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This thesis contains four chapters that cast new light on the ability of professional 
analysts and statistical models to forecast where the economy currently stands 
and is headed in the very short term, i.e. this quarter and next quarter. This is not 
a trivial issue. An accurate assessment of the current state of the economy is 
important as a starting point for medium-term forecasts of macro-economic 
models, especially during times of heightened volatility such as the recent 
financial crisis.

Practitioners now have a wealth of statistical models to choose from; but which 
one should they use? Can model forecasts be combined to improve forecast 
quality? Did the financial crisis change the forecasting performance of statistical 
models relative to professional analysts? Can statistical models be modified to 
deliver better forecasts?  How should practitioners incorporate the forecasts of 
professional analysts in their projections? This thesis gives answers to these 
questions, providing new insights of interest to both academics and practitioners. 
Central to this research is the construction of a new data set comprised of 
quarterly GDP growth forecasts of professional analysts and snapshots of the 
monthly indicators available when analysts make their forecasts.
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This thesis contains four chapters that cast new light on the ability of 
professional analysts and statistical models to assess economic growth in the 
current quarter (nowcast) and its development in the near future. This is not a 
trivial issue. An accurate assessment of the current state of the economy is 
important as a starting point for medium-term forecasts, especially during 
times of heightened volatility, such as the recent financial crisis.

Nowadays, practitioners have a wealth of statistical models to choose from; but 
which one should they use? Can statistical models be modified to improve their 
forecasting accuracy? What are the gains from combining the forecasts of 
different statistical models? Did the financial crisis change the forecasting 
performance of statistical models relative to professional analysts?  Can 
practitioners use the near-term outlook of professional analysts to improve the 
forecasting accuracy of statistical models? This thesis gives answers to these 
questions, providing new insights of interest to both academics and practitioners. 
Central to this research is the construction of a new dataset, comprised of the 
near-term economic growth forecasts of professional analysts, and the monthly 
indicators available when analysts made their forecasts.
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Chapter 1

Introduction

This dissertation contains four essays on short-term forecasting. The main goal is

to evaluate whether the monthly flow of statistical information and predictions by

professional analysts are helpful to accurately forecast the quarterly growth rate of real

Gross Domestic Product (GDP). This topic has regained interest amongst practitioners

and academics since the onset of the financial crisis of 2008–2009, when most models

failed to forecast the large and abrupt contraction of GDP.

Nowadays, practitioners face a potentially very large information set of monthly

indicators. This information includes data on industrial production, unemployment,

consumer confidence, stock markets and prices of goods and services. It is still an open

question what strategy policy makers and economic agents should use to transform this

information set to an understanding of where the economy currently stands and where

it is heading in the near-term. A possible approach would be to purely rely on mechani-

cal statistical models. Recently, the forecasting literature has developed several of these

models to exploit large datasets. Examples include dynamic factor models, mixed-data

sampling models and Bayesian vector autoregressive models. These models differ in

their approach to the practical problems of how to handle a large-scale information set

and the fact that the auxiliary variables are observed at different frequencies and pub-

lication lags. Apart from model-based forecasts, practitioners can also take advantage

of published forecasts made by professional analysts. From a practical point of view,

such forecasts are cheap and easy to use. Moreover, they may, as an expression of the

“wisdom of crowds”, reflect much more information than statistical information, which

is inevitably limited.

The four chapters in this thesis contribute to the ongoing debate on the forecasting

accuracy of short-term forecasting models, the usefulness of forecasts of professional

analysts and the merits of combining the forecasts of professional analysts and statis-

tical models. New light is shed on the issue as to which model features are especially

valuable for short-term forecasting. Key to these results is the collection of new data

on the quarterly GDP forecasts of professional analysts and snapshots (“vintages”)

1



2 CHAPTER 1.

of the available data when the analysts made their forecasts. The remainder of this

introduction provides a short overview of each chapter.

Chapter 2 examines whether short-term forecasting models were helpful in forecast-

ing Dutch real GDP growth during the dot-com recession of 2001–2002 and the financial

crisis of 2008–2009. Two forecasting strategies based on linear statistical models are

evaluated. The first strategy extracts information from the dataset of monthly indica-

tors by averaging the quarterly GDP growth forecasts from quarterly indicator models,

i.e.: quarterly vector autoregressive (QVAR) models and quarterly bridge equations

(BEQ). The second strategy extracts principal components (or factors) from the set

of monthly indicators and uses these factors to forecast quarterly GDP growth. These

strategies are compared to a näıve autoregressive model and a strategy that simply

takes the average quarterly GDP forecasts of professional analysts. The latter were

collected from paper copies of the monthly publication Consensus forecasts, published

by the private sector firm Consensus Economics. The different strategies are evaluated

in a so-called pseudo real-time setup. This setup takes into account the publication de-

lays of GDP and the monthly indicators but does not take into account the possibility

of data revisions. The empirical results provide compelling evidence that using linear

statistical models pays off: the forecasting errors are much smaller than the errors from

a näıve autoregressive model. The dynamic factor model (DFM) has the edge over the

other statistical models, especially when forecasting the adjacent quarters. The main

message from the comparison of the mechanical statistical models and the predictions

of professional analysts is that the latter seem to embody information that mechanical

models fail to pick up.

Chapter 3 extends the analysis in Chapter 2 in several directions. Firstly, the range

of candidate linear statistical models is extended. Besides the QVAR, BEQ and DFM

Chapter 3 also examines the forecasting accuracy of the Bayesian quarterly vector

autoregressive (BVAR) model, the mixed-frequency vector autoregressive (MFVAR)

model and the mixed-data sampling regression (MIDAS) model. In addition, factor-

augmented versions of the QVAR, MFVAR and BEQ are evaluated, and it is tested

whether allowing for autoregressive terms (GDP’s own past) in MIDAS and BEQ mod-

els enhances their forecasting quality. In total, twelve models are analyzed. Secondly,

the analysis is enriched by analyzing the forecasting quality of the various models in

the euro area and its five largest countries (Germany, France, Italy, Spain and the

Netherlands), adding robustness to the outcomes. The analysis sheds new light on the

performance of forecasting models during periods of heightened volatility, by exam-

ining the forecasting accuracy of the different forecasting strategies before as well as

during a after the financial crisis of 2008–2009. The main results can be summarized

as follows: The dynamic factor model displays the best forecasting capabilities overall,

confirming the results in Chapter 2 for a broader set of models and countries. The
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ability of the DFM to incorporate more than one factor is key to this result. However,

factor-augmented MFVARs and MIDAS models produce slightly better one-quarter

ahead predictions after the start of the recent financial crisis due to their richer dy-

namic specification. The BVAR is the best quarterly model. It performs quite well for

Germany, the Netherlands and Spain in the more stable period of the Great Modera-

tion. Remarkably, all other models, including the dynamic factor model, perform (very)

poorly in the case of Spain during the Great Moderation. This finding suggests that

Bayesian estimation is a fundamentally different way of extracting information from

a large dataset, which may deliver benefits, even if the model makes inefficient use of

the available monthly information. Regarding crucial model features, summarizing the

available monthly information in one or more factors clearly delivers better results than

the alternative of pooling single-indicator-based forecasts. Allowing for autoregressive

terms in forecasting equations leads to improvements in forecast reliability, but the

improvement is relatively small compared to the other model features. The scope for

improving GDP forecasts by combining the “views” of various models is rather limited

in economic terms. Lastly, the (partially) subjective forecasts of private sector analysts

embody valuable information that sophisticated mechanical forecasting procedures fail

to pick up.

Chapter 4 builds on the results of the previous two chapters, and addresses a new

question within the empirical forecasting literature: can predictions by analysts improve

GDP forecasts generated by statistical procedures in a truly real-time context? This

setup differs from the pseudo real-time setup in the previous chapters in two respects.

Firstly, it mimics a practitioner deciding on his forecasting-strategy at a certain point in

time, based on the forecasting performance of the mechanical models and professional

analysts in the recent past. Secondly, the real-time setup respects the preliminary na-

ture of many series, i.e. GDP and many of the monthly indicators are revised regularly

as more information becomes available to the statistical office over time. This implies

exact copies –or “snaphots”– of the macro-economic indicators available when profes-

sional analysts made their predictions had to be collected. These so-called real-time

datasets were constructed for each of the G7 countries (United States, United Kingdom,

Canada, Japan, Germany, France and Italy). The forecasts of professional analysts are

compared to the DFM, which turned out to have the best overall near-term forecasting

performance in the previous chapters. One of the main insights is that since 2008, Con-

sensus forecasts are a tough competitor for the mechanical DFM for most countries. In

the post-crisis period newly released Consensus nowcasts and forecasts have a higher

forecast accuracy than the DFM. Another insight is that the difference in forecasting

performance between professional analysts and the DFM tends to be greatest for a

fresh Consensus nowcast. In the stable pre-crisis period, the professional analysts do

worse or at most marginally better than the dynamic factor model across the board.
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This pattern suggests that analysts pay more attention and devote more effort to fore-

casting in volatile times. The value added of the predictions of professional analysts

is largest when they know at least some hard and soft data pertaining to the quarter

of interest. Another finding is that the relative forecasting advantage of professional

analysts declines as their forecasts age. This is related to the fact that the DFM is able

to fully exploit all newly released monthly data. However, combining the forecasts of

professional analysts and the DFM delivers sizable gains in forecasting ability of sta-

tistical models for most countries, even when the forecasts of analysts are somewhat

dated. A final insight is that determining the optimal combination scheme in real-time

is infeasible. Overall, using a simple average of the various combination rules provides

the best hedge against misspecification and instability.

Based on the relatively good forecasting performance of the dynamic factor model

in the previous chapters and the widespread use of this nowcasting model amongst

practitioners, Chapter 5 presents an analysis on the most appropriate specification of the

dynamic factor model. The analysis concentrates on four factor models: the canonical

factor model of Stock and Watson (2002b) who initiated the current literature on factor

models, the widely used dynamic factor model of Bańbura and Rünstler (2011), its

modification proposed by Bańbura and Modugno (2014), and the recently proposed

factor model specification of Bräuning and Koopman (2014). The forecasting accuracy

of the four models is compared in a large-scale forecasting ‘horse-race’ for the euro

area and its five largest countries (Germany, France, Italy, Spain and the Netherlands).

To examine whether periods of high volatility favor a different factor model structure,

the forecasting accuracy is examined before as well as during and after the financial

crisis of 2008–2009. Furthermore, two modifications to the factor models based on the

outcome of Chapter 3 are proposed and tested. Firstly, the inclusion of one or more

lags of the targeted variable (GDP’s own past) is introduced in the dynamic factor

models. Secondly, a simple alternative for handling the non-synchronous nature of the

monthly data-releases in the Bräuning and Koopman (2014) model is proposed. Both

modifications clearly improve the forecasting accuracy of the factor models. The main

conclusion is that the modified factor model specification of Bräuning and Koopman

(2014) has the edge over the other factor models for most countries and most forecasting

horizons. This conclusion holds before as well as during and after the recent financial

crisis.

Chapter 6 summarizes and concludes.



Chapter 2

Nowcasting real GDP growth in the

Netherlands

This chapter examines the forecasting accuracy of linear statistical models tailored to

forecast GDP growth in the adjacent quarters, with a special focus on the dot-com re-

cession of 2001–2002 and the financial crisis of 2008–2009. The forecasting accuracy

of the mechanical models is confronted with the forecasting accuracy of professional an-

alysts, and it is evaluated whether a combination of the two can improve forecasting

performance. The analysis covers the Netherlands over the years 1995–2010. Overall,

the recently proposed dynamic factor model showed the highest forecasting accuracy of

all models considered. During the recent financial crisis, the forecasting accuracy of all

models deteriorated. The dynamic factor model shows the smallest deterioration of all

models considered. Interestingly, enhancing the forecasts of the dynamic factor model

with the judgmental forecasts of professional analysts can increase the forecasting accu-

racy, but only during the financial crisis.1

KEYWORDS: Factor models; Professional analysts; Pseudo real-time data.

2.1 Introduction

The recession of 2008–2009 marked the largest fall in Dutch real Gross Domestic Prod-

uct (GDP) since the Second World War. After peaking in the fourth quarter of 2007,

output declined for six consecutive quarters, by 4.2 percentage point in total. Although

some indicators clearly revealed the build up of imbalances that usually precede a crisis

(Reinhart and Rogoff, 2008), most forecasters across the world failed to forecast the

1 Comments and suggestions by Marta Bańbura, Jos Jansen, Pierre Lafourcade, Job Swank and
seminar participants at the ECB Expert Meeting on Activity Forecasting (2011, Frankfurt) are grate-
fully acknowledged. An early version of this chapter was circulated as DNB Working Paper 320 under
the title “Forecasting GDP growth in times of crisis: private sector forecasts versus statistical models”.

5
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depth and duration of the crisis. This also holds for the Netherlands (Roscam Abbing

et al., 2010).

This chapter examines if forecasting models that are specifically tailored to forecast

real GDP growth in the adjacent quarters could have been helpful in forecasting the

dynamics of the financial crisis in the Netherlands. The forecasting accuracy of these

so called “nowcasting” models is a highly relevant issue for policy makers and economic

agents. Especially in times of heightened uncertainty, surrounding recessions and crises.

The recent literature on nowcasting GDP (see e.g Rünstler et al., 2009, Bańbura et al.,

2011 and Baffigi et al., 2004) has not explicitly analyzed these periods. This chapter

aims to partially fill this gap in the literature by conducting an in-depth analysis of the

forecasting performance of linear nowcasting models in the Netherlands. The sample

covers the quarters 1995.I–2010.IV and allows comparison of the forecasting quality of

the models during both the dot-com recession (2001.I–2003.III) and the financial crisis

(2008.I–2010.IV). Furthermore, the forecasting accuracy of the mechanical linear models

is confronted with the forecasting accuracy of professional analysts, using a new dataset

of the quarterly GDP forecasts of professional analysts. For policy makers and market

participant the forecasts of professionals can be a cheap and easy to use alternative

for using statistical models. Moreover, they could reflect much more information than

the information contained in the monthly indicators alone, which is inevitable limited.

Lastly, it is evaluated whether the forecasts of professional analysts could have enhanced

the forecasts of the mechanical models.

The main conclusion is that the dynamic factor model has the highest forecasting

accuracy of all linear nowcasting models considered. Moreover, the forecasting accuracy

of the dynamic factor model is higher than the forecasts of professional analysts both

during periods of heightened volatility (financial crisis, dot-com recession) as well as

during more tranquil times. Interestingly, the forecasts of mechanical linear models can

be enhanced with the forecasts of the professional analysts, but the advantage is limited

to the period of the financial crisis.

The remainder of this chapter is structured as follows. Section 2.2 describes the

quarterly forecasts of professional analysts and their accuracy during the financial crisis

and the dot-com recession. Section 2.3 discusses the mechanical linear nowcasting

models, while Section 2.4 outlines the empirical setup of the analysis. Section 2.5

reports the empirical results. Section 2.6 concludes.

2.2 Quarterly forecasts of professional analysts

The private firm Consensus Economics has been collecting and publishing forecasts

on a monthly basis under the name of Consensus forecasts. The Consensus forecasts

provide the forecasts of professional analysts for a set of key macroeconomic variables
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for a broad range of countries. Consensus forecasts is best known for the annual GDP

growth projections for the current and next year, which have been analyzed in several

papers (e.g. Ager et al. 2009; Loungani and Rodriguez 2008). However, once a quarter

Consensus Economics also provides the averaged forecasts of professional analysts for

the quarterly real GDP growth rate over a horizon of one up to six quarters, starting

with the nearest quarter for which no officially released GDP figure is available. The

survey data (deadline for respondents) is typically the last Monday of the third month

of a quarter. The number of respondents varies somewhat over time, but on average

there are nine institutions participating in the poll for the Netherlands, mainly banks.

The quarterly real GDP growth forecasts for the Netherlands have been published since

December 1994.

The black lines in Figure 2.1 show the evolving mean quarterly GDP growth forecast

of the panelists in the quarters leading up to the financial crisis (2008.III–2009.I; panel

A) and the dot-com recession (2001.IV–2002.II; panel B). The black dots indicate the

last Consensus forecasts before the first (or “flash”) release of GDP growth. The black

squares indicate the flash GDP release. The horizontal axes show the dating of the

forecasts, whilst the vertical axes show the mean Consensus forecasts. Figure 2.1 clearly

indicates that the collapse of Lehman Brothers in September 2008 started a sequence

of downward adjustments to the quarterly real GDP growth forecasts of professional

analysts, but these adjustments ultimately underestimated the size of the downturn in

real GDP growth, i.e. the black dots all indicate a higher real GDP growth rate than

the black squares. Panel B of Figure 2.1 shows panelists also overestimated real GDP

growth in the quarters leading up to the dot-com recession, although the overestimation

was somewhat smaller.

The apparent sluggish adjustment of the quarterly Consensus forecasts is in line

with parts of the literature analyzing the annual Consensus forecasts. Some authors

claim that professional analysts do not revise their forecasts promptly and sufficiently

to reflect incoming (foreign) news because they are excessively cautious or because they

want to smooth their forecasts (Loungani et al. 2013; Isiklar et al. 2006). The seemingly

slow adjustment of the quarterly forecasts might be partly traced back to the difficult

task of aggregating the vast amount of monthly incoming information in a consistent

manner. The main difficulty is that the monthly indicators can, and often do, provide

conflicting signals, and it is no easy task to transform these signals into a forecast of

real GDP growth. Moreover, most monthly indicators have sizable publication lags,

which cause “ragged edges” in the dataset (Bańbura et al., 2011). For instance, in

July 2008 analysts only had information on real GDP growth until 2008.I. They did

have more recent information on industrial production and retail trade, but the latest

monthly figure was for May 2008. The most recent information stemmed from financial

markets, which is available on a daily basis, and survey data, which are promptly



8 CHAPTER 2.

Figure 2.1: Quarterly GDP forecasts of Consensus forecasts, 2008.III–2009.I
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available at the end of the month.

2.3 Mechanical linear nowcasting models

An alternative to using the forecasts of professional analysts is to use pure mechanical

statistical models to forecast quarterly GDP growth. The main difference with the

professional analysts is that the mechanical models do not contain any subjective inter-

pretation, but just let the data speak. From an econometric viewpoint, combining all

monthly information to forecasts GDP growth in the current and adjacent quarters is

not a straightforward problem. Regression by ordinary least squares is not viable since

the number of monthly indicators is too large to estimate all model coefficients (“curse

of dimensionality”). Moreover, ordinary least squares is not able to handle the “ragged

edged” structure of the monthly dataset. In the literature, there are basically two ap-

proaches to overcome these estimation problems. In the first approach, the information

in the monthly dataset is summarized in a limited number of series. This approach

exploits the fact that the auxiliary variables are correlated. Principle components anal-

ysis is used to replace a large number of correlated time series with a limited number

of uncorrelated (unobserved) factors representing the common information component

of the original data series. The factors serve as inputs for the forecasting procedure in

the next step. This so-called factor model approach has been shown to provide rela-

tively accurate forecast in the United States (Giannone et al., 2008), the euro area (see

Bańbura et al., 2011; Rünstler et al., 2009) and the Netherlands (den Reijer, 2013).

The second approach starts with the computation of indicator-specific forecast of GDP

growth, which are then aggregated into a single final GDP growth forecast in the sec-

ond step (Timmermann, 2006). To benchmark both approaches a AR(1) model of

GDP is estimated. Within the second approach a variety of specifications is possible.

In this chapter the quarterly bridge equation and the quarterly vector autoregressive

model are considered. Chapter 3 presents a more comprehensive comparison of model

specifications.

2.3.1 Extracting information through factors

Recently, the use of factor models to forecast near-term GDP growth has become quite

popular among academics and practitioners at central banks. See, for example, Stock

and Watson (2002a) and Giannone et al. (2008) for the United States, Angelini et al.

(2011) for the euro area, Schneider and Spitzer (2004) for Austria, Schumacher and

Breitung (2008) for Germany, Barhoumi et al. (2010) for France and den Reijer (2013)

for the Netherlands. In this chapter the so-called dynamic factor model proposed by

Bańbura and Rünstler (2011) is used. A key feature of this models is the use of the
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Kalman filter, which allows for an efficient handling of the unbalancedness of the dataset

and the different frequencies of the data.2 The Kalman filter replaces any missing

monthly indicator observations with optimal predictions and also generates estimates

of unobserved monthly real GDP subject to a temporal aggregation constraint for the

quarterly observation. The first equation of the model is:

xm = Λfm + ξm, ξm ∼ N(0,Σξ) (2.1)

which relates the n monthly indicators xm = (x1,m, . . . , xn,m)′ to r monthly static factors

fm = (f1,m, . . . , fr,m)′ via a matrix of factor loadings Λ and an idiosyncratic component

ξm = (ξ1,m, . . . , ξn,m)′, where r << n and m is a monthly time index. The dynamic

factor model assumes that the idiosyncratic components are a multivariate white noise

process, hence the covariance matrix Σξ is diagonal. Furthermore, the dynamic factor

model assumes that the factors follow a vector-autoregressive process of order p:

fm =

p∑
s=1

Asfm−s + ζm, ζm ∼ (0,Σζ) (2.2)

where A is a square r × r matrix. Moreover, the covariance matrix of the VAR (Σζ) is

driven by a q dimensional standardized white noise process ηm:

ζm = Bηm, ηm ∼ N(0, Iq) (2.3)

where B is a r × q matrix and q ≤ r by definition. The final equation is a forecasting

equation linking the factors to (unobserved) mean-adjusted real GDP growth:

ym = β′fm + εm, εm ∼ N(0, σ2
ε) (2.4)

where ym denotes the (unobserved) three-month growth rate of monthly real GDP,

i.e. the growth rate vis-à-vis the same month of the previous quarter. Quarterly real

GDP growth in quarter t, yQt , is assigned to month 3t on the monthly time scale.

The relation between the quarterly and monthly GDP growth rates is given by yQt =
1
3
(y3t + y3t−1 + y3t−2).

The model is estimated in four steps. In the first step the factors loadings Λ and

the estimated static factors f̂m are obtained. In the second step the coefficient matrices

As in Eq. (2.2) and β in Eq. (2.4) are estimated by OLS using f̂m. In the third step,

ζm and its covariance matrix Σζ are computed, and an estimate of the matrix B is

obtained by principal components analysis. In the final step, the model is cast in state

space form and the Kalman filter and smoother are used to re-estimate the estimated

factors (f̂m) and monthly GDP growth.

2 See Durbin and Koopman (2012) for a comprehensive treatment of state space models and the
use of the Kalman filter and smoother. See Chapter 5 for a comparison of the forecasting accuracy of
different factor model specifications.
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To estimate the model, the number of static and dynamic common factors need to

specified, denoted by r and q respectively. The largest possible value of r is set at 8,

based on the scree test of Cattell (1966). The maximum value of p is set at 3. The

specification that was used in the main text is r=5, q=4 and p=2, using the root mean

squared forecast error as a selection criterion, following Matheson (2013) and Rünstler

et al. (2009). Alternatively, one could choose the number of factors r and q on the basis

of in-sample criteria, as described in Bai and Ng (2002, 2007). However, preliminary

estimates indicated that these criteria tend to indicate a relatively large number of

factors, in line with the outcome in Bańbura and Rünstler (2011), leading to volatile

and less accurate forecasts.

2.3.2 Extracting information by pooling

This section describes two approaches that pool the monthly information, i.e. quarterly

bridge equations (BEQ) and quarterly bivariate vector autoregressive models (QVAR).

Quarterly bridge equation (BEQ)

The quarterly bridge equation is a widely used method for forecasting GDP growth

using all available observations of monthly indicators; for applications see Kitchen and

Monaco (2003) and Baffigi et al. (2004). Bridge equations are linear regressions that

“bridge” monthly variables, such as industrial confidence and retail sales, to quarterly

GDP. Various specifications are possible within this approach. Here, a simple version

of the bridge equation is proposed, proceeding in two steps. Firstly, predictions of the

necessary monthly values of indicator xi are obtained over the forecasting horizon with

the help of univariate autoregressive models and aggregated to appropriate quarterly

values xQi . Secondly, these quarterly aggregates are used to predict GDP. The bridge

model for xi is:

yQt = α +

p∑
s=0

βsx
Q
i,t−s + εQi,t, εQi,t ∼ N(0, σ2

εQ) (2.5)

where α is a constant, p denotes the number of lags in the bridge equation and εQi is a

normally distributed error-term. Eq. (2.5) is estimated for each of the n indicators. The

final forecast is then calculated by weighting the n indicator-specific forecasts for each

horizon. The lag parameter p in Eq. (2.5) is determined recursively by the Schwartz

information criterion (SIC).

Quarterly vector autoregressive model (QVAR)

The VAR approach is very similar to the bridge equation approach. Unlike bridge equa-

tions, VAR models use the information content of GDP itself to produce forecasts of
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GDP (e.g. Camba-Mendez et al., 2001). Moreover, it is a system approach, attempting

to exploit the interdependence of indicator and real GDP dynamics. However, misspec-

ification anywhere in the system may affect the accuracy of the GDP predictions. More

importantly, the QVAR model only uses monthly observations that correspond to a full

quarter. Consequently, it does not fully exploit the available monthly information. In

total, n quarterly bivariate VAR models that include one of the indicators and GDP

growth were estimated:

zQi,t = α +

pi∑
s=1

Asz
Q
i,t−s + εQi,t, εQi,t ∼ N(0,ΣεQ) (2.6)

where zQi,t = (yQt , x
Q
i,t)
′. From each bivariate VAR an indicator-specific quarterly GDP

forecast for quarter t+ h at time t is obtained, denoted as yQt+h|t. As in the case of the

bridge equations, the final forecast is constructed in the second stage, as a weighted

average of the individual indicator model forecasts. The lag parameter p is determined

recursively by the SIC.

The BEQ and QVAR models construct a large number of different indicator specific

forecasts in the first stage described above, which have to be aggregated in the second

stage. The weights are inversely proportional to the root mean squared forecast error

(RMSFE), and calculated recursively; i.e. from the start of the sample period until the

previous quarter.

2.4 Data and forecast design

This section describes the dataset (Section 2.4.1) and the pseudo real-time design (Sec-

tion 2.4.2).

2.4.1 Dataset

The dataset consists of eighty monthly time-series variables that are spread over four

groups: hard, quantitative information (30), financial variables (11), prices (11) and

soft, qualitative information (28). Most of the series refer to the Netherlands, but also

included are series referring to important trading partners of the Netherlands, to take

into account the important role of exports for explaining growth in the small open Dutch

economy. Appendix 2.A provides details on the sources, availability and the applied

transformations of the data series. The available monthly data are usually already

adjusted for seasonality (and calendar effects). When necessary, raw data series are

seasonally adjusted using the US Census X-12 method. All monthly series are made

stationary by differencing or log-differencing (in the case of trending data, such as

industrial production, retail sales and monetary aggregates). Finally, each variable is

standardized by subtracting the mean and dividing by the standard deviation. This
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Table 2.1: Timing of forecasting exercise for third quarter GDP growth

Nr. Forecast type Month Forecast made in middle of
1 Two-quarter ahead 1 January
2 2 February
3 3 March
4 One-quarter ahead 1 April
5 2 May
6 3 June
7 Nowcast 1 July
8 2 August
9 3 September
10 Backcast 1 October
11 2 November

normalization is standard practice in order to avoid the overweighting of series with

large-variances series in the extraction of common factors.

2.4.2 Pseudo real-time design

The aim is to replicate the availability of the data at the time the forecast were made

in order to mimic as closely as possible the real-time flow of information. To this end,

a dataset that was downloaded on May 10th, 2011 was combined with the typical data

release calendar to reconstruct the available dataset on the 10th of each month during

the period January 1995 until December 2010. All monthly series start in January 1985,

whilst the quarterly GDP series start in 1985.I. This approach is called pseudo real-

time, since it takes into account the publication delays in the data, but does not take

into account the possibility of data revisions. Abstracting from data revision may affect

the comparison of mechanical models and forecast by analysts to a certain extent. The

expectations of professional analysts necessarily reflect the inaccurate initial estimates

of GDPs recent past and this puts them at a disadvantage vis-à-vis mechanical models

in a pseudo real-time setting as the latter can take data revisions on board.3

The parameters of all models are estimated recursively using only the information

available at the time of the forecast. This approach is regularly used in empirical studies

(see Rünstler et al., 2009; Giannone et al., 2008; Garratt et al., 2008). More precisely,

a sequence of eleven forecasts for GDP growth in a given quarter is considered, ob-

tained in consecutive months. Table 2.1 explains the timing of the forecasting exercise,

taking the forecast for the third quarter of 2008 as an example. The first forecast is

made in January 2008, which is called the two-quarter ahead forecast in month one.

Subsequently, monthly forecasts are produced for the next ten months through Novem-

3 See Roodenburg and den Reijer (2006) for a discussion of revisions in Dutch GDP figures and
Croushore (2011) and Chapter 4 of this thesis for a discussion of the effects of data revisions on forecast
accuracy.
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ber. The last forecast is made just before the first release of GDP in mid-November.

Following the conventional terminology, forecasts refer to one or two-quarter ahead

forecasts, nowcasts refer to current quarter forecasts and backcasts refer to forecasts

for the preceding quarter, before official GDP figures become available. In case of the

current example, i.e. 2008.III, the models produce two-quarter ahead forecasts from

January to March, one-quarter ahead forecasts from April to June, nowcasts from July

to September, and backcasts in October and November.

2.5 Empirical results

This section presents the outcome of two forecasting “horse races”. The first race is

between the mechanical linear nowcasting models. Its aim is to determine the model

with the highest forecasting accuracy before and during the financial crisis. The second

race is between the best performing mechanical linear model and the average Consensus

forecast.

2.5.1 A first look at the outcomes

Figure 2.2 shows the forecasts of the mechanical linear models (black lines) against the

GDP realizations (grey bars). Moving from left to right the graphs show the forecasting

performance of the one-quarter ahead forecasts, nowcasts and backcasts in the period

surrounding the financial crisis.4 The horizontal axis shows which quarter the model is

forecasting, the vertical axis shows the GDP realizations. The outcomes in Figure 2.2

can be summarized in three points. Firstly, on the one-quarter ahead forecasting hori-

zon, all models missed the abrupt slowdown at the end of 2008. As the forecast horizon

shortens the forecasting performance of the models steadily increases. Secondly, start-

ing from the nowcast, the dynamic factor model is the only model that clearly indicates

an abrupt slowdown at the end of 2008, whilst the backcast was relatively close to the

published GDP growth rate. Thirdly, the forecasts of the BEQ and QVAR show very

little dynamics: most forecasts fluctuate only slightly around trend growth (about 0.5

percent quarter-on-quarter over the period 1995.I–2010.IV). Overall, the forecasts of

the BEQ and QVAR as well as the näıve benchmark were only revised downward fol-

lowing the publication of the (very) negative GDP growth rate for 2008.IV, in February

2009. In contrast, the dynamic factor model was much quicker in acknowledging the

quick deterioration in the economy. Overall, the graphical analysis indicates that the

dynamic factor model is more efficient in translating the flow of monthly information

to an accurate GDP growth forecast.

4 Figure 2.2 only shows the forecasting performance for the one-quarter ahead forecasts, nowcasts
and backcasts in the third month (second month for backcasts) to keep the presentation parsimonious.
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Figure 2.2: Quarterly GDP forecasts of mechanical linear models, 2006.I–2010.IV
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Notes: the black lines denote the 1Q-ahead forecasts, nowcasts and backcasts of the mechanical linear
models on month 3, 3 and 2, respectively. The grey bars denote GDP growth realisations. DFM: dynamic
factor model, QVAR: quarterly vector autoregressive model, BEQ: quarterly bridge equation, AR: AR(1)
model.
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2.5.2 Forecasting performance linear models

Table 2.2 shows the out-of sample forecasting performance of the linear models. The

forecast accuracy is measured by the root mean squared forecast error (RMSFE). The

Diebold-Mariano test (Diebold and Mariano, 1995) indicates the statistical significance

of the differences in forecasting accuracy. Entries in bold indicate the model with

the highest forecasting accuracy, i.e. the lowest RMSFE. Grey cells indicate that the

forecasting accuracy of the best performing model is significantly better according to

the Diebold-Mariano test (Diebold and Mariano, 1995). Panel A shows the performance

for the complete sample period 1995.I–2010.IV. Panel B shows the performance for the

whole sample period, excluding the financial crisis (1995.I–2007.IV). Panel C shows the

performance for the whole sample period excluding both the dot-com recession and the

financial crisis (1995.I–2000.IV and 2003.IV–2007.IV).

The outcomes in Table 2.2 point to several interesting results. First, the dynamic

factor is almost unequivocally the best forecasting model across forecast horizons when

considering the whole sample. The dynamic factor model reduces the RMSFE against

a näıve autoregressive model considerably, by up to 50% for the backcast in month 2

(panel A in Table 2.2). The forecasting advantage of the dynamic factor decreases as

the forecasting horizon increases. Consequently, the difference in forecasting accuracy

between the dynamic factor model and the other models is very small for the two-

quarter ahead forecasts. This outcome is an indication that the mechanical nowcasting

models considered are less suited for forecasting purposes, when no monthly data on

the pertaining quarter are available. Second, the dynamic factor model is relatively

well equipped to translate sharp drops in the monthly variables to sharp drops in GDP

growth. The other models clearly had more difficulty forecasting the depth and timing

of the crisis, as can be seen by the much higher RMSFEs (panel A in Table 2.2). Thirdly,

the dynamic factor model seems especially advantageous in periods of abrupt changes,

as can be seen from the relatively favorable forecasting performance during the financial

crisis and the dot-com recession. Excluding both the financial crisis and the dot-com

recession, the forecasting accuracy of the dynamic factor is only superior to the other

models when backcasting (panel C in Table 2.2).

The fact that the dynamic factor model outperforms the other models does not

necessarily mean the other model forecasts do not contain any additional information.

To test if the models are complementary, i.e. if pooling of two model types increases

forecasting accuracy, encompassing tests were conducted. The test regression, proposed

by Granger and Ramanathan (1984) and used by among others, Fair and Shiller (1990)

and Liebermann (2014), is:

yQt+h = α + βŷQb(t+h|t) + γŷQa(t+h|t) + εt (2.7)

where yQt+h is the GDP growth in quarter t+h, ŷQb(t+h|t) and ŷQa(t+h|t) are the predictions
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for quarter t + h on time t of the best (b) and alternative (a) model respectively. The

alternative model does not contain any additional information with respect to the best

model if and only if γ is not significantly different from zero and β is significantly

different from zero. Both models contain useful information if β as well as γ are signifi-

cantly different from zero. Table 2.3 shows the coefficients of the dynamic factor model

(β, panel A) and the alternative model (γ, panel B) in the encompassing test. Grey

cells indicate the alternative model contains no extra information with regards to the

dynamic factor model (β significantly different from zero, γ not significantly different

from zero). In other words, the most accurate forecasts are made by using the dynamic

factor model alone instead of a combination of the dynamic factor model and one of

the other statistical models.

The main message from Table 2.3 is that there is no gain in forecasting accuracy

from combining the dynamic factor model with any of the other models when (severe)

recessions are included in the sample, except for the (first month(s)) of the two-quarter

ahead forecasts. This conclusion also holds when the period of the financial crisis is

excluded. When excluding both the dot-com recession and the financial crisis, there

seems to be an advantage form combining the dynamic factor model and the alternative

models. However, since both β and γ are not significantly different from zero it actually

means that the models have no value added compared to a forecast that equals the

mean growth rate of GDP over the sample period (α in Eq. (2.7)). Overall, the results

indicate that there is little gain in forecasting accuracy from combining the dynamic

factor model with any of the other models.

