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Abstract

Background: The objective of this study was to assess whether sex-specific differences in fetal and infant
growth exist.

Methods: This study was embedded in the Generation R Study, a population-based prospective birth cohort.
In total, 8556 live singleton births were included. Fetal growth was assessed by ultrasound. During the first
trimester, crown-rump-length (CRL) was measured. In the second and third trimester of pregnancy head
circumference (HC), abdominal circumference (AC) and femur length (FL) were assessed. Information on infant
growth during the first 2 years of life was obtained from Community Health Centers and included HC, body
weight and length.

Results: In the first trimester, male CRL was larger than female CRL (0.12 SD [95% CI 0.03,0.22]). From the
second trimester onwards, HC and AC were larger in males than in females (0.30 SD [95% CI 0.26,0.34] and 0.
09 SD [95% CI 0.05,0.014], respectively). However, FL in males was smaller compared to female fetuses (0.21
SD [95% CI 0.17,0.26]). Repeated measurement analyses showed a different prenatal as well as postnatal HC
growth pattern between males and females. A different pattern in body weight was observed with a higher
body weight in males until the age of 12 months where after females have a higher body weight.

Conclusions: Sex affects both fetal as well as infant growth. Besides body size, also body proportions differ between
males and females with different growth patterns. This sexual dimorphism might arise from differences in
fetal programming with sex specific health differences as a consequence in later life.
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Background
Embryonic and fetal growth are dependent on many
factors including adequate placental development and
function. This can be reflected by several placental bio-
markers in maternal plasma such as the pro-angiogenic
placental growth factor (PlGF) and the anti-angiogenic
soluble fms-like tyrosine kinase 1 (s-Flt1) [1, 2]. Previous
studies have shown associations between placental
biomarkers and fetal growth [3–5].

Recently, fetal sex-specific differences in placental
biomarkers were observed with higher first trimester
levels of s-Flt1 and PlGF in women carrying a female
fetus. This may suggest that placentation processes differ
according to fetal sex [6, 7]. This difference in placental
function might influence fetal growth and/or fetal
programming in a sex-specific manner. Indeed, previous
research has shown fetal sex-specific differences in
biometrical indices and growth patterns, and fetal sex-
specific growth curves were created [8]. However, these
growth curves were based on cross-sectional data and
serial measurements of the same fetus were not avail-
able. Moreover, it is of interest to investigate whether
sex-specific differences in fetal growth persist into
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infancy since the Development and Origins of Health
and Disease (DOHaD) theory states that deviations in
early growth are associated with adverse health in
later life.
With this study, we investigate whether there are fetal

sex-specific differences in fetal and infant growth in a
large study population. We repeatedly assessed fetal
growth during pregnancy by measuring crown-rump-
length (CRL) in the first trimester, and several biometrical
indices (head circumference (HC), abdominal circumfer-
ence (AC) and femur length (FL)) in the second and third
trimester of pregnancy. After pregnancy until the age of
2 years, growth was assessed at several time points by
assessing HC and body weight and length. In addition, we
explore the effect of the presence or absence of the
placental syndrome on these differences.

Methods
Study design
This study was embedded in the Generation R Study, a
population-based prospective cohort study from early
pregnancy onwards in Rotterdam, The Netherlands [9].
The study is designed to identify early environmental

causes of normal and abnormal growth, development
and health from fetal life until young adulthood. Eligible
mothers were those who were resident in the study area
at their delivery date between April 2002 and January
2006. We aimed to enroll mothers in early pregnancy
(before 18 weeks of gestation). In total, 9778 mothers were
included. For the present study, women with a live single-
ton birth with at least one prenatally assessed biometric
measurement were eligible (Fig. 1). The study has been ap-
proved by the Medical Ethics Committee of the Erasmus
Medical Center, Rotterdam, The Netherlands. Written in-
formed consent was obtained from all participants.

