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general, while maintaining competitive performance and training time. In a different chapter, accurate 
estimates of the Bayes error are applied to both meta-learning and the construction of so-called 
classification hierarchies: structures in which a multiclass classification problem is decomposed into 
several binary classification problems.

For regularized regression problems a new algorithm is presented in two parts: first for the sparse 
regression problem and second as a general algorithm for regularized regression where the regularization 
function is a measure of the size of the coefficients. In the proposed algorithm graduated nonconvexity is 
used to slowly introduce the nonconvexity in the problem while iterating towards a solution. The empirical 
performance and theoretical convergence properties of the algorithm are analyzed with numerical 
experiments that demonstrate the ability for the algorithm to obtain globally optimal solutions. 
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1
Introduction

This dissertation presents several new algorithms for multiclass classification and
regularized regression. Multiclass classification and regularized regression are
both examples of so-called supervised learning techniques. Supervised learning
is itself a subfield of machine learning and statistics. In the following paragraphs
a broad introduction will be given to machine learning, supervised learning,
classification problems, and regression problems. The individual chapters of this
dissertation will be introduced in greater detail in the next section.

In the broad fields of machine learning and statistics there are various algo-
rithms for all kinds of pattern recognition problems. The usual goal is to explain
a phenomenon or predict an outcome, given the available data. Thus, the purpose
of these machine learning methods is to discover an underlying relationship or
predict a future event, as well as possible. When developing new algorithms,
the goal is therefore to perform better than existing methods on some metric.
Typically, such metrics measure how well a pattern is explained or how well an
algorithm can predict unknown outcomes. Other important metrics are computa-
tion time and, perhaps more importantly, the ease of understanding an algorithm.
The algorithms presented in this dissertation aim to advance the state of the art
on at least some of these metrics.

All algorithms presented in this dissertation are supervised learning algo-
rithms. This class of algorithms extracts a relationship between an observed
outcome and available explanatory variables, with the goal of investigating the
obtained relationship itself or to use it to predict the outcome of observations
for which this is unknown (or both). Problems where it is desired to uncover
such a relationship are ubiquitous in practice, with applications in econometrics,
economics, finance, marketing, physics, chemistry, medicine, biology, psychology,
sociology, and beyond. Within the class of supervised learning algorithms it is
possible to make a distinction between problems where the outcome variable
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belongs to a limited set of classes and problems where it is continuous. The first
type of problems are known as classification problems and the second type as
regression problems. In this dissertation algorithms for both types of problems
are presented.

Classification problems are typically prediction problems where the outcome
variable belongs to one of several classes. For example, a spam filter on your
computer predicts if an email belongs to the “spam” or “non-spam” class. Similarly,
a bank may want to predict which customers are likely to default on a loan and
a doctor may want to predict which disease a patient has based on historical
records or blood analysis. In each of these examples it is assumed that there is
some set of data with observations where the true class label is known. The goal
of a classification algorithm is to identify patterns from this dataset in order to
predict the class label of future observations. When more than two possible class
labels are available, the problem is called a multiclass classification problem.
The first part of this dissertation involves algorithms for multiclass classification
problems.

In regression problems the outcome variable is continuous and the goal is to
understand the relationship between the outcome variable and some explanatory
variables and to predict the outcome variable for instances where it is unknown.
For example, a university may be interested in how student grades depend on
characteristics of the students such as class attendance, age, gender, study habits,
and other variables. In this case, a regression analysis can be done to determine
which variables have a significant influence on the grade of the student. When
there is a large number of variables, a researcher may be interested in a sparse
model in which the number of variables that are included in the model is limited.
This is a form of regularization. In regularized models additional constraints are
placed on the allowed solutions with the goal of achieving sparsity, encouraging
simpler models, or limiting the size of the coefficients in the solution. Algorithms
for regularized regression are the focus of the second part of this dissertation.

1.1 OV E R V I E W O F C H A P T E R S

As mentioned above, there are two parts to this dissertation. The first part
deals mainly with multiclass classification, whereas the second part deals with
regularized regression. In the following paragraphs a high-level overview of each
of the chapters is given. For the uninitiated reader a brief introduction to two
essential concepts, support vector machines and linear regression, will be given
as well.

2



1. Introduction

Part I: Multiclass Classification

In the chapters on multiclass classification, the support vector machine plays a
central role. This technique, developed by Cortes and Vapnik (1995), finds the
best separation line between data points from two classes. One way to gain an
intuitive understanding of this algorithm is through the following analogy, in
which we limit ourselves to cases where the data is perfectly separable. Consider
two forests that lie close to each other. Each forest consists of one single type
of tree, with one color of foliage (brown leaves and green leaves, for example).
The support vector machine can be thought of as a way to find the broadest path
that separates the two forests, such that all trees of one forest are on one side of
the path and all trees of the other forest on the other side. Looking from the sky,
one would see two groups of colored dots, separated by a path. The idea behind
this method is that a wide path between the forests makes it easier to discern
the types of trees compared to a narrow path. Extending the analogy further,
the support vector machine allows for straight paths or wavy paths, but the goal
remains to construct the broadest path possible.

In Chapter 2 the support vector machine algorithm is extended to deal with
problems with two or more possible outcomes (in the analogy of the previous
paragraph this means finding the best paths to separate two or more types of
trees). The algorithm introduced in this chapter is a generalized multiclass sup-
port vector machine, called GenSVM. The motivation of this chapter comes from
the observation that heuristic approaches to multiclass support vector machines
are unsatisfactory due to their reliance on the binary SVM. Existing multiclass
SVMs can require solving a large dual optimization problem and may not be
sufficiently general due to specific choices made in the formulation of the loss
function. GenSVM solves these issues by extending the binary SVM to multiclass
problems while simultaneously generalizing several existing methods within a
single formulation. The chapter further derives an optimization algorithm based
on iterative majorization, which has the advantage of allowing for warm-starts
during optimization of GenSVM for several hyperparameter settings. Finally,
an extensive simulation study is performed that compares GenSVM with seven
alternative multiclass SVMs. This study shows the performance of GenSVM in
terms of predictive accuracy and illustrates the feasibility of the algorithm for
large datasets. The paper on GenSVM was recently published in the Journal of
Machine Learning Research (Van den Burg and Groenen, 2016).

Chapter 3 is concerned with estimating the Bayes error rate and its applica-
tion to multiclass classification. In the support vector machine analogy above the
Bayes error rate can be thought of as a measure of how difficult it is to find a
path between the two forests. It is easier to find a path between forests that lie
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far apart than between forests that are intertwined. In recent work by Berisha
et al. (2016) a nonparametric estimator of the Bayes error rate was presented
that achieves considerably higher estimation accuracy than previous approaches.
In Chapter 3 several practical improvements to this estimator are presented
for the use in multiclass classification problems and meta-learning. Moreover,
the estimator is applied to the multiclass classification problem as a way to
construct a hierarchy of binary classification problems. In this hierarchy the
“easier” hypotheses are decided upon first before progressing to the more difficult
ones. The support vector machine is used as a binary classifier in this method,
which leads to the formulation of the SmartSVM classification algorithm. This
classifier is compared to several alternative multiclass SVMs in an experiment
similar to that performed for the GenSVM classifier. This experiment shows the
feasibility and usefulness of the SmartSVM classifier in practice.

Part II: Regularized Regression

The second part of this dissertation focuses on regularized linear regression
algorithms. The linear regression method can be illustrated with the following
hypothetical example. Consider a university that has done a survey among
students to collect information about their studying behavior, such as their
average grade, gender, age, number of study hours per week, hours of sleep per
night, amount of coffee they drink, amount of alcohol consumed per week, and
whether or not they are a member of a fraternity. The university may then be
interested to see how these variables influence the average grade of a student.
In this example the average grade of a student is the outcome variable and the
other variables are the input variables. The assumption of linear regression
is that a change in an input variable results in a proportional change in the
outcome variable. For instance, a 10% increase in the number of study hours per
week might give an increase of a certain percentage in the average grade, if all
other factors remain the same. Alternatively, a 10% increase in the amount of
alcohol consumed per week may result in a decrease of the average grade by a
certain percentage. By performing a linear regression analysis the university
can find a model for how each of the variables affects the average grade of the
students. In this dissertation sparse linear regression is a significant topic. In
sparse regression we are interested in the best model that explains the average
grade with a limited number of variables. This is especially useful for situations
where data is available for many variables, because it allows the university to
find out which variables are the most important.

Finding the best regression model with a limited number of coefficients is
a difficult problem in regularized regression. In Chapter 4 the SparseStep
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1. Introduction

algorithm is presented to solve this problem based on the concept of graduated
nonconvexity (Blake, 1983). This technique is based on the idea that local minima
in the solution can be avoided if the nonconvexity in the problem is introduced
slowly enough. In this chapter the SparseStep algorithm is introduced, an
iterative majorization algorithm is derived, and an extensive simulation study is
performed to investigate the performance of the algorithm in terms of modeling
fidelity and predictive accuracy. The simulations show that SparseStep often
outperforms the considered alternatives on these metrics.

In regularized regression it is common to limit the size of the estimated
coefficients in some way. However, the way in which the size of the coefficients
is measured has a significant influence on the obtained solution. For instance,
the size can be measured as the sum of the absolute values of the coefficients
or as the sum of squares of the coefficients. These are special cases of so-called
`q penalties, with the sum of absolute values corresponding to an `1 penalty
and the sum of squared values with an `2 penalty. Because of the properties of
the obtained solution, `q-regularized regression is frequently used in practice.
However, no single algorithm can solve the `q-regularized regression problem for
all q ∈ [0,2] with the same formulation. In Chapter 5 the Smooth-q algorithm is
presented that solves this exact problem by extending the SparseStep algorithm
of Chapter 4 to all q ∈ [0,2]. The main focus of this chapter is to establish
the Smooth-q algorithm and to derive preliminary convergence results. The
theoretical convergence results culminate in a currently unproven convergence
conjecture, which states that parameters of the Smooth-q algorithm can always
be chosen such that arbitrarily close convergence to the globally optimal solution
is achieved. This conjecture is explored with numerical experiments for `0-
regularized regression, which show that convergence to the global solution is
achieved in a significant majority of the datasets.

1.2 S U M M A R Y O F C O N T R I B U T I O N S

The main contributions of the individual chapters can be summarized as follows:

Chapter 2 introduces a generalized multiclass support vector machine which is
called GenSVM (Van den Burg and Groenen, 2016).

Chapter 3 improves an accurate nonparametric estimator of the Bayes error rate
and applies this estimator to meta-learning and hierarchical classifier
design (Van den Burg and Hero, 2017).

Chapter 4 gives an iterative majorization algorithm for sparse regression, called
SparseStep (Van den Burg et al., 2017).
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Chapter 5 presents the Smooth-q algorithm for `q-regularized regression with
q ∈ [0,2].

In addition to the academic articles relating to these chapters, open-source
software packages that implement the various methods are also contributions of
this dissertation:

– For Chapter 2 a C library is available that implements the GenSVM
method.1

– For Chapter 3 a Python package is released that implements the estimator
and the hierarchical SmartSVM classifier.2

– For Chapter 4 an R library is available that implements the SparseStep
algorithm.3

– Many experiments throughout this dissertation were performed on a com-
pute cluster. The author has created a Python package to automate and
simplify this process.4

A software package for the Smooth-q algorithm in Chapter 5 is planned, as
well as implementations of some of the above methods in other programming
languages.

1.3 AU T H O R C O N T R I B U T I O N S

To conform to university regulations, the author contributions of the chapters
are declared here. The dissertation author was responsible for writing the text
of each of the chapters, with coauthors typically reviewing the writing and of-
fering textual improvements where necessary. For Chapter 2 prof. Groenen
offered additional suggestions for structuring the paper and positioning it in the
existing literature. Chapter 3 was written in collaboration with prof. Hero. Chap-
ters 4 and 5 were a collaboration with prof. Groenen and dr. Alfons. Research
ideas were generally the product of an iterative process consisting of discussions
with coauthors, empirical and mathematical experimentation, and evaluation
of successful and unsuccessful research directions. All computer code necessary
for the development and evaluation of each of the algorithms presented in this
dissertation was written by the author.

1https://github.com/GjjvdBurg/GenSVM.
2https://github.com/HeroResearchGroup/SmartSVM.
3https://cran.r-project.org/web/packages/sparsestep/index.html.
4https://github.com/GjjvdBurg/abed.
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2
GenSVM: A Generalized Multiclass
Support Vector Machine

G.J.J. van den Burg and P.J.F. Groenen

Abstract

Traditional extensions of the binary support vector machine (SVM) to multi-
class problems are either heuristics or require solving a large dual optimization
problem. Here, a generalized multiclass SVM is proposed called GenSVM. In
this method classification boundaries for a K-class problem are constructed in
a (K − 1)-dimensional space using a simplex encoding. Additionally, several
different weightings of the misclassification errors are incorporated in the loss
function, such that it generalizes three existing multiclass SVMs through a single
optimization problem. An iterative majorization algorithm is derived that solves
the optimization problem without the need of a dual formulation. This algorithm
has the advantage that it can use warm starts during cross validation and during
a grid search, which significantly speeds up the training phase. Rigorous numeri-
cal experiments compare linear GenSVM with seven existing multiclass SVMs
on both small and large datasets. These comparisons show that the proposed
method is competitive with existing methods in both predictive accuracy and
training time and that it significantly outperforms several existing methods on
these criteria.

This chapter is based on Van den Burg and Groenen (2016).
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2.1 I N T R O D U C T I O N

For binary classification, the support vector machine has shown to be very suc-
cessful (Cortes and Vapnik, 1995). The SVM efficiently constructs linear or
nonlinear classification boundaries and is able to yield a sparse solution through
the so-called support vectors, that is, through those observations that are either
not perfectly classified or are on the classification boundary. In addition, by regu-
larizing the loss function the overfitting of the training dataset is curbed. Due
to its desirable characteristics several attempts have been made to extend the
SVM to classification problems where the number of classes K is larger than two.
Overall, these extensions differ considerably in the approach taken to include
multiple classes. Three types of approaches for multiclass SVMs (MSVMs) can
be distinguished.

First, there are heuristic approaches that use the binary SVM as an underly-
ing classifier and decompose the K-class problem into multiple binary problems.
The most commonly used heuristic is the one-vs-one (OvO) method where de-
cision boundaries are constructed between each pair of classes (Kreßel, 1999).
OvO requires solving K(K −1) binary SVM problems, which can be substantial
if the number of classes is large. An advantage of OvO is that the problems to
be solved are smaller in size. On the other hand, the one-vs-all (OvA) heuristic
constructs K classification boundaries, one separating each class from all the
other classes (Vapnik, 1998). Although OvA requires fewer binary SVMs to be
estimated, the complete dataset is used for each classifier, which can create a
high computational burden. Another heuristic approach is the directed acyclic
graph (DAG) SVM proposed by Platt et al. (2000). DAGSVM is similar to the
OvO approach except that the class prediction is done by successively voting
away unlikely classes until only one remains. One problem with the OvO and
OvA methods is that there are regions of the space for which class predictions
are ambiguous, as illustrated in Figures 2.1(a) and 2.1(b).

In practice, heuristic methods such as the OvO and OvA approaches are used
more often than other multiclass SVM implementations. One of the reasons
for this is that there are several software packages that efficiently solve the
binary SVM, such as LibSVM (Chang and Lin, 2011). This package implements
a variation of the sequential minimal optimization algorithm of Platt (1999). Im-
plementations of other multiclass SVMs in high-level (statistical) programming
languages are lacking, which reduces their use in practice.1

The second type of extension of the binary SVM consists of methods that
use error correcting codes. In these methods the problem is decomposed into

1An exception to this is the method of Lee et al. (2004), for which an R implementation exists. See
http://www.stat.osu.edu/~yklee/software.html.
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2. GenSVM

x1

x2

(a) One vs. One

x1

x2

(b) One vs. All

x1

x2

(c) Non-heuristic

FIGURE 2.1 – Illustration of ambiguity regions for common heuristic multi-
class SVMs. In the shaded regions ties occur for which no classification
rule has been explicitly trained. Figure (c) corresponds to an SVM where all
classes are considered simultaneously, which eliminates any possible ties.
Figures inspired by Statnikov et al. (2011).

multiple binary classification problems based on a constructed coding matrix
that determines the grouping of the classes in a specific binary subproblem
(Dietterich and Bakiri, 1995, Allwein et al., 2001, Crammer and Singer, 2002b).
Error correcting code SVMs can thus be seen as a generalization of OvO and
OvA. In Dietterich and Bakiri (1995) and Allwein et al. (2001), a coding matrix
is constructed that determines which class instances are paired against each
other for each binary SVM. Both approaches require that the coding matrix is
determined beforehand. However, it is a priori unclear how such a coding matrix
should be chosen. In fact, as Crammer and Singer (2002b) show, finding the
optimal coding matrix is an NP-complete problem.

The third type of approaches are those that optimize one loss function to
estimate all class boundaries simultaneously, the so-called single machine ap-
proaches (Rifkin and Klautau, 2004). In the literature, such methods have been
proposed by, among others, Weston and Watkins (1998), Bredensteiner and Ben-
nett (1999), Crammer and Singer (2002a), Lee et al. (2004), and Guermeur and
Monfrini (2011). The method of Weston and Watkins (1998) yields a fairly large
quadratic problem with a large number of slack variables, that is, K −1 slack
variables for each observation.2 The method of Crammer and Singer (2002a)
reduces this number of slack variables by only penalizing the largest misclassifi-
cation error. In addition, their method does not include a bias term in the decision
boundaries, which is advantageous for solving the dual problem. Interestingly,
this approach does not reduce parsimoniously to the binary SVM for K = 2. The
method of Lee et al. (2004) uses a sum-to-zero constraint on the decision functions

2Slack variables are used in the optimization problem to capture inequality constraints. The
number of slack variables is therefore a measure of the size of the optimization problem.
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to reduce the dimensionality of the problem. This constraint effectively means
that the solution of the multiclass SVM lies in a (K −1)-dimensional subspace of
the full K dimensions considered. The size of the margins is reduced according
to the number of classes, such that asymptotic convergence is obtained to the
Bayes optimal decision boundary when the regularization term is ignored (Rifkin
and Klautau, 2004). Finally, the method of Guermeur and Monfrini (2011) is a
quadratic extension of the method developed by Lee et al. (2004). This extension
keeps the sum-to-zero constraint on the decision functions, drops the nonnegativ-
ity constraint on the slack variables, and adds a quadratic function of the slack
variables to the loss function. This means that at the optimum the slack variables
are only positive on average, which differs from common SVM formulations.

The existing approaches to multiclass SVMs suffer from several problems. All
current single machine multiclass extensions of the binary SVM rely on solving a
potentially large dual optimization problem. This can be disadvantageous when
a solution has to be found in a small amount of time, since iteratively improving
the dual solution does not guarantee that the primal solution is improved as well.
Thus, stopping early can lead to poor predictive performance. In addition, the
dual of such single machine approaches should be solvable quickly in order to
compete with existing heuristic approaches.

Almost all single machine approaches rely on misclassifications of the ob-
served class with each of the other classes. By simply summing these misclassifi-
cation errors (as in Lee et al., 2004) observations with multiple errors contribute
more than those with a single misclassification do. Consequently, observations
with multiple misclassifications have a stronger influence on the solution than
those with a single misclassification, which is not a desirable property for a
multiclass SVM, as it overemphasizes objects that are misclassified with respect
to multiple classes. Here, it is argued that there is no reason to penalize certain
misclassification regions more than others.

Single machine approaches are preferred for their ability to capture the
multiclass classification problem in a single model. A parallel can be drawn here
with multinomial regression and logistic regression. In this case, multinomial
regression reduces exactly to the binary logistic regression method when K = 2,
both techniques are single machine approaches, and many of the properties
of logistic regression extend to multinomial regression. Therefore, it can be
considered natural to use a single machine approach for the multiclass SVM that
reduces parsimoniously to the binary SVM when K = 2.

The idea of casting the multiclass SVM problem to K −1 dimensions is ap-
pealing, since it reduces the dimensionality of the problem and is also present
in other multiclass classification methods such as multinomial regression and
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2. GenSVM

linear discriminant analysis. However, the sum-to-zero constraint employed by
Lee et al. (2004) creates an additional burden on the dual optimization problem
(Dogan et al., 2011). Therefore, it would be desirable to cast the problem to K −1
dimensions in another manner. Below a simplex encoding will be introduced to
achieve this goal. The simplex encoding for multiclass SVMs has been proposed
earlier by Hill and Doucet (2007) and Mroueh et al. (2012), although the method
outlined below differs from these two approaches. Note that the simplex coding
approach by Mroueh et al. (2012) was shown to be equivalent to that of Lee et al.
(2004) by Ávila Pires et al. (2013). An advantage of the simplex encoding is that
in contrast to methods such as OvO and OvA, there are no regions of ambiguity
in the prediction space (see Figure 2.1(c)). In addition, the low dimensional
projection also has advantages for understanding the method, since it allows for a
geometric interpretation. The geometric interpretation of existing single machine
multiclass SVMs is often difficult since most are based on a dual optimization
approach with little attention for a primal problem based on hinge errors.

A new flexible and general multiclass SVM is proposed, called GenSVM. This
method uses the simplex encoding to formulate the multiclass SVM problem
as a single optimization problem that reduces to the binary SVM when K = 2.
By using a flexible hinge function and an `p norm of the errors the GenSVM
loss function incorporates three existing multiclass SVMs that use the sum of
the hinge errors, and extends these methods. In the linear version of GenSVM,
K −1 linear combinations of the features are estimated next to the bias terms.
In the nonlinear version, kernels can be used in a similar manner as can be
done for binary SVMs. The resulting GenSVM loss function is convex in the
parameters to be estimated. For this loss function an iterative majorization (IM)
algorithm will be derived with guaranteed descent to the global minimum. By
solving the optimization problem in the primal it is possible to use warm starts
during a hyperparameter grid search or during cross validation, which makes
the resulting algorithm very competitive in total training time, even for large
datasets.

To evaluate its performance, GenSVM is compared to seven of the multi-
class SVMs described above on several small datasets and one large dataset.
The smaller datasets are used to assess the classification accuracy of GenSVM,
whereas the large dataset is used to verify feasibility of GenSVM for large
datasets. Due to the computational cost of these rigorous experiments only com-
parisons of linear multiclass SVMs are performed and experiments on nonlinear
MSVMs are considered outside the scope of this chapter. Existing comparisons of
multiclass SVMs in the literature do not determine any statistically significant
differences in performance between classifiers and resort to tables of accuracy
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rates for the comparisons (for instance Hsu and Lin, 2002). Using suggestions
from the benchmarking literature predictive performance and training time of
all classifiers is compared using performance profiles and rank tests. The rank
tests are used to uncover statistically significant differences between classifiers.

This chapter is organized as follows. Section 2.2 introduces the novel general-
ized multiclass SVM. In Section 2.3, features of the iterative majorization theory
are reviewed and a number of useful properties are highlighted. Section 2.4 de-
rives the IM algorithm for GenSVM, and presents pseudocode for the algorithm.
Extensions of GenSVM to nonlinear classification boundaries are discussed in
Section 2.5. A numerical comparison of GenSVM with existing multiclass SVMs
on empirical datasets is done in Section 2.6. In Section 2.7 concluding remarks
are provided.

2.2 T H E G E N S V M L O S S F U N C T I O N

Before introducing GenSVM formally, consider a small illustrative example of
a hypothetical dataset of n = 90 objects with K = 3 classes and m = 2 attributes.
Figure 2.2(a) shows the dataset in the space of these two attributes x1 and
x2, with different classes denoted by different symbols. Figure 2.2(b) shows
the (K −1)-dimensional simplex encoding of the data after an additional RBF
kernel transformation has been applied and the mapping has been optimized to
minimize misclassification errors (a detailed explanation follows). In this figure,
the triangle shown in the center corresponds to a regular K-simplex in K −1
dimensions and the solid lines perpendicular to the faces of this simplex are the
decision boundaries. This (K −1)-dimensional space will be referred to as the
simplex space throughout this chapter. The mapping from the input space to this
simplex space is optimized by minimizing the misclassification errors, which are
calculated by measuring the distance of an object to the decision boundaries in
the simplex space. Prediction of a class label is also done in this simplex space,
by finding the nearest simplex vertex for the object. Figure 2.2(c) illustrates the
decision boundaries in the original space of the input attributes x1 and x2. In
Figures 2.2(b) and 2.2(c), the support vectors can be identified as the objects that
lie on or beyond the dashed margin lines of their associated class. Note that the
use of the simplex encoding ensures that for every point in the predictor space a
class is predicted, hence no ambiguity regions can exist in the GenSVM solution.

The misclassification errors are formally defined as follows. Let xi ∈Rm be an
object vector corresponding to m attributes and let yi denote the class label of
object i with yi ∈ {1, . . . ,K}, for i ∈ {1, . . . ,n}. Furthermore, let W ∈ Rm×(K−1) be a
weight matrix and define a translation vector t ∈RK−1 for the bias terms. Then,
object i is represented in the (K −1)-dimensional simplex space by s′i = x′

iW+ t′.
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x1
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(a) Input space

s1
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(b) Simplex space

x1
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boundaries

FIGURE 2.2 – Illustration of GenSVM for a 2D dataset with K = 3 classes.
In (a) the original data is shown, with different symbols denoting different
classes. Figure (b) shows the mapping of the data to the K −1 dimensional
simplex space, after an additional RBF kernel mapping has been applied
and the optimal solution has been determined. The decision boundaries in
this space are fixed as the perpendicular bisectors of the faces of the simplex,
which is shown as the triangle. Figure (c) shows the resulting boundaries
mapped back to the original input space, as can be seen by comparing with
Figure (a). In Figures (b) and (c) the dashed lines show the margins of the
SVM solution.

Note that here the linear version of GenSVM is described, the nonlinear version
is described in Section 2.5.

To obtain the misclassification error of an object, the corresponding simplex
space vector s′i is projected on each of the decision boundaries that separate the
true class of an object from another class. For the errors to be proportional with
the distance to the decision boundaries, a regular K-simplex in RK−1 is used with
distance 1 between each pair of vertices. Let UK be the K × (K −1) coordinate
matrix of this simplex, where a row u′

k of UK gives the coordinates of a single
vertex k. Then, it follows that with k ∈ {1, . . . ,K} and l ∈ {1, . . . ,K −1} the elements
of UK are given by

ukl =





− 1√
2(l2 + l)

if k ≤ l

l√
2(l2 + l)

if k = l+1

0 if k > l+1.

(2.1)

See Appendix 2.A for a derivation of this expression. Figure 2.3 shows an
illustration of how the misclassification errors are computed for a single object.
Consider object A with true class yA = 2. It is clear that object A is misclassified
as it is not located in the shaded area that has Vertex u2 as the nearest vertex.
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FIGURE 2.3 – Graphical illustration of the calculation of distances q(yA j)
i

for an object A with yA = 2 and K = 3. The figure shows the situation in
the (K −1)-dimensional space. The distance q(21)

A is calculated by projecting
s′A = x′

AW+ t′ on u2 −u1 and the distance q(23)
A is found by projecting s′A

on u2 −u3. The boundary between the class 1 and class 3 regions has been
omitted for clarity, but lies along u2.

