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Functional characterization of a multi-cancer risk
locus on chr5p15.33 reveals regulation of TERT
by ZNF148
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Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci

to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one

of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these,

rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and

melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional

gene silencing of this regulatory element repressed TERT expression in an allele-specific manner.

Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-

C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in

reduced TERT expression, telomerase activity and telomere length. Our results indicate that the

association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT

expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele.

DOI: 10.1038/ncomms15034 OPEN

1 Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland

20892, USA. 2 Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500 HB, The Netherlands. 3 Division of

Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. 4 Cancer Genomics Research Laboratory,

National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research,

Frederick, Maryland 21702, USA. 5 Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756,

USA. 6 Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA.
7 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. 8 Department of Biostatistics, Harvard School of Public Health,

Boston, Massachusetts 02115, USA. 9 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. 10 Department of Medicine,

Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA. 11 Department of Epidemiology and Biostatistics, Memorial

Sloan-Kettering Cancer Center, New York City, New York 10065, USA. 12 Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute,

Tampa, Florida 33612, USA. 13 Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK. 14 Department

of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK. 15 Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.
16 Translational Medicine and Human Genetics, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania,

Philadelphia, Pennsylvania 19104, USA. * These authors contributed equally to this work. ** These authors jointly supervised the work. Correspondence and requests for

materials should be addressed to K.M.B. (email: kevin.brown3@nih.gov) or to L.T.A. (email: amundadottirl@mail.nih.gov).
wThe members of the PanScan Consortium are listed at the end of the paper. zThe members of the TRICL Consortium are listed at the end of the paper.
yThe members of the GenoMEL Consortium are listed at the end of the paper.

NATURE COMMUNICATIONS | 8:15034 | DOI: 10.1038/ncomms15034 | www.nature.com/naturecommunications 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/154418209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kevin.brown3@nih.gov
mailto:amundadottirl@mail.nih.gov
http://www.nature.com/naturecommunications


R
isk variants across a small genomic region on chromosome
5p15.33 have been reported in genome wide association
studies (GWAS) for at least eleven cancer types including

bladder, breast, glioma, lung, melanoma, non-melanoma skin
cancer, ovarian, pancreas, prostate, testicular germ cell cancer and
chronic lymphocytic leukaemia1–15. Fine-mapping studies, either
within a specific cancer type or across different cancers, have
characterized up to seven independent loci in this region with
either risk-enhancing or protective effects across a dozen
cancers16–18. Notable is the fact that in nearly every locus, the
effect is pleiotropic. This genomic region contains two plausible
candidate genes, TERT and CLPTM1L. The former encodes the
catalytic subunit of the telomerase reverse transcriptase (TERT),
which in combination with an RNA template (TERC) adds
nucleotide repeats to chromosome ends19. Although telomerase is
active in germ cells and in early development, it is repressed in
most adult tissues. Telomeres shorten with each cell division, and
when they reach a critically short length, cellular senescence or
apoptosis is triggered. However, cancer cells can continue to
divide despite critically short telomeres, by upregulating
telomerase or by alternative lengthening of telomeres (ALT)
(refs 20–22). The CLPTM1L gene encodes the cleft lip and palate
associated transmembrane 1-like protein, and is overexpressed in
lung and pancreatic cancer where it promotes growth and
survival and is required for KRAS driven lung cancer23–27.

One of the multiple risk loci in this genomic region lies within
the CLPTM1L gene and has been termed Region 2 (ref. 18),
originally reported to be associated with risk of pancreatic, lung,
bladder cancer, and melanoma, marked by either rs401681 or
rs402710 (refs 1,4,5,11,28). By conducting fine-mapping across
multiple cancers and subsequently investigating the functional
consequences of the subset of genetic variants most strongly
associated with cancer risk, we find that risk of pancreatic,
testicular and lung cancer conferred by this locus may
predominantly be explained by a single-SNP. This variant,
rs36115365, exhibited preferred protein-binding and enhanced
regulatory activity for the C-allele, associated with increased
pancreatic and testicular but decreased lung cancer and
melanoma risk.

Transcriptional gene silencing of the regulatory region
encompassing this variant resulted in repression of TERT but
not CLPTM1L expression in an allele-specific manner. Proteomic
analysis identified allele-preferred binding of Zinc finger protein
148 (ZNF148) to rs36115365-C, a finding supported by binding
of purified recombinant ZNF148 specifically to the C-allele, as
well as by ChIP analysis showing allele-preferential binding of
endogenous ZNF148 to rs36115365-C. Knockdown of ZNF148
resulted in reduced TERT expression, telomerase activity and
telomere length. Taken together, these results indicate that the
association with chr5p15.33-Region 2 may be explained by
rs36115365, a variant influencing TERT via ZNF148 in a manner
consistent with elevated TERT expression in carriers of the C
allele.

Results
Fine-mapping the chr5p15.33 Region 2 risk locus. We per-
formed imputation and fine-mapping of the multi-cancer risk
locus in the CLPTM1L gene (Region 2, originally marked by
rs401681 and rs402710) using GWAS data for four cancers pre-
viously shown to have associations with this locus, namely pan-
creatic11, testicular28 and lung cancer7, and melanoma29. For
pancreatic cancer, fine-mapping identified SNPs with P values
significantly lower than the previously published association
signal marked by rs401681, with rs451360 being the smallest
(P¼ 2.0� 10� 10 for rs451360; P¼ 3.7� 10� 7 for rs401681;
Supplementary Table 1)18. This SNP is highly correlated with

eight other SNPs (r240.60, 1000G EUR population) that
collectively mark Region 2 in pancreatic cancer (Fig. 1). Fine-
mapping of Region 2 for testicular germ cell tumours (TGCT)
and lung cancer revealed that the strongest SNP for each was
among this group of nine SNPs (rs35953391 for TGCT,
P¼ 1.08� 10� 9; and rs37004 for lung cancer,
P¼ 1.18� 10� 13; Supplementary Table 1). Conditional analysis
for the most significant SNP across each cancer resulted in a
substantial loss of the signal for the other eight SNPs in pancreatic
(PConditional¼ 0.47–0.91), testicular (PConditional¼ 0.21–0.92) and
lung cancer (PConditional¼0.09–0.45). In contrast, for melanoma
none of the nine SNPs were significantly associated with risk in
an unconditional analysis. However, upon conditioning on the
most significant SNP in Region 2 (rs2447853, P¼ 5.7� 10� 12)
(ref. 29), all nine SNPs became more significantly associated with
melanoma risk (PConditional¼ 5.77� 10� 5 to 4.45� 10� 3),
consistent with the possibility that these SNPs may mark one
or more risk variants independent of rs2447853.

