Het was, zoals wel vaker het geval,
best nog even spannend of het allemaal op tijd ging lukken maar de eindstreep is
in zicht. Ik ben jullie zeer dankbaar dat jullie er in 2012 voor kozen om het avon-
tuur met mij aan te gaan door mij een promotieplek aan te bieden. Bas, je was
altijd bereid om mijn vragen te beantwoorden, vaak buiten de spreekwoordelijke
kantooruren om. Ook wist je mij als geen ander scherp te houden en te motiveren.
Dennis, jouw colleges in de Master Econometrie wakkerde mijn interesse aan
voor een promotieplek onder jouw begeleiding. Dat heeft alle verwachtingen
overtroffen, ik heb veel van je geleerd. Ook heb ik genoten van onze gesprekken
die niet (direct) gerelateerd waren aan werk, waarbij de onderwerpen konden
variëren van hardlopen tot de laatste technologische ontwikkelingen. Dat jullie
het beste in mij naar boven hebben gehaald is ook tot uiting gekomen in onze
publicatie in Marketing Science. Ik kijk met veel plezier terug op onze samen-
werking en ik hoop dat wij hier in de toekomst een mooi vervolg aan kunnen
geven.
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Asim Ansari, who hosted me during my research visit at Columbia Business
School. Asim, during my visit you were always cheerful and I thank you for your
hospitality and the time you dedicated to me during my visit to New York. Now
that the geographical distance between us has diminished considerably, I hope
that we can continue collaborating in the future.

Tammo Bijmolt, Benedict Dellaert en Richard Paap, bedankt dat jullie plaats
hebben genomen in mijn leescommissie en mijn proefschrift hebben beoordeeld.
Daarnaast wil ik jullie graag bedanken voor de opmerkingen die het proefschrift
hebben verbeterd.

Mijn twee paranimfen: Tom en Maarten. Tom, al vroeg in onze Master Econo-
metrie had jij mijn carrièrepad al uitgestippeld, ik citeer: “Bruno!! Gewoon gaan
promoveren, vet mooi!!”. Ik ben blij dat ik niet van regime ben geswitcht en heb
genoten van onze promotietijd samen. Helaas is onze dubbele tenure track in
Groningen op een haar na niet rond gekomen. En voordat ik het vergeet, nog
gefeliciteerd met je verjaardag trouwens! Maarten, zoals Tom mij de promotie
heeft ingetrokken, zo heb jij mij er doorheen gesleept. Op de juiste momenten
wist jij mij even helemaal uit het onderzoek te trekken en daar heb ik heel veel
aan gehad. Verder heb je zeker mijn vocabulaire verrijkt (of verkleind, ouwes?)
en dat je zelfs de wereld bent overgevlogen om met mij de finale van Twin Peaks
te bekijken zegt genoeg over zowel onze gedeelde interesses als onze vriendschap.

Tijdens mijn promotie heb ik met niemand zoveel tijd doorgebracht als met mijn
kamergenoten in het Tinbergen gebouw in H7-33 en later H8-11. Aiste, I truly
hope it was bearable for you to share an office with Tom and me. I enjoyed your
company and I am sure that you are having a great time in Australia! Tom,
gemakshalve ga ik er maar even van uit dat jouw plotselinge verhuizing naar
Groningen, midden in onze promotie, niets met mij als kamergenoot te maken
had. Bart! Bedankt dat jij mij wilde opvangen op H8-11. De mini-tafeltennis
sessies waren legendarisch en worden gemist! Ongetwijfeld waren die potjes ook
het fundament voor onze derde plaats op de Econometric Game, behaald onder
jouw bezielende leiding als teamcaptain. Nu op UMD blijkt al jouw lacrosse
kennis van onschatbare waarde te zijn. Go Terps!

Voor een groot gedeelte is mijn promotie ook gevormd door mijn (voormalige)
collega’s op de universiteit. Zonder jullie was mijn promotie niet hetzelfde ge-
weest! Dennis, Lisa is een blijvertje gebleken maar Julia (vooralsnog) niet meer
dan een escapade. Ik heb genoten van alle tijd die we binnen, maar misschien
nog wel meer buiten, de universiteit hebben doorgebracht. En Esther, heb jij de
prinses? Didier, misschien wel de snelste PhD ter wereld en zeker de beste co-
paranimf die ik mij kon wensen. Wie bestelt het volgende kaasplankje?! Gertjan,
bedankt dat je op de meest onmogelijke tijdstippen bereid was de meest obscure
Python zaken te bespreken. Ook heel veel dank voor het beschikbaar stellen van
de LATEX-template voor dit proefschrift! Sander, voor het delen van een aantal
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muzikale pareltjes (George Fitzgerald!) en het voorzien van de werkvloer van
enige hoofdstedelijke branie. Francine, jij wist de academische wereld altijd in
perspectief te plaatsen. Koen, voor het delen van een tent op Pukkelpop en dat je
deadmau5 (on)vrijwillig hebt aangehoord. Myrthe, voor de gezellige koffiepauzes
en al je hulp en advies, in het bijzonder met de job market. Arash, thanks for
sharing my enthusiasm for graphical models and variational inference. Tommi,
for sparking my enthusiasm in an academic career and sharing the following
words of wisdom: “I mean like .... it’s an academic degree so maybe it couldn’t hurt
to learn a thing or two”. I would like to thank my other (former) colleagues at
the Marketing department at the Erasmus School of Economics, the Econometric
Institute, and ERIM. In particular Anne, Bert, Damir, Elio, Florian, Gert-Jan,
Marcel, Martijn, Max, Michel, Tülay, Victor, Yuri.

Mijn ouders, Vincent en Dorien. Dorien, omdat jij altijd hebt gezegd dat ik er
wel zou komen. Vincent, zonder jou was ik niet de persoon geworden die ik
nu ben. Ik ben je voor altijd dankbaar. Voor alles. Milan, wat er ook gebeurt,
je blijft mijn kleine broertje. Oma Riet, ik koester warme herinneringen aan
de woensdagmiddagen in Pendrecht, samen met opa Wim heb je veel voor mij
betekend. Oma Greet, u bent daadwerkelijk de krachtigste vrouw die ik ken en
ik neem hier graag een voorbeeld aan. Conny, Peter, Erwin, Amy, Wouter, als
ik bij jullie ben dan voelt het als een tweede thuis en is het altijd goed. Peter,
Yvonne, Maud, Milou, bedankt voor alle Limburgse gezelligheid en gastvrijheid!

Lieve Rianne, natuurlijk is dit dankwoord niet compleet zonder jou te noemen.
Tijdens mijn promotie ben jij de constante factor geweest waar ik altijd op kon
vertrouwen. Jij haalt het beste in mij naar boven en laat mij mijn grenzen
verleggen. Samen hebben wij de stap gemaakt van het vertrouwde Rotterdam
naar het toen nog onbekende Maryland. Ongetwijfeld staan er ons nog veel
avonturen te wachten en zolang dat samen met jou is, durf ik het aan.
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1
Introduction

In this dissertation I present solutions that address challenges in the context
of marketing analytics in high-dimensional retail assortments. The common
denominator of these solutions is that they all build on recent advances made
in the machine learning literature, which are adapted and extended to make
them suitable for marketing analytics. In turn, I try to contribute to the machine
learing literature as well, with some of the more technical results I derived in
this dissertation.

1.1 M A R K E T I N G A N A LY T I C S I N L A R G E A S S O R T M E N T S

The size of the product assortment at a typical retailer has exploded over the past
two decades. This increase can largely be attributed to the rise of online shopping
which has allowed retailers to retain assortments that are virtually unlimited
in size, against relatively low costs. Another implication of online retailing is
that much more information for each individual customer can be obtained. This
information is no longer limited to purchases, which can be tracked at a brick-
and-mortar store as well, but additionally search and click behavior are often
readily available.

In turn, this customer-specific information can be used by a retailer to create
personalized marketing efforts, for example, to determine the relevant products
in the assortment for a specific customer. This opens the way for advanced (online)
personalization that can improve a customer’s shopping experience. Additionally,
more high-level insight can be obtained from such purchase data. Examples
are the identification of purchase patterns and how these patterns vary with
customer characteristics and over time. Such insights can be used to improve a
wide range of marketing actions.

It is only naturally to assume that the larger the assortment, the more rele-
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vant these insights are both for the retailer that holds a large product assortment,
as well as for the customer who wants to browse and purchase products from
such an assortment. However, as the number of products in the assortment
increases, the dimensionality of the available purchase data will increase as well.
As a result it becomes increasingly more difficult to use all available data to gain
actionable marketing insights.

In practice, retailers circumvent this problem by resorting to simpler heuris-
tics, e.g. a collaborative filter. Such a filter discovers patterns by counting the
co-occurrence of products in the purchase history data (Jannach et al., 2010). Ap-
plications include the display of relevant alternative products on a product page
(“Customers who bought this item also bought”), or to display a set of products
based on the purchase behavior of a customer (“Recommended for you”). Typically,
these results can be obtained in near real-time and the filter scales well to very
large customer bases and product assortments (e.g. Amazon). A collaborative
filter is not without downsides, however. For example, it is not able to display
personalized content for a new customer automatically, or to vary offerings by
time of day or season. In a stochastic model-based approach this concern could
be alleviated by including additional available customer information, such as
characteristics. Such information is difficult to include in a filter without par-
titioning the data into smaller subsets. But arguably the biggest limitation of
a collaborative filter is that it hardly provides any insight beyond identifying
co-occurring products. This makes it difficult to abstract actionable insights from
the data.

Alternatively, there is a long stream of research in the marketing literature
involving choice models (Guadagni and Little, 1983, McFadden, 1986, Wagner
and Taudes, 1986, Wedel and Kamakura, 2000). These model-based methods are
well suited to account for both observed and unobserved customer heterogeneity
and can readily be extended to include additional information that is available
beyond the purchase history data. Furthermore, a choice model is able to provide
insight on both the customer and population level, enabling advanced marketing
analytics for the retailer. A major drawback, however, lies in the poor scalability
of a typical choice model with respect to the number of alternatives. Especially
in the context of large product assortments, i.e. those that contain (at least)
hundreds of products, a choice model tends to break down (Naik et al., 2008).
This severely limits the application of these methods in practice.

In the marketing literature there are a few solutions commonly used to
alleviate these concerns. However, they are inadequate in the setting of large
product assortments. In Zanutto and Bradlow (2006), it is advocated that one
should focus on just a subset of the data. For example, by considering only a
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1. Introduction

selection of customers instead of the entire customer base. Such an approach may
be suitable if one is strictly interested in effects at the population level, but it is
inadequate if we want to gain insight in the preferences of individual customers.
This is typically the case in marketing applications, as the notion of heterogeneity
in customer behavior is widely accepted. In addition, it does not seem intuitive to
exclude products a priori from our analysis. Some low-frequency products might
be highly relevant for a specific set of customers and by ignoring such products
we preclude ourselves from discovering such insights. Even more, the assortment
that remains after excluding the low-frequency products may still be too large.

In this dissertation I try to combine the best of both worlds by developing
methods that can abstract profound marketing insights from purchase history
data, while at the same time ensuring that these methods scale well to the size of
the product assortment. To enable this I turn to methods that originate from the
machine learning literature. More specifically, the methods that I present in this
dissertation are grounded in the class of so-called topic models, with as canonical
example the latent Dirichlet allocation (Blei et al., 2003) model. Traditionally,
these methods have been used to analyze collections of text documents and
discover the topics underlying a collection of documents. I adapt and extend
these topic models to enable advanced analyses in the context of large product
assortments. However, even these scalable models need to be estimated and to
make them of practical use this estimation should be fast. This holds especially
in marketing applications where near real-time results are required. Therefore,
for fast estimation I rely and extend on advanced techniques that originate from
the machine learning literature as well. These techniques are the subject of the
next section.

1.2 E S T I M A T I O N O F C O M P L E X M O D E L S

If one cause has to be identified to explain the rise of Bayesian inference in
the modern-day literature, the answer would most likely be the development of
Markov Chain Monte Carlo (MCMC) samplers (Gelfand and Smith, 1990). The
evolution of these methods at the end of the twentieth century, combined with
an ever-increasing supply of computational power, have enabled researchers to
estimate complex models that simply were not possible to infer in the pre-MCMC
era. Today’s world, however, is very different when compared to the end of the
last century. As a society we produce and store data at an unprecedented rate
and in all likelihood, this will only increase over the next decades. All this data
can potentially serve as input for statistical models, allowing us to research and
reason about increasingly complex phenomena. This raises the question how
much longer we will be able to estimate such models using the traditional MCMC
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methods. Fortunately, several successors are ready to take their place.

The first alternative estimation method we discuss is variational inference
(VI) (Jordan et al., 1999, Blei et al., 2017). In VI a new distribution is introduced,
called the variational distribution, that is used to approximate the posterior of
the model. Subsequently, Bayesian inference is cast into an optimization problem,
where the distance from the variational distribution to the posterior distribution
is minimized. This optimization can be solved using traditional techniques
from the optimization literature. By imposing smart restrictions on the set of
admissible variational distributions, this optimization can be simplified. The
most common set of restrictions leads to so-called mean-field variational inference
(MFVI), which imposes that the variational factorizes over the variables in the
posterior. This enables statistical inference at a fraction of the time it would
take using traditional inference methods, such as the MCMC samplers (Ansari
et al., 2016, Kucukelbir et al., 2017). This approximation, however, affects the
results: Typically the variance of the posterior density is underestimated (Blei
et al., 2017), while the posterior means are accurately recovered. Hence, in MFVI
we exchange asymptotic correctness for estimation speed, which for complex
models will often be the difference between being able or unable to estimate a
model in a realistic amount of time. Furthermore, there are two properties of
VI that make it especially suited for inference in models involving large data
sets: We can stochastically subsample sets of data points, which can speed up
inference by an order of magnitude in hierarchical models (Hoffman et al., 2013).
In addition, because VI is intrinsically a deterministic method, it is often trivial
to parallelize its optimization routine across all computing nodes available. These
two properties can be combined, if desired.

Alternatively, if one is concerned about retaining the asymptotic properties of
the traditional MCMC sampling-based approaches, one could utilize the Hamil-
tonian Monte Carlo (HMC) sampler (Neal, 1996, Hoffman and Gelman, 2014).
These samplers make use of gradient information to more effectively explore the
posterior space. In the past, setting up such an HMC sampler was not very user
friendly and required a lot of manual derivations and tuning of nuisance parame-
ters. These problems have to a large extent been resolved by Stan (Carpenter
et al., 2017), a generic programming language that relies on the No-U-Turn
(NUTS) HMC-sampler (Hoffman and Gelman, 2014) for statistical inference.
Other alternatives for automatic inference are available, each with certain ad-
vantages and disadvantages: Automatic Differentiation Variational Inference
(ADVI) (Kucukelbir et al., 2017), which uses an automatic mean-field variational
inference algorithm to approximate the posterior, Black Box Variational Inference
(BBVI) (Ranganath et al., 2013), which uses noisy gradients in MFVI; or Edward
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1. Introduction

(Tran et al., 2016), which is a generic programming language similar to Stan that
allows for rapid prototyping of models, with a focus on model criticism such as
posterior predictive checks.

The development of these fast and generic inference tools is invaluable for
academia, as it enables a researcher to dedicate his attention to the research
problem at hand, instead of getting distracted by implementation details. An
additional advantage is that this allows for a critical evaluation of the model
specification used. Naturally, the design of an optimal model is not clear a priori
(at least not in the social sciences). Especially in the context of models that
combine data from various sources, it becomes increasingly important to be able
to rapidly explore different model specifications. Recently, this iterative process
has been formalized and advocated in Blei (2014), which proposes an adaptation
of Box’s classical loop (Box and Hunter, 1962). It can be summarized as “Build,
compute, critique, repeat”: i) Build a model. ii) Estimate the model parameters.
iii) Criticize the model. iv) If satisfied, use the model for further analysis, if not,
return to step i). I share the belief that this is the way empirical models should
be build. However, we must beware not to overfit the design of the model to a
single application. Instead, our goal should be to find models that can provide
insights which are generalizable across multiple settings.

1.3 O U T L I N E O F T H E D I S S E R T A T I O N

In this dissertation I combine the developments in marketing with those in the
machine learning literature. This dissertation contains three chapters that can
be read independently. Below, I briefly discuss each of them.

In Chapter 2, based on Jacobs, Donkers, and Fok (2016), the primary con-
tribution is the adaptation and extension of latent Dirichlet allocation (LDA),
introduced in Blei et al. (2003), in order to model purchases in a retailing context.
LDA is a so-called topic model, originally developed to model the occurrence of
words in a collection of text documents by using a set of latent topics. I adapted
this notion to the retail setting: Documents become customers; words from the
vocabulary are replaced by purchases from an assortment; and just as the con-
tent of a document covers a set of topics, a customer’s purchase history can be
described by a set of purchase drivers, which I label motivations. Besides the
similarities, there are also major distinctions between the two domains. Contrast
the size of a typical document against that of an average purchase history. The
adaptation of LDA presented in Chapter 2 accounts for these differences, by
explicitly modeling the prior baseline relevance of each motivation and linking
this to observed customer characteristics. The resulting method is applied to
a data set from a medium-sized online retailer that manages an assortment of
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about 400 products. Note that this dimension differs by an order of magnitude
with a standard choice model in marketing, which typically concerns just a few
alternatives. The inferred motivations make intuitive sense. For example, they
describe preferences for eco-friendly products, diet products, or products for the
sensitive skin. These motivations also provide a high-level insight into the factors
that drive the purchase behavior in the customer base. The method is used to
predict future purchases of a customer. It obtains a high predictive accuracy,
emphasizing the face validity of the method once more. Furthermore, its perfor-
mance is similar or better than competing methods, while being far more scalable.
This opens up opportunities for all sorts of retailing applications, of which the
most apparent one is serving as input for a personalized shopping experience.
This chapter is based on Bruno J.D. Jacobs, Bas Donkers, Dennis Fok (2016),
“Model-Based Purchase Predictions for Large Assortments,” Marketing Science,
35 (3), 389–404. The author contributions for Chapter 2 are as follows: All three
co-authors contributed significantly to this chapter.

Chapter 3 consists of two parts. In the first part, I start with an overview of
the fundamental concepts associated with variational inference (VI), after which
I zoom in on mean-field variational inference (MFVI). While introducing these
concepts, I provide additional insights that can be valuable for the reader who
is more familiar with traditional Bayesian statistical inference techniques, but
wants to understand VI. In the second part, I build upon these concepts and
present two new results in the context of MFVI applied to models that involve
hierarchical Normals. A hierarchical Normal is defined as a Normal distribu-
tion where the mean parameter is specified as a function of one (or more) other
random variables that each are Normally distributed as well. Such hierarchical
models are often used to capture customer heterogeneity in marketing applica-
tions (Rossi et al., 2012). The first result revolves around the dependencies of
parameters in a hierarchical Normal model. The intuition is simple, but elegant:
Consider a set of 100 numbers and suppose one is tasked with the computation of
the sum for every subset of 99 numbers (without repetition). A direct, but naive,
approach is to construct 100 sets of 99 numbers and calculate the sum for each
of these sets. An indirect, but smarter, approach is to first calculate the total
sum over all 100 numbers. From this total sum, we can subtract each number
individually to arrive at the answer. This is exactly the intuition underlying my
result. I rewrite the dependencies of a hierarchical Normal model by considering
a common error term. The important implication of this result is that it becomes
easier to estimate generic hierarchical Normal models in MFVI, without requir-
ing model-specific derivations. The second result is about the (computationally)
efficient estimation of a common precision matrix for a set of multivariate Nor-
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1. Introduction

mal (MVN) variables. I show that in MFVI this common covariance structure
can be inferred without specifying a separate multivariate Normal variational
distribution for each of the MVN variables. Instead, the marginal posterior of
each MVN variable is approximated using a set of univariate Normals, called an
independent Multivariate Normal (iMVN). I provide closed-form solutions for the
parameters of an iMVN that approximates an MVN. This decreases the number
of variational parameters that have to be estimated, which significantly lowers
the computational complexity of estimating a common covariance structure with
MFVI in hierarchical Normal models. The author contributions for Chapter 3 are
as follows: The chapter is written by the author of this dissertation. Both prof. dr.
Bas Donkers and prof. dr. Dennis Fok provided valuable feedback that improved
the structure of this chapter.

Chapter 4, based on work by Jacobs, Donkers, and Fok, extends Chapter 2 in
several ways, in order to provide managerial insights that go beyond purchase
prediction. The most notable extensions are the following: First, the separate
shopping trips in a customer’s purchase history are distinguished. Next, motiva-
tions are allowed to be correlated in the model. Finally, the model is extended
using time-specific effects and explanatory variables at the basket and the cus-
tomer level. This allows for a richer model structure that provides further insight
into the purchase patterns underlying the data. These extensions, however, do
not come without a computational cost, and the second direction in which I con-
tribute is by inferring the model parameters using variational inference (VI). This
allows us to estimate the model parameters in a fraction of the time that would
have been required by status quo inference techniques. More details on VI are
provided in Chapter 3. For the application in this chapter I use purchase history
data that was made available to me by a retailer through the Wharton Customer
Analytics Initiative (WCAI). The model is estimated on a subset of this data and
contains over 4,000 distinct products, which is an increase in size by a factor of
10 when compared to the product assortment from the application in Chapter 2.
The obtained results are intuitively plausible, have face validity, and show a high
degree of internal consistency. The time effects and explanatory variables allow
a manager to zoom in on granular levels of the data, providing managerial in-
sights that cannot be obtained by just observing descriptive statistics of the data.
Combined with the high predictive power of an LDA-based method, for which
empirical evidence was provided in Chapter 2, this opens the way for advanced
marketing analytics, which allows targeting with respect to whom to contact
when, in high-dimensional product assortments. The author contributions for
Chapter 4 are as follows: All three co-authors contributed significantly to this
chapter.
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To conclude this introduction, I believe that the research conducted in this
dissertation is among the first steps on a long and exciting road ahead for large-
scale marketing models inspired by the machine learning literature. This claim
does not just apply to me personally, but also to the field of advanced marketing
analytics in high-dimensional retail settings as a whole. Many open questions
are waiting for an answer: What is the optimal way to personalize a customer’s
shopping experience? Can we think of novel ways to exploit the unique structure
of a topic-like model to gain actionable insights? Can we test these in practice?
How can we combine different sources of customer data, such as purchase, search,
and click data, to better understand customer behavior? What are optimal
product recommendations? These open research questions, tied to the recent
rapid technical developments, foreshadow an exciting time ahead of us that
paves the way for many ground-breaking developments. I feel both excited and
privileged to be a part in this.
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2
Model-Based Purchase Predictions for
Large Assortments
This chapter is based on Bruno J.D. Jacobs, Bas Donkers, Dennis Fok (2016),
“Model-Based Purchase Predictions for Large Assortments,” Marketing Science,
35 (3), 389–404.

2.1 I N T R O D U C T I O N

The ability to predict what a customer will purchase next is valuable in many
marketing applications and this holds especially true for online retailing. Ade-
quate predictions for the next products to be purchased enable online retailers
to: implement a product recommendation system; determine the positions of
products in the result of a customer’s search query; optimize the collection of
products to be displayed on a personalized landing page; or suggest products to
complement the contents of a customer’s shopping basket.

Examples of personalization in practice are Amazon’s “Customers Who Bought
This Item Also Bought” section, Apple’s iTunes Genius and the Netflix recommen-
dation system. There is also clear evidence that such personalized configurations
influence behavior (Ghose et al., 2014, Pan et al., 2007, Salganik et al., 2006). All
these applications have in common that they require a personalized selection
of products out of a potentially large assortment. Ideally, the selection contains
those products that are most likely to be of interest to the customer. Moreover,
the selection should be relatively small as the available space to show products is
often limited.

The effectiveness of personalization attempts crucially depends on the accu-
racy of the predictions. A complicating factor in purchase prediction is the fact
that the typical online retailer sells items from a very broad assortment to an
even larger customer base. Hence predictions should not only be accurate, but the
prediction method should scale to large applications as well (Naik et al., 2008).
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Additionally, in order to be useful in an online setting the predictions should be
available in near real-time. Obtaining predictions, and updating them as new
information comes in, should therefore be fast.

The typical data available at an online retailer for purchase prediction are the
customer purchase histories. In some cases additional customer characteristics
(e.g. demographics) are also available. However, on the product level character-
istics are often absent and if such product descriptions are available, it is not
obvious how to extract useful predictors from this information. In this chapter
we therefore focus on predicting purchase behavior based on purchase history
data, possibly complemented with customer characteristics.

Many online retailers predict a customer’s next purchase using collaborative
filtering algorithms, for example, by relying on counts of the co-occurrence of
items in purchase history data (Jannach et al., 2010, Liu et al., 2009). In such
a count-based approach a decision has to be made on how to measure the co-
occurrence of items, as one can count pairs, triplets, or even higher-order product
combinations. A choice for small sets of items results in information loss, i.e.
purchase patterns that span many products might not be easily identified. On
the other hand, for large combinations of products the matrix of co-occurrence
counts becomes very sparse, resulting in predictions that are based on just a
few matches in the customer base. Another challenge in collaborative filtering
algorithms is incorporating customer characteristics. One possible approach is to
partition the customer-base using such characteristics. However, this can only
be done for a couple of variables with a limited number of levels, as otherwise
sample sizes per subgroup become too small.

In contrast, model-based approaches to predict individuals’ choices have a
long history in marketing (Guadagni and Little, 1983, McFadden, 1986, Wagner
and Taudes, 1986, Fader and Hardie, 1996) and such methods are well-suited to
include customer characteristics. However, the usual implementations of these
models tend to break down in the typical online retail setting, where a wide
variety of products is sold to a large number of customers (Naik et al., 2008). One
way to make methods more scalable is to consider only a subset of the data in
terms of customers and/or products (Zanutto and Bradlow, 2006). Clearly, this is
not a viable solution if the aim is to predict purchase behavior for each individual
customer across the entire product assortment.

In this chapter we try to bridge the gap between retail practice and marketing
academia by discussing model-based prediction methods that do work in the
context of large assortments. By developing such methods we open up an avenue
for future research on marketing interventions in large-scale assortments, for
example on the effectiveness of product recommendations, extending the work
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2. Model-Based Purchase Predictions

of Bodapati (2008). Note that this would not be feasible with the heuristic,
count-based approaches currently used in practice. We consider two model-
based approaches. In addition, we present (an implementation of) a count-
based collaborative filter and a scalable version of a discrete choice model that
will serve as benchmarks. We compare the methods on their (i) heterogeneity
assumptions, (ii) estimation complexity, (iii) memory requirements for real-time
online predictions, and (iv) predictive performance.

The first method we present is a novel approach inspired by topic models
as used in the text modeling literature. Traditionally, a topic model describes a
document by relating the words in the text to latent topics. We adapt this class
of models to the purchase prediction context: Words become product purchases,
a document is a customer’s purchase history, and a topic represents a certain
preference for products in the assortment. Given that the word “topic” does
not make much sense in a retailing context, we refer to topics as motivations.1

Naturally, customers can have more than one motivation, just like a document
can cover multiple topics. This idea leads to a class of models that can describe
and predict customer purchase behavior in large assortments.

The most frequently used topic model is latent Dirichlet allocation (LDA)
by Blei et al. (2003). This model has been used to analyze very large text
corpora (Ramage et al., 2010, Mimno et al., 2012), showing that LDA provides
the necessary scalability. In contrast to the text modeling literature, where
documents tend to contain many words, customers often have only a couple
of purchases, or they might even be entirely new to the retailer. Given such
limited information per customer, we need to formally estimate the population-
level a-priori probabilities of having particular motivations. This extends the
text modeling implementation of LDA, where these probabilities are typically
considered to be known, or at best calibrated using heuristics (Wallach et al.,
2009, Asuncion et al., 2009).

To account for observed heterogeneity, we extend LDA by relating customer
characteristics to the a-priori motivation probabilities. This can capture hetero-
geneity that is related to variables such as referrer site, demographics, or other
customer characteristics. Most likely this increases the predictive power of the
model, in particular for the customers with few or no observed purchases. We
refer to this model as LDA-X.

The next method we consider is a mixture of Dirichlet-Multinomials (MDM)
(Jain et al., 1990). MDM specifies individual-specific probability vectors that
contain a customer’s purchase probabilities over all products in the assortment. In

1 While intuitively plausible, we do not claim that the actual decision process is driven by these
motivations.
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turn, these probability vectors follow a discrete mixture of Dirichlet distributions.
MDM has previously been applied in marketing (Jain et al., 1990), but to the
best of our knowledge never to a large product assortment. Although, in theory
customer characteristics can also be included in MDM we will argue that the
resulting model will no longer be feasible in terms of estimation complexity, given
the setting of our application.

The predictive performance of LDA(-X) and MDM is compared to that of
a count-based collaborative filter and a discrete choice model. We assess the
predictive performance using data from an online retailer. For each method, we
create customer-specific prediction sets that contain the products that are most
likely to be purchased. These sets are next matched with hold-out purchase
data. To gain more insight into the differences between the methods, we also
consider the predictive performance for groups of customers that differ in the
length of their observed purchase history. Furthermore, in a setting where repeat
purchases are frequently made, e.g. fast moving consumer goods, performing well
by correctly predicting frequently purchased products or repeat purchases might
not be too difficult. Such recommendations might even be perceived as trivial
or boring (Fleder and Hosanagar, 2009). We therefore also study the predictive
performance for unexpected products, which we define as products that have not
previously been purchased by the customer and are in the tail of the assortment.

The remainder of this article proceeds as follows: In Section 2.2 we present
the methods used in this research and discuss their heterogeneity assumptions
and scalability. Technical details are available in appendices. Subsequently,
we apply the methods to data of an online retailer. An overview of this data is
provided in Section 2.3 and the results are reported in Section 2.4. To conclude, we
summarize our findings and provide directions for future research in Section 2.5.

2.2 M E T H O D S

In this section we present the prediction methods we consider in this chapter.
First, we introduce two model-based prediction methods, LDA(-X) and MDM,
that infer latent customer traits from purchase data. We compare these methods
on their heterogeneity assumptions and estimation complexity. Next, the two
benchmark methods are introduced: a set of collaborative filters (CF) and a model
built on discrete choice methodology (DCM) that captures customer heterogeneity
through constructed, but observed predictor variables.

Subsequently, all methods are compared on their suitability to update pre-
dictions in a real-time setting. Finally, we discuss how we assess the quality of
predictions.