Pregnancy dating
Precise initial dating by early ultrasonography is vital to
ensure accurate pregnancy dating, especially when asses-
sing fetal growth. Dating of pregnancy was performed
using the first ultrasound measurement of either the
CRL (if the gestational age was below 12 weeks and
5 days and CRL measurement <65 mm), or the biparietal
diameter (BPD) (from a gestational age from 12 weeks
and 5 days onwards with a BPD >23 mm). Establishing

n = 9778 
Total cohort

n = 9505 
Live singleton births  

n = 949 
No biometrical indices measured  

n = 273
Excluded: stillbirths, twins, 
miscarriages.  

n = 8556 
Biometrical indices 2nd and or 3rd trimester 
available

Information available: 

1st trimester: 
SD CRL    n = 1782 

2nd trimester: 
SD abdominal circumference  n = 8065 
SD head circumference  n = 8048 
SD femurlength   n = 8071 
SD estimated fetal weight  n = 8029 

3rd trimester 
SD abdominal circumference  n = 8224 
SD head circumference  n = 8175 
SD femurlength   n = 8246 
SD estimated fetal weight  n = 8213 

Birth
SD head circumference  n = 4485 
SD birthweight    n = 8478 

Fig. 1 Flowchart
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gestational age with fetal ultrasound examinations is the
most accurate method for pregnancy dating [10–12].

Fetal growth
First trimester
Since pregnancy dating was based on CRL, only CRL
measurements of women with a known and reliable first
day of the last menstrual period (LMP) with a regular
cycle (lasting 28 days +/- 4 days) were included in the
analyses (n = 1782). For the purpose of analyses on CRL
measurement, pregnancy dating in this subgroup of
women was not based on CRL but on the LMP.

Second and third trimester
Fetal ultrasound examinations were performed in the second
(median 20.5 weeks of gestation, 90% range 18.9–22.9) and
third trimester (median 30.3 weeks of gestation, 90% range
28.7–32.4). Fetal biometry (HC, AC, and FL) was performed
trans abdominally during each ultrasound examination. Stan-
dardized ultrasound planes for HC, AC, and FL are described
elsewhere [13–15]. Estimated fetal weight (EFW) was calcu-
lated using the formula of Hadlock with parameters AC, HC,
and FL (in cm): EFW=10**(1.326 −0.00326*AC*FL +
0.0107*HC+ 0.0438*AC+ 0.158*FL [16].
Gestational age-adjusted standard deviation scores

(SDS) were calculated for all fetal growth measurements,
including CRL measurements. These gestational age-
adjusted standard deviation scores were based on refer-
ence growth curves from the whole study population
and represent the equivalent of Z-scores [17]. Ultra-
sound examinations were performed using an Aloka®
model SSD-1700 (Tokyo, Japan) or the ATL-Philips®
Model HDI 5000 (Seattle, WA, USA).

Delivery and birth complications
Information on gestational age at birth, offspring sex, and
pregnancy complications (pre-eclampsia [PE], a neonate
born small for gestational age [SGA] and/or spontaneous
preterm birth [sPTB]) was obtained from medical records.
sPTB was defined as a spontaneous onset of birth
<37 weeks of gestation. SGA was defined as a gestational
age and fetal sex-adjusted birthweight below the 10th per-
centile [17]. Pre-eclampsia was defined as the develop-
ment of SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg after
20 weeks of gestation plus the presence of proteinuria
(≥0.3 g in a 24-hour urine specimen or ≥2 + [1 g/L] on a
voided specimen, or ≥1 + [0.3 g/L] on a catheterized speci-
men) in previously normotensive women [18].

Infant growth
Well-trained staff in the Community Health Centers ob-
tained postnatal growth characteristics according to
standard schedules and procedures at the median ages
of 1.1 (90% range 0.8–1.6), 2.2 (90% range 2.0–2.9), 3.3

(90% range 3.0–3.9), 4.4 (90% range 4.0–4.9), 6.2 (90%
range 5.4–7.6), 11.1 (90% range 10.2–12.3), 14.3 (90%
range 13.7–15.7), 18.3 (90% range 17.5–20.8) and 24.8
(90% range 23.6–27.5) months. Growth characteristics
included body weight, length, and HC. SD scores were ob-
tained with the Dutch growth reference charts (Growth
Analyzer 3.0, Dutch Growth Research Foundation,
Rotterdam, The Netherlands).