We also noted in the 1000G Phase 3, version 1 reference
dataset an insertion/deletion variant that was highly correlated
with these nine SNPs (rs3030832, r2¼ 0.96 to rs451360 in EUR)
that had not been included in the imputation reference based off
an earlier version (1000G Phase 1, version 3). We therefore
re-imputed the pancreatic cancer GWAS with the newer 1000G
reference set and observed an association signal similar in
strength and significance to that of the other nine variants
(rs3030832, P¼ 8.25� 10� 10, OR¼ 1.28 95% CI 1.18–1.39;
Supplementary Table 2) indicating that this indel variant should
likewise be considered a candidate functional risk variant.
Overall, these ten variants extend across the entire length of
CLPTM1L, from the promoter to B6 kb downstream of the gene
(Fig. 1). Three variants, rs36115365, rs380145 and rs27071, are
located within potential gene regulatory regions, annotated by the
ENCODE project (Fig. 1, Supplementary Fig. 1).

Allele-specific regulatory effects mediated by rs36115365. We
sought to assess whether any of the ten highly correlated sequence
variants influence differential protein binding via electrophoretic
mobility shift assays (EMSA) in the PANC-1 and/or MIA PaCa-2
pancreatic cancer cell lines (Fig. 2, Supplementary Fig. 2). Only
rs36115365 exhibited allele-specific binding (Fig. 2), where the
pancreatic cancer risk-associated minor C-allele (MAF 0.19 in
1000G EUR) displayed selective protein binding as indicated
by greater loss of C-allele-specific banding upon addition of
unlabelled C-allele competitor compared to unlabelled G-allele
probe. EMSA assays for rs36115365 in seven additional
cancer cell lines, including pancreatic cancer (MIA PaCa-2,
Supplementary Fig. 3a), testicular germ cell cancer (NTERA-2
and 2102Ep, Supplementary Fig. 3b), lung cancer (A549, Fig. 2;
NCI-H460, Supplementary Fig. 3c), and melanoma lines
(UACC903 and UACC1113; Supplementary Fig. 3d) showed a
similar pattern of allele-preferential binding to the C allele of
rs36115365.

This SNP is located in-between the 50 end of TERT (B18 kb
upstream) and 30 end of CLPTM1L (B5 kb downstream),
a region that overlaps active histone modification marks and
multiple transcription factor binding sites according to ENCODE
data (Fig. 1, Supplementary Fig. 1). The region harbouring
rs36115365 demonstrated an allele-specific increase in luciferase
reporter activity as compared to empty vector that was consistent
across all eight cancer cell lines tested (Fig. 3, Supplementary
Fig. 4), including those from pancreas (PANC-1 and MIA
PaCa-2, average fold change for C versus G allele 1.38, range
1.05–2.82), testis (NTERA-2, and 2102Ep, average fold change for
C/G allele 1.95, range 1.12–4.83), lung (A549 and NCI-H460,
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average fold change for C/G allele 1.33, range 1.05–1.95),
and melanoma (UACC903 and UACC1113, average fold change
for C/G allele 1.35, range 1.30–1.42). Transcriptional activity
of the genomic region surrounding rs36115365 (240 bp) was
higher in the forward (plasmids FG and FC) as compared to the
reverse (plasmids RG and RC) orientation. Across all cancer cell
lines, the C-allele on average showed an approximately 44%
higher luciferase activity than the G-allele in the forward
orientation, and 23% higher activity in the reverse orientation
(P¼ 4.2� 10� 5–0.031).

Analysis of imputed GWAS data from pancreatic and
testicular cancers conditioned on rs36115365 are consistent with
rs36115365 accounting for the majority of the Region 2 signal
(PConditional¼ 0.03–0.99 and PConditional¼ 0.22–0.92, respectively
for the grouping of eight SNPs highly correlated with rs36115365;
Supplementary Table 1), with the minor C allele being positively
associated with risk. In lung cancer and melanoma, however,
fine-mapping data suggest that the genetic architecture

underlying risk in Region 2 may be more complex, but are
nonetheless consistent with a functional role for rs36115365.
For lung, in contrast to pancreatic and testicular cancers, the
C allele of rs36115365 is negatively associated with risk.
Conditioning on rs36115365 revealed a possible secondary signal
for lung cancer risk within the eight highly correlated SNPs
(PConditional¼ 3.74� 10� 5–0.11; Supplementary Table 1). For
melanoma, rs36115365 was not significant in single-SNP analysis
(P¼ 0.70), but became more significant after conditioning on the
best Region 2 SNP (rs2447853, PConditional¼ 1.09� 10� 4;
Supplementary Table 1), with the C allele also being negatively
associated with risk (OR¼ 0.86; 95% CI 0.80–0.93). After
conditioning on rs36115365 for melanoma, rs2447853 also
becomes more significant (PConditional¼ 3.01� 10� 15 versus
P¼ 5.7� 10� 12). These data suggest rs36115365 may influence
gene expression within the TERT-CLPTM1L region and may
account for either some or the entire association signal in this
region, depending on the cancer type.
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Figure 1 | Map of TERT and CLPTM1L region. Recombination hotspots in the CEU population (red line), as well as 1000G combined recombination rate

(blue line) across the TERT/CLPTM1L region are shown relative to the CLPTM1L and TERT genes, as well as the grouping of ten highly correlated sequence

variants strongly associated with risk of pancreatic, testicular, and lung cancers in the region closest to CLPTM1L. (a) Chromatin interaction analysis

paired-end (ChIA-PET) sequencing data from the K562 chronic myeloid leukaemia cell line using an antibody against RNA polymerase II generated by the

ENCODE project (https://www.encodeproject.org/) is shown. For each of the ten strongly associated variants, layered H3K4Me1, H3K4Me3, and