2.5.3 Forecasting performance professional analysts

This section compares the forecasting accuracy of the dynamic factor model with the

forecasting accuracy of professional analysts. Professional analysts can use much more

information than just the monthly indicators in the mechanical models, and could add

a –possibly sizable– judgmental element to their near-term forecasts. The evidence on

the size and frequency of these judgmental adjustment is scarce however. One of the

few pieces of information on judgmental adjustment in the near-term forecasts of ana-

lysts can be found in a recent questionnaire conducted by the European Central Bank

(ECB) among the participants of the ECB Survey of Professional Forecasters (Meyler

and Rubene, 2009). The main finding of Meyler and Rubene (2009) is that panelists

regard approximately 40% of their short-term GDP forecasts as being judgment-based.

Table 2.4 presents the forecasting performance of the Consensus forecasts and the dy-

namic factor model. The comparison is limited to forecasts in the third month of the

quarter, when Consensus Economics releases a fresh Consensus forecasts. It also means

that the comparison does not include the backcasts, since GDP is released approxi-

mately two weeks prior the release of the Consensus forecasts.
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Table 2.4: Forecasting performance of dynamic factor model versus Consensus forecasts,
1995.I–2010.IV

A. Root Mean Squared Error B. Encompassing test
2Q-ahead 1Q-ahead Nowcast 2Q-ahead 1Q-ahead Nowcast

Whole sample Whole sample
DFM 0.70 0.62 0.48∗∗ β 1.22 1.60** 1.11***
CF 0.67 0.62 0.56 γ 0.55** 0.38* 0.33*
Without financial crisis Without financial crisis
DFM 0.51∗∗ 0.46∗∗∗ 0.45∗∗ β 1.55∗∗ 1.88∗∗∗ 0.80∗∗

CF 0.52 0.52 0.49 γ 0.04 0.08 0.26
Without fin. crisis and dot-com recession Without fin. crisis and dot-com recession
DFM 0.46∗∗ 0.44∗∗ 0.44∗∗ β 0.39 0.97 1.01
CF 0.51 0.52 0.52 γ 0.07 0.27 0.21
Notes: entries denote RMSFEs. Entries in bold in-
dicate the approach (DFM or CF) with the lowest
RMSFE. Grey cells indicate that the forecasting ac-
curacy of the best performing approach (DFM of
CF) is significantly better according to the Diebold-
Mariano test. ∗, ∗∗ or ∗∗∗ denotes the Diebold-
Mariano test is significant at the 10%, 5% or 1%
level, respectively. DFM: dynamic factor model, CF:
Consensus forecasts.

Notes: entries denote the estimated coefficients of
the dynamic factor model (β) and the Consensus
forecasts (γ), respectively. ∗, ∗∗ or ∗∗∗ denotes that
the estimated coefficient is statistically different from
0 at the 10%, 5% or 1% significance level, respec-
tively. Grey cells indicate β is significantly different
from zero and γ is not significantly different from
zero.

Panel A of Table 2.4 compares the RMSFE of the Consensus forecasts with the RMSFE

of the dynamic factor model over the whole sample period, the sample period without

the financial crisis and the sample period without both the financial crisis and the dot-

com recession. Over the whole sample period, the dynamic factor model only beats

the Consensus nowcasts. This seems to indicate the professional analysts are a tough

competitor for the dynamic factor model at the one and two-quarter forecasting horizon.

However, closer inspection reveals that this relative good performance of the Consensus

forecasts is limited to the period excluding the financial crisis. The results for the

sample period excluding the financial crisis, clearly reveals the dynamic factor model

beats the Consensus forecasts on all forecasting horizons.

Panel B of Table 2.4 presents the outcome of the encompassing test of the dynamic

factor model against the Consensus forecasts. The results indicate that there is a clear

gain from combining the dynamic factor model and Consensus forecasts as both β and γ

are significantly different from zero. However, again, this gain in forecasting accuracy is

limited to the period of the financial crisis. Without this period the forecasting accuracy

is higher when only using the dynamic factor model. In line with the outcome of the

encompassing test of the mechanical models in Table 2.3, taking out both the financial

crisis and the dot-com recession drastically diminishes the value added of using either

the dynamic factor model or the Consensus forecasts (both β and γ are insignificant).

Overall, combining the Consensus forecasts with the dynamic factor model could have

increased the forecasting accuracy during the financial crisis, when it really counts.
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2.6 Conclusion

This chapter makes two contributes to the empirical literature on forecasting real GDP

in the short run. The first contribution is a systematic comparison of the forecasting

accuracy of three popular statistical linear models for the Netherlands. The sample

period (1995.I–2010.IV) allows making a comparison between the forecasting accuracy

of the models during the financial crisis and the pre-crisis period. The main finding is

that, in the analyzed sample, the dynamic factor model has a higher forecasting accu-

racy than the alternative forecasting models considered, especially surrounding periods

of increased volatility. Enhancing the forecasts of the dynamic factor model with the

forecasts of the other linear models does not (significantly) increase the forecasting accu-

racy. The second contribution concerns the potential usefulness of (subjective) forecasts

made by professional analysts. Interestingly, forecasts by professional analysts appear

to be quite different from mechanical models, at least in the analyzed sample. During

periods of heightened volatility, such as the financial crisis, the near-term forecasts for

Dutch GDP growth by professional analysts seem to embody information (“judgment”)

that the analyzed mechanical models fail to incorporate.
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Appendix

2.A Dataset

The main source of the monthly data is the statline database of Statistics Netherlands

(CBS). Data on world trade are from CPB Netherlands Bureau for Economic Policy

Analysis (CPB). Commodity prices and most financial market variables are taken from

Thomson Reuters datastream. Table 2.5 provides an overviews of all monthly series

and the applied transformations. The data can be classified into four categories: hard,

quantitative information (hard), consumer and producer prices (price), financial and

monetary variables (financial) and soft, qualitative information (soft).

Table 2.5: Description monthly dataset

No. Variable Type Transformation Lag
ln. dif. filter

1 Ind. prod. - industry (total) hard 1 1 3 2
2 Ind. prod. - manufacturing (total) hard 1 1 3 2
3 Ind. prod. - manufacture of wearing apparel hard 1 1 3 3
4 Ind. prod. - manufacture of motor vehicles and (semi) trailers hard 1 1 3 3
5 Ind. prod. - manufacture of other transport equipment hard 1 1 3 3
6 Ind. prod. - manufacture of basic metals and metal products hard 1 1 3 2
7 Ind. prod. - treatment and coating of metals and machines hard 1 1 3 3
8 Ind. prod. - electricity, gas, steam, water and air conditioning hard 1 1 3 2
9 Ind. prod. - manufacture of textiles hard 1 1 3 3
10 Ind. prod. - printing and reproduction of recorded media hard 1 1 3 3
11 Ind. prod. - construction hard 1 1 3 2
12 Ind. prod. - manufacture of food products and beverages hard 1 1 3 2
13 Ind. prod. - mig capital goods industry hard 1 1 3 2
14 Ind. prod. - mig durable consumer goods industry hard 1 1 3 2
15 Ind. prod. - mig non-durable consumer goods industry hard 1 1 3 2
16 Ind. prod. - consumer goods industry hard 1 1 3 2
17 Ind. prod. - Belgium (total) hard 1 1 3 3
18 Ind. prod. - Germany (total) hard 1 1 3 2
19 Ind. prod. - Spain (total) hard 1 1 3 2
20 Ind. prod. - France (total) hard 1 1 3 2
21 Ind. prod. - United Kingdom (total) hard 1 1 3 2
22 Ind. prod. - Italy (total) hard 1 1 3 2
23 Car registration - new commercial vehicles hard 1 1 3 2
24 Car registration - new passenger car hard 1 1 3 1
25 Retail trade turnover (total) hard 1 1 3 2
26 Consumption expenditure by households hard 1 1 3 2
27 Unemployment hard 0 1 3 1
28 World Trade hard 1 1 3 2
29 Imports hard 1 1 3 2
30 Exports hard 1 1 3 2
31 M1 financial 1 2 3 2
32 M3 financial 1 2 3 2
33 Interest rate (short-term) financial 0 1 3 1
34 Interest rate (long-term) financial 0 1 3 1

Continued on next page. . .

http://statline.cbs.nl/Statweb/?LA=en
http://statline.cbs.nl/Statweb/?LA=en
http://www.cpb.nl/en/world-trade-monitor
http://www.cpb.nl/en/world-trade-monitor
http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/datastream-macroeconomic-analysis.html
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Table 2.5 – Continued
No. Variable Type Transformation Lag

ln. dif. filter

35 Exchange rate, US-Dollar per Euro financial 0 1 3 1
36 Loans to the private sector financial 1 1 3 2
37 Loans on mortgage (nominal rate 5 to 10 years mortgage) financial 0 1 3 2
38 Share index, AEX financial 1 1 3 1
39 Share index, Amsterdam Midkap financial 1 1 3 1
40 Share index, Dow Jones Euro Stoxx 50 financial 1 1 3 1
41 Share index, Dow Jones Euro Stoxx Industrials financial 1 1 3 1
42 Consumer price index, total price 1 2 3 2
43 Consumer price index, underlying inflation price 1 2 3 2
44 World market commodity prices, industrial materials price 1 2 3 2
45 Producer prices, final products, domestic market price 1 2 3 2
46 Producer prices, investment goods, domestic market price 1 2 3 2
47 Producer prices, intermediate goods, domestic market price 1 2 3 2
48 Producer prices,foreign market price 1 2 3 2
49 Producer prices, domestic market price 1 2 3 2
50 Terms of trade price 1 2 3 2
51 Import prices price 1 2 3 2
52 Export prices price 1 2 3 2
53 Constr. confidence (headline) soft 0 1 3 1
54 Constr. confidence - building dev. (past 3 months) soft 0 1 3 1
55 Constr. confidence - evolution overall order books soft 0 1 3 1
56 Constr. confidence - employment expect. (next 3 months) soft 0 1 3 1
57 Ind. confidence (headline) soft 0 1 3 1
58 Ind. confidence - production trend observed in recent months soft 0 1 3 1
59 Ind. confidence - assessment of order-book levels soft 0 1 3 1
60 Ind. confidence - assessment of export order-book levels soft 0 1 3 1
61 Ind. confidence - assessment of stocks of finished products soft 0 1 3 1
62 Ind. confidence - production expectations coming months soft 0 1 3 1
63 Ind. confidence - employment expectations coming months soft 0 1 3 1
64 Cons. confidence (headline) soft 0 1 3 1
65 Cons. confidence - financial situation (last 12 months) soft 0 1 3 1
66 Cons. confidence - financial situation (next 12 months) soft 0 1 3 1
67 Cons. confidence - general ec. situation (last 12 months) soft 0 1 3 1
68 Cons. confidence - general ec. situation (next 12 months) soft 0 1 3 1
69 Cons. confidence - unemployment expect. (next 12 months) soft 0 1 3 1
70 Cons. confidence - major purchases at present soft 0 1 3 1
71 Cons. confidence - major purchases (next 12 months) soft 0 1 3 1
72 Cons. confidence - savings at present soft 0 1 3 1
73 Cons. confidence - savings (next 12 months) soft 0 1 3 1
74 Cons. confidence - statement on financial situation of household soft 0 1 3 1
75 IFO-indicator, expected business-situation soft 0 1 3 1
76 BNB-indicator, gross-index soft 0 1 3 1
77 Ind. confidence - Spain (headline) soft 0 1 3 1
78 Ind. confidence - France (headline) soft 0 1 3 1
79 Ind. confidence - Italy (headline) soft 0 1 3 1
80 Ind. confidence - United Kingdom (headline) soft 0 1 3 1
Notes: entries denote variable number, name, category (cat.), transformation and publication lag. Type:
hard= quantitative information; financial= financial and monetary variables; price= consumer and pro-
ducer prices; soft= qualitative information. Ln.: 0= no logarithm; 1= logarithm; Dif.: 1= first difference;
2= second difference. Filter: 3= change against the same month of the previous month. Lag= publication
lag, e.g. publication lag is one when April figure is known on the 10th of May.
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The quarterly GDP series were constructed from two seasonally adjusted quarterly time

series for GDP growth in the Netherlands. The first series covers the period 2001.I–

2010.IV. The second –so called ESA95– series covers the period 1991.I–2004.IV. The

full sample series is constructed by backdating the GDP-series starting in 2000.I over

the period 1991.I–2000.IV by using the quarter-on-quarter growth rates of the ESA95-

series.



Chapter 3

Forecasting and nowcasting real

GDP: comparing statistical models

and subjective forecasts for the euro

area and its five largest countries

This chapter conducts a systematic comparison of the short-term forecasting abilities of

twelve statistical models and professional analysts in a pseudo real-time setting, using

a large set of monthly indicators. The analysis covers the euro area and its five largest

countries over the years 1996–2011. One of the main findings is that summarizing the

available monthly information in a few factors is a more promising forecasting strategy

than averaging a large number of single-indicator-based forecasts. Moreover, it is im-

portant to make use of all available monthly observations. The dynamic factor model is

the best model overall, in particular for nowcasting and backcasting, due to its ability to

incorporate more information (factors). Judgmental forecasts by professional analysts

often embody valuable information that could be used to enhance forecasts derived from

purely mechanical procedures.1

KEYWORDS: Forecasting competitions; Nowcasting models; Professional forecasters.

1 This chapter is co-authored by Jos Jansen and Xiaowen Jin. This chapter was published in the In-
ternational Journal of Forecasting, 32, 411-436, Jansen, Jin and de Winter, Copyright Elsevier (2016).
Available online at http://dx.doi.org/10.1016/j.ijforecast.2015.05.008. Comments and sug-
gestions by Jakob de Haan, Jan Jacobs, Job Swank, an associate editor, three anonymous referees
and seminar and conference participants at De Nederlandsche Bank, the Computational and Finan-
cial Econometrics Conference (2012, Oviedo) and the European Meeting of the Econometrics Society
(2013, Gothenburg) are gratefully acknowledged. We are particularly indebted to Marta Bańbura for
supplying the Matlab-code for the estimation of the Bayesian VAR model. An early version of this
chapter was circulated as DNB Working Paper 365 under the title “Forecasting and nowcasting real
GDP: Comparing statistical models and subjective forecasts”.
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3.1 Introduction

Information on economic activity and its short-term prospects is of great importance

to decision makers in governments, central banks, financial markets and non-financial

firms. Monetary and economic policy makers and economic agents have to make de-

cisions in real-time with incomplete and inaccurate information on current economic

conditions. A key indicator of the state of the economy is the growth rate of real gross

domestic product (GDP), which is available on a quarterly basis only and is also subject

to substantial publication lags. In many countries an initial estimate of quarterly real

GDP is published around six weeks after the end of the quarter. Moreover, real GDP

data are subject to sometimes substantial revisions, as more data becomes available to

statistical offices over time.

Fortunately, there is a lot of statistical information related to economic activity

that is published on a more frequent and timely basis. This information includes data

on industrial production, prices of goods and services, expenditures, unemployment,

financial market prices, loans and consumer and business confidence. Recently, the

forecasting literature has developed several statistical approaches for exploiting this

potentially very large information set in order to improve the assessment of both real

GDP growth in the current quarter (nowcast) and its development in the near future.

Examples of such approaches include bridge models, factor models, mixed-data sam-

pling regression models (MIDAS) and mixed-frequency vector autoregressive (MFVAR)

models. These models differ in their solutions to the practical problems of dealing with

large information sets and the fact that the auxiliary variables are observed at different

frequencies and with different publication lags.

Practitioners now have a wealth of statistical to choose from; but which one should

they use? As each model has its own strengths and weaknesses, it is difficult to make a

decision on purely theoretical grounds. The ranking of the models in terms of forecasting

abilities, and the extent to which this varies with the prediction horizon or the economic

circumstances, has to be determined by empirical analysis. On these issues the jury is

still out, however, as large-scale comparative studies are scarce. In many papers, the

empirical work refers to a single country, and usually only limited numbers of models

are included. Furthermore, studies differ in the size of the information set and the

sample period used.2

This chapter is motivated by this gap in the empirical literature. It presents the

outcomes of a systematic comparison of a broad range of linear statistical models –

2 Rünstler et al. (2009) form an important exception, comparing three factor models, a bridge
model and a quarterly VAR model for ten European countries; however, their study does not include
the financial crisis. Kuzin et al. (2013) analyzed the relative forecasting performance of MIDAS models
versus dynamic factor models, including part of the crisis years (2008–2009). Liebermann (2014)
analyzed the relative forecasting performance during the years 2001–2011, but only for the United
States.
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twelve models in all– that have been applied in the recent literature. For the sake of

comparability and robustness, the analysis includes the euro area and its five largest

countries (Germany, France, Italy, Spain and the Netherlands), and utilizes an infor-

mation set that is as homogeneous as possible across geographical entities. Moreover,

the sample includes the volatile episode of the financial crisis of 2008 and its aftermath,

which may make it easier to discriminate between the various models. The models’

forecasting abilities before 2008 are contrasted with those during the crisis period. This

may be of great interest to policy makers, financial analysts and economic agents alike,

as information on where the economy stands and where it is headed in the immediate

short run is particularly valuable in times of great uncertainty.

The provision of cross-country evidence on the relative performance of twelve differ-

ent statistical forecasting models is the first contribution of this chapter to the literature.

Model forecasts are the result of purely mechanical recipes, and do not incorporate sub-

jective elements. The second contribution concerns the potential usefulness of forecasts

made by professional analysts. From a practical point of view, such forecasts are very

cheap and easy to use. Moreover, as an expression of the “wisdom of crowds”, they may

reflect much more information than the statistical information set, which is inevitably

limited. A questionnaire conducted by the European Central Bank (ECB) among the

participants of the ECB Survey of Professional Forecasters found that the panelists

regard 40% of their short-term GDP forecasts as being judgment-based (Meyler and

Rubene, 2009). It is investigated to which extent the subjective forecasts by analysts in

the sample contain information beyond that generated by the best mechanical statistical

models.

The remainder of this chapter is structured as follows. Section 3.2 describes the

various statistical models and discusses how they deal with the challenges posed by large

and irregularly shaped datasets. Section 3.3 describes the data, the pseudo real-time

forecast design, and other specification issues. Section 3.4 and 3.5 present the results

for the mechanical models and the professional forecasts, respectively. Section 3.6

summarizes the main findings and concludes.

3.2 Linear statistical models for short-term fore-

casting

3.2.1 Overview

In practice, taking advantage of auxiliary information for the forecasting of real GDP

growth in the immediate short run poses several challenges in practice. The first chal-

lenge is posed by the large size of the information set. There are countless potentially

useful variables for forecasting GDP, and often they are interrelated. The datasets used
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in the empirical literature vary greatly in size, and may include more than 300 variables.

Moreover, the limited length of the time series involved makes over-parametrization a

real issue. The second problem relates to the fact that indicator variables are observed

more frequently (monthly, weekly, daily) than GDP. Moreover, the dating of the most

recent observation may vary across indicators because of differences in publication lags.

This is known as the “ragged edge” problem; see Wallis (1986).

The various statistical approaches in the literature deal with these challenges in

different ways. Broadly speaking, a forecasting procedure involves two transformations

of the dataset of indicators to produce a final forecast: an aggregation and the appli-

cation of a forecasting tool, which links auxiliary variables to real GDP growth. The

two transformations can be executed in either order, representing two fundamentally

different strategies. The first strategy begins by computing an indicator-specific GDP

forecast for each variable, which are then aggregated into a single final forecast in the

second step. This strategy is labeled the “pooling forecasts strategy”. In this approach

it is necessary to specify the weighting scheme for the individual forecasts. A basic

scheme is the simple average, which gives each forecast an equal weight, but weights

may also be recursively depending on the indicators’ (recent) forecasting performances.

Examples of the pooling forecasts strategy are bridge equations and VAR models. In

contrast, the “aggregating information strategy” takes the aggregation step first, by

summarizing the large dataset by a small number of series. This strategy exploits the

fact that the auxiliary variables are correlated. Factor analysis is used to replace a

large number of correlated time series with a limited number of uncorrelated (unob-

served) factors representing the common information component of the original data

series. The implicit weights (factor loadings) are determined by the correlation pat-

terns in the original dataset. The factors serve as input for the forecasting procedure

in the next step. Examples of this modeling strategy are dynamic factor models and

factor-augmented versions of forecasting models that pool forecasts. Finally, a recent

development is estimation using Bayesian shrinkage on coefficients, which translates a

large set of indicators into a single GDP forecast directly, without a clear aggregation

step. This approach implicitly aggregates information by applying Bayesian shrinkage

to the parameters.

The specification of the forecasting tool is the second feature that distinguishes the

approaches. The traditional approaches, such as bridge models and VAR models, rely on

forecasting equations that are cast solely in quarterly terms. That means that (forecasts

of) monthly indicator variables first have to be aggregated to quarterly averages, before

they can be used for forecasting GDP. Moreover, the available monthly observations

are not fully exploited by quarterly VAR models. As this may not be an efficient use of

the available information, recently developed approaches accommodate both quarterly

and monthly data within the same equation or system of equations. These approaches
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take publication lags into account. The mixed-frequency VAR (MFVAR) model treats

GDP as an unobserved monthly variable in a state space framework. Monthly GDP is

related to quarterly GDP via an identity. The quarterly GDP growth rate is observed

only in the third month of each quarter. The mixed-data sampling (MIDAS) design

relates quarterly GDP directly to a large number of lags of monthly data series using a

parsimonious specification of the lag structure.

A third, and more practical, specification issue is whether or not to include GDP’s

own past in the forecasting tool. In general, forecasting equations can be augmented eas-

ily with auto-regressive (AR) terms. Several authors have found that the AR versions of

models tend to result in modest improvements of forecasting performance (e.g. Foroni

and Marcellino, 2014). This chapter analyzes twelve statistical models. They are de-

noted as follows: (1) bridge model (BEQ), (2) BEQ with AR terms (BEQ-AR), (3) quar-

terly VAR model (QVAR), (4) factor-augmented quarterly VAR (F-VAR), (5) Bayesian

quarterly VAR (BVAR), (6) dynamic factor model (DFM), (7) mixed-frequency VAR

model (MFVAR), (8) factor-augmented MFVAR (F-MFVAR), (9) mixed-data sampling

regression model (MIDAS), (10) MIDAS with AR terms (MIDAS-AR), (11) factor-

augmented MIDAS (F-MIDAS) and (12) F-MIDAS with AR terms (F-MIDAS-AR).

The next three subsections discuss the forecasting models briefly, starting with the

quarterly models. To improve the flow of the discussion, the selection of the weight-

ing scheme for indicator-based forecasts is discussed in Section 3.3.3. Moreover, some

technical details have been moved to Appendix 3.B.

Below, t = 1, . . . , T stands for a quarterly time index and m = 1, . . . , Tm + w for

a monthly time index. T indicates the latest available quarterly observation and Tm
corresponds to the third month of quarter T ; hence Tm = 3T . Tm + w indicates the

latest available monthly observation, where w is the time difference in months between

the most recent observation of indicator and GDP on the monthly time scale. Quarterly

averages of monthly figures are denoted by superscript Q. Quarterly GDP in quarter t,

yQt , is assigned to month 3t on the monthly time scale. Formally: yQt = 1
3
(y3t + y3t−1 +

y3t−2), where y3t, y3t−1 and y3t−2 are unobserved three-month GDP growth rates, i.e.

growth rates vis-à-vis the same month of the previous quarter. The matrix of monthly

indicators (indexed by i = 1, . . . , n) is defined as xm = (x1,m, . . . , xn,m)′. The monthly

series xm have been transformed as three-month growth rates or differences. The matrix

of monthly indicators aggregated to quarterly values is defined as xQt = (xQ1,t, . . . , x
Q
n,t)
′.

The quarterly GDP growth forecast for quarter t + h at time t is denoted as ŷQt+h|t.

For quarterly models, time is always measured on the quarterly time scale. In mixed-

frequency approaches, the quarterly and monthly time scales intermingle.
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3.2.2 Quarterly models for GDP growth

Bridge equation (BEQ)

The quarterly bridge equation is a method that has been used widely for forecasting

GDP using all available observations of monthly indicators; for applications see Baffigi

et al. (2004), Kitchen and Monaco (2003) and Rünstler and Sédillot (2003). Bridge

equations are linear regressions that “bridge” monthly variables, such as industrial

confidence and retail sales, to quarterly real GDP. Usually, the monthly indicators are

not known over the entire projection horizon. Various specifications are possible within

this approach. Here, a simple version of the bridge equation is proposed, proceeding

in two steps. Firstly, predictions of the necessary monthly values of indicator xi are

obtained over the forecasting horizon with the help of univariate autoregressive models

and aggregated to appropriate quarterly values xQi . Secondly, these quarterly aggregates

are used to predict GDP. The bridge model for xi is:

yQt = α +

p∑
s=0

βsx
Q
i,t−s + εQi,t, εQi,t ∼ N(0, σ2

εQ) (3.1)

where α is a constant, p denotes the number of lags in the bridge equation and εQi is a

normally distributed error-term. Eq. (3.1) is estimated for each of the n indicators. The

final forecast is then calculated by weighting the n indicator-specific forecasts for each

horizon. The lag parameter p is determined recursively by the Schwartz information

criterion (SIC), with the maximum number of lags set at 4.

Quarterly vector autoregressive model (QVAR)

The VAR approach is very similar to the bridge equation approach. Unlike bridge equa-

tions, VAR models use the information content of GDP itself to produce forecasts of

GDP (e.g. Camba-Mendez et al., 2001). Moreover, it is a system approach, attempting

to exploit the interdependence of indicator and real GDP dynamics. However, mis-

specification anywhere in the system may affect the accuracy of the GDP predictions.

More importantly, due to its quarterly time frame, the QVAR model only uses monthly

observations that correspond to a full quarter. Consequently, it does not fully exploit

the available monthly information. In total, n quarterly bivariate VAR models that

include one of the indicators and GDP growth were estimated:

zQi,t = α +

pi∑
s=1

Asz
Q
i,t−s + εQi,t, εQi,t ∼ N(0,ΣεQ) (3.2)

where zQi,t = (yQt , x
Q
i,t)
′. From each bivariate VAR an indicator-specific GDP forecast

yQt+h|t is obtained. As in the case of the bridge model, the final forecast is formed

as a weighted average of the individual forecasts. The lag parameter p is determined

recursively by the SIC, with a maximum of 4.
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Bayesian VAR Model (BVAR)

The number of variables in multivariate VAR models is usually between three and

ten, because the number of unrestricted parameters that can be estimated reliably is

rather limited. Bayesian vector autoregression with shrinkage is able to handle large

unrestricted VARs (e.g. Carriero et al., 2015a and Giannone et al., 2015). The quarterly

Bayesian VAR model is estimated along the lines proposed by Bańbura et al. (2010).

Accordingly, all variables are included in log levels, except those already expressed as

rates, and derive the GDP forecast yQt+h|t from the following VAR system:

ZQ
t = α +

p∑
s=1

AsZ
Q
t−s + ϑQt , ϑQt ∼ WN(0,ΣϑQ) (3.3)

where ZQ
t = (yQt , x

Q
i,t . . . x

Q
n,t)
′. Moreover, the moments for the prior distribution of the

coefficients are:

E[(Ak)ij] =

{
δi, j = i, k = 1;

0, otherwise
V [(Ak)ij] =

{
λ2

k2
, j = i;

λ2

k2
σ2
i

σ2
j
, otherwise

(3.4)

The coefficients A1, . . . , Ak are assumed a priori to be independent and normally dis-

tributed. The covariance matrix of the residuals is assumed to be diagonal, fixed and

known: Ψ = Σ, where Σ =diag(σ2
1, . . . , σ

2
n). For non-stationary variables the random

walk prior is used: δi = 1. For stationary variables, the white noise prior is used: δi = 0.

The parameter λ governs the degree of shrinkage. If λ = 0, the posterior equals the

prior and the data do not influence the estimates. At the other extreme, λ = ∞, the

posterior expectations coincide with the ordinary least squares (OLS) estimates. The

degree of shrinkage should be chosen so as to prevent over-fitting, while preserving the

relevant sample information. Bańbura et al. (2010) argue that λ should be set relative

to the size of the system. The reasoning here is that if all data series contain similar

information, the relevant signal can still be extracted efficiently from a large dataset,

despite the higher shrinkage that is required to filter out the systematic component. λ

is determined recursively in a fashion similar to Bańbura et al. (2010).3 The factor 1
k2

is the rate at which the prior variance decreases with the lag length and
σ2
i

σ2
j

accounts

for the different scale and variability of the data. Following Bańbura et al. (2010) the

maximum number of lags was set at p at 5.

3 Bańbura et al. (2010) begin by defining FIT, an in-sample measure of fit for three key variables
(output, inflation and the short-term interest rate). They select λ such that the BVAR model and
an unrestricted VAR model featuring the three key variables produce the same numerical value for
FIT. Real GDP, HICP inflation and the three-month interest rate are taken as key variables. FIT and
λ are calculated recursively. Like Bloor and Matheson (2011), the preliminary calculations indicated
that the FIT measure thus specified gave rise to over-fitting. Therefore, the procedure was applied to
FIT/2.
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3.2.3 Mixed-frequency models

Interest in mixed-frequency models has increased among academics and policy makers

in recent years, because of the general failure of simple quarterly models to predict or

signal the sharp downturn of the economy at the onset of the financial crisis. Here,

the dynamic factor model, the mixed-frequency VAR and the MIDAS approach are

investigated.4 All of these models utilize the available monthly information fully.

Dynamic factor model (DFM)

Dynamic factor models summarize the information contained in the dataset using a

limited number of factors, the dynamic behavior of which are specified as a vector-

autoregressive process. A key feature of this approach is the use of the Kalman filter,

which allows for an efficient handling of the unbalancedness of the dataset and the

different frequencies of the data. The Kalman filter replaces any missing monthly

indicator observations with optimal predictions, and also generates estimates of unob-

served monthly real GDP subject to a temporal aggregation constraint for the quarterly

observation. Dynamic factor models have been shown to produce relatively accurate

macroeconomic forecasts for many countries.5

In this chapter the dynamic factor model proposed by Bańbura and Rünstler (2011)

is analyzed. The model is used by several central banks within the euro area. The first

equation of the model is:

xm = Λfm + ξm, ξm ∼ N(0,Σξ) (3.5)

which relates the nmonthly indicators xm to r monthly static factors fm = (f1,m, . . . , fr,m)′

via a matrix of factor loadings Λ and an idiosyncratic component ξm = (ξ1,m, . . . , ξn,m)′,

where r << n. The DFM assumes that the idiosyncratic components are a multivariate

white noise process, hence the covariance matrix Σξ is diagonal. Furthermore, the DFM

assumes that the factors follow a vector-autoregressive process of order p:

fm =

p∑
s=1

Asfm−s + ζm, ζm ∼ (0,Σζ) (3.6)

where A is a square r × r matrix. Moreover, the covariance matrix of the VAR (Σζ) is

driven by a q dimensional standardized white noise process ηm:

ζm = Bηm, ηm ∼ N(0, Iq) (3.7)

4 Recently, Bayesian mixed-frequency regressions and VAR models have been developed and applied
to nowcasting. See e.g. Carriero et al. (2015b) and Schorfheide and Song (2015). These alternative
approaches are beyond the scope of this dissertation.

5 Examples include Giannone et al. (2008) for the United States; Bańbura et al. (2011), Camacho
and Perez-Quiros (2010), Rünstler et al. (2009) and Bańbura and Modugno (2014) for the euro area;
Schumacher and Breitung (2008) for Germany; Schneider and Spitzer (2004) for Austria; Cheung and
Demers (2007) for Canada; Camacho and Perez-Quiros (2011) for Spain; and den Reijer (2013) for the
Netherlands.
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where B is a r×q matrix and q ≤ r. The final equation is a forecasting equation linking

the factors to (unobserved) mean-adjusted real GDP growth:

ym = β′fm + εm, εm ∼ N(0, σ2
ε) (3.8)

where ym denotes the unobserved monthly GDP growth rate. The model is estimated

in four steps. In the first step, the factors loadings Λ and the estimated static factors f̂m
are obtained. In the second step, the coefficient matrices As in Eq. (3.6) and β in Eq.

(3.8) are estimated by OLS using f̂m. In the third step, ζm and its covariance matrix

Σζ are computed, and an estimate of the matrix B is obtained by principal components

analysis. In the final step, the model is cast in state space from and the Kalman filter

and smoother are used to re-estimate the estimated factors (f̂m) and monthly GDP

growth.6 To estimate the model, the number of static and dynamic common factors

needs to be specified, denoted by r and q respectively. The largest possible value of r

is set at 6, based on the scree test of Cattell (1966). Moreover, q ≤ r by definition.

In view of potential misspecification and instabilities the estimation procedure follows

Kuzin et al. (2013), and refrains from choosing a particular combination of r and q, but

takes the (unweighted) average of forecasts over all possible parameterizations in terms

of the number of static and dynamic factors and the number of lags p in Eq. (3.6), with

p ≤ 6. Thus, the total number of model specifications is p(r + 1)r/2 = 126.7

Mixed-frequency vector autoregressive model (MFVAR)

Mixed-frequency VAR models (MFVAR) are VAR models that allow for data series

with different frequencies. In contrast to the quarterly VAR model, the MFVAR model

fully exploits all available monthly information. It shares with the QVAR model the

strengths and weaknesses of a system approach. In this case the focus is on bivari-

ate MFVAR models featuring a monthly indicator, unobserved monthly GDP and a

temporal aggregation scheme.

Let zi,m = (ym, xi,m)′ be the vector of latent monthly real GDP and indicator xi,m.

The vector follows a VAR model:

zi,m − µi =

p∑
s=1

As(zi,m−s − µi) + εi,m, εi,m ∼ N(0,Σε) (3.9)

6 The state space form of the dynamic factor model is outlined in Appendix 3.B.2. See Bańbura
and Rünstler (2011) for a more detailed description of the dynamic factor model and the estimation
procedure. See also Stock and Watson (2011). See Durbin and Koopman (2012) for a comprehensive
treatment of state space models and the use of the Kalman filter and smoother.