Statistical analysis
Firstly, we performed student t tests and Chi-square
tests to test sex-specific differences in fetal growth
characteristics. Linear regression analyses were then
performed to relate fetal biometric indices to sex. To
further explore growth patterns between female and
male fetuses and infants, repeated measurement regres-
sion models were performed using the mixed model
procedure with fetal and infant growth as a repeated
outcome measure. These models take the correlation
between repeated measurements of the same subject
into account. Regarding the repeated measurement
analyses that we used to assess fetal growth patterns,
we used SDS according to the Niklasson growth stan-
dards. This standard adjusts for fetal sex. In addition,
we stratified for fetal sex in our analyses, which creates
the potential risk of overadjusting. The growth standard
of Usher and McLean is to our knowledge the only
standard available not adjusting for fetal sex [19].
Repeated measurement analyses on weight using this
standard instead of the Niklasson standard are shown
in Additional file 1: Figure S1. Finally, to investigate dif-
ferences in fetal growth in pregnancies with a subopti-
mal intrauterine environment, we created the
composite outcome scores “complicated pregnancy”
and “uncomplicated pregnancy”. Pregnancies compli-
cated by either PE and/or sPTB and/or SGA were clas-
sified as being complicated. Uncomplicated pregnancies
were defined by the absence of all these complications.
All abovementioned linear regression and repeated
measurement analyses were also performed within
strata of these composite scores. Since fetal sex does
not have any true confounding factors (e.g., smoking,
folic acid intake, maternal ethnicity), primary analyses
were not adjusted for any covariates. However, since in-
cluding these covariates into the analyses may be in-
formative, we included them in additional analyses
shown in Additional file 2: Table S1. By using SD scores
of all outcomes, we automatically adjusted for gesta-
tional age at the time of measurement.
Lastly, effect modification was tested on a multiplica-

tive scale with maternal smoking and ethnicity. If the
interaction term was statistically significant, regression
or repeated measurement analyses were performed in
strata of that specific determinant.
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Statistical analyses were performed using either the
Statistical Package of Social Sciences version 21.0 for
Windows (SPSS Inc., Chicago, IL, USA) or the Statistical
Analysis System version 9.3 (SAS, Institute Inc., Gary
NC, USA).

Results
Study population
Baseline characteristics of all participants are presented
in Table 1. There were no differences between women
pregnant with a male or female fetus concerning mater-
nal age, height, weight, BMI, ethnicity, educational level,
folic acid use, or parity. Women with a male fetus
smoked more often (p < 0.01). Also gestational age at
ultrasound and gestational age at birth differed between
male and female fetuses.

Effect of sex on fetal growth
Already in the first trimester, fetal growth differed be-
tween the two sexes. Male fetuses had a larger CRL as
compared to female fetuses with a difference of 0.12 SD
[95% CI 0.03,0.22, p < 0.001]. In the second trimester of
pregnancy, male fetuses had a lower EFW of 0.05 SD
[95% CI 0.00,0.09, p = 0.03] calculated with the Hadlock
formula. In the third trimester, no differences concern-
ing EFW were observed. At birth, male neonates were
on average of 188 g heavier than female neonates [95%
CI 182,193, p < 0.001].
In Table 2, the results of the linear regression ana-

lyses on biometrical indices are depicted. Male sex was
associated with a larger AC and HC, but a smaller FL
in both the second and the third trimester of pregnancy
(all p < 0.001). Results of the repeated measurements in
SDS are shown in Fig. 2a–d. Although male fetuses