All methods share the following notation: The products from the J-dimensional
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2. Model-Based Purchase Predictions

assortment are numbered j = 1, . . . , J. For each customer i = 1, . . . , I we observe
ni product purchases from this assortment. The purchase history of customer i
is denoted by the vector yi =

[
yi1, . . . , yini

]
, where yin ∈ {1, . . . , J} represents the

n-th purchase of customer i. In addition we have customer-level characteristics
coded in the K-dimensional vector xi = [xi1, . . . , xiK ]′. We combine the purchase
histories in Y= {y1, . . . ,yI } and the predictor variables in X= {x1, . . . ,xI }.

2.2.1 Latent Dirichlet allocation

Our first model is inspired on topic models. The key idea underlying our appli-
cation of these models to the context of purchase history data is that customer
purchases are driven by a (small) set of latent motivations (the topics). Each
motivation then drives preferences for a subset of products in the assortment,
for example, a preference for eco-friendly products, for low-fat products, or for
products for the sensitive skin.

In general, customers are likely to be driven by different motivations over
time and even within a single purchase occasion. Additionally, the same product
purchased by different customers may be driven by different underlying moti-
vations: A movie can be purchased by a fan of the lead actor, or by a customer
that is fond of the movie’s genre. These features are embedded in topic models, in
which customers may have multiple motivations and products may be associated
with more than one motivation.

The basis for our method is latent Dirichlet allocation (LDA) introduced by
Blei et al. (2003). LDA has been proven to scale to applications well beyond the
dimensions of a typical online retailer. For example, it has been used to analyze
over 8 million posts on Twitter that contain words from a vocabulary of more
than 5 million entries (Ramage et al., 2010), or for the analysis of 1.2 million
out-of-copyright books (Mimno et al., 2012). Below, we first present the details of
our adaptation of LDA in the context of predicting customer purchase behavior.
Next, we extend LDA by including customer-level predictor variables.

In LDA each latent motivation m = 1, . . . , M is represented by a probability
vector φm over the complete J-dimensional assortment. Given that a purchase is
driven by motivation m, the probability of buying product j is simply φm j. The
motivation-specific probability vectors are distributed as

φm|β∼DirichletJ (β). (2.1)

A priori there is no reason to favor one product over another in a motivation.
This is reflected in the parameterization of β, where we set each element equal
to a common value β0. This value determines whether the distribution in (2.1)
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tends to favor more narrow (β0 close to zero) or more broad (large β0) motivations
(Wallach et al., 2009).

Even though each purchase is driven by a single motivation, a customer’s
entire purchase history may be driven by multiple motivations. This variation is
described by an individual-specific discrete mixture θi over the M motivations.
The probability that a product purchase of customer i is driven by motivation m
is then given by θim. These probabilities differ across customers and are modeled
as

θi|α∼DirichletM(α). (2.2)

Here, α is an M-dimensional vector that captures the relevance of each mo-
tivation across the customer base. The expected value of the probability that
motivation m drives a purchase equals

E[θim|α]= αm∑M
l=1αl

. (2.3)

Therefore, the larger the value of αm, the more likely it is that a customer will
make a purchase driven by motivation m.

The last step is to link motivations to actual purchases. We denote by zin ∈
{1, . . . , M} the actual motivation that drives purchase yin. As motivations are
latent, we have to account for all possible motivations to obtain the marginal
probability that customer i will purchase product j, resulting in

Pr
[

yin = j|{φl
}M

l=1 ,θi

]
=

M∑
m=1

Pr
[

yin = j|zin = m,
{
φl

}M
l=1

]
Pr[ zin = m|θi ]

=
M∑

m=1
φm jθim.

(2.4)

In the topic modeling literature it is common practice to determine the pa-
rameters of the Dirichlet distributions α (for θi) and β0 (for φm) by means of
heuristics, rather than formally inferring their values from available data (Wal-
lach et al., 2009), for example, imposing α= 50/M (Griffiths and Steyvers, 2004)
and β0 = 0.01 (Steyvers and Griffiths, 2013), or by applying a grid search for α
and β0 (Asuncion et al., 2009). These heuristics are not directly applicable in
our setting as they have been designed for text modeling. Given that purchase
histories tend to be much shorter than documents, we expect the LDA predictions
to be more sensitive to the values of α and (to a lesser degree) of β0. We therefore
extend the common LDA model and place proper prior distributions on both
parameters and formally estimate α and β0 in a Bayesian setting.
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2. Model-Based Purchase Predictions

We specify a log-normal distribution for αm, that is, we define

log(αm)= γm, (2.5)

and set a normal prior for γm. We set the mode of the log-normal distribution
equal to M−1, which is within the range of values frequently used in the literature
on text modeling, and place 10% of its probability mass above 1.2 This prior
specification favors θi-vectors that allocate the majority of the probability mass to
a small number of motivations, while it still allows for more uniformly distributed
θi-vectors. Similarly, we place a log-normal distribution on β0 with its mode
equal to 0.01 and 10% of its probability mass above 1. This specification supports
φm-vectors where only a few products from the assortment receive significant
probability mass, representing fairly specific motivations. Still, this prior is
rather uninformative and broader motivations that spread the probability mass
more equally over the assortment remain quite likely.

These prior specifications also allow us to easily extend LDA by including
customer characteristics, coded in xi. Such variables are likely to improve the
predictive performance of the model. We extend the log-linear specification for
αm in (2.5) to αim as follows:

log(αim)= γm +x′
iδm. (2.6)

This links customer preferences – represented by the likelihood of each of the
motivations – to the additional customer-level information, resulting in LDA-X.
To illustrate the effect of this specification on the distribution of θi consider the
expected value of θim, which gives the probability that a typical customer with
characteristics xi makes a purchase driven by motivation m:

E[θim|αi]= αim∑M
l=1αil

= exp(γm +x′
iδm)∑M

l=1 exp(γl +x′
iδl)

. (2.7)

The δm parameters capture the dependence of the probability that motivation
m is used, on the customer-specific variables xi. The prior distribution of γm and
δm can only be sensibly determined if the level and scale of the xi variables are
known. We therefore standardize the customer-level variables such that they
have mean zero and unit variance. Given this scale, we assume that all elements
in δm are normally distributed with zero mean and variance equal to 0.04. This
corresponds to a prior 95% confidence interval that is approximately equal to
[−0.4,+0.4]. Note that this prior distribution is chosen to be relatively narrow on

2These two conditions implicitly identify the two parameters of the log-normal distribution.
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purpose, as the effect of δm on αim is exponential. As xi is mean-centered, we
use the same prior for γm as in LDA.

To obtain customer-specific predictive distributions, we condition on the model
structure of LDA. In particular, given the model parameters α, β0 and the latent
purchase assignments Z, the predictive distribution for a new purchase ỹin can
be shown to equal (Griffiths and Steyvers, 2004):

Pr
[

ỹin = j|Z,α,β0,Y
]

=
M∑

m=1
Pr

[
ỹin = j|z̃in = m,Z,β0,Y

]
Pr[ z̃in = m|zi,α ]

=
M∑

m=1
E
[
φm j|Z,β0,Y

]
E[θim|zi,α ]

=
M∑

m=1

(
β0 + cMJ

m j

Jβ0 +∑J
p=1 cMJ

mp

)(
αm + cIM

im∑M
l=1αl + cIM

il

)
,

(2.8)

where cMJ
m j is the number of times a purchase of product j is driven by motivation

m and cIM
im is the number of purchases made by customer i that are driven by

motivation m. To obtain the predictive distribution for the LDA-X model one
simply replaces α with αi in (2.8).

2.2.2 Dirichlet-Multinomial models

The Dirichlet-Multinomial (DM) model (Jeuland et al., 1980, Goodhardt et al.,
1984) is a known model-based approach to capture heterogeneity in purchase
behavior. Applications of this model can be found in Grover and Srinivasan
(1987), Fader (1993) and Fader and Schmittlein (1993). In this model, each
customer is endowed with an individual-specific vectorϕi containing the purchase
probabilities for each product in the J-dimensional assortment, where

∑J
p=1ϕip =

1. The probability that customer i purchases product j at a specific purchase
occasion n is given by:

Pr
[

yin = j|ϕi
]=ϕi j. (2.9)

Large values for the purchase probability ϕi j imply that customer i is likely to
buy product j. In the DM model the customer-specific ϕi-vectors are assumed to
arise from a single Dirichlet distribution:

ϕi|β∼DirichletJ (β). (2.10)

The β-vector describes the overall purchase behavior in the customer base: If
product j is frequently purchased, β j will have a large value relative to the other
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values in β and vice versa.

The original DM model has been extended such that the probability vectors
ϕi originate from a finite mixture of Dirichlet distributions (Jain et al., 1990),
not from a single Dirichlet distribution. This extension is known as a mixture of
Dirichlet-Multinomials (MDM).

In MDM, each customer is assigned to one of M segments and each segment is
characterized by its own Dirichlet distribution. Given that customer i is allocated
to segment m, denoted by si = m, the customer’s purchase probabilities ϕi are
distributed as

ϕi|si = m,βm ∼DirichletJ (βm). (2.11)

The βm-vectors are segment specific, describing the distribution of the purchase
probability vectors for customers in segment m. Customers are hence expected to
be similar, although not identical, within a segment, but rather different across
segments.

Segment membership in MDM is described by an M-dimensional Categor-
ical distribution with probability vector π. The element πm gives the a-priori
probability that a customer is a member of segment m, that is,

Pr[ si = m|π ]=πm. (2.12)

As we consider MDM within the Bayesian paradigm we also specify prior
distributions over π and the βm-vectors. For π it is natural to favor no seg-
ment over any other a priori, therefore we use a uniform distribution over the
(M −1)-dimensional simplex. This corresponds to an M-dimensional Dirichlet
distribution, parameterized by a vector of ones. For each βm j we use a log-normal
prior distribution with its mode located at 0.01 and 10% of the probability mass
located above 1. This specification allows for ϕi-vectors that allow many products
to be purchased with a large probability, but it favors segments of customers who
purchase from a more limited subset of the assortment.

Similar to the approach in LDA, we obtain customer-specific predictive distri-
butions of a new purchase ỹin conditional on the data, parameters, and segment
allocations. In MDM this requires a prediction of segment membership of the
customer, combined with the purchase probabilities, conditional on segment

17



membership:

Pr
[

ỹin = j|s\i,
{
βl

}M
l=1 ,yi

]
=

M∑
m=1

Pr
[

ỹin = j|si = m,βm,yi
]
Pr

[
si = m|s\i,

{
βl

}M
l=1 ,yi

]
=

M∑
m=1

E
[
ϕi j|si = m,βm,yi

]
Pr

[
si = m|s\i,

{
βl

}M
l=1 ,yi

]

=
M∑

m=1

(
βm j + cIJ

i j∑J
p=1βmp + cIJ

ip

)
Pr

[
si = m|s\i,

{
βl

}M
l=1 ,yi

]
,

(2.13)

where Pr
[

si = m|s\i,
{
βl

}M
l=1 ,yi

]
is specified in Appendix 2.A (see equation (2.32))

and cIJ
i j equals the number of times customer i has purchased product j. If i

is a new customer cIJ
i j = 0 for all j by definition. Note that both components in

(2.13) depend on the customer’s purchase history, unlike LDA where only the
motivation probabilities are customer specific.

2.2.3 Model inference

The predictive distributions specified above are conditional on the number of
segments/motivations M, the model parameters, and segment/motivation allo-
cations to customers/purchases. For a given number of M, we rely on Bayesian
methodology to infer the model parameters and latent variables of the models.
Direct inference on the posterior distribution is not tractable and therefore we de-
rive Markov Chain Monte Carlo (MCMC) methods to generate samples from the
posterior distribution. To be specific, we use a random walk Metropolis-Hastings
within Gibbs sampler to draw samples from the target posterior distribution. The
predictive distributions can then be obtained by averaging over these draws.

The full posterior of LDA(-X) is given by:

p(Z,
{
φl

}M
l=1 ,β0, {θi}I

i=1 ,γ, {δl}M
l=1 |Y,X), (2.14)

where {δl}M
l=1 is only relevant when customer characteristics X are included.

Straightforward use of a Gibbs sampler for this posterior distribution is very
inefficient. This is the result of a strong dependence between the latent moti-
vation assignments Z on the one hand and the parameters φm and θi on the
other hand. A Gibbs sampler would therefore require an excessive number of
draws to properly explore this posterior. Instead, we take advantage of the fact
that the Dirichlet distribution is the conjugate prior for a Categorical random
variable. This allows us to marginalize over the φm and θi parameters, while
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retaining closed-form expressions for the conditional distributions of the other
parameters in LDA. By doing so we substantially improve the mixing properties
of the Gibbs sampler (Griffiths and Steyvers, 2004). Hence, we examine the
so-called collapsed posterior distribution of LDA(-X), defined as:

p(Z,β0,γ, {δl}M
l=1 |Y,X). (2.15)

The elements of Z are sampled using a Gibbs sampler, while for the other param-
eters we implement a random walk Metropolis-Hastings sampler.

The set-up for inference in MDM is very similar to LDA(-X). The complete
posterior distribution is given by:

p(s,
{
ϕi

}I
i=1 ,

{
βl

}M
l=1 ,π|Y). (2.16)

Again, we marginalize over the discrete distributions ϕi and π, resulting in a
collapsed posterior distribution of MDM:

p(s,
{
βl

}M
l=1 |Y). (2.17)

Here the segment allocations s can be sampled in a Gibbs step, while the βl

parameters require a random walk Metropolis-Hastings sampler.
LDA(-X) and MDM are both members of the general class of mixture models.

This class of models is well known to be susceptible to end up in an area around a
local maximum of the posterior distribution. As is common in this literature, this
risk is reduced by using multiple random starts (Wedel and Kamakura, 2000,
Train, 2009). For each value of M, we consider 250 different random starts. We
reduce the computational burden of this approach by evaluating each random
start at several intermediate steps of the estimation routine. At each step, we
continue only with the best performing candidates. The performance is measured
by the likelihood that results from the model’s predictive distributions, averaged
over purchases in a model-selection data set. This measure is closely related to
the goal of predicting a new purchase as accurately as possible.

The same performance measure is also used to determine the number of
motivations (for LDA(-X)) or segments (for MDM). In particular, for each model
we increase the value of M until we find a decrease in the average predictive
likelihood of the model-selection data.3 More details on the estimation routines
are provided in Appendix 2.A.

3In order to validate this approach we also consider the models for larger values of M. The
predictive performance stabilized at the values obtained with the selected value of M.
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2.2.4 Comparison of LDA(-X) and MDM

Although the structures of LDA(-X) and MDM might appear quite similar at first
sight, these models differ fundamentally on various grounds. In this subsection
we first discuss this difference in terms of customer heterogeneity. Next, we
consider the estimation complexity of the LDA(-X) and MDM models.

Heterogeneity assumption

MDM assumes that heterogeneity in purchase behavior can be described by seg-
menting the customer base in groups of customers. Customers across segments
are expected to be dissimilar, while customers within a segment are expected
to be rather similar. Hence, similarity between customers is mainly driven by
segment membership. In LDA(-X) purchase behavior is described by motivations,
where each motivation represents a preference for certain products in the as-
sortment. Heterogeneity in purchase behavior is described by customer-specific
probabilities for these motivations. This leads to a model where the purchases of
a single customer are driven by multiple motivations. Here similarity between
customers is motivation specific. Customers can have very similar purchase
behavior for one set of products – corresponding to a shared motivation – and be
very different for a set of products that belong to another motivation.

Which heterogeneity structure fits best depends on the specific situation. If
customers typically have one or very few motivations, grouping customers in
segments might be beneficial. If many combinations of motivations are present,
the continuous mixture of motivations in LDA(-X) will be more parsimonious.
Therefore, if a retailer has many different (latent) subcategories in its product
assortment, and preferences across these subcategories vary rather indepen-
dently across individuals, it is likely that the heterogeneity can be specified more
parsimoniously by LDA(-X).

Although MDM assumes a hard clustering of customers into segments, one
will use posterior segment probabilities to eventually make predictions. This
will typically lead to a form of soft clustering, where a weighted combination
of different segments is used. This brings the heterogeneity structure of MDM
closer to that of LDA(-X). As we observe more purchases, the posterior segment
probabilities in MDM will of course become more and more extreme, and in the
end this converges to strictly assigning a customer to a single segment.

Estimation complexity

The different heterogeneity assumptions underlying LDA(-X) and MDM have a
large impact on estimation complexity through the number of customer-specific
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parameters. In MDM each customer is endowed with a distribution over the
J-dimensional assortment, while in LDA(-X) a customer is described by a proba-
bility distribution over the M motivations, where M is generally much smaller
than J. Even though we marginalize over these customer-specific distributions,
this still affects the scalability of the models. Table 2.1 summarizes for each
model the parameters that need to be sampled to infer the model structure after
marginalization. We differentiate between the sampling technique required,
as Gibbs steps tend to be much faster and have better mixing properties than
Metropolis-Hastings steps (Damien et al., 1999).

TABLE 2.1 – Parameters to sample in the MCMC estimation procedures
across different models.

Gibbs sampler Metropolis-Hastings sampler
Model Parameters No. parameters Parameters No. parameters

MDM s I {βl }M
l=1 M× J

LDA Z N β0, γ 1+M
LDA-X Z N β0, γ, {δl }M

l=1 1+M× (1+K)

where
I: number of customers M: number of segments/motivations
J: assortment size K : number of predictor variables in xi
N: total number of purchases

In LDA(-X) we need as many motivation allocations as purchases (N in total),
whereas for MDM we only need to sample one segment allocation per customer (I
in total). Although the number of allocations is larger in LDA(-X), this does not
imply that the total allocation in LDA(-X) is computationally more demanding.
The sampling step for each motivation assignment in LDA(-X) involves only
elementary arithmetic operations, while for each segment allocation in MDM
we have to evaluate complex Gamma functions. It is difficult to exactly quantify
the difference in computational complexity as it also depends on the (latent)
structure in the data, but we anticipate that MDM will be slightly more complex
for these Gibbs sampling steps.4

The remaining model parameters are sampled using Metropolis-Hastings
steps and each of these steps is computationally demanding. For LDA we sample
1+M parameters and for LDA-X this increases to 1+M × (1+K) parameters.
These numbers are in sharp contrast to MDM in which M × J parameters are
sampled. This renders MDM much more demanding in terms of estimation time,

4More details on the required sampling steps can be found in Appendix 2.A.
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as the assortment size J is large. This is the price that has to be paid for the
many degrees of freedom per customer. The number of Metropolis-Hastings
steps in LDA(-X) is largely insensitive to the size of the assortment, the number
of customers, and the number of purchases. In MDM, on the other hand, the
number of Metropolis-Hastings steps linearly increases with the assortment size.
This limits the scalability of MDM, which is why we can only extend LDA by
including observed heterogeneity through xi.

2.2.5 Benchmark methods

In this section we present the two benchmark methods to which we will compare
the predictive performance of LDA(-X) and MDM. The first benchmark is a
collaborative filter while the second is built on standard discrete choice modeling.

Collaborative filtering

A collaborative filter is a deterministic algorithm that predicts purchases by
matching customers to each other based on purchase histories. There are many
possible ways to implement a collaborative filter. Details of the actual implemen-
tations used in industry are not common knowledge. Therefore, below we develop
our own implementation of a collaborative filter.

Ideally, a focal customer is matched to customers who purchased the focal cus-
tomer’s previously purchased products and at least one additional item. However,
such a matching on the complete purchase history is in general not feasible due
to the curse of dimensionality; the larger the purchase history, the less likely it
matches with other customers’ histories.

We alleviate this curse of dimensionality by instead matching on parts of the
purchase history. First, for each customer i we replace the complete purchase
history vector yi by the set of unique sorted subvectors of length k that can be
created from yi. We denote this set of vectors by Hk

i . For example, for k = 2 a
customer’s purchase history is replaced by all the unique sorted pairs that can
be formed using the purchase history, so yi = [1,1,1,2,3] would be reduced to the
set H2

i containing the pairs (1,1), (1,2), (1,3), and (2,3).5 Next, for each subvector
in this set we match the focal customer against all customers. If k is relatively
small, this will result in many more matches compared to a matching on the
complete purchase history. This solves the curse of dimensionality problem at
the cost of a loss of information.

5The use of unique sorted pairs implies that (1,1) occurs in H2
i only once and that H2

i contains the
pair (1,2) and not (2,1).
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2. Model-Based Purchase Predictions

We refer to a subvector of a customer’s purchase history as a product com-
bination, denoted by h, and c(h) gives the number of customers who purchased
product combination h, that is,

c(h)=
I∑

i=1
I
[
h ∈ Hdim(h)

i

]
, (2.18)

where dim(h) denotes the dimension of h and I[A] equals 1 if condition A is true
and 0 otherwise. To obtain purchase predictions for customer i, using product
combinations of size k, we score all products in the assortment based on their co-
occurrence with each of the product combinations in Hk

i . For product combination
h ∈ Hk

i the prediction score for product j equals the number of customers who
purchased j and the products in h, normalized by the sum of the score for h
and any product p = 1, . . . , J. This normalization ensures that each product
combination h ∈ Hk

i receives the same weight, independent of the prevalence of h
in other customers’ purchase histories. The final product score is the sum of the
normalized scores across all h ∈ Hk

i . Formally, for combination size k, the overall
score of product j for customer i equals

sk
i j =

∑
h∈Hk

i

c(〈h, j〉)∑J
p=1 c(〈h, p〉) , (2.19)

where the arguments between angle brackets represent a single product combi-
nation of size k+1.6 Hence, to obtain product scores sk

i j, by matching customers
based on purchase histories that are reduced to combinations of size k, we need
the summary of all purchase histories reduced to product combinations of size
k+1. So, matching customers on pairs of products requires counts over triplets
of products as input for the purchase predictions.

The product ranking for each customer is constructed by sorting the products
on the product score defined above.7 This ranking obviously depends on k. In
our application we consider collaborative filters with two combination sizes, k = 1
and k = 2, denoted by CF-1, and CF-2 respectively. Using k = 1, customers are
matched on the presence of single products in their purchase history. For k = 2
customers are matched on the presence of pairs of products in their purchase
history. Larger product combinations are not desirable in our application, both in
terms of computational feasibility and the degree of sparseness in these larger

6For k > 0 it is possible that a product combination h is never purchased with another product,
i.e. for all p we have

∑J
p=1 c(〈h, p〉) = 0 in (2.19). If a customer’s purchase history contains such a

combination, we regress to a lower value of k for this customer.
7In the rare case that two or more products receive the same score, they are ranked according to

their order in the data set, which is alphabetic.
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combinations.

Discrete choice models

Random utility based multinomial choice models (Maddala, 1983, McFadden,
1986) have been extensively used in marketing to model discrete choices from
a set of given alternatives. Implementing a traditional discrete choice model
that directly uses purchase history data from a large assortment, however, is not
feasible. Such a model would have to predict purchases for J products based on
J predictor variables, where each predictor variable describes whether a product
was purchased by the customer in the past, or not. This model specification would
require the simultaneous estimation of J(J−1) parameters, which is infeasible
from a computational perspective and will also likely result in identification
issues due to sparse data. Hence, traditional discrete choice models do not scale
well when the number of products J becomes large.

The benchmark discrete choice model that we propose, resolves these prob-
lems by constructing the predictor variables in a smart way, enabling a huge
reduction in the number of parameters to be estimated. To get there, we first
review the structure of the regular logit model.

In the binary logit model, the probability that customer i purchases product j
is specified by:

Pr[yin = j]= exp(θi j)
1+exp(θi j)

.

Here, θi j represents the log odds of having purchased product j. Ignoring het-
erogeneity among customers for the moment, these odds will largely be driven
by the log of the number of (unique) products purchased by customer i, denoted
by ui, and the relative attractiveness of product j. We capture the relative at-
tractiveness of product j using the log odds of this product based on the observed
product-purchase frequencies in the purchase data at the customer-base level.
This leads to the following expression for the log odds of customer i buying
product j:

θi j =α+β log(ui)+γ log(odds j). (2.20)

The product ranking resulting from this specification will be the same for all
customers as the product attractiveness is defined at the customer-base level, not
the customer level. To obtain predictions that do differ across customers, we need
to introduce heterogeneity in the model. To achieve this without resorting to a
model with unobserved heterogeneity, as in LDA(-X) or in MDM, or requiring
an excessive number of parameters, as in a regular choice model implementa-
tion, we construct variables at the customer-product level that characterize the
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2. Model-Based Purchase Predictions

attractiveness of product j for customer i using the available purchase history
data.

The first step is to characterize customers based on their purchase history. We
describe each customer’s purchases by vi, a J-dimensional vector containing the
proportions of each product in the customer’s purchase history, with

∑J
p=1 vip = 1.8

We then perform k-means clustering on these proportion vectors using M clusters.
Customer heterogeneity can now be characterized by a customer’s similarity with
respect to each of the cluster means. We define the similarity of customer i with
cluster m as:

wim = 1
1+||vi − v̄(m)|| ,

where ||vi − v̄(m)|| measures the Euclidean distance between customer i’s propor-
tion vector and the m-th cluster mean v̄(m).

We can now introduce customer-level heterogeneity in a parsimonious way by
combining the cluster-level product attractiveness and the similarity measures
wim, that capture the relevance of each cluster for each customer. In particular,
we can specify the log odds of customer i purchasing product j as:

θi j =α+β log(ui)+
M∑

m=1
log(om j)(γ1m +γ2mwim), (2.21)

where om j denotes the odds for product j that corresponds to the purchase propor-
tions in cluster mean v̄(m). Note that in this model specification, the parameters
are not product specific, as the relative attractiveness of each product is captured
through the summary of the purchase behavior of the various clusters.9

Maximum Likelihood estimation of this parsimonious discrete choice model
(DCM) is relatively straightforward and including the other available predictor
variables is therefore feasible. To do so, we extend the specification in (2.21) to
include interactions with the customer-specific predictor variables in xi, resulting
in:

θi j =α+β log(ui)

+
M∑

m=1
log(om j)

(
γ1m +γ2mwim +

K∑
k=1

xik(δ1km +δ2kmwim)

)
.

(2.22)

8For smoothing purposes we add one pseudo observation to each customer’s purchase history that
is equal to the relative market shares of each product.

9Model specifications where the coefficients were allowed to be product specific suffered from
severe identification problems in our application as the number of parameters is increased by a factor
J.
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2.2.6 Real-time online predictions

For each of the prediction methods, it is straightforward to construct a product
ranking over the assortment for each individual customer. In the context of
online retailing it is important to continuously update this ranking based on
the customer’s new purchases. Re-estimating the (population-level) parameters
can be done offline after a substantial amount of new data has been collected.
However, updating the predictions for a specific customer should be feasible
online. This allows the retailer to update predictions while customers select
products during a shopping trip. For all methods, the real-time update step itself
consists of simple arithmetic operations with the details provided in Appendix 2.B.
A possible bottleneck could be the amount of data that has to be available,
retrieved and processed to enable the updates. In the top half of Table 2.2 we
display the number of elements needed in order to update a single customer’s
product ranking in real-time, for each new product purchase that is observed.
The bottom half of the table provides information on the amount of data that
needs to be stored for the entire customer base to enable the aforementioned
real-time update step.

TABLE 2.2 – Comparison of memory requirements for real-time updating.

No. selected data elements for each real-time update step

Retailer context
I J ni M LDA(-X) MDM CF-2 DCM

10,000 500 10 20 1.00 ·104 1.00 ·104 5.51 ·103 1.01 ·104

100,000 5,000 20 40 2.00 ·105 2.00 ·105 1.05 ·105 2.00 ·105

1,000,000 50,000 40 80 4.00 ·106 4.00 ·106 2.05 ·106 4.00 ·106

No. stored data elements for the real-time update step

Retailer context
I J N/I M LDA(-X) MDM CF-2 DCM

10,000 500 10 20 2.10 ·105 3.10 ·105 6.77 ·107 1.10 ·105

100,000 5,000 20 40 4.20 ·106 6.20 ·106 6.30 ·1010 2.20 ·106

1,000,000 50,000 40 80 8.40 ·107 1.24 ·108 6.26 ·1013 4.40 ·107

where
I: number of customers M: number of segments/motivations/clusters
J: assortment size ni : number of purchases made by customer i
N: total number of purchases

The first row in Table 2.2 mimics the context of our application: A medium-
sized online retailer with an assortment of 500 products, 10,000 customers, and on
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2. Model-Based Purchase Predictions

average 10 purchases per customer. The number of segments/motivations/clusters
(M) is set to 20, which is slightly larger than our empirical findings in this chapter,
and we consider our implementation of a collaborative filter with combination
size k = 2. In this context, the number of elements that have to be selected for
the real-time update step is of the same order of magnitude across the prediction
methods. The storage requirements, on the other hand, are of a different order
of magnitude, i.e. millions for the collaborative filter versus thousands for the
model-based approaches. However, for these settings all methods can easily be
used in practice.

To illustrate the scalability of the various methods we increase the size of the
assortment and customer base by a factor of ten and we double both the average
purchase history size and M. Naturally, all memory requirements increase in
this setting, but the rate of growth differs significantly. For the collaborative filter
the storage requirements increase approximately by a factor of thousand, while
the model-based approaches only increase by a factor of twenty. The same holds
for the third context, in which we again increase the dimensions. This illustrates
that the dimension reduction achieved by the model-based approaches ensures
that they are suitable for real-time predictions in large scale applications, even if
the number of underlying dimensions grows with the amount of available data.
In addition, it is not feasible to use a combination size larger than k = 2 in our
implementation of a collaborative filter, as in that case the storage requirements
would increase even faster. For very large applications, one might even need to
rely on the simpler CF-1, which only matches purchase histories on the presence
of single products.10

2.2.7 Performance measures

To evaluate the methods for a range of different customization applications, we
consider prediction sets of different sizes. A prediction set of size S contains
the S highest ranked products for a customer. In case one is interested in
recommending a single product, the prediction set of size 1 is most relevant.
However, when customizing a page with search results the prediction set of size
10 may be more relevant. We assess the quality of a prediction set by matching
its contents against hold-out purchase data. These purchases are denoted by y′

i
for customer i and the number of unique purchased products in y′

i is given by u′
i.