7 Applying a different weighting scheme leads to results that are virtually the same; see Table 3.9 in
Appendix 3.C. Alternatively one could choose the number of factors r and q on the basis of in-sample
criteria, as described in Bai and Ng (2002, 2007). Preliminary estimates indicate that these criteria
tend to indicate a relatively large number of factors, in line with the outcome in Bańbura and Rünstler
(2011), leading to volatile and less accurate forecasts.
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where µi denotes the mean of zi,t. As documented by Kuzin et al. (2011) the means µi
are often quite difficult to estimate. Therefore, demeaned GDP and monthly indicators

are used in the estimation procedure, adding the mean back afterwards to arrive at the

final indicator-based forecast. As in the dynamic factor model, the Kalman filter and

smoother fills in any missing monthly indicator observations with optimal predictions

and estimates unobserved monthly real GDP subject to a temporal aggregation con-

straint for the quarterly observation. The state space setup of the MFVAR is outlined

in Section 3.B.1. The model is estimated by the expectation-maximization algorithm,

as detailed in Mariano and Murasawa (2010). As in the case of the QVAR model, the

final GDP forecast is formed as a weighted average of the individual forecasts derived

from the n bivariate MFVAR models. Regarding the number of lags p, it is held fixed

for practical reasons (p = 1 for the euro area, Germany, Spain and the Netherlands and

p = 2 for France and Italy).8

Mixed-data sampling regression model (MIDAS)

The mixed-data sampling regression model (MIDAS) is a single horizon-specific equa-

tion that relates quarterly GDP to (various lags of) a monthly indicator (Ghysels et al.,

2007; Schumacher, 2016). It generates the GDP forecast in a direct way. The MIDAS

model circumvents the ragged edge problem by including as regressors a fixed (fairly

large) number of the most recent lagged values of the indicator. In applied work, the

MIDAS model economizes on the number of parameters to be estimated by adopting a

parsimoniously parameterized lag polynomial. The efficiency gains of such an approach

come at the cost of potential efficiency losses if the implied restrictions on the lag struc-

ture between the monthly indicator and quarterly real GDP happen to be invalid. The

MIDAS model is based on Kuzin et al. (2011), who work with the exponential Almon

lag polynomial. The indicator-specific MIDAS model for forecasting horizon h is thus

defined by the following equations:

yQt+h = β0 + β1B(LM ; θ)x
(3)
i,m + εQi,t+h (3.10)

B(LM ; θ) =
K∑
k=0

c(k, θ)LkM (3.11)

c(k, θ) =
exp(θ1k + θ2k

2)∑K
k=0 exp(θ1k + θ2k2)

(3.12)

8 Achieving convergence when estimating MFVAR models with four lags was very difficult. More-
over, varying the number of lags according to the SIC does not seem to be efficient in terms of fore-
casting performances compared to procedures that simply keep the number of lags constant through
time. Therefore, the maximum number of lags is fixed to one, two or three, based on the out-of-sample
performances of the nowcasts and backcasts in the first quarter of the sample (1996.I–1999.IV).
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where LM is the monthly lag operator and the T observations of the regressor x
(3)
i,m are

skip sampled from xi,m by including every third observation, starting from the final

one. Thus, x
(3)
i,m = xi,m,m = 3 + w, . . . , 3(T − 2) + w, 3(T − 1) + w, 3T + w. Eq.

(3.11) describes a weighting function of lagged values, while Eq. (3.12) specifies the

weight for lag k as a function of k and the two parameters governing the exponential

Almon lag polynomial. K is fixed at 11. The model’s parameters (θ1, θ2, β0, β1) are

estimated by Nonlinear Least Squares, subject to θ1 < 5 and θ2 < 0. The final GDP

forecast is computed as a weighted average of the individual forecasts derived from the

n indicator-specific MIDAS models.

3.2.4 Factor- and AR-augmented models

Factor-augmented models

This section describes versions of the QVAR, MFVAR and MIDAS models in which

the independent variable is a factor rather than an observed indicator. These so-called

factor-augmented versions are denoted as F-VAR, F-MFVAR and F-MIDAS, respec-

tively. See Eqs. (3.13)–(3.15), which refer to the single-factor case:

zQt = α +

p∑
s=1

Asz
Q
t−s + εQt , εQt ∼ N(0,ΣεQ) (3.13)

zm − µz =

p∑
s=1

As(zm−s − µz) + εm, εm ∼ N(0,Σε) (3.14)

yQt+h = β0 + β1B(LM ; θ)f̂ (3)
m + εQt+h (3.15)

where zQt = (yQt , f
Q
t )′ and zm = (ym, fm)′. The number of lags in the F-MFVAR

model is the same as in the corresponding MFVAR model. The factors are obtained

as follows. For F-VAR the factor is derived by applying simple principal component

analysis on quarterly averages of monthly data. For the mixed-frequency models the

Kalman-filtered factors are generated by the dynamic factor model, averaged over all

possible parameterizations. This facilitates the comparison between the dynamic factor

model and factor augmented models.

An important specification issue is the number of factors used to summarize the

information set. The literature typically restricts the analysis to a single factor (e.g.

Marcellino and Schumacher, 2010). This issue is investigated in three ways. First, when

treating the factors as separate indicators, taking a weighted average of factor-specific

forecasts typically weakens the forecasting accuracy, especially for nowcasts and back-

casts (see Table 3.7 in Appendix 3.C). The only exceptions are the MIDAS models for
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Spain, for which the second and third factor possess substantial predictive power. Sec-

ond, the marginal forecasting power of additional factors is generally very small (often

zero), again with the exception of the MIDAS models for Spain (see Table 3.8). Third,

when introducing more than one factor into MIDAS equations (multi-factor MIDAS),

the multi-factor models tend to produce higher RMSFEs for forecasts and nowcasts; the

main exception is the two-factor model for Spain. For backcasts the picture is mixed.

For some countries it results in a loss of forecasting accuracy. Moreover, the empirical

relationship between the number of factors and forecasting performance is erratic and

difficult to interpret. The marginal forecasting power of an additional factor can be

positive or negative, and may be sensitive to the exact dating of the backcast. For

example, second-month backcasts may improve, while first-month backcasts deterio-

rate. These findings suggest that over-fitting issues are a real concern for multi-factor

MIDAS models, even when the number of factors is small. Taken together, the results

discussed above hint at a weakness of factor-augmented models, namely their limited

ability to incorporate extra information into forecasts. This issue is discussed in more

detail in Section 3.4.3. Based on this preliminary analysis, one factor was used in each

of the factor-augmented models, following other authors, except for the MIDAS mod-

els for Spain. In the latter case three factors were used, which were treated as single

indicators.9

AR-augmented models

Finally, versions of the BEQ, MIDAS and F-MIDAS models featuring an AR(1) term are

considered, as GDP’s own past may contain important information. The AR-augmented

models are denoted as BEQ-AR, MIDAS-AR and F-MIDAS-AR, respectively. The

BEQ-AR model for xi can be written as:

yQt = α + ϕyQt−1 +

pi∑
s=0

βsx
Q
i,t−s + εQi,t (3.16)

As proposed in Clements and Galvão (2008), the AR term is introduced as a common

factor in the MIDAS-AR and F-MIDAS-AR models:

yQt+h = β0 + ϕyQt−1 + β1B(LM ; θ)(1− ϕLhM)x
(3)
i,m + εQt+h (3.17)

yQt+h = β0 + ϕyQt−1 + β1B(LM ; θ)(1− ϕLhM)f (3)
m + εQt+h (3.18)

The parameter ϕ is estimated simultaneously with the other parameters.

9 The predictive power of the second and third factors in the case of Spain is a persistent feature
throughout the sample period, which agents would discover quickly. Thus, the risk of this modeling
assumption introducing hindsight bias is quite small.
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3.3 Data, forecast design and specification issues

This section describes the dataset, the pseudo real-time setup, the weighting scheme

that was used for pooling indicator-specific forecasts in case of the QVAR, BEQ, BEQ-

AR, MFVAR, MIDAS and MIDAS-AR models, and the selection of the number of lags

and factors in the models.

3.3.1 Dataset

The monthly dataset consists of 72 monthly time-series variables (using harmonized def-

initions across the countries), which cover the broad range of information that is readily

available to economic agents. To facilitate cross-country comparisons, the monthly in-

dicators were selected based on their availability in all countries for a sufficiently long

time-span.10 The indicator variables fall into four categories. The first category is

hard, quantitative information on production and expenditures, such as industrial pro-

duction in various sectors and countries, car sales, world trade and unemployment.

The second category refers to input and output prices, such as consumer and producer

prices, and oil and commodity prices. The third category contains financial variables,

both quantities (money stock and credit volume) and prices (interest rates, stock prices

and exchange rates). These determine financing conditions for firms and consumers.

Moreover, financial market prices partly reflect financial market expectations on output

developments in the near future. The fourth category is soft, qualitative information

on expectations derived from surveys among consumers, retailers and firms. Moreover,

three composite leading indicators compiled by the OECD were included.

Appendix 3.A provides details on the sources, availability and the applied transfor-

mations of the data series. The available monthly data are usually already adjusted

for seasonality (and calendar effects). When necessary, raw data series are seasonally

adjusted using the US Census X-12 method. All monthly series are made stationary

by differencing or log-differencing (in the case of trending data, such as industrial pro-

duction, retail sales and monetary aggregates). Finally, each variable is standardized

by subtracting the mean and dividing by the standard deviation. This normalization

is standard practice in order to avoid the overweighting of series with large-variances

series in the extraction of common factors. The data transformations are the same for

all of the statistical models, except for the Bayesian VAR.

10 As a consequence, country-specific indicators, such as the Ifo-indicator for Germany, were not
used for forecasting. Moreover, the time series for the Purchasing Managers Index (PMI) are not long
enough for all countries. Of course, as economic agents will use this country-specific information in
practice, the results might underestimate the forecasting accuracy of mechanical models for certain
countries or periods.
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3.3.2 Pseudo real-time design

The forecast design aims to replicate the availability of the data at the time forecasts

are made in order to mimic the real-time flow of information as closely as possible.

To this end, a dataset that was downloaded on January 16, 2012 was combined with

the typical data release calendar to reconstruct the available dataset on the 16th of

each month during the period July 1995-January 2012. All monthly indicator series

start in January 1985, while the quarterly GDP series start in 1985.I. Thus, a pseudo

real-time design is employed, which takes data publication delays into account, but

ignores the possibility of data revisions for GDP and some indicators, such as industrial

production. The latter implies that the forecasting accuracy of statistical models might

be overestimated. However, the effects of data revisions on the final forecast may

largely cancel out (although the crisis episode may have been atypical in this regard),

since statistical methods typically attempt to eliminate noise in the process by either

extracting factors from a large dataset or pooling a large number of indicator-based

forecasts. For example, Schumacher and Breitung (2008), using real-time data vintages

for Germany, did not find a clear impact of data revisions on the forecast errors of

factor models. Moreover, the effect on the relative performance of models, which is the

main focus of this chapter, is likely to be quite small (see Bernanke and Boivin, 2003).

However, abstracting from data revisions may affect the comparison of mechanical

forecasts and forecasts by professional analysts to a greater extent. The expectations

of analysts necessarily reflect the inaccurate initial estimates of GDP’s recent past and

this puts them at a disadvantage vis-à-vis mechanical models in a pseudo real-time

setting as the latter can take data revisions on board.

The parameters of all models are estimated recursively, using only the information

that was available at the time of the forecast. For similar approaches, see Giannone

et al. (2008), Kuzin et al. (2011) and Rünstler et al. (2009), among others. For a

given quarter, a sequence of eleven forecasts for GDP growth is obtained in consecutive

months. Table 3.1 explains the timing of the forecasting exercise, taking the forecast

for the third quarter of 2011 as an example. The first forecast is made in January

2011, which is called the two-quarter ahead forecast in month one. Subsequently, a

monthly forecast is produced for the next ten months through November. The last

forecast is made just before the first release of GDP in mid-November. Following the

conventional terminology, forecasts refer to one or two-quarter ahead forecasts, nowcasts

refer to current quarter forecasts and backcasts refer to forecasts for the preceding

quarter, before official GDP figures become available. In case of the current example

2011.III, two-quarter ahead forecasts are produced from January to March, one-quarter

ahead forecasts from April to June, nowcasts from July to September, and backcasts in

October and November.
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Table 3.1: Timing of forecasting exercise for third quarter GDP growth

Nr. Forecast type Month Forecast made in middle of
1 Two-quarter ahead 1 January
2 2 February
3 3 March
4 One-quarter ahead 1 April
5 2 May
6 3 June
7 Nowcast 1 July
8 2 August
9 3 September
10 Backcast 1 October
11 2 November

3.3.3 Weighting scheme of indicator-based forecasts

The models BEQ, BEQ-AR, QVAR, MFVAR, MIDAS and MIDAS-AR construct a

large number of different indicator-specific forecasts in the first stage, which have to

be aggregated in the second stage to obtain the final forecast. Taking a weighted

average of a large number of forecasts may ameliorate the effects of misspecification bias,

parameter instability and measurement errors in the data, that may afflict the individual

forecasts (Timmermann, 2006). Three different weighting schemes were investigated:

(i) equal weights (simple mean); (ii) weights that are inversely proportional to the

root mean squared forecast error (RMSFE) measured from the start of the sample

period until the previous quarter (recursive RMSFE scheme); and (iii) weights that

are inversely proportional to the RMSFE measured over the past four quarters (moving

window RMSFE scheme). Equal weights have been proven to work quite well as pooling

mechanism (e.g. Stock and Watson, 2004; Clark and McCracken, 2010). The latter two

methods assign weights to the indicators based on their forecasting performance in the

(recent) past.

Table 3.9 in Appendix 3.C gives an overview of the RMSFE of the three weighting

schemes by horizon and country for BEQ-AR, QVAR, MFVAR and MIDAS-AR. The

overall picture is that the moving window RMSFE weighting scheme, which emphasizes

performance in the recent past, has the smallest RMSFE on average. However, the

differences with the other schemes are very small, so the results are not sensitive to

the specific weighting method. In the rest of this chapter the moving window RMSFE

weighting scheme is applied for all relevant models and all countries.
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3.4 Empirical results for statistical models

3.4.1 Forecasting performance

Table 3.2 presents data on the forecasting performance of the statistical models for

the five countries plus the euro area for the complete sample period 1996.I–2011.III

(63 quarters). The underlying empirical analysis has been carried out on a monthly

basis for eleven horizons. To save space, Table 3.2 (and the other tables in this chapter

as well) reports results for the two and one-quarter ahead forecasts, the nowcast and

the backcast, which have been calculated as the average of the corresponding monthly

data. Moreover, only he AR versions of the BEQ, MIDAS and F-MIDAS models are

reported.11 The forecasting performance is measured by RMSFE. Table 3.2 reports the

results of two benchmark models that have been used in the literature: the random walk

(RW) with drift and a pure univariate autoregressive (AR) model.12 Measuring against

the RW benchmark reveals the advantage of using information for forecasting, including

GDP’s own past. A comparison with the AR benchmark focuses on the value added

of monthly auxiliary information. The first column of Table 3.2 reports the RMSFE of

the random walk. For the other statistical models, including the AR model, the entries

refer to their RMSFE relative to that of the RW benchmark in order to improve the

comparability of the results across countries and horizons. Grey cells indicate the model

with the lowest RMSFE in a row (for a particular horizon). Entries in bold indicate

models that have RMSFEs that are less than 10% larger than that of the best model,

and are also smaller than the RMSFE of the benchmark model.13 The 10% threshold

is meant as a rough assessment of the economic significance of differences in forecasting

ability. Models that meet this condition are called “competitive models”, as they do

not differ “too much” from the best model in terms of forecasting performance.14

The outcomes in Table 3.2 point to several interesting results. First, incorporating

monthly information in statistical forecasting procedures pays off in terms of forecasting

accuracy, in particular for nowcasts and backcasts. The large majority of the relative

RMSFEs are smaller than one and fall below those of the AR model. They also tend

to decline if the horizon shortens and more monthly information has been absorbed.

Moreover, models that do not fully exploit the available monthly observations (QVAR

and F-VAR) generally have larger RMSFEs than models that do. Second, for many

models the gain is rather limited when forecasting one and two-quarters ahead. For the

two-quarter-ahead forecasts, the best models have RMSFEs that are only 5% lower than

11 The results for non-AR versions are very close to their AR counterparts. Section 3.4.4 discusses
the effect of taking an AR term on board.

12 The drift parameter is recursively estimated. Regarding the AR model, the number of lags is
determined recursively by the SIC, with a maximum of four.

13 If the best model has an RMSFE of 0.6, the cut-off point is an RMSFE of 0.66.
14 In addition, Diebold and Mariano (1995) tests broadly paint the same picture.
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the benchmark. Only for Spain does the best statistical model deliver an economically

significant improvement. For the one-quarter ahead forecast the average improvement

by the best models is 15% on the RW benchmark, but the other models generally post

gains of less than 10%. For the nowcasts and backcasts, the average gains for the

best performing models amount to roughly 30% and 40%, respectively. This pattern

suggests that statistical models are of greater value when they can use information that

pertains to the relevant quarter. Their relative strength is in improving the assessment

of the current state of the economy. Third, the dynamic factor model displays the best

performance overall. Looking across countries and horizons, it works best for backcasts

and is at least competitive in all other cases. The factor augmented MIDAS-AR and

MFVAR models perform relatively well for one-quarter-ahead predictions and nowcasts,

but not so well for backcasts. The Bayesian VAR model works best for Spain and

relatively well for the Netherlands. It also delivers the best two-quarter-ahead forecasts.

Fourth, many models are competitive at the two-quarter-ahead horizon in most of the

countries, but the number of competitive models falls quickly as the horizon shortens.

For four countries, there are no competitive models left for the backcast. This result is

another sign that the predictions from statistical models incorporate little information

at the two-quarter-ahead horizon. Models that exploit all of the available monthly

information fully, including the traditional bridge model, generally stay competitive

up to the first quarter ahead horizon. Fifth, Spain is an exceptional case within the

analyzed sample of countries, as most of the statistical models perform poorly relative

to the AR model, which happens to forecast pretty well. Thus, most of the models

appear to have difficulty in capitalizing on their comparative advantage, the monthly

information set. In contrast, the Bayesian VAR and the dynamic factor model both

perform strongly in the Spanish case.

3.4.2 The marginal value of statistical models

Ranking models according to their RMSFEs gives an initial indication of the relative

usefulness of each. This subsection focuses on the marginal value of the various mod-

els by investigating whether the forecasts generated by different models differ in their

information content. As the various statistical approaches follow different strategies

for extracting monthly information, it is conceivable that some models may be com-

plementary. In that case, taking a weighted average of their respective forecasts may

improve the forecast accuracy. Even a model that performs badly may have a positive

marginal value if it is able to pick up specific useful information. The marginal value

of the models is established relative to the best statistical model (lowest RMSFE) by

running an encompassing test (e.g. Rünstler et al., 2009 and Stekler, 1991). The test
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regression is:

yQt+h = λŷQa(t+h|t) + (1− λ)ŷQb(t+h|t) + εt (3.19)

where yQt+h is GDP growth in t + h, ŷQa(t+h|t) and ŷQb(t+h|t) are the forecasts for quarter

t + h on time t of the alternative and best model respectively; λ is the weight of

the alternative model; and (1 − λ) is the weight of the best model. In order to get

interpretable results, the restriction that λ lies between 0 and 1 was imposed. The

alternative model contains additional information compared to the best model if λ > 0.

λ and its standard error are estimated on the interval [0,1] by Maximum Likelihood

(ML). A one-sided (asymptotically valid) test of the hypothesis λ = 0 is performed at

the 5% significance level. All of the calculations refer to the complete sample period

1996.I–2011.III (63 quarters).

Table 3.3 reports the results of the encompassing test. The entries are the RMSFEs

of the forecast combination relative to that of the best model, as a measure of the

potential gains from using forecast combinations. The estimated weight λ itself is not

reported; entries in bold signify λ estimates that are statistically greater than zero.

Dots indicate that the ML algorithm returned the corner solution λ = 0.

The main message of Table 3.3 is that, in economic terms, the gains from combining

forecasts from different statistical models are very limited for all countries except for

Spain. In the majority of cases, the accuracy gain is zero. Although the gains tend

to increase as the horizon shortens and the models have absorbed more information,

they typically do not exceed 3%, even for backcasts. Moreover, no model emerges as

a clear winner, although the models with the lowest RMSFEs (DFM, F-MIDAS-AR

and BVAR) also tend to be the most promising in terms of marginal value. Thus, it

appears that the various approaches do not differ greatly with respect to the types

of information that they extract from large-scale monthly datasets. Finally, Table 3.3

shows that statistical significance and economic importance are different concepts. Most

of the non-zero entries reflect a significant test result for the encompassing test, while

most of the gains in forecast accuracy are very small.

3.4.3 Splitting the sample: Great Moderation versus financial

crisis

The sample includes the financial crisis, when real GDP went through a particularly

volatile phase across the industrialized countries. An obvious question is whether and

to what extent the performances of statistical forecasting models differ between the

financial crisis period and the period before the financial crisis, which was characterized

by a large degree of macroeconomic stability. The latter period has been labeled the

Great Moderation. Most of the existing literature on short term forecasting is based on
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data from the Great Moderation period. Of course, forecasting in volatile times poses

greater challenges, meaning that the results of a comparative analysis will be more

informative on the issue of which models are most apt at absorbing monthly information.

Moreover, good forecasts and nowcasts are of greater importance to economic agents

and policy makers in a volatile environment.

The sample period is divided into two parts: 1996.I–2007.IV (Great Moderation)

and 2008.I–2011.III (financial crisis). The models’ performances in both periods are

discussed based on their so-called learning curves. A learning curve shows the relative

decline in the RMSFE of a model as the forecasting horizon shortens, averaged over four

countries plus the euro area.15 A model’s learning curve is calculated as the RMSFE

standardized by the RMSFE for the first month of the two-quarter ahead DFM-forecast.

Figure 3.1 shows the learning curves of selected models for the complete sample period

and the two subperiods (in the rows). The graphs on the left refer to three models that

aggregate indicator-specific forecasts and the Bayesian VAR, while the graphs on the

right refer to the models that rely on factor analysis to summarize the indicators.

For the complete sample period, the dynamic factor model displays the steepest

learning curve. Its RMSFE falls by 42% on average within 11 months. In addition,

models involving factor analysis have steeper learning curves up to the nowcast, on av-

erage, than models that aggregate indicator-specific forecasts. Moreover, the learning

curve is rather flat until month four for all models, reflecting the fact that the scope

for predicting GDP for horizons beyond one quarter in the future is very limited. This

is a stable pattern that holds during both the Great Moderation episode and the crisis

episode (and also across countries). The Bayesian VAR is the fastest learning VAR

model. Despite the fact that it does not use all available monthly observations, it holds

up well against many of the models that do use all of the monthly information. This

suggests that the models implicit aggregation by Bayesian shrinkage on coefficients,

when applied in a mixed-frequency setting, may turn out to be a viable alternative

approach to the information aggregation strategy of factor-based models, especially for

backcasts in stable periods. For the US, Schorfheide and Song (2015) find that us-

ing within-quarter monthly information leads to drastic improvements in short-horizon

forecasting performances.

Predicting GDP is much more difficult in the crisis period (see Tables 3.10–3.13 in

Appendix 3.C). The RMSFE of the benchmark model is two to three times as large

during the crisis period as during the Great Moderation. However, part of this dete-

rioration can be offset, as the scope for improving forecasts through the utilization of

monthly information appears to be larger in volatile times, particularly for nowcasting

15 Spain is left out, because virtually all statistical models fail to beat the AR benchmark in the
period 1996.I–2007.IV. Moreover, this avoids any possible hindsight bias related to the fact that the
F-MIDAS-AR model for Spain employs a different number of factors. Country details can be found in
Tables 3.10–3.13 in Appendix 3.C, which are the counterparts of Tables 3.2 and 3.3 for both subperiods.
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Figure 3.1: Learning curve of statistical models, 1996.I–2011.III
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factor-augmented MFVAR model.
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and backcasting. For example, the RMSFE of the dynamic factor model falls by 21%

on average over the course of 11 months in the period before the crisis, as compared to

55% in the crisis period. The differences in forecast accuracy across models are consid-

erably larger after the crisis than before the crisis. This also means that the number of

competitive models during the Great Moderation is much larger than after the financial

crisis, especially for the nowcasting and backcasting horizons. This finding is consistent

with the results of D‘Agostino and Giannone (2012), who show that the gain from using

factor models is substantial, especially in periods of high comovement, as was the case

during the financial crisis. The crisis episode poses a more demanding test to models,

and consequently, fewer models manage to pass. This finding also implies that the cost

of employing a suboptimal model increased after the crisis. Finally, the potential gains

of combining statistical models (marginal value) tend to be markedly smaller during

the financial crisis than in the preceding period.16

Looking at the models that rely on factor analysis, a remarkable result is the strik-

ingly different shapes of the learning curves of factor-augmented mixed-frequency mod-

els on the one hand, and the dynamic factor model on the other hand. F-MIDAS-AR

and F-MFVAR learn faster than the dynamic factor model between months four and

seven, but the pace of improvement quickly levels off beyond that point. As a result,

their one-quarter-ahead forecasts and early nowcasts are more accurate than their DFM

counterparts on average. This good performance is attributable entirely to the financial

crisis episode. During the Great Moderation, their forecasts do not show any improve-

ment at all after month seven. In contrast, the DFM improves its forecast steadily as

more and more information is absorbed, producing superior backcasts and late nowcasts

in both quiet and volatile times. Moreover, the DFM delivered better or equally good

forecasts over the whole horizon during the Great Moderation period.

This pattern reflects the comparative strengths and weaknesses of the two model

approaches, which may play out differently at different horizons and in different cir-

cumstances. To gain additional insight into why the DFM works, Figure 3.2 shows its

learning curve for different numbers of lags (p) and (static) factors (r). The learning

curves indicate that the performance of the DFM for nowcasts and backcasts is strongly

linked to the number of factors. However, additional factors do not offer benefits for

predictions beyond the current quarter; then, one factor is then sufficient. When the

DFM is restricted to only one factor, its learning curve has the same shape as that of

the F-MIDAS-AR model. Moreover, the number of lags in the factor VAR process is

only a minor determinant of the forecast quality at any horizon. As a consequence, the

comparative strength of the DFM is its ability to include more information in the fore-

casting procedure. In contrast, this aspect is the weak point of factor augmented models,

16 Moreover, the estimated weight (λ) in the encompassing is significant in only a few cases, but this
can partly be attributed to the low number of observations.
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Figure 3.2: Learning curve of dynamic factor model by number of lags and factors, 1996.I–
2011.III

Number of lags p Number of static factors r

Evaluation period 1996.I–2011.III (N=63)
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Notes: the lines denote learning curves, defined as RMSFE(forecast model)/RMSFE(first month 2Q-ahead
forecast DFM with 6 lags (p = 6) and RMSFE(forecast model)/RMSFE(first month 2Q-ahead forecast DFM
with 6 static factors (r = 6), respectively. All forecasts averaged across the euro area, Germany, France,
Italy and the Netherlands.
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which can exploit only one factor in practice (see Section 3.2.4). This hurts their perfor-

mances for late nowcasts and backcasts. On the other hand, factor-augmented models

(and MIDAS models in particular) may exploit their richer dynamic specification of the

relationship between indicator and GDP. This may give them an edge over the DFM,

in particular for one-quarter ahead predictions and early nowcasts for which the single-

factor restriction is not a disadvantage. However, a flexible dynamic specification is an

asset for forecasting only if it is feasible to identify stable dynamic relationships reliably.

Otherwise, these models may estimate spurious dynamic relationships in-sample, which

may actually reduce the accuracy of the out-of-sample predictions. The evidence in

Figure 3.1 highlights this identification problem. During the Great Moderation, factor

augmented models were unable to capitalize on their comparative advantage; however,

that changed dramatically after the crisis hit. In volatile times, when it is easier to

identify dynamic relationships, factor augmented models may deliver the best forecasts

for specific horizons: (late) one-quarter ahead forecasts and early nowcasts. Dynamic

flexibility tends to increase RMSFEs for two-quarter ahead forecasts in all environ-

ments, due to the very limited scope for forecasting that far into the future. Thus,

these findings suggest that the question of whether or not to use factor augmented

models in practice for one-quarter ahead forecasts and early nowcasts should depend

on the researchers or practitioners confidence in the models abilities to uncover useful

dynamic relationships.

3.4.4 Assessing model features

The fact that the conducted analysis includes many models and five countries plus

euro area allows shedding some light on the issue which model features are especially

valuable for forecasting and nowcasting. The following modeling choices are evaluated:

(1) employing factor analysis to summarize monthly information; (2) using all available

monthly information; (3) exploiting GDP’s own past by adding an autoregressive term

to the forecasting equation. To assess the effect of a specific model feature on the

RMSFE, (pairs of) models that differ only in that aspect are compared. Moreover, the

effects are averaged over four countries plus the euro area (excluding Spain again) to

average out the country-specific component.

To measure the impact of utilizing factor analysis for aggregating monthly infor-

mation rather than aggregating indicator-specific forecasts four pairs of models can be

compared: (F-VAR, QVAR), (F-MIDAS, MIDAS), (F-MIDAS-AR, MIDAS-AR) and

(F-MFVAR, MFVAR). The effect of using all available information on indicators can be

measured by comparing the quarterly VAR models with their mixed-frequency counter-

parts: (MFVAR, QVAR) and (F-MFVAR, F-VAR). This comparison also involves the

effect of making GDP a monthly latent variable in a system. For the AR effect three
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pairs are analyzed: (BEQ-AR, BEQ), (MIDAS-AR, MIDAS) and (F-MIDAS-AR, F-

MIDAS).

Table 3.4 reports the impacts of the three model features (averaged over four coun-

tries and the euro area) for the complete sample period and the two subperiods. Starting

with the effect of utilizing factor analysis, it improves the forecasting accuracy substan-

tially for all horizons, and for nowcasts in particular. The gains are much larger for

mixed-frequency models than for quarterly models. For the complete sample, the aver-

age gain is 14% for nowcasts, 8% for backcasts, and 6% for one-quarter ahead forecasts.

This suggests that summarizing the information from monthly data is especially help-

ful when the information pertains to the quarter of interest itself. When forecasting or

backcasting, the inevitable loss of information due to summarizing appears to partly

offset any gains that arise from the removal of noise. Moreover, there is an interest-

ing difference between tranquil and volatile times. Using factors produces only modest

gains in tranquil times, when GDP develops rather smoothly. In such periods, there

is little information available in the first place, and the information losses due to sum-

marizing may be comparatively severe relative to the gains from the removal of noise.

In volatile times, when the indicators display a larger degree of comovement, the gains

are much larger: up to 22% for nowcasts and 15% for backcasts. Next, the effect of

using all available monthly observations is discussed. This effect is also sizable for all

horizons except for the two-quarter-ahead forecast. For the full sample, the RMSFEs

of nowcasts decrease by 16% and those of backcasts by 12%. Again, there is a large

difference between the pre-crisis and the crisis periods. The gains from using monthly

information are realized primarily in volatile episodes, as is evidenced by the 23% and

22% gains in accuracy for nowcasts and backcasts, respectively, in the crisis period. In

contrast, the gains during the Great Moderation period are (very) modest, once again

suggesting that the information content of the monthly dataset is low in stable envi-

ronments. Finally, exploiting GDPs own past by adding an AR term has small positive

effects on the forecasting accuracy of nowcasts and backcasts, but only during the crisis

episode; the nowcasts improve by 3% and the backcasts by 6%.

3.5 Analysis of forecasts by professional analysts

The views of professional forecasters are an alternative and convenient source of in-

formation for policy makers and market participants. Currently, several surveys on

the economic outlook are available on a regular basis. The European Central Bank

undertakes a quarterly survey among professional forecasters to obtain information on

inflation expectations and growth prospects for the euro area. In the US, the Federal

Reserve Bank of Philadelphia runs a well-known survey. Moreover, the private sector

firm Consensus Economics collects and publishes economic forecasts on a monthly basis
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in the publication Consensus forecasts. Consensus forecasts offers an overview private

sector analysts’ expectations for a set of key macroeconomic variables for a broad range

of countries. Consensus forecasts is best known for its expectations on annual GDP

growth for the current and next year. However, it also provides quarterly forecasts

for GDP, which will be used in this chapter.17 The panelists supply their forecasts for

six consecutive quarters, starting from the first unpublished quarter. The numbers of

respondents varies somewhat over time, but on average about nine institutions partici-

pate in the poll for the Netherlands, fifteen each for Italy and Spain, twenty for France

and thirty for Germany and the euro area.

This section investigates two issues. The first issue is the quality of Consensus

forecasts as a separate forecasting device, relative to the best statistical model. The

second issue is the marginal value of Consensus forecasts, based on an encompassing

test versus the three best models (DFM, BVAR and F-MIDAS-AR). In forming their

expectations, analysts include subjective assessments of (potentially) a multitude of

relevant factors, alongside presumably model-based predictions. If a mixture of model-

based and (subjective) Consensus forecasts improves the accuracy of forecasts, this can

be viewed as evidence that forecasts by analysts do indeed embody a different type of

valuable information (subjective judgments).

The mean quarterly forecast is used as the measure of private sector expectations

in the analysis. Fresh Consensus forecasts become available only once a quarter, in the

second week of the last month of the quarter. For the information set, this means that

Consensus forecasts are not updated in the first and second month in a quarter, while

the monthly indicator series are updated every month. Moreover, at the time panelists

form their expectations they have information on GDP growth in the preceding quarter.

Thus, the Consensus backcast for quarter t is equal to the non-updated Consensus

forecast published in the last month of quarter t.

Table 3.5 presents the results for Consensus forecasts for the complete sample pe-

riod, the pre-crisis period and the crisis period.18 For the one- and two-quarter ahead

forecasts, the Consensus forecasts are better than the best statistical model in the case

of Spain, and competitive for three other countries (measured over the whole sample).

However, the performance relative to the best model is weak for nowcasts and partic-

ularly backcasts for all countries except for Germany and Spain. Consequently, purely

mechanical models seem to be more adept at learning when monthly information re-

garding the quarter of interest becomes available. In the relatively stable pre-crisis

period, the Consensus forecasts fare very poorly, usually ranking at the bottom of the

17 The annual Consensus forecasts have been analyzed in several papers (e.g. Ager et al., 2009;
Batchelor, 2001; Loungani and Rodriguez, 2008; Lahiri et al., 2006). The quarterly forecasts have not
been used before, except for the case study for the Netherlands in Chapter 2 in this thesis.

18 Consensus forecasts for the euro area are available from March 2002 onward only, so the results
in Table 3.5 refer to the period 2003.III–2011.III for the euro area.
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list. However, they do very well in the case of Germany, which suggests that analysts

were able to assess the economic conditions better during and after the extraordinary

episode of German reunification in the early 1990s. In contrast, Consensus forecasts

perform much better during the crisis period, when GDP and the monthly indicators

displayed extreme fluctuations. At the one- and two-quarter ahead horizons, the Con-

sensus forecasts belong in the top three models in most cases. For Spain and the

Netherlands, the difference in forecasting precision is substantial. This suggests that

analysts are able to handle extreme observations of GDP growth and auxiliary indica-

tors better once they have occurred, while the quality of recursively estimated models

in mechanical procedures is more susceptible to extreme observations in the sample,

particularly when truly forecasting. The main findings support those of Lundquist and

Stekler (2012), who conclude that professional forecasters are very responsive to the

latest information about the state of the economy and adjust their predictions quickly.

Despite this head start, private sector forecasts still fall behind the best model in most

cases as the horizon becomes shorter and more timely monthly information becomes

available to improve forecasts. For example, leaving aside Spain, the RMSFEs of back-

casts by Consensus forecasts are between 14% and 40% larger than those associated

with the best model (dynamic factor model).

Despite the fact that the Consensus forecasts are a rather poor predictor of GDP on

their own, the results for the encompassing test show that they often still contain valu-

able extra information. The effects are generally smaller for the best statistical model,

which usually differs across horizons. This implies that a combination of model-based

predictions and Consensus forecasts narrows the differences between the best models.