Table 1 Baseline characteristics stratified by fetal sex

Total Females Males p value

n = 8556 n = 4230 n = 4326

Maternal age 29.6 (5.3) 29.6 (5.3) 29.7 (5.3) 0.49

Anthropometrics

Height (cm) 167.5 (7.4) 167.4 (7.5) 167.6 (7.3) 0.25

Weight (kg) 66.3 (12.9) 66.4 (12.9) 66.1 (12.8) 0.32

BMI (kg/m2) 23.9 (19.4–33.8) 24.0 (19.4–33.9) 23.8 (19.3–33.7) 0.12

Ethnicity 0.44

Western 4664 (57.5%) 2316 (57.9%) 2348 (57.1%)

Non-Western 3447 (42.5%) 1682 (42.1%) 1765 (42.9%)

Educational level 0.74

Low 907 (11.6%) 462 (12.0%) 445 (11.3%)

Middle 3627 (46.4%) 1782 (46.2%) 1845 (46.7%)

High 3275 (41.9%) 1611 (41.8%) 1664 (42.1%)

Smoking habits 0.004

No 5452 (72.8%) 2740 (73.9%) 2712 (71.6%)

Yes-stopped 642 (8.6%) 330 (8.9%) 312 (8.2%)

Yes-continued 1399 (18.7%) 636 (17.2%) 763 (20.1%)

Folic acid use-yes (%) 0.11

No 1863 (29.3%) 899 (28.5%) 964 (30.2%)

Before 10 weeks 1978 (31.1%) 971 (30.7%) 1007 (31.5%)

Preconception start 2512 (39.5%) 1289 (40.8%) 1223 (38.3%)

Nulliparous (%) 4718 (55.8%) 2353 (56.4%) 2365 (55.2%) 0.89

Gestational age at sonography (wks)

First trimester 12.5 (11.1–14.5) 12.5 (11.1–14.4) 12.5 (11.1–14.6) 0.04

Second trimester 20.5 (18.9–22.9) 20.4 (18.8–22.8) 20.6 (18.9–23.0) <0.001

Third trimester 30.3 (28.7–32.4) 30.3 (28.6–32.4) 30.4 (28.9–32.4) <0.001

Gestational age at birth (wks) 40.1 (36.9–42.0) 40.1 (36.9–42.0) 40.1 (36.7–42.1) 0.001

Data are represented as n (%) or as the mean (SD) or as the median with the 90% range
Differences in baseline characteristics were tested using student t test, Mann-Whitney U test, and Chi-square test
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Table 2 Linear regression analyses on fetal growth

AC (SDS) HC (SDS) FL (SDS)

β β β

Total

2nd trimester

Females Reference Reference Reference

Males 0.09 [0.05, 0.14]*** 0.30 [0.26, 0.34]*** −0.21 [−0.26, −0.17]***

3rd trimester

Females Reference Reference Reference

Males 0.09[0.05, 0.13]*** 0.38 [0.34, 0.42]*** −0.21 [−0.26, −0.17]***

Uncomplicated

2nd trimester

Females Reference Reference Reference

Males 0.10 [0.05, 0.15]*** 0.29 [0.25, 0.34]*** −0.21 [−0.25, −0.16]***

3rd trimester

Females Reference Reference Reference

Males 0.12 [0.07, 0.16]*** 0.38 [0.34, 0.43]*** −0.20 [−0.25, −0.15]***

Complicated

2nd trimester

Females Reference Reference Reference

Males 0.09 [−0.03, 0.21] 0.38 [0.26, 0.50]*** −0.26 [−0.38, −0.13]***

3rd trimester

Females Reference Reference Reference

Males 0.04 [−0.08, 0.17] 0.42 [0.30, 0.54]*** −0.27 [−0.40, −0.15]***

Values are regression coefficients (95% CI) and represent data in SDS
Abbreviations: AC abdominal circumference, HC head circumference, FL femur length
***p < 0.001