We denote a complete ranking of all J products for customer i by the vector
ri. The first element, r i1, is the product that has the highest predicted purchase
probability for the model-based rankings, the highest product score for the col-

10In our application, this simpler collaborative filter performs systematically worse than CF-2.
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laborative filters, and the highest odds for DCM. The quality of a prediction
set of size S can be measured by the number of products in the prediction set
that overlap with the hold-out purchases:

∑S
s=1 I

[
r is ∈ y′

i
]
. This number should

be seen relative to the maximum number of hits possible in order to obtain a
hit rate that may be compared across prediction sets of different sizes. This
maximum is bounded by S, the size of the prediction set, and the number of
unique hold-out purchases u′

i. Hence, the hit rate for customer i could be defined
as:

∑S
s=1 I

[
r is ∈ y′

i
]
/min

(
S,u′

i
)
.

If a prediction set is presented to a customer in an application, such as a
recommendation list, the positions within the set are also of importance (Xu
and Kim, 2008). We incorporate this notion in our hit rate by weighing the hits
according to their ranks. For the s-th ranked product in a prediction set of size S
this weight is specified as: w(s,S)= 1− s−1

S . Combining the above, we obtain our
final performance measure, the weighted hit rate:

hi(ri,S)=
∑S

s=1 I
[
r is ∈ y′

i
]
w(s,S)∑min

(
S,u′

i

)
s=1 w(s,S)

. (2.23)

2.3 D A T A

We apply the prediction methods to purchase data from a medium-sized online
retailer in the Netherlands.11 The data starts at the launch of the retailing plat-
form and it covers a period of approximately 67 weeks. The product assortment
primarily consists of non-food fast-moving consumer goods, such as detergents,
deodorants and shampoo. The assortment is complemented with a small selection
of high turnover products for infants and toddlers, such as diapers and baby food.
As a consequence, the data contains many repeat purchases.

Initially, the data contains 3,226 unique products IDs. These IDs correspond
to a very fine-grained classification, e.g. different package sizes of the same prod-
uct each receive a unique ID. We opt for a more coarse-grained classification and
combine products on the category-brand level. For example, different fragrances
of the same deodorant brand are aggregated to one category-brand combination.
This approach results in a total of 440 unique category-brand combinations. Ad-
ditionally, this aggregation step is applied to the customer orders: if an order
contains multiple products from the same category-brand, we consider this as a
single purchase from this category-brand. Finally, the category-brands that are
purchased five times or fewer across all purchases are removed from the data.

11The authors wish to thank Christian van Someren, former Managing Director of Truus.nl, for
kindly providing us this data.
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2. Model-Based Purchase Predictions

Below we will simply refer to the category-brand combinations as “products”.
After the aggregation steps the data contains 95,208 product purchases of 394
products made by 11,783 distinct customers.

We chronologically split the data in two parts: The first 80% of the purchases
are used as in-sample data, while the hold-out data comprises the last 20% of
the purchases. The hold-out data is used to assess the predictive performance
of the methods. This division mimics the setting of predicting future purchase
behavior. Subsequently, we split the in-sample data into an estimation and
a model-selection subset. We randomly select half of the customers from the
in-sample data and for each of these customers, a single product purchase is ran-
domly selected as model-selection data. The remaining in-sample data is used to
estimate LDA(-X), MDM, DCM, and to create the collaborative filters. The model-
selection data is used to determine the number of motivations/segments/clusters
(M) in LDA(-X), MDM and DCM respectively. Table 2.3 summarizes the three
subsets of the data, in terms of number of customers, unique products, and
number of product purchases.

TABLE 2.3 – Characteristics of the three subsets of the purchase data.

Subset Customers Unique products Purchases

Full data 11,783 394 95,208

Estimation data 8,831 393 71,346
Model-selection data 4,820 323 4,820
Hold-out data 3,745 369 19,042

It is quite likely that the type of customer acquired by the retailer changes
over time, for example due to (a shift in) brand awareness or the mix of advertising
channels that are used. Therefore, we investigate whether the customer’s time of
adoption at the retailer systematically shifts customer preferences. Model-free
evidence for such a shift is provided in Table 2.4, which shows the purchase
frequencies of the 10 most frequently purchased products in the estimation
data for the first 25% of the estimation customer base, the early adopters, and
similarly for the late adopters, the last 25% of the estimation customer base. The
ordering of the 10 products for early versus late adopters is not only different,
but the relative difference in purchase frequencies is quite substantial as well.
For example, the product ‘Baby/toddler nutrition – Olvarit’ is purchased more
than twice as often by early adopters relative to late adopters. In the tail of the
assortment such relative shifts may even be larger.
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TABLE 2.4 – Purchase frequencies of the 10 products that are most frequently
purchased in the estimation data by the early and late adopters, respectively.

Early adopters Late adopters
Rank Products % Products %

1 Diapers – Pampers 9.40 Diapers – Pampers 8.95
2 Baby/toddler nutrition – Nutrilon 5.20 Laundry – Ariel 4.73
3 Baby/toddler nutrition – Olvarit 4.65 Dishwashing – Dreft 3.70
4 Baby care – Zwitsal 3.65 Dental care – Oral-B 3.33
5 Laundry – Ariel 3.41 Baby care – Zwitsal 3.13
6 Paper towels – Page 3.01 Baby care – Pampers 3.00
7 Baby/toddler nutrition – Bambix 3.01 Baby/toddler nutrition – Nutrilon 2.79
8 Baby care – Pampers 2.14 Cleaning – Ambi Pur 2.04
9 Dishwashing – Dreft 2.07 Baby/toddler nutrition – Olvarit 2.02

10 Shaving – Gillette 1.95 Laundry – Lenor 1.98

This model-free evidence suggests that the predictive performance could be
improved by including customers’ time of adoption. We define the time of adoption
as the number of days between a customer’s first order, and the starting date of
the retailing platform. We take the natural logarithm of this variable to allow for
larger shifts in the preferences of customers acquired during the early stages of
the retailing platform. Finally, this variable is standardized using the mean and
variance in the in-sample data.

2.4 R E S U LT S

In this section we present the results of the prediction methods considered in
this chapter. First, for LDA(-X), MDM, and DCM we determine M, the number
of motivations, segments, and clusters respectively. Next, we focus on some
details of the model results to highlight the concepts that underlie LDA(-X)
and MDM. In this part we also illustrate how predictions are updated when a
new purchase is observed for a customer. Finally, we compare the prediction
methods by evaluating their predictive performance on the hold-out data, using
the weighted hit rate.

2.4.1 Model selection

In all model-based approaches we have to determine M: the number of motiva-
tions, segments, and clusters. We evaluate LDA(-X) for M = 3, . . . ,30 and MDM
for M = 1, . . . ,30, where MDM with M = 1 corresponds to the DM model. For
each of these model configurations (choice of model plus a value of M) we use
250 different random starts to avoid local maxima. Throughout the estimation
procedure the performance of each random start is measured by the average pre-
dictive likelihood for the model-selection data and, as discussed in Section 2.2.3,
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2. Model-Based Purchase Predictions

at several points during the procedure we drop the worst-performing starting
values (see Appendix 2.A). At the end of the estimation routine we use the param-
eter estimates that result from the random start that has the highest average
predictive likelihood. We evaluate DCM for M = 2, . . . ,30. To avoid local maxima
in the k-means algorithm used in DCM, we use 1000 different random cluster
initializations. For each value of M, the clustering that obtains the lowest within
cluster sum-of-squares is selected.

The average predictive likelihoods for the model-based approaches are dis-
played in Figure 2.1a. We find that for each method the average predictive
likelihood steeply increases for the first few values of M and then levels off for
larger values of M. This result indicates that choosing M too small likely impedes
performance more than choosing M too large. The average predictive likelihood of
LDA and LDA-X is similar, reaching a value of approximately 0.05 for the larger
values of M. MDM performs slightly better, reaching a value close to 0.055. DCM
performs similar and in between LDA(-X) and MDM, although its performance
fluctuates across values of M. Note that the average predictive likelihood is
merely an indicator for the actual predictive performance in our application,
as we will consider the rank assigned to purchased products to evaluate the
predictive performance and not the actual purchase likelihoods.

To determine the number of motivations and segments in LDA(-X) and MDM,
we select the first value of M for which the average predictive likelihood decreases
when M is increased by 1, i.e. we select the first local maximum. As the graphs
in Figure 2.1a stabilize after their first local maximum, this approach results in
a parsimonious, yet high performing model specification. Figure 2.1b shows the
differences in performance between subsequent values of M. The first negative
value – corresponding to a decrease in performance – is obtained at M = 14 for
LDA, M = 16 for LDA-X, and M = 12 for MDM. Hence, we select M = 13 for LDA,
M = 15 for LDA-X, and M = 11 for MDM. The average predictive likelihood is
more volatile across values of M for DCM, resulting in the first local maximum
for M = 4. In the spirit of our M selection criterion for LDA(-X) and MDM, we
instead select the smallest value of M that corresponds to a local maximum in
the range of the values of M where the predictive likelihood has leveled off. For
DCM, this happens at M = 14.

2.4.2 Model results for LDA(-X) and MDM

Both LDA(-X) and MDM require quite a large number of parameters to capture
the heterogeneity in preferences across the full assortment. For example, to
characterize purchase behavior across the segments/motivations the models use
M×J parameters. Clearly it does not make sense to display all these parameters.
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FIGURE 2.1 – Average predictive likelihood for the model-selection data as a
function of M.
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2. Model-Based Purchase Predictions

However, as LDA(-X) and MDM approach heterogeneity in a very different way,
it is interesting to consider some differences in the estimation results across the
models. In MDM heterogeneity is defined at the customer-segment level, while
LDA(-X) models heterogeneity through motivations, i.e. preferences for a set of
coherent products, with customers differing in the strength of these motivations.
To illustrate this difference, we display the 10 most likely products in the two
most likely segments/motivations for each model in Table 2.5.

TABLE 2.5 – The 10 most likely products in the two most likely motivations
(LDA and LDA-X) or segments (MDM).

LDA Motivation 1 (Probability 0.21) Motivation 2 (Probability 0.12)
M=13 Product % Product %

1 Diapers – Pampers 20.25 Shampoo – Andrelon 3.86
2 Baby/toddler nutrition – Nutrilon 19.13 Paper towels – Page 3.47
3 Baby/toddler nutrition – Olvarit 15.63 Laundry – Ariel 2.94
4 Baby/toddler nutrition – Bambix 9.87 Cleaning – Glorix 2.82
5 Baby care – Zwitsal 7.77 Laundry – Robijn 2.79
6 Baby care – Pampers 4.49 Conditioner – Andrelon 2.40
7 Pacifiers – Bibi 2.17 Shaving – Gillette 2.32
8 Bottle appliances – Philips AVENT 2.03 Deodorant – Dove 2.27
9 Diapers – Huggies 1.56 Baby care – Zwitsal 2.09

10 Bottle appliances – Nuby 1.21 Dishwashing – Dreft 2.05

LDA-X Motivation 1 (Probability 0.21) Motivation 2 (Probability 0.13)
M=15 Product % Product %

1 Diapers – Pampers 20.11 Cleaning – Glorix 5.79
2 Baby/toddler nutrition – Nutrilon 19.26 Paper towels – Page 5.37
3 Baby/toddler nutrition – Olvarit 16.04 Dishwashing – Dreft 3.78
4 Baby/toddler nutrition – Bambix 10.13 Laundry – Robijn 3.54
5 Baby care – Zwitsal 7.94 Cleaning – Ajax 3.50
6 Baby care – Pampers 4.10 Laundry – Ariel 3.27
7 Pacifiers – Bibi 2.13 Disposables – Komo 3.08
8 Bottle appliances – Philips AVENT 2.05 Paper towels – Edet 3.03
9 Diapers – Huggies 1.70 Cleaning – Sorbo 2.97

10 Bottle appliances – Nuby 1.25 Cleaning – Cif 2.29

MDM Segment 1 (Probability 0.32) Segment 2 (Probability 0.23)
M=11 Product % Product %

1 Diapers – Pampers 11.35 Diapers – Pampers 16.23
2 Laundry – Ariel 4.05 Baby/toddler nutrition – Nutrilon 14.34
3 Baby care – Zwitsal 4.03 Baby/toddler nutrition – Olvarit 11.76
4 Baby/toddler nutrition – Nutrilon 3.50 Baby/toddler nutrition – Bambix 7.08
5 Baby/toddler nutrition – Olvarit 3.37 Baby care – Zwitsal 6.50
6 Baby care – Pampers 3.14 Baby care – Pampers 4.05
7 Dishwashing – Dreft 3.12 Bottle appliances – Philips AVENT 1.82
8 Paper towels – Page 3.01 Laundry – Ariel 1.70
9 Dental care – Oral-B 2.60 Pacifiers – Bibi 1.64

10 Baby/toddler nutrition – Bambix 2.20 Diapers – Huggies 1.44

The top 10 most likely products are primarily baby related for the largest as
well as the second largest segment in MDM. Additionally, there is much overlap
at the product level: 7 products appear in both top 10 lists. For LDA and LDA-X
the largest motivation relates to baby products and the order of the top 10 is
the same, with only minor differences between the purchase probabilities. The
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second motivation for LDA-X is driven by cleaning products, while in LDA it is a
mix of cleaning and personal care products (and one baby related product). So,
for both LDA and LDA-X the second motivation is very different from the first,
which contrasts with the results for MDM.

This difference can be explained by the distinction between a motivation and
a segment. Motivations represent coherent sets of products, where customers can
be interested in multiple of these sets. Segments capture the purchase behavior
of groups of customers, and purchase behavior across groups likely overlaps. In
other words, the motivations in LDA(-X) correspond to a clustering on the product
level, whereas the segments in MDM represent a clustering on the customer
level.

As the models differ substantially in terms of the underlying data structures
that are captured, their predictions are also likely to be different. We investigate
these differences in a hypothetical scenario. First, let us consider a customer with
average customer characteristics who is new to the store, i.e. without previous
observed purchases. Each model approximately yields the marginal distribution
as predictive distribution for this customer. The top 5 products in the marginal
distribution of the estimation data are displayed in Table 2.6.

Next suppose that the customer purchases ‘Shampoo – Herbal Essences’.
For each model the updated top 5, conditional on this purchase, is displayed in
Table 2.7. Indeed, each model now provides a different ranking. It is interesting
to focus on the new rank of the shampoo itself and the complementary conditioner
of the ‘Herbal Essences’ brand. In the marginal distribution the shampoo and
conditioner are ranked 113 and 119, respectively. Conditional on the purchase
of the shampoo, these two products reach the top 5 in LDA (they get rank 3 and
2). For LDA-X the products do not occur in the top 5 but receive rank 17 and
16. Finally, in MDM the rank of the shampoo shifts to 26, while the rank of the
conditioner barely changes and reaches only 117. This indicates that MDM fits
the observed purchase well, but is hardly able to discover that the conditioner is
a complement to the shampoo.
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TABLE 2.6 – Purchase frequencies of the 5 products that are most frequently
purchased in the estimation data.

Rank Product Frequency

1 Diapers – Pampers 9.20 %
2 Baby/toddler nutrition – Nutrilon 4.09 %
3 Laundry – Ariel 4.07 %
4 Dishwashing – Dreft 3.65 %
5 Baby/toddler nutrition – Olvarit 3.47 %

TABLE 2.7 – Purchase probabilities of the 5 most likely product for each
model, conditioned on the purchase of a single product.

Purchased product:
Shampoo – Herbal Essences

LDA Product Probability

1 Diapers – Pampers 0.05
2 Conditioner – Herbal Essences 0.05
3 Shampoo – Herbal Essences 0.05
4 Baby/toddler nutrition – Nutrilon 0.02
5 Paper towels – Page 0.02

LDA-X Product Probability

1 Diapers – Pampers 0.05
2 Paper towels – Page 0.04
3 Laundry – Ariel 0.03
4 Dishwashing – Dreft 0.03
5 Baby care – Zwitsal 0.03

MDM Product Probability

1 Diapers – Pampers 0.09
2 Baby/toddler nutrition – Nutrilon 0.04
3 Baby care – Zwitsal 0.03
4 Laundry – Ariel 0.03
5 Paper towels – Page 0.03
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2.4.3 Predictive performance

To assess a method’s predictive performance we evaluate its weighted hit rate for
the hold-out data, see (2.23). In the weighted hit rate, each hit receives a weight
that depends on the rank assigned to the prediction. A better (numerical lower)
rank receives a larger weight than a worse (numerical higher) rank. Figure 2.2
presents the predictive performance on the complete hold-out data for the model-
based approaches, LDA(-X), MDM, DCM, and the two count-based collaborative
filters, CF-1, and CF-2.
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FIGURE 2.2 – Predictive performance for the complete hold-out data, as a
function of prediction set size.
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In case we predict only a single product for each customer, i.e. a prediction
set of size one, LDA-X has the best performance with a hit rate close to 0.45.
For most prediction set sizes, LDA(-X) and MDM outperform the collaborative
filters. The best performing collaborative filter is CF-2, which matches customers
on the presence of pairs of products in their purchase history. Given the decent
predictive likelihoods generated by DCM (see Figure 2.1), it has an unexpected
poor performance in terms of ranking the purchased products.

Note that the average hit rate declines for the first few prediction set sizes.
This is a direct consequence of the denominator in the definition of the hit rate in
(2.23), which divides the total number of hits by the maximum number of hits
possible for a given customer and prediction set size. This number increases
with the size of the prediction set until it reaches the number of unique products
purchased by the customer. As the average number of unique purchases per
customer in the hold-out data is almost 5, we indeed see the hit rates increase
beyond that value for most methods.

We study the difference in performance for the prediction methods in more
detail by separately considering specific groups of customers and products. In
particular, we first divide the customers in the hold-out data into three groups
based on the number of purchases in the estimation data: (i) 2185 customers
with no prior observed purchases (Figure 2.3); (ii) 809 customers with a moderate
amount (1-9) of purchases (Figure 2.4); and (iii) 751 customers with many (10 or
more) purchases (Figure 2.5).

The most apparent difference in performance between these groups is visible
in the range of the y-axis. If we observe many purchases for a customer the
average hit rates are twice as large for the smaller prediction sets, compared to
those for customers with no purchases in the estimation data. This is exactly
according to our expectations, and provides empirical evidence that purchase
history data is indeed very informative about a customer’s future purchases.

By examining Figure 2.3 we see that for customers without previous pur-
chases the collaborative filters perform very well (particularly for moderate-sized
prediction sets). Note that for this specific group of customers the collaborative
filters rank the products according to their market penetration in the customer
base. Also for LDA and MDM there is no information that can be used to make a
personalized prediction. LDA-X uses the time of adoption, although this does not
seem to shift the baseline predictions a lot. Hence, the performance differences
between LDA(-X) and MDM are small.

In the absence of a purchase history, the similarity of a customer to each of
the M clusters, used to create predictor variables in DCM, is rather meaningless.
As a result, the DCM’s predictive power is low for these customers. In fact, a
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FIGURE 2.3 – Predictive performance for the customers with no purchases in
the estimation data.
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FIGURE 2.4 – Predictive performance for the customers with a few purchases
(1-9) in the estimation data.
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FIGURE 2.5 – Predictive performance for the customers with many purchases
(10 or more) in the estimation data.
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2. Model-Based Purchase Predictions

large part of the performance gap on the complete hold-out data between DCM
and the other prediction methods is driven by the poor performance for the group
of customers without a purchase history.

We observe a different pattern for customers with a moderate number of past
purchases in Figure 2.4, where LDA(-X) and MDM consistently outperform the
collaborative filters. This indicates that these model-based methods are better
able to learn from a customer’s previous purchases than the collaborative filters.
Comparing the methods, LDA(-X) attains the highest overall performance and
performs best when we predict only a single product, while MDM performs better
for larger prediction sets. The performance of DCM is competitive for the smaller
prediction sets, although its relative performance drops substantially for larger
prediction set sizes.

The final group of customers that we consider consists of those who made
many purchases, displayed in Figure 2.5. The general conclusion is similar to
that of the customers with a moderate number of purchases. However, in this
case MDM obtains the highest performance for prediction sets that contain more
than one product. This result, combined with the previous findings, may be
explained by the flexibility of the customer-level heterogeneity structure. In
MDM preferences are modeled by a customer-specific probability vector over
the product assortment. On the other hand, in LDA(-X) a customer’s individual
preferences are described by a lower-dimensional probability vector over the
M motivations. Both models learn from previous purchases, but in MDM this
learning is directly incorporated in the preferences over the assortment, while in
LDA(-X) it is done indirectly through the probabilities for the motivations. As a
consequence, MDM has more degrees of freedom at the level of the individual
customer as the assortment size J is much larger than the number of motivations
M. This additional flexibility turns out to pay off when many purchases are
observed for a customer.

The results above highlight the performance of the methods for the complete
assortment. However, many of the highly-ranked products are products that
are frequently purchased, or products that have been previously purchased by
the focal customer. Customers can easily anticipate such recommendations and
might even be bored by them (Fleder and Hosanagar, 2009). It is therefore
interesting to evaluate the performance of the methods when predicting products
that may be more unexpected.

To assess the performance of the methods for predicting such unexpected
products, we evaluate the predictive performance for a restricted subset of the
product assortment. This subset is constructed as follows: First, we remove
20% of the products in the assortment that are most frequently purchased in the
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estimation data. Second, we create a customer-specific restriction by removing the
products that have previously been purchased by this customer. Subsequently, for
each individual customer, we only consider the predictions and hold-out purchases
for products that are contained in this restricted subset of the assortment. As
customers are less likely to be aware of these products, performing well on this
aspect could potentially increase the cross-selling performance of marketing
actions that are based on such predictions.
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FIGURE 2.6 – Predictive performance for the restricted subset of the hold-out
data.

The predictive performance for the restricted set of products is displayed in
Figure 2.6. LDA and MDM perform better than the collaborative filters and DCM,
but LDA-X clearly outperforms all the other prediction methods. This remarkable
performance difference primarily arises for the highly-ranked products. By
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examining these products, we find that the product ‘Slimming nutrition - Weight
Care’ appears in the top of many of the LDA-X customer-level prediction sets. The
prediction sets resulting from the other methods, however, do not contain this
product. In fact, it turns out that ‘Slimming nutrition - Weight Care’ is the most
frequently purchased product in the hold-out data. Its purchase frequency has
shifted from 0.04% in the estimation data to 4.88% in the hold-out data. LDA-X
is able to capture this shift through the time of adoption variable.12 This shows
that the inclusion of predictor variables has merit in the context of purchase
prediction, even though the time of adoption variable in general does not add
much explanatory power. The reason why we do not see a similar shift for DCM
can be explained by the way the predictor variables enter the model. In LDA-X,
it directly influences the likelihood of a certain motivation, in effect being able to
boost a motivation that is relevant for customers who adopted later in time. In
this case, it boosts the motivation that contains products that are purchased more
frequently later in the observation period, including the period of the hold-out
predictions. In contrast, in DCM the clusters are determined ‘outside’ the model,
using the k-means algorithm. The performance of the clustering algorithm does
not benefit from selecting a cluster that is linked to the other prediction variables,
as the predictor variables are not included when constructing the clusters. In the
absence of such clusters of customers, inclusion of the predictor variables cannot
shift the importance of these products, as they are not contained in a separate
cluster.

2.5 C O N C L U S I O N

In this chapter we have evaluated several methods for purchase prediction in
large assortments using purchase history data. Inspired by the text modeling
literature, we have introduced a novel model-based approach that uses latent
Dirichlet allocation (LDA(-X)) to predict purchases. In addition, we have con-
sidered mixtures of Dirichlet-Multinomials (MDM), a framework well known
in the brand-choice modeling literature. The performance of these model-based
approaches has been contrasted against two benchmarks: a set of count-based
collaborative filters, in which customers are matched on the contents of their
purchase history, and a scalable implementation of a discrete choice model (DCM),
that does not break down when used with a large product assortment. All meth-
ods are able to construct customer-specific product rankings over the assortment
that can be used for purchase prediction.

Naturally, the prediction methods differ in their heterogeneity assumptions,

12 We acknowledge that there can be many external influences that drive this shift in purchase
behavior. Our predictor variable (time of adoption) most likely serves as a proxy for the actual causes.
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estimation complexity, and memory requirements. In MDM purchase hetero-
geneity is specified at the customer level by segmenting the customer base. In
LDA(-X), on the other hand, this heterogeneity is specified at the motivation
level, which groups products, not customers. These heterogeneity assumptions
also affect the estimation complexity of the models. MDM has more flexibility to
model an individual customer’s purchase behavior than LDA(-X), but this comes
at the price of increased estimation complexity as more parameters have to be
estimated. The estimation complexity of the logit part of the DCM is relatively
low, but it does depend on customer clusters from an external method (i.e. the
k-means algorithm). The collaborative filter has as advantage that no (latent)
model structure has to be estimated, but its storage requirements for generating
real-time online predictions rapidly increase for large applications. In contrast,
the model-based approaches require less storage and additionally this grows
much slower with the size of the application.

The performance of the methods was assessed based on purchase prediction
sets derived from the product rankings, and comparing these sets to actual hold-
out purchases. In general, LDA(-X) and MDM perform best and, even though
these two models are conceptually rather different, their predictive performance
is comparable. In addition, we have considered the setting where we focus on
the predictive performance for products in the tail of the assortment that have
not been purchased yet by the customer. In this case LDA-X clearly outperforms
the other methods, which can be attributed to the time of adoption variable
that is included in LDA-X. Although DCM also includes this predictor variable,
its dependence on the k-means algorithm prevents it from effectively using the
additional information to generate better predictions.

In summary the LDA(-X) prediction method that we have introduced in this
chapter is the most promising approach to purchase prediction, particularly in the
context of large online retailers. Its predictive performance is very competitive
compared to the other methods and it scales well with the size of the application.
Finally, it is a self-contained prediction method that can readily accommodate
additional information available to the retailer. In our application we only had
access to a fairly weak predictor, but the potential benefits of including stronger
predictors of customer preferences into the model could be large.

To conclude, LDA(-X) can be readily used as a stepping stone for further
model-based research that quantifies and optimizes the impact of marketing
interventions in large-scale retailing environments. For example, one could op-
timize a recommendation system that differentiates between the likelihood of
purchasing a product and the added benefits from recommending that product
(Bodapati, 2008, Wagner and Taudes, 1986); something that is difficult to im-
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plement in a count-based method such as a collaborative filter. We obviously
consider such extensions an interesting avenue for further research.
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Appendices

2.A E S T I M A T I O N D E T A I L S F O R L D A ( - X ) A N D M D M

In this appendix we present the estimation details for LDA(-X) and MDM. First,
we discuss our random start routine, aimed at minimizing the risk of ending
up in locally optimal solutions. Second, we present the conditional posterior
distributions that are used in the MCMC samplers. Finally, at the end of this
appendix we provide a high-level description of the inference algorithm for LDA(-
X) in pseudocode.

2.A.1 Random start routine

LDA(-X) and MDM are both members of the general class of mixture models.
This class of models is well known to be susceptible to end up in an area around
a local maximum of the posterior distribution. We reduce this risk by considering
multiple random starts. For MDM a random start is an initialization of the
segment assignments s, while in LDA(-X) it is an initialization of the motivation
assignments Z.

For each model, we initially consider 250 different random starts. For each
of these starts we draw 1,000 samples using our MCMC methodology. These
samples are used to infer each customer’s posterior predictive distribution and to
calculate the average predictive likelihood of the model-selection data. The 50
starts that obtain the highest average predictive likelihood are selected. For these
starts, we repeat the above procedure and next select the 15 best performing
starts. Again, we repeat the procedure but this time draw 20,000 samples. Finally,
we continue with the random start that obtains the highest average predictive
likelihood.

The 22,000 draws that are generated within the random start routine for the
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single remaining model are considered as the burn-in period of the chain. For
this selected random start we finally draw another 10,000 samples. We thin this
chain by selecting every tenth draw, resulting in 1,000 posterior samples.

2.A.2 Conditional posterior distributions

In this section we present the details of our MCMC sampler. For each sampling
step in each model, we present the corresponding conditional posterior distribu-
tion. In the presentation below we use the notation superscript \n to indicate
that the n-th element is excluded from a vector, matrix, or set. A general density
function is denoted by p(), while we use π() in case the density corresponds to
a prior distribution in which the parameters are fixed. The probability density
function of the standard normal distribution is denoted by φ() and the Gamma
function is denoted by Γ(). Finally, in LDA-X we replace γ and {δl}M

l=1 by {αi}I
i=1,

whenever this simplifies notation.
As the derivations in this appendix rely on the Dirichlet-Multinomial distri-

bution, we first provide its density in terms of Gamma functions. The Dirichlet-
Multinomial distribution corresponds to a data generating process where first
a probability vector θ ∼Dirichlet(α) is generated and subsequently, this vector
is used to generate a set of Categorical random variables, denoted by z. The
marginal density of z in terms of α is called the Dirichlet-Multinomial distribu-
tion. This density is given by:

p(z|α)=
∫
θ

p(z|θ)p(θ|α)dθ

= Γ
(∑M

l=1αl
)

Γ
(∑M

l=1αl + cM
l

) M∏
m=1

Γ
(
αm + cM

m
)

Γ (αm)
,

(2.24)

where cM
m is the number of elements in z that are equal to m and M gives the

number of categories.

LDA

The joint density for the collapsed LDA model can be written as

p(Y,Z,β0,α)∝ p(Y|Z,β0)p(Z|α)π(β0,α). (2.25)

In our implementation of LDA we impose β0 ∼ logN(µβ0 ,σ2
β0

) and αm ∼ logN(µα,σ2
α).

The prior distributions, combined with the LDA model specification, define the
complete joint distribution in (2.25). The MCMC sampler for this model contains
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Gibbs steps for all the separate elements of Z and Metropolis-Hastings steps for
β0 and the elements of α.

The conditional posterior probability that zin = m, i.e. that the n-th purchase
of customer i is driven by motivation m, is proportional to:

Pr
[

zin = m|yin = j,Z\in,β0,α,Y\in
]

∝Pr
[

zin = m|Z\in,α
]

Pr
[

yin = j|zin = m,Z\in,β0,Y\in
]

∝
(
αm + cIM\in

im

) β0 + cMJ\in
m j

Jβ0 +∑J
p=1 cMJ\in

mp
,

(2.26)

where cMJ\in
m j is the number of times a purchase of product j is driven by moti-

vation m and cIM\in
im is the number of purchases made by customer i that are

driven by motivation m, excluding zin and yin. This result can straightforwardly
be used to obtain samples for Z.