This would lower the cost of using a single model for all horizons for practitioners. In

many cases, an accuracy improvement of around 10% is feasible. The effects tend to be

stronger for backcasts by analysts, even though these actually reflect relatively dated

information. During the crisis period, Consensus forecasts, unlike their statistical com-

petitors, still offer great added value compared to the best statistical model for Spain,

and to a lesser extent for the Netherlands. Moreover, they can be used to improve the

predictions of near-best models significantly for almost all countries. The added value

is smaller in the pre-crisis period, except for Germany. All in all, the outcomes of the

encompassing test suggest that subjective private sector forecasts potentially contain

information that sophisticated mechanical forecasting procedures are unable to pick

up.19

19 As fresh Consensus forecasts become available only in the third month of the quarter, the month-
by-month pattern of the results is also interesting. The relative RMSFE of Consensus forecasts (versus
the best statistical model) improves in third months, when they are new, and deteriorates in other
months, when statistical models can take advantage of newly available monthly information. How-
ever, the results for the encompassing test on a month-by-month basis show that the value added of
Consensus forecasts does not significantly decrease with their age. Even Consensus forecasts that are
one or two months old often contain valuable extra information. This finding reinforces the conjecture
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3.6 Conclusion

This chapter makes two contributions to the empirical literature on forecasting real

GDP in the short run. The first contribution is a systematic comparison of twelve sta-

tistical linear models for five countries (Germany, France, Italy, Spain and the Nether-

lands) and the euro area, utilizing the same information set across countries plus the

euro area. The sample period (1996.I–2011.III) allows comparison of the models’ fore-

casting abilities in the period before the financial crisis of 2008 (Great Moderation) and

the much more volatile period that followed (the financial crisis and its aftermath). The

second contribution concerns the potential usefulness of (subjective) forecasts made by

professional analysts. Such forecasts are very cheap and easy to use, and may incorpo-

rate valuable information that goes beyond purely statistical data.

The main findings can be summarized in five points. First, monthly indicators con-

tain valuable information that can be extracted by mechanical statistical procedures,

particularly as the horizon shortens and more monthly information is processed. The

largest accuracy gains are for nowcasts and backcasts, suggesting that statistical models

are especially helpful when they are able to use information that pertains to the quar-

ter of interest. Moreover, statistical models are generally more efficient at extracting

monthly information in volatile periods. Thus, their relative strength is to improve the

assessment of the current state of the economy. In contrast, the predictions from statis-

tical models generally incorporate little information at the two-quarter ahead horizon.

Second, the dynamic factor model displays the best forecasting capabilities overall,

particularly for backcasts and nowcasts. Its ability to incorporate more than one fac-

tor, and thus, more information, is key to this result. Factor-augmented MFVAR and

MIDAS models produce better one-quarter-ahead predictions after the financial crisis,

due to their richer dynamic specifications. However, the latter feature does not appear

to be an advantage in stable times. The Bayesian quarterly VAR is the best quarterly

model. It performs quite well for Germany, the Netherlands and Spain in the more

stable period of the Great Moderation. Remarkably, all of the other models, including

the dynamic factor model, perform (very) poorly in the case of Spain during the Great

Moderation. These findings suggest that Bayesian estimation is a fundamentally dif-

ferent way of extracting information from a large data set, which may deliver benefits,

even if the model is inefficient in its use of the available monthly information.

Third, regarding crucial model features, employing factor analysis to summarize

the available monthly information clearly delivers better results than the alternative

of averaging single-indicator-based forecasts in the case of one-quarter ahead forecasts

and nowcasts. Strategies that aggregate information work better than strategies that

pool forecasts. Moreover, it is important for a model to make use of all of the available

that analysts’ forecasts embody information that differs in nature from the information that can be
filtered out of statistical data.
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monthly observations. On the other hand, allowing for autoregressive terms (GDP’s own

past) in forecasting equations leads to only minor improvements in forecast reliability.

All of these effects are more pronounced during the crisis period, implying that the cost

of employing a suboptimal forecasting model is larger in periods of high volatility.

Fourth, statistical models differ significantly in the rates at which they are able

to absorb monthly information as time goes by. However, the information content of

the resulting forecasts appears to overlap to a large extent, and the unique model-

specific component appears to be small (relative to the best model). The different

models do not seem to have any comparative advantage of extracting certain types of

information, offering perspectives that complement each other. The scope for improving

GDP forecasts by combining the ’views’ of various models is rather limited in economic

terms, although there are some exceptions. This is particularly true during volatile

episodes, when reliable assessments of the current situation and short run prospects are

most needed, unfortunately.

Lastly, forecasts by professional analysts, which contain judgmental elements, ap-

pear to be a different category. Such forecasts are in many cases a rather poor predictor

of GDP compared to the best statistical model. However, they tend to perform better

during the crisis, when it really counts, and they often embody information that so-

phisticated mechanical forecasting procedures fail to pick up. Thus, subjective private

sector analysts’ forecasts seem to offer the potential of enhancing mechanical forecasts.

The results of the large-scale comparative analysis may be useful to policy makers,

financial analysts and economic agents, as information on where the economy stands

and where it is heading to in the short run is particularly valuable in times of great

uncertainty. The dynamic factor model and factor-augmented statistical models are

obvious candidate models for generating short-term forecasts in practice.
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Appendix

3.A Dataset

The main source of the monthly data is the ECB statistical datawarehouse. World trade

and world industrial production are from the CPB world trade monitor. Commodity

prices and most financial market indicators were taken from Thomson Reuters datas-

tream and most of the survey data from the European Commission. Table 3.6 provides

an overview of all monthly variables, the applied transformations and the starting date

of the monthly series at the data source. Note that only observations from January

1985 onwards have been used in estimation.

Table 3.6: Description monthly dataset

No. Variable Type Transformation Country
ln. dif. filter EA DE FR IT ES NL

1 World Trade (CPB) Sales 1 1 3 ’77 ’77 ’77 ’77 ’77 ’77
2 World Industrial Production (CPB) Sales 1 1 3 ’91 ’91 ’91 ’91 ’91 ’91
3 Ind. production United States Sales 1 1 3 ’77 ’77 ’77 ’77 ’77 ’77
4 Ind. production United Kingdom Sales 1 1 3 ’77 ’77 ’77 ’77 ’77 ’77
5 Ind. production (excl. construction) Sales 1 1 3 ’77 ’77 ’77 ’77 ’77 ’77
6 Ind. production, cons. goods ind. Sales 1 1 3 ’80 ’80 ’77 ’77 ’77 ’90
7 Ind. production, energy Sales 1 1 3 ’80 ’80 ’77 ’80 ’80 ’90
8 Ind. production, interm. goods ind. Sales 1 1 3 ’77 ’80 ’77 ’77 ’77 ’95
9 Ind. production, capital goods Sales 1 1 3 ’77 ’80 ’77 ’77 ’77 ’77
10 Ind. production, manufacturing Sales 1 1 3 ’77 ’78 ’77 ’77 ’80 ’77
11 Ind. production, construction Sales 1 1 3 ’85 ’78 ’85 ’95 ’88 ’85
12 New orders manufacturing Sales 1 1 3 ’95 ’91 ’00 ’90 ’00 ’95
13 New passenger cars (reg.) Sales 1 1 3 ’90 ’90 ’90 ’90 ’90 ’90
14 New commercial vehicles (reg.) Sales 1 1 3 ’90 ’90 ’90 ’90 ’90 ’90
15 Retail trade volume Sales 1 1 3 ’77 ’77 ’77 ’90 ’95 ’77
16 Unemployment rate Sales 0 1 3 ’83 ’91 ’83 ’83 ’86 ’83
17 Unemployment rate United Kingdom Sales 0 1 3 ’83 ’83 ’83 ’83 ’83 ’83
18 Unemployment rate United States Sales 0 1 3 ’83 ’83 ’83 ’83 ’83 ’83
19 Exports Sales 1 1 3 ’00 ’89 ’89 ’89 ’89 ’89
20 Imports Sales 1 1 3 ’00 ’89 ’89 ’89 ’89 ’89
21 Total HICP-index Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77
22 Core HICP-index Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77
23 CPI, food Prices 1 2 3 ’90 ’77 ’77 ’77 ’93 ’77
24 CPI, energy Prices 1 2 3 ’90 ’77 ’77 ’77 ’77 ’77
25 HICP, services Prices 1 2 3 ’90 ’85 ’90 ’87 ’92 ’87
26 Producer prices (total, excl. constr.) Prices 1 2 3 ’81 ’77 ’77 ’77 ’77 ’77
27 World commodity prices, total Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77
28 World commodity prices, raw mat. Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77
29 World commodity prices, food Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77
30 World commodity prices, metals Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77
31 World commodity prices, energy Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77
32 Oil price (1 month future Brent) Prices 1 2 3 ’77 ’77 ’77 ’77 ’77 ’77

Continued on next page. . .

http://sdw.ecb.europa.eu/
http://www.cpb.nl/en/world-trade-monitor
http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/datastream-macroeconomic-analysis.html
http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/datastream-macroeconomic-analysis.html
http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
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Table 3.6 – Continued

No. Variable Type Transformation Country
ln. dif. filter EA DE FR IT ES NL

33 M1 Finan. 1 1 3 ’77 ’80 ’77 ’80 ’80 ’80
34 M3 Finan. 1 1 3 ’77 ’77 ’77 ’77 ’77 ’77
35 Interest rate on mortgage Finan. 0 1 3 ’03 ’82 ’80 ’95 ’84 ’80
36 3 month interest rate euro Finan. 0 1 3 ’94 ’77 ’77 ’77 ’77 ’77
37 10 year government bond yield Finan. 0 1 3 ’77 ’94 ’77 ’77 ’80 ’77
40 Headline stock-index Finan. 1 1 3 ’77 ’77 ’77 ’77 ’87 ’77
41 Basic Material-index Finan. 1 1 3 ’77 ’77 ’77 ’77 ’87 ’77
42 Industrials stock-index Finan. 1 1 3 ’77 ’77 ’77 ’77 ’87 ’77
43 Consumer goods stock-index Finan. 1 1 3 ’77 ’77 ’77 ’77 ’87 ’77
44 Consumer services stock-index Finan. 1 1 3 ’77 ’77 ’77 ’87 ’77 ’77
45 Financials stock-index Finan. 1 1 3 ’77 ’77 ’77 ’77 ’87 ’77
46 Technology stock-index Finan. 1 1 3 ’77 ’88 ’77 ’86 ’99 ’85
47 Loans to the private sector Finan. 1 1 3 ’91 ’80 ’80 ’83 ’80 ’82
48 Exchange rate, US-Dollar per Euro Finan. 1 1 3 ’80 ’80 ’80 ’80 ’80 ’80
49 Real effective exchange rate (CPI) Finan. 1 1 3 ’77 ’77 ’77 ’77 ’77 ’77
50 Ind. conf. - headline Survey 0 1 3 ’85 ’85 ’85 ’85 ’87 ’85
51 Ind. conf. - order-book expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’87 ’85
52 Ind. conf. - stocks expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’87 ’85
53 Ind. conf. - production expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’87 ’85
54 Ind. conf. - employment expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’87 ’85
55 Cons. conf. - headline Survey 0 1 3 ’85 ’85 ’85 ’85 ’86 ’85
56 Cons. conf. - financial sit. Survey 0 1 3 ’85 ’85 ’85 ’85 ’86 ’85
57 Cons. conf. - general ec. sit. Survey 0 1 3 ’85 ’85 ’85 ’85 ’86 ’85
58 Cons. conf. - unemployment expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’86 ’85
59 Cons. conf. - major purchases expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’86 ’85
60 Constr. conf. - headline Survey 0 1 3 ’85 ’85 ’85 ’85 ’89 ’85
61 Constr. conf. - order book (evolution) Survey 0 1 3 ’85 ’85 ’85 ’85 ’89 ’85
62 Constr. conf. - employment expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’89 ’85
63 Retail conf. - headline Survey 0 1 3 ’85 ’85 ’85 ’85 ’88 ’86
64 Retail conf. - current Stocks (volume) Survey 0 1 3 ’85 ’85 ’85 ’85 ’88 ’86
65 Retail conf. - orders expectations Survey 0 1 3 ’85 ’85 ’85 ’85 ’88 ’86
66 Retail conf. - business expect. Survey 0 1 3 ’85 ’85 ’85 ’85 ’88 ’86
67 Retail conf. - employment expect. Survey 0 1 3 ’86 ’85 ’85 ’86 ’88 ’86
68 PMI United States Survey 0 1 3 ’77 ’77 ’77 ’77 ’77 ’77
69 PMI United Kingdom Survey 0 1 3 ’92 ’92 ’92 ’92 ’92 ’92
70 OECD composite leading ind. UK Other 0 1 3 ’77 ’77 ’77 ’77 ’77 ’77
71 OECD composite leading ind. US Other 0 1 3 ’77 ’77 ’77 ’77 ’77 ’77
72 OECD composite leading ind. Other 0 1 3 ’77 ’77 ’77 ’77 ’77 ’77
Notes: entries denote variable number, name, category, transformation and starting year for each country in
the dataset. Type: sales= quantitative information; prices= consumer and producer prices; finan.= financial
and monetary variables; survey= qualitative information; other= other. Ln.: 0= no logarithm; 1= logarithm.
Dif.: 1= first difference; 2= second difference. Filter: 3= change against the same month of the previous
month. Country: EA: euro area; DE: Germany; FR: France; IT: Italy; ES: Spain; NL: the Netherlands.

Quarterly GDP data for France, Italy, the Netherlands and Spain were taken from the

OECD’s main economic indicators database. The source of the German GDP data is

the Deutsche Bundesbank, who constructed GDP series using only GDP data for West

Germany pre 1991.I and the re-unified Germany from 1991.I onwards. A synthetic

http://stats.oecd.org/mei/default.asp?rev=1
 http://www.bundesbank.de/Navigation/EN/Home/home_node.html
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GDP series for the euro area was constructed using the database in the ECB’s area

wide model, that is supplemented with data from the OECD’s main economic indicator

database.

3.B State space representations

3.B.1 Mixed-frequency VAR

This section describes the state space representation of the mixed-frequency VAR de-

scribed in Section 3.2.3. Let p∗ = max(p, 3) and the transition equation of state vector

is as follows:
zi,t+1 − µzi
zi,t − µzi

...

zi,t−p∗+2 − µzi

 =

[
A1 A2 ... Ap 02×2(3−p∗)

I2(p∗−1) 02(p∗−1)×2

]
zi,t − µzi
zi,t−1 − µzi

...

zi,t−p∗+1 − µzi

+

[
Σ

1/2
ε

02(p∗−1)×2

]
vt,

(3.20)

where vt ∼ N(0, I2). The measurement equation is:

zQi,t − µzQi =

[
1
3

0 1
3

0 1
3

0 01×(p∗−6)

0 1 0 0 0 0 01×(p∗−6)

]
zi,t − µzi
zi,t−1 − µzi

...

zi,t−p∗+1 − µzi

 (3.21)

Since yQt is assigned to the third month of the quarter, the missing observations in

months 1 and 2 are replaced with a random draw from the standard normal distribution

N(0, 1), as in Mariano and Murasawa (2010). The measurement equation of month 1

and month 2 is modified in accordance with the missing observation treatment. For

months for which yQt is unavailable, the upper row of the matrix on the right hand side

of Eq. (3.21) is set equal to zero and white noise is added.

3.B.2 Dynamic factor model

The equations of the DFM, Eqs. (3.5)–(3.8), can be cast in state space form as illus-

trated below for the case of p = 1. The aggregation rule is implemented in a recursive

way in Eq. (3.23) by introducing a latent cumulator variable Ξ for which: Ξt = 0 for

t corresponding to the first month of the quarter and Ξt = 1 otherwise. The monthly

 http://www.eabcn.org/data/awm/index.htm
 http://www.eabcn.org/data/awm/index.htm
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state space representation is given by the following observation equation:[
xt
yQt

]
=

[
Λ 0 0

0 0 1

] ftyt
ŷQt

+

[
ξt
εQt

]
(3.22)

and the transition equation:

 Ir 0 0

−β′ 1 0

0 −1
3

1


ft+1

yt+1

ŷQt+1

 =

Ar1 0 0

0 0 0

0 0 Ξt+1


 ftyt
ŷQt

+

ζt+1

εt
0

 (3.23)

The application of the Kalman filter and smoother provides the minimum mean square

linear estimates (MMSLE) of the state vector αt = (ft, yt, ŷ
Q
t ) and enables the fore-

casting of quarterly GDP growth yQt and dealing efficiently with an unbalanced dataset

of missing observations at the beginning and at the end of the series by replacing the

missing data with optimal predictions. Moreover, when compared with using principal

components technique alone, the two-step estimator allows for dynamics of the common

factors and cross-sectional heteroskedasticity of the idiosyncratic component.

3.C Additional results

Tables 3.7 and 3.8 present a sensitivity analysis regarding the number of factors in

factor-augmented versions of the MIDAS-AR, MFVAR and QVAR models. The factors

are derived by applying simple principal component analysis in case of the F-VAR

model. For the mixed-frequency models the Kalman-filtered factors generated by the

dynamic factor model were used, averaged over all possible parameterizations. The

maximum number of factors is set at 6. Table 3.7 treats each factor as a separate

indicator and reports the RMSFE of a weighted average of factor-specific forecasts

relative to the RMSFE of the one-factor versions reported in Table 3.2. For all countries

except Spain the incorporation of additional factors tend to push up the RMSFE for

all horizons. For Spain, using two extra factors improves forecasting accuracy for the

F-MIDAS-AR model by 20%. For the F-MFVAR and F-VAR models the effect is fairly

small. Table 3.8 looks into the marginal value of the factors when they are sequentially

added to the encompassing test regression Eq. (3.19). This analysis leads to the same

conclusion.

Table 3.9 presents a sensitivity analysis regarding the three weighting schemes for

indicator-specific indicators used in the BEQ-AR, QVAR, MIDAS-AR and MFVAR

models. In addition, the table looks into the weighting scheme for the different varieties

of the dynamic factor model in terms of the number of static factors, dynamic factors

and lags (126 parametrizations in total). All weighting schemes produce similar results.
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Finally, Tables 3.10–3.13 are the counterparts of Tables 3.2 and 3.3 in the main text,

focusing on the forecasting accuracy and marginal value of models during the Great

Moderation (1996.I–2007.IV) and the financial crisis (2008.I–2011.III).
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Chapter 4

Improving model-based near-term
GDP forecasts by subjective
forecasts: a real-time exercise for
the G7 countries

This chapter investigates to what extent it is feasible to improve model-based near-term

GDP forecasts by combining them with judgmental (quarterly) forecasts by professional

analysts (Consensus forecasts) in a real-time setting. The analysis covers the G7 coun-

tries over the years 1999–2013. The weighted average and the linear combination are

considered. Incorporating subjective information delivers sizable gains in forecasting

ability of statistical models for all countries except Japan in 1999–2013, even when

subjective forecasts are somewhat dated. Accuracy gains are much more pronounced

in the volatile period after 2008 due to a marked improvement in predictive power of

Consensus forecasts. Since 2008, Consensus forecasts are superior at the moment of

publication for most countries. For some countries Consensus forecasts can be enhanced

by model-based forecasts in between the quarterly release dates of the Consensus survey,

as the latter embody more recent monthly information.1

KEYWORDS: Forecast combination; Encompassing test; Nowcasting; Factor models;

Judgment.

1 This chapter is co-authored by Jos Jansen. This chapter is under review at the Oxford Bulletin
of Economics and Statistics. Comments and suggestion by Marta Bańbura, Peter van Els, Jakob
de Haan, Job Swank, seminar and conference participants at De Nederlandsche Bank, the European
Central Bank and the International Symposium on Forecasting (2015, Riverside) are gratefully ac-
knowledged. An early version of this chapter was circulated as DNB Working Paper 507 under the
title “Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise
for the G7 countries”.
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4.1 Introduction

Policy makers and economic agents have to make decisions in real-time on the basis of

incomplete and inaccurate information on current economic conditions. For example,

data on real gross domestic product (GDP), which is the broadest measure of aggregate

economic activity, are released on a quarterly basis with a substantial time lag (six

weeks in many advanced countries); they are also subject to revisions. However, a

wealth of statistical information that is directly and indirectly related to economic

activity is nowadays available from public and private sources. Policy makers, firms

and financial market participants may exploit this vast body of statistical information

to form expectations on the current state of the economy and its near-term development.

This requires solving the practical problem of handling a large-scale information set of

potentially hundreds of time series that are observed at different frequencies and with

different publication lags (the so-called ragged edge problem). The recent nowcasting

literature has developed several statistical methodologies for generating near-term GDP

forecasts based on large mixed-frequency datasets with ragged edges. Examples are

bridge models, factor models, mixed-data sampling regression models (MIDAS), mixed-

frequency vector autoregressive (MFVAR) models and Bayesian VARs.2

Apart from model-based predictions, policy makers and economic agents may also

take advantage of published forecasts made by professional analysts. From a practical

point of view, such forecasts are cheap and easy to use. Currently, several surveys on

the economic outlook are available on a regular basis. The Federal Reserve Bank of

Philadelphia and the European Central Bank (ECB) both maintain a regular Survey

of Professional Forecasters. Moreover, the survey firm Consensus Economics publishes

a well-known compilation of macroeconomic forecasts by professional forecasters for

many countries. Model-based forecasts are the result of purely mechanical recipes

using statistical data and do not incorporate subjective elements. By contrast, forecasts

by professional analysts reflect much more information than statistical data, which are

inevitably limited. For example, Meyler and Rubene (2009) report that the participants

of the ECB Survey of Professional Forecasters consider forty percent of their short-

term GDP forecasts to be judgment-based. Based on in-sample encompassing tests in

a pseudo real-time set-up, Chapter 3 of this thesis finds that subjective predictions by

private sector analysts often embody valuable information that sophisticated mechanical

forecasting procedures fail to pick up. Liebermann (2014) presents a similar result for

the US in the period 2000–2010 in a real-time setting.

This empirical evidence suggests that publicly available subjective forecasts offer

the potential of enhancing real-time model-based GDP forecasts, and thus a better

2 See among others Baffigi et al. (2004), Stock and Watson (2011), Kuzin et al. (2011), Ghysels et al.
(2007), Foroni and Marcellino (2014), Bańbura et al. (2010), Carriero et al. (2015b) and Chapter 3 of
this thesis.
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assessment of the current state of the economy. The main purpose of this chapter

is to investigate whether predictions by analysts are actually able to improve GDP

forecasts generated by purely statistical procedures in real-time. The reverse ques-

tion, whether model-based forecasts can be used to enhance subjective forecasts, is

also addressed. The proposed procedure takes into account the information availability

constraints facing practitioners when running forecasting models and forming expecta-

tions. Predictions produced by a dynamic factor model are used as a benchmark. The

quarterly forecasts published by Consensus Economics are employed as the measure of

judgmental forecasts. The analysis covers the G7 countries in the period 1999–2013,

contrasting the experience in the volatile post-crisis period of 2008–2013 with that in

the more tranquil period of 1999–2007.

The remainder of this chapter is structured as follows. Section 4.2 describes the

real-time dataset and the Consensus forecasts, the benchmark forecasting model and

the way predictions are generated in real-time. Section 4.3 presents the empirical results

and Section 4.4 concludes.

4.2 Dataset, benchmark model and forecast design

4.2.1 Dataset

Data on real GDP and monthly indicators are released with different publication lags

and are possibly subject to revisions at a later stage, which at least for GDP may be

sizable. Many papers on nowcasting employ a pseudo real-time design, which takes

publication delays into account and applies recursive estimation, but disregards data

revisions of GDP and monthly indicators, such as industrial production. Such an ap-

proach is unsuitable for two reasons. First, the aim is to investigate whether it is in

practice, hence in real-time, possible to enhance mechanical forecasts by judgmental

forecasts. Second, as noted by Croushore (2011), data revisions could affect the re-

sults of forecast evaluations and comparisons of different (statistical) approaches. This

criticism is even more relevant for the analysis in this chapter, which involves compar-

ing model-based forecasts and forecasts by professional analysts. The expectations of

analysts at a certain point in time necessarily reflect the then available information,

including inaccurate initial estimates of GDP’s recent past and that of key monthly in-

dicators. This puts them at a disadvantage vis-à-vis statistical approaches in a pseudo

real-time setting, where the latter can take data revisions on board for model esti-

mation and projections. Therefore, in this chapter, real-time datasets were compiled.

This means that the model-based forecasts used in the forecast evaluation exercise only

incorporate information that was available at the time of forecasting.3

3 Studies using real-time data include Schumacher and Breitung (2008), Camacho and Perez-Quiros
(2010), Lahiri and Monokroussos (2013) and Liebermann (2014).
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The real-time monthly datasets that have been compiled consist of similar variables

across countries and cover the broad range of information that is readily available to

economic agents. The variables were selected in the spirit of Bańbura et al. (2013),

who focus on “headline” macroeconomic variables that financial market participants

and the media primarily pay attention to. Bańbura et al. (2011) and Bańbura and

Modugno (2014) provide evidence that the marginal impact of disaggregated data on

forecasting accuracy is very small. Accordingly, the selected indicators refer to the

aggregate level. Possibly available disaggregated information by sector, subcategory,

region, etc. is not included. The dataset for a country consists of three parts. The

first part concerns information about the domestic economy, the second part refers to

variables related to global economic activity, and the third part contains key data on

the two most important trading partners of the respective countries in the dataset.4

The indicator variables that refer to the domestic economy fall into four categories.

The first category is hard, quantitative information on production and expenditures,

such as industrial production, car sales, retail sales, exports, imports and unemploy-

ment. The second category refers to consumer and producer prices. The third category

contains financial variables, both quantities (monetary aggregates) and prices (interest

rates, stock prices and exchange rates). The latter category determines the financing

conditions for firms and consumers. Moreover, financial market prices partly reflect

financial market expectations on output developments in the near future. The fourth

category is soft, qualitative information on expectations derived from surveys among

consumers, retailers and firms. Also included is the composite leading indicator com-

piled by the OECD. Following Golinelli and Parigi (2014), the global variables, which

are common to all countries, include oil and commodity prices, semiconductor sales,

the Baltic freight index (BFI), the standard and poors exchange volatility index (VIX)

and world trade. The key data on a country’s two most important trading partners

comprise three variables: imports, industrial production and the composite leading indi-

cator compiled by the OECD. Finally, for all European countries four closely-watched

confidence indices from Germany (Ifo), France (INSEE), Italy (ISEA) and Belgium

(BNB) were also included.

The statistical monthly information set reflects real-time public knowledge in the

middle of the second week of the month. The number of monthly indicators varies from

around 30 for Japan and Canada to around 36 for the other countries. All monthly

indicator series start in January 1985, while the quarterly GDP series start in 1985.I.

Table 4.7 in Appendix 4.A provides details on the exact composition of each country’s

4 The two most important trading partners were determined on the basis of the OECD trade in
value-added database, which focuses on the value added contribution of (bilateral) exports. The most
important trading partners are the US and UK for Canada, the US and France for Germany, the US
and Germany for France, France and Germany for Italy, the US and China for Japan, the US and
Germany for the UK, and Canada and Mexico for the US.
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statistical dataset and the data sources. Monthly data are seasonally (and calendar

effects) adjusted at the source, except for prices and financial variables. All monthly

series are made stationary by taking three-month differences, log-differences (in case

of trending data, such as industrial production) or double log-differences (in case of

prices). Finally, each variable is standardized by subtracting the mean and dividing by

the standard deviation. This normalization is standard practice in order to avoid the

overweighting of series with large-variances series in the extraction of common factors.

The subjective quarterly GDP forecasts by professional analysts were collected from

paper copies of the monthly publication Consensus forecasts, published by the private

sector firm Consensus Economics. Consensus forecasts offers a survey of private sector

analysts’ expectations for a set of key macroeconomic variables for a broad range of

countries. Consensus forecasts is best known for its expectations on annual GDP growth

for the current and next year, which have been analyzed in several papers (e.g. Ager

et al., 2009; Batchelor, 2001; Loungani and Rodriguez, 2008; Lahiri et al., 2006). Once

a quarter, this publication also provides averaged forecasts for quarterly GDP over a

horizon of six quarters, starting with the nearest quarter for which no officially released

figure is available. The number of respondents varies somewhat over time and across

countries.5 Fresh quarterly Consensus forecasts become available in the second week of

the last month of the quarter. The survey date (deadline for respondents) is typically

the second Monday of the third month of a quarter; publication is usually 3 days later

on Thursday. The timing of the survey is therefore in line with the timing of the

monthly data vintages that were collected. For the information set this means that

Consensus forecasts are not updated in the first and second months in a quarter, while

monthly indicators are updated every month. Moreover, at the time analysts form their

expectations they have official information on GDP growth in the preceding quarter.

Quarterly Consensus forecasts for the G7 countries are available from the early 1990s

onwards.

4.2.2 Benchmark model: dynamic factor model

The model used to generate model-based forecasts is a dynamic factor model (DFM).

Dynamic factor models summarize the information of the dataset in a limited number

of factors, whose dynamic behavior is specified as a vector-autoregressive process. A

key feature of this approach is the use of the Kalman filter, which allows for an efficient

5 The average number of participants is about 15 for Canada and Italy, about 20 for France and
Japan and about 28 for Germany, the UK and the US. Consensus forecasts publishes the simple average
of the forecasts by all respondents, but no individual forecasts. This is not a serious limitation, as
Genre et al. (2013) show that the potential gains of combining expert forecasts with alternative schemes
are very limited. Moreover, a potential advantage is that analysts may be more likely to submit their
true expectations, as this procedure guarantees their anonymity, reducing motives for possible strategic
behaviour (Lamont, 2002; Laster et al., 1999).
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handling of the unbalancedness of the dataset and the different frequencies of the data.

The Kalman filter replaces any missing monthly indicator observations with optimal

predictions and also generates estimates of unobserved monthly real GDP subject to a

temporal aggregation constraint for the quarterly observation. One of the main con-

clusions of the comparative study in Chapter 3 of this thesis was that the DFM is the

best statistical procedure overall, in particular for nowcasting and backcasting. Thus,

it is used as the benchmark statistical model in this chapter. DFMs have been applied

to many countries, generally delivering relatively accurate macroeconomic forecasts.6

In this chapter the DFM proposed by Bańbura and Rünstler (2011) is analyzed.

The model is used by several central banks within the euro area. The first equation of

the model is:

xm = Λfm + ξm, ξm ∼ N(0,Σξ) (4.1)

which relates the n monthly indicators xm = (x1,m, . . . , xn,m)′ to r monthly static factors

fm = (f1,m, . . . , fr,m)′ via an n × r matrix of factor loadings Λ and an idiosyncratic

component ξm = (ξ1,m, . . . , ξn,m)′, where r << n. m is a monthly time index. As

explained above, the monthly indicators xi,m are normalized three-month growth rates

or differences. The DFM assumes that the idiosyncratic components are a multivariate

white noise process, hence the covariance matrix Σξ is diagonal. Furthermore, the DFM

assumes that the factors follow a vector-autoregressive process of order p:

fm =

p∑
s=1

Asfm−s + ζm, ζm ∼ (0,Σζ) (4.2)

where A is a square r × r matrix. Moreover, the covariance matrix of the VAR (Σζ) is

driven by a q dimensional standardized white noise process ηm:

ζm = Bηm, ηm ∼ N(0, Iq) (4.3)

where B is a r×q matrix and q ≤ r. The final equation is a forecasting equation linking

the factors to mean-adjusted real GDP growth:

ym = β′fm + εm, εm ∼ N(0, σ2
ε) (4.4)

where ym denotes the (unobserved) three-month growth rate of monthly real GDP,

i.e. the growth rate vis-à-vis the same month of the previous quarter. Quarterly real

GDP growth in quarter t, yQt , is assigned to month 3t on the monthly time scale.

6 Examples are Giannone et al. (2008) and Liebermann (2014) for the United States; Bańbura et al.
(2011), Camacho and Perez-Quiros (2010), Rünstler et al. (2009) and Bańbura and Modugno (2014)
for the euro area; Schumacher and Breitung (2008) for Germany; Schneider and Spitzer (2004) for
Austria; Cheung and Demers (2007) for Canada; Camacho and Perez-Quiros (2011) for Spain and den
Reijer (2013) and de Winter (2011) for the Netherlands.
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The relation between the quarterly and monthly GDP growth rates is given by yQt =
1
3
(y3t + y3t−1 + y3t−2).

The model is estimated in four steps. In the first step, the factors loadings Λ and the

estimated static factors f̂m are obtained. In the second step, the coefficient matrices As
in Eq. (4.2) and β in Eq. (4.4) are estimated by OLS using f̂m. In the third step, ζm and

its covariance matrix Σζ are calculated, and an estimate of the matrix B is obtained by

principal components analysis. In the final step, the model is cast in state space form

and uses the Kalman filter and smoother to re-estimate the estimated factors (f̂m) and

monthly GDP growth.7 Forecasts of quarterly GDP growth are calculated by applying

Eq. (4.4) to forecasts of monthly factors generated by Eq. (4.2), and then aggregating

to quarterly values.

To estimate the model, the number of static and dynamic common factors need to

be specified, denoted by r and q, respectively. The largest possible value of r is set at 6,

based on the scree test of Cattell (1966). Moreover, q ≤ r by definition. In view of po-

tential misspecification and instabilities described in Chapter 3, the presented outcomes

are based on the (unweighted) average of forecasts over all possible parameterizations

in terms of the number of static and dynamic factors and the number of lags p in Eq.

(4.2), with p ≤ 2. Thus, the total number of model specifications is p(r + 1)r/2 = 42.

This strategy avoids any hindsight bias.8

4.2.3 Forecast design

The forecast design entails the construction of six consecutive forecasts for real GDP

growth for each quarter in the period 1999.I–2013.IV. Table 4.1 explains the timing

of the forecasting exercise, taking the forecast for a second quarter as an example.

The first forecast is made in mid-March, just after the release of a new Consensus

survey. Subsequently, a monthly forecast is produced for the next five months. The

last forecast is made in mid-August. Following the conventional terminology, forecasts

(F) refer to predictions made prior to the start of the quarter of interest, nowcasts (N)

refer to current quarter forecasts and backcasts (B) refer to forecasts for the preceding

quarter, as long as official (target) GDP figures are not yet available. These forecasts

(or horizons) are referred to as F3, N1, N2, N3, B1 and B2, respectively. A Consensus

survey consists of new F3 and N3 forecasts. There is no genuine Consensus backcast,

since analysts have official information on GDP growth in the preceding quarter when

7 The state space form of the DFM is outlined in Appendix 4.B. See Bańbura and Rünstler (2011)
and Stock and Watson (2011) for a more detailed description of the DFM and the estimation procedure.
See Durbin and Koopman (2012) for a comprehensive treatment of state space models and the use of
the Kalman filter and smoother.

8 A different approach is to choose the number of factors r and q on the basis of in-sample criteria,
as described in Bai and Ng (2002, 2007). Chapter 3 of this thesis and Bańbura and Rünstler (2011)
report that these criteria tend to indicate a relatively large number of factors, leading to volatile and
less accurate forecasts.
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Table 4.1: Timing of forecasting exercise for second quarter GDP growth

Nr. Forecast type Month DFM Consensus
F3 Forecast 3 March new
N1 Nowcast 1 April 1 month old
N2 2 May 2 months old
N3 3 June new
B1 Backcast 1 July 1 month old
B2 2 August 2 months old

they form their expectations. In the first and second months of a quarter the (non-

updated) forecast dating from the third month of the previous quarter are used as

Consensus forecast. For example, the Consensus backcasts made for quarter t are equal

to the (non-updated) Consensus nowcast published in the last month of quarter t.