The boundaries of the shaded area are given by the perpendicular bisectors of
the edges of the simplex between Vertices u2 and u1 and between Vertices u2

and u3, and form the decision boundaries for class 2. The error for object A is
computed by determining the distance from the object to each of these decision
boundaries. Let q(21)

A and q(23)
A denote these distances to the class boundaries,

which are obtained by projecting s′A = x′
AW+t′ on u2−u1 and u2−u3 respectively,

as illustrated in the figure. Generalizing this reasoning, scalars q(k j)
i can be

defined to measure the projection distance of object i onto the boundary between
class k and j in the simplex space, as

q(k j)
i = (x′

iW+ t′)(uk −u j). (2.2)

It is required that the GenSVM loss function is both general and flexible, such
that it can easily be tuned for the specific dataset at hand. To achieve this, a loss
function is constructed with a number of different weightings, each with a specific
effect on the object distances q(k j)

i . In the proposed loss function flexibility is
added through the use of the Huber hinge function instead of the absolute hinge
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2. GenSVM

function and by using the `p norm of the hinge errors instead of the sum. The
motivation for these choices follows.

As is customary for SVMs a hinge loss is used to ensure that instances that do
not cross their class margin will yield zero error. Here, the flexible and continuous
Huber hinge loss is used (after the Huber error in robust statistics, see Huber,
1964), which is defined as

h(q)=





1− q− κ+1
2

if q ≤−κ
1

2(κ+1)
(1− q)2 if q ∈ (−κ,1]

0 if q > 1,

(2.3)

with κ>−1. The Huber hinge loss has been independently introduced in Chapelle
(2007), Rosset and Zhu (2007), and Groenen et al. (2008). This hinge error is zero
when an instance is classified correctly with respect to its class margin. However,
in contrast to the absolute hinge error, it is continuous due to a quadratic region in
the interval (−κ,1]. This quadratic region allows for a softer weighting of objects
close to the decision boundary. Additionally, the smoothness of the Huber hinge
error is a desirable property for the iterative majorization algorithm derived in
Section 2.4.1. Note that the Huber hinge error approaches the absolute hinge for
κ ↓ −1 and the quadratic hinge for κ→∞.

The Huber hinge error is applied to each of the distances q(yi j)
i , for j 6= yi.

Thus, no error is counted when the object is correctly classified. For each of the
objects, errors with respect to the other classes are summed using an `p norm to
obtain the total object error




K∑

j=1
j 6=yi

hp
(
q(yi j)

i

)



1
p

. (2.4)

The `p norm is added to provide a form of regularization on Huber weighted
errors for instances that are misclassified with respect to multiple classes. As
argued in the Introduction, simply summing misclassification errors can lead to
overemphasizing of instances with multiple misclassification errors. By adding
an `p norm of the hinge errors the influence of such instances on the loss function
can be tuned. With the addition of the `p norm on the hinge errors it is possible
to illustrate how GenSVM generalizes existing methods. For instance, with p = 1
and κ ↓ −1, the loss function solves the same problem as Lee et al. (2004). Next,
for p = 2 and κ ↓ −1 it resembles that of Guermeur and Monfrini (2011). Finally,
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for p =∞ and κ ↓ −1 the `p norm reduces to the max norm of the hinge errors,
which corresponds to the method of Crammer and Singer (2002a). Note that in
each case the value of κ can additionally be varied to include an even broader
family of loss functions.

To illustrate the effects of p and κ on the total object error, refer to Figure 2.4.
In Figures 2.4(a) and 2.4(b), the value of p is set to p = 1 and p = 2 respectively,
while maintaining the absolute hinge error using κ=−0.95. A reference point
is plotted at a fixed position in the area of the simplex space where there is a
nonzero error with respect to two classes. It can be seen from this reference
point that the value of the combined error is higher when p = 1. With p = 2 the
combined error at the reference point approximates the Euclidean distance to the
margin, when κ ↓ −1. Figures 2.4(a), 2.4(c), and 2.4(d) show the effect of varying
κ. It can be seen that the error near the margin becomes more quadratic with
increasing κ. In fact, as κ increases the error approaches the squared Euclidean
distance to the margin, which can be used to obtain a quadratic hinge multiclass
SVM. Both of these effects will become stronger when the number of classes
increases, as increasingly more objects will have errors with respect to more than
one class.

Next, let ρ i ≥ 0 denote optional object weights, which are introduced to allow
flexibility in the way individual objects contribute to the total loss function. With
these individual weights it is possible to correct for different group sizes, or to
give additional weights to misclassifications of certain classes. When correcting
for group sizes, the weights can be chosen as

ρ i =
n

nkK
, i ∈Gk, (2.5)

where Gk = {i : yi = k} is the set of objects belonging to class k, and nk = |Gk|. The
complete GenSVM loss function combining all n objects can now be formulated as

LMSVM(W,t)= 1
n

K∑

k=1

∑

i∈Gk

ρ i

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p

+λtr W′W, (2.6)

where λtr W′W is the penalty term to avoid overfitting and λ> 0 is the regular-
ization parameter. Note that for the case where K = 2, the above loss function
reduces to the loss function for binary SVM given in Groenen et al. (2008), with
Huber hinge errors.

The outline of a proof for the convexity of the loss function in (2.6) is given.
First, note that the distances q(k j)

i in the loss function are affine in W and t.
Hence, if the loss function is convex in q(k j)

i it is convex in W and t as well.
Second, the Huber hinge function is trivially convex in q(k j)

i , since each separate
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FIGURE 2.4 – Illustration of the `p norm of the Huber weighted errors.
Comparing figures (a) and (b) shows the effect of the `p norm. With p = 1
objects that have errors w.r.t. both classes are penalized more strongly than
those with only one error, whereas with p = 2 this is not the case. Figures (a),
(c), and (d) compare the effect of the κ parameter, with p = 1. This shows
that with a large value of κ, the errors close to the boundary are weighted
quadratically. Note that s1 and s2 indicate the dimensions of the simplex
space.

piece of the function is convex and the Huber hinge is continuous. Third, the `p

norm is a convex function by the Minkowski inequality and it is monotonically
increasing by definition. Thus, it follows that the `p norm of the Huber weighted
instance errors is convex (see for instance Rockafellar, 1997). Next, since it is
required that the weights ρ i are non-negative, the sum in the first term of (2.6) is
a convex combination. Finally, the penalty term can also be shown to be convex,
since tr W′W is the square of the Frobenius norm of W and it is required that
λ> 0. Thus, it holds that the loss function in (2.6) is convex in W and t.
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Predicting class labels in GenSVM can be done as follows. Let (W∗,t∗) denote
the parameters that minimize the loss function. Predicting the class label of an
unseen sample x′

n+1 can then be done by first mapping it to the simplex space,
using the optimal projection: s′n+1 = x′

n+1W∗+ t′∗. The predicted class label is
then simply the label corresponding to the nearest simplex vertex as measured
by the squared Euclidean norm, or

ŷn+1 = argmin
k

‖s′n+1 −u′
k‖2, for k = 1, . . . ,K . (2.7)

2.3 I T E R A T I V E M A J O R I Z A T I O N

To minimize the loss function given in (2.6), an iterative majorization (IM) al-
gorithm will be derived. Iterative majorization was first described by Weiszfeld
(1937), however the first application of the algorithm in the context of a line
search comes from Ortega and Rheinboldt (1970, p. 253—255). During the late
1970s, the method was independently developed by De Leeuw (1977) as part of
the SMACOF algorithm for multidimensional scaling and by Voss and Eckhardt
(1980) as a general minimization method. For the reader unfamiliar with the
iterative majorization algorithm a more detailed description has been included
in Appendix 2.B and further examples can be found in for instance Hunter and
Lange (2004).

The asymptotic convergence rate of the IM algorithm is linear, which is less
than that of the Newton-Raphson algorithm (De Leeuw, 1994). However, the
largest improvements in the loss function will occur in the first few steps of the
iterative majorization algorithm, where the asymptotic linear rate does not apply
(Havel, 1991). This property will become very useful for GenSVM as it allows for
a quick approximation to the exact SVM solution in few iterations.

There is no straightforward technique for deriving the majorization function
for any given function. However, in the next section the derivation of the majoriza-
tion function for the GenSVM loss function is presented using an “outside-in”
approach. In this approach, each function that constitutes the loss function is
majorized separately and the majorization functions are combined. Two proper-
ties of majorization functions that are useful for this derivation are now formally
defined. In these expressions, x is a supporting point, as defined in Appendix 2.B.

P1. Let f1 :Y →Z, f2 : X →Y and define f = f1 ◦ f2 : X →Z, such that for
x ∈X, f (x) = f1( f2(x)). If g1 :Y×Y→Z is a majorization function of f1,
then g : X×X →Z defined as g = g1 ◦ f2 is a majorization function of
f . Thus for x, x ∈X it holds that g(x, x)= g1( f2(x), f2(x)) is a majorization
function of f (x) at x.
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2. GenSVM

P2. Let f i :X→Z and define f :X→Z such that f (x) =∑
i ai f i(x) for x ∈X,

with ai ≥ 0 for all i. If g i : X×X →Z is a majorization function for f i

at a point x ∈X, then g : X×X →Z given by g(x, x) = ∑
i ai g i(x, x) is a

majorization function of f .

Proofs of these properties are omitted, as they follow directly from the require-
ments for a majorization function given in Appendix 2.B.

2.4 G E N S V M O P T I M I Z A T I O N A N D I M P L E M E N T A T I O N

In this section, a quadratic majorization function for GenSVM will be derived.
Although it is possible to derive a majorization algorithm for general values of the
`p norm parameter, the following derivation will restrict this value to the interval
p ∈ [1,2] because this avoids the issue that quadratic majorization can become
slow for p > 2, and because it simplifies the derivation.3 Pseudocode for the
derived algorithm will be presented, as well as an analysis of the computational
complexity of the algorithm. Finally, an important remark on the use of warm
starts in the algorithm is given.

2.4.1 Majorization Derivation

To shorten the notation, let V = [t W′]′, z′i = [1 x′
i], and δk j = uk −u j, such that

q(k j)
i = z′iVδk j. With this notation it becomes sufficient to optimize the loss

function with respect to V. Formulated in this manner (2.6) becomes

LMSVM(V)= 1
n

K∑

k=1

∑

i∈Gk

ρ i

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p

+λtr V′JV, (2.8)

where J is an m+1 diagonal matrix with Ji,i = 1 for i > 1 and zero elsewhere. To
derive a majorization function for this expression the “outside-in” approach will
be used, together with the properties of majorization functions. In what follows,
variables with a bar denote supporting points for the IM algorithm. The goal of
the derivation is to find a quadratic majorization function in V such that

LMSVM(V)≤ tr V′Z′AZ′V−2tr V′Z′B+C, (2.9)

where A, B, and C are coefficients of the majorization depending on V. The
matrix Z is simply the n× (m+1) matrix with rows z′i.

Property P2 above means that the summation over instances in the loss
function can be ignored for now. Moreover, since the regularization term is

3For a majorization algorithm of the `p norm with p ≥ 2, see Groenen et al. (1999).
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quadratic in V it requires no majorization. The outermost function for which a
majorization function has to be found is thus the `p norm of the Huber hinge
errors. A majorization function for the `p norm could be constructed, but a
discontinuity in the derivative will exist at the origin (Tsutsu and Morikawa,
2012). To avoid this discontinuity in the derivative of the `p norm, the following
inequality is needed (Hardy et al., 1934, eq. 2.10.3)

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p

≤
∑

j 6=k
h

(
q(k j)

i

)
. (2.10)

This inequality can be used as a majorization function only if equality holds at
the supporting point,

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p

=
∑

j 6=k
h

(
q(k j)

i

)
. (2.11)

It is straightforward to see that this only holds if at most one of the h
(
q(k j)

i

)

errors is nonzero for j 6= k. Thus an indicator variable εi is introduced which is 1
if at most one of these errors is nonzero and 0 otherwise. Then it follows that

LMSVM(V)≤ 1
n

K∑

k=1

∑

i∈Gk

ρ i


εi

∑

j 6=k
h

(
q(k j)

i

)
+ (1−εi)

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p

 (2.12)

+λtr V′JV.

Now, the next function for which a majorization needs to be found is f1(x)=
x1/p. From the inequality aαbβ < αa+βb, with α+β = 1 (Hardy et al., 1934,
Theorem 37), a linear majorization inequality can be constructed for this function
by substituting a = x, b = x, α= 1

p and β= 1− 1
p (Groenen and Heiser, 1996). This

yields

f1(x)= x
1
p ≤ 1

p
x

1
p −1x+

(
1− 1

p

)
x

1
p = g1(x, x). (2.13)

Applying this majorization and using property P1 gives

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p

≤ 1
p

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p −1 (

∑

j 6=k
hp

(
q(k j)

i

))
+

(
1− 1

p

)(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p

.

Plugging this into (2.12) and collecting terms yields,

LMSVM(V)≤ 1
n

K∑

k=1

∑

i∈Gk

ρ i

[
εi

∑

j 6=k
h

(
q(k j)

i

)
+ (1−εi)ωi

∑

j 6=k
hp

(
q(k j)

i

)]
+Γ(1)+λtr V′JV
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with

ωi =
1
p

(
∑

j 6=k
hp

(
q(k j)

i

)) 1
p −1

. (2.14)

The constant Γ(1) contains all terms that only depend on previous errors q(k j)
i .

The next majorization step by the “outside-in” approach is to find a quadratic
majorization function for f2(x)= hp(x), of the form

f2(x)= hp(x)≤ a(x, p)x2 −2b(x, p)x+ c(x, p)= g2(x, x). (2.15)

For brevity this derivation has been moved to Appendix 2.C. In the remainder of
this derivation, a(p)

i jk will be used to abbreviate a
(
q(k j)

i , p
)
, with similar abbrevia-

tions for b and c. Using these majorizations and making the dependence on V
explicit by substituting q(k j)

i = z′iVδk j gives

LMSVM(V)≤ 1
n

K∑

k=1

∑

i∈Gk

ρ iεi
∑

j 6=k

[
a(1)

i jkz′iVδk jδ
′
k jV

′zi −2b(1)
i jkz′iVδk j

]
(2.16)

+ 1
n

K∑

k=1

∑

i∈Gk

ρ i(1−εi)ωi
∑

j 6=k

[
a(p)

i jkz′iVδk jδ
′
k jV

′zi −2b(p)
i jkz′iVδk j

]
+Γ(2) +λtr V′JV,

where Γ(2) again contains all constant terms. Due to dependence on the matrix
δk jδ

′
k j, the above majorization function is not yet in the desired quadratic form of

(2.9). However, since the maximum eigenvalue of δk jδ
′
k j is 1 by definition of the

simplex coordinates, it follows that the matrix δk jδ
′
k j −I is negative semidefinite.

Hence, it can be shown that the inequality z′i(V−V)(δk jδ
′
k j−I)(V−V)′zi ≤ 0 holds

(Bijleveld and De Leeuw, 1991, Theorem 4). Rewriting this gives the majorization
inequality

z′iVδk jδ
′
k jV

′zi ≤ z′iVV′zi −2z′iV(I−δk jδ
′
k j)Vzi +z′iV(I−δk jδ

′
k j)V

′
zi. (2.17)

With this inequality the majorization inequality becomes

LMSVM(V)≤ 1
n

K∑

k=1

∑

i∈Gk

ρ iz′iV(V′−2V
′
)zi

∑

j 6=k

[
εia(1)

i jk + (1−εi)ωia
(p)
i jk

]
(2.18)

− 2
n

K∑

k=1

∑

i∈Gk

ρ iz′iV
∑

j 6=k

[
εi

(
b(1)

i jk −a(1)
i jk q(k j)

i

)
+ (1−εi)ωi

(
b(p)

i jk −a(p)
i jk q(k j)

i

)]
δk j

+Γ(3) +λtr V′JV,

where q(k j)
i = z′iVδk j. This majorization function is quadratic in V and can thus

be used in the IM algorithm. To derive the first-order condition used in the
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update step of the IM algorithm (step 2 in Appendix 2.B), matrix notation for the
above expression is introduced. Let A be an n×n diagonal matrix with elements
αi and let B be an n× (K −1) matrix with rows β′

i, where

αi =
1
n
ρ i

∑

j 6=k

[
εia(1)

i jk + (1−εi)ωia
(p)
i jk

]
, (2.19)

β′
i =

1
n
ρ i

∑

j 6=k

[
εi

(
b(1)

i jk −a(1)
i jk q(k j)

i

)
+ (1−εi)ωi

(
b(p)

i jk −a(p)
i jk q(k j)

i

)]
δ′k j. (2.20)

Then the majorization function of LMSVM(V) given in (2.18) can be written as

LMSVM(V)≤ tr (V−2V)′Z′AZV−2tr B′ZV+Γ(3) +λtr V′JV (2.21)

= tr V′(Z′AZ+λJ)V−2tr (V
′
Z′A+B′)ZV+Γ(3). (2.22)

This majorization function has the desired functional form described in (2.9).
Differentiation with respect to V and equating to zero yields the linear system

(Z′AZ+λJ)V=Z′AZV+Z′B. (2.23)

The update V+ that solves this system can then be calculated efficiently by
Gaussian elimination.

2.4.2 Algorithm Implementation and Complexity

Pseudocode for the main GenSVM function is given in Algorithm 2.1. As can be
seen, the algorithm simply updates all instance coefficients at each iteration using
the function presented in Algorithm 2.2, which computes the updates for αi and
βi. In practice, some calculations can be done more efficiently for all instances by
using matrix algebra. When step doubling (see Appendix 2.B) is applied in the
majorization algorithm, line 17 is replaced by V← 2V+−V. In the implementation
step doubling is applied after a burn-in of 50 iterations. The implementation used
in the experiments described in Section 2.6 is written in C, using the BLAS and
LAPACK libraries. The source code for this C library is available under the open
source GNU GPL license, through an online repository. A thorough description of
the implementation is available in the package documentation.

The complexity of a single iteration of the IM algorithm is O(n(m + 1)2)
assuming that n > m > K . As noted earlier, the convergence rate of the general
IM algorithm is linear. Computational complexity of standard SVM solvers that
solve the dual problem through decomposition methods lies between O(n2) and
O(n3) depending on the value of λ (Bottou and Lin, 2007). An efficient algorithm

24



2. GenSVM

Algorithm 2.1. GenSVM

1: function GENSVM(X,y,ρ, p,κ,λ,ε)
2: K ←max{y}
3: t ← 1
4: Z← [1 X]
5: V←V0 . V0 is randomly generated or a warm-start
6: Generate J and UK
7: L t ← LMSVM(V)
8: L t−1 ← (1+2ε)L t
9: while (L t−1 −L t)/L t > ε do

10: for i ← 1,n do
11: αi,βi ←GenSVMCoef(zi, yi,ρ i, p,κ,UK )
12: end for
13: Construct A from αi
14: Construct B from βi
15: Find V+ that solves (2.23)
16: V←V
17: V←V+

18: L t−1 ← L t
19: L t ← LMSVM(V)
20: t ← t+1
21: end while
22: return V
23: end function

for the method of Crammer and Singer (2002a) developed by Keerthi et al. (2008)
has a complexity of O(nmK) per iteration, where m ≤ m is the average number
of nonzero features per training instance. In the methods of Lee et al. (2004)
and Weston and Watkins (1998), a quadratic programming problem with n(K −1)
dual variables needs to be solved, which is typically done using a standard solver.
An analysis of the exact convergence of GenSVM, including the expected number
of iterations needed to achieve convergence at a factor ε, is outside the scope of
the current work and a subject for further research.

2.4.3 Smart Initialization

When training machine learning algorithms to determine the optimal hyperpa-
rameters, it is common to use cross validation (CV). With GenSVM it is possible
to initialize the matrix V such that the final result of a fold is used as the initial
value for V0 for the next fold. This same technique can be used when searching
for the optimal hyperparameter configuration in a grid search, by initializing the
weight matrix with the outcome of the previous configuration. Such warm-start
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Algorithm 2.2. GenSVM Instance Coefficients

1: function GENSVMCOEF(zi, yi,ρ i, p,κ,UK )
2: Compute q(yi j)

i = z′iVδyi j for all j 6= yi

3: Compute h
(
q(yi j)

i

)
for all j 6= yi by (2.3)

4: Determine εi
5: if εi = 1 then
6: Compute a(1)

i j yi
and b(1)

i j yi
for j 6= yi according to Table 2.4

7: else
8: Compute ωi following (2.14)
9: Compute a(p)

i j yi
and b(p)

i j yi
for j 6= yi according to Table 2.4

10: end if
11: Compute αi by (2.19)
12: Compute βi by (2.20)
13: return αi, βi
14: end function

initialization greatly reduces the time needed to perform cross validation with
GenSVM. It is important to note here that using warm starts is not easily possible
with dual optimization approaches. Therefore, the ability to use warm starts
can be seen as an advantage of solving the GenSVM optimization problem in the
primal.

2.5 N O N L I N E A R I T Y

One possible method to include nonlinearity in a classifier is through the use
of spline transformations (see for instance Hastie et al., 2009). With spline
transformations each attribute vector x j is transformed to a spline basis N j,
for j = 1, . . . ,m. The transformed input matrix N = [N1, . . . ,Nm] is then of size
n× l, where l depends on the degree of the spline transformation and the chosen
number of interior knots of the spline. An application of spline transformations
to the binary SVM can be found in Groenen et al. (2007).

A more common way to include nonlinearity in machine learning methods is
through the use of the kernel trick, attributed to Aizerman et al. (1964). With
the kernel trick, the dot product of two instance vectors in the dual optimization
problem is replaced by the dot product of the same vectors in a high dimen-
sional feature space. Since no dot products appear in the primal formulation of
GenSVM, a different method is used here. By applying a preprocessing step on
the kernel matrix, nonlinearity can be included using the same algorithm as the
one presented for the linear case. Furthermore, predicting class labels requires
a postprocessing step on the obtained matrix V∗. A full derivation is given in
Appendix 2.D.
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2.6 E X P E R I M E N T S

To assess the performance of the proposed GenSVM classifier, a simulation study
was done comparing GenSVM with seven existing multiclass SVMs on 13 small
datasets. These experiments are used to precisely measure predictive accuracy
and total training time using performance profiles and rank plots. To verify the
feasibility of GenSVM for large datasets an additional simulation study is done.
The results of this study are presented separately in Section 2.6.4. Due to the
large number of datasets and methods involved, experiments were only done for
the linear kernel. Experiments on nonlinear multiclass SVMs would require even
more training time than for linear MSVMs and is considered outside the scope of
this chapter.

2.6.1 Setup

Implementations of the heuristic multiclass SVMs (OvO, OvA, and DAG) were
included through LibSVM (v. 3.16, Chang and Lin, 2011). LibSVM is a popular
library for binary SVMs with packages for many programming languages, it
is written in C++ and implements a variation of the SMO algorithm of Platt
(1999). The OvO and DAG methods are implemented in this package, and a
C implementation of OvA using LibSVM was created for these experiments.4

For the single-machine approaches the MSVMpack package was used (v. 1.3,
Lauer and Guermeur, 2011), which is written in C. This package implements the
methods of Weston and Watkins (W&W, 1998), Crammer and Singer (C&S, 2002a),
Lee et al. (LLW, 2004), and Guermeur and Monfrini (MSVM2, 2011). Finally,
to verify if implementation differences are relevant for algorithm performance
the LibLinear (Fan et al., 2008) implementation of the method by Crammer and
Singer (2002a) is also included (denoted LL C&S). This implementation uses the
optimization algorithm by Keerthi et al. (2008).

To compare the classification methods properly, it is desirable to remove any
bias that could occur when using cross validation (Cawley and Talbot, 2010).
Therefore, nested cross validation is used (Stone, 1974), as illustrated in Fig-
ure 2.5. In nested CV, a dataset is randomly split in a number of chunks. Each of
these chunks is kept apart from the remaining chunks once, while the remaining
chunks are combined to form a single dataset. A grid search is then applied
to this combined dataset to find the optimal hyperparameters with which to
predict the test chunk. This process is then repeated for each of the chunks. The
predictions of the test chunk will be unbiased since it was not included in the

4The LibSVM code used for DAGSVM is the same code as was used in Hsu and Lin (2002) and is
available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools.
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Combine chunks
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Grid search using 10-fold CV

Train at optimal configuration Test
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FIGURE 2.5 – An illustration of nested cross validation. A dataset is initially
split in five chunks. Each chunk is kept apart once, while a grid search using
10-fold CV is applied to the combined data from the remaining four chunks.
The optimal parameters obtained there are then used to train the model one
last time and predict the chunk that was kept apart.

grid search. For this reason, it is argued that this approach is preferred over
approaches that simply report maximum accuracy rates obtained during the grid
search.

For the experiments 13 datasets were selected from the UCI repository (Bache
and Lichman, 2013). The selected datasets and their relevant statistics are
shown in Table 2.1. All attributes were rescaled to the interval [−1,1]. The
image segmentation and vowel datasets have a predetermined train and test
set and were therefore not used in the nested CV procedure. Instead, a grid
search was done on the provided training set for each classifier and the provided
test set was predicted at the optimal hyperparameters obtained. For the datasets
without a predetermined train/test split, nested CV was used with five initial
chunks. Hence, 5 ·11+2 = 57 pairs of independent train and test datasets are
obtained.

While running the grid search, it is desirable to remove any fluctuations
that may result in an unfair comparison. Therefore, it was ensured that all
methods had the same CV split of the training data for the same hyperparameter
configuration (specifically, the value of the regularization parameter). In practice,
it can occur that a specific CV split is advantageous for one classifier but not for
others (either in time or performance). Thus, ideally the grid search would be
repeated a number of times with different CV splits, to remove this variation.
However, due to the size of the grid search this is considered to be infeasible.
Finally, it should be noted here that during the grid search 10-fold cross validation
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TABLE 2.1 – Dataset summary statistics. Datasets with an asterisk have
a predetermined test dataset. For these datasets, the number of training
instances is denoted for the train and test datasets respectively. The final two
columns respectively denote the size of the smallest and the largest class in
the dataset.

Dataset Instances Features Classes minnk maxnk
breast tissue 106 9 6 14 22
iris 150 4 3 50 50
wine 178 13 3 48 71
image segmentation∗ 210/2100 18 7 30 30
glass 214 9 6 9 76
vertebral 310 6 3 60 150
ecoli 336 8 8 2 143
vowel∗ 528/462 10 11 48 48
balancescale 625 4 3 49 288
vehicle 846 18 4 199 218
contraception 1473 9 3 333 629
yeast 1484 8 10 5 463
car 1728 6 4 65 1210

was applied in a non-stratified manner, that is, without resampling of small
classes.

The following settings were used in the numerical experiments. The reg-
ularization parameter was varied on a grid with λ ∈ {2−18,2−16, . . . ,218}. For
GenSVM the grid search was extended with parameters κ ∈ {−0.9,0.5,5.0} and
p ∈ {1.0,1.5,2.0}. The stopping parameter for the GenSVM majorization algo-
rithm was set at ε = 10−6 during the grid search in the training phase and at
ε= 10−8 for the final model in the testing phase. In addition, two different weight
specifications were used for GenSVM: the unit weights with ρ i = 1,∀i, as well
as the group-size correction weights introduced in (2.5). Thus, the grid search
consists of 342 configurations for GenSVM and 19 configurations for the other
methods. Since nested CV is used for most datasets, it is required to run 10-fold
cross validation on a total of 27075 hyperparameter configurations. To enhance
the reproducibility of these experiments, the exact predictions made by each
classifier for each configuration were stored in a text file.