H3K27Ac chromatin immunoprecipiation (ChIP-seq), DNAse I hypersensitivity sequencing (DNase) and transcription factor ChIP-seq (TF-ChIP-Seq) data

from the ENCODE project are shown (b) as displayed by the UCSC Genome Browser (lower panels).
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Silencing the region harbouring rs36115365. To interrogate
whether the putative gene regulatory region harbouring
rs36115365 influences expression of TERT and/or CLPTM1L,
siRNA mediated transcriptional gene silencing (TGS) (refs 30,31)
was used to target across this region to evaluate effects on gene
expression. This mechanism of gene silencing is different from the
well-known siRNA-mediated post-transcriptional gene silencing
(PTGS) in that it targets a genomic regulatory region that mediates
gene expression rather than messenger RNA (mRNA) (refs 30,31).
Eight siRNAs were designed to span the region (Fig. 4a,
Supplementary Table 3) and were separately transfected into cancer
cell lines from pancreas (PANC-1), lung (A549), testis (NTERA-2),
and melanoma (UACC903). Three of the eight (siRNA3, siRNA5
and siRNA8; Fig. 4b, Supplementary Fig. 5) showed significant
inhibition of TERT mRNA expression by RT-qPCR in all four cell
lines tested compared to a scrambled siRNA control, suggesting a
role for the targeted region in the regulation of TERT expression.
Inhibition of TERT by the three siRNAs ranged from 24 to 74% in
PANC-1, 44 to 77% in A549, 33 to 49% in NTERA-2 and 54 to 84%
in UACC903. The remaining five siRNAs showed little effect on
expression of TERT. In contrast, expression of CLPTM1L as well as
the GAPDH and ACTB housekeeping genes were not affected by
any of the eight siRNAs. In addition, four siRNAs randomly
designed to target non-genic regulatory regions on chromosome
8q24.21 were used as negative controls; none altered expression of
TERT, CLPTM1L, or either housekeeping gene (Supplementary
Fig. 6). The three siRNAs altered TERT expression in four
additional cancer cell lines from pancreas (MIA PaCa-2), testis
(2102Ep), lung (NCI-H460) and melanoma (UACC1113). Both
siRNA3 and siRNA8 consistently reduced expression of TERT, but
not CLPTM1L or housekeeping gene expression in all four lines,
while siRNA5 resulted in specific down-regulation of TERT in some
but not all lines (Supplementary Fig. 7). These data suggest that the
genomic region harbouring rs36115365 plays a key role in the
regulation of TERT, but not CLPTM1L, expression.

Allele-specific TERT gene-regulatory activity by rs36115365.
We next sought to test whether the effect of TGS by siRNA
targeting this putative gene-regulatory element on TERT
expression was influenced by the genotype at rs36115365 by
assessing allele-specific TERT mRNA expression. The human
TERT gene harbours a synonymous SNP in exon 2 (rs2736098),
linked to rs36115365 (r2¼ 0.14, D0 ¼ 1.0 in 1000G CEU),
allowing for assessment of expression of TERT from chromo-
somes harbouring the C and G alleles of rs36115365 in cell lines
heterozygous for both SNPs. We screened genomic DNA and
complementary DNA (cDNA) from 55 pancreatic cell lines, as
well as the melanoma, lung and testis cancer cell lines from the
NCI60 panel to identify cell lines that are both heterozygous for
rs36115365 and express two different alleles of rs2736098,
yielding two assayable pancreatic cancer cell lines (Panc 05.04,
IMIM-PC-1) and one lung cancer cell line (A549). The two
pancreatic cancer cell lines express higher levels of TERT from the
C as compared to the G allele (2.3 and 9.8 fold, respectively)
whereas A549 cells express higher levels from the G allele
(Supplementary Fig. 8). However, after adjusting for DNA copy
number, all three cell lines express higher levels of TERT from the
C allele (1.2 fold for A549 cells). We evaluated allele-specific
levels of inhibition of TERT expression by siRNA3 (which is both
closest to rs36115365 and most consistently inhibits TERT
expression across the cell lines previously tested) in these three
cell lines using a TaqMan allelic-discrimination assay for
rs2736098. Inhibition by the siRNA on the C versus the G allele of
rs36115365 was 60.2 versus 49.1% in Panc 05.04 cells (P¼ 0.007;
t-test), 70.0 versus 63.6% in A549 cells (P¼ 0.003; t-test) and 28.3
versus 16.4% in IMIM-PC-1 cells (P¼ 0.002; t-test) (Fig. 4c).

These results indicate that rs36115365 lies in a gene-regulatory
element that influences TERT expression in an allele-specific
manner.

Zinc-finger transcription factor 148 binds rs36115365-C. To
investigate the underlying mechanism of the differential gene
regulation by genotypes at rs36115365, and to identify tran-
scription factors potentially mediating this effect, we performed
pull-down with oligonucleotides corresponding to the C or the G
allele of rs36115365 incubated with nuclear extracts from PANC-
1 and UACC903 cell lines, followed by quantitative mass spec-
trometry32. While most proteins identified bind both variants
equally well, we noted outliers that bound the C-allele
preferentially over the G-allele, as demonstrated by their
location on the two-dimensional interaction plot (lower left
quadrant of each, Fig. 5a and Supplementary Fig. 9), consistent
with the EMSA data and suggesting preferential protein binding
to this allele. Three proteins (ZNF148, VEZF1/ZNF161 and
ZNF281) were identified as binding the C variant of rs36115365
preferentially in label-swapping experiments performed across
both PANC-1 and UACC903 cell lines using a poly-dAdT
competitor (Fig. 5a). A fourth protein, ZNF740, was also found to
preferentially bind the C variant in both cell lines using mixed
poly-dAdT and poly-dIdC competitors (Supplementary Fig. 9,
bottom panels). We sought to verify whether any of these four
proteins differentially bound the C-allele by using antibodies
against these proteins in conjunction with EMSAs for rs36115365
(Fig. 5b, Supplementary Figs 10 and 11). Only the antibody
against ZNF148 consistently resulted in loss of C allele-specific
banding in pancreatic (PANC-1; Fig. 5b), as well as testis
(NTERA-2) and lung cancer (A549) lines (Supplementary
Fig. 10). Furthermore, EMSAs using recombinant purified
ZNF148 protein demonstrated specific binding of ZNF148 to
the C allele of rs36115365 (Fig. 5c). Notably, the resulting band
had similar mobility characteristics to both those from EMSAs of
ZNF148 bound to a known binding site in the CDKN1A/p21
promoter33,34, as well as the C allele-specific band for rs36115365
using PANC-1 nuclear extracts (Fig. 5c). Consistent with these
data, ZNF148, (also named ZBP-89) a zinc-finger transcription

A549

––

PANC-1

Probe
Competitor ––

Figure 2 | rs36115365 preferentially binds a nuclear protein.