Forecasts further ahead than one quarter are not analyzed, as earlier research shows

that the forecastability of GDP growth is very low beyond this horizon. This holds

for statistical models as well as professional forecasters; see for instance Stark (2010)

and Chapter 3 of this thesis. Estimation of the DFM and the subsequent calculation

of forecasts happens recursively on the basis of the most recent 15 years of data on

monthly indicators and quarterly real GDP. The dataset is real-time; all data used for

estimation and prediction were actually available at the time of estimation.

An important issue in a real-time forecasting exercise is how to measure the realized

outcome, “actual GDP”. The latest-available GDP data represent the current state-

of-thinking about the “true” history of real GDP. However, these data partly reflect

benchmark revisions, which both analysts and forecasting models cannot foresee. Using

the latest-available data thus introduces noise in a comparison of forecasting perfor-

mance between professional forecasters and mechanical statistical procedures, making

this data concept unsuitable for the analysis in this chapter. Statistical agencies publish

a sequence of preliminary GDP estimates, with the first release (flash estimate) receiv-

ing by far the most attention in the media. It is therefore reasonable to assume that

analysts are primarily focused on predicting the flash or early estimates rather than a

number that will be released far into the future. The real-time measure of actual GDP

used in this chapter, is determined by the latest officially released information for the

preceding quarter that analysts know at the moment when they formulate predictions

for the current and subsequent quarters. For five countries (and the UK before 2008)

this is the flash release, which is published six weeks after the reference quarter has

ended. For the US and the UK (as from 2008) it is the first revision to the flash, as in

these cases the flash is already released four weeks after the quarter has ended. This

choice implies the analysis presents two backcasts for all countries.9

9 Section 4.3.1 discusses results for the DFM using the most recent GDP vintage as “actual GDP”
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4.3 Empirical results

4.3.1 Forecasting performance dynamic factor model and sub-
jective forecasts

Table 4.2 presents data on the forecasting performance of the DFM for the full sample

period 1999.I–2013.IV, the relatively tranquil pre-crisis period 1999.I–2007.IV and the

volatile post-crisis period 2008.I–2013.IV. Throughout this chapter the empirical results

will be presented in this way on account of the large difference in the level of volatility

before and after 2008. Forecasting performance is measured by the root mean squared

forecast error (RMSFE). As usual in the literature, the random walk (RW) with drift

is used as a purely statistical benchmark model. The first column of the table reports

the RMSFE of the random walk to gauge the overall level of volatility.10 The other

columns report the DFM’s RMSFE relative to that of the RW benchmark in order to

improve the comparability of the results across countries and horizons. Entries in bold

indicate that the RMSFE differs by more than 10% from the RW’s RMSFE. The 10 per

cent threshold is meant as a rough informal assessment of the economic importance of

the gain in forecasting accuracy from using auxiliary monthly information. In addition,

Diebold and Mariano (1995) tests are presented as formal tests of statistical significance

at the conventional levels (denoted by asterisks).11 Non-starred, normal-type entries

thus indicate models that are equal in terms of forecasting accuracy, both statistically

and economically. In this chapter, the same two-way approach to statistical/economic

significance is featured in all tables that present RMSFEs.

Table 4.2 demonstrates that incorporating monthly information pays off in terms of

forecasting accuracy. In the period 1999–2013, virtually all relative RMSFEs are smaller

than one and tend to decline if the horizon shortens and more monthly information

has been absorbed. However, there is a marked contrast between the pre-crisis and

post-crisis periods. The scope for exploiting monthly information for prediction is

significantly smaller in the tranquil pre-crisis period, when real GDP growth was more

predictable in general, as indicated by the much lower RMSFE of the RW benchmark

compared to that of the post-crisis period. The DFM performs, on average, around

11% better than the RW for nowcasts and around 18% for backcasts before 2008; after

as a sensitivity check. Besides, the effect of conducting a pseudo real-time exercise rather than a
real-time exercise is discussed.

10 To save space RW’s RMSFE is only reported for the third nowcast (N3), as it hardly varies with
the horizon. The drift parameter is recursively estimated in real-time on the most recent 15 years of
GDP data. Results for both the DFM and RW model were also calculated for an estimation windows
of 10 years and a recursively expanding window, but the results where qualitatively the same.

11 The Diebold-Mariano tests broadly paints the same picture as the informal 10% improvement
criterion, although the two do not always match. In some cases, large differences in accuracy are not
statistically significant, whilst the reverse also happens. This suggest that statistical significance and
economic importance are different concepts. Moreover, the power of the Diebold-Mariano tests may
be low due to the small number of observations.
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Table 4.2: Forecasting performance dynamic factor model, 1999.I–2013.IV

RW B2 B1 N3 N2 N1 F3

RMSFE Relative RMSFE DFM vs. Random Walk

Full sample 1999.I–2013.IV
Canada 0.57 0.61∗∗ 0.66∗∗ 0.69∗ 0.76∗ 0.81∗ 0.86
France 0.46 0.67∗ 0.77∗ 0.81∗ 0.85 0.87 0.93
Germany 0.82 0.72∗ 0.76∗ 0.84 0.88 0.88∗ 0.92∗

Italy 0.64 0.62∗ 0.71∗ 0.76∗ 0.81∗ 0.80∗ 0.88∗

Japan 1.08 0.67∗ 0.72∗ 0.78∗ 0.93 1.04 1.06
UK 0.63 0.76∗ 0.78∗ 0.83∗ 0.90 0.92 0.91∗

US 0.61 0.57∗ 0.62∗ 0.70∗ 0.80 0.86 0.89

Pre-crisis period 1999.I–2007.IV
Canada 0.39 0.69∗∗∗ 0.73∗∗∗ 0.82∗∗ 0.94 0.92∗∗ 0.94
France 0.33 0.79∗∗ 0.88∗ 0.83∗∗∗ 0.80∗∗∗ 0.83∗∗∗ 0.95
Germany 0.42 0.83 0.87 0.99 0.97 0.90 0.87∗∗

Italy 0.39 0.91∗ 0.95 0.97 0.97 0.92∗ 0.95
Japan 0.86 0.92 0.94 0.94 0.97 0.97 1.01
UK 0.25 0.77∗∗ 0.76∗∗ 0.79∗ 0.78∗ 0.66∗∗ 0.67∗∗∗

US 0.49 0.71∗∗∗ 0.75∗∗∗ 0.82∗∗∗ 0.91∗ 0.96 0.98

Post-crisis period 2008.I–2013.IV
Canada 0.77 0.57∗ 0.62∗ 0.63∗ 0.68∗ 0.76 0.82
France 0.60 0.62∗ 0.72 0.80 0.87 0.89 0.93
Germany 1.19 0.70∗ 0.73∗ 0.81 0.86 0.88 0.92
Italy 0.89 0.50∗ 0.63∗ 0.70∗ 0.75∗ 0.76∗ 0.86∗

Japan 1.35 0.45∗ 0.53∗ 0.67 0.90 1.08 1.09∗

UK 0.94 0.76∗ 0.78∗ 0.84 0.91 0.94 0.93
US 0.75 0.46 0.51 0.61 0.72 0.78 0.83
Notes: entries denote the RMSFE for a Random Walk for the third nowcast (in italics);
for all other cases they refer to the RMSFE relative to the RMSFE of a Random Walk.
Entries in bold denote a deviation by more than ± 10% from 1. ∗, ∗∗ or ∗∗∗ denotes
the Diebold-Mariano test is significant at the 10%, 5% or 1% level, respectively. The
alternative hypothesis of the Diebold-Mariano test is MSFE> 1 or MSFE< 1, depending
on whether the RMSFE is greater or smaller than 1, respectively. DFM: dynamic factor
model.



4.3. EMPIRICAL RESULTS 79

2008 the gains are twice as large: 20% and 39%, respectively. For Italy and Japan, the

accuracy gains vis-à-vis the random walk before 2008, are less than 10% for all horizons.

Moreover, the DFM’s predictive ability before the crisis develops unevenly over the six

months of the forecasting exercise for several countries, particularly for Germany and

the UK. By contrast, the DFM delivers improvements in forecasting accuracy that are

large and steadily increasing with the forecast horizon for all countries in the volatile

post-crisis period 2008–2013. The DFM thus helps forecasters to compensate for the

generalized deterioration in predictability that characterize volatile times, in particular

for nowcasting and backcasting. The evidence also suggests that the DFM’s relative

strength is to exploit information pertaining to the quarter under consideration and to

improve the assessment of the current state of the economy. The findings in Table 4.2

are broadly consistent with the empirical literature on DFMs referred to in Section 4.2.2.

Table 4.8 in Appendix 4.C, presents the impact of two features of the forecasting

design in the main text, namely (i) its real-time nature; and (ii) the use of initial esti-

mates as the measure of target GDP. The left-hand side of the table reports the DFM’s

forecasting performance obtained in the corresponding pseudo real-time set-up, which

also implies that prediction errors have been computed using the last vintage for GDP.

A comparison of the RMSFEs of the random walk model reveals that forecasting errors

tend to be larger for the pseudo real-time design on account of the extra noise gener-

ated by the data revisions. At the same time, the DFM’s relative RMSFEs tend to

decline more steeply in the pseudo real-time procedure. This phenomenon is especially

pronounced for nowcasts in the pre-crisis period. A pseudo real-time set-up may thus

overestimate the potential gains from exploiting monthly disaggregated information

when nowcasting GDP, especially in stable environments. The right-hand side of Ta-

ble 4.8 presents the outcomes for the real-time procedure, when RMSFEs are calculated

using the final GDP vintage as measure of actual GDP. The first column of this side of

Table 4.8 reports the RMSFE of the first estimate as a predictor of the final vintage.

These results suggest that revisions are a substantial source of unpredictability as the

RMSFE of the first estimate varies from 0.2 and 0.4 for six countries, while for Japan

it is even larger. Moreover, using the final GDP vintage as the target rather than the

first estimate tends to lead to a more optimistic view of the potential gains from using

monthly information before the crisis, but this does not hold after the crisis.

Turning to the Consensus forecasts, panel A of Table 4.3 presents the RMSFE of

the Consensus forecasts, relative to the RW benchmark model. Note, that only the

entries for the third one-quarter ahead forecast and the third nowcast (columns F3

and N3) are based on a fresh Consensus forecast. The other entries refer to Consensus

forecasts that are one or two months old. In the period 1999–2013, Consensus forecasts

outperform the RW model for all countries and all horizons, often by large margins,

with the exception of the F3 forecasts in the Japanese case. Moreover, Consensus



80 CHAPTER 4.

forecast display clear learning behaviour: the relative RMSFEs of consecutive fresh

quarterly Consensus forecasts (N3 versus F3) decline steeply in most cases, varying

from 12% for the UK to 31% for Canada.12 Again, the forecasting performance differs

markedly between the pre-crisis and the post-crisis periods. Before 2008, the Consensus

F3 forecast is mostly unable to beat the random walk. It does 10% better in the case

of the UK, but does 18% and 9% worse in the cases of Canada and Japan, respectively.

The Consensus third nowcast (column N3) has a better record, reducing forecasting

inaccuracy markedly for most countries compared to the RW. After 2008, and similar

to the experience with the DFM, Consensus forecasts perform much stronger for almost

all countries and all horizons. The RMSFE of the third nowcast is 29% to 65% smaller

than the RW RMSFE. The most remarkable case concerns Canada: Consensus forecasts

predict badly before 2008, but very well after 2008 (and especially during the crisis

episode in 2008–2009). Comparing the 1999–2007 and 2008–2013 episodes, Consensus

forecasts show only modest and uneven improvements for Germany and Japan.

To gain further insights into the relative strengths of strictly model-based and judg-

mental predictions, panel B of Table 4.3 presents the RMSFE of the Consensus forecasts

relative to that of the DFM. Newly released Consensus nowcasts (column N3) do better

than the DFM for almost all countries in the evaluation period 1999–2013, and often

by a significant margin. The advantage is much less pronounced for fresh one quarter

ahead forecasts (column F3), which clearly beat the DFM for only the UK and the

US. Looking at the results across subperiods, the relatively positive score of the Con-

sensus F3 and N3 forecasts is largely driven by their performance after the financial

crisis. In the stable pre-crisis period, Consensus forecasts basically do worse or at most

marginally better than the DFM across the board; the N3 nowcast for Germany is the

one clear favourable exception. However, new Consensus forecasts (N3 and F3) have

the edge over the DFM after the crisis in all cases but Japan. The relative RMSFE

versus the DFM generally declines between horizons F3 and N3, which suggests that

the value added of subjective insights may be greater when analysts know at least some

hard and soft data on the quarter of interest. In between the quarterly release dates,

the performance of Consensus forecasts versus DFM forecasts deteriorates, as the latter

are updated. This catching-up by the DFM is stronger after 2008. However, at the B1

horizon, a two-month old Consensus nowcast still outperforms the DFM by more than

10% for the UK over the sample period, while this holds for Canada and Germany in

one of the subperiods.

12 The generally small changes in relative RMSFEs in the months without a Consensus survey
(columns B2, B1, N2 and N1) are due to revisions of GDP data, which may change the RW forecasts,
and the fact that the Consensus survey was released one month earlier than normal in 2001.IV.
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Whether judgmental forecasts by analysts embody valuable additional information can

be more formally investigated by running encompassing tests of the Consensus forecasts

versus the DFM forecasts. Even if Consensus forecasts are a poor predictor on their

own, they may still possess a positive marginal value provided they are able to pick up

specific useful information. In that case taking a combination of the Consensus and

DFM forecasts may improve forecasting accuracy. In the empirical literature encom-

passing tests may take on slightly different forms. In this chapter two versions of the

encompassing test are employed, namely a pure weighted average of both forecasts or

an unconstrained linear combination. The respective test regressions are:

yQt+h = βŷQCF(t+h|t) + (1− β)ŷQDFM(t+h|t) + εt (4.5)

yQt+h = α + βŷQCF(t+h|t) + γŷQDFM(t+h|t) + εt (4.6)

where yQt+h is GDP growth in quarter t+h, ŷQCF(t+h|t) and ŷQDFM(t+h|t) are the predictions

for quarter t+ h on time t by the Consensus survey and the DFM, respectively. These

equations can be seen as extreme forms of a linear combination. Eq. (4.6) is fully

unconstrained, while Eq. (4.5) is the most constrained version.13 Eq. (4.5) goes back

to Bates and Granger (1969) and has been applied by Stekler (1991) and the previous

chapter, amongst others. Eq. (4.6) was proposed by Granger and Ramanathan (1984)

and has been used by Fair and Shiller (1990), Liebermann (2014) and Hubert (2014).

The main advantage of Eq. (4.6) is its ability to neutralize any biases in the underlying

forecasts; negative estimates of β or γ are theoretically possible (Timmermann, 2006).

Its disadvantage is that it may deliver imprecise estimates in small samples if the

underlying forecasts are (highly) correlated. By construction, Eq. (4.6) will obtain

a better fit of observed GDP than Eq. (4.5) for a given estimation sample. Consensus

forecasts contain additional information in relation to the DFM if β > 0 in Eq. (4.5)

or β 6= 0 in Eq. (4.6). Note that the encompassing test is an in-sample backward-

looking test, which is just meant to signal the potential of benefitting from combining

model-based forecasts with judgmental forecasts.

Table 4.4 reports the estimated weight of Consensus forecasts in Eq. (4.5).14 β and

its standard error are estimated on the interval [0,1] by Maximum Likelihood (ML).

Moreover, Table 4.4 presents asymptotically valid tests of the hypotheses β = 0 and

β = 1.

13 Eq. (4.5) imposes the following restrictions on Eq. (4.6): α = 0, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1 and
β + γ = 1. Empirical studies have also applied intermediate forms of the encompassing test. For
example, Rünstler et al. (2009) impose β + γ = 1, but neither 0 ≤ β ≤ 1 nor 0 ≤ γ ≤ 1. There is a
large literature on the combination of forecasts; see Timmermann (2006) for an overview.

14 Table 4.11 in Appendix 4.C reports the results of Eq. (4.6). These results display the same
pattern as the ones for Eq. (4.5). As expected, in some cases, the estimates of β or γ are larger than
one or less than zero.
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Table 4.4: Encompassing test: weighted average of DFM and Consensus forecasts, 1999.I–
2013.IV

B2 B1 N3 N2 N1 F3

Weight(β) of Consensus forecast

Full sample 1999.I–2013.IV
Canada 0.66∗ 0.74∗ 0.84∗ 0.29∗ 0.45∗ 0.63∗

France 0.48∗ 0.64∗ 0.70∗ 0.52∗ 0.52∗ 0.65∗

Germany 0.67∗ 0.77∗ 1.00∗ 0.48∗ 0.42∗ 0.59∗

Italy 0.35∗ 0.56∗ 0.72∗ 0.49∗ 0.35∗ 0.65∗

Japan 0.18 0.26 0.39∗ 0.35∗ 0.68∗ 0.81∗

UK 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗

US 0.51∗ 0.72∗ 1.00∗ 0.42∗ 0.73∗ 0.89∗

Pre-crisis period 1999.I–2007.IV
Canada 0.00 0.09 0.28 0.02 0.06 0.01
France 0.35∗ 0.52∗ 0.43∗ 0.26 0.19 0.35
Germany 0.82∗ 0.80∗ 0.95∗ 0.55∗ 0.25 0.12
Italy 0.46∗ 0.56 0.63∗ 0.45 0.00 0.00
Japan 0.41∗ 0.45 0.43∗ 0.55∗ 0.52∗ 0.61∗

UK 0.47∗ 0.46∗ 0.49∗ 0.44∗ 0.27∗ 0.23∗

US 0.32 0.67 1.00∗ 0.00 0.52 0.72

Post-crisis period 2008.I–2013.IV
Canada 1.00∗ 1.00∗ 1.00∗ 0.67∗ 0.95∗ 1.00∗

France 0.55∗ 0.70∗ 0.82∗ 0.61∗ 0.65∗ 0.76∗

Germany 0.59 0.76 1.00∗ 0.44 0.49 0.78
Italy 0.32∗ 0.56∗ 0.76∗ 0.50∗ 0.52 0.89∗

Japan 0.00 0.07 0.32 0.18 0.82∗ 1.00∗

UK 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗ 1.00∗

US 0.58∗ 0.73∗ 0.97∗ 0.59∗ 0.78∗ 0.92∗

Notes: entries refer to the Maximum Likelihood estimate of the
weight of the Consensus forecast β on the interval [0, 1]. The
estimated weight of the forecast of the dynamic factor model is
1− β. ∗ denotes the estimated weight in the encompassing test is
statistically different from zero at the 5% significance level. Entries
in bold denote that the estimated weight is statistically different
from 1 at the 5% significance level.
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The main message of Table 4.4 is that both Consensus forecasts and DFM forecasts

contain useful information. The point estimates lie mostly between 0 and 1; corner

solutions are rare, except for Canada and the UK. The relative value added of Consensus

forecasts differs across time periods. In the pre-crisis period the estimated weight of

Consensus forecasts is typically lower than 0.5, and often not statistically significant for

F3 forecasts and early nowcasts. After the crisis, they are often greater than 0.5 for all

horizons. For the UK the estimated weight of the Consensus forecasts even equals one

for all horizons, suggesting that DFM forecasts do not possess any extra information

compared to forecasts by professional analysts; the same holds for the backcasts for

Canada. For Japan, the added value of the Consensus nowcast is low. Consensus

forecasts that are one or two months old often still offer the potential of improving

DFM forecasts, even though the latter incorporate more recent monthly information.

This finding is yet another piece of evidence that analysts’ forecasts contain information

that is fundamentally different from the information that statistical models are able to

pick up.

4.3.2 Enhancing model-based forecasts in real-time

The analysis in the previous section suggests that there is ample room for improving

mechanical model-based nowcasts and backcasts, by combining them with judgmental

predictions by professional forecasters. This section investigates what benefits can be

realistically expected from such a strategy in practice, by simulating the forecasting

procedure on the basis of real-time data. The procedure consists of two steps. In the

first step, the DFM forecasts are obtained in real-time, the second step determines

the combination formula and computes the forecast combination. Both the weighted

average and the linear combination are used as combination schemes, as it is difficult

to choose between them on theoretical or methodological grounds (see e.g. Clemen,

1986). Although Eq. (4.6) is able to remove the effect of possible biases in the DFM

and Consensus forecasts on the combined forecast, the simpler Eq. (4.5) may still

prove, despite possible bias, to be a more efficient combination rule. The combination

schemes Eq. (4.5) and Eq. (4.6) are re-estimated every month according to the schedule

in Table 4.1.15 This requires a choice on the length of the estimation period. As it is

difficult to motivate a specific number on a priori grounds, the prediction rules were

estimated using a moving window of 4–8 years. Next, the resulting five predictions were

averaged.16

15 Preliminary calculations indicate that the linear combination scheme occasionally produced im-
plausible forecasts. To deal with this problem a lower and upper bound to the forecast was set. The
lower bound is the minimum of the DFM and Consensus forecasts minus 0.3 percentage points; the
upper bound is the maximum of the DFM and Consensus forecasts plus 0.3 percentage points.

16 As a robustness check, the effect on forecasting performance of employing shorter or longer
estimation windows was investigated. This effect was found to be minor. Table 4.5 was also calculated
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Table 4.5 reports the RMSFEs of both forecast combinations, relative to the RMSFEs

of the DFM. The main conclusion of the exercise is that both combination methods

are suitable to enhance DFM forecasts in economically meaningful ways, Japan being

the only exception. The latter is consistent with the poor performance of the Japanese

Consensus forecast vis-à-vis the DFM forecasts (see panel B of Table 4.3). The scope

for improvement is in general considerably greater in the volatile post-crisis period

than in the tranquil times before 2008. In the post-crisis period gains in prediction

accuracy of 20% to 35% are feasible for at least some horizons for many countries.

Gains are on average more limited (often less than 10%) before 2008, but still reach

33% for Germany and 16% for the UK for the third month nowcast using the weighted

average scheme (30% and 9% for the linear combination scheme). After 2008, the

forecasting accuracy of the combined forecasts is better than the DFM forecasts for the

majority of countries and forecasting horizons. The greatest advantage of combining

DFM and Consensus forecasts generally occurs in the third month of the quarter when

just-released Consensus forecasts are available. Although the relative RMSFE of the

combined forecast versus the DFM forecasts tends to increase in the subsequent two

months, it remains below one in most cases. This is evidence that Consensus forecasts

incorporate information that goes beyond the information represented by the statistical

information set, and that this type of information is still valuable even if it is somewhat

dated. Moreover, enhancing model-based forecasts with subjective forecasts may offer

some insurance against a weak performance of mechanical models. The experience of the

UK before 2008 is a case in point. As Table 4.2 shows, the DFM loses predictive power

between horizons F3 and N3. This loss is roughly neutralized by utilizing additional,

subjective information.

Overall, the weighted average scheme tends to work better than the linear combina-

tion scheme before 2008, although the relative difference in RMSFE typically does not

exceed 10%. After 2008, the linear combination scheme appears to have a slight edge on

average. It performs extremely well in case of all of Italy’s predictions and Germany’s

backcasts, but does a generally poor job at all horizons for the US. Thus, the empirical

evidence points to quite some country heterogeneity in the relative performance of both

schemes, which may even differ across horizons, as the Canadian and British experience

illustrates. Looking at the evidence over the whole sample period across all forecasting

horizons, the weighted average scheme performs better for France, Japan and the US.

The linear combination scheme is better for Germany and Italy, whilst there is no clear

winner for Canada and the UK. Another pattern in Table 4.5 is that the linear combi-

nation scheme is riskier than the weighted average scheme, in the sense that combining

forecasts may actually hurt forecasting accuracy appreciably; see the US results.

with moving windows of 3–6 years and 5–10 years as well as a recursively expanding estimation window.
The results where qualitatively the same.
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These findings thus suggest that the linear combination scheme seems to be less ro-

bust to overfitting in small samples, especially in stable macroeconomic environments.

As combining forecasts is a symmetric operation, it is also interesting to look at the

marginal value of the DFM forecasts. Table 4.9 in Appendix 4.C offers this alter-

native perspective, presenting the RMSFE of both forecast combinations in terms of

the Consensus forecast. In the period 1999–2013 the gains in forecasting accuracy by

this measure are modest in most cases. The linear combination scheme works well for

Canada and Italy, but not for the US. Moreover, the marginal value of DFM forecasts

is generally larger in the pre-crisis period than in the post-crisis period, which is con-

sistent with the improvement in prediction capabilities of Consensus forecasts in the

latter period. In fact, it is even significantly negative in a number of cases after 2008,

reducing forecasting accuracy. An important empirical result is that it is difficult to

beat a fresh Consensus forecast (columns N3 and F3) in the post-crisis period. With

some exceptions, both combination rules perform worse than the Consensus forecast

for both types of forecast after 2008. This finding suggests that during that period the

Consensus forecast, which reflects the aggregate of both model-based predictions and

subjective insights of all survey respondents, may incorporate all available information

at the moment of release. Hence, the additional value of the DFM appears to be quite

limited in the post-crisis period, and the optimal forecast is the Consensus forecast or

something very close to it. The DFM may still serve as a means to enhance (non-

updated) Consensus forecasts in the two months after the quarterly release. Looking

at backcasts (B1 and B2), substantial accuracy gains are possible for Japan and Italy,

and modest gains for France and Germany. There is also scope for improvement for the

nowcasts N2 and N1, but it is smaller than for the corresponding backcasts.

A constant refrain in the results is that subjective Consensus forecasts have improved

in predictive power relative to predictions from the DFM over time. This development

is visualized in Figure 4.1, which depicts the weight of the Consensus forecast β in

Eq. (4.5) over the years 1999–2013.17 The weights of the Consensus nowcasts all show

a clear upward trend (left-hand panel). Moreover, as expected, they shift downwards

as they become older and the DFM exploits new information. The weight for the F3

forecasts steeply increases after the financial crisis (right-hand panel). In the last years

of the sample, the weight of the Consensus forecasts is 80–90% for the N3 and F3

forecasting horizon and thus only 10–20% for the DFM forecasts. This observed trend

may reflect several phenomena. First, the procedure that was used may flatten

the forecasting performance of the DFM in the early part of the sample, because ana-

lysts may in reality have used statistical models that were less sophisticated than the

DFM, such as pure time series models, bridge models and VAR models. Second, ana-

17 For presentational reasons β was averaged across countries and estimation windows. The resulting
time series are smoothed by applying a centered eight-quarter moving average.
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Figure 4.1: Weight of Consensus forecast in weighted average combination scheme, 1999.I–
2013.IV
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Notes: β was averaged across countries and estimation windows. Time series are smoothed by applying
a centered eight-quarter moving average.

lysts may put more effort in making their predictions in recessions and times of high

volatility. This is consistent with the findings of the literature that forecasters adjust

their forecast more frequently during recessions or when the information set changes a

lot. The findings support the findings of Lundquist and Stekler (2012), who conclude

that professional analysts are very responsive to the latest information about the state

of the economy and adjust their predictions quickly. Third, the DFM forecasts are

derived by a mechanical procedure that may be ill-suited to deal with large shocks,

such as the financial crisis, although taking averages over all possible specifications

and using a rolling estimation window offer some protection. By contrast, analysts

base their subjective assessments on potentially a multitude of relevant time-varying

factors and they may adjust their models, data and estimation modalities in response

to large shocks. Recent work by Castle, Clements, and Hendry (2015) and Castle,

Doornik, Hendry, and Pretis (2015) demonstrates the value of employing a statistical

procedure that fully incorporates the possibility of location shifts. Finding out how

such a forecasting procedure would alter the relative performance of statistical models

and subjective forecasts is an interesting topic for future research.

Finally, given the variation in relative performance of both combination schemes

across countries and forecasting horizons, the extent to which it is feasible for forecasters

to identify in real-time what combination scheme they should apply at a particular

moment is investigated. Two strategies are considered. The first strategy does not

involve a choice, but consists of simply averaging the predictions generated by the two

schemes (for all estimation windows). The empirical literature has found that such

a strategy leads to less volatile predictions and possibly an improvement in accuracy
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(e.g. Kuzin et al., 2013; Timmermann, 2006). The second strategy tries to select the

best forecasting rule among ten candidates (two combination schemes estimated using

estimation windows of 4–8 years) on the basis of their recently observed (out-of-sample)

forecasting ability. The latter is measured over a moving evaluation window that varies

between 1–4 years. In view of the difficulty to optimally choose the length of the

evaluation window on a priori grounds, again averaging is applied. The strategy first

selects the pair of combination scheme and estimation window that delivers the best

forecasts for each evaluation window. Next, the four resulting predictions are averaged.

The relative RMSFEs (versus the DFM) of the two strategies are presented in Ta-

ble 4.6.18 The main finding is that the differences between them are often quite small

and do not show a clear pattern. This is true for both subperiods and the whole sample.

In many cases, the difference in forecasting performance between the weighted average

and linear combination schemes does not appear to be large and persistent enough to

be exploitable by a forward-looking selection strategy in real-time. Moreover, a com-

parison of Tables 4.5 and 4.6 shows that averaging tends to lead to somewhat lower

RMSFEs than either of the combination schemes. Thus, using a simple average of com-

bination schemes may provide a valuable hedge against misspecification and instability

of the combination schemes for practitioners. However, as the Italian case illustrates,

it may pay off to monitor the prediction performance of the selection strategy at the

same time, and possibly switch strategies.

4.4 Conclusion

This chapter investigates to what extent subjective information incorporated in fore-

casts by professional analysts may enrich mechanical forecasting procedures exploiting

monthly statistical data in a truly real-time context, in which both statistical models

and analysts have to deal with possibly inaccurate initial GDP estimates. Judgmental

forecasts are taken from the quarterly Consensus survey (averaged over the panelists).

The model-based forecasts are generated by a DFM that is estimated using real-time

monthly vintages. For the sake of robustness, the analysis covers seven large countries

(the so-called G7 countries) over the years 1999–2013, allowing a systematic comparison

of the tranquil period 1999–2007 before the financial crisis and the volatile post-crisis

period after 2008. Moreover, two different schemes to combine model-based and subjec-

tive forecasts were analyzed: (i) the weighted average and (ii) the linear combination.

The main findings can be summarized in five points. First, in keeping with other

work, monthly statistical indicators seem to contain valuable information that can be

extracted by the DFM in real-time, in particular as the horizon shortens and more

monthly information is processed. The largest gains in predictive accuracy are for late

18 Table 4.10 in Appendix 4.C reports the relative RMSFEs versus the Consensus forecasts.
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nowcasts and backcasts, when the model is able to use statistical data that pertain

to the quarter of interest. Thus, its relative strength is to improve the assessment of

the current state of the economy. Moreover, the DFM is generally more efficient in

extracting monthly information in volatile times.

Second, the forecasting abilities of Consensus forecasts (averaged over the panelists)

remarkably improve after the financial crisis, making them a tough competitor for the

mechanical DFM since 2008. In the stable pre-crisis period, the DFM tends to outper-

form professional analysts. But in the volatile post-crisis period, Consensus nowcasts

and forecasts constitute superior predictions at the moment of their release. This pat-

tern suggests that analysts pay more attention and devote more effort to forecasting in

volatile times. This outcome is consistent with the earlier finding that analysts quickly

adjust their predictions during recessions or when the information set changes a lot. It

also suggests that strictly mechanical procedures may be more susceptible to extreme

observations in the estimation sample, even when taking averages across specifications

and using rolling windows in estimation.

Third, the difference in forecasting performance between professional analysts and

the DFM tends to be greater for a fresh Consensus nowcast (N3) than for a fresh

Consensus one-quarter ahead forecast (F3). This suggests that the value added of

subjective insights may be greater when analysts know at least some hard and soft

data relating to the quarter of interest. In between the quarterly release dates, the

performance of Consensus forecasts versus DFM forecasts deteriorates, as the latter are

able to benefit from newly released monthly data.

Fourth, enhancing model-based forecasts with subjective information via simple

combination schemes delivers sizable gains in forecasting ability of statistical models

for all countries except Japan in the years 1999–2013, even when the Consensus forecasts

are somewhat dated. Accuracy gains are often modest in the rather stable pre-crisis

years 1999–2007, with DFM and Consensus forecasts contributing about equally to

the combined forecast. The advantage of adding judgmental information are much

more pronounced in the volatile period after 2008 due to a marked improvement in

predictive power of Consensus forecasts. Towards the end of the sample, Consensus

forecasts are the main determinant of the forecast combination, suggesting that the

marginal information content of the DFM forecasts has become rather low for many

countries. Consequently, the benefits from using a combination scheme when measured

against the Consensus forecasts’ performance have generally diminished over time, and

are mostly small or absent, except for Italy and Japan since 2008.

Fifth, both the weighted average scheme and the linear combination scheme are suitable

to enhance DFM forecasts in economically meaningful ways. Albeit some heterogeneity

in forecasting capabilities of the weighting schemes, both across countries and time,

the results suggest that in many cases forecasters are unlikely to be able to reliably
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identify in real-time what combination scheme they should apply. Thus, in practical

applications, using a simple average of combination schemes may offer the best hedge

against misspecification and instability of combination schemes.

These outcomes may be useful to policy makers, financial analysts and economic

agents, as information on where the economy stands and where it is heading to in the

short run is particularly valuable, especially in times of great uncertainty. The analysis

in this chapter demonstrates that judgmental forecasts by professional analysts contain

valuable additional information that can be extracted in real-time. This chapter does so

in a mechanical fashion, but forecasters may in practice follow more flexible approaches

to take this information on board. Moreover, forecasters may use Consensus forecasts,

which represent the view of their peers, as a cross-check on their own model predictions

and judgmental views on the near-term prospects of the economy.

The finding that for many countries (freshly released) Consensus forecasts are hard

to improve upon since 2008 does not imply that practitioners are better off without mak-

ing their own model-based forecasts. Model-based forecasts are still valuable for a num-

ber of reasons. First, Consensus forecasts are released just once a quarter. Especially

in volatile times, when it really counts, they run the risk of becoming outdated rather

quickly. Second, an important disadvantage of forecast surveys, such as the Consensus

survey, is their black-box nature; if forecasts change, it is unclear for what reasons. As

argued by Bańbura et al. (2011), a crucial aim of nowcasting is the structured way of

updating forecasts on the basis of the continuous flow of new statistical data. In this

way, the forecasting process generates information on the relative marginal information

content of the various statistical indicators. Moreover, several types of models, includ-

ing the DFM, allow the decomposition of forecasts into the contributions of the various

(types of) statistical variables in the dataset (e.g. Bańbura and Rünstler, 2011), which

may also assist analysts in their reading of economic conditions and their near-term

development. These analytical by-products of statistical procedures may also serve to

detect implausible aspects of model-based forecasts, which constitute crucial ingredients

for the judgmental component of the forecast. For many forecasters, the story behind

the forecast is at least as important as the number itself. Third, the expectations by

the Consensus survey participants reflect both model-based and subjective informa-

tion. As different forecasters will employ different models, estimation procedures and

datasets, the model-based component differs across analysts. The strong performance

of the mean Consensus forecast is partly attributable to the fact that different statistical

approaches have been used to filter the available statistical data.
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Appendix

4.A Data set

Table 4.7 provides an overview of the monthly indicators that have been used for the

estimation of the DFMs. As discussed in the main text, the data can be split-up into

three parts: the domestic economy, global economic activity and the main trading

partners; see the headings in the table. Furthermore the data can be classified into

four categories: hard, quantitative information (hard), consumer and producer prices

(price), financial variables (financial) and soft, qualitative information (soft). Real-time

vintages are collected for all time series, starting in January 1985, if possible.19

The main data source for the real-time database for the United States is the ALFRED-

database, the US real-time database maintained by the Federal Reserve Bank of St.