The conditional posterior density of β0 is given by

p(β0|Z,α,Y)∝π(β0)p(Y|Z,β0)

∝π(β0)
M∏

l=1

Γ
(
Jβ0

)
Γ

(
Jβ0 +∑J

p=1 cMJ
l p

) J∏
p=1

Γ
(
β0 + cMJ

l p

)
Γ

(
β0

) .
(2.27)

As (2.27) results in a non-standard density, we use a random walk Metropolis-
Hastings step to obtain samples for β0. Candidate values are generated from
logN(β0, s2

β0
), where β0 denotes the current value of the parameter and the

variance s2
β0

is calibrated during the start value selection procedure such that we
obtain an acceptance rate of about 50%.

The conditional posterior density of αm is

p(αm|α\m,Z,β0,Y)∝π(αm)p(Z|α)

∝π(αm)
I∏

i=1

Γ
(∑M

l=1αl
)

Γ
(∑M

l=1αl + cIM
il

) (
Γ

(
αm + cIM

im
)

Γ (αm)

)
.

(2.28)

Again this is a non-standard density and the same type of random walk Metropolis-
Hastings step as before is used to obtain samples for αm.

LDA-X

LDA-X extends LDA by allowing customer-specific predictor variables X to affect
the motivation probabilities. The collapsed joint density for the LDA-X model can
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be rewritten as

p(Y,Z,β0,γ, {δl}M
l=1)∝ p(Y|Z,β0)p(Z| {αi}I

i=1)π(β0,γ, {δl}M
l=1), (2.29)

where αim = exp(γm +x′
iδm), γm ∼N(µγ,σ2

γ), and δmk ∼N(µδ,σ2
δ
).

The MCMC sampler for LDA-X includes a Gibbs step for every element of
Z and random walk Metropolis-Hastings steps for β0 and all elements of γ and
{δl}M

l=1. Considering the relation αim = exp(γm +x′
iδm), it is easy to see that we

obtain the conditional posterior distributions for the elements of Z by writing
αim instead of αm in (2.26). The conditional posterior for β0 is exactly the same
as in (2.27).

The conditional posterior density of δmk equals

p(δmk|δ\k
m ,Z,β0,γ, {δl}l 6=m ,Y,X)∝π(δmk)

I∏
i=1

p(zi|αi)

∝π(δmk)
I∏

i=1

Γ
(∑M

l=1αil
)

Γ
(∑M

l=1αil + cIM
il

) Γ(
αim + cIM

im
)

Γ (αim)
,

(2.30)

where δmk influences the likelihood through αim. A random walk Metropolis-
Hastings step in the MCMC sampler is used to obtain samples for {δl}M

l=1. Can-
didate values are obtained from N(δmk, s2

δmk
), where δmk denotes the current

value of the parameter and the variance s2
δmk

is calibrated during the start value
selection procedure such that we obtain an acceptance rate of about 50%. The
Metropolis-Hastings sampler for γm can be derived in an analogous way.

MDM

The joint collapsed density for the MDM model may be rewritten as

p(Y,s,
{
βl

}M
l=1)∝ p(Y|s,

{
βl

}M
l=1)π(

{
βl

}M
l=1)

∫
π

p(s|π)π(π)dπ, (2.31)

where the priors are given by π∼ Dirichlet(1, . . . ,1) and βm j ∼ logN(µβ,σ2
β
). As

is clear from the notation we integrate over the prior of distribution π. The
prior distributions, combined with the MDM model specification, define the
complete joint distribution in (2.31). In our MCMC sampler we use separate
Gibbs sampling steps for all segment assignments in s and Metropolis-Hastings
sampling steps for the elements of

{
βl

}M
l=1.

The conditional posterior probability that si = m, i.e. that customer i is
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allocated to segment m, is

Pr
[

si = m|s\i,
{
βl

}M
l=1 ,Y

]
∝Pr

[
si = m|s\i

]
p(yi|si = m,βm)

∝
(
1+ cM\i

m

) Γ
(∑J

p=1βmp

)
Γ

(∑J
p=1βmp + cIJ

ip

) J∏
p=1

Γ
(
βmp + cIJ

ip

)
Γ

(
βmp

) ,

(2.32)

where cIJ
ip is the number of times customer i purchased product p and cM\i

m
denotes the number of customers allocated to segment m, excluding customer i.
Equation (2.32) implies probabilities that can straightforwardly be used to obtain
samples for si.

The conditional posterior density of βm j is given by

p(βm j|β\ j
m ,s,

{
βl

}
l 6=m ,Y)

∝π(βm j)
I∏

i=1
p(yi|si = m,βm)I[si=m]

∝π(βm j)
I∏

i=1

 Γ
(∑J

p=1βmp

)
Γ

(∑J
p=1βmp + cIJ

ip

) Γ
(
βm j + cIJ

i j

)
Γ

(
βm j

)
I[si=m]

.

(2.33)

As (2.33) clearly results in a non-standard density we use a random walk
Metropolis-Hastings step in the MCMC sampler to obtain samples for

{
βl

}M
l=1.

Candidate values are obtained from logN(βm j, s2
βm j

), where βm j denotes the cur-

rent value of the parameter and the variance s2
βm j

is calibrated during the start
value selection procedure such that we obtain an acceptance rate of about 50%.

2.A.3 Pseudocode for LDA(-X)

In this section we provide pseudocode for the inference algorithm for LDA(-X).
Algorithm 2.1 contains a high-level description of the inference algorithm for
LDA(-X). More detailed pseudocode for our initialization procedure, sampling,
and calibration of the Metropolis-Hastings proposal variances can respectively be
found in Algorithms 2.2, 2.3, and 2.4. The pseudocode depends on the implemen-
tation details of our random start routine, discussed in Appendix 2.A.1, as well as
the conditional posterior distributions for LDA(-X) presented in Appendix 2.A.2.
The target acceptance rate for all univariate Metropolis-Hastings samplers is set
to 50%.

51



Algorithm 2.1. Pseudocode for LDA(-X)
Q: number of estimation rounds
K(q): set of random starts in round q
T(q): number of samples to be drawn in round q
for each estimation round q = 1, . . . ,Q do

for each random start k in K(q) do
if q is the first round then initialize the k-th random start

INITIALIZATION (Algorithm 2.2)
end if
for t = 1, . . . ,T(q) do

// Sample a new state from the MCMC chain
SAMPLING (Algorithm 2.3)
for each parameter sampled with a Metropolis-Hastings step do

CALIBRATION (Algorithm 2.4)
end for

end for
Calculate the average predictive likelihood of the model-selection
data over the last T(q) states

end for
if q is not the last round then

Select the random starts with the highest average predictive likelihood
in this round for K(q+1)

end if
end for
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Algorithm 2.2. Initialization of a random start in LDA(-X)
N: number of purchases in the estimation data
procedure INITIALIZATION

// Set the initial model parameters
β0 = 0.01
if the model is LDA then

αm = 1
M for m = 1, . . . , M

else if the model is LDA-X then
γm = log 1

M for m = 1, . . . , M
δmk = 0 for m = 1, . . . , M, k = 1, . . . ,K

end if
Set all counts cIM

im and cMJ
m j to zero

// Initialize the motivation assignments Z in random order
for each n in random permutation of 1 to N do

Sample zin with a Gibbs step, using the distribution in Equation (2.26)
Increase the corresponding elements cIM

im and cMJ
m j using sampled zin and yin

end for
// Set the initial Metropolis-Hasting variances and calibration window sizes
s2
β0

= 0.1,wβ0 = 10
if the model is LDA then

s2
αm = 0.01,wαm = 10, for m = 1, . . . , M

else if the model is LDA-X then
s2
γm = 0.01,wγm = 10 for m = 1, . . . , M

s2
δmk

= 0.01,wδmk = 10 for m = 1, . . . , M, k = 1, . . . ,K
end if

end procedure
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Algorithm 2.3. Sampling a new state for LDA(-X)
I: number of customers
ni : number of purchases by the i-th customer
M: number of motivations
K : number of predictor variables in xi
procedure SAMPLING

for each customer i = 1, . . . , I do
for each datapoint n = 1, . . . ,ni do

Decrease the corresponding elements cIM
im and cMJ

m j using current zin and yin
Sample zin with a Gibbs step, using the FCD in Equation (2.26)
Increase the corresponding elements cIM

im and cMJ
m j using new zin and yin

end for
end for
Sample β0 with a Metropolis-Hastings step, using the distribution in Equation (2.27)
if the model is LDA then

for each motivation m = 1, . . . , M do
Sample αm with a Metropolis-Hastings step, using
the distribution in Equation (2.28)

end for
else if the model is LDA(-X) then

for each motivation m = 1, . . . , M do
Sample γm with a Metropolis-Hastings step, using
the distribution similar to Equation (2.30)
for each predictor variable k = 1, . . . ,K do

Sample δmk with a Metropolis-Hastings step, using
the distribution in Equation (2.30)

end for
end for

end if
end procedure
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2. Model-Based Purchase Predictions

Algorithm 2.4. Calibration of the MH-sampler proposal variance s2

n: number of samples drawn in this calibration window
nA : number of accepted samples in this calibration window
w: size of the calibration window
s2: current proposal variance
AR: target acceptance rate
procedure CALIBRATION

if n is equal to w then
// Calculate the 95% confidence bounds of the Binomial(n, w× AR) distribution
bounds = quantile function for Binomial(n, w× AR) evaluated at 0.025 and 0.975
if nA is outside these bounds then calibrate the proposal variance

if nA > w× AR then the variance is increased

s = s×min
(√

nA
w× AR

,4
)

else if nA < w× AR then the variance is decreased

s = s×max
(√

nA
w× AR

, 1
4

)
end if

end if
// Reset n and nA for new calibration window and increase w
n = 0, nA = 0
if w < 500 then

w = w+10
end if

end if
end procedure
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2.B R E A L - T I M E O N L I N E P R E D I C T I O N S

Once we observe a new purchase for a customer we naturally want to update the
predictions based on this new information. However, in an online setting it is
not feasible to re-estimate a complete model in real-time. Instead, we update the
customer-specific elements in real-time based on the new information, and fix the
parameters that are specified at the customer-base level to their posterior means.
Naturally, after observing new purchases for many customers, it makes sense
to re-estimate the model structure including this new data. In this appendix we
discuss for each of the prediction methods how the predictions may be updated in
real-time and what the corresponding memory requirements are.

2.B.1 LDA(-X)

The predictive distribution for customer i in LDA(-X) is given in (2.8). To calculate
the predictive distribution we need to evaluate two expectations: E

[
φm j|Z,β0,Y

]
and E[θim|zi,α ]. The first expectation is the expected value of the purchase
probability for product j under motivation m. As this expectation is specified at
the customer-base level, we fix it to its posterior mean. The second expectation
is the expected value of the individual-specific discrete mixture over the M
motivations. This expectation is customer-specific and hence we update it after
observing a new purchase.

For this update of E[θim|zi,α ] we use an approximation step. First we define
ηim =αm+cIM

im and use the property of the Dirichlet distribution that E[θim|zi,α ]
is proportional to ηim. To update ηim, we add the expected value of the motivation
allocation of the new purchase (denoted by ỹin) to its previous value. To be more
precise, after each new purchase ỹin we increase ηim by:

∆ηim =Pr
[

z̃in = m| ỹin = j,
{
φl

}M
l=1 ,ηi

]
= Pr

[
ỹin = j|z̃in = m,φm

]
Pr

[
z̃in = m|ηi

]∑M
l=1 Pr

[
ỹin = j|z̃in = l,φl

]
Pr

[
z̃in = l|ηi

]
= φm jηim∑M

l=1φl jηil
,

(2.34)

for m = 1, . . . , M. Subsequent updates of the posterior mean of θi can be obtained
by sequentially updating the value of ηi. This approximating update procedure
provides an effective and efficient way to incorporate new information from
purchases in LDA(-X).

The number of elements that have to be retrieved for an individual update
step is equal to (M×J)+M, namely the

{
φl

}M
l=1 vectors and the individual-specific
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2. Model-Based Purchase Predictions

ηi vector. To be able to perform this step for each customer, (M × J)+ (I × M)
elements have to be stored in total.

2.B.2 MDM

The predictive distribution for customer i in MDM is given in (2.13). The
{
βl

}M
l=1

vectors describe the probability distributions that correspond to the purchase
behavior of the customer segments and hence, are not individual-specific. As a
consequence we fix them to their posterior mean. The customer-specific purchase
counts cIJ

i j are updated straightforwardly according to the new purchase, while the

current segment probabilities Pr
[

si = m|s\i,
{
βl

}M
l=1 ,yi

]
can be updated using

the recursive property of the Gamma function, i.e. Γ(n+1)=Γ(n)n, see equation
(2.32) in Appendix 2.A.

The number of elements that have to be retrieved for an individual update
step is equal to (M×J)+M+ni, namely the

{
φl

}M
l=1 vectors, the customer-specific

segment probabilities Pr
[

si = m|s\i,
{
βl

}M
l=1 ,yi

]
, and yi the purchase history of

customer i. To be able to perform this step for each customer, (M×J)+(I×M)+N
elements have to be stored in total.

2.B.3 Collaborative filters

Suppose that a customer has ni previously observed purchases. A new purchase
made by this customer adds a maximum of

( ni
k−1

)
product combinations to Hk

i . In
order to incorporate this new information in the product ranking of customer i,
we need to add for every new product combination the corresponding normalized
score to sk

i j (see (2.19)). Hence, this update step requires the retrieval of
( ni
k−1

)
rows

with J counts, the J current scores sk
i j, and the purchase history yi containing

ni purchases. This results in
(( ni

k−1
)× J

)+ J +ni elements to be retrieved when
making an individual update.

To enable real-time updates for all customers, we have to combine each of the
J products with each of the

(J+k−1
k

)
possible product combinations of size k and

store the count for this combination of size k+1. In addition, we have to store
the current scores and purchase history of each customer. In total this requires(J+k−1

k
)× J+ (I × J)+N elements to be stored. Dependent on the combination of

k and the dimensions of the application, storage of this information and real-time
updating of predictions may or may not be feasible.
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2.B.4 Discrete choice model

The predictive distribution for customer i in the DCM is obtained by calculating
the log odds for all J products, as specified in (2.22). To calculate these log odds
we need the model parameters and the cluster centroids, which are both specified
at the customer-base level. Updating the customer-specific purchase history
yi according to the new purchase and calculating the new weights for the M
customer clusters is straightforward.

The number of elements that have to be retrieved for an individual update
step is equal to (M× J)+ (2+2M(1+K))+ni, namely the cluster means

{
v̄(l)}M

l=1,
the logit parameters, and yi the purchase history of customer i. To be able to
perform this step for each customer, (M× J)+ (2+2M(1+K))+N elements have
to be stored in total.
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3
Introduction to Variational Inference and Ex-
tensions for Hierarchical Normals

3.1 I N T R O D U C T I O N

With the dawn of Big Data we are not merely confronted with data sets that are
large in volume and velocity, the bigger challenge perhaps lies in the variety of
the available data. We often have data on various characteristics of individual
behavior. For instance, besides the purchases a customer has made at an online
retailer we can receive data on search and click behavior as well. All this
information can be combined to predict a customer’s next purchase. Potentially
such data can be supplemented by additional user-input such as product reviews.
Connecting such diverse data sets in order to answer complex research questions
calls for advanced statistical methods that can adequately explain and predict
the behavior we observe.

A popular class of models that facilitates working with layered data are
hierarchical Bayesian models. A layer in the model can reflect a (latent) layer in
the data, leading to a model structure that can be interpreted in an intuitive way.
The levels in the model are connected in the sense that one can serve as input
to the other, hence they are hierarchical. Returning to the previous example,
several layers can be identified: From an individual purchase, to a shopping trip,
to a customer, to a population.

Over the last two decades the application of such hierarchical Bayesian models
has increased significantly, especially in marketing. This rise can be attributed
to three factors: i) More complex data sets have become available, ii) paired
to an increase in computational power, iii) combined with the development of
estimation techniques. This combination has allowed researchers to statistically
infer the parameters of complex models. Previously, this was not feasible within
a reasonable time frame. In particular, the development of Markov Chain Monte
Carlo (MCMC) samplers (Gelfand and Smith, 1990) to infer the posterior distribu-
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tion of model parameters played a key role in the advent of hierarchical Bayesian
modeling. For a general review of the application of hierarchical Bayesian models
we refer the reader to Gelman et al. (2013), and for a review from a marketing
perspective to Rossi et al. (2012).

However, these MCMC methods have been initially developed almost two
decades ago and we are currently approaching their practical limits: For example,
consider that we are dealing with a model that augments data with latent
variables, that is typically the case in mixture or mixed-membership models, as
well as models for limited dependent variables. Such a model, tied to a vast data
set with many data points, rapidly becomes unwieldy to infer using traditional
inference techniques, at least not in a reasonable time frame (Kucukelbir et al.,
2017). This problem is even further exacerbated in case we need to use and update
the model in real-time, for example to make online predictions. In addition, the
draws from an MCMC chain can be highly autocorrelated, especially if one
employs a Metropolis-Hastings sampler (Hastings, 1970).

In addition, if there are multiple sources of data that can potentially be
connected, it may be difficult to tell how the different components in the model
should interact. From the example in the opening paragraph: Should we include
the available product reviews in our model? If so, in what way? What about
product descriptions? A priori, these questions are difficult to answer and will
primarily be based on a researcher’s domain knowledge and intuition. In practice
one will resort to an iterative approach where different model specifications are
tested before one arrives at a specification that is most suitable to answer the
research question at hand (Blei, 2014). It can significantly impede the research
process if a researcher has to wait days, or even weeks, for each iteration of this
approach to be completed.

In these new large-scale data environments the traditional MCMC methods
are slowly but surely being replaced by faster alternatives. Most notable are
Hamiltonian Monte Carlo (HMC) samplers (Neal, 1996, Hoffman and Gelman,
2014), or inference via optimization through variational inference (VI) (Jordan
et al., 1999, Blei et al., 2017).

HMC uses gradient information to construct a sampler that can more effec-
tively explore the parameter space compared to traditional MCMC that does not
use any gradient information. Similar to MCMC, HMC enjoys the asymptotic
property that the stationary distribution of its Markov Chain is the posterior of
interest. The emergence of HMC is in part driven by the development of Stan
(Carpenter et al., 2017), a programming language specifically designed to infer pa-
rameters of probabilistic models. The workhorse underlying it is the No-U-Turn
(NUTS) Sampler (Hoffman and Gelman, 2014), an efficient implementation of
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3. Introduction to VI and Extensions for Hierarchical Normals

Hamiltonian Monte Carlo (HMC). One of NUTS’s most effective features is that it
takes away the need for users to manually specify nuisance parameters that are
involved with running an HMC sampler. A disadvantage of the NUTS sampler is
that it cannot be directly applied to models that contain discrete variables, as a
gradient for such variables is undefined (Hoffman and Gelman, 2014).

VI on the other hand provides a deterministic alternative to these sampling-
based approaches as it casts probabilistic inference into a non-stochastic opti-
mization problem (Blei et al., 2017), that can be solved using proved and honed
optimization techniques. In contrast to conventional optimization problems, e.g.
where we optimize over scalars or vectors, we optimize in VI over functions or
te be more precise, over probability distributions. Such optimizations are rooted
in a branch of mathematics called the calculus of variations, the namesake of
VI. The promise of VI is that we can solve this optimization problem much faster
than we can do inference using sampling based methods (Kucukelbir et al., 2017).
However, this speed-up does come at a trade-off as we are only able to solve the
optimization problem in a short amount of time if some restrictions are imposed
on the optimization. The most commonly used restriction in practice is the mean-
field assumption, which will be discussed in more detail in Section 3.2. This turns
VI into an approximate inference method.

In this chapter an overview of variational inference is provided and its use-
fulness as an alternative to the sampling-based inference methods is discussed.
The usage of variational inference comes with an initial cost: It enables fast
inference in large models, but also requires additional work as the optimization
problem needs to be solved. Typically, this requires deriving problem-specific
gradients. These derivations can be both time consuming and error prone. This
could hamper the exploration of different model specifications which is especially
relevant in case one is dealing with varied data sets that need to be connected
to each other in a way that is not known a priori. A potential solution is to rely
on a technique called automatic differentiation (Baydin et al., 2015). It enables
the automatic computation of gradients for arbitrary user-specified functions.
The results are accurate to machine precision and have succeeded numerical
differentiation techniques such as finite differences. A small disadvantage of
automatic differentiation is that its execution time can be somewhat slower than
manually derived and optimized code.

The focus will be directed towards hierarchical Bayesian linear models that
contain so-called hierarchical Normals. In the literature this is also known as
a hierarchical linear model (Gelman and Hill, 2007), however we want to place
emphasis on the assumption of Normally distributed variables as it plays a key
role in the derivations later in this chapter. A hierarchical Normal is defined as a
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Normal distribution where the mean parameter is specified as a function of (one
or more) other random variables that each follow a Normal distribution. In fact,
each of these variables can even be a hierarchical Normal. Let us illustrate this
by hand of an example: The preferences of a customer at a certain moment in
time may be a combination of the customer’s baseline preferences combined with
a time-dependent effect (e.g. the season). If we let the time-specific preferences be
Normally distributed and additionally place Normal distributions on the baseline
customer-specific preferences and time-dependent effects, we have created a
hierarchical Normal model.

Note that these hierarchical Normals can be part of a larger Bayesian model,
for example if the output of the hierarchical Normals serves as a prior parameter
for another model component. These model components do not necessarily need
to follow a Normal distribution. This effectively creates additional layers in the
hierarchical model, enabling the design of complex model structures. To return
to our example: The customer’s time-specific preferences may be used in a model
to explain the purchases made by the customer in that specific time period.

For such hierarchical Normals a new result that funnels all the dependencies
of the variables in the mean-specification through a common error term, will
be presented. This result allows us to be flexible with the exact specification
of the hierarchical Normal and therefore does not require application-specific
derivations. Effectively, if we change the mean-specification of a variable that is
part of a hierarchical Normal, we only need to update the common error definition
to reflect this change in the other parameters. As the error specification of a
Normal is of a standard and well-known form, this practically enables us to derive
a variational inference algorithm that is generic and does not require manual
derivations when the mean-specification changes. This is an important result,
especially for researchers who want to explore different model specifications
involving hierarchical Normals in variational inference.

Additionally, we derive a result for a set of variables that follow a multi-
variate Normal distribution with a common precision matrix that we want to
infer with variational inference under the mean-field assumption. We show
that by approximating each of the multivariate Normal variables with a set of
independent Normals as variational distribution, i.e. effectively a multivariate
Normal with a diagonal covariance matrix, the common precision matrix can still
be approximated. In addition, we illustrate that the optimal solution for these
set of independent normals has a simple analytical closed-form solution with
an intuitive interpretation. This enables us to estimate the common covariance
structure of the multivariate Normally distributed parameters at a fraction of the
computational cost we would have incurred, had we specified a full covariance
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3. Introduction to VI and Extensions for Hierarchical Normals

matrix in the variational distribution for each multivariate Normal variable.
The remainder of this chapter is set-up as follows: In Section 3.2 we introduce

the reader to variational inference and its basic principles. In addition, we briefly
review the exponential family and its convenient properties when applied in
conjunction with variational inference. We derive our results for the hierarchical
Normals in Section 3.3, while the results for the efficient estimation of a common
precision matrix for a set of multivariate Normals are discussed in Section 3.4.
Finally, we conclude in Section 3.5 with recommendations and reflections on how
our results fit in the existing variational inference literature. Throughout the
chapter we provide illustrations using small examples.

3.2 I N T R O D U C T I O N T O VA R I A T I O N A L I N F E R E N C E

In this section the key concepts of variational inference (VI), a deterministic
probabilistic inference technique that can be used to estimate model parameters,
is reviewed. This is not merely a list of definitions of the concepts of VI as
throughout the section we will provide additional intuition for the concepts
introduced. This will further enhance the understanding of VI, especially for
researchers with experience in estimating hierarchical Bayesian models via
MCMC methods.

We start with introducing the goal of variational inference and show how it
can be used to cast the problem of Bayesian inference in to a formal optimization
problem. Next we discuss the mean-field assumption, which is the most commonly
used assumption in the literature to restrict the variational distribution so that
it is feasible to work with. After that we briefly review Markov Blankets and
some properties of the exponential family, and show their intuitive connection to
mean-field variational inference. This section is concluded with a short discussion
of conditionally conjugate models in the context of mean-field VI, building on
features of the exponential family and Markov Blankets.

3.2.1 The problem of probabilistic inference

Let y be the set of variables that we observe and consider that a generative model
for y is specified, also known as the data generating process (DGP). Typically,
this DGP contains unknown quantities that may range from latent variables to
parameters of a probability distribution. We denote the collection of all these
unknowns by z = {z j}J

j=1, where each z j can refer to a univariate or multivariate
variable.

The goal of Bayesian inference is to make statements about the distribution
of the unknown variables z given y, the observed data. That is, we need to infer
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the posterior distribution of our model defined as:

p(z|y),
p(y|z)p(z)

p(y)
z∝ p(y|z)p(z)= p(y, z).

(3.1)

Let us clarify some of the used notation: , means “defined as” and
z∝ indicates

proportionality relative to the variable z. Hence, the posterior p(z|y) is pro-
portional to the joint p(y, z) where the proportionality is taken with respect to
z.

Directly evaluating the posterior is intractable because of the denominator
p(y). This is the marginal likelihood of the data, and in principle it can be
obtained by marginalizing over the entire latent model structure:

p(y)=
∫

z
p(y, z)dz. (3.2)

Two challenges arise when one wants to evaluate this integral: i) An analytical
closed-form solution for the integral may not be available; ii) In case an analytical
solution exists, the elements in z are often coupled under the joint distribution.
As a result, if the number of elements in z increases, the complexity of evaluating
this integral grows exponentially. Hence, in practice it is intractable to evaluate
this integral over z for all but the simplest models. That is, to examine the
posterior one cannot rely on exact inference methods and instead we need to
turn to approximate inference methods. We remark that even though MCMC
enjoys the property of asymptotic exactness, in practice only a limited number of
samples can be drawn from the chain and hence, its results are an approximation
as well. In the next section the reader is introduced to an alternative approximate
technique, called variational inference (VI).

3.2.2 The objective of VI

The goal of VI is to find a distribution that best approximates p(z|y), the posterior
of interest. This approximation is called the variational (distribution) and will be
denoted by q(z).1 Note that just as p(z|y), q(z) is a proper joint density function
over all elements in z. The quality of the fit of the variational to the posterior is

1A small remark on the notation used: q can either refer to the actual probability distribution or
the corresponding probability density function. From the context it should be clear which of the two
we are referring to.
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3. Introduction to VI and Extensions for Hierarchical Normals

measured by the Kullback-Leibler (KL) divergence, defined as:

KL[q(z)||p(z|y)], Eq[log q(z)− log p(z|y)]

=
∫

z
q(z)[log q(z)− log p(z|y)]dz.

(3.3)

In words, the KL-divergence from q(z) to p(z|y) is defined as the expectation of
the difference between the log variational density and the log posterior density,
where the expected value is calculated under the variational distribution. From
here on the aforementioned expectation will be called the variational expectation
and denoted by Eq.

By definition, the KL-divergence is always non-negative and zero if and only
if the two distributions are equal, i.e. if q(z)= p(z|y) (Kullback and Leibler, 1951),
where y is fixed. Hence, a value for KL[q(z)||p(z|y)] that is closer to zero indicates
a better fit, while larger values that are further away from zero suggest a worse
fit. Note that the KL-divergence is not a proper distance measure in the sense
that it is asymmetric: The KL-divergence from q(z) to p(z|y) as defined above
in (3.3), is generally not the same as the KL-divergence from p(z|y) to q(z). An
alternative inference technique that focuses on the minimization of this latter
KL-divergence is Expectation Propagation (Minka, 2001).

For more intuition behind the mechanics of the variational KL-divergence
defined in (3.3), we note that the integrand log q(z)− log p(z|y) is equivalent to
log q(z)

p(z|y) . Consider a given value of z: This ratio will be large if the density of
q(z) is relatively high compared to the posterior density p(z|y). Moreover as
q(z) is (relatively) high in this setting, this ratio will have a large weight in the
computation of the integral. This results in higher values of the KL-divergence,
which indicates a worse fit. The contribution equals zero if both densities are
equal. To summarize, in order to obtain a low KL-divergence, and hence a good fit,
the variational distribution q(z) should refrain from placing significant amounts
of mass on configurations for z that are unlikely under the posterior p(z|y).

More formally, the objective of our optimization is defined as finding q?(z),
the variational distribution that minimizes the KL-divergence in (3.3):

q?(z)= argmin
q(z)

KL[q(z)||p(z|y)]. (3.4)

Explicitly, this casts our inference problem in to an optimization by considering
the KL-divergence from q(z) to p(z|y), which we want to minimize with respect
to the variational distribution q(z). In principle this optimization includes the
type of distribution as well as the variational parameter corresponding to that
distribution.
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3.2.3 The ELBO: log evidence lower bound

A measure closely related to the KL-divergence is the ELBO. It is defined as:

ELBO , Eq[log p(y, z)− log q(z)]

=
∫

z
q(z)[log p(y, z)− log q(z)]dz.

(3.5)

An important property of the ELBO is that it is a lower bound for log p(y), the
log marginal likelihood. In fact, ELBO is the abbreviation of log Evidence Lower
BOund. This lower bound property can be verified by rewriting the ELBO as
follows:

ELBO = Eq[log p(y, z)− log q(z)]

= log p(y)+Eq[log p(z|y)− log q(z)]

= log p(y)−KL[q(z)||p(z|y)],

(3.6)

where we can take log p(y) out of the expectation operator as y is constant with
respect to the variational distribution. Using this result it is straightforward
to verify that the ELBO forms a lower bound for log p(y): The KL-divergence
between two proper distributions is non-negative by definition, so it holds that
ELBO ≤ log p(y) for all proper q(z).

In the special case that the variational is equal to the posterior, the KL-
divergence between them will be zero and the corresponding ELBO is equal to
the log marginal likelihood of y. However, typically the posterior is unknown
and is the distribution that we actually want to infer. Hence, in practice the
KL-divergence is positive and the ELBO will form a true lower bound for the log
marginal likelihood of y.

Additionally, (3.6) shows that the ELBO and the KL-divergence are closely
related:

ELBO+KL[q(z)||p(z|y)]= log p(y). (3.7)

By combining this result with the fact that the ELBO is a lower bound for log p(y)
it follows that finding the q(z) that minimizes KL[q(z)||p(z|y)] is equivalent
to finding the q(z) that maximizes the ELBO. The convention in the (machine
learning) literature is to consider this maximization of the ELBO as the objective
in variational inference. In this chapter we will follow this convention as well, but
it is important to reiterate that the maximization of the ELBO is equivalent to
the minimization of the KL-divergence between the variational and the posterior
of interest.
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3. Introduction to VI and Extensions for Hierarchical Normals

Besides the definition of the ELBO provided in (3.5) we will consider some
alternative representations that can further aid in the understanding of the goal
of variational inference, especially if the reader is trained in (Bayesian) statistics
but less familiar with the machine learning literature.