Electrophoretic mobility shift assays (EMSA) with biotin-labelled

oligonucleotides containing either rs36115365-C or rs36115365-G in

pancreatic (PANC-1) and lung (A549) cancer cell line nuclear extracts. Two

specific protein complexes bind the C allele of rs36115365 preferentially in

both cell lines and are more strongly competed with unlabeled C probe as

compared to unlabeled G probe. Unlabelled competitor was used at � 10

and � 100 (as indicated by gradient symbol). Arrows denote specific

protein complexes bound by the C allele of rs36115365.
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factor of the kruppel-like family35, is predicted to bind to a
consensus DNA-recognition motif created by the C-allele of
rs36115365 (Fig. 5d). To further establish the binding of ZNF148
to rs36115365 and surrounding genomic region, we performed
chromatin-immunoprecipitation (ChIP) for ZNF148 followed by
quantitative PCR, noting an enrichment of binding at rs36115365
in pancreatic and lung cancer cell lines homozygous and
heterozygous for rs36115365-C as compared to background and
the surrounding area (Fig. 5e, Supplementary Fig. 12a–f). We also
assessed allelic enrichment in the immunoprecipitates and noted a
significant enrichment of the C allele as compared to the G allele in
A549 cells (1.51 fold, P¼ 0.01; t-test; Supplementary Fig. 12g), with
Panc 05.04 cells showing a nonsignificant trend in the same
direction (1.12 fold, P¼ 0.06; t-test; Supplementary Fig. 12g).

ZNF148 knockdown reduces TERT mRNA and telomerase
activity. To determine the effect of ZNF148 depletion on
expression of TERT and CLPTM1L in pancreatic, lung, testicular,
and melanoma cell lines (n¼ 8 total), we used siRNA-mediated
PTGS. We observed that while depletion of ZNF148 resulted in
little change in expression of CLPTM1L, expression of TERT was
significantly decreased in most of the cell lines, with an average
expression of 0.50 relative to a scrambled siRNA control (range
0.27–0.89, P¼ 2.0� 10� 4–0.012; t-test; Fig. 6a, Supplementary
Figs 13 and 14), consistent with a role for ZNF148 in regulating

TERT expression. In contrast, siRNA-mediated knockdown of
VEZF1 (ZNF161), ZNF281 and ZNF740 showed no effect on
expression of either TERT or CLPTM1L (Supplementary Fig. 15).
We next sought to assess if ZNF148-mediated regulation of TERT
expression was accompanied by effects on telomerase activity and
telomere length. Knockdown of ZNF148 via PTGS resulted in
reduced telomerase activity in A549 and MIA PaCa-2 cells
(Fig. 6b), as well as in NTERA-2 and UACC903 cells
(Supplementary Fig. 16). This reduction was similar to that
observed via siRNA-mediated depletion of TERT itself, or by
transcriptional gene silencing (TGS, siRNA3) to target the gene
regulatory element encompassing rs36115365. To further assess
the role of ZNF148 in regulating TERT expression and activity,
we performed rescue experiments after depletion of endogenous
ZNF148 using an siRNA targeting the 30-UTR of ZNF148.
Overexpression of exogenous ZNF148 lacking the 30-UTR indeed
rescued both TERT expression and telomerase activity in A549
and MIA PaCa-2 cells (Supplementary Fig. 17). Consistent with
these data, depletion of either ZNF148 or TERT, or alternatively
targeting the rs36115365 regulatory region in both A549 and
MIA PaCa-2 cells all resulted in similar reductions of telomere
length (Fig. 6c).

Discussion
A small genomic region on chr5p15.33, that harbours the TERT
and CLPTM1L genes, has been reported to influence risk of
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multiple cancers and may contain up to seven or more
independent susceptibility loci16–18. The complexity of this
locus is highlighted by the fact that the same alleles confer
susceptibility to some cancers while they are protective for others.
One of these susceptibility loci termed Region 2, initially marked
by rs401681 and rs402710 in CLPTM1L, was fine-mapped in a
subset-based meta-analysis across multiple cancer types18 and is
the focus of the current study. The ten variants that mark Region

2 span the whole length of CLPTM1L to B17 kb upstream of the
transcriptional start site of TERT. Here, we identify rs36115365 as
a functional SNP in this region and provide a plausible biological
explanation underlying risk, featuring altered TERT, but not
CLPTM1L, expression. Fine-mapping of Region 2 using GWAS
data from pancreatic, lung and testicular cancer confirmed
significant association with this small set of tightly linked SNPs
(Fig. 1). Little signal remained within Region 2 after accounting
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for rs36115365 or alternatively the respective most significant
SNP in pancreatic and testicular cancer, consistent with the
notion that one or more of these variants (and/or an as-of-yet
unidentified variant tightly linked with these SNPs) is responsible

for mediating cancer risk attributable to this locus. For
lung cancer, residual signal was seen after conditional analysis
on rs36115365 (PConditional¼ 3.74� 10� 5 to 7.71� 10� 4),
indicating that this SNP may not explain the entire Region 2
signal for lung cancer. For melanoma, a SNP (rs2447853) highly
correlated to the original GWAS SNP reported for these cancers
(rs401681, r2¼ 0.97) represents the most significant SNP in
Region 2 (ref. 29). Although rs36115365 was non-significant in
single-SNP analyses, it became more significant after
conditioning on rs2447853 (PConditional¼ 1.09� 10� 4). The LD
structure between these SNPs and conditional analyses suggest
that in melanoma both may mark independent functional
variants, with the signal at rs2447853 masking the association
between rs36115365 and melanoma risk in single-SNP analysis.

In contrast with the other variants, preferred protein binding
was seen on the minor (C) allele of rs36115365 across multiple
cell lines representing all four cancer types. Luciferase reporter
assays consistently showed differential gene regulatory activity
between alleles across the cancer cell lines assayed. These data
suggested rs36115365 as a strong candidate for a functional
multi-cancer risk variant but did not specifically implicate which
gene(s) may be influenced by this SNP.

While a suite of tools is commonly used to interrogate potential
gene-regulatory GWAS loci and link regulatory variants to a
specific gene or genes36, their application was challenging for this
locus. Expression quantitative trait locus analysis proved
problematic for TERT given the relatively low expression of this
gene in normal tissues. Likewise, the utility of chromosome
conformation capture (3C) methods to establish a physical
association between risk variants and specific target genes is
greatly limited by the relatively short distances between
rs36115365 and the TERT promoter. To establish a relationship
between this element and regulation of gene expression, we
targeted the intergenic risk region using siRNAs. This method has
previously been used to inhibit promoter function via small RNA
duplexes by a process termed TGS (refs 30,31,37–41). We applied
this methodology to our study of an intergenic GWAS
susceptibility variant, and established a role for the regulatory
element in driving TERT (but not CLPTM1L) gene expression
across multiple cancer types. These data suggest that the
method may be of broader utility in the functional
interrogation of GWAS loci.