Louis. The real-time data vintages were used over the period January 1992–September

2014. The variables in the ALFRED-database are updated with each subsequent release

of one of the series. Based on these release dates the OECD main economic indicators

original data release and revisions database (OECD RTDB) is used, since it mimics the

release pattern of the main data source for the other G7-countries.

The real-time database is augmented with indicators for global economic activity,

financial variables and qualitative information on expectations derived from surveys

among consumers, retailers and firms. Concerning the indicators for global economic

activity real-time vintages on world trade from the CPB world trade monitor are used.20

The other indicators of global activity and the financial variables are not subject to

revisions. For these indicators the latest data vintage to construct backdated vintages

based on the release pattern is used. The main source for survey data is the European

Commission. Moreover, country-specific business survey data for Germany, France,

Italy and Belgium are collected: the Ifo business climate index, the INSEE business

cycle indicator, the ISAE consumer confidence indicator and the BNB business survey,

respectively.

Quarterly GDP data for the US are taken from the ALFRED-database. For the

other G7 countries, the OECD RTDB is the main source. As the latter contains no

German GDP data before 1999.I, German GDP data before 1999.I are taken from the

Deutsche Bundesbank.

19 There are a few exceptions: the 10-year treasury bill-rate for Japan (January 1989), the 3-month
treasury bill-rate for Japan (July 1985), negotiated wages for Germany (January 1990), the Baltic
freight index (May 1985), the VIX standard and poor’s 500-index (January 1986) and the crude West-
Texas intermediate oil price (January 1986).

20 The world trade monitor series start in January 1991 and were backdated for the period January
1985–December 1990, using monthly series on import- and export-volumes from the IMF.

http://research.stlouisfed.org/tips/alfred/
http://research.stlouisfed.org/tips/alfred/
http://stats.oecd.org/mei/default.asp?rev=1
http://stats.oecd.org/mei/default.asp?rev=1
http://www.cpb.nl/en/world-trade-monitor
http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
https://www.cesifo-group.de/ifoHome/facts/Survey-Results/Business-Climate.html
http://www.insee.fr/en/themes/indicateur.asp?id=11
http://www.insee.fr/en/themes/indicateur.asp?id=11
http://www.isae.it/
http://stat.nbb.be/Index.aspx?DataSetCode=BUSSURVM&lang=en
http://www.bundesbank.de/Navigation/EN/Statistics/Time_series_databases/Macro_economic_time_series/its_list_node.html?listId=www_s311_lr_bip
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4.B State space representation dynamic factor model

The equations of the DFM, Eqs. (4.1)–(4.4), can be cast in state space form as illus-

trated below for the case of p = 1. The aggregation rule is implemented in a recursive

way in Eq. (4.8) by introducing a latent cumulator variable Ξ for which: Ξt = 0 for

t corresponding to the first month of the quarter and Ξt = 1 otherwise. The monthly

state space representation is given by the following observation equation:

[
xt
yQt

]
=

[
Λ 0 0

0 0 1

] ftyt
ŷQt

+

[
ξt
εQt

]
(4.7)

and the transition equation:

 Ir 0 0

−β′ 1 0

0 −1
3

1


ft+1

yt+1

ŷQt+1

 =

Ar1 0 0

0 0 0

0 0 Ξt+1


 ftyt
ŷQt

+

ζt+1

εt
0

 (4.8)

The application of the Kalman filter and smoother provides the minimum mean square

linear estimates (MMSLE) of the state vector αt = (ft, yt, ŷ
Q
t ) and enables the fore-

casting of quarterly GDP growth yQt and dealing efficiently with an unbalanced dataset

of missing observations at the beginning and at the end of the series by replacing the

missing data with optimal predictions. Moreover, when compared with using the prin-

cipal components technique alone, the two-step estimator allows for dynamics of the

common factors and cross-sectional heteroskedasticity of the idiosyncratic component.

4.C Additional results

Table 4.8 is a counterpart of Table 4.2 in the main text. It presents relative RMSFEs

versus the RW for two different set-ups. Panel B reports results for the real-time

procedure when the prediction errors are computed using the last vintage for GDP as

measure of actual GDP. Panel A reports results for the corresponding pseudo real-time

procedure, which also implies that the last vintage for GDP serves as the measure of

actual GDP. Tables 4.9 and 4.10 are the respective counterparts of Tables 4.5 and 4.6

in the main text, where the relative RMSFE is expressed in terms of the RMSFE of the

Consensus forecast. Finally, Table 4.11 reports the estimated coefficients of Eq. (4.6),

which display the same pattern as the ones for Eq. (4.5).
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Table 4.11: Encompassing test: coefficients of linear combination of Consensus forecasts (β)
and DFM (γ), 1999.I–2013.IV

B2 B1 N3 N2 N1 F3

Full sample 1999.I–2013.IV
Canada β 0.65∗∗∗ 0.74∗∗∗ 0.83∗∗∗ 0.38 0.56∗∗ 0.65∗∗

γ 0.35∗ 0.27∗ 0.22 0.97∗∗∗ 0.71∗∗∗ 0.77∗∗

France β 0.69∗∗∗ 0.76∗∗∗ 0.82∗∗∗ 0.66∗∗∗ 0.59∗∗∗ 0.59∗∗∗

γ 0.17 0.09 0.02 0.25∗∗ 0.32∗∗ 0.27∗

Germany β 1.15∗∗∗ 1.26∗∗∗ 1.47∗∗∗ 0.90∗ 0.92 1.01
γ 0.49∗ 0.40 0.17 0.63∗∗ 0.71∗∗ 0.53∗

Italy β 0.49∗∗∗ 0.71∗∗∗ 0.71∗∗∗ 0.63∗∗∗ 0.50∗∗∗ 0.69∗∗∗

γ 0.77∗∗∗ 0.63∗∗∗ 0.75∗∗∗ 0.84∗∗∗ 1.05∗∗∗ 0.73∗∗

Japan β 0.32 0.33 0.52∗∗ 0.36 0.40 0.51
γ 0.89∗∗∗ 0.76∗∗∗ 0.69∗∗ 0.67 0.24 0.04

UK β 1.06∗∗∗ 1.05∗∗∗ 1.12∗∗∗ 1.37∗∗∗ 1.40∗∗∗ 1.40∗∗∗

γ 0.27 0.30 0.20 0.49∗∗ 0.42∗∗ 0.41∗∗

US β 0.57∗∗∗ 0.79∗∗∗ 1.10∗∗∗ 0.46∗∗ 0.77∗∗∗ 0.90∗∗

γ 0.49∗∗∗ 0.28 -0.11 0.70∗∗∗ 0.37 0.21

Pre-crisis period 1999.I–2007.IV
Canada β -0.25 -0.02 0.26 -0.28 -0.43 -0.51

γ 0.94∗∗∗ 0.79∗∗∗ 0.53∗∗ 0.64∗∗ 0.69∗∗ 0.75∗

France β 0.58∗∗∗ 0.73∗∗∗ 0.77∗∗∗ 0.62∗ 0.45 0.33
γ 0.28 0.12 0.05 0.13 0.19 0.36

Germany β 0.72∗∗∗ 0.70∗∗∗ 0.80∗∗∗ 0.33 0.17 0.07
γ 0.20 0.29 0.03 0.36 0.60∗∗ 0.78∗∗

Italy β 0.33 0.44∗ 0.50∗ 0.50∗ 0.08 0.15
γ 0.67 0.53 0.43 0.34 0.92∗∗ 0.67

Japan β 0.60∗ 0.64∗ 0.60∗ 0.79∗ 0.75 0.65
γ 0.75∗ 0.71 0.70 0.52 0.64 -0.12

UK β 0.41∗∗∗ 0.44∗∗∗ 0.46∗∗∗ 0.53∗∗∗ 0.40∗∗ 0.35∗∗∗

γ 0.51∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.67∗∗∗ 0.85∗∗∗ 0.91∗∗∗

US β 0.35 0.63 1.09∗∗ -0.02 0.38 0.65
γ 0.74∗ 0.42 -0.19 0.82∗∗ 0.30 -0.18

Post-crisis period 2008.I–2013.IV
Canada β 1.13∗∗∗ 1.18∗∗∗ 1.13∗∗∗ 0.85∗∗ 1.19∗∗∗ 1.27∗∗∗

γ -0.07 -0.13 -0.10 0.99∗∗ 0.38 0.49
France β 0.88∗ 1.00∗∗ 1.21∗∗∗ 0.40 0.30 0.32

γ 0.09 0.01 -0.13 0.30∗ 0.38∗ 0.31∗

Germany β 2.19∗∗∗ 2.38∗∗∗ 2.65∗∗∗ 2.43∗ 2.56∗ 3.03∗

γ 0.11 -0.04 -0.28 0.45 0.40 0.08
Italy β 0.35 0.74∗∗ 0.55∗ 0.24 0.31 0.57

γ 0.79∗∗∗ 0.60∗∗ 0.84∗∗ 0.98∗∗∗ 1.08∗∗∗ 0.74∗

Japan β 0.05 -0.02 0.51 -0.14 0.28 0.68
γ 1.02∗∗∗ 0.94∗∗ 0.65 0.73 0.14 -0.22

UK β 1.16∗∗∗ 1.13∗∗∗ 1.24∗∗∗ 1.54∗∗∗ 1.62∗∗∗ 1.63∗∗∗

γ 0.16 0.20 0.06 0.44∗ 0.27 0.23
US β 0.41∗ 0.66∗∗∗ 1.09∗∗∗ 0.54∗∗ 0.72∗ 0.83∗

γ 0.58∗∗∗ 0.38∗ -0.06 0.69∗∗∗ 0.43 0.36
Notes: entries denote the estimated coefficients of Consensus forecasts (β)
and the dynamic factor model (γ) in the (unconstrained) encompassing
test in Eq. (4.6), respectively. ∗, ∗∗ or ∗∗∗ denotes that the estimated
coefficient is statistically different from 0 at the 10%, 5% or 1% significance
level, respectively.
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Chapter 5

Forecasting and nowcasting
economic growth in the euro area
using factor models

Many empirical studies have provided evidence that the use of factor models, which use

large datasets of economic variables, can contribute to the computation of more accurate

forecasts. In this study, we examine the performances of four different factor models

in a pseudo real-time forecasting competition for the euro area and five of its largest

countries. The aim is to identify empirically the best factor model approach for fore-

casting and nowcasting of the quarterly gross domestic product growth rate. Besides,

this chapter proposes some modifications of existing factor model specifications, with the

aim of improving their forecasting performances empirically. The main conclusion of

this chapter is that factor models consistently outperform the benchmark autoregressive

model, both before and during the crisis. Moreover, the highest forecasting accuracy is

generally produced by the collapsed dynamic factor model.1

KEYWORDS: Factor models; State space method, Forecasting competitions.

1 This chapter is co-authored by Irma Hindrayanto and Siem Jan Koopman. This chapter was
published in the International Journal of Forecasting, 32, 2184-1305, Hindrayanto, Koopman and de
Winter, Copyright Elsevier (2016). Available online at http://dx.doi.org/10.1016/j.ijforecast.
2016.05.003. We are grateful to Ide Kearney, Job Swank, an anonymous editor, an anonymous asso-
ciate editor, three anonymous referees, seminar and conference participants at De Nederlandsche Bank,
the Conference on Computational and Financial Econometrics (2012, Oviedo) and the International
Symposium on Forecasting (2014, Rotterdam) for their helpful comments. An early version of this
chapter was circulated as DNB Working Paper 415 and Tinbergen Institute Discussion Papers 14-
113/III under the title “Nowcasting and forecasting economic growth in the euro area using principal
components”.
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5.1 Introduction

It is acknowledged widely that the forecasting of macroeconomic time series is of crit-

ical importance, both for economic policy makers and for the general public. Reliable

short-term forecasts are in particularly high demand when the economic environment

is uncertain. Many different methodologies for producing such forecasts exist, ranging

from basic time series models to sophisticated structural dynamic models. Over the last

decade, dynamic factor models have become a popular tool for short-term forecasting

amongst both practitioners and econometricians, due to their good forecasting perfor-

mances in many studies; see for example, Giannone et al. (2008) and Stock and Watson

(2002b) for the United States, Angelini et al. (2011) and Rünstler et al. (2009) for the

euro area and Schumacher and Breitung (2008) for Germany. In all empirical studies

concerning dynamic factor models, there are various decisions that need to be made

before forecasting can start. We provide three examples. First, the optimal number of

factors in the model needs to be determined by following procedures such as those of

Ahn and Horenstein (2013), Alessi et al. (2010), Bai and Ng (2002), Hallin and Lĩska

(2007) and Onatski (2010). Second, the selection of the database for extracting the

factors, and its size, are important determinants of a successful forecasting procedure;

see for example the discussions by Boivin and Ng (2005), Caggiano et al. (2011) and

den Reijer (2013). Third, the number of lagged terms of the target variable in the

forecasting model needs to be set. The gain in forecasting accuracy from including one

or more lags of the target variable in the forecast equation has not been documented

well. However, recent studies indicate that including more autoregressive terms may

increase the forecasting accuracy; see for example Clements and Galvão (2008), Kuzin

et al. (2011) and Chapter 3 of this thesis. It is an empirical question as to whether this

finding holds for all factor model specifications. Such matters have also been discussed

in related empirical studies; see for example, Bańbura et al. (2011), Jungbacker and

Koopman (2015), Lahiri and Monokroussos (2013), Liebermann (2014) and Matheson

(2013).

This chapter compares the short-term forecasting performances of different factor

models for quarterly gross domestic product (GDP) growth in the euro area and its five

largest countries, before, during and after the financial crisis. The one- to three-month

ahead forecasts for the current quarter are referred to as nowcasts. The short-term

forecasting of key economic variables using dynamic factor analysis has been reviewed

by Bai and Ng (2008), Breitung and Eickmeier (2006), and Stock and Watson (2011),

with Luciani (2014) discussing more recent contributions. Four estimation procedures

for the dynamic factor model are considered: the basic principal components method

of Stock and Watson (2002b), who initiated the current literature on factor models; the

widely used two-step approach of Doz et al. (2011); the more elaborate quasi-maximum

likelihood method of Doz et al. (2012); and the more recently proposed maximum
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likelihood method of Bräuning and Koopman (2014), based on a collapsed dynamic

factor model. All of these estimation approaches rely to some extent on principal

components that summarize the information in a large set of monthly indicators. The

estimation methods proposed by Bräuning and Koopman (2014) and Doz et al. (2011)

use the principal components as approximations of the dynamic factors. Doz et al.

(2012) use the principal components as an initialisation of quasi-maximum likelihood

estimation. The Kalman filter plays a key role in all three of these approaches.

For all dynamic factor approaches, the target variable and the common factors are

analyzed simultaneously in a multivariate unobserved component time series model.

All modeling frameworks allow for panels with mixed-frequencies and with the monthly

time series having different publication delays and starting dates. This leads to a data

matrix of monthly time series with so-called “ragged” edges at the beginning and end

of the sample. The two-step approach developed by Doz et al. (2011) was applied

to the euro area by Angelini et al. (2011) and Bańbura and Rünstler (2011). The

first step involves the computation of the principal components and the estimation

of their dynamic properties by means of a vector autoregressive model. The second

step involves obtaining the factor estimates and forecasts from the Kalman filter and

smoother. Doz et al. (2011) provide the asymptotic properties of the factor estimates

and use the model to forecast the quarterly GDP growth using monthly variables that

contain ragged edges at the beginning and end of the sample. Bańbura and Rünstler

(2011) developed this approach further by including the quarterly GDP growth as a

latent variable in the state vector, so that the contributions of different variables to

the forecasts can be quantified using the algorithms of Koopman and Harvey (2003).

The quasi-maximum likelihood approach of Doz et al. (2012) was applied to the euro

area by Bańbura et al. (2011) and Bańbura and Modugno (2014). It is shown that this

approach obtains consistent estimates of the factors as the size of the cross-section goes

to infinity. Bańbura and Modugno (2014) extend the framework of Doz et al. (2012) by

introducing modifications in relation to missing entries (at random) and the dynamic

treatment of idiosyncratic effects; see also Luciani (2014).

The collapsed dynamic factor model of Bräuning and Koopman (2014) effectively

adopts a low-dimensional unobserved components time series model for both the tar-

get variable and a set of principal components. This multivariate model is then used

to forecast the target variable based on its past realizations and the principal compo-

nents. The idiosyncratic part of the target variable is modeled explicitly and dealt with

jointly with the dynamic factors. It mitigates the challenge of estimating the factors

and forecasting the target variable in a joint analysis based on a large macroeconomic

panel. The unknown parameters in this parsimonious model are estimated by maximum

likelihood: the loglikelihood function is evaluated by the Kalman filter and maximized

numerically with respect to the unknown parameters. The score function can be eval-
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uated using a corresponding smoothing algorithm. The forecasts of the target variable

are generated by the Kalman filter.

The main contributions of this chapter are twofold. First, small modifications for

the different estimation approaches are proposed, with the aim of placing them on

a somewhat more equal footing. For example, the model of Doz et al. (2011) is ex-

tended by including more autoregressive terms, as in Bräuning and Koopman (2014)

and Stock and Watson (2002b). Besides, an alternative –more effective– way of handling

the ragged edges for the collapsed dynamic factor method of Bräuning and Koopman

(2014) is proposed, consisting of three steps, i.e.: (i) analyze each univariate time se-

ries by using an unobserved components model to extract the main signal for imputing

the ragged edges; (ii) extract the principal components; (iii) estimate the parameters

simultaneously. This handling of the ragged edges improves the forecasting accuracy.

Second, a empirical study is conducted to compare the forecasting accuracy of the dif-

ferent modeling treatments for the euro area and its five largest countries. One of the

main conclusions is that the investigated factor modeling approaches systematically

produce more accurate forecasts than those of the benchmark autoregressive model.

This good performance is not limited to the pre-financial crisis period: the factor mod-

els also outperform the benchmark model during and after the financial crisis by up to

77%, in terms of mean squared forecast errors, depending on the factor model, country

and projection horizon. Overall, the collapsed dynamic factor approach is the most

accurate model for forecasting and nowcasting in the empirical study.

The remainder of this chapter is organized as follows. Section 5.2 presents an

overview of the four different dynamic factor model approaches considered, and dis-

cusses some possible modifications. Section 5.3 provides details of the construction of

the database, the forecast setup and the model specification, together with selection de-

tails such as the number of common factors and lags. Section 5.4 discusses the empirical

results. Finally, Section 5.5 summarizes the main findings.

5.2 Dynamic factor model approaches

This section considers four existing dynamic factor approaches to nowcasting and fore-

casting: (i) the autoregressive model for the target variable, with lagged principal

components as covariates, proposed by Stock and Watson (2002b); (ii) the dynamic

factor approach of Doz et al. (2011), as implemented by Bańbura and Rünstler (2011);

(iii) the quasi-maximum likelihood approach for dynamic factor models of Doz et al.

(2012), as implemented by Bańbura and Modugno (2014); and (iv) maximum likelihood

estimation for the collapsed dynamic factor model of Bräuning and Koopman (2014).

All of these dynamic factor model approaches use principal components in their

forecasting procedures, but they do so in different ways. Stock and Watson (2002b)
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use the principal components as covariates in the autoregressive model of the target

variable. Bańbura and Modugno (2014) and Bańbura and Rünstler (2011) use prin-

cipal components as proxies for the dynamic factors which facilitate the estimation

of the many parameters in their large-dimensional state space model2. Bräuning and

Koopman (2014) adopt a low-dimensional state space model which deals with the tar-

get variable and the principal components jointly. Their parsimonious representation

allows standard maximum likelihood estimation.

The focus is on forecasting the quarterly GDP growth (quarter on quarter), denoted

by yQtq , where tq = 1, . . . , Tq is the quarterly time index. Following the statistical

convention, the quarterly GDP growth rate at the monthly frequency yMt is set equal

to the growth rate (yQtq) in the third month of each quarter (t = 3tq) and to a missing

value otherwise, where t = 1, . . . , T is the monthly time index. The time dimensional

relation is Tq = bT/3c. The latent monthly GDP growth rate, yt, is the 3-month growth

rate with respect to the corresponding month of the previous quarter, and y∗t as the

mean-adjusted series of yt, that is y∗t = yt − µ where µ is the in-sample mean of yQtq .

The remainder of this section describes the forecasting procedures based on fac-

tor models. All procedures use a monthly time series of r × 1 vectors of principal

components, which are denoted Ft. The principal components are obtained from a N -

dimensional standardized stationary monthly time series of candidate predictors, Xt, for

t = 1, . . . , T . The matrix of eigenvalues (or factor loadings) is denoted as Λ. The vector

FQ
tq contains the r quarterly factors, calculated by taking the three-month averages of

Ft.

5.2.1 Principal components approach

Stock and Watson (2002b) designed a method for the forecasting of a single time series

of length T , using a large number N of candidate predictor series, where typically

N >> T . This high-dimensional problem is reduced to an univariate autoregressive

model for the key economic time series of interest through the inclusion of a small

number of principal components that are used as predictors. The autoregressive model

is for the target variable with a specific forecast horizon h. The forecasts of the target

variable yQtq+h are based on the current and past values FQ
tq , y

Q
tq , F

Q
tq−1, y

Q
tq−1, . . .. The

forecasting model is given by the dynamic model:

yQtq+h = αh +
m∑
j=0

βh,jF
Q
tq−j +

n∑
k=0

γh,ky
Q
tq−k + εQtq+h, tq = 1, . . . , Tq, (5.1)

where αh is the constant term, βh,j and γh,k are regression coefficients, for j = 0, . . . ,m

2 These models adopt a two-step procedure in which the estimates based on principal components
are used as starting values for the quasi-maximum likelihood estimation for which the Kalman filter is
used.
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and k = 0, . . . , n, and εQtq+h is the disturbance. The lag dimensions m and n are assumed

to be set a-priori. It is common practice to set both dimensions m and n equal to two.

All parameters are subject to the forecasting horizon h. Although the model remains

the same, it is assumed that the coefficients of the model may differ for each forecasting

horizon h. Hence, Stock and Watson’s procedure re-estimates the model coefficients for

each forecast horizon h while keeping the selection of the explanatory variables fixed.

The principal components Ft are obtained from a balanced sub-sample of covariates

Xt, which is obtained by discarding the rows that have missing values at the end of the

estimation period. Typically, this only involves removing the last few rows that are not

complete due to publication delays. The missing values at the beginning of the sample

are dealt with using the expectation maximization (EM) algorithm; see Appendix A of

Stock and Watson (2002b).

Forecasting is then carried out following a two-step procedure: first, the factors

(or principal components) are obtained from the set of candidate predictors; second,

the parameters of the autoregressive model are estimated using the regression method

(ordinary least squares), from which the forecasts can then be generated. This allows

the easy computation of any forecast, from yQTq+1 to yQTq+h, for some h > 1; however,

the two-step procedure must be repeated for each forecast horizon.

5.2.2 Two-step approach

The forecasting procedure of Bańbura and Rünstler (2011) is based on the dynamic

factor model of Giannone et al. (2008) and the two-step estimation approach of Doz

et al. (2011). The treatment is based on the state space framework, which is particularly

convenient for nowcasting, as the framework makes it easy to deal with variables with

missing values (at the beginning and end of the sample) and variables with different

data frequencies. The first step involves carrying out principal component analysis to

produce best-guess estimates of the latent factors and factor loadings. Other parameters

in the model are estimated via standard regressions. The second step uses the Kalman

filter and smoother to conduct the treatment of missing values, the computation of the

forecasts, and the computation of the final smooth estimates of the latent factors, by

casting the complete model in state space form. When the two-step method is repeated

based on the smoothed estimates of the factors, the parameter estimates converge to

the maximum likelihood estimates; see Doz et al. (2011). The Bańbura and Rünstler

(2011) model is given by:

Xt = Λft + ut, ut ∼ NIID(0,Σu), (5.2)

ft =

p∑
j=1

Φjft−j + ζt, ζt ∼ NIID(0,Σζ), (5.3)
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for t = 1, . . . , T , where Λ is the loading matrix, ft is a r × 1 vector of latent dynamic

factors, ut is a normally, identically and independently distributed (NIID) disturbance

with mean zero and variance matrix Σu, Φj is the autoregressive coefficient matrix, for

j = 1, . . . , p, and ζt is a NIID disturbance with mean zero and variance matrix Σζ , and

the two vector disturbance series ut and ζs are mutually independent of each other for

all combinations of t, s = 1, . . . , T . The variance matrix Σu is typically assumed to

be diagonal. The latent dynamic stochastic process for ft is modeled explicitly as a

stationary vector autoregressive process with lag dimension p. The time index t refers

to months.

The dynamic factor model is presented in state space form, which facilitates the

treatment of missing values, the imputation of ragged edges and the computation of

the forecasts via the Kalman filter and smoother. Bańbura and Rünstler (2011) argue

that exploiting the dynamics of the estimated latent factors directly can be beneficial

in improving the forecasting accuracy. However, they recommend that factors should

not be very noisy. To ensure some smoothness in the factors ft, the rank of matrix Σζ

can be reduced further, to q ≤ r.

The values for the unknown parameter matrices Λ, Σu, Φ1, . . . ,Φp, and Σζ are

determined from the r principal components Ft, as outlined by Giannone et al. (2008).

The principal components Ft are based on the eigendecompostion of the sample variance

matrix of the data [X1, . . . , XT ]′, denoted by the N×N positive definite matrix SX . The

columns of the N × r loading matrix Λ in Eq. (5.2) are set equal to the r eigenvectors

associated with the r largest eigenvalues of SX , respectively. The variance matrix Σu

is set to be a diagonal matrix, with the ith diagonal element equal to the (i, i) element

of the sample variance matrix [(X1 − ΛF1), . . . , (XT − ΛFT )]′. The matrix parameters

Φ1, . . . ,Φp, and Σζ in Eq. (5.3) are set equal to their corresponding regression estimates,

obtained from the vector autoregressive model in Eq. (5.3), for which ft is replaced by

Ft, for t = 1, . . . , T .

The incorporation of the quarterly target series yQtq in the monthly state space model

in Eqs. (5.2)–(5.3) is required for its forecasting. For this purpose, the procedure

follows Mariano and Murasawa (2003) in the forecasting of mean-adjusted quarterly

GDP growth in a mixed-frequency modeling framework. Denote the univariate mean-

adjusted latent monthly variable as y∗t and model it by:

y∗t = β′ft + εt, εt ∼ NIID(0, σ2
ε), t =1, . . . , T, (5.4)

where β is an r× 1 vector of coefficients and εt is a NIID disturbance that is mutually

independent of ut and ζt at all time index combinations. The link with y∗t and the

observed quarterly GDP growth rate yQtq is established by creating a monthly time

series yMt of missing values except at time t = 3tq, where it is set equal to yQtq . A
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recursive latent cumulator variable y∗Ct is generated by:

y∗Ct+1 = δty
∗C
t +

1

3
y∗t+1, δt =

0, t = 3tq,

1, otherwise,
(5.5)

for t = 1, . . . , T and tq = 1, . . . , Tq, with the cumulator variable being initialized as

y∗C1 = 1
3
y∗1. By construction, for t = 3tq, y

∗C
t equals the average of the latent monthly

series y∗t within quarter tq, which again equals to the mean-adjusted quarterly growth

rate of that quarter. Since yMt should be equal to the observed quarterly growth rate

yQtq for t = 3tq, the mean of yQtq is added back into y∗Ct , such that yMt ≡ yQtq = y∗Ct + µ,

where µ is defined as the in-sample mean of yQtq .

The missing values of y∗t at t 6= 3tq can be estimated via the Kalman filter and

smoother applied to the state space model in Eqs. (5.6)–(5.7) given below. Estimates

for the unknown parameters β and σ2
ε in Eq. (5.4) are obtained by regression, applied

to the model:

yQtq = β′FQ
tq + eQtq , eQtq ∼ NIID(0, σ2

e).

The estimate of σ2
ε itself is obtained from the relationship σ2

ε = σ2
e / 3.

The nowcasting and forecasting of quarterly GDP growth is based on the Kalman

filter and smoother applied to the state space model, as given by the observation equa-

tion:

(
Xt

yMt

)
=

(
0

µ

)
+

[
Λ 0 0 0

0 0 0 1

]
ft
ft−1
y∗t
y∗Ct

+

(
ut
0

)
, (5.6)

where µ is the sample average of the observed quarterly GDP growth rates yQtq , and

hence of yMt , and the transition equation is given by:
Ir 0 0 0

0 Ir 0 0

−β′ 0 1 0

0 0 −1/3 1



ft+1

ft
y∗t+1

y∗Ct+1

 =


Φ1 Φ2 0 0

Ir 0 0 0

0 0 0 0

0 0 0 δt




ft
ft−1
y∗t
y∗Ct

+


ζt
0

εt+1

0

 , (5.7)

for t = 1, . . . , T . All of the variables are introduced in Eqs. (5.2)–(5.5). This state

space representation is based on q = 1 and p = 2, but it is straightforward to amend it

for other values of q and p. Note that the time series yMt contains many missing values.

The ragged edges in data matrix (X1, . . . , Xt) can also be regarded as a missing value

problem. The treatment of missing values, the computation of forecasts and the estima-

tion of ft and y∗t rely on the Kalman filter and smoother, which are discussed in detail

in Durbin and Koopman (2012). The transition equation (Eq. (5.7)) is non-standard,
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given the pre-multiplication of the state vector on the left-hand-side of the equation;

a minor modification provides the standard updating equation, but is somewhat less

intuitive.

Modification of two-step approach

Earlier empirical studies, such as that of Chapter 3 of this thesis, have shown that adding

autoregressive terms to the forecast equation can improve the forecasting accuracy

significantly for GDP growth. These autoregressive terms, or lagged values of yt, can

be included in Eq. (5.4) by considering:

y∗t = ρ1y
∗
t−1 + ρ2y

∗
t−2 + β′ft + εt, εt ∼ N(0, σ2

ε), (5.8)

for t = 1, . . . , T , where ρ1 and ρ2 are the additional coefficients of the autoregressive pro-

cess. Next, the state space form is adjusted accordingly. To illustrate, the observation

equation for r = 1 and p = 2 is defined as:

(
Xt

yMt

)
=

(
0

µ

)
+

[
Λ 0 0 0 0

0 0 0 0 1

]
ft
ft−1
y∗t
y∗t−1
y∗Ct

+

(
et
0

)
, (5.9)

where µ is the in-sample mean of yQtq . The transition equation is given by:
Ir 0 0 0 0

0 Ir 0 0 0

−β′ 0 1 0 0

0 0 0 1 0

0 0 −1/3 0 1




ft+1

ft
y∗t+1

y∗t
y∗Ct+1

 =


Φ1 Φ2 0 0 0

Ir 0 0 0 0

0 0 ρ1 ρ2 0

0 0 1 0 0

0 0 0 0 δt




ft
ft−1
y∗t
y∗t−1
y∗Ct

+


ζt
0

εt+1

0

0

 . (5.10)

The values of he parameters ρ1, ρ2, β and σ2
ε are obtained via the regression method

applied to the model:

ỹ∗Mt = ρ1ỹ
∗M
t−1 + ρ2ỹ

∗M
t−2 + β′Ft + eMt , eMt ∼ NIID(0, σ2

ε),

for t = 1, . . . , T and where ỹ∗Mt is the monthly time series of the linearly interpolated

mean-adjusted quarterly series of yQtq , that is ỹ∗Mt = y∗Qst /3 + (t− 3 st)(y
∗Q
st+1
− y∗Qst )/3 for

t = 1, . . . , T and st = bt/3c, where y∗Qtq = yQtq − µ and with y∗Q0 = y∗Q1 .

5.2.3 Quasi-maximum likelihood approach

The dynamic factor model with its parameters estimated by the quasi-maximum like-

lihood approach of Doz et al. (2012), and also considered by Bańbura and Modugno
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(2014), can be interpreted as a parametric alternative to the non-parametric methods

based on principal components used by Bańbura and Rünstler (2011) and Giannone

et al. (2008), among others. In general, the maximum likelihood approach is not con-

sidered to be a feasible approach for datasets with large cross-sections. However, Doz

et al. (2012) have shown that the maximum likelihood method allows one to obtain

consistent estimates of the factors even if the size of the cross-section goes to infinity.

Bańbura and Modugno (2014) propose the inclusion of serially correlated idiosyn-

cratic components in Eq. (5.2). They also modify the EM algorithm of Shumway and

Stoffer (1982) and Watson and Engle (1983) for the estimation of parameters in a dy-

namic factor model when a dataset contains random patterns of missing data. They

show that the EM procedure for maximum likelihood estimation remains computation-

ally feasible for large datasets. The EM method is an iterative process for finding the

maximum likelihood estimates of the parameters by exploiting the cross-sectional and

time series information simultaneously. The algorithm is initialised using the princi-

pal components extracted from the dataset; for applications of the methodology, see

Bańbura et al. (2013) for the US and Bańbura and Modugno (2014) for the euro area.

In addition to the estimation technique, another contribution of Bańbura and Mod-

ugno (2014) is related to Eq. (5.2); the details of this modification are only summa-

rized here. The forecasting procedure of Bańbura and Rünstler (2011) can be adopted

straightforwardly as described above. The model for the stationary N -dimensional

standardized vector process Xt in Eq. (5.2) is replaced by:

Xt = Λft + εt + ut, ut ∼ NIID(0,Σu), (5.11)

εt = Θεt−1 + et, et ∼ NIID(0,Σe), (5.12)

where ft is the r×1 vector of latent dynamic factors modeled as Eq. (5.3), and εt is the

idiosyncratic component that is modeled as an autoregressive process with a diagonal

autoregressive coefficient matrix Θ and a diagonal variance matrix Σe; the remaining

coefficients are discussed below Eq. (5.3). The normally distributed disturbance vector

et is uncorrelated with all other disturbances at all leads and lags.

Only small changes in the state space formulations are required in order to allow for

the dynamics in the idiosyncratic component εt in the forecast procedure; see Bańbura

and Modugno (2014). The dimension of the state vector needs to be increased by N

elements to allow for the dynamics of εt. This will slow down the computations, but

the procedure remains feasible. Reis and Watson (2010) propose that Xt − ΘXt−1 be

considered as the observational vector instead of Xt, and include ft−1 in the observation

equation (Eq. (5.2)). In this case, there is no need to place εt in the state vector.

However, this option is only valid when no missing values occur in Xt or Xt−1. A more

detailed discussion and a computational feasible solution to the missing value problem

are presented in Jungbacker et al. (2011).
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5.2.4 Collapsed dynamic factor approach

The collapsed dynamic factor model of Bräuning and Koopman (2014) is effectively

a low-dimensional multivariate unobserved components time series model where the

target series and a set of r principal components are treated jointly as dependent vari-

ables. Relative to the previously-discussed factor models, the collapsed dynamic factor

model has a much lower dimension, such that the number of unknown parameters to be

estimated is relatively small. Maximum likelihood estimation is carried out via the nu-

merical maximization of the loglikelihood function that is evaluated using the Kalman

filter.