The first alternative ELBO representation that is considered is:

ELBO , Eq[log p(y, z)− log q(z)]

= Eq[log p(y, z)]+Eq[− log q(z)]

= Eq[log p(y, z)]+Entropy[q(z)].

(3.8)

This illustrates that large (better) values for the ELBO are obtained if two
(conflicting) criteria are satisfied. The variational expectation of the log joint
density of the probability model should be high. In words, the variational q(z)
should allocate its density to configurations of z where the log joint density of the
model is high. This is an intuitive result as the variational is an approximation
of the posterior and in turn, the posterior is proportional to the joint density.
The second term is the entropy of q(z). This shows that larger values for the
ELBO are obtained for a variational with a high entropy, i.e. a distribution that
spreads it density over different configurations for z. Alternatively, very narrow
variational distributions that resemble point masses will be penalized. This is
in line with the Bayesian paradigm, where one is often not only interested in a
point estimate of an unknown parameter, but also seeks a way to quantify its
uncertainty.

Further insight can be obtained if one ignores the entropy in (3.8) for a
moment. In this case, the variational distribution that maximizes the ELBO will
maximize the variational expectation of the log joint density. The optimal q(z)
is in this case a point mass on the mode of p(y, z), which is equivalent to the
mode of the posterior p(z|y) because y is fixed, cf. (3.1). This insight connects
variational inference to maximum a posteriori estimation.

The second alternative representation of the ELBO we consider is given by:

ELBO , Eq[log p(y, z)− log q(z)]

= Eq[log p(y|z)+ log p(z)− log q(z)]

= Eq[log p(y|z)]−KL[q(z)||p(z)].

(3.9)

The first term is the variational expectation of the log-likelihood and will be
high if the variational distribution places much density on areas where the log-
likelihood is high. Intuitively, to obtain large values for the ELBO this first
term “pulls” the variational towards the data (likelihood) of the model, favoring
configurations for z for which the data is likely. The second term is the negative
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KL-divergence between the variational distribution and the prior density of z
in our model. This divergence reduces the value of the ELBO if the variational
distribution diverges too far from the prior, unless this is compensated by an
increase of the variational expectation of the log-likelihood. These two insights
combined reveal that variational inference is closely related to the fundamental
idea of Bayesian inference, where the posterior is defined as a combination of the
likelihood and the prior.

If one ignores the KL-divergence in (3.9), the variational distribution that
maximizes the ELBO will maximize the variational expectation of the log-
likelihood. This corresponds to the setting of an improper uniform prior. It
will result in the optimal q(z) being a point mass on the maximum likelihood
estimator for p(y|z), connecting variational inference to maximum likelihood
estimation.

In this brief introduction on variational inference we have reformulated
Bayesian inference as an optimization problem. One of the promised advantages
of variational inference is that it is fast and that it scales well to large data
sets and complex model structures. However, the observant reader would point
out that thus far we have not made our problem easier, instead we have made
it more difficult: The introduced optimization problem seems no less tractable
than our initial inference problem, in particular because the optimal variational
distribution is equal to our posterior of interest, which is precisely the object we
want to infer.

As we are now in the domain of optimization we can consider solving a closely
related but less complicated optimization problem as a proxy. A natural way to
reduce the complexity is by imposing restrictions on the variational distribution,
although this might exclude the true posterior distribution from the set of allowed
distributions. Naturally, this will lead to an approximation of the probabilistic
quantities of interest. However, this is offset by much faster inference. A generic
set of restrictions that facilitates faster inference will be the topic of the next
section.

68



3. Introduction to VI and Extensions for Hierarchical Normals

3.2.4 The mean-field assumption

In the previous section we introduced the ideas underlying variational inference
and we illustrated how probabilistic inference can be viewed as an optimization
problem. In case no restrictions are imposed on this optimization problem, it
follows that the variational objective function is optimized if the variational
distribution is equal to the posterior distribution. Clearly, this is not a feasible so-
lution if we are not able to evaluate the posterior. That is, in practice restrictions
need to be imposed on the variational, so that it remains tractable while at the
same time providing a good approximation to the posterior. The most commonly
used restriction in the literature is to impose the variational factorizes over the
unknown variables z. This is called the mean-field assumption which leads to
mean-field variational inference (MFVI):

q(z)=∏
j

q(z j). (3.10)

The mean-field assumption specifies that the variational q(z) factorizes over
each of the unknown elements z. Each element z j is endowed with its own
marginal density q(z j) that is independent of all other elements, denoted by z¬ j.
Recall that z j can refer to either a univariate or multivariate variable and if it is
multivariate, it is not split by the mean-field assumption.

Put differently, the unknown (sets of) parameters in our model are assumed to
be uncorrelated under the variational distribution. Note that this does not imply
that correlations between parameters in the model are ignored. The posterior
of interest is unaltered, as the original data generating process is not affected
by the mean-field assumption. Furthermore, the goal of variational inference
remains the same: To find the variational that is as close as possible to our
posterior of interest. The only thing that has changed in MFVI is that the form
of the variational distribution is now restricted. As a result of this restriction,
the variational distribution is not informative on posterior correlations between
z j and z¬ j.

We apply the ideas behind mean-field variational inference to a toy example
to make these concepts more concrete. This example is separated from the main
text using gray boxes and we will continue with this example throughout the
next sections.
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Toy example

Let y1, . . . , yN be a set of N independent and identically distributed
univariate random variables. Each yi is Normally distributed with
mean µ and precision τ. The prior of µ is again a Normal distribution
with known parameters mµ and tµ. The prior of τ is a Gamma
distribution with known parameters aτ and bτ.

We want to infer µ and τ using mean-field variational inference. The
joint posterior of µ and τ is denoted by p(µ,τ|y1:N ), where we omit the
explicit conditioning on the prior parameters which are assumed to be
known. This posterior is approximated by a variational distribution
that is restricted using the mean-field assumption:

q(µ,τ)= q(µ)q(τ).

Throughout the section the focus will be on the inference of µ, but the
results that are derived can be applied for the estimation of τ as well.

Markov Blanket

Before we continue with the implications of the mean-field assumption we make
a side-step to introduce the concept of a Markov Blanket. The fundamental
idea here is that a model’s joint probability distribution can be represented by
a directed a-cyclical graph (DAG) (Pearl, 1988). In such a graph, variables in
the model are represented by nodes and the interactions between variables are
represented by vertices between the nodes. This facilitates reasoning about the
(in)dependencies among variables contained in the model. A comprehensive
overview of DAG’s applied to probabilistic models and its properties can be found
in Pearl (1988) and Pearl (2009). From this literature we direct our attention to
the Markov Blanket. For parameter z j we denote it by MB j and it is comprised
of three sets of nodes:

1. The parents of z j, denoted by the set P A j. It is defined as the parameters
that affect z j in the DGP. In the DAG this relation is displayed by arrows
pointing towards z j.

2. The children of z j, denoted by the set CH j. It is defined as the parameters
that are affected by z j in the DGP. In the DAG this relation is displayed by
arrows pointing away from z j.
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3. Introduction to VI and Extensions for Hierarchical Normals

3. The co-parents of all children of z j, denoted by the set CP j. It is defined as
the parameters that affect the children of z j in the DGP. In the DAG this
relation is displayed by arrows pointing towards the children of z j.

We visualize the Markov Blanket for a general case in Figure 3.1.
A key property is that the nodes in a Markov Blanket contain all the infor-

mation in the model about the focal variable. That is, if we condition on the
parameters in MB j, the Markov blanket for z j, we have all the information
about z j. We do not gain any extra knowledge of z j by conditioning on additional
nodes outside of z j ’s Markov Blanket. More formally, this property can be stated
as follows: The density of z j, conditioned on all other variables in the model,
is equivalent to the density of z j conditioned on only the nodes in its Markov
Blanket:

p(z j|z¬ j)= p(z j|MB j). (3.11)

z j

P A j

CH j

CP j

FIGURE 3.1 – A graphical representation of a Markov Blanket. The focal
parameter z j is shaded gray. The nodes that belong to its Markov Blanket
are contained in the dashed circle which represents the Markov Blanket.
Conditioned on the nodes in the Markov Blanket, the nodes outside the
dashed circle do not contain any additional information about z j.
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Toy example - Markov Blanket

The Markov Blanket for µ in our example is given by:

µ

mµ tµ

{yi}i

τ

aτ

bτ

The parents of µ are mµ and tτ, its children are given by y1, . . . , yN

and τ is the co-parent of y1, . . . , yN . Note that the prior parameters for
τ are not included in the Markov Blanket for µ.

Markov blanket and MFVI

With the Markov Blanket in place we return to mean-field variational inference.
The goal is to derive the optimal q(z j), the marginal variational distribution for
z j. We start by isolating the part of the ELBO that depends on q(z j):

ELBO = Eq[log p(y, z)−∑
i

log q(zi)]

= Eq[log p(z j|z¬ j, y)+ log p(z¬ j, y)−∑
i

log q(zi)]

q(z j)∝ Eq[log p(z j|z¬ j, y)− log q(z j)]
q(z j)∝ Eq[log p(z j|MB j)− log q(z j)]
q(z j)∝ Eq[log p(z j, MB j)− log q(z j)].

(3.12)

where we have overloaded the proportionality operator ∝ to drop any additive
terms that are constant with respect to q(z j). In addition, we have used the
property of the Markov Blanket to rewrite the conditional density of z j.

Next, the mean-field assumption allows us to split the variational expectation
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3. Introduction to VI and Extensions for Hierarchical Normals

in two separate expectations, one for q(z j) and another for q(MB j):

ELBO
q(z j)∝ Eq(z j ,MB j)[log p(z j, MB j)− log q(z j)]

= Eq(z j)[Eq(MB j)[log p(z j, MB j)]− log q(z j)].
(3.13)

The Eq(MB j)[log p(z j, MB j)] term can be interpreted as the log of an unnormalized
density for z j which we denote by p̃ j(z j). It can be normalized to a proper density
by reinstalling the appropriate normalizing constant:

log p̃ j(z j), Eq(MB j)[log p(z j, MB j)],

p j(z j),
p̃ j(z j)
Z p̃ j

= p̃ j(z j)∫
z j

p̃ j(z j)dz j

=
exp(Eq(MB j)[log p(z j, MB j)])∫

z j
exp(Eq(MB j)[log p(z j, MB j)])dz j

.

(3.14)

The normalizing constant Z p̃ j in (3.14) is not a function of q(z j) as z j is marginal-
ized over. Thus, adding this normalizing constant to (3.13) will not affect the
optimal variational distribution for z j:

ELBO
q(z j)∝ Eq(z j)[Eq(MB j)[log p(z j, MB j)]− log q(z j)]
q(z j)∝ −KL[q(z j)||p j(z j)]+Z p̃ j ,

(3.15)

This is an important result as it shows that the part of the ELBO that depends on
q(z j) can be isolated and equals the negative KL-divergence between q(z j) and
p j(z j) as defined in (3.14). Remember that the goal in variational inference is to
maximize the ELBO. It is clear that the maximization of the ELBO in (3.15) with
respect to q(z j) is equivalent to minimizing this KL-divergence. By definition,
this KL-divergence is minimized if q(z j)= p j(z j). This result can be summarized
as follows:

q?j (z j), argmin
q(z j)

ELBO,

q?j (z j)= p j(z j),

log q?j (z j)
z j∝ Eq(MB j)[log p(z j, MB j)].

(3.16)

This result is rephrased for the reader who is more familiar with Gibbs sampling:
The log density of the optimal variational distribution for z j is (up to a constant)
equal to the log full-conditional density for z j where all moments of the variables
in MB j are replaced with their variational expectations. Note that q(z j) is our
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approximation of the marginal posterior for z j. This shows a close connection
between variational inference and a Gibbs sampler (Gelfand and Smith, 1990),
where one would sample z j from its full-conditional distribution to approximate
the marginal posterior of z j.

Toy example - MFVI

To derive q?(µ), the optimal marginal variational distribution for µ,
first derive the joint density of µ and its Markov Blanket:

p(µ, MBµ)= p(µ,mµ, tµ, y1, . . . , yN ,τ)

µ∝ p(µ|mµ, tµ)
N∏

i=1
p(yi|µ,τ)

µ∝ exp

(
−1

2
tµ(µ−mµ)2 − 1

2
τ

N∑
i=1

(yi −µ)2
)

This can be recognized as the kernel of a Normal distribution with
mean (tµ + τN)−1(tµmµ + τ

∑N
i=1 yi) and precision tµ + τN. Using

the result from (3.16), we know that log q?(µ) is (up to a constant)
equal to Eq(τ)[log p(µ, MBµ)], where we used that q(MBµ) = q(τ) be-
cause the other elements of MBµ are fixed values. By distribut-
ing the variational expectation for τ, we find that the optimal
variational distribution for µ is a Normal distribution with mean
(tµ+Eq[τ]N)−1(tµmµ+Eq[τ]

∑N
i=1 yi) and precision tµ+Eq[τ]N.

The solution in (3.16) for q(z j) contains a variational expectation over MB j

and hence, it is a function of the variational distributions q(zi) with i ∈ MB j.
This means that one cannot simultaneously solve for all q(z j) at once. Instead,
a solution can be found by initializing each of the q(z j) distributions, and then
iteratively updating each q(z j) conditional on the current variational distribu-
tions of the variables in MB j. In this approach, convergence to a (local) optimum
is guaranteed as the optimization problem for each q(z j) is convex. Each step is
guaranteed to lead to an improvement. This optimization routine is known as
coordinate ascent (Bishop, 2006).

Note that the results obtained in this section are only driven by the design
of the model and the mean-field assumption. We have not made any distribu-
tional assumptions about our probabilistic model or the variational distribution.
Working with distributions from the exponential family, which is a versatile class
of parameterized distributions, will be the topic of our next section. The main
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3. Introduction to VI and Extensions for Hierarchical Normals

advantage here is that these exponential family distributions simplify notation
and derivations.

3.2.5 Exponential family

The exponential family covers a broad class of distributions that contains many
well-known distributions such as the (multivariate) Normal, the Gamma, and the
Dirichlet. It has been extensively studied in the literature and enjoys convenient
properties, such as conjugate priors. Besides these properties it is often straight-
forward in VI to derive update steps for a coordinate ascent optimization that
involves distributions from the exponential family. We will first briefly review the
basic properties of the exponential family and subsequently discuss the properties
that are convenient in the context of mean-field variational inference.

Let x be a random variable that is distributed according to a distribution from
the exponential family. Each distribution in the exponential family has a log
kernel of the following form:

log p̃(x|θ)= logh(x)+ f (θ)>t(x). (3.17)

Here h, f , and t are distribution-specific functions. Both f and t can be vector
functions, but h(x) is a scalar function by definition. t(x) is the sufficient statistic
of x and it is “sufficient” in the sense that it is the only interaction between the
parameter θ and the random variable x in the density. h(x) is the base measure
and we emphasize that this function contains all the terms of x in the density
that do not interact with the parameter θ.

An alternative parameterization of our distribution is to consider η = f (θ).
In the literature, η is known as the natural parameter and considering η as the
parameter of the distribution has many advantages that we will discuss shortly.
The resulting (log) kernel as a function of η is:

log p̃(x|η)= logh(x)+η>t(x),

p̃(x|η)= h(x)exp(η>t(x)).
(3.18)

The constant that normalizes this kernel into a proper distribution is defined as:

Z(η),
∫

x
p̃(x|η)dx =

∫
x

h(x)exp(η>t(x))dx, (3.19)

and the log of this normalizer is defined as:

a(η), log Z(η). (3.20)

75



The log kernel in (3.18) is normalized by subtracting the log normalizer
a(η) from it, which results in the following specification for a log density in the
exponential family:

log p(x|η)= logh(x)+η>t(x)−a(η). (3.21)

This is known as the canonical form of the exponential family and it holds that
for every member of the exponential family, the log density can be written in this
form.

Exponential family example

Let x be a univariate random variable that is Normally distributed
with mean µ and precision τ. We will rewrite the log density of x in
the canonical form.

First, we rewrite the log density:

log p(x|µ,τ)=−1
2

log2π+ 1
2

logτ− 1
2
τ(x−µ)2

=
[

τµ

−0.5τ

]>[
x
x2

]
− 1

2
(
log2π− logτ+τµ2)

.

In this form it is straightforward to identify the different
components of the canonical form: The natural parameter
η = [η0,η1] = f (µ,τ) = [τµ,−0.5τ] and the sufficient statistic
t(x)= [x, x2]. The log base-measure is absent in the log density for x,
which shows that for the Normal distribution it is equal to zero, or
alternatively h(x) = 1. The natural parameter mapping can also be
reversed, resulting in: [µ,τ]= f −1(η)= [(−2η0)−1η1, (−2η0)]

The log normalizer as a function of µ and τ is given by a(µ,τ) =
1
2
(
log2π− logτ+τµ2)

. We can replace µ and τ with functions of η to
obtain the log normalizer as a function of the natural parameter η:
a(η)= 1

2
(
log2π− log(−2η1)+ (−2η1)−1η2

0
)
.

Let q and p be two densities for the same class of distributions from the
exponential family with natural parameters η̃ and η respectively. We examine
their KL-divergence as it plays a central role in VI. In this KL-divergence, we
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3. Introduction to VI and Extensions for Hierarchical Normals

first replace the log densities of q and p with their canonical forms:

KL(q(x|η̃)||p(x|η))= Eq[log q(x|η̃)− log p(x|η)]

= Eq
[
loghq(x)+ tq(x)>η̃−aq(η̃)− loghp(x)− tp(x)>η+ap(η)

]
= Eq

[
loghq(x)+ tq(x)>η̃− loghp(x)− tp(x)>η

]−aq(η̃)+ap(η).

(3.22)

Because q and p are densities for the same distribution their h, t, and a functions
are equivalent, so we can drop the subscripts for these functions. By canceling
and aggregating terms, we isolate the parts of the KL-divergence that are a
function of η̃:

KL(q(x|η̃)||p(x|η))= Eq [t(x)]> (η̃−η)−a(η̃)+a(η)
η̃∝ Eq [t(x)]> (η̃−η)−a(η̃).

(3.23)

To evaluate this KL-divergence we need to be able to compute the expectation
of the sufficient statistic t(x) under the distribution q. One of the reasons for
re-parameterizing the distribution in terms of the natural parameter is that it
is easy to derive this expectation of the sufficient statistic t(x): It is equal to the
gradient of the log normalizer a(η) with respect to η. We denote this gradient by
∇ηa(η), and it holds that:

∇ηa(η)=∇η log Z(η)= 1
Z(η)

∇ηZ(η)= 1
Z(η)

∇η

∫
x

p̃(x|η)dx

= 1
Z(η)

∫
x

h(x)∇η exp
(
η>t(x)

)
dx

= 1
Z(η)

∫
x

h(x)exp
(
η>t(x)

)
t(x)dx

=
∫

x
h(x)exp

(
η>t(x)−a(η)

)
t(x)dx

=
∫

x
p(x|η)t(x)dx

, E[t(x)].

(3.24)

This indeed shows that the mean of the sufficient statistic t(x) is equal to the
gradient of the log-normalizer a(η) with respect to η. Plugging this general result
back in (3.23), we obtain:

KL(q(x|η̃)||p(x|η))
η̃∝ [∇η̃a(η̃)

]
(η̃−η)−a(η̃). (3.25)
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Exponential family - Expectation of the sufficient statistic

For a Normal distribution with natural parameter η= [τµ,−0.5τ], we
can derive the expectation of the sufficient statistic t(x)= [x, x2] by tak-
ing the gradient of the log normalizer a(η)= log Z(η)= log

∫
x p̃(x|η)dx

with respect to η:

∇η0 a(η)= (−2η1)−1η0 =µ= E[x],

∇η1 a(η)= (−2η1)−1 + (−2η1)−2η2
0 =σ2 +µ2 = E[x2].

Earlier in the chapter we have relied on the result that the KL-divergence is
minimized if both distributions are equal, i.e. if we make q equal to p by setting
η̃= η. Alternatively, we can also show directly that this property holds by setting
the gradient of the KL-divergence with respect to η̃ to zero. This gradient is
derived as follows:

∇η̃KL(q(x|η̃)||p(x|η))=∇η̃
([∇η̃a(η̃)

]
(η̃−η)−a(η̃)

)
= [∇η̃

[∇η̃a(η̃)
]]

(η̃−η)+ [∇η̃a(η̃)
]∇η̃(η̃−η)−∇η̃a(η̃)

=
[
∇η̃η̃>a(η̃)

]
(η̃−η)+∇η̃a(η̃)−∇η̃a(η̃)

=
[
∇η̃η̃>a(η̃)

]
(η̃−η),

(3.26)

where ∇η̃η̃>a(η̃) is the Hessian of the log normalizer a(η̃) with respect to the
natural parameter η̃. Similar to the gradient of the log normalizer, this Hessian
has a special property as well:

∇ηη>a(η)=∇η∇η>a(η)=∇ηE[t(x)>]=∇η
∫

x
p(x|η)t(x)>dx

=
∫

x
h(x)∇η exp

(
η>t(x)−a(η)

)
t(x)>dx

=
∫

x
h(x)exp

(
η>t(x)−a(η)

)∇η

(
η>t(x)−a(η)

)
t(x)>dx

=
∫

x
p(x|η)

(
t(x)−∇ηa(η)

)
t(x)>dx

=
∫

x
p(x|η) (t(x)−E[t(x)]) t(x)>dx

=
∫

x
p(x|η)

(
t(x)−E[t(x)]

)(
t(x)−E[t(x)]

)>dx

= E
[(

t(x)−E[t(x)]
)(

t(x)−E[t(x)]
)>]

,Cov[t(x)].

(3.27)
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That is, the covariance matrix of the sufficient statistic t(x) can be obtained by
taking the Hessian of the log-normalizer a(η) with respect to η. Plugging this
result in the gradient of the KL-divergence in (3.26), we obtain:

∇η̃KL(q(x|η̃)||p(x|η))= Covq[t(x)](η̃−η). (3.28)

This shows that the gradient of KL(q(x|η̃)||p(x|η)) has a special form when q
and p are both densities for the same class of distributions in the exponential
family. It is equal to the difference between the parameters of the two densities
η̃−η, premultiplied by the covariance matrix of the sufficient statistic t(x) under
distribution q. It is straightforward that this gradient can be set to zero by setting
η̃ = η, which corresponds with the general property that the KL-divergence is
minimized when q and p are equal.

3.2.6 Conditionally conjugate models and MFVI

With the above basics for the exponential family in place, it can be demonstrated
how these distributions work in conjunction with VI. We consider mean-field
variational inference for a specific subclass of models that involve exponential
family distributions and that are conditionally conjugate (Blei et al., 2017). The
general conjugacy property states that the posterior that results from a conju-
gate prior-likelihood pair is from the same family of distributions as the prior
distribution. In addition to this the conditionally conjugate property ensures that
the full-conditional distribution for each model parameter z j is a member of the
exponential family. Examples of such conditionally conjugate models are latent
Dirichlet allocation (Blei et al., 2003), mixture models, hidden Markov models,
and many more. The hierarchical Normal model that we focus on in this chapter
is conditionally conjugate as well.

We combine the conditionally conjugate property with that of the Markov
Blanket, displayed in (3.11), to obtain the following general expression for the
full-conditional of z j:

log p(z j|z¬ j)= log p(z j|MB j)
z j∝ log p(z j, MB j)

= logh(z j)+ t(z j)>η(MB j),

(3.29)

where the natural parameter η(MB j) is a function of the variables in the Markov
Blanket z j.

By plugging this result in the third line of (3.16) we obtain that the log kernel
for the variational of z j that minimizes the KL-divergence to p(z j|MB j) can be
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written in the following form:

log q?j (z j)
z j∝ Eq(MB j)[log p(z j, MB j)]

= logh(z j)+ t(z j)>Eq(MB j)[η(MB j)],
(3.30)

where q?j (z j) is the optimal marginal variational distribution for z j.

Summarizing this result: If mean-field variational inference is applied to con-
ditionally conjugate models, then the optimal marginal variational distribution
q?j (z j) is from the same exponential family distribution as the full-conditional for
z j. The natural parameters of both distributions are closely related, as the natu-
ral parameter for q?j (z j) is the variational expectation of the natural parameter
for the full-conditional-distribution. That is, the natural parameter for q?j (z j) is
given by:

η̃?j = Eq(MB j)[η(MB j)]. (3.31)

With this result, we can derive the optimal marginal variational distribution for
a focal variable z j in three steps:

1. Define the Markov Blanket for z j and write down the log joint density of z j

and the variables in its Markov Blanket.

2. From this joint, drop the terms that are constant with respect to z j and
rewrite it in the canonical form that matches with the prior for z j.

3. Take the variational expectation of the natural parameter that results from
this canonical form. This is the natural parameter for the optimal marginal
variational distribution of z j.

(3.31) shows that the variables in MB j are potentially coupled in the full-
conditional for z j, i.e. if the variables in MB j have interactions in η(MB j). If this
is the case, a change in the model specification (for example, by adding or deleting
a variable) will affect the solutions for the optimal marginal distributions of all
variables in MB j. This implies that one needs to adjust the update steps for all
these variables in the optimization as well. This is clearly suboptimal, especially
if one wants to quickly explore different model settings. In the next section
we introduce a new result for a hierarchical Normal model which allows us to
easily deal with this coupling. We achieve this by funneling all the dependencies
between the elements in MB j through a common error term.
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Toy example - Deriving the optimal variational for µ

The optimal marginal variational distribution for µ in our toy
example is derived using three steps.

1. The kernel of the log joint density of µ and its Markov Blanket
MBµ can be written as:

log p(µ, MBµ)
µ∝

[
µ

µ2

]>[
tµmµ+τ∑N

i=1 yi

−0.5(tµ+τN)

]
.

2. This is the kernel of a Normal distribution, where the natu-
ral parameter is a function of the elements in the Markov Blanket of µ.

3. By using the result in Equations (3.30) and (3.31), the optimal
variational distribution for µ is a Normal distribution with natural
parameter:

η̃?j = Eq(MB j)[η(MB j)]

=
[

tµmµ+Eq[τ]
∑N

i=1 yi

−0.5(tµ+Eq[τ]N)

]
.

3.3 M F V I I N H I E R A R C H I C A L N O R M A L M O D E L S

In this section a new result for the estimation of hierarchical Normal models
with mean-field variational inference is presented. The concepts discussed in Sec-
tion 3.2 will be used extensively to arrive at these results. Our result shows that
the dependence of parameters in a hierarchical Normal model can be funneled
through a common error term. Before we arrive at this general result, we first
illustrate the problem setting with examples of a linear model and a panel model.

3.3.1 Linear model

Consider the following linear regression model where a univariate dependent
variable yi is explained by the multivariate regressor xi:

yi = x>
i β+ui, (3.32)
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where ui is a Normally distributed error term with zero-mean and precision τ.
We place a multivariate Normal prior distribution on β, with mean-vector mβ

and precision-matrix Lβ. By doing so, we have created a (simple) hierarchical
Normal model, which is conditionally conjugate.

The goal is to infer β using mean-field variational inference. From our dis-
cussion in Section 3.2.6 we know that we can derive q?(β), the optimal marginal
variational distribution of β, for a conditionally conjugate model in three steps:
i) Determine MBβ, the Markov Blanket for β. ii) Derive η(MBβ), the natural
parameter for the full-conditional distribution of β. iii) Take the variational
expectation over η(MBβ) to obtain the natural parameter for q?(β).

For the first step, we consider the part of the log density of yi that depends
on β. This can be written in the canonical form for a multivariate Normal
distribution over β:

log p(yi|β,τ)
β∝−1

2
τ
(
yi −x>

i β
)2

β∝−1
2
τ
(
x>

i ββ
>xi −2yix>

i β
)

=
[
β

ββ>

]
···
[

τxi yi

−0.5τxix>
i

]
,

(3.33)

where ··· denotes the Frobenius inner-product, i.e. it calculates the dot product
between two matrices as though they are vectors.

This result can be extended to the log joint density of β and its Markov
Blanket:

log p(β, MBβ)
β∝ log p(β|mβ,Lβ)+

N∑
i=1

log p(yi|β,τ)

β∝
[
β

ββ>

]
···
[

Lβmβ+τ∑N
i=1 xi yi

−0.5(Lβ+τ∑N
i=1 xix>

i )

]
.

(3.34)

The natural parameter for q?(β), which we denote by η̃?
β

, is obtained by taking
the variational expectation of the natural parameter in (3.34). For the moment,
the only stochastic parameter in MBβ is τ, resulting in:

η̃?β = Eq(MBβ)[η(MBβ)]

=
[

Lβmβ+Eq[τ]
∑N

i=1 xi yi

−0.5(Lβ+Eq[τ]
∑N

i=1 xix>
i )

]
.

(3.35)

This natural parameter can be mapped to the more familiar mean-vector and
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covariance-matrix of a multivariate Normal:

Σ= (−2η1)−1 and µ= (−2η1)−1η0,

and by applying this mapping to η̃?
β

we obtain:

Σ̃?β = (Lβ+Eq[τ]
N∑

i=1
xix>

i )−1,

µ̃?β = (Lβ+Eq[τ]
N∑

i=1
xix>

i )−1(Lβmβ+Eq[τ]
N∑

i=1
xi yi).

(3.36)

3.3.2 Panel linear regression model

In case the linear model is extended to a panel model, the optimal marginal
variational distribution can be obtained in a similar way. Consider that we now
have t = 1, . . . ,Ti observations for each individual i. The linear model is extended
from (3.32) into a generic panel model:

yit =αi +x>
itβ+uit, (3.37)

where the new systematic component αi is endowed with a Normal prior, with
mean mα and precision tα. This specification is a hierarchical Normal model as
well.

We will show that the optimal variational distributions for αi and β can be
derived from the results for the linear model without any additional manual
derivations. We first focus on β and notice that the following relation holds:

yit −αi = x>
itβ+uit (3.38)

That is, the panel model in (3.37) can be rewritten as a linear model in which we
explain yit −αi by xit. Here, yit −αi can be interpreted as the part of yit that is
not explained by αi and hence, that needs to be explained by xit. More concretely,
yit −αi is substituted for yi in (3.34) to directly arrive at:

log p(β, MBβ)
β∝ log p(β|mβ,Lβ)+

I∑
i=1

Ti∑
t=1

log p(yit|αi,β,τ)

β∝
[
β

ββ>

]
···
[

Lβmβ+τ∑I
i=1

∑Ti
t=1 xit(yit −αi)

−0.5(Lβ+τ∑I
i=1

∑Ti
t=1 xitx>

it)

]
.