Our results suggest that the binding of one or more proteins to
the C-allele of rs36115365 is likely to play a key role in regulating
TERT expression. Through quantitative mass spectrometry,
we identified preferential binding of zinc finger protein 148
(ZNF148, also named ZBP-89) to the C-allele of rs36115365 in
multiple cancer cell lines, and ChIP data confirmed binding of
ZNF148 over rs36115365. We observed a subtle but significant
preference for ZNF148 binding to the C-allele in ChIP
experiments using A549 lung cancer cells, with a non-significant
trend in the same direction in Panc 05.04 pancreatic cancer cells.
These subtle differences in transcription factor binding are
consistent with the very small effects this locus confers on cancer
risk over a person’s lifetime. Consistent with a central role for
ZNF148 in regulating expression of TERT, siRNA-mediated
gene knockdown of ZNF148 consistently resulted in reduced
expression of TERT. Furthermore, both knockdown of ZNF148 as
well as TGS of the gene regulatory element in which rs36115365
resides reduced telomerase activity and telomere length, to a
degree similar to knockdown of TERT itself. After depletion of
ZNF148, this effect was rescued by exogenous ZNF148.

ZNF148 is a transcriptional regulator of the kruppel-like family
that binds GC-rich DNA sequences in a variety of promoters to
either activate or repress gene expression (reviewed by Zhang
et al.42). Overexpression of ZNF148 promotes growth arrest and
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Figure 6 | ZNF148 depletion results in decreased TERT expression and

telomerase activity. (a) An siRNA directed against the ZNF148 transcript

was transfected into A549 (lung, left) and MIA PaCa-2 (pancreas, right)

cell lines, and expression of ZNF148, TERT, CLPTM1L, ACTB and GAPDH were

assayed by quantitative PCR. Depletion of ZNF148 resulted in consistent

reduction of TERT but not CLPTM1L or control gene expression. Expression

values were normalized to those from cells transfected with a scrambled

control siRNA. Experiments were conducted in triplicate and repeated three

times. Mean measures for three independent experiments are plotted; error

bars represent s.e.m. (b) siRNAs targeting ZNF148, TERT, the regulatory

region encompassing rs36115365 (siRNA3), or a scrambled siRNA control

were transfected into A549 (lung, left) and MIA PaCa-2 (pancreas, right)

cell lines, and telomerase activity was measured via a telomeric repeat

amplification protocol (TRAP). Negative control represents the TRAP assay

performed with no cell extracts added. The internal control represents the

36 bp internal standard. (c) siRNAs targeting ZNF148, TERT, or the

regulatory region encompassing rs36115365 (siRNA3) were transfected

into A549 (lung, left) and MIA PaCa-2 (pancreas, right) cell lines

repeatedly (once every four days), and telomere length was measured after

20 days using quantitative PCR for telomere repeat copy number. Data are

normalized to those from a scrambled siRNA control. Experiments were

conducted in triplicate and repeated three times. Mean measures for three

independent experiments are plotted; error bars represent s.e.m.
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apoptosis in gastrointestinal cancer cell lines in vitro and
suppresses adenoma formation in the ApcMin/þ mouse model
in vivo43. This may be due, at least in part, to ZNF148 binding of
p53 that prevents nuclear export and results in elevated levels of
nuclear p53 (ref. 44). ZNF148 has also been shown to be
important in regulating CDKN1A gene expression, binding a
GC-rich element in the promoter of the gene and recruiting both
ataxia-telangiectasia mutated kinase and histone acetyltransferase
p300 into a complex that drives histone deacetylase inhibitor
(HDACi) mediated induction of this gene33,34.

Our results indicate that ZNF148 may regulate TERT
expression in pancreatic, testicular, lung, and melanoma tumour
cell lines via a regulatory element that is disrupted by the G allele
at rs36115365. As some of these cell lines have TERT promoter
mutations (UACC903, UACC1103) whereas others do not
(PANC-1, MIA PaCa-2, unpublished data), our results indicate
that regulation by ZNF148 is important even in the presence of
these presumably activating mutations.

In summary, our work has uncovered a likely causal variant in
the TERT-CLPTM1L Region 2 susceptibility locus and identified
ZNF148 as a potential effector of a gene-regulatory element that
mediates increased TERT expression in an allele-specific manner.
Furthermore, our fine-mapping results highlight the complexity
of this region and indicate that Region 2 may, in some cancers,
consist of more than one underlying functional signal. Our results
are remarkably consistent in eight cell lines across four different
cancer types and explain, at least in part, the biological
underpinnings of risk for rs36115365. Notably, our data suggest
that the mechanism by which ZNF148 influences TERT is similar
for cancer types in which the C-allele of rs36115365 contributes
to increased risk, or alternatively to disease protection. Although
TERT expression and ensuing effects on telomere length may be
the crucial underlying mechanism in mediating inverse risk for
different cancers, studies of surrogate tissue telomere length and
cancer risk have been contradictory and shown associations with
short or long telomeres, or no effect45–53. TERT could also
mediate risk through its telomere-independent functions that
include transcriptional regulation and mitochondrial RNA
polymerase activity (for review see Martinez et al.54). Other
factors may contribute to the pleiotropic effects observed for
rs36115365, including differential environmental exposures,
regulatory effects through genes beyond TERT, interaction with
additional risk variants and/or somatic mutations both within
Region 2 and the larger TERT/CLPTM1L locus, or tissue-specific
regulation of ZNF148 and other transcription factors mediating
TERT expression. Our findings represent the first steps in
unravelling the complex functional consequences of carrying risk
variants in Region 2 of chr5p15.33 and strongly indicate a major
role for expression of TERT in influencing risk of multiple cancer
types.