To run all computations in a reasonable amount of time, the computations
were performed on the Dutch National LISA Compute Cluster. A master-worker
program was developed using the message passing interface in Python (Dalcín
et al., 2005). This allows for efficient use of multiple nodes by successively sending
out tasks to worker threads from a single master thread. Since the total training
time of a classifier is also of interest, it was ensured that all computations were
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done on the exact same core type.5 Furthermore, training time was measured
from within the C programs, to ensure that only the time needed for the cross
validation routine was measured. The total computation time needed to obtain
the presented results was about 152 days, using the LISA Cluster this was done
in five and a half days wall-clock time.

During the training phase it showed that several of the single machine meth-
ods implemented through MSVMpack did not converge to an optimal solution
within reasonable amount of time.6 Instead of limiting the maximum number
of iterations of the method, MSVMpack was modified to stop after a maximum
of two hours of training time per configuration. This results in 12 minutes of
training time per cross validation fold. The solution found after this amount of
training time was used for prediction during cross validation. Whenever training
was stopped prematurely, this was recorded.7 Of the 57 training sets, 24 con-
figurations had prematurely stopped training in one or more CV splits for the
LLW method, versus 19 for W&W, 9 for MSVM2, and 2 for C&S (MSVMpack).
For the LibSVM methods, 13 optimal configurations for OvA reached the default
maximum number of iterations in one or more CV folds, versus 9 for DAGSVM,
and 3 for OvO. No early stopping was needed for GenSVM or for LL C&S.

Determining the optimal hyperparameters requires a performance measure
on the obtained predictions. For binary classifiers it is common to use either the
hitrate or the area under the ROC curve as a measure of classifier performance.
The hitrate only measures the percentage of correct predictions of a classifier
and has the well known problem that no correction is made for group sizes.
For instance, if 90% of the observations of a test set belong to one class, a
classifier that always predicts this class has a high hitrate, regardless of its
discriminatory power. Therefore, the adjusted Rand index (ARI) is used here
as a performance measure (Hubert and Arabie, 1985). The ARI corrects for
chance and can therefore more accurately measure discriminatory power of a
classifier than the hitrate can. Using the ARI for evaluating supervised learning
algorithms has previously been proposed by Santos and Embrechts (2009).

The optimal parameter configurations for each method on each dataset were
chosen such that the maximum predictive performance was obtained as measured
with the ARI. If multiple configurations obtained the highest performance during

5The specific type of core used is the Intel Xeon E5-2650 v2, with 16 threads at a clock speed of 2.6
GHz. At most 14 threads were used simultaneously, reserving one for the master thread and one for
system processes.

6The default MSVMpack settings were used with a chunk size of 4 for all methods.
7For the classifiers implemented through LibSVM very long training times were only observed for

the OvA method, however due to the nature of this method it is not trivial to stop the calculations
after a certain amount of time. This behavior was observed in about 1% of all configurations tested
on all datasets and is therefore considered negligible. Also, for the LibSVM methods it was recorded
whenever the maximum number of iterations was reached.
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the grid search, the configuration with the smallest training time was chosen. The
results on the training data show that during cross validation GenSVM achieved
the highest classification accuracy on 41 out of 57 datasets, compared to 15 and
12 for DAG and OvO, respectively. However, these are results on the training
datasets and therefore can contain considerable bias. To accurately assess the
out-of-sample prediction accuracy the optimal hyperparameter configurations
were determined for each of the 57 training sets and the test sets were predicted
with these parameters. To remove any variations due to random starts, building
the classifier and predicting the test set was repeated five times for each classifier.

Below the simulation results on the small datasets will be evaluated using
performance profiles and rank tests. Performance profiles offer a visual repre-
sentation of classifier performance, while rank tests allow for identification of
statistically significant differences between classifiers. For the sake of complete-
ness tables of performance scores and computation times for each method on
each dataset are provided in Appendix 2.E. To promote reproducibility of the
empirical results, all the code used for the classifier comparisons and all the
obtained results will be released through an online repository.

2.6.2 Performance Profiles

One way to gain insight in the performance of different classification methods
is through performance profiles (Dolan and Moré, 2002). A performance pro-
file shows the empirical cumulative distribution function of a classifier on a
performance metric.

Let D denote the set of datasets and let C denote the set of classifiers. Further,
let pd,c denote the performance of classifier c ∈C on dataset d ∈D as measured
by the ARI. Now define the performance ratio vd,c as the ratio between the best
performance on dataset d and the performance of classifier c on data set d,

vd,c =
max{pd,c : c ∈C}

pd,c
. (2.24)

Thus the performance ratio is 1 for the best performing classifier on a dataset
and increases for classifiers with a lower performance. Then, the performance
profile for classifier c is given by the function

Pc(η)= 1
ND

∣∣{d ∈D : vd,c ≤ η
}∣∣ , (2.25)

where ND = |D| denotes the number of datasets. Thus, the performance profile
estimates the probability that classifier c has a performance ratio below η. Note
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FIGURE 2.6 – Performance profiles for classification accuracy created from
all repetitions of the test set predictions. The methods OvA, C&S, LL C&S,
MSVM2, W&W, and LLW will always have a smaller probability of being
within a factor η of the maximum performance than the GenSVM, OvO, or
DAG methods.

that Pc(1) denotes the empirical probability that a classifier achieves the highest
performance on a given data set.

Figure 2.6 shows the performance profile for classification accuracy. Esti-
mates of Pc(1) from Figure 2.6 show that there is a 28.42% probability that
OvO achieves the optimal performance, versus 26.32% for both GenSVM and
DAGSVM. Note that this includes cases where each of these methods achieves the
best performance. Figure 2.6 also shows that although there is a small difference
in the probabilities of GenSVM, OvO, and DAG within a factor of 1.08 of the
best predictive performance, for η≥ 1.08 GenSVM almost always has the highest
probability. It can also be concluded that since the performance profiles of the
MSVMpack implementation and the LibLinear implementation of the method of
Crammer and Singer (2002a) nearly always overlap, implementation differences
have a negligible effect on the classification performance of this method. Finally,
the figure shows that OvA and the methods of Lee et al. (2004), Crammer and
Singer (2002a), Weston and Watkins (1998), and Guermeur and Monfrini (2011)
always have a smaller probability of being within a given factor of the optimal
performance than GenSVM, OvO, or DAG do.
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FIGURE 2.7 – Performance profiles for training time. GenSVM has a priori
about 40% chance of requiring the smallest time to perform the grid search
on a given dataset. The methods implemented through MSVMpack always
have a lower chance of being within a factor τ of the smallest training time
than any of the other methods.

Similarly, a performance profile can be constructed for the training time
necessary to do the grid search. Let td,c denote the total training time for
classifier c on dataset d. Next, define the performance ratio for time as

wd,c =
td,c

min{td,c : c ∈C}
. (2.26)

Since the classifier with the smallest training time has preference the comparison
is done with the lowest computation time achieved on a given dataset d. Again,
the ratio is 1 when the lowest training time is reached and it increases for higher
computation time. Hence, the performance profile for time is defined as

Tc(τ)= 1
ND

|{d ∈D : wd,c ≤ τ}|. (2.27)

The performance profile for time estimates the probability that a classifier c has
a time ratio below τ. Again, Tc(1) denotes the fraction of datasets where classifier
c achieved the smallest training time among all classifiers.

Figure 2.7 shows the performance profile for the time needed to do the grid
search. Since large differences in training time were observed, a logarithmic
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scale is used for the horizontal axis. This performance profile clearly shows that
all MSVMpack methods suffer from long computation times. The fastest methods
are GenSVM, OvO, and DAG, followed by the LibLinear implementation of C&S.
From the value of Tc(1) it is found that GenSVM has the highest probability of
being the fastest method for the total grid search, with a probability of 40.35%,
versus 22.81% for OvO, 19.30% for DAG, and 17.54% for LibLinear C&S. The
other methods never achieve the smallest grid search time. It is important to
note here that the grid search for GenSVM is 18 times larger than that of the
other methods. These results illustrate the incredible advantage GenSVM has
over other methods by using warm starts in the grid search.

In addition to the performance profile, the average computation time per
hyperparameter configuration was examined. GenSVM has an average training
time of 0.97 seconds per configuration, versus 20.56 seconds for LibLinear C&S,
24.84 seconds for OvO, and 25.03 seconds for DAGSVM. This is a considerable
difference, which can be explained again by the use of warm starts in GenSVM
(see Section 2.4.3). When the total computation time per dataset is averaged, it
is found that GenSVM takes on average 331 seconds per dataset, LibLinear C&S
391 seconds, OvO 472 seconds, and DAG 476 seconds. The difference between
DAGSVM and OvO can be attributed to the prediction strategy used by DAGSVM.
Thus it can be concluded that on average GenSVM is the fastest method during
the grid search, despite the fact it has 18 times more hyperparameters to consider
than the other methods.

2.6.3 Rank Tests

Following Demšar (2006), ranks are used to investigate significant differences
between classifiers. The benefit of using ranks instead of actual performance
metrics is that ranks have meaning when averaged across different datasets,
whereas average performance metrics do not. Ranks are calculated for the
performance as measured by the ARI, the total training time needed to do the
grid search, and the average time per hyperparameter configuration. When ties
occur fractional ranks are used.

Figure 2.8 shows the average ranks for both classification performance and
total and average training time. From Figure 2.8(a) it can be seen that GenSVM
is in second place in terms of overall classification performance measured by the
ARI. Only OvO has higher performance than GenSVM on average. Similarly, Fig-
ure 2.8(b) shows the average ranks for the total training time. Here, GenSVM is
on average the fourth fastest method for the complete grid search. When looking
at the rank plot for the average training time per hyperparameter configuration,
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FIGURE 2.8 – Figure (a) shows the average ranks for performance, (b) shows
the average ranks for the total computation time needed for the grid search,
and (c) shows the ranks for the average time per hyperparameter config-
uration. It can be seen that GenSVM obtains the second overall rank in
predictive performance, fourth overall rank in total training time, and first
overall rank in average training time. In all figures, CD shows the critical
difference of Holm’s procedure. Classifiers beyond this CD differ significantly
from GenSVM at the 5% significance level.

it is clear that the warm starts used during training in GenSVM are very useful
as it ranks as the fastest method on this metric, as shown in Figure 2.8(c).

As Demšar (2006) suggests, the Friedman rank test can be used to find
significant differences between classifiers (Friedman, 1937, 1940). If rcd denotes
the fractional rank of classifier c on dataset d, then with NC classifiers and ND

datasets the Friedman statistic is given by

χ2
F = 12ND

NC(NC +1)

[∑
c

R2
c −

NC(NC +1)2

4

]
. (2.28)

Here, Rc = 1/ND
∑

d rcd denotes the average rank of classifier c. This test statistic
is distributed following the χ2 distribution with NC −1 degrees of freedom. As

35



Demšar (2006) notes, Iman and Davenport (1980) showed that the Friedman
statistic is undesirably conservative and the F-statistic is to be used instead,
which is given by

FF =
(ND −1)χ2

F

ND(NC −1)−χ2
F

, (2.29)

and is distributed following the F-distribution with NC −1 and (NC −1)(ND −1)
degrees of freedom. Under the null hypothesis of either test there is no significant
difference in the performance of any of the algorithms.

Performing the Friedman test on the ranks for classifier performance yields
χ2

F = 116.3 (p < 10−16) and FF = 19.2 (p = 10−16). Hence, with both tests the null
hypothesis of equal classification accuracy can be rejected. Similarly, for training
time the test statistics are χ2

F = 384.8 (p < 10−16) and FF = 302.4 (p ≈ 10−16).
Therefore, the null hypothesis of equal training time can also be rejected. When
significant differences are found through the Friedman test, Demšar (2006)
suggests to use Holm’s step-down procedure as a post-hoc test, to find which
classifiers differ significantly from a chosen reference classifier (Holm, 1979).
Here, GenSVM is used as a reference classifier, since comparing GenSVM with
existing methods is the main focus of these experiments.

Holm’s procedure is based on testing whether the z-statistic comparing classi-
fier i with classifier j is significant, while adjusting for the familywise error rate.
Following Demšar (2006), this z-statistic is given by

z = (RGenSVM −Ri)

√
6ND

NC(NC +1)
, (2.30)

where RGenSVM is the average rank of GenSVM and Ri the average rank of
another classifier, for i = 1, . . . , NC −1. Subsequently, the p-values computed from
this statistic are sorted in increasing order, as p1 < p2 < . . . < pNC−1. Then, the
null hypothesis of equal classification accuracy can be rejected if pi <α/(NC − i).
If for some i the null hypothesis cannot be rejected, all subsequent tests will also
fail. By inverting this procedure, a critical difference (CD) can be computed that
indicates the minimal difference between the reference classifier and the next
best classifier.8 These critical differences are also illustrated in the rank plots in
Figure 2.8.

Using Holm’s procedure, it is found that for predictive performance GenSVM
significantly outperforms the method of Lee et al. (2004) (p < 10−14), the method
of Guermeur and Monfrini (2011) (p = 10−6), the MSVMpack implementation of
Crammer and Singer (2002a) (p = 4 ·10−5), and the LibLinear implementation

8This is done by taking the smallest value of α/(NC − i) for which the null hypothesis is rejected,
looking up the corresponding z-statistic, and inverting (2.30).
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of the same method (p = 0.0004) at the 5% significance level. Note that since
this last method is included twice these test results are conservative. In terms of
total training time GenSVM is significantly faster than all methods implemented
through MSVMpack (C&S, W&W, MSVM2, and LLW) and OvA at the 5% sig-
nificance level. Recall that the hyperparameter grid for GenSVM is 18 times
larger than that of the other methods. When looking at average training time per
hyperparameter configuration, GenSVM is significantly faster than all methods
except OvO and DAG, at the 1% significance level.

2.6.4 Large Datasets

The above results focus on the predictive performance of GenSVM as compared
to other multiclass SVM methods. To assess the practicality of GenSVM for large
datasets additional simulations were done on three more datasets. The covtype
dataset (n = 581016, m = 54, K = 7) and the kddcup99 dataset (n = 494021,
m = 116, K = 23) were selected from the UCI repository (Bache and Lichman,
2013).9 Additionally, the fars dataset (n = 100968, m = 338, K = 8) was retrieved
from the Keel repository (Alcalá et al., 2010). For large datasets the LibLinear
package (Fan et al., 2008) is often used, so the SVM methods from this package
were added to the list of alternative methods.10

LibLinear includes five different SVM implementations: a coordinate descent
algorithm for the `2-regularized `1-loss and `2-loss dual problems (Hsieh et al.,
2008), a coordinate descent algorithm for the `1-regularized `2-loss SVM (Yuan
et al., 2010, Fan et al., 2008), a Newton method for the primal `2-regularized
`2-loss SVM problem (Lin et al., 2008), and finally a sequential dual method for
the multiclass SVM by Crammer and Singer (2002a) introduced by Keerthi et al.
(2008). This last method was again included to facilitate a comparison between
the implementations of LibLinear and MSVMpack. Note that with the exception
of this last method all methods in LibLinear are binary SVMs that implement
the one-vs-all strategy.

With the different variants of the linear multiclass SVMs included in Lib-
Linear, a total of 13 methods were considered for these large datasets. Since
training of the hyperparameters for each method leads to a high computational

9For kddcup99 the 10% training dataset and the corrected test dataset are used here, both available
through the UCI repository.

10Yet another interesting SVM approach to multiclass classification is the Pegasos method by
Shalev-Shwartz et al. (2011). However, the LibLinear package includes five different approaches to
SVM, including a fast solver for the method by Crammer and Singer (2002a), which makes it more
convenient to include in the list of methods. Moreover, according to the LibLinear documentation
(Fan et al., 2008): “LibLinear is competitive or even faster than state of the art linear classifiers such
as Pegasos (Shalev-Shwartz et al., 2011) and SVMperf (Joachims, 2006)”.
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TABLE 2.2 – Overview of predictive performance on large datasets, as mea-
sured by the ARI. Asterisks are used to mark the three best performing
methods for each dataset, with three stars denoting the best performing
method.

Package Method Covtype Fars KDDCup-99
GenSVM GenSVM 0.3571∗∗ 0.8102∗∗∗ 0.9758
LibLinear L1R-L2L 0.3372 0.8080 0.9762
LibLinear L2R-L1L (D) 0.3405 0.7995 0.9789
LibLinear L2R-L2L 0.3383 0.8090∗∗ 0.9781
LibLinear L2R-L2L (D) 0.3393 0.8085∗ 0.9744
LibLinear C&S 0.3582∗∗∗ 0.8081 0.9758
LibSVM DAG 0.8056 0.9809∗∗∗

LibSVM OvA 0.7872 0.9800∗

LibSVM OvO 0.8055 0.9804∗∗

MSVMpack C&S 0.3432∗ 0.7996 0.9741
MSVMpack LLW 0.3117 0.7846 0.9660
MSVMpack MSVM2 0.3165 0.6567 0.9658
MSVMpack W&W 0.2848 0.7719 0.6446

burden the nested CV procedure was replaced by a grid search using ten-fold
CV on a training set of 80% of the data, followed by out-of-sample prediction on
the remaining 20% using the final model. The kddcup99 dataset comes with a
separate test dataset of 292302 instances, so this was used for the out-of-sample
predictions. The grid search on the training set used the same hyperparame-
ter configurations as for the small datasets above, with 342 configurations for
GenSVM and 19 configurations for the other methods. The only difference was
that for GenSVM ε= 10−9 was used when training the final model. To accelerate
the GenSVM computations, support for sparse matrices was added.

Due to the large dataset sizes, many methods had trouble converging within
a reasonable amount of time. Therefore, total computation time was limited to
five hours per hyperparameter configuration per method, both during CV and
when training the final model. Where possible this limitation was included in the
main optimization routine of each method, such that training was stopped when
convergence was reached or when more than five hours had passed. Additionally,
for all methods the CV procedure was stopped prematurely if more than five hours
had passed after completion of a fold. In this case, cross validation performance
is only measured for the folds that were completed. These computations were
again performed on the Dutch National LISA Compute Cluster.

Table 2.2 shows the out-of-sample predictive performance of the different
MSVMs on the large datasets. It can be seen that GenSVM is the best performing
method on the fars dataset and the second best method on the covtype dataset,
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TABLE 2.3 – Overview of training time for each of the large datasets. The
average training time per hyperparameter configuration is also shown. All
values are reported in seconds. For LibSVM the full grid search could never
be completed and results are averaged only over the finished configurations.

Covtype Fars KDDCup-99
Package Method Total Mean Total Mean Total Mean
GenSVM GenSVM 166949 488 131174 384 1768303 5170
LibLinear L1R-L2L 69469 3656 4199 221 34517 1817
LibLinear L2R-L1L (D) 134908 7100 6995 368 16347 860
LibLinear L2R-L2L 4168 219 746 39 3084 162
LibLinear L2R-L2L (D) 159781 8410 7897 416 16974 893
LibLinear C&S 166719 8775 124764 6567 5425 286
LibSVM DAG 80410 40205 81557 8156 61111 3595
LibSVM OvA 77335 77335 54965 18322 73871 12312
LibSVM OvO 140826 46942 84580 8458 81023 4501
MSVMpack C&S 350397 18442 351664 18509 365733 19249
MSVMpack LLW 370790 19515 380943 20050 361329 19017
MSVMpack MSVM2 370736 19512 346140 18218 353479 18604
MSVMpack W&W 367245 19329 344880 18152 367685 19352

just after LL C&S. The LibSVM methods outperform the other methods on the
kddcup99 dataset, with DAGSVM having the highest performance. No results
are available for LibSVM for the covtype dataset because convergence could not
be reached within the five hour time limit during the test phase.

Results on the computation time are reported in Table 2.3. The `2-regularized
`2-loss method by Lin et al. (2008) is clearly the fastest method. However, for
the covtype dataset GenSVM total training time is competitive with some of the
other LibLinear methods and outperforms these methods in terms of average
training time. For the fars dataset the average training time of GenSVM is also
competitive with some of the LibLinear methods, most notably the method by
Crammer and Singer (2002a). The MSVMpack methods seem to be infeasible for
such large datasets, as computations were stopped by the five hour time limit
for almost all hyperparameter configurations. Early stopping was also needed
for the LibLinear implementation of C&S on the covtype and fars datasets,
and for the LibSVM methods on all datasets. For GenSVM, early stopping was
only needed for the kddcup99 dataset, which explains the high total computation
time there. Especially on these large datasets the advantage of using warm
starts in GenSVM is visible: training time was less than 30 seconds in 30% of
hyperparameters on fars, 23% on covtype, and 11% on kddcup99.

2.7 D I S C U S S I O N

A generalized multiclass support vector machine has been introduced, called
GenSVM. The method is general in the sense that it subsumes three multiclass
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SVMs proposed in the literature and it is flexible due to several different weight-
ing options. The simplex encoding of the multiclass classification problem used in
GenSVM is intuitive and has an elegant geometrical interpretation. An iterative
majorization algorithm has been derived to minimize the convex GenSVM loss
function in the primal. This primal optimization approach has computational
advantages due to the possibility to use warm starts and because it can be easily
understood. The ability to use warm starts contributes to small training time dur-
ing cross validation in a grid search and allows GenSVM to perform competitively
on large datasets.

Rigorous computational tests of linear multiclass SVMs on small datasets
show that GenSVM significantly outperforms three existing multiclass SVMs
(four implementations) on predictive performance at the 5% significance level. On
this metric, GenSVM is the second-best performing method overall and the best
method among single-machine multiclass SVMs, although the difference with
the method of Weston and Watkins (1998) could not be shown to be statistically
significant. GenSVM outperforms five other methods on total training time and
has the smallest total training time when averaged over all datasets, despite the
fact that its grid of hyperparameters is 18 times larger than that of other methods.
Due to the possibility of warm starts it also has the smallest average training
time per hyperparameter and significantly outperforms all but two alternative
methods in this regard at the 1% significance level. For the large datasets, it
was found that GenSVM still achieves high classification accuracy and that
total training time remains manageable due to the warm starts. In practice,
the number of hyperparameters could be reduced if smaller training time is
desired. Since GenSVM outperforms existing methods on a number of datasets
and achieves fast training time it is a worthwhile addition to the collection of
methods available to the practitioner.

In the comparison tests MSVMpack (Lauer and Guermeur, 2011) was used
to access four single machine multiclass SVMs proposed in the literature. A big
advantage of using this library is that it allows for a single straightforward C
implementation, which greatly reduces the programming effort needed for the
comparisons. However, as is noted in the MSVMpack documentation, slight
differences exist between MSVMpack and method-specific implementations. For
instance, on small datasets MSVMpack can be slower, due to working set selec-
tion and shrinking procedures in other implementations. However, classification
performance is comparable between MSVMpack and method-specific implemen-
tations, as was verified by adding the LibLinear implementation of the method of
Crammer and Singer (2002a) to the list of alternative methods. Thus, it is argued
that the results for predictive accuracy presented above are accurate regardless
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of implementation, but small differences can exist for training time when other
implementations for single machine MSVMs are used.

Another interesting conclusion that can be drawn from the experimental
results is that the one-vs-all method never performs as good as one-vs-one,
DAGSVM, or GenSVM. In fact, the profile plot in Figure 2.6 shows that OvA al-
ways has a smaller probability of obtaining the best classification performance as
either of these three methods. These results are also reflected in the classification
accuracy of the LibLinear methods on the large dataset. In the literature, the
paper by Rifkin and Klautau (2004) is often cited as evidence that OvA performs
well (see for instance Keerthi et al., 2008). However, the simulation results in
this paper suggest that OvA is in fact inferior to OvO, DAG, and GenSVM.

This chapter was focused on linear multiclass SVMs. An obvious extension
is to incorporate nonlinear multiclass SVMs through kernels. Due to the large
number of datasets and the long training time the numerical experiments were
limited to linear multiclass SVM. Nonlinear classification through kernels can
be achieved by linear methods through a preprocessing step of an eigendecompo-
sition on the kernel matrix, which is a process of the order O(n3). In this case,
GenSVM will benefit from precomputing kernels before starting the grid search,
or using a larger stopping criterion in the IM algorithm by increasing ε in Algo-
rithm 2.1. In addition, approximations can be done by using rank approximated
kernel matrices, such as the Nyström method proposed by Williams and Seeger
(2001). Such enhancements are considered topics for further research.

Finally, the potential of using GenSVM in an online setting is recognized.
Since the solution can be found quickly when a warm-start is used, GenSVM may
be useful in situations where new instances have to be predicted at a certain
moment, while the true class label arrives later. Then, re-estimating the GenSVM
solution can be done as soon as the true class label of an object arrives and a
previously known solution can be used as a warm start. It is expected that in
this scenario only a few iterations of the IM algorithm are needed to arrive at a
new optimal solution. This, too, is considered a subject for further research.
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Appendices

2.A S I M P L E X C O O R D I N A T E S

The simplex used in the formulation of the GenSVM loss function is a regular K-
simplex in RK−1 with distance 1 between each pair of vertices, which is centered
at the origin. Since these requirements alone do not uniquely define the simplex
coordinates in general, it will be chosen such that at least one of the vertices lies
on an axis. The 2-simplex in R1 is uniquely defined with the coordinates − 1

2 and
+ 1

2 . Using these requirements, it is possible to define a recursive formula for UK ,
the simplex coordinate matrix of the K-simplex in RK−1:

UK =
[

UK−1 1t
0′ s

]
, with U2 =

[
− 1

2
1
2

]
. (2.31)

Note that the matrix UK has K rows and K −1 columns. Since the simplex is
centered at zero it holds that the elements in each column sum to 0, implying
that s = −(K −1)t. Denote by u′

i the i-th row of UK and by ũ′
i the i-th row of

UK−1, then it follows from the edge length requirement that,

‖u′
i −u′

K‖2 = ‖ũ′
i −0′+ t− s‖2 = ‖ũ′

i‖2 + (t− s)2 = 1, ∀i 6= K . (2.32)

From the requirement of equal distance from each vertex to the origin it follows
that ‖u′

i‖2 = ‖u′
K‖2 and ‖ũ′

i‖2 + t2 = s2, ∀i 6= K . Combining these two expressions
yields the equation 2s2−2st−1= 0. Substituting s =−(K −1)t and choosing s > 0
and t < 0 gives:

t = −1p
2K(K −1)

, s = K −1p
2K(K −1)

. (2.33)

Note that using K = 2 in these expressions gives t =− 1
2 and s = 1

2 , as expected.
The recursive relationship defined above then reveals that the first K−1 elements

43



in column K −1 of the matrix are equal to t, and the K-th element in column
K −1 is equal to s. This can then be generalized for an element ukl in row k and
column l of UK , yielding the expression given in (2.1).