As was summarized in Bräuning and Koopman (2014), the collapsed factor model

procedure is a two-step process. The first step involves carrying out a principal com-

ponent analysis for dimension reduction of the large panel of indicators. The model of

Bańbura and Rünstler (2011) has the same first step, but with the aim of producing es-

timates of the factor loadings. In the second step, Bräuning and Koopman (2014) model

these estimated principal components jointly with the target variable in a state space

model that includes a small number of parameters. The unknown parameters are then

estimated simultaneously using the maximum likelihood method in a standard manner.

This step differs from the second step in Bańbura and Rünstler’s method, where the

parameters are estimated outside the state space framework. Finally, the Kalman fil-

ter and smoother method is used to obtain the in-sample estimates and out-of-sample

forecasts of the target variable.

The model of Bräuning and Koopman (2014) is based on Eq. (5.2), which is ex-

tended with the target series of quarterly GDP growth in a specific way. The monthly

and quarterly series are accommodated by formulating the extension of the model in

terms of the unobservable series y∗t , and obtain:(
Xt

y∗t

)
=

[
Λ 0

Γ 1

](
ft
ψt

)
+

(
ut
0

)
, (5.13)

where Γ is a loading matrix with the coefficients of the dynamic factors for the monthly

unobserved series y∗t , ψt is a univariate latent dynamic process for the target series,

and the definitions for the other matrices and variables remain as above. The dynamic

factors ft are modeled as the vector autoregressive process in Eq. (5.3), while the

unobserved component ψt for the target series can also be modeled as an autoregressive

process, for example:

ψt+1 = φ1ψt + φ2ψt−1 + ηt, ηt ∼ NIID(0, σ2
η), (5.14)

where φ1 and φ2 are autoregressive coefficients and ηt is a NIID disturbance that is not

related to any other disturbance in the model. The monthly series y∗t is linked with the
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(partially) observed monthly series yMt in the relation yMt = µ + y∗Ct when t = 3tq and

zero otherwise, and where y∗Ct is constructed as in Eq. (5.5).

The collapsed dynamic factor model is developed based on the insight that the

principal component Ft is a linear combination of Xt, that is Ft = AXt for t = 1, . . . , T

and for a matrix A with property AΛ = I. Pre-multiplying (5.13) by matrix:[
A 0

0 1

]
,

Obtaining: (
Ft
y∗t

)
=

[
Ir 0

Γ 1

](
ft
ψt

)
+

(
vt
0

)
, vt ∼ NIID(0,Σv), (5.15)

where vt = Aut, for t = 1, . . . , T . Since Ft is standardized, the variance matrix Σv can

be restricted such that Var(Ft) = Var(ft)+Σv = Ir. Hence, there is no need to estimate

Σv because it is a function of other parameters in the model. Finally, a observation

disturbance could be added to y∗t ; however, its variance has been estimated at zero in

almost all cases in the current study.

The vector series of principal components Ft and the quarterly GDP growth series,

transformed into the monthly series yMt , are treated as the observation vector. The

specification of the collapsed dynamic factor model is as in Eq. (5.3) with p = 2, (5.14)

and (5.15). The state space form for a set of r latent factors consists of the observation

equation:

(
Ft
yMt

)
=

(
0

µ

)
+

[
Ir 0 0 0 0 0

0 0 0 0 0 1

]


ft
ft−1
ψt
ψt−1
y∗t
y∗Ct


+

(
vt
0

)
,

and the transition equation:

Ir 0 0 0 0 0

0 Ir 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−Γ 0 −1 0 1 0

0 0 0 0 −1/3 1





ft+1

ft
ψt+1

ψt
y∗t+1

y∗Ct+1


=



Φ1 Φ2 0 0 0 0

Ir 0 0 0 0 0

0 0 φ1 φ2 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 δt





ft
ft−1
ψt
ψt−1
y∗t
y∗Ct


+



ζt
0

ηt
0

εt
0


,

for t = 1, . . . , T . The unknown parameters Φ1, Φ2, Γ, φ1, φ2, Σζ , σ
2
η and σ2

ε are estimated

by maximum likelihood. The number of unknown parameters is 4(r+ 1); that is, 8 and

12 for r = 1 and r = 2, respectively.
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Modification of the collapsed dynamic factor approach

In contrast to the approach of Bańbura and Rünstler (2011), the collapsed dynamic

factor approach requires a pre-analysis to treat the ragged edges in the data matrix

(X1, . . . , XT ), because the model requires a balanced dataset to compute the principal

components in Ft. Adopting the EM method of Stock and Watson (2002b) for the

purpose of computing the Ft’s could be a feasible alternative. However, a univariate

model for each variable in Xt is considered instead. The resulting models are adopted

for interpolating and extrapolating the missing values using the Kalman filter and

smoother. The details are as follows. For the ith time series Xit in Xt, the following

stationary decomposition model is considered:

Xit = θit + κit, κit ∼ NIID(0, σ2
κ,i),

for t = 1, . . . , T , where θit is typically modeled as a univariate autoregressive process

(for example, with two lags) and κit is a measurement error, for i = 1, . . . , N . After

estimating the unknown parameters, the Kalman filter and smoother replace the missing

entries by their corresponding estimates, for each variable i = 1, . . . , N . Thus, obtaining

a balanced dataset (X1, . . . , XT ), allowing the principal components to be constructed.
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Figure 5.1: Treatment of missing values for time series j and k

The use of a stationary autoregressive process for θit ensures that the balanced variable

returns to its long-term mean of zero when a long sequence of entries is missing. Fig-
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ure 5.1 presents two examples in the dataset. Time-series j has missing values only at

the beginning of the sample, while time-series k has missing values only at the end of

the sample.

5.3 Data, forecast design and specification issues

5.3.1 Dataset

The monthly dataset of predictors consists of 52 time series variables for the euro

area and its five largest countries. The variables selected are based on harmonized

definitions across the euro area and its countries, and fall into four predefined categories:

production & sales, prices, monetary & financial indicators, and surveys. Table 5.7

in Appendix 5.A provides descriptions of all of the variables used, together with the

transformations used in the analysis and the starting date of the monthly series for

each country in the sample. The monthly data are usually adjusted for seasonality

(and calendar effects). When necessary, raw data series are seasonally adjusted using

the US Census X-12 method. All monthly series are made stationary by differencing or

log-differencing (in the case of trending data, such as industrial production, retail sales

and monetary aggregates). Finally, each variable is standardized by subtracting the

mean and dividing by the standard deviation. This normalization is standard practice

in order to avoid the overweighting of series with large-variances series in the extraction

of common factors.

5.3.2 Pseudo real-time design

The forecast design aims to replicate the availability of the data at the time forecasts

are made, in order to approximate the real-time flow of information as closely as pos-

sible. For this purpose, a dataset on March 4, 2013 was collected. The typical data

release calendar was used to reconstruct the available dataset on the 4th of each month

over the years 1992–2012. The database was constructed such that the earliest starting

date is January 1980 for the monthly series, and the first quarter of 1980 for GDP.

Hence, a pseudo real-time design was employed, which takes data publication delays

into account, but ignores the possibility of data revisions for GDP and some indicators,

such as industrial production. This might imply that the forecasting accuracy is over-

rated. However, there are not yet any large real-time datasets available for the countries

considered in this chapter. Moreover, the effects of data revisions on the forecasts of

factors may also cancel overall; see, for example, Bernanke and Boivin (2003) for the

US and Schumacher and Breitung (2008) for Germany.

For all models the parameters are estimated recursively, using only the information

available at the time when the forecast would have been made, see Giannone et al.
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(2008), Kuzin et al. (2011) and Rünstler et al. (2009), among others, for a similar ap-

proach. A sequence of eleven forecasts of GDP growth in a given quarter is constructed,

obtained in consecutive months. Table 5.1 illustrates the timing of the forecasting ex-

ercise, taking the forecast for 2012.III as an example. The first forecast is made on

January 4, 2012 and is referred to as the two-quarter ahead forecast in month one. A

monthly forecast is subsequently produced for the next ten months, from February un-

til November. The last forecast is made on November 4, 2012, approximately one and

a half week before the flash release of GDP in mid-November. Following the conven-

tional terminology, forecasts refer to one or two-quarter ahead forecasts, nowcasts refer

to current quarter forecasts and backcasts refer to forecasts for the preceding quarter,

for which official GDP figures are not yet available. In case of the current example

2012.III, two-quarter ahead forecasts are produced from January to March, one-quarter

ahead forecasts from April to June, nowcasts from July to September, and backcasts in

October and November.

Table 5.1: Timing of forecasting exercise for third quarter GDP growth

No. Name Forecast made on the 4th of
1 January
2 2Q ahead February
3 March
4 April
5 1Q ahead May
6 June
7 July
8 Nowcast August
9 September
10 October
11 Backcast November

5.3.3 Model specification

The GDP forecasts generated from the Bańbura and Rünstler (2011) method can be

based either on Eq. (5.4) or on adding lagged dependent variables in the forecasting

equation, as in Eq. (5.8). Table 5.2 compares the forecasting accuracies of these two

options, presenting the mean squared forecast errors (MSFEs) of both models. Grey

cells indicate the model with the lowest MSFE averaged over all horizons. Entries

in bold indicate models where the best model specification has a MSFE that is less

than 10% larger than that of the other model specification. The 10% threshold is

chosen as a rough indication of the economic significance of differences in forecast

precision. Models that meet this condition are referred to as “competitive models”;

their forecasting performance is similar to that of the best model.
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Table 5.2: Sensitivity analysis for the Bańbura and Rünstler (2011) model, 1992.I–2012.IV

EA DE FR IT ES NL
MSFE

Bańbura and Rünstler (2011) model
1 factor 0.31 0.63 0.37 0.47 0.45 0.44
2 factors 0.30 0.64 0.35 0.45 0.44 0.41
3 factors 0.30 0.65 0.34 0.44 0.40 0.40
4 factors 0.30 0.65 0.34 0.43 0.38 0.40
5 factors 0.29 0.64 0.33 0.43 0.37 0.40
6 factors 0.29 0.64 0.33 0.43 0.37 0.39
7 factors 0.29 0.64 0.33 0.43 0.36 0.39
average 1-7 factors 0.30 0.64 0.34 0.44 0.40 0.41

Augmented Bańbura and Rünstler (2011) model
1 factor 0.29 0.63 0.28 0.46 0.43 0.41
2 factors 0.28 0.62 0.28 0.45 0.43 0.41
3 factors 0.28 0.62 0.28 0.44 0.41 0.41
4 factors 0.28 0.63 0.28 0.44 0.39 0.41
5 factors 0.28 0.63 0.28 0.44 0.38 0.41
6 factors 0.29 0.63 0.28 0.45 0.38 0.41
7 factors 0.29 0.63 0.28 0.45 0.38 0.40
average 1-7 factors 0.28 0.63 0.28 0.45 0.40 0.41
Notes: entries denote MSFEs. Grey cells denote models with the
lowest MSFE. Entries in bold denote MSFEs that are up to 10%
larger than that of the best model. EA: Euro area, DE: Germany,
FR: France, IT: Italy, ES: Spain, NL: the Netherlands.

Table 5.3: Sensitivity analysis imputation method for the Bräuning and Koopman (2014)
model, 1992.I–2012.IV

EA DE FR IT ES NL
MSFE

Bräuning and Koopman (2014) with EM algorithm
1 factor 0.30 0.60 0.26 0.46 0.41 0.41
2 factors 0.30 0.63 0.26 0.45 0.45 0.42
3 factors 0.31 0.65 0.26 0.45 0.48 0.43
4 factors 0.30 0.68 0.25 0.46 0.51 0.44
5 factors 0.31 0.65 0.25 0.47 0.53 0.44
6 factors 0.34 0.66 0.25 0.48 0.55 0.44
7 factors 0.37 0.69 0.24 0.49 0.56 0.43
average 1-7 factors 0.32 0.65 0.25 0.47 0.50 0.43

Bräuning and Koopman (2014) with AR(2)
1 factor 0.27 0.57 0.24 0.42 0.36 0.38
2 factors 0.26 0.61 0.23 0.41 0.35 0.38
3 factors 0.26 0.63 0.23 0.41 0.35 0.38
4 factors 0.26 0.63 0.22 0.42 0.34 0.37
5 factors 0.26 0.64 0.22 0.42 0.34 0.37
6 factors 0.26 0.64 0.22 0.43 0.34 0.36
7 factors 0.26 0.64 0.22 0.43 0.33 0.36
average 1-7 factors 0.26 0.62 0.23 0.42 0.35 0.37

Notes: entries denote MSFEs. Grey cells denote models with the
lowest MSFE. Entries in bold denote MSFEs that are up to 10%
larger than that of the best model. EA: Euro area, DE: Germany,
FR: France, IT: Italy, ES: Spain, NL: the Netherlands.
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Overall, the forecasting accuracy improves when the forecasts are based on Eq. (5.8)

, though the differences are typically small. The only exception is France, for which

the MSFE of the augmented Bańbura and Rünstler model is more than 10% smaller

than that of the original model. Based on these results, the empirical section of this

chapter will consider only the forecasts with the lagged dependent variables included

in the forecast function. Moreover, Bańbura and Rünstler (2011) reduce the rank of

the covariance matrix of the idiosyncratic component from r to q ≤ r to ensure the

smoothness of the factors. The same strategy is adopted as that described above by

averaging the forecasts obtained from the models with q = 1, . . . , r.

The Bräuning and Koopman (2014) method also requires some way of dealing with

the ragged edges of the principal components. Table 5.3 compares the forecasting

accuracies of the two options considered in Section 5.2.4: the EM algorithm and in-

terpolation via an autoregressive specification. For the euro area, France, Spain, Italy

and the Netherlands, the differences in forecasting accuracy are considerable, with the

autoregressive specification clearly being optimal for nearly all factor specifications.

For Germany, it does not make much difference to the forecasting accuracy whether

the ragged edges are dealt with by the EM algorithm or an autoregression. Thus, the

empirical results section will present outcomes based on the autoregressive solution.

5.3.4 Model selection

There are many different approaches to determining r, the number of factors in Ft.

One basic method is the scree test of Cattell (1966), which is based on a graph of

the normalized eigenvalues calculated from the set of candidate predictors. According

to this method, the point in the eigenvalue graph at which the eigenvalues begin to

level off with a slow and steady decrease is the estimate of the sufficient number of

factors. Figure 5.2 displays the scree plots for the euro area and its five largest countries,

presenting the normalized eigenvalues of the largest thirty principal components. In

general, the first principal component is able to explain 20% to 30% of the comovement

in the set of candidate predictors. For most countries, the explanatory power increases

only very slightly after the fifth or sixth principal component.

Figure 5.3 presents the correlations of the first four estimated principal components

with the matrix of candidate predictors for the euro area. The x-axis shows the candi-

date variables that correspond to the numbers in Table 5.7 in Appendix 5.A, and the

y-axis shows the correlations in percentages. The first principal component is correlated

strongly with a broad range of variables apart from prices, which is in accordance with

the high eigenvalue. This indicates that the bulk of the covariance of the candidate

predictors can be explained by the first factor. The second and third principal com-

ponents are correlated strongly with price variables, such as the harmonised index of

consumer prices (HICP), commodity prices and the oil price.
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Figure 5.2: Scree plots of normalized eigenvalues from the candidate predictors, 1992.I–

2012.IV
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1992.I–2012.IV
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The fourth principal component is correlated strongly with survey indicators. The fifth

and sixth principal components are correlated strongly with the international variables,

such as world trade, industrial production, OECD leading indicators in the US and the

UK, and the (real effective) exchange rate of the euro.

In accordance to the intuition behind the Cattell (1966) test, Bai and Ng (2002)

propose to select the number of factors by minimizing the variance of the idiosyncratic

component. Their criterion has been assessed rigorously in many studies, including

those of Bańbura and Rünstler (2011), Bernanke and Boivin (2003), Boivin and Ng

(2005) and Giannone et al. (2005). Overall, these studies have concluded that the num-

ber of factors selected from the Bai and Ng is too large, with more parsimonious models

with fewer factors being preferable for forecasting purposes. Other and modified criteria

have been proposed by Ahn and Horenstein (2013), Alessi et al. (2010) and Onatski

(2010). The different criteria for determining the number of factors are considered in

Table 5.4.3. The criterion of Bai and Ng points to the use of seven static factors for

the euro area and the individual countries, while the other tests mostly suggest smaller

numbers of factors. Thus, since the different criteria clearly do not agree on the numbers

of static factors required, the forecasts from the various models with different numbers

of factors were pooled. Chapter 3 of this thesis, Kuzin et al. (2013) and others provide

evidence that an unweighted average of the forecasts based on different factors leads to

a high forecasting accuracy at all horizons. Therefore, the forecasting comparison was

conducted using the averaged forecasts of models with one to six factors. Tables 5.8–

5.13 in Appendix 5.B present the individual forecasting results for factor models with

one to seven factors.

Table 5.4: Statistical tests for the number of static factors

Bai & Ng Onatski Alessi et al. Ahn & Horenstein
EA 7 4 4 7
DE 7 4 6 3
FR 7 7 5 2
IT 7 2 3 3
ES 7 2 5 3
NL 7 4 3 1
Notes: entries denote the number of factors from the Bai and Ng (2002),
Onatski (2010), Alessi et al. (2010) and Ahn and Horenstein (2013) test, re-
spectively. EA: Euro area, DE: Germany, FR: France, IT: Italy, ES: Spain,
NL: the Netherlands.

3 The tests are conducted over the complete sample of monthly time series, without missing values
at the beginning or and of the sample (for most countries the period 1986.1–2012.10)
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5.4 Empirical results

5.4.1 Forecasting performance using the complete sample

This section presents and discusses the forecasting accuracy of the four factor models

described in Section 5.2 relative to that of a benchmark model, which is simply an au-

toregressive model of order two, AR(2). The factor models are the principal component

model of Stock and Watson (SW), the augmented dynamic factor model of Bańbura

and Rünstler (BR), the dynamic factor model of Bańbura and Modugno (BM) and the

collapsed dynamic factor model (CFM) of Bräuning and Koopman. The forecasting

performance is analyzed for the euro area (EA) and its five largest countries, Germany

(DE), France (FR), Italy (IT), Spain (ES) and the Netherlands (NL). The forecasting

accuracy is measured by the MSFE.

Table 5.5 presents the forecasting performances of the four factor models and the

benchmark model for the euro area and the five countries for the complete quarterly

data sample of 1992-2012. The forecasts have been generated on a monthly basis for

eleven forecast horizons. Table 5.5 reports the average forecasting accuracies for the

one- and two-quarter ahead forecasts, the nowcasts and the backcasts.4 Moreover, the

MSFEs presented are averaged over model specifications with one to six factors. The

rows labeled AR(2) report the MSFEs of the benchmark model, while the rows for

the four factor models present the MSFEs relative to those of the benchmark model.

Grey cells indicate the models with the lowest MSFEs for particular forecast horizons

and countries. Entries in bold indicate models that have MSFEs that are less than

10% larger than that of the best model, and also smaller than that of the benchmark

model. The 10% threshold is chosen as a rough indication of the economic significance

of differences in forecast precision. Models that meet this condition are referred to

as “competitive models”; their forecasting performances are similar to that of the best

model. Table 5.5 also reports if the smallest MSFE is significantly smaller than those of

all other models according to the Diebold and Mariano (1995) test at a 10% significance

level. The results in Table 5.5 reveal various interesting insights.

First, the incorporation of monthly information into a factor model improves the

forecasting accuracy, especially for nowcasts and backcasts. Averaged over all forecast-

ing horizons and countries, the best models improve on the benchmark AR(2) model

by around 15%. The results also indicate that the predictions from the factor models

deteriorate for longer forecast horizons. These results confirm that factor models are

particularly suitable for generating nowcasts and backcasts, but less suitable for one-

and two-quarter ahead forecasting, confirming previous empirical findings in Chapter 3

and Bańbura and Rünstler (2011), Giannone et al. (2008) and Rünstler et al. (2009),

among others.

4 The forecast for the months within the quarters are available from the authors upon request.
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Table 5.5: Forecasting performance dynamic factor models, 1992.I–2012.IV

EA DE FR IT ES NL
MSFE

AR(2)
Backcast 0.32 0.76 0.16 0.47 0.31 0.45
Nowcast 0.39 0.78 0.21 0.53 0.35 0.49
1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53
2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56
All horizons 0.42 0.79 0.26 0.57 0.39 0.51

Relative to MSFE AR(2)
SW
Backcast 0.69 0.85 0.90 0.83 0.82 0.67
Nowcast 0.83 0.97 0.88 0.90 0.78 0.71
1Q ahead forecast 0.96 1.14 0.94 0.86 0.92 0.95
2Q ahead forecast 0.99 1.22 1.01 0.85 1.07 1.03
All horizons 0.90 1.07 0.95 0.86 0.92 0.87
BR
Backcast 0.49 0.64 1.01 0.63 1.04 0.64
Nowcast 0.57 0.74 1.12 0.69 1.06 0.68
1Q ahead forecast 0.71 0.84 1.11 0.83 0.89 0.81
2Q ahead forecast 0.80 0.91 1.09 0.87 0.96 0.97
All horizons 0.68 0.80 1.09 0.78 0.98 0.80
BM
Backcast 0.44 0.39 1.03 0.63 0.84 0.65
Nowcast 0.62 0.73 1.16 0.74 0.82 0.65
1Q ahead forecast 0.81 0.95 1.15 0.82 0.96 0.71
2Q ahead forecast 0.97 1.09 1.11 0.84 1.10 0.87
All horizons 0.76 0.83 1.12 0.78 0.95 0.73
CFM
Backcast 0.36∗ 0.57 0.77∗ 0.53∗ 0.64 0.66
Nowcast 0.55 0.83 0.84 0.70 0.75 0.61
1Q ahead forecast 0.65 0.87 0.86 0.79 0.93 0.68
2Q ahead forecast 0.76 0.88∗ 0.89∗ 0.83 0.99 0.85
All horizons 0.62∗ 0.81 0.86∗ 0.74∗ 0.86 0.71

Notes: entries denote the RMSFE for an AR(2) (in italics); for
all other models they denote the RMSFE relative to the RMSFE
of an AR(2). All forecasts averaged across model specifications
with one–six factors. Grey cells denote models with the lowest
RMSFE. Entries in bold denote models whose RMSFE is at most
10% larger than the RMSFE of the best model and smaller than
the AR(2). ∗ denotes the Diebold-Mariano test is significant at the
10% level. AR(2): autoregression of order 2, SW: Stock and Wat-
son (2002b) model, BR: augmented Bańbura and Rünstler (2011)
model, BM: Bańbura and Modugno (2014) model, CFM: Bräun-
ing and Koopman (2014) model. EA: Euro area, DE: Germany,
FR: France, IT: Italy, ES: Spain, NL: the Netherlands.
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Second, the collapsed dynamic factor model of Bräuning and Koopman (2014) displays

the highest forecasting accuracy for most countries and horizons. Averaged over all

horizons, the collapsed dynamic factor model is the best model in all countries except

for Germany, for which the model of Bańbura and Rünstler (2011) is best. However,

the collapsed dynamic factor model is still a competitive model. This is also true for the

other cases in which the collapsed dynamic factor model does not have the lowest MSFE,

with the exception of the nowcasts and backcasts for Germany. The collapsed dynamic

factor model posts the highest gains in forecasting accuracy over the benchmark model

for the euro area, with average improvements ranging from 24% for the two-quarter

ahead forecasts to 64% for the backcasts.

Third, the collapsed dynamic factor model is the only model that consistently out-

performs the benchmark model in terms of forecasting accuracy; the forecasting per-

formances of the other three factor models are rather less favorable. For example, the

augmented Bańbura and Modugno (2014) and Bańbura and Rünstler (2011) models

fail to produce lower MSFEs than the benchmark model for France for all forecast hori-

zons; the model of Stock and Watson (2002b) is unable to outperform the benchmark

model with regard to the one- and two-quarter ahead forecasts for Germany, France,

Spain and the Netherlands; the forecasts from Bańbura and Modugno (2014) are less

accurate than those from an AR(2) model for one- and two-quarter ahead forecasts, for

Germany and Spain; and the backcasts and nowcasts of Bańbura and Rünstler (2011)

are less accurate than those of the AR(2) model for Spain.

These outcomes provide empirical evidence that the predictions from dynamic factor

models are especially suitable for nowcasting and backcasting. The results also suggest

that the collapsed dynamic factor model of Bräuning and Koopman (2014) displays a

significantly greater ability to absorb monthly information than the other three dynamic

factor models that are considered in this study. It is also the only model that is able to

deliver significantly smaller MSFEs than any of the other competing models according

to the Diebold and Mariano (1995) test. The good forecasting performance of the

collapsed dynamic factor model is relatively robust to the model specification, as is

shown in Tables 5.8–5.13 in Appendix 5.B. The tables show the forecasting accuracies

for factor model specifications with one to seven factors, respectively, for all factor

models.

5.4.2 Forecasting performance during the Great Moderation

and the financial crisis

The sample also includes the period of the financial crisis, during which there was a

sharp downturn in a broad range of indicators, including manufacturing, confidence

indicators and exports. As a consequence, real GDP growth dropped sharply across all
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industrialized countries. An interesting question is whether, and to what extent, the

performances of the factor models differ between the volatile financial crisis and the

previous years, which can be characterized as a relatively stable period. Forecasting

in times of crisis clearly poses greater challenges. Hence, a comparative analysis that

focuses on these periods may be informative as to the question of which factor model

is most suitable for forecasting GDP growth. In order to determine the influence of

the financial crisis on the forecasting accuracy of the factor models, the sample is

divided into two periods: the “Great Moderation” (1992–2007), and the financial crisis

and its aftermath (2008–2012). Table 5.6 presents the outcomes of the forecasting

performances of the four factor models and the benchmark model for the euro area and

the five countries, during both periods. A comparison of these two distinct periods

points to some interesting results.

First, the prediction of GDP growth is more difficult during and after the financial

crisis than during the Great Moderation. The MSFE of the benchmark model during

and after the financial crisis is two to six times larger than that during the Great Mod-

eration, depending on the country. However, the relative improvements in forecasting

accuracy from the factor models are larger during the financial crisis, especially for

nowcasting and backcasting. For example, the relative MSFE of the collapsed dynamic

factor model in the euro area improves by 69% during the financial crisis, compared to

33% during the Great Moderation. This finding is consistent with the results obtained

in other studies; see for example Chapter 3 of this thesis, and D‘Agostino and Giannone

(2012). Both studies show that the gain in forecasting accuracy is especially sizeable

in periods of large swings in GDP and a high degree of comovement in the monthly

predictors, as was the case during the financial crisis.

Second, when averaged over all horizons, the collapsed dynamic factor model of

Bräuning and Koopman (2014) is highly competitive during the Great Moderation. In

various cases, it is able to deliver significantly smaller MSFEs than any of the competing

models according to the Diebold and Mariano (1995) test. This indicates that the

collapsed dynamic factor model is quite suitable for processing monthly information

in more quiet times. This conclusion also holds for most countries when analyzing

the forecasting performances for each forecast horizon separately. The greatest gain in

forecasting accuracy against the benchmark model was 47%, recorded for the backcasts

in the euro area. However, Spain is the exception, as the collapsed dynamic factor

model is not competitive for either nowcasting or one-quarter ahead forecasting.

Third, the collapsed factor model is still a competitive model for most countries

during and after the financial crisis, but the overall results are mixed. On average

across all forecast horizons, the collapsed dynamic factor model is a competitive model

for the euro area, and for three of the five individual countries, i.e. France, Italy and the

Netherlands. Again, Spain is an exception, as it is not very competitive. For Spain and
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Table 5.6: Forecasting performance dynamic factor models during the Great Moderation and
the financial crisis, 1992.I–2012.IV

EA DE FR IT ES NL EA DE FR IT ES NL
Great Moderation (1992.I–2007.IV) financial crisis (2008.I–2012.IV)

MSFE
AR(2)
Backcast 0.18 0.43 0.12 0.25 0.24 0.28 0.80 1.78 0.31 1.17 0.55 0.99
Nowcast 0.19 0.44 0.13 0.27 0.25 0.30 1.03 1.89 0.47 1.39 0.67 1.09
1Q ahead forecast 0.21 0.44 0.15 0.29 0.28 0.32 1.23 1.98 0.68 1.60 0.84 1.18
2Q ahead forecast 0.23 0.44 0.18 0.31 0.30 0.35 1.32 2.01 0.83 1.77 0.96 1.23
All horizons 0.20 0.44 0.15 0.28 0.27 0.32 1.12 1.93 0.60 1.51 0.77 1.13

Relative to MSFE AR(2)
SW
Backcast 0.92 1.15 1.06 1.10 1.07 0.97 0.54 0.62 0.70 0.64 0.49 0.38
Nowcast 0.94 1.10 1.00 1.02 1.06 0.90 0.77 0.87 0.78 0.82 0.44 0.55
1Q ahead forecast 1.16 1.25 1.04 0.91 1.17 0.96 0.85 1.06 0.87 0.84 0.65 0.94
2Q ahead forecast 1.21 1.34 1.09 0.93 1.25 1.02 0.87 1.13 0.95 0.80 0.90 1.05
All horizons 1.08 1.21 1.05 0.98 1.15 0.96 0.79 0.96 0.86 0.79 0.66 0.78

BR
Backcast 0.65 0.87 1.18 0.76 1.03 0.92 0.38 0.47 0.81 0.54 1.06 0.37
Nowcast 0.70 0.93 1.24 0.75 1.05 0.92 0.49 0.59 1.01 0.66 1.06 0.47
1Q ahead forecast 0.74 0.91 1.15 0.81 0.90 0.92 0.70 0.78 1.08 0.85 0.89 0.72
2Q ahead forecast 0.79 0.97 1.05 0.85 0.97 0.95 0.81 0.88 1.12 0.88 0.95 0.99
All horizons 0.73 0.92 1.14 0.80 0.98 0.93 0.64 0.71 1.05 0.77 0.97 0.68

BM
Backcast 0.74 0.76 0.96 0.84 0.96 0.88 0.22 0.11 1.11 0.48 0.68 0.44
Nowcast 0.91 1.06 1.11 0.85 0.98 0.90 0.45 0.48 1.21 0.67 0.63 0.43
1Q ahead forecast 1.10 1.21 1.15 0.97 1.20 0.89 0.65 0.77 1.15 0.73 0.72 0.56
2Q ahead forecast 1.23 1.24 1.07 1.04 1.36 0.89 0.83 0.99 1.14 0.72 0.84 0.85
All horizons 1.03 1.10 1.09 0.94 1.15 0.89 0.60 0.64 1.15 0.68 0.73 0.59

CFM
Backcast 0.53 0.74 0.96 0.64∗ 0.80 0.95 0.23 0.44 0.53 0.45 0.43 0.38
Nowcast 0.60 0.85∗ 0.98∗ 0.73 0.87 0.88 0.52 0.82 0.70 0.69 0.60 0.37
1Q ahead forecast 0.67∗ 0.93 0.91∗ 0.79 0.99 0.79 0.64 0.83 0.83 0.80 0.85 0.59
2Q ahead forecast 0.80 0.97 0.89∗ 0.84 0.93 0.81∗ 0.74 0.82∗ 0.90 0.82 1.05 0.88
All horizons 0.67∗ 0.88∗ 0.93∗ 0.77∗ 0.91∗ 0.85 0.59 0.76 0.80 0.73 0.81 0.58

Notes: entries denote the RMSFE for an AR(2) (in italics); for all other models they denote the RMSFE relative
to the RMSFE of an AR(2). All forecasts averaged across model specifications with one–six factors. Grey cells
denote models with the lowest RMSFE. Entries in bold denote models whose RMSFE is at most 10% larger than
the RMSFE of the best model and smaller than the AR(2). ∗ denotes the Diebold-Mariano test is significant at the
10% level. AR(2): autoregression of order 2, SW: Stock and Watson (2002b) model, BR: augmented Bańbura and
Rünstler (2011) model, BM: Bańbura and Modugno (2014) model, CFM: Bräuning and Koopman (2014) model. EA:
Euro area, DE: Germany, FR: France, IT: Italy, ES: Spain, NL: the Netherlands.
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Germany, the forecasts from the models of Bańbura and Modugno (2014) and Stock

and Watson (2002b) outperform those from the other models. Finally, the forecasting

accuracy of the Stock and Watson (2002b) model is low during the Great Moderation,

even relative to the benchmark model.

5.5 Conclusion

This chapter has studied the use of factor models for forecasting the growth rate of

real GDP for the euro area and its five largest countries, i.e. Germany, France, Italy,

Spain and the Netherlands. Four model approaches were considered, all relying on the

use of dynamic factors, namely those of Bräuning and Koopman (2014), Doz et al.

(2011, 2012), and Stock and Watson (2002b). The common factors for the euro area

and the five countries are computed from a harmonized monthly dataset of 52 variables.

The full quarterly sample ranges from the first quarter of 1992 to the fourth quarter

of 2012. This sample length allows making a distinction between the factor models’

performances during the volatile financial crisis and the more tranquil years before.

The model of Doz et al. (2011), as implemented by Bańbura and Rünstler (2011), was

modified by introducing more autoregressive terms into the model for the target variable

(the GDP growth rate). Furthermore, the collapsed dynamic factor model of Bräuning

and Koopman (2014) was modified by considering the use of an autoregressive model

of order two, AR(2), for dealing with the ragged edges at the beginning and the end of

the estimation period.

The empirical findings can be summarized in the following four points. (i) The

monthly factors extract information that is valuable for the short-term forecasting of

real GDP growth. The largest forecasting accuracy gains are obtained for nowcasting

and backcasting. Overall, the monthly factors are especially useful for forecasting the

corresponding quarter. (ii) The gains in forecasting accuracy in the period during and

after the financial crisis are larger than those during the Great Moderation period.

This finding underscores the usefulness of factor models for forecasting the growth

rate of real GDP during volatile periods. (iii) The collapsed dynamic factor approach

of Bräuning and Koopman (2014) has been shown to produce the highest forecasting

accuracy overall for the euro area and its five largest countries. However, there is a

marked contrast between the period of the Great Moderation and the period during

and after the financial crisis. During the Great Moderation, the model of Bräuning and

Koopman (2014) has the highest forecasting accuracy for most forecasting horizons and

most countries considered. During and after the financial crisis, the relative forecasting

accuracy among the factor models considered is much more diversified, although that

of Bräuning and Koopman (2014) is still the most competitive one. (iv) Interpolating

missing values by using an AR(2) model in the Bräuning and Koopman (2014) model
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has been shown to improve the forecasting accuracy for most countries considered. The

inclusion of an autoregressive term of the target variable GDP in the Bańbura and

Rünstler (2011) model improves its forecasting accuracy slightly, although the gains

are generally small.
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Appendix

5.A Dataset

The main data source is the ECB statistical datawarehouse. The world trade series

are taken from the world trade monitor of the Netherlands Bureau of Policy Analysis

(CPB). Since these series start in 1991, the series have been backdated using the world

trade data from the International Monetary Fund (IMF). Time series on industrial

production for the US are obtained from the board of governors of the Federal Reserve

System. The commodity prices and most of the financial market indicators are taken

from Thomson Reuters datastream. The survey data are provided by the European

Commission (EC) while the purchasing managers indices for US and the UK are from

Markit services.