Methods
Studies. Subjects were drawn from GWAS studies of four cancers: pancreatic
cancer: PanScan I and II (3,525 cases and 3,642 control subjects; dbGaP Study
Accession: phs000206.v5.p3) (refs 11,18); testicular germ cell tumours: NCI
(581 cases and 1055 control subjects) and PENN (477 cases) (ref. 28) and PLCO
controls (178 control subjects)55; lung cancer from the Transdisciplinary Research
In Cancer of the Lung (TRICL) study with a total of 12,160 case and 16,838 control
subjects from NCI (5,713/5,736), UK (1,952/5,200), IARC (2,533/3,791), MDACC
(1,150/1,134), SLRI (331/499) and GERMANY (481/478) (ref. 56); and melanoma
from the GenoMEL consortium with a total of 5,374 melanoma cases and 7,691
control subjects29. All participants provided informed written consent and all
studies were reviewed and approved by institutional ethics review committees at
the involved institutions. Participation of subjects in the PanScan GWAS was also
reviewed by the NCI Special Studies Institutional Review Board. Each participating
study obtained approval from its institutional review board (IRB) permitting
data sharing in accordance with the NIH policy for Sharing of Data obtained in
NIH-Supported or NIH-Conducted Genome Wide Association Studies. Analysis of
melanoma GWAS was reviewed by The Northern and Yorkshire Research Ethics

Committee; each participating study obtained informed consent from study
participants, approval from its local IRB as previously described29. Meta-analysis of
data conducted for the Transdisciplinary Research in Cancer of the Lung has been
approved as protocol numbers STUDY00023900 and STUDY00023602 which were
approved by the Committee for the Protection of Human Subjects under the
auspices of the Trustees of Dartmouth College Dartmouth-Hitchcock Medical
Center. All studies were reviewed and approved by institutional ethics review
committees at the involved institutions. Analysis of the testicular germ cell tumour
GWAS was reviewed by the NCI Special Studies Institutional Review Board and the
University of Pennsylvania IRB #4.

Fine-mapping. Imputation across 2 Mb of chr5p15.33 (250,000 to 2,250,000 bps,
hg19) was performed using phased haplotypes from the 1000G reference set
(Phase 1 integrated release 3, March 2012) and IMPUTE2 for pancreatic
cancer11,57 and testicular germ cell tumours28. Imputed SNPs with low MAF
(o0.01) or low-quality scores (IMPUTE2 information score o0.5) were removed
before the association analysis. Association analysis between SNPs and case control
status were performed using the score test of the log additive genetic effect with
covariate adjustment using SNPTEST as previously described18. Imputation and
association analysis for melanoma was performed using 1000G (Phase 1 integrated
release 3, March 2012) as previously described29. Imputation for lung cancer7,56

was performed by using 1000G (Phase 1 integrated release 3, March 2012) with the
same quality thresholds as described, followed by association analysis and
conditional analysis using summary statistics from a meta-analysis of the six
studies of TRICL with GCTA58.

Overall, Region 2 was well-imputed. Within the pancreatic cancer GWAS data,
all common 1000G variants (n¼ 195, MAFZ0.01) in Region 2 (defined as the
genomic region between the two recombination hotspots at 1,306,281–1,367,281 in
NCBI build Hg19) had imputation accuracy (INFO) scores above 0.3 (the lowest
quality score was 0.48). The imputation quality for the set of nine Region 2 variants
most significantly associated with pancreatic cancer risk was high in the PanScan
GWAS studies, with quality scores (INFO) ranging from 0.82 to 0.96 (average
0.92). Similar imputation quality scores were observed for these SNPs in the lung
cancer, TGCT, and melanoma GWAS (INFO range 0.82 to 0.98; average 0.94). In
addition, imputation quality was high for all SNPs that were statistically correlated
with rs36115365 in 1000 Genomes CEU data (r240.2). In PanScan, only a single
such 1,000 Genomes variant had an imputation quality score (INFO) below 0.8
(rs186156459; INFO¼ 0.79), suggesting that poor imputation quality did not lead
to the exclusion of additional strong functional candidates from consideration.
Similar imputation quality was likewise observed for the other cancer GWAS.

For completeness we assessed the newer 1000G (Phase 3, October 2014)
reference dataset and noted an insertion/deletion variant (rs3030832) that was
highly correlated to rs36115365 (r2¼ 0.87 in EUR). We therefore re-imputed the
pancreatic cancer GWAS dataset11,57 with the newer 1000G reference set to re-
assess the association signal across Region 2 (defined as the genomic region
between the two recombination hotspots at 1,306,281–1,367,281 in NCBI build
Hg19) including this variant. rs36115365 became non-significant when analysis
was conditioned on rs3030832, as was rs3030832, when analysis was conditioned
on rs36115365 (Supplementary Table 2), indicating that this variant is among the
highly correlated variants representing Region 2 and thus represents an additional
strong functional candidate. We also observed seven additional variants with
similar or slightly higher ORs as compared to rs36115365 (ORMAX¼ 1.42). To
formally test if these seven variants represented potential functional variants in
Region 2 we performed a series of conditional analyses. After the analysis was
conditioned on rs36115365 we noted a large drop in significance for these seven
variants while conditional analysis for each of the seven variants did not
dramatically influence the significance or rs36115365 (Supplementary Table 2).

Cell lines. The human pancreatic cancer cell lines PANC-1 and MIA PaCa-2,
and lung cancer cell lines A549 and NCI-H460 (purchased from ATCC) were
maintained in Dulbecco’s modified Eagle’s medium (DMEM, Mediatech Inc,
Herndon, VA) or RPMI 1640 (Mediatech Inc) supplemented with 10% fetal bovine
serum (FBS, Life Technologies) or 10% FBS and 2.5% horse serum. The pancreatic
cancer cell lines Panc 05.04, IMIM-PC-1, COLO 357 and IMIM-PC2 were a
generous gift from Dr. Udo Rudloff, NCI, NIH, Bethesda, MD and Dr Francisco X.
Real, The Spanish National Cancer Institute (CNIO) in Madrid, Spain. They were
grown in RPMI 1640 supplemented with 15% FBS and Insulin (20U/ml) (Panc
05.04), RPMI 1640 supplemented with 10% FBS (COLO 357) or DMEM supple-
mented with 10% FBS (IMIM-PC-1, IMIM-PC2). The testicular germ cell tumour
cell lines NTERA-2 [NT2/D1] and 2102Ep (generously donated by Dr. Roelof
Koster, NCI, NIH) were maintained in RPMI 1640 supplemented with 10% FBS.
The two melanoma cell lines, UACC1113 and UACC903, were obtained from the
University of Arizona Cancer Center and grown in RPMI 1640 supplemented with
10% FBS and 25 mM HEPES. Cell lines were tested for authentication (October
2014) with a panel of short tandem repeats (STR) using the Identifiler kit (Life
Technologies) and compared with the ATCC and the DSMZ (German Collection
of Microorganisms and Cell Cultures) STR Profile Databases. All cell lines with
profiles in either database matched (UACC1113, UACC903, 2102Ep, IMIM-PC-1
and IMIM-PC2 did not have profiles listed). The 2012Ep profile matched a
previously published profile59. The cells were routinely tested for Mycoplasma and
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were negative on each occasion. None of the cell lines used are on the NCI or
ICLAC lists of misidentified cells.