2.B D E T A I L S O F I T E R A T I V E M A J O R I Z A T I O N

In this section a brief introduction to iterative majorization is given, following the
description of Voss and Eckhardt (1980). The section concludes with a note on step
doubling, a common technique to speed up quadratic majorization algorithms.

Given a continuous function f :X→R with X ⊆Rd , construct a majorization
function g(x, x) such that

f (x)= g(x, x), (2.34)

f (x)≤ g(x, x) for all x ∈X, (2.35)

with x ∈X a so-called supporting point. In general, the majorization function is
constructed such that its minimum can easily be found, for instance by choosing
it to be quadratic in x. If f (x) is differentiable at the supporting point, the above
conditions imply ∇ f (x) =∇g(x, x). The following procedure can now be used to
find a stationary point of f (x),

1. Let x = x0, with x0 a random starting point.

2. Minimize g(x, x) with respect to x, such that x+ = argmin g(x, x).

3. If f (x)− f (x+)< ε f (x+) stop, otherwise let x = x+ and go to step 2.

In this algorithm ε is a small constant. Note that f (x) must be bounded from below
on X for the algorithm to converge. In fact, the following sandwich inequality
can be derived (De Leeuw, 1993),

f (x+)≤ g(x+, x)≤ g(x, x)= f (x). (2.36)

This inequality shows that if f (x) is bounded from below the iterative majorization
algorithm achieves global convergence to a stationary point of the function (Voss
and Eckhardt, 1980). The iterative majorization algorithm is illustrated in Figure
2.9, where the majorization functions are shown as a quadratic function. As can
be seen from the illustration, the sequence of supporting points {xr} converges
to the stationary point x∗ of the function f (x). In practical situations, this
convergence is to a local minimum of f (x).

For quadratic majorization the number of iterations can often be reduced
by using a technique known as step doubling (De Leeuw and Heiser, 1980).
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FIGURE 2.9 – One-dimensional graphical illustration of the iterative ma-
jorization algorithm, adapted from De Leeuw (1988). The minimum of a
majorization function g(x, xr) provides the supporting point for the next ma-
jorization function g(x, xr+1). The sequence of supporting points {xr} converges
towards the stationary point x∗ if f (x) is bounded from below, as is the case
here.

Step doubling reduces the number of iterations by using x = xr+1 = 2x+− xr as
the next supporting point in Step 3 of the algorithm, instead of x = xr+1 = x+.
Intuitively, step doubling can be understood as stepping over the minimum of the
majorization function to the point lying directly “opposite” the supporting point x
(see also Figure 2.9). Note that the guaranteed descent of the IM algorithm still
holds when using step doubling, since f (2x+− x) ≤ g(2x+− x, x) = g(x, x) = f (x).
In practice, step doubling reduces the number of iterations by half. A caveat of
using step doubling is that the distance to the stationary point can be increased
if the initial point is far from this point. Therefore, in practical applications, a
burn-in should be used before step doubling is applied.
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2.C H U B E R H I N G E M A J O R I Z A T I O N

In this appendix, the majorization function will be derived of the Huber hinge
error raised to the power p. Thus, a quadratic function g(x, x)= ax2 −2bx+ c is
required, which is a majorization function of

f (x)= hp(x)=





(
1− x− κ+1

2

)p
if x ≤−κ

1
(2(κ+1))p (1− x)2p if x ∈ (−κ,1]

0 if x > 1,

(2.37)

with p ∈ [1,2]. Each piece of f (x) provides a possible region for the supporting
point x. These regions will be treated separately, starting with x ∈ (−κ,1].

Since the majorization function must touch f (x) at the supporting point, we
can solve f (x)= g(x, x) and f ′(x)= g′(x, x) for b and c to find

b = ax+ p
1− x

(
1− xp
2(κ+1)

)2p
, (2.38)

c = ax2 +
(
1+ 2px

1− x

)(
1− xp
2(κ+1)

)2p
, (2.39)

whenever x ∈ (−κ,1]. Note that since p ∈ [1,2] the function f (x) can become
proportional to a fourth power on the interval x ∈ (−κ,1]. The upper bound of the
second derivative of f (x) on this interval is reached at x =−κ. Equating f ′′(−κ)
to g ′′(−κ, x)= 2a and solving for a yields

a = 1
4 p(2p−1)

(
κ+1

2

)p−2
. (2.40)

Figure 2.10(a) shows an illustration of the majorization function when x ∈ (−κ,1].

For the interval x ≤−κ the following expressions are found for b and c using
similar reasoning as above

b = ax+ 1
2 p

(
1− x− κ+1

2

)p−1
, (2.41)

c = ax2 + px
(
1− x− κ+1

2

)p−1
+

(
1− x− κ+1

2

)p
. (2.42)

To obtain the largest possible majorization step it is desired that the minimum
of the majorization function is located at x ≥ 1, such that g(xmin, x) = 0. This
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2. GenSVM
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hp(x), g(x, x)

(a)
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x

hp(x), g(x, x)

hp(x)
g(x, x)

(b)

FIGURE 2.10 – Graphical illustration of the majorization of the function
f (x)= hp(x). Figure (a) shows the case where x ∈ (−κ,1], whereas (b) shows
the case where x ≤ (p + κ − 1)/(p −2). In both cases p = 1.5. It can be seen
that in (b) the minimum of the majorization function lies at x > 1, such that
the largest possible majorization step is obtained.

requirement yields c = b2/a, which gives

a = 1
4 p2

(
1− x− κ+1

2

)p−2
. (2.43)

Note however that due to the requirement that f (x) ≤ g(x, x) for all x ∈ R, this
majorization is not valid for all values of x. Solving the requirement for the
minimum of the majorization function, g(xmin, x)= 0 for x yields

x ≤ p+κ−1
p−2

. (2.44)

Thus, if x satisfies this condition, (2.43) can be used for a, whereas for cases
where x ∈ ((p+κ−1)/(p−2),−κ], the value of a given in (2.40) can be used. Figure
2.10(b) shows an illustration of the case where x ≤ (p+κ−1)/(p−2).

Next, a majorization function for the interval x > 1 is needed. Since it has been
derived that for the interval x ≤ (p+κ−1)/(p−2) the minimum of the majorization
function lies at x ≥ 1, symmetry arguments can be used to derive the majorization
function for x > 1, and ensure that it is also tangent at x = (px+κ−1)/(p−2). This
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TABLE 2.4 – Overview of quadratic majorization coefficients for different
pieces of hp(x), depending on x.

Region a b c

x ≤ p+κ−1
p−2

(2.43) (2.41) (2.42)

x ∈
(

p+κ−1
p−2

,−κ
]

(2.40) (2.41) (2.42)

x ∈ (−κ,1] (2.40) (2.38) (2.39)

x > 1, p 6= 2 (2.45) (2.46) (2.47)

x > 1, p = 2 (2.40) ax ax2

yields the coefficients

a = 1
4 p2

(
p

p−2

(
1− x− κ+1

2

))p−2
, (2.45)

b = a
(

px+κ−1
p−2

)
+ 1

2

(
p

p−2

(
1− x− κ+1

2

))p−1
, (2.46)

c = a
(

px+κ−1
p−2

)2
+ p

(
px+κ−1

p−2

)(
p

p−2

(
1− x− κ+1

2

))p−1
(2.47)

+
(

p
p−2

(
1− x− κ+1

2

))p
.

Finally, observe that some of the above coefficients are invalid if p = 2. How-
ever, since the upper bound on the interval x ∈ (−κ,1] given in (2.40) is still valid
if p = 2, it is possible to do a separate derivation with this value for a to find for
x > 1, b = ax and c = ax2. For the other regions the previously derived coefficients
still hold. Table 2.4 gives an overview of the various coefficients depending on
the location of x.

2.D K E R N E L S I N G E N S V M

To included kernels in GenSVM it is necessary to perform a preprocessing step
on the kernel matrix and a postprocessing step on the obtained parameters. Let
k : Rm ×Rm → R+ denote a positive definite kernel satisfying Mercer’s theorem,
and let Hk denote the corresponding reproducing kernel Hilbert space. Further-
more, define a feature mapping φ : Rm →Hk as φ(x) = k(x, ·), such that by the
reproducing property of k it holds that k(xi,x j)= 〈φ(xi),φ(x j)〉Hk .
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2. GenSVM

Using this, the kernel matrix K is defined as the n×n matrix with elements
k(xi,x j) on the i-th row and j-th column. Thus, if Φ denotes the n× l matrix with
rows φ(xi) for i = 1, . . . ,n and l ∈ [1,∞], then K =ΦΦ′. Note that it depends on
the chosen kernel whether Φ is finite dimensional. However, the rank of Φ can
still be determined through K, since r = rank(Φ)= rank(K)≤min(n, l).

Now, let the reduced singular value decomposition of Φ be given by

Φ=PΣQ′, (2.48)

where P is n× r, Σ is r× r, and Q is l× r. Note that here, P′P= Ir, Q′Q= Ir, and
Σ is diagonal. Under the mapping X→Φ the simplex space vectors become

S=ΦW+1t′ =PΣQ′W+1t′ =MQ′W+1t′. (2.49)

Here W is l× (K −1) to correspond to the dimensions of Φ, and the n× r matrix
M=PΣ has been introduced. In general W cannot be determined, since l might
be infinite. This problem can be solved as follows. Decompose W in two parts,
W=W1 +W2, where W1 is in the linear space of Q and W2 is orthogonal to that
space, such that W1 =QQ′W and W2 = (Il −QQ′)W. Then it follows that

S=MQ′W+1t′

=MQ′(W1 +W2)+1t′

=MQ′(W1 + (Il −QQ′)W)+1t′

=MQ′W1 +M(Q′−Q′QQ′)W+1t′

=MQ′W1 +M(Q′−Q′)W+1t′

=MQ′W1 +1t′,

where it has been used that Q′Q = Ir. If the penalty term of the GenSVM loss
function is considered, it is found that

Pλ(W)=λtr W′W=λtr W′
1W1 +λtr W′

2W2, (2.50)

since
W′

1W2 =W′QQ′(Il −QQ′)W=W′QQ′W−W′QQ′W=O. (2.51)

Here again it has been used that Q′Q= Ir, and O is defined as a (K −1)× (K −1)
dimensional matrix of zeroes. Note that the penalty term depends on W2 whereas
the simplex vectors S do not. Therefore, at the optimal solution it is required
that W2 is zero, to minimize the loss function.
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Since W1 is still l× (K −1) dimensional with l possibly infinite, consider the
substitution W1 =QΩ, with Ω an r× (K −1) matrix. Then the penalty term is

Pλ(W1)=λtr W′
1W1 =λtr Ω′Q′QΩ=λtr Ω′Ω= Pλ(Ω). (2.52)

Note also that

S=MQ′W1 +1t′ =MQ′QΩ+1t′ =MΩ+1t′. (2.53)

The question remains on how to determine the matrices P and Σ, given that
the matrix Φ cannot be determined explicitly. These matrices can be determined
by the eigendecomposition of K, where K=PΣ2P′. In the case where r < n, Σ2

contains only the first r eigenvalues of K, and P the corresponding r columns.
Hence, if K is not of full rank, a dimensionality reduction is achieved in Ω. The
complexity of finding the eigendecomposition of the kernel matrix is O(n3).

Since the distances q(k j)
i in the GenSVM loss function can be written as

q(k j)
i = s′iδk j it follows that the errors can again be calculated in this formulation.

Finally, to predict the simplex space vectors of a test set X2 the following is used.
Let Φ2 denote the feature space mapping of X2, then

S2 =Φ2W1 +1t′

=Φ2QΩ+1t′

=Φ2QΣP′PΣ−1Ω+1t′

=Φ2Φ
′PΣ−1Ω+1t′

=K2PΣ−1Ω+1t′

=K2MΣ−2Ω+1t′,

where K2 =Φ2Φ
′ is the kernel matrix between the test set and the training set,

and it was used that ΣP′PΣ−1 = Ir, and Φ′ =QΣP′ by definition.

With the above expressions for S and Pλ(Ω), it is possible to derive the
majorization function of the loss function for the nonlinear case. The first order
conditions can then again be determined, which yields the following system

([
1′

M′

]
A

[
1 M

]
+λ

[
0 0′

0 Ir

])[
t′

Ω

]
=

[
1′

M′

]
A

[
1 M

][
t′

Ω

]
+

[
1′

M′

]
B. (2.54)

This system is analogous to the system solved in linear GenSVM. In fact, it can
be shown that by writing Z= [1 M] and V= [t′Ω]′, this system is equivalent to
(2.23). This property is very useful for the implementation of GenSVM, since
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2. GenSVM

nonlinearity can be included by simply adding a pre- and post-processing step to
the existing GenSVM algorithm.

2.E A D D I T I O N A L S I M U L A T I O N R E S U LT S

Tables 2.5 and 2.6 respectively show the predictive accuracy rates and ARI scores
on each dataset averaged over each of the five test folds. For readability all scores
are rounded to four decimal digits, however identifying the classifier with the
highest score was done on the full precision scores. As can be seen, the choice of
performance metric has an effect on which classification method has the highest
classification performance. Regardless of the performance metric the tables show
that MSVM2 and W&W never achieve the maximum classification performance
on a dataset. Note that conclusions drawn from tables of performance scores are
quite limited and the results presented in Section 2.6 provide more insight into
the performance of the various classifiers.

Table 2.7 shows the computation time averaged over the five nested CV folds
for each dataset and each method. In the grid search GenSVM considered 342
hyperparameter configurations versus 19 configurations for the other methods.
Despite this difference GenSVM outperformed the other methods on five datasets,
DAG outperformed other methods on four datasets, OvO on two, and LibLinear
C&S was fastest on the remaining two datasets. To illustrate the effect of the
larger grid search in GenSVM on the computation time, Table 2.8 shows the
average computation time per hyperparameter configuration. This table shows
that GenSVM is faster than other methods on nine out of thirteen datasets, which
illustrates the influence of warm starts in the GenSVM grid search.
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3
Fast Meta-Learning for Adaptive Hierarchical
Classifier Design

G.J.J. van den Burg and A.O. Hero III

Abstract

We propose a new splitting criterion for a meta-learning approach to multiclass
classifier design that adaptively splits the classes into a tree-structured hierarchy
of increasingly difficult binary classification problems. The classification tree
is constructed from empirical estimates of the Henze-Penrose bounds on the
pairwise Bayes misclassification rates that rank the binary subproblems in terms
of difficulty of classification. The proposed empirical estimates of the Bayes error
rate are computed from the minimal spanning tree of the samples from each
pair of classes. Moreover, a meta-learning technique is presented for quantifying
the one-vs-rest Bayes error rate for each individual class from a single MST on
the entire dataset. Extensive simulations on benchmark datasets show that the
proposed hierarchical method can often be learned much faster than competing
methods, while achieving competitive accuracy.

This chapter is based on Van den Burg and Hero (2017).
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3.1 I N T R O D U C T I O N

The Bayes error rate (BER) is a central concept in the statistical theory of clas-
sification. It represents the error rate of the Bayes classifier, which assigns a
label to an object corresponding to the class with the highest posterior probability.
By definition, the Bayes error represents the smallest possible average error
rate that can be achieved by any decision rule (Wald, 1947). Because of these
properties, the BER is of great interest both for benchmarking classification
algorithms as well as for the practical design of classification algorithms. For ex-
ample, an accurate approximation of the BER can be used for classifier parameter
selection, data dimensionality reduction, or variable selection. However, accurate
BER approximation is difficult, especially in high dimension, and thus much
attention has focused on tight and tractable BER bounds. This chapter proposes
a model-free approach to designing multiclass classifiers using a bias-corrected
BER bound estimated directly from the multiclass data.

There exists several useful bounds on the BER that are functions of the class-
dependent feature distributions. These include information theoretic divergence
measures such as the Chernoff α-divergence (Chernoff, 1952), the Bhattacharyya
divergence (Kailath, 1967), or the Jensen-Shannon divergence (Lin, 1991). Al-
ternatively, arbitrarily tight bounds on performance can be constructed using
sinusoidal or hyperbolic approximations (Hashlamoun et al., 1994, Avi-Itzhak
and Diep, 1996). These bounds are functions of the unknown class-dependent
feature distributions.

Recently, Berisha et al. (2016) introduced a divergence measure belonging
to the family of f -divergences which tightly bounds the Bayes error rate in the
binary classification problem. The bounds on the BER obtained with this measure
are tighter than bounds derived from the Bhattacharyya or Chernoff bounds.
Moreover, this divergence measure can be estimated nonparametrically from
the data without resorting to density estimates of the distribution functions.
Inspired by the Friedman-Rafsky multivariate runs test (Friedman and Rafsky,
1979), estimation is based on computing the Euclidean minimal spanning tree
(MST) of the data, which can be done in approximately O(n logn) time. In this
chapter we propose improvements to this estimator for problems when there are
unequal class priors and apply the improved estimator to the adaptive design of
a hierarchical multiclass classifier. Furthermore, a fast method is proposed for
bounding the Bayes error rate of individual classes which only requires computing
a single minimal spanning tree over the entire set of samples. Thus our proposed
method is faster than competing methods that use density plug-in estimation
of divergence or observed misclassification rates of algorithms, such as SVM or
logistic regression, which involve expensive parameter tuning.
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3. Meta-Learning and Hierarchical Classification

Quantifying the complexity of a classification problem has been of significant
interest (Ho and Basu, 2002) and it is clear that a fast and accurate estimate
of this complexity has many practical applications. For instance, an accurate
complexity estimator allows the researcher to assess a priori whether a given
classification problem is difficult to classify or not. In a multiclass problem, a pair
of classes which are difficult to disambiguate could potentially be merged or could
be designated for additional data collection. Moreover, an accurate estimate of
the BER could be used for variable selection, an application that was explored
previously in Berisha et al. (2016). In Section 3.3 further applications of the BER
estimates to multiclass classification are presented and evaluated.

There are many methods available for the design of multiclass classification
algorithms, including: logistic regression (Cox, 1958); support vector machines
(Cortes and Vapnik, 1995); and neural networks (McCulloch and Pitts, 1943).
It is often the case that classifier performance will be better for some classes
than for others, for instance due to sample imbalance in the training set. Often
classifier designs apply weights to the different classes in order to reduce the
effect of such imbalances on average classifier accuracy (Lu et al., 1998, Qiao
and Liu, 2009). We take a different and more general approach that incorporates
an empirical determination of the relative difficulties of classifying between
different classes. Accurate empirical estimates of the BER are used for this
purpose. A multiclass classifier is presented in Section 3.4 that uses MST-based
BER estimates to create a hierarchy of binary subproblems that increase in
difficulty as the algorithm progresses. This way, the classifier initially works
on easily decidable subproblems before moving on to more difficult multiclass
classification problems.

This chapter is organized as follows. The theory of the nonparametric Bayes
error estimator of Berisha et al. (2016) will be reviewed in Section 3.2. We will
introduce a bias correction for this estimator, motivate the use of the estimator for
multiclass classification, and discuss computational complexity. Section 3.3 will
introduce applications of the estimator to meta-learning in multiclass classifica-
tion. A novel hierarchical classification method will be introduced and evaluated
in Section 3.4. Section 3.5 provides concluding remarks.

3.2 A N I M P R O V E D B E R E S T I M A T O R

In this section the theory of the Henze-Penrose estimator of the Bayes error rate
will be described. A central concept underlying this estimator is the minimal
spanning tree. For the reader unfamiliar with this subject, a brief primer is
given in the next section. Subsequently, the BER estimator will be described and
an improvement of the estimator will be derived for the case where class prior
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probabilities are unequal. Next, the application of the estimator in multiclass
classification problems is considered. Finally, computational considerations and
robustness analyses are presented.

3.2.1 Primer on Minimal Spanning Trees

Let G = (V ,E,w) denote a weighted graph with a set of vertices V , a set of edges
E, and a weight function w : E →R. Each edge e ∈ E connects two vertices of the
set V and can therefore be denoted by e i j = (vi,v j). It is assumed here that graphs
are undirected, such that e i j = e ji. Furthermore, only graphs are considered
where the set of edges is unique and where there are no loops that connect a
vertex to itself. Finally, the weight function w assigns a weight to each edge e ∈ E.
A common choice for the weight function is the Euclidean distance between the
vertices, but other functions can also be used.

With this definition, a complete graph is a graph where each vertex in V is
connected to each other vertex. By denoting the number of vertices with n = |V |
the number of edges in a complete graph can be written as 1

2 n(n−1). In general,
every graph with the same vertex set V as the complete graph but with a different
edge set is called a subgraph of the complete graph. Two types of subgraphs
can then be distinguished, namely connected and unconnected subgraphs. A
connected subgraph is one in which there exists a path from each vertex to each
other vertex. Among the connected subgraphs of the complete graphs, a further
distinction can be made between graphs with and without so-called cycles. A
cycle in a graph occurs when there is more than one path between a pair of
vertices. Connected graphs without cycles are called trees and trees that connect
all vertices in G are called spanning trees of G. The number of edges in a
spanning tree thus equals n−1.

The weight of a spanning tree can be computed as the sum of the weights
of each of its edges. If the spanning tree is denoted by T = (V ,E′,w) where E′

is the set of edges in the spanning tree, the weight of the spanning tree can be
computed using the weight function w as

W =
∑

e∈E′
w(e). (3.1)

A natural question is then to find the spanning tree of a graph with the smallest
total weight W . This tree is called the minimal spanning tree. Classic algorithms
for constructing the minimal spanning tree of a graph are the algorithms by
Borůvka (1926), Prim (1957), and Kruskal (1956). In the following section, the
minimal spanning tree of a dataset will play an important role.
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3. Meta-Learning and Hierarchical Classification

FIGURE 3.1 – Illustration of the Bayes error rate for a binary classification
problem where the density functions are given by univariate Gaussians. The
BER corresponds to the shaded area.

3.2.2 Estimating the Bayes error rate

Consider the binary classification problem on a dataset D= {(xi, yi)}i=1,...,n, where
xi ∈X ⊆Rd and yi ∈ {1,2}. Denote the multivariate density functions for the two
classes by f1(x) and f2(x) and the prior probabilities by p1 and p2 = 1− p1,
respectively. Following Fukunaga (1990) the Bayes error rate of this binary
classification problem can be expressed as

Pe( f1, f2)=
∫

min {p1 f1(x), p2 f2(x)} dx. (3.2)

The BER gives the minimum average probability of error that can be obtained by
any classifier (Wald, 1947). Figure 3.1 illustrates the concept of the BER for a
one-dimensional binary classification problem.

Recently, Berisha et al. (2016) derived a tight bound on the BER that can be
estimated directly from the data without a parametric model for the density or
density estimation. This bound is based on a divergence measure introduced by
Berisha and Hero (2015), defined as

DHP ( f1, f2)= 1
4p1 p2

[∫
(p1 f1(x)− p2 f2(x))2

p1 f1(x)+ p2 f2(x)
dx− (p1 − p2)2

]
, (3.3)

and called the Henze-Penrose divergence, as it is motivated by an affinity measure
defined by Henze and Penrose (1999). In Berisha and Hero (2015) it was shown
that (3.3) is a proper f -divergence as defined by Csiszár (1975).

Estimation of the Henze-Penrose (HP) divergence is based on the multivariate
runs test proposed by Friedman and Rafsky (1979) and convergence of this test
was studied by Henze and Penrose (1999). Let Xk = {

xi ∈X ⊆Rd : yi = k
}

with
k ∈ {1,2} denote the multidimensional features from two classed. Defined the
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class sample sizes nk = |Xk|, k ∈ {1,2}. Let the combined sample be denoted by
X = X1 ∪X2 where n = |X| = n1 + n2 is the total number of samples from both
classes. Define the complete weighted graph G over X as the graph connecting all
n nodes {xi}n

i=1 with edge weights |e i j| =
∥∥xi −x j

∥∥ equal to Euclidean distances.
The Euclidean minimal spanning tree that spans X, denoted by T, is defined as
the subgraph of G that is both connected and whose sum of edge weights is the
smallest possible. The Friedman-Rafsky test statistic equals the number of edges
in T that connect an observation from class 1 to an observation from class 2 and
is denoted by R1,2 = R(X1,X2)=

∣∣{e i j = (xi,x j) ∈ T : xi ∈X1,x j ∈X2
}∣∣.

Henze and Penrose (1999) show that if n1 → ∞ and n2 → ∞ in a linked
manner such that n1/(n1 +n2)→ δ ∈ (0,1) then,

R1,2

n1 +n2
→ 2p1 p2

∫
f1(x) f2(x)

p1 f1(x)+ p2 f2(x)
dx almost surely.1 (3.4)

Based on the above result, Berisha et al. (2016) show that under the same
conditions

1− nR1,2

2n1n2
→ DHP ( f1, f2) almost surely. (3.5)

Thus, the number of cross connections between the classes in the Euclidean MST
is inversely proportional to the divergence between the respective probability
density functions of these classes. Figure 3.2 illustrates this result for a hypo-
thetical dataset with two-dimensional Gaussian distributions. As can be seen,
distributions that have a larger overlap – and therefore a lower divergence – have
a larger number of cross connections in the MST.

Finally, the HP-divergence can be used to bound the Bayes error rate, Pe( f1, f2),
following Theorem 2 of Berisha et al. (2016)

1
2 − 1

2

√
uHP ( f1, f2)≤ Pe( f1, f2)≤ 1

2 − 1
2 uHP ( f1, f2), (3.6)

where
uHP ( f1, f2)= 4p1 p2DHP ( f1, f2)+ (p1 − p2)2. (3.7)

Since uHP ( f1, f2) is a function of DHP ( f1, f2), the above convergence result (3.5)
can be extended to uHP ( f1, f2) to find

1− 2R1,2

n1 +n2
→ uHP ( f1, f2) (3.8)

1Almost sure convergence implies that a sequence of random variables Xn converges to X with
probability 1, i.e. Pr[limn→∞ Xn = X ]= 1.
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3. Meta-Learning and Hierarchical Classification

(a) large separation (b) small separation

FIGURE 3.2 – Illustration of the relationship between the number of cross
connections in the MST and the Henze-Penrose divergence measure. In the
large separation case (a) the number of cross connections is smaller than in
the small separation case (b). This corresponds respectively with a small and
a large divergence between the class distributions. Adapted from Berisha
et al. (2016).

with the same convergence criteria. Averaging these bounds yields an estimate
of the BER given by

P̂e( f1, f2)= 1
2 − 1

4

√
uHP ( f1, f2)− 1

4 uHP ( f1, f2). (3.9)

In the following, this estimator will be referred to as the HP-estimator of the
BER.