(3.39)

As for the linear model, the optimal natural parameter for q?(β) is obtained
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by taking the variational expectation of the natural parameter in (3.39). The
stochastic parameters in MBβ are given by αi for i = 1, . . . , I and τ. Note that the
log kernel of yit contains an interaction of αi and τ, but because of the mean-field
assumption their variational expectation factorizes Eq[αiτ]= Eq[αi]Eq[τ]:

η̃?β = Eq(MBβ)[η(MBβ)]

=
[

Lβmβ+Eq[τ]
∑N

i=1
∑Ti

t=1 xi(yi −Eq[αi]
−0.5(Lβ+Eq[τ]

∑N
i=1

∑Ti
t=1 xix>

i )

]
.

(3.40)

For αi a similar result can be obtained by replacing the prior parameters and
noticing that the “coefficient” for αi is 1:

log p(αi, MBαi )
αi∝ log p(αi|mαi , tαi )+

I∑
i=1

Ti∑
t=1

log p(yit|αi,β,τ)

αi∝
[
αi

α2
i

]>[
tαi mαi +τ

∑I
i=1

∑Ti
t=1(yit −x>

itβ)
−0.5(tαi +τ

∑I
i=1

∑Ti
t=1 1)

]
,

(3.41)

with as optimal natural parameter for q?(αi):

η̃?αi
= Eq(MBαi )[η(MBαi )]

=
[

tαi mαi +Eq[τ]
∑I

i=1
∑Ti

t=1(yit −x>
itEq[β])

−0.5(tαi +Eq[τ]
∑I

i=1
∑Ti

t=1 1)

]
.

(3.42)

These results will be generalized to arbitrary hierarchical Normal models.

3.3.3 General hierarchical Normal model

The results for the panel model can be extended to a more general setting.
Consider a linear model for yi where the systematic component, i.e. the mean
specification, consists of k = 1, . . . ,K variables cik. Each cik has a distinct effect
on yi, given by θk. This model of yi can be written as:

yi =
K∑

k=1
cikθk +ui, (3.43)

with ui a Normally distributed error term with zero-mean and precision τ. Each
parameter θk is endowed with a multivariate Normal prior distribution, with
mean-vector mθk and precision-matrix Lθk . We may consider θk to be a univariate
parameter without loss of generality.

As in the previous examples, if we focus on a single parameter θk, we can
consider the model where we explain the remainder yi −∑

j 6=k ci jθ j by cik. Using
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this property, the joint density of θk and its Markov Blanket MBθk can be written
as the log kernel of a multivariate Normal distribution over θk:

log p(θk, MBθk )
θk∝ log p(θk|mθk ,Lθk )+

I∑
i=1

log p(yi|{cik,θk}K
k=1,τ)

θk∝
[
θk

θkθ
>
k

]
···
[

Lθk mθk +τ
∑I

i=1 cik(yi −∑
j 6=k ci jθ j)

−0.5(Lθk +τ
∑I

i=1 cikc>
ik)

]
.

(3.44)

The result in (3.44) can be used to automatically write down the natural
parameter of the multivariate Normal distribution that corresponds to the full-
conditional distribution of θk. By itself this is a useful result, but it also exposes
a general property of hierarchical Normal models: Each θk parameter is coupled
with all other parameters because of the yi −∑

j 6=k ci jθ j term in the natural
parameter. Concretely, if the composition of the systematic component for yi

changes (i.e. a variable is added or removed), the natural parameters of all θk

will change as well.

This can be improved by considering that yi −∑
j 6=k ci j is equivalent to the

common error ui plus the interaction of θk with its coefficient cik. This term is
rewritten as a new auxiliary variable εi(¬cikθk):

yi −
∑
j 6=k

ci j = yi −
K∑

k=1
ci jθk +cikθk

= ui +cikθk

, εi(¬cikθk).

(3.45)

The first line in (3.45) makes clear that cikθk cancels and hence, does not appear
in εi(¬cikθk). Using this result, (3.44) can now be written in the following form:

log p(θk, MBθk )
θk∝

[
θk

θkθ
>
k

]
···
[

Lθk mθk +τ
∑I

i=1 cikεi(¬c>
ikθk)

−0.5(Lθk +τ
∑I

i=1 cikc>
ik)

]
. (3.46)

By taking the variational expectation of this natural parameter2, we obtain the
natural parameter for the optimal marginal variational distribution for θk as

2We have assumed here that cik is not stochastic. If cik is stochastic, the same general result
holds if cik only interacts with θk in the model.
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follows:

q?(θk)=
[

Lθk mθk +Eq[τ]
∑I

i=1 cikEq[εi(¬c>
ikθk)]

−0.5(Lθk +Eq[τ]
∑I

i=1 cikc>
ik)

]

=
[

Lθk mθk +Eq[τ]
∑I

i=1 cik(Eq[ui]+c>
ikEq[θk])

−0.5(Lθk +Eq[τ]
∑I

i=1 cikc>
ik)

]
.

(3.47)

This result has two implications: First, the dependencies between θk pa-
rameters are funneled in a function of the common error term ui. In case we
change the model (for example, by adding or deleting variables) we only have to
update the specification of ui to adapt this change for all variables in the model.
Secondly, working with εi(¬c>

ikθk) has a computational advantage. It follows that
the naive computation of y−∑

j 6=k c>
i jθ j requires K −1 operations. As there are

K parameters in the mean specification for yi, this results in (K −1)×K opera-
tions in total to calculate this term for every θk. In contrast, by using εi(¬c>

ikθk)
instead we need much less operations: The computation of ui = yi −∑K

k=1 c>
ikθk

requires K operations and each εi(¬cikθk) for k = 1, . . . ,K , can be constructed
from ui using one additional operation. Hence, this approach requires only 2K
operations in total and scales linearly with the number of parameters K . This is
in stark contrast to the quadratic complexity of the naive approach.

3.4 E S T I M A T I N G T H E C O M M O N P R E C I S I O N M A T R I X O F A S E T O F

M U LT I VA R I A T E N O R M A L S W I T H I N D E P E N D E N T M U LT I VA R I A T E

N O R M A L VA R I A T I O N A L S

In order to gain richer insights from the data, one might be interested in adding
covariances to a model. However, adding such covariances is typically not without
a (computational) cost. For example, the number of parameters in the covariance
matrix of a multivariate Normal (MVN) distribution scales quadratically with
the dimension K of the distribution. This problem is further amplified when
the model is estimated using vanilla mean-field variational inference (MFVI).
Consider that we have I random variables in the model that follow the same
MVN distribution in the data generating process. In vanilla MFVI, each of these
variables will be endowed with an MVN as marginal variational distribution,
where the mean and covariance is specific to the focal variable. Clearly, the
number of variational parameters grows very rapidly if either K or I increases.

Instead, in this section we deviate from vanilla MFVI and show how the
common precision matrix for a set of MVN variables can be efficiently inferred.
We obtain this gain in efficiency by endowing each of the I MVN variables
with a variational distribution that consists of a set of independent (univariate)
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Normals. This set of Normals can be considered to be a special case of an MVN
distribution with a diagonal covariance matrix. We call such a distribution an
independent multivariate Normal (iMVN). In this section, we will first formulate
the problem setting. Subsequently, we provide the general closed-form solution of
an iMVN that approximates an MVN and discuss the properties of this optimal
approximation.

3.4.1 Problem setting

Consider the following simple hierarchical Normal model:

yit = x>
itβi +uit,

βi =m+Λ− 1
2νi,

(3.48)

where uit is a Normally distributed error term with some variance, and νi is an
MVN distributed error term with the identity as covariance matrix. Hence, βi

follows a multivariate Normal distribution with mean m and precision matrix
Λ. For simplicity we consider m to be known and fixed, this is without loss of
generality. We are interested in estimating the unknown model parameters βi

for i = 1, . . . , I and Λ using MFVI.

Note that the conjugate prior for a precision matrix of an MVN distribution
is the Wishart distribution. In other words, if we endow Λ with a Wishart prior
with prior scale matrix Vπ and prior degrees of freedom nπ, the full-conditional
density of Λ conditioned on its Markov Blanket MBΛ is proportional to the kernel
of another Wishart. In the canonical form of the exponential family, the log of
this kernel is given by:

log p(Λ|{βi}I
i=1,m,nπ,Vπ)

Λ∝ log p(Λ|nπ,Vπ)+
I∑

i=1
log p(βi|m,Λ)

Λ∝
[

Λ

logdet(Λ)

]
···
[
−0.5[Vπ+∑I

i=1(βi −m)(βi −m)>]
0.5(nπ+ I −K −1)

]
,

(3.49)

where logdet(Λ) is the log determinant of the Λ matrix.

The
∑I

i=1(βi −m)(βi −m)> term in (3.49) can be recognized as I times the
covariance matrix of the βi vectors with mean m. Notice that it captures the
covariance across the βi vectors, instead of the elements within a single βi vector.

We can straightforwardly determine the optimal variational natural param-
eter for q(Λ), which we denote by η̃?Λ. It is obtained by taking the variational
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expectation of the natural parameter in (3.49), which results in:

η̃?Λ = Eq(MBΛ)[η(MBΛ)]

=
[
−0.5[Vπ+∑I

i=1 Eq(βi)[(βi −m)(βi −m)>]]
0.5(nπ+ I −K −1)

]
.

(3.50)

Naturally, the variational expectation of (βi −m)(βi −m)> in (3.50) depends
on q(βi), the marginal variational distribution for βi. That is, if we change q(βi)
from an MVN to an iMVN distribution, this expectation is likely to change as
well. Note, however, that this does not imply that the covariances across the βi

vectors become zero. This can be easily verified by considering the degenerate
case of an iMVN where all (co)variances are zero, i.e. fixed values for βi which
would result in

∑I
i=1 Eq(βi)[(βi −m)(βi −m)>] =∑I

i=1(βi −m)(βi −m)>. In other
words, as long as there is variation across the (variational posterior) means of
the βi vectors, the resulting precision matrix and hence, covariance matrix, will
have non-zero off-diagonal elements. As degenerate distributions are unlikely
to be accurate approximations for the posterior of βi, and full covariance MVNs
are computationally very demanding, we outline in the next section the closed-
form solution when approximating an MVN with an iMVN. This result can then
be used within MFVI to obtain the optimal variational parameters for Λ, as
displayed in (3.50).

3.4.2 Optimal iMVN to approximate an MVN

In this section we will derive the optimal variational parameters for an iMVN that
is used to approximate a generic MVN distribution in MFVI, i.e. the parameters
that minimize the KL-divergence between the two distributions. In addition, we
discuss the properties of these optimal parameters and contrast them against an
MVN specification.

Let x be a K-dimensional hierarchical MVN random variable, so that its
posterior is another MVN. The goal in variational inference is to minimize the KL-
divergence between the variational distribution q(x) and p(x|µ,Λ), the posterior
MVN distribution with mean-vector µ and precision-matrix Λ. Note that the
result presented in this section holds for general MVN distributions, so without
loss of generality p(x|µ,Λ) can refer to a prior MVN distribution as well.

This setting is not as straightforward as typically is the case when working
with distributions from the exponential family in MFVI, as q and p are not from
the same distribution: q(x) is an iMVN distribution with diagonal covariance
matrix, while p(x|µ,Λ) is an MVN distribution with full covariance matrix.
To minimize this KL-divergence we have to find the value of the variational
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parameters for q(x) that sets the gradient of this KL-divergence to zero.

Before we can solve the gradient of KL[q(x)||p(x|µ,Λ)] = Eq(x)[log q(x)−
log p(x|µ,Λ)] we first have to derive an expression for it. We start with the
first term in this KL-divergence, the log density of q(x) which is an iMVN varia-
tional distribution, and only consider the terms that depend on its variational
natural parameter η̃. The result, written in the canonical form of the exponential
family, is given by:

log q(x)
η̃∝

[
x
x2

]>[
η̃0

η̃1

]
−a(η̃)= tq(x)>

[
η̃0

η̃1

]
−a(η̃), (3.51)

where x2 is the vector that contains the element-wise squares of x and tq(x) =
[x,x2] is the sufficient statistic of the iMVN distribution.

Contrast this against the canonical form of the log kernel for an MVN distri-
bution, which is the second term in the KL-divergence:

log p(x|µ,Λ)
x∝−1

2
(x−µ)>Λ(x−µ)

x∝
[

x
xx>

]
···
[
Λµ

−0.5Λ

]
= tp(x) ···

[
Λµ

−0.5Λ

]
,

(3.52)

where the sufficient statistic of the MVN is given by tp(x)= [x,xx>].

The canonical form of the MVN does not match the one from the iMVN
distribution, because the two sufficient statistics are different. We can rewrite
the result from (3.52) by noting that it is possible to split the matrix dot product
between xx> and Λ in two parts. One part only involves second-order moments
of x (the diagonal), while the other part only contains cross-terms of first-order
moments (the off-diagonal elements). That is:

xx> ··· [−0.5Λ]= x2>[−0.5d(Λ)]−0.5x>[Λ−d(d(Λ))]x, (3.53)

where we have defined d() as a function that works on both matrix and vector
arguments: For a matrix argument, it returns a vector with the diagonal elements
of the matrix. For a vector argument, it returns a diagonal matrix where the
diagonal is populated with the elements of the vector.
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By plugging this result back in (3.52), we obtain:

log p(x|µ,Λ)
x∝

[
x

xx>

]
···
[
Λµ

−0.5Λ

]

=
[

x
x2

]>[
Λµ−0.5[Λ−d(d(Λ))]x

−0.5d(Λ)

]
,

(3.54)

which now closely resembles the log of the kernel of an independent multivariate
Normal distribution. Note that this is not an exponential family density in proper
canonical form, as x appears in both terms of (3.54). This means that we cannot
rely on result (3.31) to find the optimal variational parameters for q(x).

Instead, we take the variational expectation3 of the two log densities derived
in (3.51) and (3.54) to obtain an expression for KL[q(x)||p(x|µ,Λ)]= Eq(x)[log q(x)−
log p(x|µ,Λ)]:

KL[q(x)||p(x|µ,Λ)]
q(x)∝ −Eq(x)[log p(x|µ,Λ)− log q(x)]

q(x)∝ −Eq(x)

[
x
x2

]>[
Λµ−0.5[Λ−d(d(Λ))]Eq(x)[x]− η̃0

−0.5d(Λ)− η̃1

]
−a(η̃),

(3.55)

where a(η̃) is the log-normalizer of the iMVN variational distribution for x. Note
that we can distribute the variational expectation because x>[Λ−d(d(Λ))]x only
contains first order cross-moments of x and explicitly no higher order moments
of x.

By taking the gradient of (3.55) with respect to the variational natural pa-
rameter η̃, we obtain:

∇η̃KL[q(x)||p(x|µ,Λ)]

=−Covq(x)

[
x
x2

][
Λµ− [Λ−d(d(Λ))]Eq(x)[x]− η̃0

−0.5d(Λ)− η̃1

]
,

(3.56)

where we have used the exponential family identities that the gradient of the log-
normalizer is equal to the mean of the sufficient statistic, and that the Hessian
of the log-normalizer is equal to the covariance matrix of the sufficient statistic.

We can find the optimal value for η̃ that minimizes the KL-divergence between
q(x) and p(x|µ,Λ), by setting this gradient to zero. This is equivalent to solving

3Formally, we have to take the variational expectations over µ and Λ. To avoid notational clutter
we take µ and Λ constant in these derivations. However, typically they are also inferred using
mean-field variational inference and in these formulas they should be replaced with their variational
expectations.
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the following system of 2K equations:[
Λµ− [Λ−d(d(Λ))]Eq(x)[x]− η̃0

−0.5d(Λ)− η̃1

]
= 0. (3.57)

The optimal value for η̃1, denoted by η̃?1 , can be straightforwardly derived by
first solving the second set of K equations:

η̃?1 =−0.5d(Λ). (3.58)

Solving the other set of K equations to find the optimal value for η̃0 requires
some work. Notice that Eq(x)[x]= (−2η̃1)−1 · η̃0 and we can rewrite:

Λµ− [Λ−d(d(Λ))]Eq(x)[x]− η̃0

=Λµ− [Λ−d(d(Λ))](−2η̃1)−1 · η̃0 − η̃0

=Λµ− [Λ−d(d(Λ))]d(−2η̃1)−1η̃0 − η̃0

=Λµ− (
[Λ−d(d(Λ))]d(−2η̃1)−1 + IK

)
η̃0,

(3.59)

where IK is the K-dimensional identity matrix. By replacing η̃1 with its solution
η̃?1 =−0.5d(Λ), we can further expand:

Λµ− [Λ−d(d(Λ))]Eq(x)[x]− η̃0

=Λµ− (
[Λ−d(d(Λ))]d(d(Λ))−1 + IK

)
η̃0

=Λµ− (
Λd(d(Λ))−1 −d(d(Λ))d(d(Λ))−1 + IK

)
η̃0

=Λµ− (
Λd(d(Λ))−1 − IK + IK

)
η̃0

=Λµ− (
Λd(d(Λ))−1)

η̃0

(3.60)

Using this expression, we can straightforwardly solve the first set of K equations
from (3.57) which shows that the optimal value for η̃0 is given by:

η̃?0 = (
Λd(d(Λ))−1)−1

Λµ

= d(d(Λ))µ

= d(Λ) ·µ.

(3.61)

We can map η̃ from the natural parameter space to the mean and covariance:

µ̃? = (−2η̃?1 )−1 · η̃?0 =µ,

σ2? = (−2η̃?1 )−1 = d(Λ)−1.
(3.62)

Contrast this result against the optimal values in case we would have specified
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an MVN for q(x), which are naturally given by the mean µ and covariance Λ−1

of distribution p. This shows that in MFVI, the iMVN variational q that best
approximates an MVN distribution p has an intuitive solution. The random
variable x has the same mean under q and p, which makes sense. The variances
of the x elements under q are equal to d(Λ)−1, which is the inverse of the diagonal
elements of the precision matrix Λ. Note that these values correspond to the
conditional variances for x under p. The variances under p are given by d(Λ−1),
i.e. the regular variances. It holds that d(Λ)−1 ≤ d(Λ−1), where the equality
only holds if Λ is a diagonal matrix. In words, the variances of an MVN will be
underestimated if it is approximated with an iMVN, but the mean is accurately
retrieved.

3.5 C O N C L U S I O N

In this chapter we have reviewed (mean-field) variational inference and demon-
strated how it can be used to infer the model structure of conditionally conjugate
models that involve distributions from the exponential family. Besides the review
of different concepts related to variational inference, we have provided extra
insight that should make it easier to understand and dive into variational infer-
ence. This holds especially for the reader that is more familiar with traditional
Bayesian statistical inference. In addition to this review, we presented two new
results for a hierarchical Normal model in the context of mean-field variational
inference.

First, we have shown that the dependencies of the systematic components,
i.e. the parameters in the mean-specification of a Normally distributed variable
can be funneled through the common error term. This results has two important
implications: i) It allows for “automatic variational inference”, circumventing
the need for manual derivations if the model structure is changed. ii) Directly
working with the common error term has a lower computational complexity.
This is especially relevant in the context of variational inference, as it is often
employed in large and complex models.

Secondly, we presented a new result for mean-field variational inference to
estimate a common precision matrix of a set of multivariate Normally distributed
variables in a scalable way. The result uses a set of independent univariate
Normal distributions to approximate the multivariate Normally distributed
variables. We derived the closed-form analytical solution for this approximation
that makes intuitive sense. This result enables the inference of covariance
structures in high-dimensional models, without incurring the large increase in
complexity that is typically accompanied with the introduction of a covariance
matrix in mean-field variational inference.
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These new results jointly make it much easier for a researcher to iteratively
infer models that involve hierarchical Normals with variational inference. The
need to manually derive model-specific results is taken away, reducing the time
needed to employ a variational inference algorithm. In addition, these results
could potentially be incorporated in an automatic VI algorithm, such as ADVI
(Kucukelbir et al., 2017), to potentially improve its performance.
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4
Model-Based Marketing Insights from
High-Dimensional Purchase Data

4.1 I N T R O D U C T I O N

The size of the average product assortment has increased exponentially over
the past two decades. This increase can primarily be explained by the rapid
development of online retailers: The retailing landscape developed from a space
constrained brick-and-mortar store to virtually unbounded online assortments.
Naturally this change has had a profound effect on the way customers navigate
through these assortments (Gourville and Soman, 2005), but the customer is
not the only one affected. A retail manager is required to maintain such a
large assortment and as the size increases, it arguably becomes more difficult
to manage such an assortment, gain actionable insights, and develop effective
marketing strategies. An additional challenge for retailers in this setting is
to incorporate all available data to optimize their marketing efforts, which in
particular holds for the online environment where typically data is abundant.

In this chapter a method is developed that can be used to gain insight in
customer purchase behavior in large product assortments, accounting for dynam-
ics, seasonality, and other information that may be available at the customer
and purchase occasion level. The setting that is of interest concerns purchases
from large and varied assortments that are challenging by its size. Typically
such assortments are encountered in large brick-and-mortar stores and at online
retailers. The goal is to develop a model-based tool that is able to provide insight
at an aggregate level, such as seasonality patterns, but at the same time is able to
provide insight when zoomed in on the individual customer or purchase occasion,
e.g. identifying relevant products. These insights can be used by a manager to
get a grip on the patterns underlying the purchase behavior at her firm. All of
this is achieved in a scalable and computationally efficient manner, paving the
way for advanced analytics on large-scale purchase history data.
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To meet this goal, the size of the assortment is the primary challenge that has
to be overcome as it is typically too large to be analyzed by traditional methods
and unwieldy to directly analyze at the individual product level. A tempting
idea might be to consider only a subset of the assortment but this approach is
not without drawbacks. For example, in most retail settings product categories
are defined a priori and our attention could be restricted to a single product
category. However, with such an analysis one is precluded from gaining insight
in purchase patterns that span across multiple categories. It is only natural
to expect these patterns in real purchase behavior, as it seems unlikely that
customers decide to restrict themselves to a single category when shopping.
Moreover, the identification of such relations across categories might be one of
the insights the retail manager is after. Another option is to restrict attention to
just the most frequently purchased products in the data. In this case it can be
argued that for retailers that hold a large assortment, the variety and depth of
the product assortment on sale is one of their key strengths. By only considering
the high-volume products we effectively ignore this. Next, even after excluding
low-volume products the assortment size may still be very large. Put differently,
this study is looking for a way to gain insight from the observed purchase behavior,
without excluding any product a priori.

We choose to make the size of the assortment manageable by using a model
that describes purchases using a lower dimensional set of drivers for behavior.
In this way, we do not impose hard exclusions on any of the products or rely
on an existing product category definition. To enable this, we build upon the
work of Jacobs et al. (2016), discussed in Chapter 2, where purchases out of a
large assortment of products are modeled and predicted by adapting the latent
Dirichlet allocation (LDA) (Blei et al., 2003) model. The general idea here is that
purchase behavior can be described by a set of motivations. These motivations
are used to model the purchase behavior of all customers, and they are identified
by the co-occurrence of products in the purchase histories of customers.

Each motivation captures a pattern of purchase behavior that can be used
to describe the preference for a subset of related products in the assortment. It
is represented in the model as a vector of probabilities over all products in the
assortment. For a given motivation, the products with a high probability in this
vector are relevant, and convey the “story” of the motivation. Motivations are able
to span across categories: Examples are environmentally friendly products, prod-
ucts from a specific brand, or products for the price-sensitive customer. However,
we want to emphasize that such attributes are latent, and that the motivations
are solely inferred from the customers’ purchase histories. In addition, the model
allows customers to have heterogeneous preferences across purchase occasions.
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Reducing the dimensionality by introducing these motivations also facilitates
interpretation, as in general the number of motivations is much smaller than the
size of the assortment. Each motivation can be (visually) inspected to understand
the underlying purchase pattern it captures from the data. For example, the most
probable products under a motivation can be listed, or alternatively a word cloud
of product names can be created for each motivation (Liu and Toubia, 2017). This
is similar to analyzing the components from a principal components analysis and
in fact, LDA-type models have been labeled in the literature as multinomial PCA
(Buntine, 2002).

This chapter alleviates a number of limitations of the modeling approach
introduced in Jacobs et al. (2016), in order to provide more meaningful managerial
insights that go beyond purchase prediction: First, it seems natural to have
correlations among these motivations, a feature that the standard LDA model
does not allow. We therefore rely on one of its extensions, the correlated topic
model (CTM) introduced by Blei and Lafferty (2007), which allows for correlations
across motivations. This is achieved by no longer modeling the motivation
proportions with a Dirichlet, but instead to use a multivariate Normal that is
transformed using a softmax1 function. This takes the multivariate Normal from
the real-vector space, and maps it to a distribution over probability vectors. In
this way the probabilities in this distribution can have a non-trivial correlation
structure, as the multivariate Normal has a covariance matrix. This is in contrast
to the Dirichlet, where all correlations are small negative numbers by definition.

Secondly, each purchase occasion is considered separately, while accounting
for the fact that these purchases are made by the same customer. This allows for
preferences that can differ significantly across purchase occasions and thereby
lets customer preferences vary over time. In addition, because we do not ag-
gregate over purchase occasions, the date and time tied to a specific purchase
occasion are preserved. This enables us to include seasonality effects in the
model.

Lastly, by considering the purchase occasions separately it allows for state
dependence between purchase occasions, i.e. a customer’s current purchases will
play a role in what this customer will be interested in on a next shopping trip.
We include such dynamics in our framework by modeling the relevance of the
motivations at a purchase occasion as a function of the motivation relevance in
the previous purchase occasion. This allows us to quantify the persistence of each
motivation over time, i.e. whether it will persist over multiple baskets.

However, these extensions are not without (computational) costs. One of the
selling points of the model introduced in Jacobs et al. (2016), is its scalability, and

1The softmax is the transformation associated with the multinomial logit model.
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by including correlations and dynamics the model will objectively become more
complex. We acknowledge that scalability is an important factor in our problem
domain as well, and therefore we offset the increase in complexity by a more
efficient estimation routine. This is in line with the solutions recently proposed
in Wedel and Kannan (2016), to enable marketing analytics in a big data setting.

We use a new estimation routine which allows us to infer our model param-
eters in a fast and scalable way. The algorithm relies on variational inference,
an estimation technique that originates from the machine learning literature
(Jordan et al., 1999, Wainwright and Jordan, 2008, Hoffman et al., 2013). The
basic idea behind variational inference is to consider Bayesian inference as an
optimization problem, and then to solve this problem using proven optimization
techniques. In this way, results can generally be obtained much faster compared
to traditional sampling techniques such as MCMC (Ansari et al., 2016, Kucukel-
bir et al., 2017). In addition, the estimation of a hierarchical model such as the
model we will introduce can be trivially parallelized across a cluster of computers.

The estimation routine relies on the results derived in Chapter 3 and is
structured in such a way that it is easily extended without the requirement of
additional derivations or major adjustments to the computer code. Both are
time-intensive and require specialized knowledge. Examples of these generic
extensions are the addition/alteration of dynamics, seasonality, or additional
customer-information. This property is especially attractive if the model is
applied in a dynamic setting such as a dashboard. Over time, the focus of
the manager may shift towards other explanatory variables, or perhaps new
variables become available over time. In particular, this makes our algorithm
easily adaptable to new data sets with varying types of explanatory variables,
aiding in the adoption of our model in practice.

Although the research application and model specification are very different
from this chapter, the goal outlined by Dew and Ansari (2017) is applicable to
our research as well. In that paper the authors develop a semi-parametric model-
based approach for the analysis of purchase timing. Arguably this is a fairly
complex method. However, the authors focus on converting the model’s output to
actionable results that are presented in a dashboard-like environment. In our
research we face a similar challenge: First, a model that can be used to model
purchase decisions in the setting of a large product assortment is developed.
Subsequently, we want to leverage the model structure to gain insights in the
patterns underlying the purchase behavior.

Trusov et al. (2016) have recently proposed a modeling approach that is
similar to ours. They adapt the correlated topic model (CTM) to track and profile
browsing behavior of users across website categories. Although CTM is also used
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as the foundation of our model, there are a few key differences that set the two
modeling approaches apart: First of all is the scale of the application. In their
application, Trusov et al. (2016) consider visits to 29 distinct website categories.
This number is in stark contrast to the number of products for sale at a large
retailer, and in our application we consider thousands of products. Secondly, for
inference the authors rely on traditional MCMC sampling methods. In case we
are dealing with high-dimensional data in a complex hierarchical model, it is
questionable whether MCMC sampling methods are able to adequately infer the
posterior distribution in a reasonable amount of time. As discussed above, our
solution to this problem is to turn to variational inference, which is a different
estimation technique to infer the model parameters.

All these extensions enable one to obtain additional insight in the purchase
patterns in our data, both on an aggregate level as well as for an individual
customer. On the customer-base level we can now link the relevance of each
motivation to predictor variables such as seasonality and, in addition, to customer-
and basket-specific predictor variables. This can facilitate the design of marketing
strategies as for example, we can learn which products to advertise to which
customers at which point in time.

On the individual level, a customer’s journey at the retailer can be tracked. We
can infer the general preferences of a customer, but as we consider the purchase
occasions separately we are able to examine which motivations were relevant
for the customer at a specific moment in time. This does not only allow us to
look at purchases in hindsight; we can also predict what a customer might be
interested in at the next shopping trip. For example, this opens up opportunities
for targeting, where customers are selected based on which motivations are likely
to be relevant for them.

The layout of the remainder of this chapter is as follows: In Section 4.2
the methodology for our modeling framework is introduced. We start with the
basic model that can be used to describe purchase behavior using motivations.
Subsequently, this model is extended with dynamics and explanatory variables.
Next, Section 4.3 describes the data that will be used. The data deals with
purchases at a retailer that wishes to remain anonymous. The results of our
model applied to this data set are displayed and discussed in detail in Section 4.4.
Finally, we conclude in Section 4.5 with an overview, discuss the managerial
implications, and provide topics for further research.