RNA and genomic DNA isolation. RNA was extracted using an RNeasy Plus Mini
Kit (Qiagen). Quality and quantity of RNA was assessed in an Agilent 2100
Bioanalyzer (Agilent Technologies); only samples with RIN scores 49.0 were used.
Genomic DNA was isolated using the ZR genomic DNA (D3050, ZYMO Research)
and assessed by Nanodrop 8000 (Thermo Scientific).

EMSAs and ChIP. Nuclear extracts were purchased from Active Motif (PANC-1,
MIA PaCa-2) or alternatively generated using a Nuclear Extraction Kit (A549,
NCI-H460, UACC1113, UACC903, NTERA-2 and 2102Ep) (10009277, Cayman)
according to the manufacturer’s instructions. Recombinant human ZNF148
protein was purchased from Origene (TP602963, Origene). Oligos (30-36 nt,
Invitrogen, listed in Supplementary Table 3) were labelled with a biotin
30end-labelling kit (NEB). Forward and reverse oligos were then annealed to create
double stranded 30-end labelled or unlabelled probes. EMSAs were performed
(Pierce) by incubating labelled probes for 20 min on ice with nuclear extracts (10 mg
per reaction). Competition experiments were performed by adding 10–100 fold
more unlabelled competitor than labelled probes. Supershift experiments were
carried out by mixing 1 and 2 mg anti-ZNF148/ZBP-89 (sc-48811X, 200 mg per
0.1 ml, Santa Cruz), anti-VEZF1/ZNF161 (sc-98278X, 200 mg per 0.1 ml, Santa
Cruz), anti-ZNF281 (sc-166933X, 200 mg per 0.1 ml, Santa Cruz), anti-ZNF740
(sc-324747, 200 mg ml� 1, Santa Cruz) or anti-IgG (sc-52001, 100mg ml� 1, Santa
Cruz) antibodies with nuclear extracts for 20 min at room temperature before
adding labelled probe. Recombinant human ZNF148 protein was added at 90, 360
and 630 ng to the reaction, separately. The resulting protein complexes were
resolved on 4–20% TBE gels (Bio-Rad), transferred to Biodyne B membranes
(VWR), crosslinked (Stratagene UV Stratalinker 1800), and detected using
streptavidin-HRP conjugate and a chemiluminescent substrate (20148 LightShift
Kit; Pierce).

Chromatin-immunoprecipitation (ChIP) was performed with the ChIP-IT high
Sensitivity kit (Active Motif) according to the manufacturer’s protocol using cells
(B2� 107) from each cell line of the following genotypes at rs36115365: CC
(COLO 357 and IMIM-PC2, CG (Panc 05.04 and A549) and GG (Mia PaCa-2). An
anti-ZNF148/ZBP-89 antibody (4 mg, sc-48811X, 200mg per 0.1 ml, Santa Cruz) or
nonspecific IgG (4mg, sc-2027X, 200 mg per 0.1 ml, Santa Cruz) were used for ChIP
on 12–24 mg chromatin from each cell line. Purified pulled-down DNA was assayed
by nine SYBR Green qPCR amplicons for enrichment of target sites using primers
listed in Supplementary Table 4. A TaqMan genotyping assay for rs36115365
(C_470504_10, Life Technologies) was used to quantify the C and G alleles in
immunoprecipitated DNA samples in seven independent experiments
(Supplementary Fig. 12g). A paired two sided T-test was applied to C- and G-allele
signals (normalized to input DNA) in order to assess significance of enrichment of
the C versus G allele at rs36115365. The specificity of the ZNF148 antibody was
tested by western blot analysis with and without siRNA mediated knockdown of
ZNF148. GAPDH (ab37168, 1 mg ml� 1, Abcam) was used as a loading control
(Supplementary Fig. 18).

Proteome-wide analysis of disease-associated SNPs. Nuclear extract collection
and DNA pulldowns were performed essentially as described previously for both
PANC-1 and UACC903 cell lines, using biotin-tagged oligo probes consisting of
20 bp on either side of rs36115365 (refs 60,61). After PBS washes, beads were
resuspended in 50ml 100 mM TEAB buffer, reduced, alkylated and digested with
trypsin overnight. Then, digested peptides were labelled using dimethyl chemical
labelling as described previously62,63. Experiments were performed in duplicate
using label-swapping, and separately conducted using poly-dAdT competitor only,
as well as using both poly-dAdT and poly-dIdC competitor. Data analysis was
performed using MaxQuant (version 1.3.0.5) as described previously, using
dithiomethane instead of carbamidomethylation as a fixed modification32,64.

Luciferase cloning and expression analysis. The genomic region containing and
surrounding rs36115365 (240 bps) was PCR-amplified (primers listed in
Supplementary Table 5) from HapMap CEU DNA samples with the appropriate
genotypes to obtain clones with each genotype, and cloned into the NheI and BglII
sites of the pGL4.23[luc2/minP] (Promega) luciferase vector in the 50-to-30 or
30-to-50 orientation. Plasmid inserts were sequence-verified to contain the correct
inserts and genotypes. The forward (F) orientation of the inset is the same as the
genomic orientation. The Firefly reporter plasmids (and a Renilla luciferase control
vector) were co-transfected into pancreatic (PANC-1, MIA PaCa-2), melanoma
(UACC903, UACC1113), lung (A549, NCI-H460) and testicular (NTERA-2,
2102Ep) cancer cell lines at B70% confluence using Lipofectamine 2000 (Life
Technologies). Luciferase activity was measured 36 h after transfection with the
Dual Luciferase Reporter Assay System (Promega). Firefly luciferase activity was
normalized to Renilla luciferase activity, and graphed as compared to the empty
luciferase vector. Experiments were performed in triplicate and repeated at least
three times. A T-test was used to assess significance for differences in luciferase
activity.