3.2.3 A modified HP-estimator for unequal class priors

It is important to consider the performance of the HP-estimator in practice. Due
to the construction of the Friedman-Rafsky statistic R1,2 it is possible that in
the finite sample case a value of R1,2 is obtained which exceeds n/2. Because
this would give a negative estimate for uHP the following correction is typically
applied in practice,

R′
1,2 =min{n/2,R1,2}. (3.10)

Furthermore, since there will always be at least one cross-connection in the MST,
R1,2 should be reduced by 1 to ensure that in the perfectly separable case DHP = 1
as expected.
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To illustrate the performance of the HP-estimator in practice, consider a
binary classification problem with n = n1 + n2 = 1000 samples. The samples
are drawn from two independent bivariate Gaussian distributions with equal
covariance matrices for which the density functions are known. For this scenario
the true BER can be computed exactly as

Pe( f1, f2)= 1
2
− p1

2
erf

(
log(p1/p2)+ 1

2η√
2η

)
+ p2

2
erf

(
log(p1/p2)− 1

2η√
2η

)
, (3.11)

with
η= (

µ2 −µ1
)T
Σ−1 (

µ2 −µ1
)

(3.12)

following Fukunaga (1990). In addition to the true BER and the HP-estimator,
it is also interesting to consider the performance of the commonly used Bhat-
tacharyya bound of the BER (Bhattacharyya, 1946, Kailath, 1967), given by

PBC = 1
4 + 1

2
p

p1 p2ρ− 1
4

√
1−4p1 p2ρ2 (3.13)

where ρ is the Bhattacharyya coefficient given by

ρ( f1, f2)= 2
∫ √

p1 p2 f1(x) f2(x)dx. (3.14)

For multivariate Gaussians ρ can be computed exactly using the true under-
lying density functions (Kailath, 1967). This illustrates the problem of using the
Bhattacharyya estimate of the BER in practice, because the exact underlying
densities are typically unknown. Figure 3.3(a) shows that the HP-estimator is
closer to the true BER than the Bhattacharyya bound. This result was illustrated
by Berisha et al. (2016) for p1 = p2 and is confirmed here for p1 6= p2.

However, Figure 3.3(a) also shows that a significant bias occurs in the HP-
estimate of the BER when the distance between classes is small. This bias can
be corrected in a similar fashion as the correction introduced above in (3.10).
Considering that Pe = min{p1, p2} if f1 → f2, the solution of the equation P̂e =
min{p̂1, p̂2} for R1,2 gives the correction for the bias as

R′′
1,2 =min{γ,R1,2}, (3.15)

with
γ= 2nmin{p̂1, p̂2}− 3

4 n+ 1
4 n

√
9−16min{p̂1, p̂2}. (3.16)

where p̂1 = n1/n and p̂2 = n2/n are estimates of the true prior probabilities.
Figure 3.3(b) shows the effect of this bias correction on the accuracy of the HP-
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FIGURE 3.3 – Illustration of the estimates of the Bayes error rate for two
different values of the prior probability p and for spherical bivariate Gaussian
distributions with increasing separation between the classes as measured by
the Euclidean distance between the class means,

∥∥µ1 −µ2
∥∥. The true BER,

the Bhattacharyya bound (PBC) requiring the true class distributions, and the
HP-estimator (P̂e) based on an empirical sample are shown. Figures (a) and
(b) show the estimates for p = 0.15 and p = 1/3, respectively with and without
the bias correction on the HP-estimator. The HP-estimator was implemented
using n = 1000 samples (n1 = pn and n2 = n−n1) and averaged over 200
trials.

estimator. As can be seen, the bias correction significantly improves the accuracy
of the HP-estimator for when the class distributions are not well separated.

3.2.4 Multiclass classification

Here the HP-estimator is applied to multiclass classification problems by extend-
ing the bias corrected HP-estimator to a multiclass Bayes error rate. The original
multiclass HP-estimator has been defined by Wisler et al. (2016) and we show
how the framework can be applied to hierarchical multiclassifier design.

Consider a multiclass problem with K classes with xi ∈ X ⊆ Rd and yi ∈
{1, . . . ,K}, with prior probabilities pk and density functions fk(x) for k = 1, . . . ,K
such that

∑
k pk = 1. Then, the BER can be estimated for each pair of classes
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using the bias-corrected HP-estimator P̂e( fk, f j) presented in (3.15). The binary
classification problem with the largest BER estimate is defined as most difficult.

Recall that the largest BER that can be achieved in a binary classification
problem with unequal class priors is equal to the value of the smallest prior
probability. This makes it difficult to compare empirical estimates of the BER
when class sizes are imbalanced. For example, in a classification problem with
three classes where p1 = 0.2 and p2 = p3 = 0.4, the binary problems involving
class 1 will always have a smaller maximum probability of error, simply because it
has a smaller prior probability. To correct for this, the HP-estimator for pairwise
classification BERs can be normalized for class sizes using

P̂ ′
e( fk, f l)=

P̂e( fk, f l)
min{p̂k, p̂l}

. (3.17)

This normalization places the HP-estimate in the interval [0,1] and makes
it possible to more accurately compare the BER estimates of different binary
problems.

In practice it can also be of interest to understand how difficult it is to
discriminate each individual class. By reducing the multiclass problem to a
One-vs-Rest classification problem, it is straightforward to define a confusion rate
for a given class k. This represents the fraction of instances that are erroneously
assigned to class k and the fraction of instances which are truly from class k that
are assigned to a different class. Formally, define the confusion rate for class k as

Ck(y, ŷ)= |{i : ŷi = k, yi 6= k}|+ |{i : ŷi 6= k, yi = k}|
n

, (3.18)

with ŷi the predicted class for instance i. Recall that the Bayes error rate
is the error rate of the Bayes classifier, which assigns an instance x to class
k = argmaxl pl f l(x). Hence, the BER for a single class k equals the error of
assigning to a class l 6= k when the true class is k and the total error of assigning
to class k when the true class is c 6= k, thus

Pe,k =
∫

max
l 6=k

{pl f l (x)}≥pk fk(x)

pk fk(x)dx +
∑

c 6=k

∫

max
l 6=k

{pl f l (x)}<pk fk(x)

pc fc(x)dx (3.19)

Figure 3.4 illustrates this error for a one-dimensional multiclass classification
problem.

We make two observations about this One-vs-Rest Bayes error rate (OvR-
BER). First, the OvR-BER for class k is smaller than the sum of the binary BERs
for the problems involving class k (see Appendix 3.A). Second, the OvR-BER
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3. Meta-Learning and Hierarchical Classification

A

B

C

FIGURE 3.4 – Illustration of the One-vs-Rest Bayes error rate for a multiclass
classification problem with 3 classes. The OvR-BER of class A corresponds
to the shaded area.

can be estimated using the Henze-Penrose divergence with R(Xk,
⋃

l 6=k Xl), which
yields the estimate P̂e,k. A computational advantage of using the OvR-BER in
multiclass problems is that the MST only has to be computed only once on the set
X, since the union of Xk and ∪l 6=kXl is equal to X. Therefore, R(Xk,

⋃
l 6=k Xl) can

be computed for all k from the single MST on X by keeping track of the labels of
each instance.

3.2.5 Computational Considerations

The construction of the minimal spanning tree lies at the heart of the HP-
estimator of the BER, so it is important to use a fast algorithm for the MST
construction. Since the HP-estimator is based on the Euclidean MST the dual-
tree algorithm by March et al. (2010) can be applied. This algorithm is based
on the construction of Borůvka (1926) and implements the Euclidean MST in
approximately O(n logn) time. For larger datasets it can be beneficial to partition
the space into hypercubes and construct the MST in each partition.

A simple way to improve the robustness of the HP-estimator is to use multiple
orthogonal MSTs and average the number of cross-connections (Friedman and
Rafsky, 1979). Orthogonal MSTs have no common edges between them: the first
MST is constructed on all edges, the second is constructed on all edges except
those in the first MST, the third is constructed on all edges except those in the
previous two MSTs, etc. Computing orthogonal MSTs is not straightforward
in the dual-tree algorithm of March et al. (2010), but is easy to implement in
MST algorithms that use a pairwise distance matrix such as that of Whitney
(1972). Figure 3.5 shows the empirical variance of the HP-estimator for different
numbers of orthogonal MSTs as a function of the separation between the classes.
As expected, the variance decreases as the number of orthogonal MSTs increases,
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FIGURE 3.5 – Variance of the HP-estimator of the BER for varying number of
orthogonal MSTs as a function of the separation between the classes. Results
are based on 500 repetitions of a binary classification problem with n = 1000,
d = 2, p1 = 0.33, where class distributions are bivariate spherical Gaussians
with different means.

although the benefit of including more orthogonal MSTs also decreases when
adding more MSTs. Therefore, 3 orthogonal MSTs are typically used in practice.

3.3 M E T A - L E A R N I N G O F O P T I M A L C L A S S I F I E R A C C U R A C Y

Applying the HP-estimator to meta-learning problems creates a number of op-
portunities to assess the difficulty of a classification problem before training a
classifier. For example, given a multiclass classification problem it may be useful
to know which classes are difficult to distinguish from each other and which
classes are easy to distinguish. Figure 3.6(a) shows an illustration of this for
handwritten digits in the well-known MNIST dataset (LeCun et al., 1998). This
figure shows a heat map where each square corresponds to an estimate of the
BER for a binary problem in the training set. From this figure it can be seen
that the digits 4 and 9 are difficult to distinguish, as well as the digits 3 and 5.
This information can be useful for the design of a classifier, to ensure for instance
that higher weights are placed on misclassifications of the more difficult number
pairs if correct classification of these pairs is of importance to the end-task. In
Figure 3.6(b) a similar heat map is shown based on misclassified instances of
LeNet-5 (LeCun et al., 1998) on the test set. This figure shows the symmetric
confusion matrix based on the 82 misclassified instances. As can be seen, this
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FIGURE 3.6 – Heat maps illustrating the difficulty of distinguishing between
different handwritten digits in the MNIST dataset of LeCun et al. (1998).
Brighter squares correspond to higher values. In (a) the heat map of the BER
estimates on the training data is shown. In (b) the heat map is shown of the
82 misclassifications made by LeNet-5 on the test data (LeCun et al., 1998).
From (a) it can be readily identified that the numbers 3 and 5 are difficult
to distinguish, as well as 4 and 9. Easy to distinguish number pairs are for
instance 6 and 7, and 0 and 1. This pattern is reflected in the results on the
test data shown in (b).

figure closely corresponds to the heat map on the training data, which confirms
the predictive accuracy of the HP-estimator for real data.

Another example of the accuracy of the BER estimates for multiclass classifi-
cation problems is given in Figure 3.7. In this figure, OvR-BER estimates P̂e,k

and class confusion rates Ck(y, ŷ) are shown for the Chess dataset (n = 28056,
d = 34, K = 18) obtained from the UCI repository (Bache and Lichman, 2013).
This dataset was split into a training dataset (70%) and a test dataset (30%) and
the OvR-BER estimates were computed on the training dataset. These estimates
are compared with the class error rates obtained from out-of-sample predictions
of the test dataset using GenSVM (Van den Burg and Groenen, 2016). This
figure shows that the OvR-BER estimates are accurate predictors of classification
performance. The classes that are relatively difficult to classify may benefit from
increasing misclassification weights.

The BER estimates can also be applied to feature selection and, in particular,
to the identification of useful feature transformations of the data. A feature
selection strategy based on forward selection was outlined in Berisha et al. (2016).
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FIGURE 3.7 – OvR-BER estimates and test set error rates for each class in
the Chess dataset. It can be seen that for most classes the OvR-BER estimate
is an accurate predictor for test set performance. For classes where there is a
difference between the BER and the test set error the BER generally gives a
lower bound on the test set performance. Test set results were obtained with
the GenSVM classifier (Van den Burg and Groenen, 2016).

At each feature selection stage, this algorithm adds the feature which gives
the smallest increase in the BER estimate. Berisha et al. (2016) show that
this feature selection strategy quickly yields a subset of useful features for the
classification problem.

Because the BER estimate is a fast and asymptotically consistent estimate
of a bound on classification performance, it is easy to try a number of potential
feature transformations and use the one with the smallest BER estimate in the
classifier. This can be useful both for traditional feature transformations such
as PCA (Pearson, 1901) and Laplacian Eigenmaps (Belkin and Niyogi, 2003),
but also for commonly used kernel transformations in SVMs. For a researcher
this can significantly reduce the time needed to train a classifier on different
transformations of the data. In a multiclass setting where the One-vs-One
strategy is used, one can even consider a different feature transformation for
each binary subproblem. When using a unified classification method one can
consider feature transformations which reduce the average BER estimate or the
worst-case BER estimate.

Note that a feature transformation which reduces the dimensionality of the
dataset without increasing the BER estimate can be considered beneficial, as
many classification methods are faster for low-dimensional datasets. For instance,
applying PCA with 2 components on the Chess dataset only slightly increases the
BER estimates for two classes, while remaining the same for the other classes.
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Thus, a classifier will likely achieve comparable accuracy with this transformed
dataset, but will be much faster to train since the dimensionality can be reduced
from d = 34 to d = 2.

3.4 H I E R A R C H I C A L M U LT I C L A S S C L A S S I F I C A T I O N

In this section a novel hierarchical multiclass SVM classifier is introduced which
is based on uncertainty clustering. The BER estimate can be considered a
measure of the irreducible uncertainty of a classification problem, as a high BER
indicates an intrinsically difficult problem. This can be used to construct a tree
of binary classification problems that increase in difficulty along the depth of the
tree. By fitting a binary classifier (such as an SVM) at each internal node of the
tree, a classification method is obtained which proceeds from the easier binary
subproblems to the more difficult binary problems.

Similar divide-and-conquer algorithms have been proposed (Schwenker and
Palm, 2001, Takahashi and Abe, 2002, Frank and Kramer, 2004, Vural and Dy,
2004, Tibshirani and Hastie, 2007, among others). See Lorena et al. (2008) for a
review. These approaches often apply a clustering method to create a grouping of
the dataset into two clusters, repeating this process recursively to form a binary
tree of classification problems. In Lorena and De Carvalho (2010) several empir-
ical distance measures are used as indicators of separation difficulty between
classes, which are applied in a bottom-up procedure to construct a classification
tree. Finally, in El-Yaniv and Etzion-Rosenberg (2010) the Jensen-Shannon
divergence is used to bound the BER with inequalities from Lin (1991) and a
classification tree is constructed using a randomized heuristic procedure. Unfor-
tunately, the Jensen-Shannon divergence implementation requires parametric
estimation of distribution functions. Moreover, for the equiprobable case the
upper bound on the BER obtained with the Jensen-Shannon divergence can
be shown to be less tight than that obtained with the HP-divergence (see Ap-
pendix 3.B). Because of this, these estimates of the BER may be less accurate
than those obtained with the proposed HP-estimator.

To construct the hierarchical classification tree a complete weighted graph
G = (V ,E,w) is created where the vertices correspond to the classes and the
weight of the edges equals the HP-estimate for that binary problem. Formally, let
V = {1, . . . ,K}, E = {(i, j) : i, j ∈V , i 6= j} and define the edge weight w(e) for e ∈ E
as w(e) = w(i, j) = P̂ ′

e( f i, f j). In the HP-estimator P̂ ′
e( f i, f j) the bias correction

(3.15) and the normalization (3.17) are used. By recursively applying min-cuts
to this graph a tree of binary classification problems is obtained which increase
in difficulty along the depth of the tree. Min-cuts on this weighted graph can be
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FIGURE 3.8 – Illustration of the min-cut procedure for a multiclass classifi-
cation problem with K = 7 classes. The first cut in (a) splits the vertices in the
set V into two sets, V0 and V1, which are used in a binary classifier. Figure (b)
illustrates the next step where both V0 and V1 are split further by cuts in the
complete graph for each subset.

computed using for instance the method of Stoer and Wagner (1997). Figure 3.8
illustrates this process for a multiclass classification problem with K = 7.

The tree construction can be described formally as follows. Starting with the
complete weighted graph with vertices V , apply a min-cut algorithm to obtain
the disjoint vertex sets V0 and V1 such that V0 ∪V1 =V . This pair of vertex sets
then forms a binary classification problem with datasets X0 = {xi ∈X : yi ∈V0} and
X1 = {xi ∈X : yi ∈V1}. Recursively applying this procedure to the sets V0 and V1

until no further splits are possible yields a tree of binary classification problems,
as illustrated in Figure 3.9.

In the remainder of this section the results of an extensive simulation study
are presented, which aims to evaluate the performance of this hierarchical
classifier on multiclass classification problems. The classifier that will be used in
each binary problem in the tree will be a linear support vector machine, but in
practice any binary classifier could be used in the algorithm. The implementation
of the hierarchical classifier based on the linear binary SVM will be called
SmartSVM.2

The experimental setup is comparable to that used in Van den Burg and
Groenen (2016), where a nested cross-validation (CV) approach is used to re-
duce bias in classifier performance (Stone, 1974). From each original dataset
five independent training and test datasets are generated. Subsequently, each

2The SmartSVM classifier and the meta-learning and BER estimation techniques presented in the
previous sections have been implemented in the smartsvm Python package.
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FIGURE 3.9 – Illustration of the tree induced by the graph cutting procedure
illustrated in Figure 3.8, for a hypothetical problem with K = 7 classes. Each
dashed line in the tree indicates a point where a binary classifier will be
trained.

classification method is trained using 10 fold CV on each of the training datasets.
Finally, the model is retrained on the entire training dataset using the optimal
hyperparameters and this model is used to predict the test set. In the experi-
ments 16 datasets are used of varying dimensions from which 80 independent
test sets are constructed. The train and test datasets were generated using a
stratified split, such that the proportions of the classes correspond to those in
the full dataset. Table 3.1 shows the descriptive statistics of each of the datasets
used. Datasets are collected from the UCI repository (Bache and Lichman, 2013)
and the KEEL repository (Alcalá et al., 2010).

SmartSVM will be compared to five other linear multiclass SVMs in these
experiments. Three of these alternatives are heuristic methods which use the
binary SVM as underlying classifier, while two others are single-machine multi-
class SVMs. One of the most commonly used heuristic approaches to multiclass
SVMs is the One vs. One (OvO) method (Kreßel, 1999) which solves a binary
SVM for each of the K(K −1) pairs of classes. An alternative is the One vs. Rest
(OvR) method (Vapnik, 1998) in which a binary SVM is solved for each of the
K −1 binary problems obtained by separating a single class from the others.
The directed acyclic graph (DAG) SVM was proposed by Platt et al. (2000) as
an extension of the OvO approach. It has a similar training procedure as OvO,
but uses a different prediction strategy. In the OvO method a voting scheme is
used where the class with the most votes from each binary classifier becomes
the predicted label. In contrast, the DAGSVM method uses a voting scheme
where the least likely class is voted away until only one remains. Finally, two
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TABLE 3.1 – Dataset summary statistics for the datasets used in the experi-
mental study. The final two columns denote the size of the smallest and the
largest class, respectively. Datasets marked with an asterisk are collected
from the KEEL dataset repository, all others are from the UCI repository.

Dataset Instances Features Classes minnk maxnk
abalone 4177 8 20 14 689
fars* 100959 338 7 299 42116
flare 1066 19 6 43 331
kr-vs-k 28056 34 18 27 4553
letter 20000 16 26 734 813
nursery 12960 19 4 330 4320
optdigits 5620 64 10 554 572
pageblocks 5473 10 5 28 4913
pendigits 10992 16 10 1055 1144
satimage 6435 36 6 626 1533
segment 2310 19 7 330 330
shuttle 58000 9 6 23 45586
texture* 5500 40 11 500 500
wine red 1599 12 5 18 681
wine white 4898 12 6 20 2198
yeast 1479 8 9 20 463

single-machine multiclass SVMs are also compared: the method by Crammer
and Singer (2002a) and GenSVM (Van den Burg and Groenen, 2016).

All methods are implemented in either C or C++, to ensure that speed of
the methods can be accurately compared. The methods that use a binary SVM
internally are implemented with LibLinear (Fan et al., 2008). LibLinear also
implements a fast solver for the method by Crammer and Singer (2002a) using
the algorithm proposed by Keerthi et al. (2008). For SmartSVM the Bayes error
rates and the corresponding classification tree were calculated once for each
training dataset as a preprocessing step. For most datasets the BERs were
computed based on three orthogonal MSTs using the algorithm of Whitney (1972).
For the two largest datasets (fars and shuttle) the BER was computed based
on a single MST using the algorithm of March et al. (2010). Computing these
MSTs was done in parallel using at most 10 cores. In the results on training
time presented below the training time of SmartSVM is augmented with the
preprocessing time.

The binary SVM has a cost parameter for the regularization term, which is
optimized using cross validation. The range considered for this parameter is
C ∈ {

2−18,2−16, . . . ,218}
. The GenSVM method has additional hyperparameters

which were varied in the same way as in the experiments of Van den Burg and
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TABLE 3.2 – Total training time per dataset in seconds, averaged over the
five nested CV folds. Minimal values per dataset are underlined. As can be
seen, SmartSVM is the fastest method on 10 out of 16 datasets.

Dataset C & S DAG GenSVM OvO OvR SmartSVM
abalone 13332 146.5 86787 134.3 214.4 75.0
fars 158242 3108 205540 2866 5630 3158
flare 467.5 7.0 501.7 6.5 8.2 5.0
krkopt 86000 728.4 56554 680.4 1388 664.0
letter 31684 407.3 44960 381.5 1805 652.1
nursery 2267 74.7 1363 68.7 94.9 56.8
optdigits 88.0 20.0 31615 18.5 24.3 10.9
pageblocks 523.4 26.8 2001 25.2 48.6 27.6
pendigits 2499 30.2 6591 28.5 151.3 53.7
satimage 5184 74.7 2563 70.0 188.4 74.5
segment 377.1 7.1 1542 7.0 18.7 5.4
shuttle 7658 570.8 14618 561.9 1996 832.0
texture 588.1 34.5 14774 32.8 69.6 19.3
winered 706.4 12.3 542.7 11.1 18.3 8.8
winewhite 2570 59.2 2570 55.1 70.9 36.7
yeast 1209 16.7 1138 15.3 24.2 13.2

Groenen (2016). All experiments were performed on the Dutch National LISA
Compute Cluster using the abed utility.3

The experiments are compared on training time and out-of-sample predictive
performance. Table 3.2 shows the results for training time, averaged over the
five nested cross validation folds for each dataset. As can be seen SmartSVM
is the fastest method on 10 out of 16 datasets. This can be attributed to the
smaller number of binary problems that SmartSVM needs to solve compared
to OvO and the fact that the binary problems are smaller than those solved by
OvR. The OvO method is the fastest classification method on the remaining 6
datasets. The single-machine multiclass SVMs by Crammer and Singer (2002a)
and Van den Burg and Groenen (2016) both have larger computation times than
the heuristic methods. Since GenSVM has a larger number of hyperparameters,
it is interesting to look at the average time per hyperparameter configuration
as well. In this case, GenSVM is on average faster than Crammer and Singer
(2002a) due to the use of warm starts (see Appendix 3.C for additional simulation
results).

Classification performance of the methods is reported using the adjusted
Rand index (ARI) which corrects for chance (Hubert and Arabie, 1985). Use of
this index as a classification metric has been proposed previously by Santos and

3See https://github.com/GjjvdBurg/abed.
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TABLE 3.3 – Out-of-sample predictive performance as measured by the ad-
justed Rand index. Although SmartSVM doesn’t often achieve the maximum
performance, there are several datasets for which SmartSVM outperforms
One vs. One, or differs from the maximum performance in only the second or
third decimal.

Dataset C & S DAG GenSVM OvO OvR SmartSVM
abalone 0.0788 0.0898 0.0895 0.0898 0.0791 0.0595
fars 0.8127 0.8143 0.8085 0.8146 0.8134 0.8115
flare 0.4274 0.6480 0.6687 0.6496 0.4084 0.6544
krkopt 0.1300 0.1988 0.1779 0.2022 0.1512 0.1585
letter 0.6173 0.6991 0.5909 0.7118 0.5155 0.4533
nursery 0.8279 0.8175 0.8303 0.8157 0.8095 0.8138
optdigits 0.9721 0.9854 0.9732 0.9850 0.9686 0.9640
pageblocks 0.7681 0.7335 0.6847 0.7353 0.6696 0.7214
pendigits 0.9068 0.9566 0.8971 0.9597 0.8607 0.8817
satimage 0.7420 0.7652 0.7403 0.7672 0.7107 0.7607
segment 0.9013 0.9000 0.8812 0.8982 0.8354 0.8986
shuttle 0.9275 0.8543 0.8887 0.8543 0.6925 0.8038
texture 0.9936 0.9950 0.9888 0.9947 0.9865 0.8977
winered 1.0000 1.0000 0.9985 1.0000 0.8369 1.0000
winewhite 1.0000 1.0000 0.9998 1.0000 0.8131 1.0000
yeast 0.2595 0.2540 0.2521 0.2587 0.2433 0.2088

Embrechts (2009). Table 3.3 shows the predictive performance as measured with
the ARI. As can be seen, SmartSVM obtains the maximum performance on two
of the sixteen datasets. However, SmartSVM outperforms One vs. One on 3
datasets and outperforms One vs. Rest on 10 out of 16 datasets. The OvO and
OvR methods are often used as default heuristic approaches for multiclass SVMs
and are respectively the default strategies in the popular LibSVM (Chang and
Lin, 2011) and LibLinear (Fan et al., 2008) libraries. Since SmartSVM is often
faster than these methods, our results indicate a clear practical benefit to using
SmartSVM for multiclass classification.

3.5 D I S C U S S I O N

The practical applicability of nonparametric Bayes error estimates to meta-
learning and hierarchical classifier design has been investigated. For the BER
estimate introduced by Berisha et al. (2016) a bias correction was derived which
improves the accuracy of the estimator for classification problems with unequal
class priors. Furthermore, a normalization term was proposed which makes the
BER estimates comparable in multiclass problems. An expression of the OvR-
BER was given which represents the exact Bayes error for a single class in the
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multiclass problem and it was shown that this error can be efficiently estimated
using the HP-estimator as well. A robustness analysis of the HP-estimator was
performed which showed the benefit of using orthogonal MSTs in the estimator.

There are many potential applications of the BER estimates to meta-learning
problems. Above, several possibilities were explored including the prediction
of which pairs of classes are most difficult to distinguish and which individual
classes will yield the highest error rate. Preliminary experiments with feature
transformations were also performed, which showed that the BER estimates can
be a useful tool in determining beneficial transformations before a classifier is
trained.

Based on the weighted graph of pairwise BER estimates, a hierarchical
multiclass classification method was proposed. The classifier uses a top-down
splitting approach to create a tree of binary classification problems which in-
crease in difficulty along the depth of the tree. By using a linear SVM for each
classification problem, a hierarchical multiclass SVM was obtained which was
named SmartSVM. Extensive simulation studies showed that SmartSVM is often
faster than existing approaches and yields competitive predictive performance
on several datasets.

Note that the SmartSVM classifier is only one example of how the BER
estimates can be used to construct better classification methods. As discussed
in Section 3.3, BER estimates could also be used to define class weights in a
multiclass classifier. Moreover, the min-cut strategy used for SmartSVM may
not be the optimal way to construct the classification tree. Evaluating different
approaches to constructing classification hierarchies and other applications of
the BER estimates to multiclass classification problems are topics for further
research.
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Appendices

3.A O N E V S . R E S T BAY E S E R R O R R A T E

In this section bounds for the One vs. Rest Bayes error rate will be derived, which
measures the error of the Bayes classifier in correctly identifying an individual
class.