4.2 M E T H O D S

In this section our method and its details are presented. We start with the basics
of our modeling approach which can be used to discover latent motivations from
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purchase history data. Our method is gradually extended to allow for correlations
between motivations, the inclusion of explanatory variables at the basket- and
customer-level, and for persistence of motivations. As our extensions enter the
model in non-linear ways, we discuss how their effects can be interpreted. We con-
clude by providing details of our estimation routine which is based on variational
inference, an estimation technique from the machine learning literature.

To discover the global patterns that explain the purchases in our data we
follow the work of Jacobs et al. (2016) in which a scalable approach is introduced
to model high-dimensional purchase data. This method is an adaptation of latent
Dirichlet allocation (LDA): The most commonly used topic model introduced in
the seminal paper of Blei et al. (2003). The basic idea is that just as a document
can be viewed as a collection of words, a purchase history can be considered
to be a set of purchases. As topics are incongruous in the context of purchase
data, they are relabeled to motivations. In the cited paper, the adapted model is
applied to purchases of non-food fast moving consumer goods and some example
motivations that are inferred are a preference for products that are Eco-friendly,
for diet products, or products for the sensitive skin.

In our application, a motivation can be thought of as a specific project. Exam-
ples that come to mind are projects such as gardening and renovating the kitchen,
or alternatively, projects that are more driven by a season such as Christmas.
What such motivations have in common is that each of them typically relates
to a (small) subset of the products in the assortment, making it easy to infer
the narrative of the motivation, using the descriptions of products that receive
high probability under a motivation. In a more technical sense the motivations
can be considered to be latent components that are used to describe our high-
dimensional purchase data in a lower dimensional space. This reduction in
dimensionality facilitates interpretation and allows us to more easily uncover
patterns in the data to gain insight in the purchase behavior.

In our model, each motivation is represented by a probability vector over
all J products in the assortment. The products that are likely under a given
motivation convey the story of this motivation, while the products that receive a
low probability are less important for this specific motivation. We index the mo-
tivations by m = 1, . . . , M. The generative process for motivation m’s probability
vector is given by:

φm ∼ DIRICHLETJ (α= 1ζ). (4.1)

Here 1 is a J-dimensional vector of ones, and the positive scalar parameter ζ
determines the sparseness of the Dirichlet: Sparse probability vectors in which
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just a few products receive the majority of the probability mass are favored with
smaller values of ζ, while conversely, more uniformly distributed vectors are more
likely for larger values of ζ. In our model, ζ is treated as a formal parameter that
has to be estimated.

The motivations have to be linked in the model to the actual purchases that
we observe for each of the i = 1, . . . , I customers. This is achieved by introducing
latent motivation assignments on the level of individual purchases, that connect
each observed product purchase to one of the motivations. More specifically,
for customer i each item in basket b = 1, . . . ,Bi is assigned to one of the M
motivations. By doing so a flexible model that enables a shopping trip to serve
multiple purposes is created, as the items in a basket can be assigned to different
motivations. The items in basket b are indexed by n = 1, . . . , Nib and the latent
motivation assignment to item n is denoted by zibn and modeled as:

zibn ∼ CATEGORICALM(θ = θib), for n = 1, . . . , Nib. (4.2)

Note that θib, the probability vector that describes the likelihood of each moti-
vation is both customer- and basket-specific. This extends Jacobs et al. (2016),
where the baskets of a customer are aggregated to a single purchase history. As
a customer may have different goals in mind for each shopping trip, it intuitively
makes sense to let the relevance of each motivation vary over baskets.

With the motivations φ1, . . . ,φM and the latent assignment zibn in place, we
now need to specify a generative model for the purchases. Let us assume for the
moment that the motivation for purchase n in basket b is equal to m, i.e. zibn = m.
Under this condition, it is likely that the product corresponding to this purchase,
denoted by yibn, is a product that has high probability under motivation m, i.e.
the products that have high values in φm. Formalizing this we have:

yibn|zibn = m ∼ CATEGORICALJ (θ =φm). (4.3)
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Summarizing the generative process for the purchases:

1. For each motivation m = 1, . . . , M:

Draw a probability vector φm ∼ DIRICHLETJ (α= 1ζ)

2. For each customer i = 1, . . . , I:

For each of i’s baskets b = 1, . . . ,Bi:

For each purchased item n = 1, . . . , Nib in basket b:

i. Draw a motivation assignment:
zibn ∼ CATEGORICALM(θ = θib)

ii. Draw a product using the motivation assignment:
yibn|zibn ∼ CATEGORICALJ (θ =φzibn )

In the process outlined above we have not yet specified a model for θib, the
basket-specific vector of probabilities over the M motivations. In the vanilla im-
plementation of LDA, θib follows a Dirichlet distribution, i.e. θib ∼ DIRICHLETM(α),
where in the literature α is often considered to be a fixed value (Wallach et al.,
2009). A convenient property of the Dirichlet is that it is the conjugate prior for
the Categorical distribution. In our model the zibn are Categorically distributed,
so that we could enjoy the conjugacy between zib = {zib1, . . . , zibNib } and θib. Most
notably, the joint density of zib and θib would be proportional to the kernel of a
Dirichlet, which would allow us to conveniently marginalize θib out of the model
while still retaining a closed-form joint density. However, in our application this
convenient property of the Dirichlet is offset by a computational and conceptual
drawback.

First, we cover the disadvantage that is of computational nature: The nor-
malizer of the Dirichlet distribution is the Beta function which is relatively
complex to evaluate. By retaining a Dirichlet prior on θib we have to evaluate
this function many times for each basket in the data. In case we want to link
available explanatory variables to the relevance of a motivation, we have to
make the parameter of the Dirichlet a function of these explanatory variables.
This approach was advocated in Jacobs et al. (2016), but further increases the
number of times the Beta function has to be evaluated. This severely slows down
inference and thereby hampers the scalability of the model.

The other disadvantage involves the limited correlation structure of the
Dirichlet distribution. By definition, the correlations between all elements of a
Dirichlet are negative, which is a direct result of the fact that these elements sum
to unity. In addition, the correlations tend to be small for large enough M, such
that the elements of θib are nearly independent. In practice, this is not a realistic
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modeling assumption as it is likely that some motivations will positively co-occur
(e.g. working in the garden and building an outdoor pool), while other motivation
may be uncorrelated (for example, garden work and a kitchen renovation).

To overcome these challenges we drop the Dirichlet assumption for θib and
extend upon the correlated topic model (CTM) (Blei and Lafferty, 2007), which
itself is an extension of LDA. The Dirichlet prior θib is replaced by a deterministic
function of αib, where αib is a parameter vector that describes the preferences
over motivations in the b-th basket for customer i. As we need to ensure that
θib remains a valid probability vector, a natural choice is to apply the softmax
transformation to αib:

θib(αib)= SOFTMAX(αib)= exp(αib)∑
k exp(αibk)

. (4.4)

The softmax transformation is reminiscent of the multinomial logit function and
can be interpreted in a similar fashion: if αibm is large compared to the other
values in αib, this translates to a large value for θibm, increasing the probability
for motivation m in basket b. The reverse holds in case αibm is relatively small
compared to the other values in αib.

Put differently, αib can be interpreted as a measure for the relevance of the
motivations in basket b. Each element in αib is modeled separately by a Normal
distribution. For the moment the mean of this distribution, denoted by µibm, is
set equal to the baseline preference of customer i for motivation m, given by κim.
However, we foreshadow here that in the remainder of this section we will extend
the specification for µibm such that it becomes heterogeneous among customers
and across baskets. For now we have the following model for the relevance of
motivation m in basket b:

αibm ∼ NORMAL(µ=µibm = κim,τ= τm), (4.5)

i.e. a Normal distribution with mean κim and precision τm. This is equivalent to
the following linear model for αibm:

αibm =µibm +
√
τ−1

m εibm = κim +
√
τ−1

m εibm, (4.6)

where εibm is standard Normally distributed and we have substituted κim for
µibm.

Note that in this model all correlations between elements of αib are implicitly
set to zero. Instead, we allow correlations between motivations to enter the model
at the customer level. For customer i the relevance of each motivation is captured
in the vector κi = [κi1, . . . ,κiM], for which we specify a multivariate Normal, with
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mean µκ and full precision matrix Λκ. The motivation for placing correlations
on κi instead of αib is that we expect to see more systematic correlations at the
customer-level, compared to the basket-level.

Let us motivate this by an example: Consider that customers with an outdoor
pool are more likely to work in the garden as well. Assume we have discovered a
pool motivation and a garden motivation. It is likely that these motivations are
correlated at the customer-level. However, the same reasoning does not have to
hold at the basket level. It seems reasonable to assume that one shopping trip
can serve the gardening needs of the customer, while another purchase occasion
is focused on the outdoor pool. In our application this is further amplified by the
fact that the number of purchased products for an average basket tends to be low,
which does not provide a lot of room for correlations to be identified.

This concludes the specification of our baseline model. In the next section we
will discuss how the model can be extended in several ways by expanding the
systematic component for αibm.

4.2.1 Adding explanatory variables to the model

One of the goals in this chapter is to create a dashboard-like environment that
can be used by a manager to gain insight in variations in purchase behavior for
different segments of the customer base and over time. In this section we present
our methodology for incorporating customer- and basket-specific effects in the
model, complemented with an autoregressive specification for the motivation
relevance at the basket level. These additional variables give the manager extra
controls to zoom in on specific details of the purchase behavior at her firm. For
example, for specific customer segments or at specific points in time.

In purchase history data each basket is associated with a date and time of
day. An important implication of modeling each basket separately, instead of
aggregating them to a single purchase history, is that the time stamp of the
basket is retained. By including this information in the model we can relate
changes in purchase behavior to seasonality patterns, and uncover how the
relevance of motivations shift accordingly. For example, one expects different
shopping baskets during the December month, i.e. the holiday season, then
during a summer month.

Let there be Kx basket-specific predictor variables that are denoted by xib. A
prototypical example of a variable contained in xib is a month dummy. By adding
these dummies to the specification of αibm, we allow the relevance of motivation
m to differ over the months. Each of these variables has its own motivation-
specific effect and for motivation m we collect these in the Kx-dimensional vector
βm. In addition to the customer-specific intercept κim, the αibm specification is
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now defined as:

αibm = κim +β>
mxib +

√
τ−1

m εibm.

Naturally, we can include any information that is available at the customer-
level in a similar way. Such predictor variables are especially important as they
provide the manager with a way to analyze the customer base. In turn, this
information could be used to create a targeting strategy. For example, if the
manager is interested in promoting a product that has a high probability under
one of the motivations, one strategy might be to time this promotion such that
the corresponding motivation is likely relevant.

The Kw customer-specific variables are summarized in the vector wi. Exam-
ples of such variables are age and gender. Similar to the basket-variables above,
we collect for motivation m the Kw effects in the vector γm, and further extend
the αibm specification as follows:

αibm = κim +β>
mxib +γ>

mwi +
√
τ−1

m εibm.

Finally, we would like to infer if certain motivations are persistent across shop-
ping trips. To determine this the αibm is extended to include a lagged term:
αi,b−1,m. Effectively, this creates an autoregressive model for αibm which can be
used to assess the level of persistence. We endow each motivation m with its own
autocorrelation coefficient ρm. This allows for varying degrees of persistence over
the motivations, as one motivation may be more persistent than another. Adding
this to the model we obtain the complete specification for αibm:

αibm = κim +β>
mxib +γ>

mwi +ρmαi,b−1,m +
√
τ−1

m εibm. (4.7)

Note that for the initial baskets the lagged values are missing and hence to
obtain an unconditional mean of αibm that is consistent across baskets, we need
to account for these missing lags. With the following specification we allow for
shifts in both level and slopes to compensate for the missing lagged value in the
initial periods:

αi1m = δ0m +δ1mκim +δ2m(β>
mxib)+δ3m(γ>

mwi)+
√
τ−1

m εibm. (4.8)

This section is concluded with a remark on identification in the model: Note
that θib is invariant to shifts in the level of αib = [αib1, . . . ,αibM]. That is, if
we add a scalar constant c to each αibm element, the result of the SOFTMAX

transformation will again be θib. One approach to work around this is to set one
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of the motivations as a baseline (Trusov et al., 2016). We choose not to follow
this approach, primarily because the covariance structure over the other M−1
motivations is dependent on which motivation is chosen as baseline. In our
case this is undesired, as one of the focal points of our analysis is interpretation.
Instead, as we are working in the Bayesian setting, we rely on priors to identify
the level of αib. Its prior uniformly influences all motivations, which identifies
the level of αib in the model.

4.2.2 Interpretation of the effect sizes

The specification for αibm defined above contains several explanatory components,
i.e. xib, wi, and αi,b−1,m. Each of these have their own effect on the value of αibm,
given by βm, γm, and ρm respectively. However, αibm is a latent construct in our
model for which changes in its level are difficult to interpret directly. Instead, we
examine the effect of these variables on θib, the probabilities of the motivations
at the basket level. In the model these probabilities are a non-linear function of
αib, so they will be affected by the explanatory variables in a non-linear manner
as well.

Because of the non-linearity of the SOFTMAX transformation, cf. (4.4), the
effect of a focal explanatory variable on θib is dependent on the values of the
other variables in the specification for αibm. Remember that αibm is specified as

µibm +
√
τ−1

m εibm, i.e. it is a combination of a systematic component µibm and a
standard Normally distributed disturbance term εibm. Hence, to interpret the
effect of the focal variable on θib, we need a baseline value for µibm, which can be
computed using baseline values for xib, wi, and αi,b−1,m for m = 1, . . . , M. For the
explanatory variables in xib and wi that are continuous, an intuitive baseline
is given by their values for the average customer, while for discrete variables a
natural choice is to set them to their reference level. A baseline for αi,b−1,m can
be created by averaging the posterior means over all baskets in the data. For εibm

we draw samples from a Normal distribution with variance equal to the posterior
mean of τ−1

m . These draws combined with the baseline for µibm can be used to
compute values for θib. The reference value for θib is obtained by averaging over
these values.

We can measure the partial effect of one of the variables in xib and wi by
increasing the level of the focal variable with one unit and measure how the
motivation probabilities change as a result. This applies to both discrete and
continuous variables. Our approach to measure the effect of ρm on θib is similar.
We apply a shift in the value of αi,b−1,m (which is set to the average value) and
determine how the motivation probabilities are affected by this shift.
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4.2.3 Model inference

In order to examine the motivations in our purchase history data and analyze
how different explanatory variables affect the relevance of each motivation, we
first need to estimate the model parameters and latent variables. In this section
we discuss our estimation technique, variational inference, and provide the prior
specification of our model.

Estimation

For the estimation of our model we rely on variational inference (VI), a technique
developed in the machine learning literature (Jordan et al., 1999) to approximate
posterior densities. In this section we will cover the basics of variational inference.
Readers looking for a general review of the technique are referred to Bishop
(2006), Blei et al. (2017), and Chapter 3. For additional technical details, including
a stochastic extension to VI that uses subsampling to speed up inference by
several orders of magnitude, we refer to Hoffman et al. (2013).

The general idea underlying VI is that we can reformulate the probabilistic
inference problem as an optimization problem that can be optimized with well-
known techniques from the optimization literature. This is in contrast to the
inference methods that are based on MCMC sampling such as the Metropolis-
Hastings algorithm (Hastings, 1970) and the Gibbs sampler (Gelfand and Smith,
1990), that over the past decade have become prevalent in marketing in order
to estimate hierarchical Bayesian models (Rossi et al., 2012). The promise of
VI is that because it involves a deterministic optimization problem, it can be
performed in a fraction of the time it would cost to estimate the model using a
stochastic MCMC method, as typically VI converges much faster (Ansari et al.,
2016, Kucukelbir et al., 2017). In addition, VI is ready directly after convergence.
This is in contrast to a sampling-based inference method such as MCMC, which
requires additional draws after the Markov Chain has reached its stationary
distribution.

Returning to the inference problem, we are interested in examining the
posterior distribution of our model which is defined as the density of our unknown
model components conditioned on the data:

p(z,φ,ζ,α,κ,β,γ,ρ,δ,τ,µκ,Λκ|y;x,w)= p(Ω|y),

where we let Ω serve as a placeholder for all unknown model components. The
goal in VI is to approximate this posterior with another distribution, which is
called the variational distribution and denoted by q(Ω). The fit of q(Ω) to p(Ω|y)
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is measured in terms of the Kullback-Leibler (KL) divergence, defined as:

KL[q(Ω)||p(Ω|y)], Eq[log q(Ω)− log p(Ω|y)], (4.9)

where , denotes “defined as” and Eq is the variational expectation operator, i.e.
the expected value under the variational distribution q.

The objective in VI is to find q(Ω) that is at close as possible to p(Ω|y) in terms
of KL-divergence. More formally, we need to solve the following minimization
problem:

q?(Ω)= argmin
q(Ω)

KL[q(Ω)||p(Ω|y)] (4.10)

Note that the objective in (4.10) is minimized and equal to zero if we let q(Ω)=
p(Ω|y) (Kullback and Leibler, 1951). That result is not very helpful, as p(Ω|y) is
the posterior that we are trying to infer. However this result does show that in
essence, variational inference does not have to result in an approximation of the
posterior (Bishop, 2006).

To facilitate estimation restrictions are placed on q(Ω) and one of the most
commonly used restrictions is the mean-field assumption. It states that the vari-
ational distribution q(Ω) should factorize over all unknown model components:

q(Ω)= ∏
ωu∈Ω

q(ωu),

where each q(ωu) has its own set of variational parameters η̃u. In addition, we
assume that the class of each variational factor q(ωu) matches the distribution
we specified for ωu in our data generating process. For example, φm follows a
Dirichlet distribution in the model so we let q(φm) be a Dirichlet as well. As a
result of this mean-field restriction, the variational typically underestimates the
variance of the posterior density (Blei et al., 2017), while the posterior means are
recovered accurately.

Factorizing the variational distribution does not imply that we simply ignore
the dependencies between parameters in the model. The mean-field assumption
does not affect the model’s posterior p(Ω|y), it only affects our approximation
q(Ω). The goal is still to fit q(φm) to p(φm|y), the marginal posterior of φm in
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the model:

q(φm)≈ p(φm|y)

=∑
z

∫
ζ

p(φm,z,ζ|y)dζ

φm∝ ∑
z

∫
ζ

p(y|z= m,φm)p(φm|ζ)dζ,

which clearly depends on the other parameters z and ζ in the model.
A coordinate descent algorithm is employed to iteratively optimize for each

of the variational parameters η̃u in turn, while holding all other variational
parameters fixed. Each of these local problems is concave, guaranteeing that this
algorithm converges to a (local) optimum of the variational objective function
(Bishop, 2006).

The prior specification

The complete model contains several parameters that have a prior distribution,
i.e. whose parameters are not estimated as part of the model. Below we list each
parameter that is endowed with a prior distribution, interpret the parameter’s
role in the model, and provide their prior distribution and our rationale for that
choice.

The ζ parameter controls the sparseness of the Dirichlet distribution for
the φm vectors, i.e. the probability distributions that correspond to the M mo-
tivations. Smaller values for ζ favor sparse distributions, while larger values
favor distributions that are more diffuse. As ζ is a parameter for a Dirichlet,
it is restricted to positive values. For this reason, we place a log-Normal prior
distribution on ζ, with parameters µ=− log(J) J+1

J and σ2 = 2log(J) 1
J , where J

is the number of products in the assortment. The mean of this log-Normal is
equal to 1

J and hence, favors sparse φm vectors. This prior was chosen as sparse
vectors are typically easier to interpret. However, we note that this prior carries
the weight equivalent to that of a single purchase in the data and hence, its effect
is negligible compared to the total number of purchases.

For all parameters in the systematic component of the αibm specification
we specify (multivariate) Normal priors. This choice is primarily driven by
computational reasons: αibm is itself Normally distributed, and the conjugate
prior for a Normal is another Normal.

The effects of the basket-specific xib and the customer-specific wi variables on
the relevance of motivation m at a purchase occasion are given by the parameter
vectors βm and γm. A priori we cannot expect a certain effect for the explanatory
variables as the motivations are latent prior to inference. Hence, each of the βm
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and γm parameter vectors is endowed with a multivariate Normal prior that has
zero mean and identity covariance. We remark that a variance of one in this
setting corresponds to a broad prior distribution, as the effect of βm and γm on
θib is exponential.

In addition, we have an alternative specification for the αibm values that
relate to the initial baskets of the customers. This is because in the first basket
the lagged value for αibm is missing. This is corrected for by a shift in the
level and slope of the αi1m specification in (4.8), where the shifts are relative to
the regular αibm specification in (4.7). We have parameters that shift the level
(δ0m,δ1m) and parameters that shift the effect of explanatory variables (δ2m,δ3m).
Again, we specify Normal distributions with unit variance for these parameters.
For δ0m we set µ= 0 and for δ1m we set µ= 1, which effectively corresponds to no
shift in level. Similarly, for δ2m and δ3m we set µ= 1, which corresponds to no
shift in effect for the explanatory variables.

Another parameter in the αibm specification for which we need to specify a
prior distribution is τm, which is the precision (inverse covariance) for the αibm

values. Again, we choose a conjugate prior, which in this case is the Gamma
distribution. As parameters we set α= 2M and β= 2M. This corresponds to a
mean of 1 and a mode that is approximately 1 for large values of M. The weight
of this prior is negligible compared to the data, as typical applications will have
tens of thousands of baskets.

The last set of parameters that require a prior distribution are µκ and Λκ:
The mean vector and precision matrix (inverse covariance) of the multivariate
Normal distribution for the κi vectors. Remember that κi describes the baseline
relevance of the M motivations for customer i. The conjugate priors for the mean
and precision of a multivariate Normal are given by another multivariate Normal
and the Wishart distribution, respectively. For µκ we specify a multivariate
Normal with zero mean and as covariance we take the identity matrix. Again,
this variance of one corresponds to a broad prior distribution as these parameters
indirectly affect θib exponentially. In addition, note that this zero mean vector
has an important role in the model, as it is the primary identification for the
level of both αibm and κi. For Λκ we specify a Wishart distribution with scale
matrix V= 1

2 IM , where IM is the M×M identity matrix, and degrees of freedom
n = 2M. This sets the mean of the Wishart equal to IM , while the mode rapidly
approaches 1

2 IM for all but the smallest settings of M.
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4.3 D A T A

Our method is applied to purchase history data that is made available to us by a
retailer wishing to remain anonymous.2 The data set contains detailed informa-
tion on the shopping basket contents for a subset of the retailer’s customers, that
are tracked over a 24-month window (ranging from March 2012 - March 2014).
We focus on those customers who made a purchase in one of the Florida-stores of
this retailer. In this subsection several of the details concerning the data set and
the single preprocessing step taken are discussed.

The retailer currently has a hierarchical product taxonomy in place that
classifies the products in the assortment. The taxonomy consists of three levels
that range from generic to specific, namely: Group, Class, Subclass. A product
is described by the combination of these three levels and a unique product
description. In total, the dataset contains purchases from an assortment that is
comprised of 29,027 distinct products and we note that many of these products
are rarely purchased. Theoretically, our model works for such products as well.
However, we are interested in gaining substantive insights from the data instead
of capturing purchase patterns that are driven by just a few co-occurrences. To
achieve this, we choose to reduce the assortment size using the available product
taxonomy.

Naturally, we want to retain the detailed information that is available to
us for the frequently purchased products. That is, we only choose to aggregate
products that are bought very infrequently. We define an infrequent product
as one that is purchased at less than 10 purchase occasions in two years time.
In this way 3,301 products in the data are identified as frequent. The other
infrequent products are “rolled-up” one level in the hierarchy, i.e. the infrequent
products within a certain Subclass are aggregated to a single product that is
specific to this Subclass. By doing so we lose some details of the data, i.e. the
unique product descriptions of the aggregated products, but we retain much more
information compared to just deleting the infrequent products from the data.
This latter approach is typically taken in applications of topic models to deal with
infrequent terms. If after this aggregation step some infrequent products remain,
we apply the same procedure to aggregate from the Subclass- to the Class-level,
and from the Class- to the Group-level. In this way we are able to retain all but
19 infrequent products. These 19 products are removed from the data, together
with their 34 purchases. 4,266 products remain with a combined total of 139,622
purchases. We provide some descriptives of this aggregation step in Table 4.1,
where we divide the 4,266 products by the three levels of the aggregation step.

2We thank the Wharton Customer Analytics Initiative (WCAI) for setting up the research opportu-
nity that has connected us to this retailer.
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TABLE 4.1 – Descriptives for the three levels of the aggregation step.

Aggregation level Unique products Aggregated products Purchases

Unaggregated 3,301 3,301 80,902
Aggregated to Subclass 24,563 875 56,991
Aggregated to Class 911 78 1,382
Aggregated to Group 233 12 347

Total 29,008 4,266 139,622

The data tracks the purchase behavior of 2,259 customers that made 47,568
shopping trips over the 24-month window. This totals to about 21 baskets on
average per customer. In Figure 4.1 the frequencies of the number of baskets
per customer are displayed. Some of the customers visit the retailer once during
this period, but the vast majority of the customers returns multiple times. There
are 139,622 purchases made in total, indicating relatively small baskets with on
average just under 3 products per basket.
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FIGURE 4.1 – Frequency counts for the number of baskets per customer.

In the model both customer-specific and basket-specific characteristics are
included as explanatory variables. The predictors on the basket level all are all
time related:

• Year: A binary variable that indicates if a basket is purchased during the
first year (baseline) or second year of the observed period.

• Month: A dummy for the month in which the shopping trip was made
(baseline is March).

• Type of day: A binary variable that differentiates baskets between week-
days (baseline) and weekends.

• Time of purchase: A binary variable that indicates if a shopping trip was
made before 5pm (00:00–16:59, baseline) or after 5pm (17:00–23:59).
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This set of variables could possibly be extended with external data sources, e.g.
weather related variables such as temperature or amount of rainfall.
As predictors on the customer level we include the following characteristics:

• Age: Customer’s age binned in 6 categories [0–34, 34–44, 45–54 (baseline),
55–64, 65+, Unknown].

• Gender: [Female, Male (baseline), Unknown].

• Household size: A binary variable that serves as a proxy for the size of
the household [Small household: less than 2 individuals (baseline), Large
household: 2 or more individuals].

4.4 R E S U LT S

In this section the results for our estimated model structure are displayed and
discussed. The model parameters are inferred via variational inference. We
initialize the motivation-specific φm vectors using the standard LDA model. This
initialization approach is advocated in the literature (Gopalan et al., 2014). The
results displayed are obtained after 15,000 iterations of our variational estimation
routine, after which our optimization seems converged. All results displayed are
based on the (variational) posterior means of the parameters, unless specified
otherwise. Because the model is multi-faceted we will analyze the results by
considering the model components separately and show how these results can be
interpreted to gain insight in the high-dimensional purchase data. The setup of
this section is as follows: We first describe a few of the motivations and highlight
some of the motivation properties. Subsequently, we focus on the correlation
structure among motivations. Next, we highlight the seasonality patterns for
some of the motivations and finally, we discuss the effects of the remaining
predictor variables and examine the persistence of the motivations.

4.4.1 Motivations

The number of motivations M is set by the researcher and typically should strike
a balance between the interpretability of the model results (favoring lower values
of M) and descriptive power of the model (typically favoring higher values of M).
In our application we set M = 100, which is a common choice in the machine
learning literature (Hoffman et al., 2013, Gopalan et al., 2014). We note that this
is not a hard restriction and in case one is interested in finding the right number
of motivations there are alternatives, such as using a hold-out sample of the data
to determine the number of topics (Jacobs et al., 2016). However, this comes at a
cost as the computational complexity will increase.
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Each latent motivation in the model is represented by its own high-dimensional
discrete distribution over the complete product assortment. Manually examin-
ing this entire vector for one of the motivations is both challenging and time-
consuming as the assortment consists of 4266 products in total. However, we can
typically infer the gist of a focal motivation by considering just the products that
have received the highest probability under that motivation. In Tables 4.2 and 4.3
we display the 5 most likely products for two of the motivations that we inferred
from the purchase data. Besides the product descriptions we also use the product
taxonomy as specified by the retailer, consisting of the product’s Group, Class,
and Subclass. This information facilitates the interpretation and labeling of the
motivations. If information such as a product taxonomy is not readily available,
another option is to visually inspect a motivation’s distribution by means of a
word cloud, as suggested in Liu and Toubia (2017). For example, a world cloud
could be created based on the words in the descriptions of the products in a moti-
vation, where the size of each word is determined by the probability distribution
for a motivation.

TABLE 4.2 – The 5 most likely products for motivation 95.

Motivation 95: Paint equipment and supplies

Group Class Subclass Description φ95

PAINT APPLICATORS CHIP/FOAM APPLICATORS CHIP 2.0 FLAT BRUSH 0.1392
PAINT APPLICATORS TRAYS/LINERS 9 IN PLASTIC TRAY LINER - WHITE 0.1284
PAINT APPLICATORS CHIP/FOAM APPLICATORS CHIP 3.0 FLAT BRUSH 0.0607
PAINT APPLICATORS FRAMES/GRIDS 9 IN HD ROLLER FRAME - ORG HNDLE 0.0600
PAINT APPLICATORS TRAYS/LINERS 9 IN PLASTIC TRAY LINER 10PK - WHITE 0.0492

Motivation 95, displayed in Table 4.3, clearly captures a purchase pattern
that is related to painting as the 5 most likely products are paint equipment and
supplies. This is in line with the product taxonomy created by the retailer, as
the 5 products are all placed in the paint group. We reiterate that the product
taxonomy itself is not part of the model and hence it is not used to infer the
motivations. Instead, these products all receive a high probability under the
same motivation because they are relatively often purchased together across
shopping baskets in the data.

Table 4.3 shows that the likely products for motivation 69 are related to gar-
dening. However, note that the LEATHER PALM GLOVE - LARGE product, which
is the fifth-most likely under this motivation, is not part of one of the gardening
groups specified by the retailer. Instead, it is placed in the hardware group. This
indicates two intrinsic properties of a motivation: i) We can derive extra meaning
from the purchase of a general purpose product, such as protective gloves, when
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TABLE 4.3 – The 5 most likely products for motivation 69.

Motivation 69: Gardening

Group Class Subclass Description φ69

GARDEN/OUTDOOR SOILS AND MULCH BARKS & MULCHES 2 CU FT BARK NUGGETS 0.1636
GARDEN/OUTDOOR SOILS AND MULCH AMENDMENTS/COMPOST 40 LB COMPOSTED MANURE 0.1520
GARDEN/OUTDOOR SOILS AND MULCH POTTING/SPECIALTY SOILS 40 LB POTTING SOIL 0.1179
GARDEN/INDOOR CLEANING CLEANING CHEMICALS CLOROX OUTDOOR BLEACH 0.1013
HARDWARE SECURITY/SAFETY WORK GLOVES LEATHER PALM GLOVE - LARGE 0.0818

purchased in combination with gardening related products. ii) A motivation is
able to capture purchase patterns that span across multiple product categories.
Both properties of customer purchase behavior are easily overlooked if one solely
focuses on individual products, or when one only examines products from a single
category.