Region targeted siRNAs to rs36115365 regulatory locus. On-target antisense
enhanced siRNAs targeting the locus encompassing rs36115365 were designed by
using an siRNA design tool (http://dharmacon.gelifesciences.com/) and ordered
from Dharmacon RNAi and Gene Expression in GE Healthcare and listed in
Supplementary Table 6. No siRNAs were designable to directly overlap with
rs36115365; the location of the nearest siRNA (siRNA3) was 8 bp from this variant.
The siRNAs were introduced to cell lines by using RNAiMAX (Life Technologies)
at a final concentration of 15 nM. RNA was extracted 48 h after transfection and
reverse transcribed to cDNA by the SuperScript III First-Strand Synthesis System
for RT-PCR (Life Technologies). Expression of target genes was determined on
the cDNA by RT-qPCR TaqMan gene expression assays as described below.
Experiments were performed in triplicate and repeated at least three times. We first
tested 8 siRNAs in 4 cell lines. Three of the 8 siRNAs inhibited TERT expression in
all four cell lines (PANC-1, A549, NTERA-2 and UACC903) whereas none of the 8
siRNAs inhibited CLPTM1L, ACTB or GAPDH expression. Thus, the inhibition of
TERT expression by 3 out of 8 siRNAs versus 0 out of 8 for the other three genes
gives rise to a Fisher’s Exact test P value of 0.011, indicating that the inhibition of
TERT is specific.

siRNA-mediated knockdown of ZNF148 and TERT mRNA. ON-TARGETplus
Human SMARTpool siRNAs to ZNF148 (cat# L-012658-00-0005), VEZF1
(ZNF161; cat# L-019623-00-0005), ZNF281 (cat# L-006958-00-0005), ZNF740
(cat# L-030075-02-0005), and TERT (cat# L-003547-00-0005) were purchased
from Dharmacon RNAi and Gene Expression in GE Healthcare. To assess possible
off-target effects for the ZNF148 siRNAs we also purchased each of the four
siRNAs from the SMARTpool separately and tested their effects on ZNF148 and
TERT expression. All four siRNAs inhibited both ZNF148 and TERT expression
indicating that off-target effects are not likely to explain our findings
(Supplementary Fig. 14). Transfection, RNA purification, cDNA generation and
expression analysis procedures were as described above for the region-targeted
siRNA assay, except that RNA was isolated 72 h after transfection. Experiments
were performed in triplicate and repeated at least three times.

Real-time quantitative PCR. Gene expression levels were quantified by
quantitative real-time PCR using TaqMan assays for TERT (Hs00972656_m1),
CLPTM1L (Hs00363947_m1), ACTB (cat# 4333762), ZNF148 (Hs01070570_m1),
and GAPDH (cat# 4333764) from Life Technologies. Gene expression levels of
TERT, CLPTM1L and ACTB were normalized to GAPDH, while expression of
GAPDH was normalized to ACTB. Allele-specific TERT expression was determined
using an allelic discrimination TaqMan assay for rs2736098 (assay C_26414916_20,
Life Technologies), and the gene expression of each allele of TERT was also
normalized to the gene expression of GAPDH. Each experiment was performed in
triplicate and repeated three times. Significance was assessed using a Student’s
two-tailed T-test (labelled significant if Po0.01).

Telomerase activity and telomere length. The telomeric repeat amplification
protocol (TRAP) (ref. 20) was used to evaluate telomerase activity according to the
manufacturer’s guidelines (Millipore, #S7700). siRNAs targeting the gene
regulatory region (siRNA3), ZNF148 (cat# L-012658-00-0005), TERT (cat#
L-003547-00-0005) and a scrambled control siRNA (sequence listed in
Supplementary Table 6) were administered to MIA PaCa-2, A549, UACC903
and NTERA-2 cells at a final concentration of 15 nM for 72 h. At that time
the cells were harvested and whole cell extract prepared using CHAPS
(3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate) solution. The
Bradford assay kit (Bio-Rad) was used to determine total protein concentration.
Equal amounts of protein extracts were used to add telomeric repeats (GGTTAG)
onto 30 end of substrate oligosnucleotide (TS) at 37 �C for 30 min followed by 30
cycles of TRAP PCR and separation of PCR products on 12.5% non-denatured
PAGE gels. The gels were stained with SYBR Gold Nucleic Acid Gel Stain
(Life Technologies, #S-11494).

For rescue experiments, we attempted to create cell lines devoid of ZNF148
using CRISPR. Extensive screening of clones revealed none with homozygous
loss of ZNF148, consistent with an essential role for ZNF148, further supported
by the observed embryonic lethality of homozygous ZNF148 knock-out mice
(International Mouse Phenotyping Consortium, IMPC Data Coordination
Centre, MRC Hartwell Institute, Biocomputing, Harwell Campus,
https://www.mousephenotype.org/data/charts?accession=MGI:1332234&allele_
accession_id=MGI:5636955 &zygosity=homozygote &parameter_stable_id=
IMPC_VIA_001_001&pipeline_stable_id=BCM_001). Rescue experiments were
instead performed by depletion of endogenous ZNF148 expression using an siRNA
targeting the 30-UTR of ZNF148 (designed using the 30-UTR sequences of ZNF148;
sense: AUGGAGAACUUGAUGCAAU; antisense: AUUGCAUCAAGUUCUC
CAU) and reintroduction of exogenous ZNF148 expression. Human ZNF148 ORF
(ORigene TrueORF RC222687) was cloned into the pDest-663 (derived from
pFUGW) lentiviral expression vector and sequence verified. For lentivirus
production, lentiviral vectors were co-transfected into HEK293FT cells with
packaging vectors psPAX2, pMD2-G and pCAG4-RTR2. Virus was collected two
days after transfection and concentrated by Vivaspin, before infecting MIA PaCa-2
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and A549 cells. Seventy-two hours after delivery of the siRNA, ZNF148 and TERT
expression, and telomerase activity, were assessed as described above.

To assay effects on telomere length, siRNA3, ZNF148 siRNA (cat# L-012658-
00-0005), TERT siRNA (cat# L-003547-00-0005) and a scrambled siRNA
(Supplementary Table 6) were administered to MIA PaCa-2 and A549 cells at a
final concentration of 15 nM. The cells were re-transfected with siRNAs every four
days and genomic DNA extracted 20 days later using the DNeasy Blood and Tissue
Kit (Qiagen, #69506). Telomere length was then determined by qPCR by
comparing telomere repeat sequence copy number to a single-copy gene (RPLP0)
copy number in a given sample using telomere repeat-specific primers as
previously described65. The assays were performed in triplicate and repeated three
times.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or
from the corresponding authors upon reasonable request. Pancreatic cancer GWAS
data is available from dbGAP (phs000206.v5.p3). Testicular germ cell tumour
fine-mapping data are available from the corresponding authors upon reasonable
request. The lung cancer fine-mapping data that supports the findings of this study
are available from the corresponding authors upon reasonable request and are
currently being processed for availability through dbGAP. The melanoma fine-
mapping data that support the findings of this study are available from MMI
(M.M.Iles@leeds.ac.uk) on reasonable request subject to specific consent for con-
tributing cohorts.
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