Fig. 2 a–d Associations between sex and fetal growth–repeated measurement analyses adjusted for maternal smoking
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have a larger AC and a smaller FL compared with fe-
male fetuses, the growth pattern of AC and FL did not
differ between male and female fetuses ( both p = 0.89).
Additionally, male HC is larger than female HC. This
difference changes during pregnancy as the difference
between male and female HC decreases as pregnancy
precedes. This indicates that the growth pattern of HC dif-
fers with fetal sex in which male fetuses have a slower
growth rate of HC than female fetuses (p < 0.001).
Regarding analyses assessing the effects of a subopti-

mal intrauterine environment, i.e., complicated versus
uncomplicated pregnancies, similar trends were ob-
served with larger AC and HC and smaller FL in male
fetuses compared to female fetuses (all p < 0.001). The
only exception is that the AC in the complicated group
did not differ between male and female fetuses in both
the second and third trimester of pregnancy (respect-
ively p = 0.11 and p = 0.46).

Effect of fetal sex on infant growth
The results of the repeated measurements in SDS are
shown in Fig. 3a–c. Males have a smaller HC from
3 months onwards. The difference in HC increases with
advancing age. The growth pattern of HC was signifi-
cantly different between the two sexes (p = 0.02). Males
have a larger body length compared with females. This
was statistically significant from 9 months onwards. Al-
though it seems that the difference between males and
females increases with advancing age, the pattern in
body length between the two sexes was not statistically

significant (p = 0.38). For the pattern of body weight, a
crossover was observed. At the age of 3 months and
from 21 months onwards, the difference in body weight
was statistically different between males and females. Due
to the crossover, body weight patterns were statistically
different for females compared with males (p < 0.01).
We did not find an interaction with maternal smok-

ing or ethnicity on both fetal and infant growth
characteristics.

Discussion
Main findings
In this study, we demonstrate fetal sex-specific differ-
ences in fetal growth. These differences are already
present from the first trimester of pregnancy onwards
and track throughout pregnancy. Male and female fe-
tuses do not only differ in weight but also differ in
biometric indices with a different body proportion as a
consequence. Moreover, male fetuses follow a different
growth pattern than female fetuses with a slower growth
rate of the HC. The presence of PE, SGA, or PTB does
not affect this. During infancy, the difference in HC
growth patterns persists and a difference in weight
patterns arises.

Interpretation
The Development and Origins of Health and Disease
(DOHaD) theory states that in the case of adverse fetal
exposure, the unborn fetus can modify its own develop-
ment such that it will be prepared for survival in an

Fig. 3 a–c Associations between sex and infant growth–repeated measurement analyses
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environment in which resources are likely to be short.
These early life adaptations help in survival by selecting
an appropriate trajectory of growth in response to the
environment. Although these adaptations may be bene-
ficial for short-term survival, they may have adverse
consequences at birth or in later life [20, 21]. The sex-
specific differences in body proportion and fetal growth
shown in this study might therefore be one of the bases
for sex differences shown in chronic diseases in later
life. Especially, since this study shows that sexual di-
morphism in growth persist after birth until the age of
two years. Little research has been done on differences
in growth patterns between males and females. Some
studies performed on a later age acknowledge differ-
ences in body proportions [22]. Moreover, peak velocity
in growth differs between males and females since the
timing of the beginning of puberty and therefore
growth spurt is different [23, 24]. This is one of the first
studies showing that differences in growth patterns be-
tween males and females begin at a very early age.
Fetal sex-specific differences in fetal growth and growth

patterns may be explained by differences in placentation
as previously suggested by our group [6]. Maternal serum
levels of s-Flt1, PLGF, and PAI-2 were shown to be higher
in the presence of a female fetus. However, Bouwland-
Both et al. from our group showed positive associations
between maternal s-Flt1, PLGF, plasminogen activator in-
hibitor 2 (PAI-2) in early pregnancy and CRL [3]. Accord-
ing to these results, one would expect that female CRL is
increased compared with male CRL. However, this study
showed that male embryos had a larger CRL as compared
with females. Considering the effect of placental bio-
markers on embryonic growth and the sex-specific differ-
ences in these biomarkers, this conflicting result might be
explained by effect modification. Hence, the effect of pla-
cental biomarkers on CRL is dependent on fetal sex. For
this reason, we performed additional interaction analyses
showing that in a male embryo, PAI-2 has a larger effect
on CRL SDS than in a female embryo (data not shown).
Furthermore, we added our data on placental biomarkers
(the first and second trimester s-Flt1 and PLGF) into the
statistical models to test possible mediating effects of these
biomarkers as a proxy for placentation (Additional file 2:
Table S1). Although results remained significant, several
effect estimates changed with more than 10%. This im-
plies an intermediate role for placental biomarkers.
Moreover, extra-placental sources of these biomarkers
exist. Previous studies show that s-Flt1 is also produced
by maternal endothelial cells [25]. These extra-placental
sources could potentially contribute to the differences
in early embryonic growth since these biomarkers are
associated with CRL.
Some studies state that fetal growth is the result of the