Similar to what we did above for motivation 69 and 95, we can label each in-
ferred motivation by examining the products that receive the highest probability
under that motivation. This provides a high-level insight into the general pat-
terns that underlie the purchase data and in turn, it enables us to reason about
purchase behavior in the motivation space instead of the product space. This
significantly helps in interpretation, as by doing so we reduce the dimensionality
from 4,266 products to just the 100 inferred motivations.

However, the motivations do not only differ in the products that they place
emphasis on. They also vary in the number of relevant products that describe
the motivation. The story that they convey can be a narrow one that involves
just a few products from the assortment, or a more general one that concerns
more products. To examine this we consider the cumulative probability for the
5 most likely products under a motivation. This figure serves as a proxy for
the sparseness of a motivation’s probability distribution, where a higher value
suggests that the majority of the probability mass is distributed across fewer
products, resulting in a topic that is focused on only a small set of products.

In Figure 4.2 we display the cumulative probability of the 5 most likely
products within each motivation. The motivations are not sorted in a particular
order. For most motivations, this figure is situated between 0.25 and 0.90, which
indicates that they represent sparse to very sparse distributions over the products
in the assortment. That is, the gist for each of these motivations can be described
by a small set of products that receive high probability. Returning to our previous
two motivations: For motivation 95 this cumulative probability is close to 0.40
while for motivation 69 it is over 0.60. These figures suggest that both motivations
are sparse and allocate the majority of their mass to just a few products. The
notable exception is motivation 100, for which the cumulative probability of the 5
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most likely product is about 0.02. This suggests a distribution that is intrinsically
different from the other 99 motivations, as its mass is spread out over many
products in the assortment.
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FIGURE 4.2 – Cumulative probability of the 5 most likely products per
motivation, using the posterior mean of each φm vector.

We can gain more insight in the sparsity of motivations by plotting a heat
map of the φ matrix, and we display two heat maps in Figure 4.3. Each row on
the vertical axis represents one of the 100 motivations, while the horizontal axis
represents the 4,266 products in the assortment, which are sorted in alphabetical
order of their Group – Class – Subclass – Description.

The heat map we display in Figure 4.3a is the heat map for the natural
log of the elements in φ. Here, a few things are noteworthy: First, for the
majority of the rows, i.e. motivations,a limited number of dark bars per row is
observed. This reconfirms that most motivations are sparse distributions, where
just a few products receive significant probability mass. Second, for each row
of the heat map the dark bars can either be clustered or they can be spread
out more uniformly over the length of the bar. Take motivation 55 for example,
for which we observe many dark bars clustered together. As the products are
sorted in alphabetical order starting with the group name, this indicates that for
motivation 55 the most likely products are probably from the same product group.
On the other hand, for motivation 79 the dark bars are more scattered across
the row. This indicates that the purchase pattern captured by this motivation is
sparse, but likely spans across multiple product categories. Third, the heat map
shows that motivation 100 is represented by a distribution that is diffuse, as we
suspected. It places relatively high probability on a lot of different products in
the assortment, displayed by many dark bars scattered across the bottom row.

The next heat map in Figure 4.3b is for the probabilities in φ relative to the
frequency of the products in the data. This measure provides additional insight by
what factor a product’s probability is lifted under a motivation, compared to the
baseline in the data. We create such a lift measure by dividing the probabilities
for product j for each of the 100 motivations by the relative frequency of product
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(A) Heat map of φ. For display purposes we increase the contrast by displaying the natural
log of the probabilities.
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(B) Heat map where each value in φ, i.e. φm j the probability of product j under motivation
m, is divided by product j’s relative frequency in the data set.

FIGURE 4.3 – Heat maps related to the values in φ, the 100×4266 matrix
containing the probability distributions over the product assortment for each
of the 100 motivations. The products on the horizontal axis are sorted in
ascending order of their Group – Class – Subclass – Description. Darker
shades in the heat map indicate larger values, while lighter shades represent
lower values.

j in the data. The resulting ratios inform us by what factor product j is more
or less likely under each of the motivations. The heat map of these ratios is
displayed in Figure 4.3b. Lighter bars correspond to a ratio closer to zero, which
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indicates a decrease (or very small lifts) in probability compared to the relative
frequency in the data. On the other hand, darker bars correspond to larger lifts,
indicating that this product is very informative for that motivation.

The general outline is similar to the heat map in Figure 4.3a because the
location of the colored bars is approximately the same. However, the intensity of
the darker bars can now be different as the magnitude of a product’s probability
under a motivation does not necessarily translate one-to-one to the magnitude
of its lift. Consider motivation 100 for example: This distribution spreads its
mass across a lot of products, captured in Figure 4.3a by dark bars for these
products. However, for the same products we observe very light, close to white,
bars in Figure 4.3b. This indicates that the lift in probability for these products
under motivation 100 is not large. Combining this with the observation that
these products are displayed by dark bars in Figure 4.3a, their relative frequency
in the data should be relatively high. This seems to suggest that motivation 100
is not focused on any products from the assortment in the particular.

In case one is interested in a specific motivation, the probability distribution
over products for that motivation can be examined. Effectively, this is the same
as zooming in on one of the rows of the heat map of φ. Since motivation 100
seems to be an outlier we inspect φ100, its probability vector over the products,
in more detail in Figure 4.4a. This is contrasted against φ28 for motivation
28 in Figure 4.4b. As before, the products on the horizontal axis are sorted
alphabetically on Group – Class – Subclass – Description. That is, the smaller
the distance between two products on the horizontal axis, the more likely it is they
belong to the same group or (sub)class. For further insight we have annotated
the plots in Figure 4.4 with the 7 product groups that contain the most products
in the assortment.

For motivation 28 we observe that virtually all its probability mass is located
in the paint product group. In addition, within the paint group the likely products
appear to be clustered, which suggests that this motivation is concerned with
a subset of the product classes that fall under the paint group. After manually
inspecting motivation 28, it seems to concern both interior paint and paint
applicator products. This is in contrast to motivation 100, where the mass is
more evenly spread over the assortment.

The last property of the motivations that we consider is their relative size
in the customer base. Intuitively it makes sense that some motivations may
be more generic and appeal to more customers than others. A measure for the
size of a motivation on the population level is the posterior mean of µκ, which
captures the baseline relevance of the motivations. We transform this posterior
mean using the SOFTMAX transformation to proportions between [0, 1]. The result
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(A) Posterior mean of φ100.
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(B) Posterior mean of φ28.

FIGURE 4.4 – Bar plots of the product probabilities under motivations 100
and 28. The products on the horizontal axis are sorted in ascending order of
their Group – Class – Subclass – Description. In addition, the horizontal axis
is divided by the 17 product groups from the product taxonomy as specified
by the retailer. The 7 groups that contain the most products are annotated.

is displayed in Figure 4.5.
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FIGURE 4.5 – Size of motivations measured by SOFTMAX(µκ) for the varia-
tional posterior mean of µκ. Note: The proportion of motivation 100 (equal to
0.398) is clipped in this figure.

The majority of the proportions range from 0.002 to 0.02 and if we contrast
this to the baseline proportion (M−1 = 0.01) this seems reasonable. For example,
one of the larger motivations is 80, which is about general tools such as wrenches
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and screw drivers. It seems likely that these are relevant for many customers.
One of the smaller motivations is motivation 87 which is related to moving as
it describes products such as moving boxes and packaging tape. This result
indicates that these products are only relevant for a small set of customers. We
remark that these reported proportions are on the population level and it can be
expected that we will observe more sparse proportions the closer we move to the
data, e.g. if we examine the proportions for a customer or on the basket-level.

The notable exception in Figure 4.5 is again motivation 100, which is rep-
resented by a shaded bar. This bar is clipped because motivation 100 has a
proportion of 0.398, which is an order of magnitude larger than the other mo-
tivations that we have discovered. We can combine this observation with our
other findings about motivation 100, i.e. that it is represented by a diffuse dis-
tribution that spreads its mass across many products that tend to be relatively
frequently purchased in the data, to provide a possible explanation for the occur-
rence of motivation 100 in our results: It serves as an aggregate motivation in
the model, which might be needed to compensate (or allow) for the more extreme
distributions we find that belong to the other 99 motivations.

4.4.2 Motivation correlations

The covariance matrix for κi, Σκ =Λ−1
κ , describes which motivations are likely

to be jointly (ir)relevant for an average customer. For interpretation purposes
it is convenient to consider correlations instead of the covariances directly. The
dimension of this correlation matrix is 100×100 as we inferred 100 motivations
in total. Clearly, it is not feasible to separately evaluate each of the correlation
pairs in this matrix.

Instead we again use a heat map to visualize this large matrix and get an
intuition for the general correlation structure underlying the motivations. This
heat map of the motivation correlation matrix is displayed in Figure 4.6. Roughly
speaking, the resulting heat map can be separated in three groups: The positive
correlations are indicated by shades of red, the negative correlations by blue,
and the correlations that are absent are colored green. Note that the majority
of the cells in Figure 4.6 are displayed in green, describing pairs of motivations
that have a low correlation, i.e. if one motivation out of a pair is relevant for a
customer, that information is not informative about whether or not the other
motivation will be relevant as well.

The more interesting motivation pairs are those that exhibit strong positive
correlations. After manually examining the motivations that have some of the
highest correlations, we notice that many of them revolve around gardening
such as motivations 5, 6, 11, 12, 13, and 14. Remember that the correlations
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FIGURE 4.6 – Heat map of the lower-diagonal of the correlation matrix that
is obtained using the posterior mean of Σκ, which is the covariance matrix
of κi. Each cell in the heat map represents the correlation between two
motivations. If the color shade of the cell is closer to red, this indicates a high
correlation between the motivations, and if it is closer to blue it indicates a
lower correlation. Motivations that are uncorrelated are displayed by shades
of green.

are specified on the customer-base level and one explanation for these positive
correlations is that a customer who is active in his garden may be interested in
multiple gardening related “projects”. Apparently these separate garden projects
are not aggregated to a single comprehensive motivation in the model. Recall that
the identification of the motivations is driven by the co-occurrence of products in
a shopping basket. Hence, a reasonable explanation for this observation is that
these gardening projects are spread out over several shopping trips. For example,
because there is limited space in the garden and the gardening project needs time
to complete, or because the gardening project is bound to a certain season. This
suggests that even though more than one gardening motivation may be relevant
across a customer’s entire purchase history, this is not necessarily the case at
the level of a purchase occasion. In fact, some of these gardening motivations
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may have a negative correlation on the shopping basket level because of the
reasons outlined above. Furthermore, it makes intuitive sense that gardening
is a recurrent activity, making it relevant for multiple shopping baskets in a
customer’s purchase history. This is in contrast to a motivation that may only be
relevant once for a customer, such as a bathroom renovation.

The motivation correlation structure can also be used to predict which other
motivations might be of interest to a customer. To determine this we consider a
plot inspired by an ROC (Receiver Operating Characteristic) curve that uses the
SOFTMAX(αib) values, i.e. the probabilities over motivations for the b-th basket
of customer i. The intuition here is that a pair of motivations A and B that is
highly correlated at the customer-base level, i.e. represented by a large value
in Σκ, will have predictive power across baskets of a customer. We assess this
by dividing the baskets in our data set between the first and second year of our
sample. The customers are sorted in descending order of average probability
for motivation A in the first year, where the average is taken over a customer’s
baskets in the first year. Subsequently, for the second year the cumulative sum
of average probabilities for motivation B is calculated, where the aforementioned
ordering to calculate the cumulative sum is used. These results can be used to
construct an ROC-like curve. We transform the values on the vertical axis to
the [0,1]-interval, by dividing the values on the vertical axis by the total sum
of average probabilities for motivation B. The values on the horizontal axis are
transformed to the [0,1]-interval as well, such that they represent the customer
percentiles obtained by ordering on the average probability for motivation A in
the first year.

An ROC curve is created for a specific pair of positively correlated motivations.
The motivations considered are 6, which is about the construction of gypsum
walls, and 9, which is involved with bathroom renovation. The posterior mean of
the correlation between these motivations is 0.63. This number is relatively high,
especially as it is not to be expected that this correlation is perfect: Gypsum walls
can be needed in other projects, and a bathroom can also be renovated without
constructing new walls.

The resulting ROC curve is displayed in Figure 4.7 by the dark graph and
it is clearly situated above the 45-degree-line through the origin. To put this
lift in perspective a similar curve where we plotted the average probability for
motivation 6 in the first year against the second year is created. This can be
interpreted as an “auto”-ROC curve for motivation 6. It is displayed by the light
gray graph in Figure 4.7. We note that the ROC curve for motivations 6 and 9
is relatively close to this auto-ROC curve. This indicates that customers who
have a high probability for motivation 6 in the first year, tend to have a high
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probability for motivation 9 in the second year. This finding supports the claim
that the motivation correlations on the customer-base level are informative on
the basket-level as well.
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FIGURE 4.7 – The dark graph represents the ROC curve between motivation
6 (construction of gypsum walls) and motivation 9 (bathroom renovation).
The customer percentiles on the horizontal axis are based in descending order
on a customer’s average probability for motivation 6 in the first year of the
data set. The vertical axis represents the proportion of the cumulative sum
for the average probabilities of motivation 9 in the second year of the data
set. The light gray graph displays the ROC curve for motivation 6 in the first
year against itself in the second year.
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4.4.3 Motivation seasonality

In the model, the baskets of a customer are not aggregated to a single purchase
history. Instead we consider them as distinct shopping trips. This has enabled
us to include monthly seasonality effects as a predictor for αib, the relevance of
each motivation in the b-th basket of customer i. However, directly evaluating
the monthly effects for each of the 100 motivations is not practical. Instead,
we choose to highlight the seasonality pattern over the 12 months for 6 of the
motivations in Figure 4.8. In these plots, the horizontal axis represents the 12
calendar months, starting in January and ending in December. The vertical axis
is the ratio of the average probability for a motivation in each month, with respect
to the average probability of the motivation. The averages are taken over the
SOFTMAX(αib) values across baskets and customers. The labels applied to these 6
motivations are obtained in a similar way as at the beginning of Section 4.4.1, i.e.
for each motivation we examined the most likely products to infer meaning.
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FIGURE 4.8 – Plots for six motivations that display the ratio of a motivation’s
average monthly probability, with respect to the average probability for that
motivation. The average probability is calculated based on the SOFTMAX(αib)
values across baskets and customers.

The motivation with the strongest seasonality effect is number 64, which is
about products related to Christmas and the holiday season. We observe that
this motivation has a very low baseline relevance outside the holiday season. We
discover a different seasonality pattern for motivation 67, which contains insect
and mosquito repellents. The plot shows that the relevance of this motivation
peaks during the summer months and intuitively, it makes sense that these
products are in higher demand during these months. For motivation 26, which
places emphasis on general cleaning products, we hardly see any variation across
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the year. This is in agreement with the notion that cleaning is not restricted
to a certain season. The other motivations can be interpreted in a similar way:
Flowers are planted during spring, irrigation systems tend to be installed before
summer really starts and barbecue products are in higher demand during sum-
mer compared to winter. All these results show that some topics exhibit (strong)
seasonality patterns that can be used to improve effectiveness of marketing
campaigns related to these motivations.

4.4.4 Effect of other explanatory variables

Besides the seasonality effects discussed in Section 4.4.3, the model contains
several other explanatory variables at the basket-level as well as variables that
are customer-specific. Each of these variables is able to shift αib, the baseline
relevance of the motivations for the b-th basket of customer i. If such a shift is
positive (negative) for a motivation, it indicates that the explanatory variable has
a positive (negative) effect on the relevance of the focal motivation. This provides
the retail manager with additional input to determine her marketing strategies.
For example, a group of customers with a certain characteristic can be targeted in
a promotion because they are on average more interested in a certain motivation.

The effect of an explanatory variable is calculated using the approach outlined
in Section 4.2.2. As each of our explanatory variables is a dummy, we interpret
these effects relative to that of the baseline value for the dummy. This allows us
to interpret the effect as a “partial” effect that describes the shift in relevance for
a motivation induced by the focal variable, relative to its baseline level, ceteris
paribus.

We first consider the basket-specific explanatory variables that we included
in the model besides the seasonality effects which we discussed in Section 4.2.2.
Three dummy variables remain, namely Year 2 vs. Year 1, Weekend vs. Weekday
and 17:00-23:59 vs. 00:00-16:59. The corresponding shifts in average proba-
bility for each of the motivations relative to their baseline values are displayed
in Figure 4.9. Note that the scale, i.e. effect size, on the horizontal axis differs
across the subplots.

The first dummy discussed is Weekend vs. Weekday. It captures the shift in
motivation relevance between shopping trips during a regular day of the week
(Monday to Friday) compared to a day in the weekend (Saturday and Sunday).
One of the motivations that has a large negative shift is motivation 87 which
relates to products involved in moving. In this motivation, products such as
moving boxes, packaging tape, and bubble cushion are important. Intuitively, it
makes sense to assume that on average people prepare for a move on weekdays,
and perform the actual move during the weekend. We can contrast this finding
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FIGURE 4.9 – Impact on motivation likelihood for the basket-specific explana-
tory variables versus the baseline likelihood. The horizontal axis represents
the ratio of these probabilities. Note that the scale for this axis differs across
the subplots.

against motivation 69, which relates to pool maintenance. This motivation has
the largest positive shift for this dummy variable, suggesting that supplies for
pool maintenance are on average more often purchased during weekends than
during weekdays.

The second basket-specific variable that we consider is 17:00-23:59 vs.
00:00-16:59, which divides the shopping trips in a group that occurred be-
fore 5pm and a group that occurred after 5pm. The largest positive shift is

126



4. Model-Based Marketing Insights

observed for motivation 8, which places emphasis on food products such as candy
bars and sodas. It seems plausible that these products are in higher demand
after 5pm as these shopping trips co-occur with dinnertime.

For the explanatory variables on the individual level a similar analysis
is performed. Because of space constrains we will not discuss all the vari-
ables but instead focus on the following 4 dummy variables: Age 0-34 vs.
Age 45-54, Age 65+ vs. Age 45-54, Female vs. Male, and Large household
vs. Small household. The shifts in the average probabilities for each of these
variables relative to their baseline values are displayed in Figure 4.10.

We first consider the effects for the age related dummies that segment the
customer base in different age groups: Age 0-34 vs. Age 45-54 and Age 65+
vs. Age 45-54. These dummies have a substantial impact on the likelihood of
motivations and we notice that for a large share of the motivations the effect for
these two dummies are reversed. For example, consider motivation 14, where the
average probability is doubled for customers in the 65+ age group compared to
the baseline age group of 45−54, while in contrast it is lowered by 20% for the
youngest age group. After examining the contents of this motivation, it turns out
that it places emphasis on perennial flowers, which are flowers that are generally
easy to maintain. This finding suggests that these type of flowers are more in
line with the gardening needs of the elderly.

The next variable separates the customer base on gender: Female vs. Male.
Large positive shifts for motivations 5, 14, and 24 are observed, which are all
related to gardening, suggesting that these motivations are more relevant for the
female customers. In contrast, large negative shifts are observed for motivation
36, which is related to interior lighting, and motivations 38 and 47, which are
related to electrical tools and electrical boxes, conduits, and fittings. These
findings are well aligned with prevailing gender stereotypes.

The last customer characteristic that we consider describes the household
size: Large household vs. Small household. The motivations that receive
large positive shifts for large households seem primarily concerned with outdoor
“projects” such as gardening and barbecuing. Perhaps this variable acts as a
proxy for home size or type, as larger families tend to live in family homes that
often come with a garden, in contrast to an apart which is more likely to house a
smaller household.

To summarize this section, the explanatory variables in the model clearly
provide new insights in the latent purchase patterns of the data. It would
be difficult to obtain these insights by just considering the raw data. These
extra insights are primarily enabled through our use of motivations, which are
coherent groups of products, instead of analyses focused on single products from
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FIGURE 4.10 – Impact on motivation likelihood for the customer-specific
explanatory variables versus the baseline likelihood. The horizontal axis
represents the ratio of these probabilities. Note that the scale for this axis
differs across the subplots.

the assortment. In this way, it becomes easier to discern distinctive patterns and
find plausible explanations for the purchase behavior in the data, and connect
these patterns to explanatory variables. Finally, we want to emphasize that the
effects reported in this section are all “partial”. A retail manager can study all
possible combinations of variables needed to answer a research question at hand.
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4.4.5 Motivation persistence

The last set of effects that we consider concerns the persistence of motivations
across shopping trips. These effects provide insight in how the relevance of a
motivation in a current basket affects the relevance of that motivation in the next
basket. Motivations with a higher persistence tend to be relevant across more
shopping trips and “last longer”. For each motivation we measure the persistence
as follows: We first create an average baseline as discussed in Section 4.2.2.
Subsequently, we shift the focal motivation’s relevance with 2 posterior standard
deviations and measure how the average relevance changes compared to the
baseline. The results are displayed in Figure 4.11.
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FIGURE 4.11 – Impact on motivation likelihood, by applying a shift of two
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m for each motivation
m. The vertical axis represents the ratio of these probabilities versus the
baseline.

Note that it holds for all motivations that a positive shock results in positive
effects. That is, the average probability for the motivation is increased in the next
period, in line with our expectations. The motivation that displays the largest
persistence effect is motivation 96. The likely products under this motivation
relate to rental tools, so it could be that motivation 96 actually describes a multi-
basket purchase pattern. In the first shopping trip, equipment is rented and a
deposit is paid. In the second trip, the equipment is returned, rental fees are
charged and the deposit is refunded to the customer. The motivation with the
second-largest persistence effect is motivation 51, which is about the installation
of an irrigation system in the garden. This seems like a large project, that could
easily require multiple trips to the retailer. The important point to take away
is that even though the level of persistence varies over motivations, it is an
additional component of the model that can be used to predict which motivations
are relevant during the next shopping trip. Being able to accurately predict what
a customer wants at a given point in time is a vital point in retail management.

129



4.5 M A N A G E R I A L I M P L I C A T I O N S A N D F U T U R E R E S E A R C H

In this chapter we have presented a novel method that can be used to gain insight
in a retailing context where product assortments are so large that traditional
analysis methods fall short because of this dimensionality. This typically happens
when dealing with more than a hundred products. The method that we have
presented scales well with the size of the assortment, providing the opportunity
to analyze very large assortments. The application in this chapter involved
purchases from an assortment of over 4000 products. In principle, however,
the method scales well with the number of products and should work with
assortments of a larger order of magnitude.

The cornerstone of our method is to infer a limited number of motivations
that can be used to adequately describe the purchase behavior for all customers
across all products in the assortment. For each motivation we can describe
which products are relevant, given that the focal motivation is active. The
intuition behind the scalability of our method is that the number of motivations
is much smaller than the size of the product assortment, effectively reducing the
dimensionality of our problem.

The model was applied to a large data set containing purchase data from a
retailer that wishes to remain anonymous. The data consists of about 50,000
shopping baskets that contain purchases from an assortment of over 4,000 prod-
ucts. The results are intuitive and show a high degree of internal consistency,
providing face validity to the model. In addition, in Jacobs et al. (2016) it has
been shown that latent Dirichlet allocation (LDA), which underlies our model as
well, is well-suited for predicting a customer’s next purchase with high accuracy.
However, in this chapter we have specified a much richer model structure that
can be leveraged to gain insight in the purchase behavior of a customer base that
goes beyond inferred motivations and purchase prediction. From these results
several managerial implications can be derived, which will be discussed next.

First, we consider the separate purchase occasions in the model as they
occur in the data set. We specifically do not aggregate shopping baskets into
a single purchase history. The implication of this step is that each purchase
occasion is assigned a unique time stamp. In turn, this enables us to connect the
variation in relevance of a motivation to different time periods in the year, e.g.
months or seasons. For a manager, this provides insight in when a motivation
becomes “active” and relevant. Some of these seasonality effects may be known
to the manager a priori, but a model-based approach allows for the discovery
of unknown patterns, as well as quantifying when the seasonality effect starts
and ends. In addition, we are able to capture time effects during the day. Which
motivations are likely active for shoppers during working hours, and which after
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working hours? These results can be used to create marketing campaigns that
advertise or promote the right products at the right time.

Second, the model specification includes additional explanatory variables at
the customer level such as a customer’s gender and age. This enables us to derive
which motivations are (ir)relevant across segments of the customer base. A retail
manager can use this information to create personalized marketing messages for
customers, based on their observed characteristics and their inferred motivation
relevance. This helps in the identification and selection of products that are likely
relevant for the customer. This approach can also be reversed: If the manager
is interested in promoting a specific product from the assortment for which we
know that it is relevant under a specific motivation, the manager can target the
customers in the segments for which this motivation is relevant and hence, who
are likely interested in the product.

Third, we estimate the persistence of motivations in our model. This enables
us to infer if a motivation is likely relevant for multiple adjacent shopping trips
of a customer. Not only does this potentially improve the predictive power of the
model, it also provides a way to assess the involvement of a customer in a certain
motivation. Based on this information a retail manager could entice a customer
to “complete” the motivation, for example by offering a discount.

Fourth, we allow the motivations in the model to correlate. From these
correlations the motivations can be determined that are (un)likely to both be
relevant for a customer. This information could be used by a marketing manager
to identify potential cross-selling opportunities, where products that are relevant
in highly correlated motivations are jointly promoted. In addition, the correla-
tions increase the explanatory power of the model. This holds in particular for a
customer for which we only observe a limited number of purchases. By leveraging
the motivation correlation structure, we can identify another motivation that can
be of interest to the customer, even in case we have not observed any purchases
that relate to that motivation.

The aforementioned points mainly focus on effects at the population level.
However, the model captures heterogeneity in purchase behavior as well, as
customers are individually represented in the model. This allows us to create
customer-specific predictions for products a customer could be interested in. As
the baskets are considered separately, we are able to visualize a customer’s
journey at the retailer. In this way we can track a focal customer over time, and
examine how his preferences change over time.

Although our approach already provides many valuable insights, there are
several interesting extensions that can be addressed in future research. First of
all, we fixed the number of motivations in the model to be equal to 100. Ideally,
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this number is determined in a more sophisticated way and substantiated by
empirical evidence such as a hold-out likelihood to prevent overfitting to the data.
However, even if one is not too concerned with overfitting, the determination
of the number of motivations remains a complex task. A goal of this chapter
was to show that the (latent) motivations can be used to provide insight in high-
dimensional purchase data. By increasing the number of motivations without
bound, this insight might become blurry and more difficult to grasp. That is,
we believe that the right number of motivations in the model should strike a
balance between model performance, i.e. how well the model is able to describe
the observed data, and the usability and implementability of the model results
by a manager. At the moment, this is an open question but the development of
techniques that are able to strike this balance provides an interesting avenue for
further research.

Second, in this chapter we considered purchase history data and explanatory
variables at the basket- and customer-level. However, typically there is much
more relevant data available, especially at online retailers. On the customer side,
additional information might be collected, such as browse and search history
and product ratings. On the other hand for products, additional information is
often available in the form of product features that can be more quantitative
(brand, price, etc.), or qualitative such as product descriptions and reviews.
Incorporating these additional sources of information in a meaningful way could
further improve both interpretability and actionability of the results.

Finally, the rich model structure specified in this chapter lends itself for more
sophisticated research applications. In this chapter we have mainly focused on an
exploratory analysis of the high-dimensional purchase data. This is the first step
of the research funnel when working with a complex data set that is concerned
with a large product assortment that is unwieldy to analyze using traditional
methods. The logical next step in this funnel would be to apply these unique
results in a predictive or prescriptive analysis, leading to actionable insights and
added benefits for both the customer and the firm.
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Summary

Over the past two decades online retailing has become ubiquitous and today’s
large online retailers enable customers to purchase virtually any product. As
a consequence product assortments at such retailers are of a different order of
magnitude compared to the traditional brick-and-mortar stores. In this disser-
tation model-based methods are presented that can be used to model purchase
decisions in such high-dimensional product assortments. These methods are
able to accurately predict at the individual customer level which product will be
purchased next out of the large assortment. In addition, the methods provide
substantive insights in the patterns that underlie the observed purchase behavior.
The applicability of such methods in practice hinges on their scalability and this
holds especially true for online retailers. Model results should be rapidly obtained
and the estimation time should not significantly increase in case the customer
base or product assortment expands. Scalability is therefore a focal point in this
dissertation. The methods introduced are adaptations and extensions of fast
scalable methods from the machine learning literature that make these methods
also suitable for the online retailing context. This ensures that estimation times
remain feasible even if the size of the retailer increases and opens the way for
advanced model-based marketing analytics in high-dimensional assortments.
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Samenvatting

De afgelopen twee decennia is online winkelen steeds populairder geworden en
vandaag de dag maken grote online winkels het mogelijk voor hun klanten om
vrijwel elk product te kopen. Het gevolg hiervan is dat de productassortimenten
van online winkels vele malen groter zijn dan die van traditionele winkels.
In dit proefschrift worden modelmatige methoden gepresenteerd die gebruikt
kunnen worden om aankopen uit zulke hoog dimensionale assortimenten te
modelleren. Deze methodes zijn in staat om op het niveau van een individuele
klant nauwkeurig te voorspellen welk product uit een groot assortiment gekocht
gaat worden. Daarnaast leveren de methoden een dieper inzicht in de onder-
liggende patronen van het geobserveerde aankoopgedrag. De toepasbaarheid
van zulke methoden in de praktijk hangt sterk samen met de schaalbaarheid
van de methode en dit geldt met name voor online winkels. Resultaten uit
het model moeten snel verkregen kunnen worden en de rekentijd mag niet
significant toenemen als de hoeveelheid klanten of het aantal producten stijgt.
Schaalbaarheid is daarom een van de aandachtspunten in dit proefschrift. De
geïntroduceerde methoden zijn aanpassingen en uitbreidingen van snelle en
schaalbare methoden uit de machinaal leren literatuur, zodat deze geschikt
worden om te gebruiken in de context van online winkelen. Dit zorgt ervoor
dat de rekentijd beperkt blijft zelfs als de winkel groeit, waarmee de weg
wordt vrij gemaakt voor geavanceerde modelmatige marketing analyses in hoog
dimensionale assortimenten.
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