DEFINITION 3.A.1 (OVR-BER). Let f1, f2, . . . , fK and p1, p2, . . . , pK denote den-
sity functions and prior probabilities for the classes 1 through K respectively, with∑

c pc = 1. Then, the Bayes error rate between a class k and the remaining classes
is given by

Pe,k =
∫

max
l 6=k

{pl f l (x)}≥pk fk(x)

pk fk(x)dx +
∑

c 6=k

∫

max
l 6=k

{pl f l (x)}<pk fk(x)

pc fc(x)dx. (3.20)

Below it will be shown that the OvR-BER can be bounded using the Friedman-
Rafsky statistic in the One-vs-Rest setting, R(Xk,

⋃
l 6=k Xl). Let the mixture

distribution of the classes l 6= k be given by

gk(x)=
∑

l 6=k pl f l(x)
∑

l 6=k pl
, (3.21)

with prior probability pg = ∑
l 6=k pl . Then Xgk = ⋃

l 6=k Xl can be seen as a draw
from this mixture distribution. By Theorem 2 of Berisha et al. (2016) it holds
that

1
2 − 1

2

√
u( fk, gk)≤

∫
min{pk fk(x), pg gk(x)}dx≤ 1

2 − 1
2 u( fk, gk). (3.22)

The following theorem relates this error to the OvR-BER defined above.
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THEOREM 3.A.2. The error rate between class k and the mixture distribution
without class k is bounded from above by the OvR-BER,

Qe,k =
∫

min{pk fk(x), pg gk(x)}dx≤ Pe,k. (3.23)

Proof. Note that

Qe,k =
∫

pk fk(x)≤pg gk(x)

pk fk(x)dx +
∫

pk fk(x)>pg gk(x)

pg gk(x)dx. (3.24)

To simplify the notation, introduce the sets

T =
{
x ∈Rd : pk fk(x)≤ pg gk(x)

}
(3.25)

S =
{

x ∈Rd : pk fk(x)≤max
l 6=k

{pl f l(x)}
}

(3.26)

and denote their respective complements by T ′ and S′. Then,

Qe,k =
∫

T
pk fk(x)dx+

∫

T ′
pg gk(x)dx (3.27)

Pe,k =
∫

S
pk fk(x)dx+

∫

S′
pg gk(x)dx. (3.28)

Since pg gk(x) = ∑
l 6=k pl f l(x) ≤ maxl 6=k pl f l(x) it holds that S ⊆ T and T ′ ⊆ S′.

Hence,
∫

T
pk fk(x)dx=

∫

S
pk fk(x)dx+

∫

T\S
pk fk(x)dx (3.29)

∫

S′
pg gk(x)dx=

∫

T ′
pg gk(x)dx+

∫

S′\T ′
pg gk(x)dx (3.30)

However, the sets T \ S and S′ \ T ′ both equal

U =
{

x ∈Rd : max
l 6=k

{pl f l(x)}< pk fk(x)≤ pg gk(x)
}

, (3.31)

so it follows that

Qe,k = Pe,k +
∫

U
pk fk(x)dx−

∫

U
pg gk(x)dx≤ Pe,k (3.32)

by definition of the set U .

This provides a lower bound for Pe,k in terms of u( fk, gk). What remains to
be shown is that Pe,k has an upper bound in terms of u( fk, gk). No such bound
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has yet been found. However, the following result can be presented which does
bound Pe,k from above.

THEOREM 3.A.3. For a single class k the OvR-BER is smaller than or equal to
the sum of the pairwise BER estimates involving class k, that is,

Pe,k ≤
∑

c 6=k
Pe( fk, fc). (3.33)

Proof. Recall that the OvR-BER for class k is given by

Pe,k =
∫

pk fk(x)≤max
l 6=k

{pl f l (x)}

pk fk(x)dx +
∑

c 6=k

∫

pk fk(x)>max
l 6=k

{pl f l (x)}

pc fc(x)dx, (3.34)

and denote the sum of the pairwise BERs involving k as Fe,k given by,

Fe,k =
∑

c 6=k

∫
min{pk fk(x), pc fc(x)}dx (3.35)

=
∑

c 6=k

∫

pk fk(x)<pc fc(x)

pk fk(x)dx +
∑

c 6=k

∫

pk fk(x)>pc fc(x)

pc fc(x)dx. (3.36)

Then comparing the first term of Fe,k with that of Pe,k shows

∑

c 6=k

∫

pk fk(x)<pc fc(x)

pk fk(x)dx ≥
∫

pk fk(x)≤max
l 6=k

{pl f l (x)}

pk fk(x)dx, (3.37)

since the area of integration on the left is larger than on the right. Similarly,

∑

c 6=k

∫

pk fk(x)>pc fc(x)

pc fc(x)dx ≥
∑

c 6=k

∫

pk fk(x)>max
l 6=k

{pl f l (x)}

pc fc(x)dx (3.38)

for the same reason. This completes the proof.

3.B J E N S E N - S H A N N O N B O U N D I N E Q U A L I T Y

In this section a proof is given for the statement that the Henze-Penrose upper
bound on the Bayes error rate is tighter than the Jensen-Shannon upper bound
derived by Lin (1991). Before presenting the proof, the following lemma is
presented.

81



LEMMA 3.B.1. For x, y> 0 it holds that

x log
(
1+ y

x

)
+ y log

(
1+ x

y

)
≥ 4log(2)xy

x+ y
. (3.39)

Proof. Let t = y
x and multiply both sides by 1

t +1> 0, then the inequality becomes

(
1
t
+1

)
log(1+ t)+ (1+ t) log

(
1+ 1

t

)
≥ 4log(2). (3.40)

Denote the left hand side by f (t). The proof will now proceed by showing that
f (t)≥ f (1)= 4log(2) for all t > 0. The derivatives of f (t) are given by

f ′(t)= log
(
1+ 1

t

)
− log(1+ t)

t2 , (3.41)

f ′′(t)= 2log(1+ t)− t
t3 . (3.42)

Write the numerator of f ′′(t) as g(t) such that

g(t)= 2log(1+ t)− t, (3.43)

g′(t)= 1− t
1+ t

. (3.44)

Then it is clear that g′(t) > 0 for 0 < t < 1 and g′(t) < 0 for t > 1. Furthermore
limt→0+ g(t) = 0 and limt→∞ g(t) = −∞. Thus, it follows that g(t) increases on
0< t < 1 and decreases for t > 1. Let t =α> 1 be such that g(α)= 0, then g(t)> 0
for 0< t <α and g(t)< 0 for t >α.

From this it follows that f ′′(t)> 0 for 0< t <α and f ′′(t)< 0 for t >α. Hence,
f ′(t) is increasing on 0< t <α and decreasing for t >α. Moreover, limt→0+ f ′(t)=
−∞ and f ′(1)= 0. Thus, it follows that f ′(t) is negative on 0< t < 1, positive for
t > 1, and attains a maximum at t =α after which it decreases to limt→∞ f ′(t)= 0.
Since limt→0+ f (t)=∞ it follows that f (t) is decreasing on 0< t < 1 and increasing
for t > 1.

DEFINITION 3.B.2 (KULLBACK-LEIBLER DIVERGENCE). For probability density
functions f1(x) and f2(x) the Kullback-Leibler divergence is given by

DKL( f1‖ f2)=
∫

f1(x) log2
f1(x)
f2(x)

dx, (3.45)

Kullback and Leibler (1951).

DEFINITION 3.B.3 (JENSEN-SHANNON DIVERGENCE). According to El-Yaniv
et al. (1997) the Jensen-Shannon divergence for two probability density functions
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f1(x) and f2(x) with prior probabilities p1 and p2, can be stated in terms of the
Kullback-Leibler divergence as

JS( f1, f2)= p1DKL( f1‖M)+ p2DKL( f2‖M) (3.46)

with M(x)= p1 f1(x)+ p2 f2(x) the mixture distribution and p2 = 1− p1.

THEOREM 3.B.4. For p1 = p2 = 1
2 the Henze-Penrose upper bound on the BER is

tighter than the Jensen-Shannon upper bound of Lin (1991),

Pe( f1, f2)≤ 1
2 − 1

2 uHP ≤ 1
2 J, (3.47)

where J = H(p1)− JS( f1, f2) with H(p1) the binary entropy and JS( f1, f2) the
Jensen-Shannon divergence.

Proof. First, note that with p1 = p2 = 1
2 the binary entropy is given by

H(p1)=− 1
2 log2

( 1
2
)− 1

2 log2
( 1

2
)= 1. (3.48)

Second, for the equiprobable case it holds that

1
2 − 1

2 uHP ( f1, f2)=
∫

f1(x) f2(x)
f1(x)+ f2(x)

dx. (3.49)

The Jensen-Shannon upper bound can be written as

1
2 J = 1

2 − 1
4

∫
f1(x) log2

2 f1(x)
f1(x)+ f2(x)

dx (3.50)

− 1
4

∫
f2(x) log2

2 f2(x)
f1(x)+ f2(x)

dx

= 1
4

∫
f1(x)+ f2(x)dx− 1

4

∫
f1(x) log2

2 f1(x)
f1(x)+ f2(x)

dx (3.51)

− 1
4

∫
f2(x) log2

2 f2(x)
f1(x)+ f2(x)

dx

= 1
4

∫
f1(x)

[
1− log2

2 f1(x)
f1(x)+ f2(x)

]
dx (3.52)

+ 1
4

∫
f2(x)

[
1− log2

2 f2(x)
f1(x)+ f2(x)

]
dx.

= 1
4

∫
f1(x) log2

(
1+ f2(x)

f1(x

)
+ f2(x) log2

(
1+ f1(x)

f2(x)

)
dx (3.53)

By Lemma 3.B.1 it follows that

f1(x) log2

(
1+ f2(x)

f1(x

)
+ f2(x) log2

(
1+ f1(x)

f2(x)

)
≥ 4 f1(x) f2(x)

f1(x)+ f2(x)
, (3.54)
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and therefore
1
2 J ≥ 1

4

∫
4 f1(x) f2(x)
f1(x)+ f2(x)

dx= 1
2 − 1

2 uHP ( f1, f2). (3.55)

3.C A D D I T I O N A L S I M U L A T I O N R E S U LT S

In this section some additional simulation results are presented for the SmartSVM
experiments presented in Section 3.4. Table 3.4 shows the average time per hy-
perparameter configuration for each of the methods. This is especially useful for
comparing GenSVM (Van den Burg and Groenen, 2016) with the other methods,
as it has a larger set of hyperparameters to consider.

A commonly used tool to summarize results of simulation experiments is
to use rank plots (Demšar, 2006). For each dataset the methods are ranked,
with the best method receiving rank 1 and the worst method receiving rank 6
(since there are 6 methods in this experiment). In case of ties fractional ranks
are used. By averaging the ranks over all datasets, a visual summary of the
results can be obtained. Figures 3.10(a), 3.10(b) and 3.10(c) show these average
ranks for predictive performance, total training time, and average training time
respectively.

The ordering of OvO and SmartSVM in the rank plots for training time may
seem counterintuitive, considering that SmartSVM is more often the fastest
method. This can be explained by the fact that in the cases where SmartSVM
is slower than OvO it is usually also slower than DAG. In contrast, where
SmartSVM is the fastest method OvO is usually the second fastest method.
Because of this, SmartSVM obtains a slightly higher average rank than OvO.
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TABLE 3.4 – Average training time per hyperparameter configuration in
seconds, averaged over the five nested CV folds. Minimal values per dataset
are underlined.

Dataset C & S DAG GenSVM OvO OvR SmartSVM
abalone 702 7.712 254 7.067 11.282 3.960
fars 8329 164 601 151 296 184
flare 24.606 0.369 1.467 0.344 0.431 0.263
krkopt 4526 38.337 165 35.813 73.053 35.627
letter 1668 21.438 131 20.076 94.977 34.454
nursery 119 3.932 3.985 3.617 4.994 3.133
optdigits 4.630 1.053 92.441 0.971 1.278 0.590
pageblocks 27.550 1.408 5.852 1.326 2.559 1.504
pendigits 132 1.589 19.273 1.498 7.965 2.872
satimage 273 3.931 7.494 3.685 9.918 3.942
segment 19.846 0.376 4.509 0.370 0.985 0.285
shuttle 403 30.042 42.744 29.571 105 43.928
texture 30.954 1.816 43.200 1.727 3.665 1.028
winered 37.179 0.646 1.587 0.586 0.966 0.465
winewhite 135 3.115 7.514 2.903 3.732 1.954
yeast 63.655 0.877 3.327 0.807 1.272 0.699

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

C & SDAG GenSVMOvO OvRSmartSVM

(a) Predictive performance

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

C & SDAG GenSVMOvO OvRSmartSVM

(b) Total training time

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

C & SDAG GenSVMOvO OvRSmartSVM

(c) Average training time

FIGURE 3.10 – Rank plots of classifier performance in the simulation study.
Figure (a) shows the average ranks for out-of-sample predictive performance
as measured by the ARI. Figures (b) and (c) respectively show the average
ranks for total training time and average training time per hyperparameter
configuration.
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4
SparseStep: Approximating the
Counting Norm for Sparse
Regularization

G.J.J. van den Burg, P.J.F. Groenen, and A. Alfons

Abstract

The SparseStep algorithm is presented for the estimation of a sparse parameter
vector in the linear regression problem. The algorithm works by adding an
approximation of the exact `0 norm as a constraint on the model parameters,
and iteratively strengthening this approximation to arrive at a sparse solution.
Theoretical analysis of the penalty function shows that the estimator yields
unbiased estimates of the parameter vector. An iterative majorization algorithm
is derived which has a straightforward implementation reminiscent of ridge
regression. In addition, the SparseStep algorithm is compared with similar
methods through a rigorous simulation study which shows it often outperforms
existing methods in both model fit and prediction accuracy.

This chapter is based on Van den Burg et al. (2017).
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4.1 I N T R O D U C T I O N

In many modeling problems it is desirable to restrict the number of nonzero
elements in the parameter vector to reduce the model complexity. This can be
done by using `0 norm regularization to allow only a limited number of coeffi-
cients in the model. However, achieving this so-called sparsity in the parameters
for the regression problem is known to be NP-hard (Natarajan, 1995). Many
alternatives have been presented in the literature which approximate the true
sparse solution by applying shrinkage to the parameter vector, such as the lasso
estimator (Tibshirani, 1996). However, this shrinkage can underestimate the
true effect of explanatory variables on the model outcome. Here, an algorithm is
presented which creates sparse model estimates but does not apply shrinkage
to the parameter estimates. This is achieved by iteratively refining an approxi-
mation to the exact `0 norm which counts the number of nonzero elements in a
vector.

Traditional methods for solving the exact sparse linear regression problem
include best subset selection, forward and backward stepwise regression, and
forward stagewise regression. These approaches may not always be feasible
for problems with a large number of predictors, and may display a high degree
of variance with out-of-sample predictions (Hastie et al., 2009). Alternatively,
penalized least-squares methods add a regularization term to the regression
problem, to curb variability through shrinkage or induce sparsity, or both. Of the
many more recent approaches to this problem, the most well-known are perhaps
the SCAD penalty (Fan and Li, 2001) and the MC+ penalty (Zhang, 2010). In
both of these approaches, a penalty is added such that the overall size of the
model parameters can be controlled.

Figure 4.1 shows an illustration of the different penalty functions discussed
above. Note that all penalty functions are symmetric around zero, including
the SparseStep penalty introduced below. It can be seen that the shapes of the
SCAD and MC+ penalties closely resemble each other. The different shapes of the
penalty function for the SCAD and MC+ penalties are due to the hyperparameter
a, which can be optimized over for a given dataset.

In this work, the SparseStep regression algorithm will be presented. This
algorithm directly targets the regression problem penalized with the `0 norm.
This is done by replacing the exact norm with a smooth approximation and
iteratively refining the approximation until it matches the `0 norm exactly (see
Figure 4.1(d) for an illustration). This strategy to approximate the exact `0

norm has been used previously by Mohimani et al. (2009, 2010) for the SL0
algorithm in the compressed sensing and signal processing literature. Here, the
smoothing approach is applied to the regression context and tested against the
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(d) SparseStep

FIGURE 4.1 – Illustrations of different penalty functions, with regularization
parameter λ= 1 where applicable. The SCAD and MC+ penalties have a tun-
ing parameter a that modifies the behavior of the penalty. With the exception
of the Ridge penalty all penalties can induce sparsity in the parameter vector.
All penalties are symmetric around the origin. Note that out of all penalties
shown here only the Ridge and SparseStep penalties have continuous first
derivatives at the origin. For the SCAD penalty the axes are rescaled to
accommodate the requirement that a > 2 for this penalty.

commonly used alternatives mentioned above. Moreover, instead of the Gaussian
smoothing function used by Mohimani et al. (2009) a fractional smoothing penalty
is used which they analyze theoretically but do not verify empirically. Finally, in
the SparseStep algorithm an Iterative Majorization strategy is derived which
avoids the projection step of the SL0 algorithm, thereby potentially improving
performance.

This chapter is organized as follows. In Section 4.2 the theory behind
the SparseStep penalty is introduced and analyzed. Section 4.3 derives the
SparseStep algorithm using the Iterative Majorization technique, and describes
the implementation of the algorithm. Experiments comparing SparseStep with
existing methods are described extensively in Section 4.4. Section 4.5 concludes.
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4.2 T H E O R Y

Below the theory of norms and regularized regression is briefly reviewed, after
which the SparseStep norm approximation is presented and some theoretical
properties of this approximation are analyzed. Finally, the loss function is
presented for regularized regression using the SparseStep norm approximation.

4.2.1 Norms

The `p norm of a vector β ∈Rm is defined as

‖β‖p ≡
(

m∑

j=1
|β j|p

)1/p

. (4.1)

For p = 2, the well known Euclidean norm is obtained, whereas for p = 1 the
distance measured is known as the Manhattan distance. In regularized regression
it is common to add the

∥∥β
∥∥p

p norm as a penalty term (i.e. the `p norm raised to
the power p). When p = 0 this function seizes to be a proper norm due to the lack
of homogeneity and it equals the number of nonzero elements of β (Peetre and
Sparr, 1972, Donoho, 2006). However, it is common to abuse terminology and
refer to this function as the `0 norm or the counting norm, and in this work this
custom will also be used. The `0 norm of a vector β ∈Rm is thus defined as

∥∥β
∥∥0

0 =
m∑

j=1
π[β j 6= 0], (4.2)

where π(·) is an indicator function which is 1 if it’s argument is true, and 0
otherwise. The `0 norm is shown graphically in Figure 4.2 for the two dimensional
case. It can be seen that this norm is discontinuous and nonconvex.

4.2.2 Regularization

Let D= {(x′
i, yi)}i=1,...,n denote the data for the regression problem, with explana-

tory variables xi = (xi1, . . . , xim)′ ∈ Rm and outcome yi ∈ R. Let X ∈ Rn×m denote
the data matrix with rows x′

i. Assume that the vector of outcomes y ∈ Rn is
centered, so that the intercept term can be ignored. The least-squares regression
problem can then be written as

β̂= argmin
β

‖y−Xβ‖2. (4.3)
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0
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β1

β2

FIGURE 4.2 – Illustration of the exact `0 norm in two dimensions. Note
the strong discontinuities along both axes, as indicated by the color of the
points. The variables β1 and β2 may vary continuously along the axes, but
for illustration purposes the `0 norm is computed here on a grid of values.

The `p-regularized least-squares problem can be defined through the loss function

L(β)= ‖y−Xβ‖2 +λ
m∑

j=1
|β j|p, (4.4)

with λ≥ 0 a regularization parameter. Two well-known special cases of these reg-
ularized least-squares problems are ridge regression (Hoerl and Kennard, 1970)
corresponding to p = 2, and the lasso estimator (Tibshirani, 1996) corresponding
to p = 1. When p = 0 is used the regularization term turns into the `0 norm of the
β j. Note that in this case no shrinkage of the β j occurs because only the number
of nonzero β j is controlled and not their size.

4.2.3 Norm Approximation

Recently, an approximation to the `0 norm was proposed by De Rooi and Eilers
(2011), where the indicator function of an element β j is approximated as

π[β j 6= 0]≈
β2

j

β2
j +γ2

, (4.5)

where γ≥ 0 is a positive constant1. Note that if γ= 0 the approximation becomes
exact. By decreasing the value of the γ parameter the approximation of the `0

1For consistency with the remainder of the chapter the current definition of γ deviates from that
of De Rooi and Eilers (2011). In contrast to their definition of the approximation, the square of γ is
used here.
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FIGURE 4.3 – Three-dimensional illustrations of the norm approximation
proposed by De Rooi and Eilers (2011) for two different values of γ. It can be
seen that for a smaller value of γ the approximation more closely resembles
the exact `0 norm illustrated in Figure 4.2.

norm becomes increasingly more accurate. Figures 4.3(a) and 4.3(b) show the
approximation for both large and small values of γ, respectively. It can be seen
that for decreasing values of γ the approximation indeed converges to the exact
`0 norm shown in Figure 4.2.

In the following, the approximation described above will be used to define the
SparseStep penalty as

Pλ

(
β j

)=λ
β2

j

β2
j +γ2

. (4.6)

This penalty function is symmetric around 0 and is continuously differentiable.
In a similar analysis for the SCAD penalty, Fan and Li (2001) describe a suffi-

cient condition for a penalty function to achieve unbiasedness of the parameter
estimates. Fan and Li (2001) argue that for unbiasedness of the estimates of
large true values of β j it is sufficient that the penalty term is zero for large values
of

∣∣β j
∣∣. The derivative of the SparseStep penalty is

P ′
λ

(
β j

)=λ 2γ2β j
(
β2

j +γ2
)2 , (4.7)

and since

lim
|β j|→∞

P ′
λ

(∣∣β j
∣∣)= lim

|β j|→∞
λ

2γ2 ∣∣β j
∣∣

(∣∣β j
∣∣2 +γ2

)2 = 0, (4.8)

we conclude that the SparseStep penalty results in unbiased estimates.
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Additionally, Fan and Li (2001) derive sufficient conditions for a penalty
function to have the Oracle Property. This property means that under certain
regularity conditions a method correctly identifies the sparsity in the predictor
variables correctly, as the number of observations goes to infinity. One sufficient
condition for this is that the derivative of the penalty function should be positive
at the origin. This does not hold exactly for SparseStep, but does hold in an
arbitrarily small region around the origin, due to the value of γ. Further research
is necessary to establish whether or not the Oracle Property holds for SparseStep,
but it is hypothesized that this is indeed the case.

The above leads naturally to the formulation of the SparseStep regression
problem, with loss function

L(β)= ‖y−Xβ‖2 +λ
m∑

j=1

β2
j

β2
j +γ2

. (4.9)

In the next section, an Iterative Majorization algorithm will be derived for
minimizing this loss function.

4.3 M E T H O D O L O G Y

With the theoretical underpinnings of SparseStep established above, it is now pos-
sible to derive the optimization algorithm necessary to minimize the SparseStep
regression loss function. The approach used here is that of the iterative majoriza-
tion algorithm. A brief introduction is given first, followed by the derivation of
the SparseStep algorithm.

4.3.1 Iterative Majorization

The Iterative Majorization (IM) algorithm is a general optimization algorithm
based on surrogate functions, first described by Ortega and Rheinboldt (1970). It
is also known as the Majorization Minimization algorithm and is a generalization
of the popular Expectation Maximization algorithm (see e.g. Hunter and Lange,
2004). A brief description of the algorithm follows.

Let f : X → Z with X ⊆ Rd and Z ⊆ R be the function that needs to be
optimized. Construct a majorizing function g :X×X→Z such that

f (y)= g(y, y), (4.10)

f (x)≤ g(x, y) for all x, y ∈X, (4.11)
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where y is the so-called supporting point. Differentiability of f at y implies that
∇ f (y)=∇g(y, y). Given a majorizing function g the following procedure results
in a stationary point of f :

1. Let y= x0, with x0 a starting point

2. Minimize g(x, y) and let x+ = argmin g(x, y)

3. Stop if a stopping criterion is reached, otherwise let y= x+ and go to step 2.

This procedure yields a guaranteed descent algorithm where f (x+)≤ f (y), with
a linear convergence rate (De Leeuw, 1994). However, a well-known property
of the IM algorithm is that in the first few iterations often large improvements
in the loss function can be made (Havel, 1991). This property makes it ideally
suited for the SparseStep algorithm described below. Generally, a sufficiently
simple functional form is chosen for the majorizing function such that Step 2 in
the above procedure can be done swiftly.

4.3.2 Majorization Derivation

The majorizing function of the SparseStep loss function will be derived here. For
ease of notation, let f (x) denote the penalty function, with x ∈R, and g(x, y) the
majorizing function, with x, y ∈R. Then,

f (x)= x2

x2 +γ2 . (4.12)

Since f (x) is a differentiable and even function (i.e. f (x) = f (−x)), the sharp
quadratic majorization function derived in De Leeuw and Lange (2009) can be
used, which gives

g(x, y)= f ′(y)
2y

(x2 − y2)+ f (y)= γ2x2 + y4

(
y2 +γ2

)2 . (4.13)

The only requirement for this majorization function to be valid is that h(x) =
f ′(x)/x is decreasing on the interval (0,∞). Since

h(x)= f ′(x)
x

= 2γ2

(
x2 +γ2

)2 (4.14)

it is straightforward to show that for any u,v ∈ (0,∞) it holds that if u ≤ v then
h(u)≥ h(v). Thus h(x) is a monotonically decreasing function on the interval (0,∞)
and the majorization function is valid. Figure 4.4 shows the majorizing function
and the SparseStep penalty function for different values of the supporting point.
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FIGURE 4.4 – Illustration of the SparseStep penalty function f (x) and the
majorizing function g(x, y) for various values of the supporting point y, with
γ2 = 0.1.

Recall that the SparseStep loss function is given by

L(β)= ‖y−Xβ‖2 +λ
m∑

j=1

β2
j

β2
j +γ2

. (4.15)

Let α j denote the previous value of β j in the IM algorithm (the supporting point).
Then, using the majorizing function derived above it is clear that the following
inequality holds

L(β)≤ ‖y−Xβ‖2 +λ
m∑

j=1

γ2β2
j +α4

j

(α2
j +γ2)2

=G(β,α), (4.16)

where G(β,α) denotes the majorizing function of L(β). Taking the derivative of
G(β,α) with respect to β yields an explicit expression for the update of β in the
IM algorithm. Before taking the derivative of the majorizing function however,
let us define

Ω j j =
γ2

(α2
j +γ2)2

(4.17)

δ j =α2
j /γ, (4.18)

such that Ω is an m×m diagonal matrix with elements Ω j j, and δ ∈Rm a vector
with elements δ j.
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With these definitions, the regularization term becomes

λ
m∑

j=1

γ2β2
j +α4

j

(α2
j +γ2)2

=λ(β′Ωβ+δ′Ωδ). (4.19)

By expanding the norm and using this form for the regularization term, it is
possible to write G(β,α) as

G(β,α)= y′y−2y′Xβ+β′(X′X+λΩ)β+λδ′Ωδ. (4.20)

Taking the derivative to β and setting this to zero, yields

−2X′y+2(X′X+λΩ)β= 0 (4.21)

Thus, the update of the majorization algorithm is simply

β= (
X′X+λΩ)−1 X′y. (4.22)

SinceΩ is a diagonal matrix this expression is remarkably similar to the solution
of the ridge regression problem, in which Ω is simply the identity matrix.