availability of nutrients and therefore is mainly determined

by placental function [26]. However, until the 11th week
of pregnancy, cytotrophoblast plugs obliterate the tips of
the utero-placental arteries preventing blood flow with the
consequence that fetal growth is not dependent on hemo-
trophic nutrition during the first trimester. Hence, it is
plausible that in early pregnancy, not only placentation
determines fetal growth but also other underlying factors
such as intrinsic factors of the fetus (i.e., sex). We ob-
served no differences between male and female fetal
growth patterns in complicated and uncomplicated preg-
nancies. This may indicate that physiological placental
regulatory mechanisms may be overruled by the patho-
physiological sequelae in pregnancies complicated by PE,
SGA, and PTB [6, 27].
Concerning biometrical indices, little research has

been performed focusing on fetal sex. One study re-
ported on sex-specific antenatal growth charts [28].
However, these growth charts were based on a popula-
tion of 4234 women with just one antenatal measure-
ment. Similar with our present study, they showed larger
HC and AC in male fetuses. In contrast with our results,
they showed that the difference between male and female
HC increased with proceeding gestation. They did not
show an effect of fetal sex on FL. Another study also
assessed fetal sex-specific differences in biometrical indi-
ces [29]. They too found a larger HC in the case of a male
fetus. This study had a smaller sample size of 427 mea-
surements, and analyses were performed cross-sectional.
In our study, we observed a discrepancy in EFW and

birthweight. Birthweight was higher in males, while
EFW in the second and third trimester of pregnancy was
higher in females. This inconsistency can either be ex-
plained by the applied formula estimating EFW or by
the method used to determine gestational age of preg-
nancy. The Hadlock formula uses HC, AC, and FL to
calculate the EFW. In our study, male and female fetuses
differed in body composition with different indices for
male and female fetuses. The Hadlock formula could
therefore be improved by adjusting for fetal sex as previ-
ously suggested by others [8, 30–33]. Melamed et al.
constructed a fetal sex-adjusted Hadlock formula which
indeed showed a decrease in the systematic error [34].
Secondly, to determine gestational age of pregnancy, we
used either the first trimester CRL or BPD measure-
ment. This study however shows that CRL of a male em-
bryo is larger than that of a female embryo. A possible
consequence is that male embryos were dated as being
older which might explain why females have a higher
EFW during the second and third trimester. Lastly, we
have to consider the possibility that the growth rate of
female fetuses is relatively high in the second trimester
while the growth rate of males is higher in the third tri-
mester. This is confirmed by de Jong et al. who showed
that the daily growth rate in the third trimester prior to
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birth was significantly higher for male fetuses [35]. This
would indeed result in a higher EFW in the second
trimester but a lower birthweight for female fetuses as
seen in this study.

Conclusions
In conclusion, we can state that there are differences in
fetal and infant growth between males and females.
These findings help us in the understanding of the
mechanism of growth which is not only important for
birth outcome but also predisposes for possible adverse
adult health. In clinical practice as well as future re-
search concerning placentation and fetal development
and growth, sex has to be taken into account.

Additional files

Additional file 1: Figure S1. Associations between fetal sex and
weight– repeated measurements analyses. (PDF 86 kb)

Additional file 2: Table S1. Adjusted linear regression analyses on fetal
growth. (XLSX 12 kb)
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