4.3.3 SparseStep Algorithm

With the derivation of the IM algorithm for minimizing the SparseStep regression
loss function, it is now possible to formulate the SparseStep algorithm. To avoid
local minima, the SparseStep penalty is introduced slowly by starting with a
large value of γ, so that the penalty is very smooth and behaves like a ridge
penalty. Then, the γ value is reduced so that the irregularity and nonconvexity is
introduced slowly. The value of γ is reduced until it is close to zero. By slowly
introducing the nonsmoothness in the penalty and taking only a few steps of the
IM algorithm for each γ, the SparseStep algorithm aims to avoid local minima
and tries to reach the global minimum of the regression problem with the `0

norm penalty. Pseudocode for SparseStep regression is given in Algorithm 4.1.

The algorithm starts by initializing β and γ from given values β0 and γ0

respectively. For each value of γ the parameter estimates are updated tmax

times using the IM algorithm. Subsequently γ is reduced by a factor γstep. This
process is continued until γ reaches a provided stopping value γstop. In the end,
sufficiently small elements of β are set to absolute zero by comparing to a small
constant ε. This is done to avoid numerical precision errors, and can be a method
for enhancing the sparsity inducing properties of SparseStep. The value of ε and
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4. SparseStep

Algorithm 4.1. SparseStep Regression
1: function SPARSESTEP(X,y,β0,γ0,γstop,γstep, tmax,ε)
2: β←β0
3: γ← γ0
4: while γ> γstop do
5: for t = 1 to tmax do
6: Construct Ω according to (4.17)
7: β← (

X′X+λΩ)−1 X′y
8: end for
9: γ← γ/γstep

10: end while
11: for j ∈ {1, . . . ,m} do
12: if |β j | < ε then
13: β j ← 0
14: end if
15: end for
16: return β
17: end function

that of γstop are related. Note that in an actual implementation the matrices X′X
and X′y should be cached for computational efficiency.

4.4 E X P E R I M E N T S

To verify the performance of the SparseStep algorithm in correctly identifying
the nonzero predictor variables in a regression problem, a simulation study was
performed. The aim of this simulation study is to mimic as much as possible a
practical setting where a researcher is interested in both the predictive accuracy
of a regression model and the correct identification of variables with nonzero coef-
ficients. Moreover, this simulation study allows verification of the performance of
the SparseStep algorithm for datasets with varying statistical properties such as
the number of variables, the signal-to-noise ratio (SNR), the correlation between
the variables, and the degree of sparsity in the true coefficient vector.

A second goal of this simulation study is to compare the performance of
the SparseStep algorithm with existing regression methods. These competing
methods are: ordinary least-squares, lasso (Tibshirani, 1996), ridge regression
(Hoerl and Kennard, 1970), SCAD (Fan and Li, 2001), and MC+ (Zhang, 2010).
Thus, the focus here is on comparing SparseStep with other penalized regression
methods, including some that induce sparsity through penalization. In order to
accurately evaluate the predictive accuracy of these methods and to find the best
regularization parameter for each method, separate training and testing datasets
will be used. The procedure is then to find for each method the regularization
parameter which performs best on the training dataset during 10-fold cross-
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validation as measured by the mean squared error (MSE) of the outcome variable.
Next, each method is trained one more time on the entire training dataset using
this optimal regularization parameter and the obtained model is used to predict
the test dataset. Predictive accuracy is measured using the MSE on the test
dataset.

The accuracy of the estimated parameter vector β̂ will be evaluated on two
measures: the mean squared error with respect to the true β, and the sparsity hit
rate. The sparsity hit rate is calculated simply as the sum of the correctly identi-
fied zero elements of β and the correctly identified nonzero elements, divided by
the total number of elements of β.

For the simulation study the following data generating process will be used.
Let X ∈Rn×m denote the data matrix drawn from a multivariate normal distri-
bution with mean vector µ ∈ Rm and correlation matrix Σ ∈ Rm×m, such that
the rows x′

i ∼N(µ,Σ). The data matrix X was scaled such that each column
had mean 0 and unit variance. In all simulated datasets µ is drawn from an
m-dimensional standard uniform distribution. For the correlation matrix Σ three
different scenarios are used: uncorrelated, constantly correlated, and noise corre-
lated. In the uncorrelated case the Σ matrix is simply the identity matrix, in the
constantly correlated case all variables have a correlation of .5 with each other,
and in the noise correlated case a correlation matrix is generated by adding real-
istic noise to the identity matrix using the method of Hardin et al. (2013)2. Next,
a parameter vector β ∈Rm is drawn from a uniform distribution with elements
β j ∈ [−1,1]. The last z elements of β are set to zero to simulate sparsity. Finally,
to obtain realistic data with a known signal-to-noise ratio, the simulated outcome
variable y is calculated as

y=Xβ+e, (4.23)

where e ∈Rn is a noise term which contains n elements drawn from a univariate
normal distribution with mean zero and standard deviation such that the SNR
given by β′X′Xβ/e′e is as desired.

Table 4.1 gives an overview of how the different parameters of the data
generating process were varied among datasets. Using these parameters a total
of 180 datasets were generated. For all datasets the number of instances n was
set to 30,000, which was then split into 20,000 instances in the training dataset
and 10,000 in the testing dataset. Note that the degree of sparsity in the table is
expressed as a percentage of the number of variables m. In practice, the number
of zeroes in β corresponds to z = bm ·ζ/100c, where ζ is a number taken from the
second row of the table.

2This corresponds to Algorithm 4 in the paper of Hardin et al. (2013), using the default parameters
of ε= 0.01 and M = 2 (in their notation).
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4. SparseStep

TABLE 4.1 – Overview of the values for different parameters in the data
generating process of the simulation study. Datasets were generated for each
possible combination of these values, resulting in 180 datasets.

Parameter Values
Variables (m) {10,50,100,500}
Sparsity (ζ%) {0,25,50,75,95}
SNR {0.1,1.0,10.0}
Correlation {uncorrelated, constant, noise}

The simulation study was set up such that each method was trained on exactly
the same cross-validation sample when the same value of λ was supplied. The
grid of λ parameters for the regularized methods came from a logarithmically
spaced vector of 101 values between 2−15 and 215. For SparseStep, the input
parameters were chosen as γ0 = 106, γstop = 10−8, γstep = 2, tmax = 2, ε = 10−7,
and β0 = 0 (see Algorithm 4.1). Default input parameters where chosen for
the other methods where applicable. The R language (R Core Team, 2015) was
used for the SCAD and MC+ methods, with SCAD implemented through the
ncvreg package (Breheny and Huang, 2011), and MC+ through the SparseNet
package (Mazumder et al., 2011). The other methods were implemented in the
Python language (Van Rossum, 1995) using the scikit-learn package (Pedregosa
et al., 2011). For the MC+ penalty the secondary regularization parameter a was
optimized for the training dataset using the CV implementation of the SparseNet
package. For SCAD a was set to 3.7 as this is the default of Fan and Li (2001).

To determine statistically significant differences between the performance of
each of the methods, recommendations on benchmarking machine learning meth-
ods will be used as formulated by Demšar (2006). Specifically, rank tests will be
applied to evaluate whether SparseStep outperforms other methods significantly.
For each dataset, fractional ranks are calculated for each performance measure
with a smaller rank indicating a better performance. Methods are considered
to have equal performance if the difference on a performance metric is smaller
than 10−4. A Friedman rank test can be done on the calculated ranks to test for
equal performance of the methods (Friedman, 1937, 1940), and Holm’s step down
procedure can be used to test for significant differences between SparseStep and
other methods (Holm, 1979).

Figure 4.5 shows the average ranks of the six evaluated methods on four
different metrics. From Figure 4.5(a), which shows the average ranks on the
MSE of β̂, it can be seen that SparseStep is most often the best method for fitting
β, followed closely by SCAD, MC+, and the Lasso. The sparsity hit rate of β̂ is
on average the best for the MC+ penalty, followed by SparseStep and SCAD, as
illustrated in Figure 4.5(b). For the out-of-sample performance on the test data,
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FIGURE 4.5 – Rank plots showing the average performance of the six eval-
uated methods on the 180 simulated datasets. Points on the line show the
fractional rank of the methods averaged over all datasets, with a smaller
rank indicating a better performance. It can therefore be seen that SparseStep
performs very favorably in both predicting the size and sparsity of β, as well
as on predicting the outcome out-of-sample. Graph (d) shows the rank graph
for the average computation time for each method.

shown in 4.5(c), a similar order of the methods can be observed as for the MSE
on β̂, although the difference between SCAD and MC+ is larger here. SparseStep
again outperforms the other methods on this measure.

Computation time was also measured for each method on each dataset. The
rank plot of the average computation time per dataset is given in Figure 4.5(d). It
can be seen that SparseStep performs well on average. The average computation
time of SparseStep for a single value of λ is comparable to computing a single
OLS solution. An important caveat with regards to the computation times is
that in order to have the same CV splits for each method with a certain λ, the
path algorithms of the Lasso, SCAD, and MC+ penalty could not be used. The
computation time of these methods is therefore overestimated.
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4. SparseStep

Apart from the ranks averaged over all datasets, it is also interesting to look
at how often a method is the best method on a dataset and how often it is the
worst method. Looking at the MSE of β̂, Ridge is most often the best method,
followed closely by the penalized methods. As expected OLS is most often the
worst method in this regard. Next, SparseStep most often obtains the highest
sparsity hit rate of β, on 30 out of 180 datasets. MC+ is the best method on this
metric on 26 datasets, and SCAD on 11. Finally, when considering the MSE on
the outcome of the test dataset all the penalized methods are the best method
with similar frequency. An exception to this is OLS, which is the best method on
only 7 datasets and the worst method on 52 of them. MC+ is the worst method
on 32 datasets, whereas SparseStep is the worst method the smallest number of
times, on only 6 datasets. Clearly, OLS and Ridge only perform well on datasets
without sparsity in β. For the other methods no clear relationship between the
dataset characteristics and the performance of the method could be found.

As suggested by Demšar (2006) an F-test can be done on the average ranks
to evaluate if significant differences exist between the different methods. This is
the case for the four measures discussed above, all with p-value < 0.0001. Fur-
thermore, Holm’s procedure can be performed to uncover significant differences
between the methods and a reference method, in this case SparseStep. From
this it is found that on the performance metrics other than computation time,
SparseStep significantly outperforms OLS and Ridge, but that the difference
between SparseStep and the other penalized methods is not significant at the
5% level. On the computation time metric SparseStep significantly outperforms
SCAD and MC+ at the 5% level, but the caveat mentioned above should be taken
into account here. The lack of a significant difference between SparseStep and
SCAD and MC+ on the other metrics can be due to either a lack of any theoretical
difference, or an insufficient number of datasets in the simulation study.

4.5 D I S C U S S I O N

This chapter presents the SparseStep algorithm which induces sparsity in the
regression problem by iteratively improving an approximation of the `0 norm.
An iterative majorization algorithm has been derived which is straightforward
to implement. The practical relevance of SparseStep is evaluated through a
thorough simulation study on 180 datasets with varying characteristics. The
results indicate that SparseStep often outperforms existing methods, both in
identification of the parameter vector and in out-of-sample prediction. Future
research will focus on the theoretical properties of the SparseStep algorithm,
such as the criteria for convergence to a global optimum.
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5
Smoothed `q-Regularized Regression

G.J.J. van den Burg, P.J.F. Groenen, and A. Alfons

Abstract

An iterative majorization algorithm is presented for the `q-regularized regression
problem that can be used for all q ∈ [0,2]. The algorithm therefore has ridge
regression, bridge regression, the lasso, and best subset selection as special cases.
The technique of smoothing methods, also known as homotopy methods, is used
to tackle this generally noncontinuous nonconvex problem. Through iteratively
refining a smooth approximation of the regularized regression problem, local
minima of the problem can be avoided. A single unified algorithm is presented
based on the idea of graduated nonconvexity. For the proposed method an itera-
tive majorization algorithm is derived and a preliminary convergence analysis
is presented, which shows convergence of the intermediate minimizers to the
global minimizer. The convergence of the algorithm is further illustrated for
the nonconvex case of q = 0 using numerical experiments. Results show that
the proposed algorithm converges to the global solution for certain algorithm
parameters, thereby confirming the feasibility of the algorithm in practice.
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5.1 I N T R O D U C T I O N

Regularized regression has a long history and a wealth of applications in statis-
tics, machine learning, and beyond. The most well-known cases of regularized
regression are perhaps ridge regression (Hoerl and Kennard, 1970) and the lasso
(Tibshirani, 1996). These methods are special cases of so-called `q-regularized
regression methods, which follow the general form

min
β∈Rd

H(β)+λ‖β‖q
q. (5.1)

In this expression β denotes the vector of regression coefficients, H(β) gives the
data term of the regression problem, and λ≥ 0 is a regularization parameter. The
norm in the regularization term is defined as

‖β‖q
q =

d∑

j=1

∣∣β j
∣∣q . (5.2)

Under a slight abuse of terminology, this function will be referred to as the `q

norm in the remainder of this work, unless stated otherwise.

Different values of the parameter q result in different behavior in the obtained
solution. In most cases a form of shrinkage is applied to the parameters, which
results in smaller coefficient values than those obtained by ordinary least squares.
For instance, q = 2 controls the Euclidean norm of the regression coefficients
and thereby applies uniform shrinkage to all coefficients, whereas q = 1 applies
the Manhattan norm to the coefficients and forces some coefficients to exactly
zero while shrinking others. The extreme case where q = 0 corresponds to subset
selection whereby a limited number of coefficients are included in the model
without shrinkage.

An important observation to make about `q-regularized regression is that
the corresponding optimization problem in (5.1) is nonconvex for values of q <
1. Furthermore, the `q norm ceases to be a proper norm if q = 0 due to the
lack of homogeneity. However, for ease of reference this function will still be
called the `q norm for all values of q throughout this text. As a result of the
nonconvexity of the regression problem, most solution methods target either a
fixed value of q or a range of values such as q ∈ (0,1) or q ∈ [1,2]. The case of q = 0
has received a particularly large amount of attention due to its computational
difficulty (Natarajan, 1995) and its applicability in various domains besides
statistics, such as signal processing (e.g. Donoho et al., 2006, Mohimani et al.,
2009) and image reconstruction (Trzasko and Manduca, 2009a, Chouzenoux et al.,
2013, Nikolova et al., 2008, 2010, among others).
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5. Smoothed `q Regression

Thus far, no algorithm solves `q-regularized regression for all q ∈ [0,2] with a
single unified formulation. In this work, the Smooth-q regression algorithm will
be presented to solve this problem. Within a single formulation this algorithm can
deal with the nonconvex regularized problems whenever q ∈ [0,1) and with the
convex optimization problems for q ∈ [1,2]. The technique used in this algorithm
is known as the smoothing, continuation, or homotopy method (Lahaye, 1934,
Bertsekas, 1975, among others, see Allgower and Georg, 2012 for an introduction).
When applied to nonconvex optimization this idea is also known as graduated
nonconvexity (Blake, 1983). The core of the algorithm relies on a smooth and
continuous approximation of the `q penalty, which is iteratively refined until the
exact penalty is obtained. At each iteration, an intermediate solution is computed
as an improvement on the previous solution. This approach thereby aims to avoid
the local minima that are present in the nonconvex problems of q < 1.

A significant influence on the development of the Smooth-q algorithm pre-
sented here is the work of Mohimani et al. (2009), in which the Smoothed `0

(SL0) algorithm is introduced. The SL0 algorithm is a method for solving the
sparse decomposition problem in compressed sensing, where the `0 norm of the
coefficients in an underdetermined system of linear equations is minimized. Al-
though this problem is not identical to the regularized regression problem, the
strategy of the SL0 algorithm can still be used for `0-regularized regression, as
evidenced by the SparseStep algorithm of Van den Burg et al. (2017). In fact, the
Smooth-q algorithm presented here is an extension of the SparseStep algorithm
to general `q-regularized regression problems.

A large number of algorithms exist which solve the `q-regularized regression
problem for some values of q, either by using continuation methods or in alter-
native ways. A full review of these methods is outside the scope of this work,
but the most relevant existing alternatives will be mentioned below. Among
`q-regularized regression methods, there is considerable literature available for
regularization with q ∈ (0,1), because for these values of q sparse solutions are
obtained. Regularized regression with this penalty is also known as bridge re-
gression (Frank and Friedman, 1993). In Chen et al. (2010) bounds are obtained
on the values of the nonzero entries in the solution and error bounds are given
for verifying the accuracy of obtained solutions. Finally, a homotopy between `0

and `1-regularized regression is presented in Lv and Fan (2009) and applied to
sparse recovery.

Smoothing or continuation methods for nonconvex regularized optimization
problems have previously been proposed in the literature. In the work of Chen
(2012) a convergence analysis is given for a general class of smoothing methods
based on the absolute hinge function. Later work by Chen et al. (2013) derived
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optimality conditions for minimizers of problems with nonconvex penalties, as
well as a trust region Newton method for these problems. In related work of
Nikolova et al. (2008, 2010) smoothing methods were applied to image restoration
through interior point and gradient-based methods, respectively. Furthermore,
Lu (2014) proposed an iteratively reweighted minimization method for a general
class of `q-regularized problems with q ∈ (0,1) and presented an algorithm based
on a continuation method for the `q norm. A similar method was given by Bian
and Chen (2013) for a more general class of regularized minimization problems,
with a different smoothing approach for a certain class of penalty functions.
Finally, the work of Mobahi and Fisher III (2015) gives a theoretical analysis of
the general class of Gaussian homotopy methods for nonconvex optimization.

For `0-regularized regression many solution methods exist. Modern applica-
tions of the subset selection approach include the work of Bertsimas et al. (2016),
where a method is presented based on mixed integer optimization that solves the
best subset selection for problems of hundreds of variables within minutes. Some
methods, such as SCAD (Fan and Li, 2001) or MC+ (Zhang, 2010) replace the
`0 penalty by a smooth penalty, which in turn induces sparsity. Other methods,
such as the iterative hard thresholding algorithm by Blumensath and Davies
(2008) or the iterative soft thresholding algorithm by Marjanovic et al. (2015)
target the `0-regularized regression directly.

Smoothing methods for the `0 penalty in image processing includes the work
of Trzasko and Manduca (2009a) for image reconstruction and that of Chouzenoux
et al. (2013), which analyzes convergence properties of iterative majorization
algorithms for smoothed penalties. In Soubies et al. (2015) a continuous exact
penalty is introduced, which approximates the `0 norm. In later work, Soubies
et al. (2016) analyze smoothing penalties for the `0 norm theoretically and give
conditions on these penalties to preserve the minimizers of the `0-regularized
problem. The SparseStep algorithm (Van den Burg et al., 2017) on which the
Smooth-q algorithm is based, uses the Geman-McClure penalty to smooth the
`0 norm (Geman and McClure, 1985). Although the SparseStep algorithm inves-
tigates this penalty for `0-regularized regression, its potential in sparse signal
deconvolution had earlier been recognized by Trzasko and Manduca (2009b),
De Rooi and Eilers (2011) and Castella and Pesquet (2015). Finally, the SL0
algorithm mentioned above (Mohimani et al., 2009, 2010) and the tuned version
by Oxvig et al. (2013) solve the sparse decomposition problem using the smooth
`0 norm as well.

It is thus evident that a significant number of algorithms exist for `q-regularized
regression for specific values or intervals of q ∈ [0,2] and that the potential of
smoothing methods has been realized especially for `0-regularized regression.
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5. Smoothed `q Regression

However, no unified method is applicable for all values of q ∈ [0,2]. Through an
application of the smoothing methodology, this chapter presents the Smooth-q
algorithm to solve the entire class of `q-regularized regression problems within a
single formulation. This algorithm is valid for both the nonconvex problems with
q ∈ [0,1) and the convex problems with q ∈ [1,2].

This work is structured as follows. In Section 5.2 the theory behind the
proposed Smooth-q algorithm will be introduced. Moreover, in this section the
optimization algorithm will be derived and a preliminary convergence analysis
will be given. Convergence of the algorithm is further analyzed in Section 5.3 in
one-dimensional and multivariate numerical applications. Section 5.4 concludes.

5.2 T H E O R Y

In this section the Smooth-q penalty will be introduced, the optimization algo-
rithm will be derived, and a preliminary convergence analysis will be given.

5.2.1 Penalty Function

The main focus of this work is the analysis of the regularized regression problem
with the so-called Smooth-q penalty term, given in the following definition.1

DEFINITION 5.2.1. For β ∈R, q ∈ [0,2], p ≥ q, and γ≥ 0 the Smooth-q penalty is
defined as

Pγ(β)=
∣∣β

∣∣p

∣∣β
∣∣p−q +γp−q

. (5.3)

The Smooth-q penalty can be seen as a generalized version of the potential
function introduced by Geman and McClure (1985). The special case of this
penalty where p = 2 and q = 0 was previously analyzed by De Rooi and Eilers
(2011), Castella and Pesquet (2015) and Van den Burg et al. (2017) among others.
The limit case for γ→ 0 is one of the reasons this penalty is interesting, as

lim
γ→0+

Pγ(β)=
∣∣β

∣∣q . (5.4)

Note that this means that the value of p is irrelevant for the limit behavior of
this penalty. Moreover, when q = 0 the limit of this penalty becomes

lim
γ→0+

∣∣β
∣∣p

∣∣β
∣∣p +γp

=π[β 6= 0], (5.5)

1Although the regression problem is the main focus here, the Smooth-q algorithm can easily be
extended to other `q-regularized optimization problems.
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FIGURE 5.1 – Illustrations of the penalty function P(β) for varying values of
p, q, and γ. Note that all penalties are symmetric around 0.

where π[I] is the indicator function, which equals 1 if I is true and 0 otherwise.

To gain a better understanding of the shape of this penalty, the functional form
for several combinations of the parameter p, q, and γ are shown in Figure 5.1.
From Figure 5.1(a) it can be observed that increasing p makes the transition
area around γ sharper, approaching a discontinuity. Varying q, as shown in
Figure 5.1(b), simply changes the limiting function for larger values of

∣∣β
∣∣. Finally,

by decreasing γ as in Figure 5.1(c) the approximation of the target
∣∣β

∣∣q becomes
increasingly accurate.

The limiting behavior for γ→ 0 is one of the main motivations for investigating
this penalty term, since this corresponds to the `q-regularized regression problem.
Thus, in the limit case q = 2 corresponds to ridge regression, q = 1 to the lasso,
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5. Smoothed `q Regression

Algorithm 5.1. Smooth-q Regression

1: procedure SMOOTHQREG(X, y, λ, q)
2: β= (X′X)−1X′y
3: Define a decreasing sequence

(
γk

)
k=1,...,K

4: for k ∈ {1, . . . ,K} do
5: for t ∈ {1, . . . ,T} do
6: Update β w.r.t. Lγk (β)
7: end for
8: end for
9: return β

10: end procedure

and q = 0 to best subset selection. Note that this problem is nonconvex for
q ∈ [0,1). By replacing the nonconvex penalty with the Smooth-q penalty, the
nonconvexity in the problem can be introduced slowly by iteratively decreasing γ.
This technique is known as Graduated Non-Convexity (Blake, 1983).

5.2.2 Regularized Regression

This work focuses on the application of this Smooth-q penalty to the regularized
regression problem. Let D = {(x′

i, yi)}i=1,...,n denote the data for the regression
problem, with x′

i = (xi1, . . . , xid)′ ∈ Rd and yi ∈ R. Moreover, let X ∈ Rn×d denote
the data matrix with rows x′

i. Assume that the vector of outcomes y ∈ Rn is
centered, so that the intercept term can be ignored. In practice both X and y can
additionally be normalized by

p
n.

The goal is to solve the `q-regularized regression problem of the form

min
β∈Rd

L0(β) :=
∥∥y−Xβ

∥∥2 +λ
d∑

j=1

∣∣β j
∣∣q (5.6)

where λ > 0. This problem is approximated with the Smooth-q penalty in the
limit for γ→ 0. Therefore, the Smooth-q regularized regression problem can be
formally stated as

min
β∈Rd

lim
γ→0+

Lγ(β) :=
∥∥y−Xβ

∥∥2 +λ
d∑

j=1
Pγ(β j). (5.7)

The solution approach for this problem is similar to that of other Graduated
Non-Convexity approaches, such as those presented in Mohimani et al. (2009,
2010) or Chouzenoux et al. (2013), among others. The general form of the
algorithm is given in Algorithm 5.1. Although this algorithm is defined very
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generally, a number of observations can be made. First, note that β is initialized
using the ordinary least squares solution, as this corresponds to the case where
γ→∞.2 Next, a decreasing sequence of γ values is defined and for each value of
γk the inner loop does T steps of an optimization algorithm. The optimization
strategy used in the inner loop can be varied, but common choices are gradient
descent (Mohimani et al., 2009) or iterative majorization (Chouzenoux et al.,
2013). Note that it is not generally necessary to fully minimize the loss function
for a given value of γk, as this may cause the algorithm to get stuck in local
minima. In practice only a few iterations of the inner loop are performed.

To complete the description of the Smooth-q regression algorithm, a few
choices have to be made with regards to the optimization algorithm in the inner
loop of Algorithm 5.1, the number of steps T, and the sequence of γ values
(γk)k=1,...,K . As in Mohimani et al. (2009, 2010) a geometric series will be used
for the γk, such that γk+1 = c ·γk for some decay parameter c ∈ (0,1). For the
optimization in the inner loop an iterative majorization algorithm will be derived
in the next section.

5.2.3 Iterative Majorization Algorithm

Before the optimization algorithm is derived, the shape of the Smooth-q penalty
for varying values of p must be investigated further. Figure 5.1(a) illustrates
that when p > 2 the penalty for

∣∣β
∣∣ < γ will tend towards zero. Although this

may be desirable behavior in specific applications, in the regularized regression
problem it is uncommon to have a region around the origin that is not penalized.
Moreover, for increasing values of p a discontinuity around

∣∣β
∣∣= γ is approached,

which may lead to slow convergence of the minimization algorithm. Therefore,
the iterative majorization algorithm given here will focus on p = 2.

In iterative majorization algorithms (Ortega and Rheinboldt, 1970, De Leeuw,
1994) a majorizing function is derived, which is everywhere larger or equal than
the target function to be minimized, but touches at a so-called supporting point.
Iteratively minimizing the majorizing function will give a path of solutions which
converges to a (local) minimum of the target function. In practice the majorizing
function has a simple functional form to ensure that minimization can be done
quickly. Here a quadratic majorizing function will be used of the form

g(β, β̄)= aβ2 −2bβ+ c (5.8)

2It is assumed that the OLS solution exists, which may not be unique when d > n. Therefore, the
general case where d > n is considered outside the scope of the current work and a topic for future
research.
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5. Smoothed `q Regression

where the coefficients a, b, and c depend on the supporting point β̄.
The derivation starts by constructing a majorizing function for the one-

dimensional Smooth-q penalty, since this can easily be generalized to the mul-
tivariate case. Since the penalty is everywhere differentiable for γ > 0, the
conditions for the majorizing function can be summarized as

Pγ

(
β̄
)= g

(
β̄, β̄

)
(5.9)

P ′
γ

(
β̄
)= g′ (β̄, β̄

)
(5.10)

Pγ

(
β
)≥ g

(
β, β̄

)
. (5.11)

Since the Smooth-q penalty is a differentiable and even function (i.e. Pγ(β)=
Pγ(−β) for all β), Theorem 4.5 from De Leeuw and Lange (2009) can be applied,
which states that the best quadratic majorizing function of Pγ(β) is given by

g(β, β̄)=
P ′
γ(β̄)

2β̄
(β2 − β̄2)+Pγ(β̄) (5.12)

provided that P ′
γ(β)/β is decreasing on (0,∞). This latter property is readily

verified to be the case, because P ′
γ(β)/β is continuous and its derivative

d
dβ

P ′
γ(β)

β
=

(q−2)
∣∣β

∣∣1−q sign(β)
[
q

∣∣β
∣∣2−q − (q−4)γ2−q

]

(∣∣β
∣∣2−q +γ2−q

)3 (5.13)

is negative for all β ∈ (0,∞) since sign(β) = 1 and q ∈ [0,2]. The majorizing
function is illustrated in Figure 5.2 for two different values of q.

Recall that the loss function of the regression problem with the Smooth-q
penalty is given by

Lγ(β)=
∥∥y−Xβ

∥∥2 +λ
d∑

j=1
Pγ(β j). (5.14)

The majorizing function for this loss function can then be constructed from the
one-dimensional majorizing functions g(β, β̄) as

G(β, β̄)=
∥∥y−Xβ

∥∥2 +λ
d∑

j=1
g(β j, β̄ j). (5.15)

When denoting the coefficients of the majorizing function for β j respectively by
a j and c j, it is possible to define a diagonal matrix A with elements a j, such that

G(β, β̄)=
∥∥y−Xβ

∥∥2 +λβ′Aβ+λ
d∑

j=1
c j. (5.16)
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FIGURE 5.2 – Illustrations of the majorizing function g(β, β̄) for two different
values of q, with γ= 0.5 in both figures. The majorizing function is shown for
different values of the supporting point β̄: the dotted line at β̄= 0, the dash
dotted line at β̄= 1/3, and the dashed line at β̄= 2/3. The vertical lines mark
these supporting points for the latter two values of β̄.

Taking the derivative with respect to β and equating this to zero yields

(
X′X+λA

)
β=X′y. (5.17)

This equation defines the update at each step of the inner loop in Algorithm 5.1.
Note that A is dependent on γ. Since A is a diagonal matrix this expression is
remarkably similar to the solution of the ridge regression problem, where A is
simply the identity matrix. In fact, for q = 2 the Smooth-q penalty is independent
of γ and the above expression reduces exactly to ridge regression.

5.2.4 Convergence Analysis

In this section a preliminary convergence analysis is given for the Smooth-q
algorithm presented above. It will be shown that the infimum of Lγk converges
to the infimum of L0 and that if L0 has a unique minimizer then the minimizers
of Lγk converge to it. This proof is analogous to that presented in Chouzenoux
et al. (2013). Where appropriate it will be assumed that the matrix X is of full
rank, such that the OLS solution is unique.

For this analysis the most general form of the penalty will be used,

Pγ(β)=
d∑

j=1

∣∣β j
∣∣p

∣∣β j
∣∣p−q +γp−q

(5.18)
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5. Smoothed `q Regression

with p ≥ q, p ≥ 1, and q ∈ [0,2]. Moreover, write the target function L0 as

L0(β)= ‖Xβ−y‖2 +λQ(β) (5.19)

where

Q(β)=





d∑

j=1
π[β j 6= 0] if q = 0

d∑

j=1

∣∣β j
∣∣q if q ∈ (0,2].

(5.20)

To facilitate the proof of the main convergence result, several properties of the
functions L0 and Lγ will be presented. Let (γk)k∈N be a decreasing sequence of
positive real numbers converging to 0.

LEMMA 5.2.2. For every k ∈N, Lγk+1 ≥ Lγk if γk+1 ≤ γk.

Proof. If γk+1 ≤ γk then, γp−q
k+1 ≤ γp−q

k since p ≥ q. Then,

∣∣β j
∣∣p

∣∣β j
∣∣p−q +γp−q

k+1

≥
∣∣β j

∣∣p

∣∣β j
∣∣p−q +γp−q

k

(5.21)

this implies that Pγk+1 (β)≥ Pγk (β) and therefore Lγk+1 (β)≥ Lγk (β).

LEMMA 5.2.3. For every k ∈N, Lγk is a continuous function.

Proof. Since the Euclidean norm is known to be continuous, Lγk is a continuous
function as long as the penalty term Pγk is continuous. This depends on whether
the function

f (x)= |x|p
|x|p−q +γp−q

k
(5.22)

is continuous on x ∈ R for all p and q satisfying the conditions given above.
Continuity of f (x) at c ∈ R means that limx→c f (x) = f (c). Clearly, the crucial
point for this function lies at c = 0. Note that f (c) is defined ∀c ∈R, since γk > 0.
Next, limx→0 f (x) exists, as

lim
x→0+

f (x)= 0 and lim
x→0−

f (x)= 0. (5.23)

Finally, limx→0 f (x)= 0= f (0), so f (x) is continuous and so is Lγk .

LEMMA 5.2.4. supk∈NLγk equals L0.
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Proof. Since it was shown above that Lγk+1 ≥ Lγk for γk+1 ≤ γk, the proof reduces
to proving that P0(β)=Q(β). Hence, for q = 0 it should hold that

lim
γ→0+

|x|p
|x|p +γp =





0 if x = 0,

1 otherwise
(5.24)

and for q > 0 it should hold that

lim
γ→0+

|x|p
|x|p−q +γp−q = |x|q . (5.25)

For the first limit, note that if x = 0 it holds that

lim
γ→0+

0
0+γp = 0, (5.26)

and if x 6= 0 it follows

lim
γ→0+

|x|p
|x|p +γp = |x|p

|x|p = 1. (5.27)

For the second limit,

lim
γ→0+

|x|p
|x|p−q +γp−q = lim

γ→0+
|x|q

1+
(
γ
|x|

)p−q = |x|q
1

= |x|q (5.28)

since p ≥ q.

LEMMA 5.2.5. There is a lower bound to Lγk ,∀k ∈N, denoted by L.

Proof. Since Pγk (β)≥ 0, ∀k ∈N and λ> 0, it follows that

Lγk (β)≥ ‖Xβ−y‖2 = L(β) (5.29)

is a lower bound.

LEMMA 5.2.6. L is level-bounded.

Proof. Recall that L :Rd →R is level-bounded if for every α ∈R the sublevel set
lev≤αL is bounded and possibly empty (Rockafellar and Wets, 1998, Definition
1.8).3 Here, lev≤αL is defined as

lev≤αL =
{
β ∈Rd : L(β)≤α

}
=

{
β ∈Rd : ‖Xβ−y‖2 ≤α

}
. (5.30)

Recall further that it has been assumed that the matrix X is of full rank, such
that the OLS solution β∗ = argminβ∈Rd

∥∥Xβ−y
∥∥2 is unique. Let α∗ =

∥∥Xβ∗−y
∥∥2.

3A set in a metric space is bounded if it is contained in a ball of finite radius.
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5. Smoothed `q Regression

Then, if α<α∗ the sublevel set lev≤αL is empty. Next, if α>α∗ then the sublevel
set is bounded due to the convexity of the norm function. In fact, the radius r
of the ball centered at β∗ which bounds the sublevel set is given by the largest
Euclidean distance from β∗ to any β′ ∈ lev≤α for which

∥∥Xβ′−y
∥∥2 =α.

The final lemma shows that L0 is lower semi-continuous (lsc). Before in-
troducing this lemma, two properties of lsc functions are stated. Recall that a
function f :Rd →R is lsc if and only if the set

{
x ∈Rd : f (x)>α

}
(5.31)

is an open set for all α ∈ R. Proofs of the following properties can be found in
Pedersen (1989, Proposition 1.5.12).

PROPERTY 5.2.7. If f : Rd → R is lsc then g : Rd → R defined by g(x) = λ f (x) is
also lsc for λ> 0.

PROPERTY 5.2.8. If f1, f2 : Rd → R are lsc functions then f : Rd → R defined by
f = f1 + f2 is also lsc.

LEMMA 5.2.9. Let π j :Rd →R be given by π j(x)=π[x j 6= 0] for x ∈Rd . Then π j is
lsc.

Proof. The set given by
S=

{
x ∈Rd :π j(x)>α

}
(5.32)

must be open for all α ∈R for π j to be lsc. Note that there are two distinct function
values for π j(x), hence there are three distinct sets depending on the value of α:

S=Rd α< 0 (5.33)

S=Rd \{0} α ∈ [0,1) (5.34)

S=; α≥ 1 (5.35)

Each of these sets is open, so π j is lsc.

LEMMA 5.2.10. L0 is lsc.

Proof. Recall that L0 is defined as

L0(β)= ‖Xβ−y‖2 +λQ(β). (5.36)

Note that ‖Xβ−y‖2 is an lsc function since the complement of the set in (5.31) is
closed. Moreover,

∣∣β j
∣∣q is an lsc function for q > 0 because it is continuous. Then,

by Lemma 5.2.9 it follows that Q(β) is lsc. Combining this with Property 5.2.7
and 5.2.8 completes the proof.
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Before introducing the main result, three theorems from Rockafellar and
Wets (1998) are presented on which the main result is based.

THEOREM 5.2.11. Let { f ν}ν∈N be a sequence of functions on Rd . If the sequence is
nondecreasing ( f ν ≤ f ν+1), then e-limν f ν exists and equals supν[cl f ν] (Rockafel-
lar and Wets, 1998, Theorem 7.4(d)).

THEOREM 5.2.12. The sequence { f ν}ν∈N is eventually level-bounded if there is
a level-bounded function g such that eventually f ν ≥ g, or if the sequence of sets
dom f ν is eventually bounded (Rockafellar and Wets, 1998, Theorem 7.32(a)).

THEOREM 5.2.13. Suppose the sequence { f ν}ν∈N is eventually level-bounded, and
f ν e−→ f with f ν and f lower semi-continuous and proper. Then

inf f ν→ inf f (finite) (5.37)

while for ν in some index set N ∈N∞ the sets argmin f ν are nonempty and form a
bounded sequence with

limsup
ν

(argmin f ν)⊂ argmin f . (5.38)

Indeed, for any choice of εν ↘ 0 and xν ∈ εν −argmin f ν, the sequence {xν}ν∈N
is bounded and such that all its cluster points belong to argmin f . If argmin f
consists of a unique point x̃, one must actually have xν→ x̃ (Rockafellar and Wets,
1998, Theorem 7.33).

These theorems allow for the proof of the main convergence result of Smooth-q
regression, which is analogous to Proposition 2.4 from Chouzenoux et al. (2013).

THEOREM 5.2.14. Let Lγ be defined as above and (γk)k∈N be a decreasing
sequence of positive real numbers converging to 0. Then,

(i) infLγk → infL0 as k →∞.

(ii) If ∀k ∈N, β̂k is a minimizer of Lγk , then the sequence (β̂k)k∈N is bounded
and all its cluster points are minimizers of L0.

(iii) If L0 has a unique minimizer β̃, then β̂k → β̃ as k →∞.

Proof. After Chouzenoux et al. (2013, Proposition 2.4): By Lemma 5.2.2 the
sequence (Lγ)k∈N is a nondecreasing sequence of functions on Rd . Therefore
according to Theorem 5.2.11 this sequence epi-converges to supk∈NLγk . This
function is equal to L0 following Lemma 5.2.4.
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5. Smoothed `q Regression

By Lemma 5.2.5 there is a lower bound to the sequence (Lγk )k∈N, given by L,
and L is level-bounded by virtue of Lemma 5.2.6. Thus, by Theorem 5.2.12 the
sequence (Lγk )k∈N is eventually level-bounded.

Finally, since L0 is lower semi-continuous by Lemma 5.2.10 and it is proper4,
the proof is completed by the application of Theorem 5.2.13.

This section is concluded with the following conjecture about the convergence
properties of the Smooth-q algorithm presented above. The sequence of γk is
again defined as γk+1 = c ·γk with c ∈ (0,1) a decay constant.

CONJECTURE 5.2.15. Given sufficient iterative majorization steps T and a
large enough decay constant c ∈ (0,1), the solution β̂c,T found by the Smooth-q
regularized regression algorithm comes arbitrarily close to the global minimizer
of L0(β). In other words, if

β̃= argmin
β∈Rd

L0(β) (5.39)

then for any δ> 0 there exists c ∈ (0,1) and T > 0 such that

∥∥β̂c,T − β̃
∥∥< δ. (5.40)

A proof of this conjecture is considered outside the scope of the current work.
However, in the next section numerical experiments are presented in support of
this statement.

5.3 N U M E R I C A L E X P L O R A T I O N S

In this section some numerical experiments are presented that explore the
convergence properties of the Smooth-q regression algorithm. The aim is to
gain an understanding of the role of the decay parameter c ∈ (0,1) in the series
γk+1 = c·γk and the number of majorization steps T in the optimization algorithm.
For simplicity, the experiments are restricted to the case where q = 0, but they
can easily be generalized to other values of q. It is expected that since the
nonconvexity is strongest for q = 0, these experiments can give insight in the
worst-case convergence properties of the Smooth-q algorithm.

5.3.1 One-dimensional Experiment

In the first experiment the behavior of the Smooth-q algorithm around the
discontinuity in the `0 penalty will be investigated. The one-dimensional Smooth-

4L0 >−∞ for all β ∈Rm and L0 <∞ for at least one β ∈Rm. This clearly holds for L0.
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q regression problem is considered of the form

Lγ(β)= (β−u)2 +Pγ(β), (5.41)

with u ∈R. For γ→ 0+ and q = 0, this problem reduces to the problem

L0(β)= (β−u)2 +π[β 6= 0], (5.42)

for which the solution is known to be

β̃(u)=




0 if u2 ≤ 1

u otherwise.
(5.43)

To illustrate how the convergence properties of the Smooth-q algorithm de-
pend on c and T the following experiment is performed. Let U denote a set of
100,001 equally spaced points on the interval [−1.5,1.5]. Then, for a given c and
T run the Smooth-q algorithm for each u ∈U and compute solutions β̂c,T (u). The
average error of the Smooth-q algorithm in this experiment can then be denoted
by

E(c,T)= 1
|U|

∑

u∈U

∣∣β̃(u)− β̂c,T (u)
∣∣ . (5.44)

Note that there is a limited resolution in this experiment. Cases where β̂c,T (u)
does not exactly equal β̃(u), will likely occur around the strong discontinuity
at |u| = 1. Thus, when E(c,T) = 0 for some c and T, it can only be stated with
certainty that there is no error for all u outside the regions where |u| = 1±3 ·10−5

(due to the choice of the set U).

Figure 5.3 shows the results of this experiment for different values of c and
T. As can be seen, the error indeed decreases for increasing values of c and T,
in accordance with the convergence conjecture above. For most combinations of
c and T there is a small region around the discontinuity where an error in the
β estimates occurs. Furthermore, for smaller values of c it can be seen that the
error flattens out with increasing numbers of iterations T. This indicates that
for those decay constants an increasing number of majorization iterations will
not improve the estimate further, as it has converged to a local minimum of the
loss function. Finally, for a large enough value of c and T an error of zero can
indeed be found, as expected.
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FIGURE 5.3 – Plot of the average absolute error E(c,T) for different values
of c and T. The figure shows that for larger values of c and T the error
decreases, as expected from Conjecture 5.2.15. The result E(0.999,100) = 0
explains the discontinuity in the lowest line.

5.3.2 Multidimensional Experiment

In the multidimensional experiment, the conjecture stated above will be targeted
directly. Again the experiment will be restricted to the case where q = 0, as the
nonconvexity is strongest for this value of q. Moreover, for q = 0 it is straight-
forward to determine the solution β̃ through best subset selection. To verify the
conjecture a number of possible values of c are chosen as well as a number of
values for δ. It will then be shown that for each δ there is a c and a T for which
the distance between the solution obtained by the Smooth-q algorithm and that
obtained by the brute force algorithm is smaller than δ.

A brief description of the experimental setup follows, further details are given
in subsequent paragraphs. First, generate a regression dataset with a true
parameter vector β which contains r nonzeros. For this dataset, compute the best
subset solution β̃ of r variables using a brute force algorithm. Second, for a given
value of c determine the value of the regularization parameter λ in the Smooth-q
algorithm which yields a solution with r nonzeros. Finally, for a given value of
δ, determine the smallest value of T for which the distance between β̂c,T and β̃
is smaller than δ, up to some maximum value of T. Repeat this experiment for
several regression datasets.

The regression datasets are generated as follows. First, a data matrix X ∈
Rn×d is generated with rows x′

i ∼N(µ,I) where µ ∈ Rd and µ j ∼ U(0,1) for all
j, and I ∈ Rd×d is the identity matrix. Next, generate β ∈ Rd with β j ∼U(−1,1)
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and set d− r elements of β to zero such that it has r nonzero elements. Finally,
generate a noise term ε ∈Rn with εi ∼N(0,1) and compute y=Xβ+ε.

As mentioned above, the solution β̃ can be computed by best subset selection,
i.e. by solving the problem

β̃= argmin
β∈Rd

∥∥Xβ−y
∥∥2 s.t.

∥∥β
∥∥

0 = r. (5.45)

A brute-force approach for this problem can find the optimal solution for small
values of r and d within reasonable computation time.

For the Smooth-q algorithm a regularization parameter λ needs to be de-
termined, which yields a solution with r nonzero elements. Finding this λ is
done using a binary search algorithm on the range of λ values. This range is
recursively partitioned into regions where a distinct number of elements β j are
nonzero. For each possible value of r this technique gives a region where the
Smooth-q algorithm finds a solution with r nonzeros.5

For each value of c, a value of T is determined which gives an error of at
most δ between the Smooth-q and the best subset solutions. This is done by
first checking if T = 1 yields a close enough solution. If not, the maximum value
of Tmax = 100 is used to see if for this large value of T the desired accuracy is
reached. If this is the case, the value of T is decreased until the lowest T is
found for which the error is still below δ. If Tmax does not give a solution close
enough to β̃, it is concluded that the value of c is too small to achieve the desired
accuracy.

For this experiment, the following parameters are chosen: n = 500, d = 20,
r = 5, δ ∈ [10−3,10−6,10−9,10−12], and c ∈ [0.5,0.75,0.85,0.9,0.95,0.999]. To
average the results 100 different regression datasets were generated. The γ

sequence used in these experiments follows γk+1 = c ·γk with γ0 = 1/min
{∣∣∣βOLS

j

∣∣∣
}

and ends when γk < 10−16. Note that the value of γ0 only needs to be chosen large
enough such that the initial Smooth-q solution equals the OLS solution. The
suggested starting value seems to work well in practice. Furthermore, the final
value of γk can also be varied in practice and iterations could also be stopped
when the relative change in the parameter values becomes small enough.

Figure 5.4 shows the histograms of the difference in the coefficient estimates
and the relative difference in the loss function for the experiments with δ= 10−12.
As can be seen from Figure 5.4(a), the difference in the coefficient estimates is
below 10−13 for the majority of datasets. For these datasets the Smooth-q solution
is thus almost exactly equal to the globally optimal solution. The small difference

5This binary search algorithm is implemented in the SparseStep R package available on CRAN
(Van den Burg et al., 2017)
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FIGURE 5.4 – Histograms of the simulation results of the convergence ex-
periment with δ = 10−12. Figure 5.4(a) shows the number of datasets for
which the difference in the coefficients estimates lies between 10k and 10k+1

for k = {−15, . . . ,−1}. Figure 5.4(b) shows a similar histogram for the relative
difference in the loss, i.e.

(
L

(
β̂c,T

)−L
(
β̃

))
/L

(
β̃

)
. For the latter figure the left

most interval is between 0 and 10−16.

in accuracy is likely due to rounding errors and machine precision and does not
reflect a limitation of the algorithm. This is confirmed in Figure 5.4(b), which
shows the relative difference in the loss function between the Smooth-q solution
and the globally optimal solution. For the majority of datasets the relative loss
difference is between 0 and 10−16.

The results in Figure 5.4 are for δ= 10−12. However, the exact same results
are obtained for other values of δ. In other words, the values of δ in the ex-
periment are irrelevant as there does not seem to be a combination of c and T
where the obtained solution is below for instance δ= 10−3 but above δ= 10−12.
Another result of the experiment is that the value of T does not seem to have any
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influence on the quality of the solution. For the datasets in this experiment it is
observed that if the Smooth-q algorithm finds the optimal solution, it will do so
with T = 1. Furthermore, if it does not find the solution with T = 1 it will not find
it with T = Tmax = 100 either. However, the value of c does have an influence on
the accuracy of the solution (as confirmed by Figure 5.4). For increasing values
of c the number of datasets where the global solution is found increases. For
c ∈ [0.5,0.75] the global solution is found in 76% of datasets, for c ∈ [0.85,0.9.0.95]
it is found in 78%, and for c = 0.999 it is found in 82% of the datasets.

The datasets where the Smooth-q algorithm does not find the globally optimal
solution are of course of interest. For these datasets it might be the case that c
needs to be increased further, or the value of the regularization parameter λ needs
to be chosen differently to obtain the global solution. Note however that for these
datasets the relative difference in the value of the loss function never exceeds
about 1%, as indicated in Figure 5.4(b). Further analysis of these datasets is
considered a topic for future research. It is finally noted that this experiment
would benefit from additional analysis of the convergence for q ∈ (0,2], as this
does not require determining the value of λ using the binary search algorithm.

5.4 D I S C U S S I O N

The Smooth-q regression algorithm which can be used for `q-regularized re-
gression with q ∈ [0,2] has been presented. This algorithm unifies a number
of existing regularized regression methods into a single formulation by employ-
ing a smooth continuous approximation of the potentially nonconvex `q penalty.
The algorithm works by iteratively refining this approximation and finding an
intermediate solution at each step by iterative majorization.

A preliminary convergence analysis of the Smooth-q algorithm was presented,
which shows that the global minimizers of the smoothed loss function converge
to the global minimizer of the exact `q-regularized problem. Moreover, a con-
vergence conjecture was stated, which claims that parameters of the Smooth-q
algorithm can be chosen such that the obtained solution comes arbitrarily close
to the globally optimal solution. Numerical experiments were conducted which
generally support this statement. Future work on the Smooth-q algorithm will
focus on theoretical analysis of the convergence conditions. Finally, note that
with only minor changes to the loss function the Smooth-q penalty can be used for
variations of regularized regression similar to the grouped Lasso (Yuan and Lin,
2006) or the elastic net (Zou and Hastie, 2005). These variations are considered
topics for future work as well.
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Summary

Multiclass classification and regularized regression problems are very common in
modern statistics and machine learning applications. On the one hand, multiclass
classification is typically concerned with predicting class labels: given observa-
tions of objects that belong to certain classes, can we predict to which class a
new object belongs? On the other hand, the regression method is often used in
economics, social science, medicine, and various other fields to measure how a
change in one independent variable influences an observed outcome. In regular-
ized regression constraints are placed on the coefficients of the regression model
to enforce certain properties in the solution such as sparsity or limited size.

In this dissertation several new algorithms are presented for both multi-
class classification and regularized regression. For multiclass classification the
GenSVM method is presented. This method extends the binary support vector
machine to multiclass classification problems in a way that is both flexible and
general, while maintaining competitive predictive performance and training time.
In a different chapter accurate estimates of the Bayes error rate are applied
to the problem of constructing classification hierarchies: structures in which a
multiclass classification problem is decomposed into several binary classification
problems. The novelty of the presented method is that accurate estimates of
the Bayes error can be used to inform this hierarchy in order to solve the easier
problems first before moving on to the more difficult ones.

For regularized regression a new algorithm is presented in two parts: in
the first part the problem of `0-norm regularization is considered and in the
second part the entire class of `q-regularized regression problems is addressed.
The difficulty of the `q-regularized regression problem lies in the fact that for
some values of q such problems are hard to solve due to a property known
as nonconvexity. In the proposed algorithm a technique known as graduated
nonconvexity is used to slowly introduce the nonconvexity in the problem while
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iterating towards a solution. The technique is evaluated in the context of `0-
regularized regression using an extensive experimental study. Furthermore,
the theoretical properties of the approach are analyzed in the more general `q-
regularized regression problem. The theoretical analysis is supplemented with
numerical experiments which show the feasibility of the proposed algorithm for
identifying globally optimal solutions.

140



Samenvatting

Classificatie en geregulariseerde regressie zijn veel voorkomende problemen in de
moderne statistiek en machine learning. Bij classificatie is het doel om een klasse
te voorspellen: als we observaties hebben van objecten die tot bepaalde klassen
behoren, kunnen we dan voorspellen bij welke klasse een nieuw object behoort?
De regressie methode wordt in de wetenschap veel gebruikt om te meten hoe een
verandering in een onafhankelijke variabele invloed heeft op een geobserveerde
uitkomst. In geregulariseerde regressie worden beperkingen opgelegd aan de
toegestane coëfficiënten van het regressie model om bepaalde eigenschappen van
de oplossing te forceren, zoals ijlheid of beperkte grootte van de coëfficiënten.

In dit proefschrift worden verschillende nieuwe algoritmes voor classificatie
en geregulariseerde regressie gepresenteerd. Voor classificatie wordt eerst de
GenSVM methode gepresenteerd. Deze methode breidt de binaire support vec-
tor machine uit naar classificatieproblemen met meer dan twee klassen op een
manier die zowel flexibel als algemeen is, zonder daarbij competitieve voorspel-
kwaliteit of rekentijd op te offeren. In een ander hoofdstuk worden nauwkeurige
schattingen van de Bayes fout toegepast op het construeren van classificatiehi-
ërarchieën: structuren waarmee een classificatieprobleem met meer dan twee
klassen wordt omgezet naar een reeks binaire problemen. Het vernieuwende
in deze methode is dat de nauwkeurige schattingen van de Bayes fout gebruikt
kunnen worden om een hiërarchie te construeren zodanig dat de makkelijkere
binaire problemen eerst kunnen worden opgelost.

Voor geregulariseerde regressie wordt in twee delen een nieuw algoritme
gepresenteerd: in het eerste deel wordt `0-norm regularisatie bekeken en in het
tweede deel wordt de volledige klasse van `q-norm regularisatie geanalyseerd. De
moeilijkheid van `q-geregulariseerde regressie ligt in het feit dat voor sommige
waardes van q dergelijke problemen moeilijk op te lossen zijn door de noncon-
vexiteit van het probleem. In het voorgestelde algoritme wordt de stapsgewijze
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nonconvexiteit techniek gebruikt om de nonconvexiteit in het probleem lang-
zaam te introduceren tijdens de iteraties naar een oplossing. De techniek wordt
geëvalueerd met een uitgebreide simulatie studie voor het `0-geregulariseerde
regressie probleem. Vervolgens worden de theoretische eigenschappen geanaly-
seerd voor het algemene `q-geregulariseerde probleem. De theoretische analyse
wordt aangevuld met numerieke experimenten die laten zien hoe bruikbaar het
voorgestelde algoritme is voor het identificeren van de globaal optimale oplossing.
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performance and theoretical convergence properties of the algorithm are analyzed with numerical 
experiments that demonstrate the ability for the algorithm to obtain globally optimal solutions. 
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