The quarterly GDP series for Germany, France, Italy, Spain and the Netherlands are

taken from the ECB statistical datawarehouse. A synthetic GDP series was constructed

for the euro area using the database in the ECB’s area wide model supplemented with

data from the ECB statistical datawarehouse.

Table 5.7: Description monthly dataset

Nr. Variable Transformation Starting year
sa ln. dif. EA DE FR IT ES NL

I. Production & sales (N=15)
1 World Trade 1 1 1 ‘77 ‘77 ‘77 ‘77 ‘77 ‘77
2 Ind. prod. US 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
3 Ind. prod. UK 1 1 1 ‘68 ‘68 ‘68 ‘68 ‘68 ‘68
4 Ind. prod. (excl. constr.) 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘61 ‘62
5 Ind. prod., consumer goods 2 1 1 ‘80 ‘80 ‘63 ‘60 ‘65 ‘90
6 Ind. prod., energy 2 1 1 ‘80 ‘91 ‘63 ‘80 ‘80 ‘00
7 Ind. prod., interm. goods 1 1 1 ‘60 ‘80 ‘63 ‘77 ‘65 ‘00
8 Ind. prod., capital goods 1 1 1 ‘60 ‘80 ‘63 ‘77 ‘65 ‘70
9 Ind. prod., manufacturing 2 1 1 ‘60 ‘78 ‘60 ‘71 ‘80 ‘70
10 Ind. prod., construction 2 1 1 ‘85 ‘78 ‘85 ‘95 ‘88 ‘85
11 Passenger car registration 1 1 1 ‘77 ‘77 ‘77 ‘77 ‘77 ‘79
12 Retail trade volume 2 1 1 ‘70 ‘68 ‘70 ‘90 ‘95 ‘60
13 Unemployment rate 1 0 1 ‘83 ‘62 ‘83 ‘83 ‘86 ‘83
14 Unemployment rate UK 1 0 1 ‘83 ‘83 ‘83 ‘83 ‘83 ‘83
15 Unemployment rate US 1 0 1 ‘83 ‘83 ‘83 ‘83 ‘83 ‘83

II. Prices (N=9)
16 Total HICP-index 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
17 Core HICP-index 2 1 2 ‘62 ‘62 ‘60 ‘60 ‘76 ‘61
18 Producer prices 2 1 2 ‘81 ‘60 ‘62 ‘70 ‘60 ‘60
19 Commod. prices, tot. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
20 Commod. prices, ind. mat. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
21 Commod. prices, food-bev. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

Continued on next page. . .

 http://sdw.ecb.europa.eu
 http://www.cpb.nl/en/world-trade-monitor
 http://www.federalreserve.gov/releases/g17/Current
 http://www.federalreserve.gov/releases/g17/Current
http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/datastream-macroeconomic-analysis.html
 http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
 http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
 http://www.markit.com/en/products/research-and-reports/pmis/pmi.page
 http://sdw.ecb.europa.eu
 http://www.eabcn.org/data/awm/index.htm
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Table 5.7 – Continued from previous page...
Nr. Variable Transformation Starting year

sa ln. dif. EA DE FR IT ES NL

22 Commod. prices, metals 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
23 Commod. prices, energy 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
24 Oil price 2 1 2 ‘85 ‘85 ‘85 ‘85 ‘85 ‘85

III. Monetary & financial indicators (N=14)
25 M1 2 1 1 ‘70 ‘80 ‘80 ‘80 ‘80 ‘80
26 M3 2 1 1 ‘70 ‘70 ‘70 ‘70 ‘70 ‘70
27 Int. rate mortgage 2 0 1 ‘03 ‘82 ‘80 ‘95 ‘84 ‘80
28 3 month interest rate 2 0 1 ‘94 ‘60 ‘64 ‘60 ‘60 ‘60
29 10 year gov. bond yield 2 0 1 ‘70 ‘60 ‘70 ‘60 ‘80 ‘60
30 Headline stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73
31 Basic material-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73
32 Industrials stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73
33 Cons. goods stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73
34 Cons. service stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73
35 Financials stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73
36 Loans to the private sector 2 1 1 ‘80 ‘80 ‘80 ‘83 ‘80 ‘82
37 Exchange rate, $ per EUR 2 1 1 ‘74 ‘74 ‘74 ‘74 ‘74 ‘74
38 Real eff. exchange rate 2 1 1 ‘70 ‘70 ‘70 ‘70 ‘70 ‘70

IV. Surveys (N=14)
39 Ind. conf. - headline 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85
40 Ind. conf. - orders 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85
41 Ind. conf. - stocks 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85
42 Ind. conf. - prod. expect. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85
43 Ind. conf. - empl. expect. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85
44 Cons. conf. - headline 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85
45 Cons. conf. - exp. fin. sit. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85
46 Cons. conf. - exp. ec. sit. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85
47 Cons. conf. - exp. unemp. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85
48 Cons. conf. - exp. maj. pur. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85
49 PMI United States 1 0 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
50 OECD leading ind. UK 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
51 OECD leading ind. US 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60
52 OECD comp. leading ind. 1 1 1 ‘70 ‘61 ‘70 ‘62 ‘76 ‘61
Notes: entries denote variable number, name, category, transformation and starting year

for each country in the dataset. Sa: 1= seasonal adjustment at the source; 2= seasonal
adjustment by US Census X-12 method. Ln.: 0= no logarithm; 1= logarithm. Dif.: 1=
first difference; 2= second difference. Country: EA: Euro area; DE: Germany; FR: France;
IT: Italy; ES: Spain; NL: Netherlands.

5.B Number of factors in dynamic factor models

Tables 5.8–5.13 show the forecasting performance for the factor models considered in

the main text of Chapter 5 with one to five and seven factors, respectively.
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Table 5.8: Forecasting performance dynamic factor models, 1992.I–2012.IV, one factor

EA DE FR IT ES NL
MSFE

AR(2)
Backcast 0.32 0.76 0.16 0.47 0.31 0.45
Nowcast 0.39 0.78 0.21 0.53 0.35 0.49
1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53
2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56
All horizons 0.42 0.79 0.26 0.57 0.39 0.51

Relative to MSFE AR(2)
SW
Backcast 0.64 0.79 0.77 0.72 0.83 0.74
Nowcast 0.78 0.92 0.78 0.87 0.73 0.79
1Q ahead forecast 0.88 1.08 0.88 0.90 0.87 0.90
2Q ahead forecast 0.89 1.12 0.98 0.88 0.98 0.96
All horizons 0.83 1.00 0.88 0.86 0.86 0.86
BR
Backcast 0.49 0.63 1.00 0.64 1.11 0.62
Nowcast 0.56 0.69 1.13 0.73 1.28 0.69
1Q ahead forecast 0.74 0.85 1.15 0.86 1.05 0.84
2Q ahead forecast 0.82 0.92 1.11 0.88 1.03 0.97
All horizons 0.69 0.79 1.12 0.80 1.11 0.81
BM
Backcast 0.74 0.86 1.29 0.86 1.26 0.77
Nowcast 0.75 0.96 1.33 0.87 1.11 0.79
1Q ahead forecast 0.89 1.06 1.22 0.86 1.20 0.81
2Q ahead forecast 1.01 1.17 1.10 0.83 1.24 0.85
All horizons 0.87 1.03 1.21 0.85 1.20 0.81
CFM
Backcast 0.49 0.57 0.97 0.58 0.87 0.69
Nowcast 0.52 0.63 0.98 0.64 0.88 0.67
1Q ahead forecast 0.65 0.76 0.92 0.77 0.92 0.74
2Q ahead forecast 0.79 0.87 0.95 0.83 0.95 0.86
All horizons 0.64 0.73 0.95 0.73 0.91 0.75

Notes: entries denote the RMSFE for an AR(2) (in italics); for
all other models they denote the RMSFE relative to the RMSFE
of an AR(2). All forecasts with model specification with one fac-
tor. Grey cells denote models with the lowest RMSFE. Entries in
bold denote models whose RMSFE is at most 10% larger than the
RMSFE of the best model and smaller than the AR(2). AR(2):
autoregression of order 2, SW: Stock and Watson (2002b) model,
BR: augmented Bańbura and Rünstler (2011) model, BM: Bańbura
and Modugno (2014) model, CFM: Bräuning and Koopman (2014)
model. EA: Euro area, DE: Germany, FR: France, IT: Italy, ES:
Spain, NL: the Netherlands.
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Table 5.9: Forecasting performance dynamic factor models, 1992.I–2012.IV, two factors

EA DE FR IT ES NL
MSFE

AR(2)
Backcast 0.32 0.76 0.16 0.47 0.31 0.45
Nowcast 0.39 0.78 0.21 0.53 0.35 0.49
1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53
2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56
All horizons 0.42 0.79 0.26 0.57 0.39 0.51

Relative to MSFE AR(2)
SW
Backcast 0.67 0.81 0.81 0.75 0.82 0.69
Nowcast 0.80 0.93 0.79 0.88 0.74 0.76
1Q ahead forecast 0.89 1.10 0.89 0.90 0.84 0.94
2Q ahead forecast 0.89 1.13 0.97 0.88 0.98 0.99
All horizons 0.84 1.01 0.89 0.87 0.86 0.87
BR
Backcast 0.49 0.62 1.01 0.61 1.11 0.64
Nowcast 0.55 0.72 1.13 0.69 1.26 0.68
1Q ahead forecast 0.70 0.83 1.14 0.84 1.03 0.81
2Q ahead forecast 0.80 0.91 1.11 0.88 1.02 0.96
All horizons 0.66 0.79 1.11 0.78 1.09 0.79
BM
Backcast 0.83 0.82 1.34 0.87 1.19 0.73
Nowcast 0.91 0.95 1.40 0.87 1.06 0.75
1Q ahead forecast 1.06 1.12 1.31 0.88 1.18 0.83
2Q ahead forecast 1.18 1.25 1.18 0.86 1.26 0.91
All horizons 1.03 1.06 1.29 0.87 1.18 0.82
CFM
Backcast 0.46 0.60 0.87 0.57 0.77 0.70
Nowcast 0.51 0.73 0.91 0.62 0.86 0.68
1Q ahead forecast 0.63 0.81 0.89 0.76 0.95 0.72
2Q ahead forecast 0.78 0.88 0.92 0.83 0.97 0.85
All horizons 0.62 0.77 0.91 0.72 0.91 0.75

Notes: entries denote the RMSFE for an AR(2) (in italics); for
all other models they denote the RMSFE relative to the RMSFE
of an AR(2). All forecasts averaged across model specifications
with one–two factors. Grey cells denote models with the lowest
RMSFE. Entries in bold denote models whose RMSFE is at most
10% larger than the RMSFE of the best model and smaller than
the AR(2). ∗ denotes the Diebold-Mariano test is significant at the
10% level. AR(2): autoregression of order 2, SW: Stock and Wat-
son (2002b) model, BR: augmented Bańbura and Rünstler (2011)
model, BM: Bańbura and Modugno (2014) model, CFM: Bräuning
and Koopman (2014) model. EA: Euro area, DE: Germany, FR:
France, IT: Italy, ES: Spain, NL: the Netherlands.
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Table 5.10: Forecasting performance dynamic factor models, 1992.I–2012.IV, three factors

EA DE FR IT ES NL
MSFE

AR(2)
Backcast 0.32 0.76 0.16 0.47 0.31 0.45
Nowcast 0.39 0.78 0.21 0.53 0.35 0.49
1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53
2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56
All horizons 0.42 0.79 0.26 0.57 0.39 0.51

Relative to MSFE AR(2)
SW
Backcast 0.67 0.82 0.82 0.76 0.80 0.71
Nowcast 0.79 0.94 0.80 0.88 0.77 0.78
1Q ahead forecast 0.89 1.12 0.89 0.89 0.86 0.94
2Q ahead forecast 0.90 1.16 0.96 0.87 1.01 1.00
All horizons 0.84 1.03 0.89 0.86 0.87 0.88
BR
Backcast 0.49 0.63 1.00 0.61 1.08 0.65
Nowcast 0.56 0.72 1.12 0.68 1.17 0.70
1Q ahead forecast 0.70 0.83 1.13 0.83 0.97 0.82
2Q ahead forecast 0.79 0.91 1.10 0.87 0.99 0.95
All horizons 0.66 0.79 1.10 0.77 1.04 0.80
BM
Backcast 0.70 0.63 1.31 0.83 1.09 0.72
Nowcast 0.84 0.84 1.44 0.86 1.00 0.75
1Q ahead forecast 0.99 1.05 1.35 0.90 1.14 0.85
2Q ahead forecast 1.09 1.17 1.22 0.86 1.24 0.94
All horizons 0.94 0.95 1.32 0.87 1.13 0.83
CFM
Backcast 0.44 0.60 0.88 0.54 0.75 0.70
Nowcast 0.52 0.77 0.91 0.65 0.85 0.66
1Q ahead forecast 0.64 0.84 0.89 0.77 0.97 0.71
2Q ahead forecast 0.77 0.88 0.92 0.82 0.98 0.85
All horizons 0.62 0.79 0.90 0.72 0.91 0.74

Notes: entries denote the RMSFE for an AR(2) (in italics); for
all other models they denote the RMSFE relative to the RMSFE
of an AR(2). All forecasts averaged across model specifications
with one–three factors. Grey cells denote models with the lowest
RMSFE. Entries in bold denote models whose RMSFE is at most
10% larger than the RMSFE of the best model and smaller than
the AR(2). ∗ denotes the Diebold-Mariano test is significant at the
10% level. AR(2): autoregression of order 2, SW: Stock and Wat-
son (2002b) model, BR: augmented Bańbura and Rünstler (2011)
model, BM: Bańbura and Modugno (2014) model, CFM: Bräuning
and Koopman (2014) model. EA: Euro area, DE: Germany, FR:
France, IT: Italy, ES: Spain, NL: the Netherlands.
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Table 5.11: Forecasting performance dynamic factor models, 1992.I–2012.IV, four factors

EA DE FR IT ES NL
MSFE

AR(2)
Backcast 0.32 0.76 0.16 0.47 0.31 0.45
Nowcast 0.39 0.78 0.21 0.53 0.35 0.49
1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53
2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56
All horizons 0.42 0.79 0.26 0.57 0.39 0.51

Relative to MSFE AR(2)
SW
Backcast 0.68 0.85 0.87 0.77 0.77 0.70
Nowcast 0.82 0.95 0.85 0.87 0.76 0.78
1Q ahead forecast 0.92 1.12 0.93 0.88 0.85 0.94
2Q ahead forecast 0.94 1.18 0.99 0.85 1.03 1.00
All horizons 0.87 1.04 0.93 0.85 0.87 0.88
BR
Backcast 0.49 0.64 1.00 0.62 1.05 0.65
Nowcast 0.56 0.73 1.12 0.68 1.11 0.69
1Q ahead forecast 0.70 0.83 1.12 0.83 0.94 0.81
2Q ahead forecast 0.79 0.91 1.10 0.87 0.98 0.96
All horizons 0.66 0.79 1.10 0.77 1.01 0.80
BM
Backcast 0.58 0.49 1.23 0.75 1.02 0.69
Nowcast 0.74 0.77 1.39 0.82 0.96 0.70
1Q ahead forecast 0.92 1.03 1.32 0.89 1.13 0.79
2Q ahead forecast 1.05 1.15 1.20 0.86 1.21 0.92
All horizons 0.87 0.90 1.28 0.84 1.10 0.79
CFM
Backcast 0.39 0.59 0.83 0.53 0.70 0.70
Nowcast 0.52 0.79 0.87 0.67 0.79 0.65
1Q ahead forecast 0.64 0.86 0.87 0.78 0.95 0.70
2Q ahead forecast 0.76 0.88 0.90 0.82 0.99 0.85
All horizons 0.62 0.80 0.87 0.73 0.89 0.73

Notes: entries denote the RMSFE for an AR(2) (in italics); for
all other models they denote the RMSFE relative to the RMSFE
of an AR(2). All forecasts averaged across model specifications
with one–four factors. Grey cells denote models with the lowest
RMSFE. Entries in bold denote models whose RMSFE is at most
10% larger than the RMSFE of the best model and smaller than
the AR(2). ∗ denotes the Diebold-Mariano test is significant at the
10% level. AR(2): autoregression of order 2, SW: Stock and Wat-
son (2002b) model, BR: augmented Bańbura and Rünstler (2011)
model, BM: Bańbura and Modugno (2014) model, CFM: Bräuning
and Koopman (2014) model. EA: Euro area, DE: Germany, FR:
France, IT: Italy, ES: Spain, NL: the Netherlands.
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Table 5.12: Forecasting performance dynamic factor models, 1992.I–2012.IV, five factors

EA DE FR IT ES NL
MSFE

AR(2)
Backcast 0.32 0.76 0.16 0.47 0.31 0.45
Nowcast 0.39 0.78 0.21 0.53 0.35 0.49
1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53
2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56
All horizons 0.42 0.79 0.26 0.57 0.39 0.51

Relative to MSFE AR(2)
SW
Backcast 0.69 0.84 0.90 0.79 0.75 0.69
Nowcast 0.84 0.96 0.88 0.87 0.76 0.75
1Q ahead forecast 0.94 1.12 0.95 0.86 0.89 0.95
2Q ahead forecast 0.98 1.19 1.00 0.84 1.07 1.02
All horizons 0.89 1.05 0.95 0.85 0.89 0.88
BR
Backcast 0.49 0.64 1.01 0.62 1.04 0.64
Nowcast 0.56 0.73 1.12 0.68 1.07 0.69
1Q ahead forecast 0.70 0.83 1.11 0.83 0.91 0.81
2Q ahead forecast 0.80 0.91 1.09 0.87 0.97 0.96
All horizons 0.67 0.79 1.09 0.77 0.99 0.80
BM
Backcast 0.50 0.42 1.19 0.68 0.91 0.65
Nowcast 0.69 0.75 1.35 0.79 0.87 0.66
1Q ahead forecast 0.88 0.98 1.29 0.87 1.02 0.73
2Q ahead forecast 1.03 1.12 1.20 0.85 1.14 0.89
All horizons 0.83 0.86 1.26 0.82 1.00 0.75
CFM
Backcast 0.37 0.58 0.79 0.53 0.68 0.68
Nowcast 0.54 0.82 0.85 0.69 0.78 0.64
1Q ahead forecast 0.65 0.87 0.86 0.79 0.94 0.69
2Q ahead forecast 0.76 0.88 0.89 0.83 0.99 0.85
All horizons 0.62 0.81 0.86 0.74 0.88 0.72

Notes: entries denote the RMSFE for an AR(2) (in italics); for
all other models they denote the RMSFE relative to the RMSFE
of an AR(2). All forecasts averaged across model specifications
with one–five factors. Grey cells denote models with the lowest
RMSFE. Entries in bold denote models whose RMSFE is at most
10% larger than the RMSFE of the best model and smaller than
the AR(2). ∗ denotes the Diebold-Mariano test is significant at the
10% level. AR(2): autoregression of order 2, SW: Stock and Wat-
son (2002b) model, BR: augmented Bańbura and Rünstler (2011)
model, BM: Bańbura and Modugno (2014) model, CFM: Bräuning
and Koopman (2014) model. EA: Euro area, DE: Germany, FR:
France, IT: Italy, ES: Spain, NL: the Netherlands.
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Table 5.13: Forecasting performance dynamic factor models, 1992.I–2012.IV, seven factors

EA DE FR IT ES NL
MSFE

AR(2)
Backcast 0.32 0.76 0.16 0.47 0.31 0.45
Nowcast 0.39 0.78 0.21 0.53 0.35 0.49
1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53
2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56
All horizons 0.42 0.79 0.26 0.57 0.39 0.51

Relative to MSFE AR(2)
SW
Backcast 0.70 0.86 0.90 0.86 0.88 0.68
Nowcast 0.83 0.99 0.89 0.90 0.77 0.71
1Q ahead forecast 0.95 1.17 0.94 0.86 0.91 0.95
2Q ahead forecast 0.99 1.25 1.02 0.85 1.08 1.07
All horizons 0.90 1.09 0.95 0.87 0.93 0.88
BR
Backcast 0.49 0.65 1.01 0.63 1.04 0.63
Nowcast 0.57 0.74 1.12 0.70 1.04 0.67
1Q ahead forecast 0.72 0.84 1.11 0.83 0.89 0.81
2Q ahead forecast 0.81 0.92 1.09 0.87 0.96 0.97
All horizons 0.68 0.80 1.09 0.78 0.97 0.79
BM
Backcast 0.39 0.39 0.99 0.59 0.79 0.65
Nowcast 0.58 0.72 1.13 0.70 0.78 0.65
1Q ahead forecast 0.77 0.94 1.13 0.78 0.91 0.70
2Q ahead forecast 0.94 1.08 1.12 0.83 1.07 0.86
All horizons 0.72 0.82 1.11 0.75 0.91 0.73
CFM
Backcast 0.34 0.56 0.75 0.53 0.63 0.64
Nowcast 0.56 0.84 0.83 0.71 0.73 0.60
1Q ahead forecast 0.66 0.88 0.87 0.80 0.91 0.67
2Q ahead forecast 0.76 0.88 0.90 0.83 0.99 0.85
All horizons 0.62 0.81 0.86 0.75 0.85 0.70

Notes: entries denote the RMSFE for an AR(2) (in italics); for
all other models they denote the RMSFE relative to the RMSFE
of an AR(2). All forecasts averaged across model specifications
with one–seven factors. Grey cells denote models with the lowest
RMSFE. Entries in bold denote models whose RMSFE is at most
10% larger than the RMSFE of the best model and smaller than
the AR(2). ∗ denotes the Diebold-Mariano test is significant at the
10% level. AR(2): autoregression of order 2, SW: Stock and Wat-
son (2002b) model, BR: augmented Bańbura and Rünstler (2011)
model, BM: Bańbura and Modugno (2014) model, CFM: Bräuning
and Koopman (2014) model. EA: Euro area, DE: Germany, FR:
France, IT: Italy, ES: Spain, NL: the Netherlands.



Chapter 6

Summary and conclusion

It is well documented that forecasters around the world failed to forecast the depth

and duration of the financial crisis of 2008–2009. Indeed, even ascertaining the current

state of the economy is a challenging task. A key indicator of the state of the econ-

omy is the growth rate of real gross domestic product (GDP), which is available on

a quarterly basis only and subject to a substantial publication delay. Most countries

publish an initial estimate of quarterly GDP around six weeks after the end of a quarter.

The initial GDP estimate can be subject to substantial revisions, as more information

becomes available to statistical offices over time. Fortunately, there is a lot of statisti-

cal information related to economic activity that is published on a more frequent and

timely basis. This information includes data on industrial production, unemployment,

consumer confidence, stock markets and prices of goods and services. The forecasting

literature has recently developed several statistical approaches to exploit this poten-

tially very large information set in order to improve the assessment of real GDP growth

in the adjacent quarters. Examples are bridge equations (BEQ), factor models, mixed-

data sampling regression models (MIDAS) and mixed-frequency vector autoregressive

(MFVAR) models. These so-called “nowcasting” models differ in their approach to the

practical problems of how to handle a large-scale information set and the fact that the

auxiliary variables are observed at different frequencies and with different publication

lags.

Apart from model-based forecasts, practitioners can also take advantage of published

forecasts made by professional analysts. From a practical point of view, such forecasts

are cheap and easy to use. Moreover, as an expression of the “wisdom of crowds”,

they may reflect much more information than the statistical information set, which

is inevitably limited. So which model should practitioners use, and how should they

incorporate the forecasts of professional analysts? This is not a trivial question. An

accurate assessment of GDP growth in the adjacent quarters is essential as a starting

point for the medium-term forecasts of macro-economic models. The ranking of the

different approaches to forecasting GDP growth in the adjacent quarters and the extent
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to which this ranking varies with the prediction horizon or economic circumstances has

to be determined by empirical analysis. On these issues the jury is still out, as large-

scale comparative studies are scarce.

This dissertation is motivated by this gap in the existing literature and has made

the following contributions to the literature: Firstly, it provides new insights from a

large-scale comparative study of the current generation short-term forecasting models.

Secondly, new evidence is presented on the usefulness of the quarterly forecasts of

professional analysts by constructing a new database of these forecasts for the seven

most important industrialized countries (G7), the euro area, Spain and the Netherlands.

Lastly, it presents several modifications to the current generation short-term forecasting

models. The remainder of this chapter summarizes the main findings of this dissertation

and discusses possible avenues for future research.

Chapter 2 provides new evidence on the forecasting performance of statistical lin-

ear models and professional analysts for the Netherlands over the period 1995–2010.

Furthermore, it is examined whether the forecasts of professionals could have enhanced

the forecasts of the mechanical models. Chapter 3 enriches the analysis of Chapter 2

in two directions. Firstly, the number of countries is extended to the euro area and its

five largest countries (Germany, France, Italy, Spain and the Netherlands). Secondly,

the number of short-term forecasting models is increased from four to twelve. These

extensions add robustness to the outcomes of the forecasting model “horse race” in

Chapter 2. In addition, the proposed extensions can shed new light on the issue as

to which model features are especially valuable for short-term forecasting. Chapter 4

addresses a new question within the empirical literature on nowcasting, i.e. whether

predictions by analysts are able to improve GDP forecasts generated by statistical

procedures in a truly real-time context. Based on the relatively good forecasting per-

formance of the dynamic factor model in the previous chapters and the widespread use

of this nowcasting model amongst practitioners, Chapter 5 presents an analysis on the

most appropriate specification of the dynamic factor model.

One of the main conclusions of this dissertation is that employing factor analysis

to summarize the available monthly information clearly delivers better results than

pooling single-indicator models. The dynamic factor model (DFM) displays the best

forecasting capabilities overall. Its ability to incorporate more than one factor, and

thus more information, is key to this result. Factor-augmented MFVAR and MIDAS

models produce more accurate one-quarter ahead forecasts due to their richer dynamic

specification, but this advantage is limited to the period following the financial crisis.

Moreover, it is important that a model uses all available monthly information and

allows for autoregressive terms in the forecasting equation. All of these effects are more

pronounced during the crisis period, implying that the cost of employing a suboptimal

forecasting model is larger in periods of high volatility. The BVAR is the best quarterly
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model. It performs quite well for Germany, the Netherlands and Spain in the more

stable period of the Great Moderation. This finding suggest that Bayesian estimation

is a fundamentally different way of extracting information from a large dataset, which

may deliver benefits, even if the model makes inefficient use of the available monthly

information.

The scope for improving GDP forecasts by combining the “views” of various statisti-

cal models is rather limited in economic terms. This is particularly true during a volatile

period when a reliable assessment of the current economic situation and the short-term

prospect is most needed, unfortunately. The forecasts of professional analysts, which

contain judgmental elements, appear to be a different category. The forecasting ability

of analysts remarkably improves after the financial crisis, making them a tough com-

petitor for the mechanical models since 2008. In the stable pre-crisis period, the DFM

tends to outperform professional analysts. But in the volatile post-crisis period, newly

released forecasts of professional analysts for the current and next quarter are superior

to the DFM. This new insight is in line with research that suggests that analysts pay

more attention and devote more effort to forecasting in volatile times. The results also

suggests that the value of subjective insights of professional analysts is greater when

there are at least some data available on the pertaining quarter. Another finding is

that the relative forecasting advantage of professional analysts declines as their fore-

casts age. This is related to the fact that the DFM is able to fully exploit all newly

released monthly data. However, combining the forecasts of professional analysts and

the DFM delivers sizable gains in forecasting ability of statistical models for most coun-

tries, even when the forecasts of analysts are somewhat dated. A final insight from this

thesis is that it is infeasible to determine the optimal rule for combining the forecasts of

professional analysts and the DFM in real-time. Overall, using a simple average of the

various combination rules provides the best hedge against misspecification and instabil-

ity. The main conclusion from studying different dynamic factor model specifications is

that the recently proposed collapsed dynamic factor model has the edge over the other

factor models considered. This conclusion holds both before and during and after the

financial crisis, for most countries and for most forecasting horizons. The findings in

this thesis may be useful to policy makers, financial analysts and economic agents, as

information on where the economy stands and is heading in the short run is of crucial

importance.

Based on the results in this dissertation, several promising avenues for future re-

search can be distinguished. Firstly, considering the relatively high forecasting accuracy

of the quarterly Bayesian VAR model in Chapter 3, more research is needed on mixed-

frequency Bayesian VAR models, as these could develop into viable and practical alter-

natives to factor models. Secondly, a relevant issue is finding ways to incorporate more

than one factor into the MIDAS model to improve its capabilities for nowcasting and
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backcasting. Thirdly, more research is needed on making statistical procedures robust

to extreme observations and structural breaks in the data generating process. Fourthly,

unveiling the black-box nature of the forecasting process of professional analysts could

provide important insights into which type of models they use, what indicators they use

and how and when they add judgment to their forecasts. A final promising topic for

future research is to investigate the usability of “big-data” sources for nowcasting GDP

growth. Current research indicates that information on search queries and on-line user

activity can potentially be helpful, but only for a limited number of indicators, such as:

unemployment, housing prices and household consumption. New big-data sources such

as scanner data, data on traffic intensities and payment card data have the potential

to help econometricians model and forecast a broader range of indicators.

The new insights in this dissertation and the possible avenues for future research

outlined above can hopefully contribute to keeping short-term forecasting the exciting

research area it currently is.



Samenvatting (Summary in Dutch)

Je kunt de dingen pas voorspellen als ze hebben plaatsgevonden. Deze gevleugelde

uitspraak van de Franse schrijver Ionesco is ook van toepassing op de financiële crisis

van 2008–2009. Voor de meeste economen kwam de abrupte economische krimp bij

aanvang van de crisis als een volslagen verrassing.

Ook het bepalen van de huidige stand van de economie is voor beleidsmakers een

uitdagende taak. Dit komt doordat het bruto binnenlands product (BBP) –dat de

bestedingen van alle economische actoren bij binnenlandse ondernemingen meet– alleen

op kwartaalbasis en met een behoorlijke publicatievertraging beschikbaar komt. Zo

werd de sterke krimp van de Nederlandse economie in het eerste kwartaal van 2009

pas halverwege mei –zes weken na afloop van het kwartaal– door het Centraal Bureau

voor de Statistiek (CBS) gepubliceerd. Beleidsmakers beschikken wel over een grote

hoeveelheid aan tijdiger en frequenter gepubliceerde indicatoren die een deel van de

economie beschrijven, zoals de industriële productie, het werkloosheidspercentage, de

inflatie en het sentiment onder consumenten en bedrijven. Het is echter geen sinecure

deze maandelijkse stroom aan informatie te vertalen naar een inschatting van de BBP-

groei. De eerste modelmatige uitdaging is dat de publicatiefrequentie van het BBP en

de indicatoren verschilt. Het BBP is uitsluitend op kwartaalbasis beschikbaar, terwijl

de meeste indicatoren een maandfrequentie hebben. Een tweede uitdaging is dat de

maandindicatoren verschillende publicatievertragingen hebben. Zo is de informatie van

financiële markten na afloop van een maand direct beschikbaar, maar wordt de groei van

de industriële productie pas zes weken na afloop van een maand gepubliceerd. Gegeven

deze uitdagingen is het de vraag hoe een beleidsmaker optimaal gebruik kan maken van

de continue stroom aan indicatoren om de BBP-groei te voorspellen. Een benadering

is gebruik te maken van een statistisch model. Hierin valt veel te kiezen. De laatste

jaren is namelijk een groot aantal econometrische zogenoemde ‘nowcasting’ modellen

ontwikkeld die –elk op hun eigen wijze– de stroom aan maandelijkse informatie vertalen

naar een inschatting van de BBP-groei in de nabije kwartalen. Een andere benadering is

gebruik te maken van de gepubliceerde voorspellingen van professionele analisten. Deze

voorspellingen vormen voor de beleidsmaker een eenvoudig en goedkoop alternatief voor

het ontwikkelen en onderhouden van een (ingewikkeld) statistisch model. Voordeel is

ook dat analisten gebruik kunnen maken van meer informatie dan de indicatoren die zijn
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opgenomen in een mechanisch statistisch model. Welke benadering leidt tot de beste

inschatting van de BBP-groei is een empirische kwestie, waarover tot op heden geen

uitsluitsel bestaat. Dit komt doordat de bestaande studies meestal een klein aantal

landen of modellen betreft. Bovendien hebben de meeste studies betrekking op de

periode vóór de recente financiële crisis. Dit is een gemis omdat het voor beleidsmakers

juist dan cruciaal is te beschikken over een accurate inschatting van de BBP-groei. Tot

slot is weinig bekend over de wijze waarop beleidsmakers de voorspelling van modellen

en professionele analisten in de praktijk zouden kunnen combineren om de BBP-groei

nauwkeuriger te voorspellen.

Dit proefschrift heeft tot doel deze lacunes op te vullen en draagt op verschillende

vlakken bij aan de wetenschappelijke literatuur over nowcasting. Uit een grootschalige

vergelijking van de huidige generatie nowcasting-modellen voor verschillende landen

volgen nieuwe inzichten over welk modeltype het best voorspelt, wat daarbij de cruciale

modelkenmerken zijn, of het combineren van verschillende modeltypes de voorspelfout

verkleint en of de rangorde van de modellen in termen van voorspelkracht wijzigt in

periodes van grote volatiliteit. Daarnaast draagt het proefschrift bij aan de kennis-

vorming over de voorspelkracht van professionele analisten. Daartoe wordt voor elk

land een database samengesteld die de kwartaalvoorspellingen van analisten voor de

BBP-groei bevat. Hierdoor kan worden vastgesteld onder welke omstandigheden ana-

listen beter of slechter voorspellen dan statistische modellen en of het combineren van

de voorspelling van analisten en modellen zinvol is. Tot slot worden in dit proefschrift

rekenregels ontwikkeld om de voorspellingen van modellen en professionele analisten te

combineren. Onderstaand wordt een korte beschrijving gegeven van de inhoud van elk

hoofdstuk.

Hoofdstuk 2 analyseert welk statistisch model het meest geschikt is om de Neder-

landse BBP-groei in de nabije kwartalen te voorspellen. Daarnaast wordt onderzocht

hoe de voorspelkracht van de modellen zich verhoudt tot de voorspelkracht van profes-

sionele analisten. De analyse is uitgevoerd over de periode 1995–2010. Omdat in deze

periode zowel de recessie volgend op het knappen van de internetzeepbel (2001–2002) als

de financiële crisis (2008–2009) vallen, kan een onderscheid gemaakt worden tussen de

voorspelkracht voor en na (diepe)recessies. Het hoofdstuk beschouwt twee strategieën

om de maandelijkse stroom aan indicatoren te vertalen naar een inschatting van de

BBP-groei. De eerste strategie is het combineren van modelvoorspellingen die elk zijn

afgeleid van één indicator. Door die voorspellingen te middelen kan een voorspelling

voor de BBP-groei worden berekend. In dit hoofdstuk worden twee indicator-modellen

beschouwd: het brugmodel (BEQ) en het vector autoregressieve model (VAR). In de

tweede strategie wordt de gemeenschappelijke informatie in de maandindicatoren sa-

mengevat in één of enkele factoren. De factoren worden vervolgens gebruikt om de

BBP-groei te voorspellen in een zogenoemd dynamisch factormodel (DFM). De voor-
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spelkwaliteit van beide strategieën wordt vergeleken met de voorspelkwaliteit van een

zogenoemd ‘näıef’ voorspelmodel. In zo’n model wordt geen gebruik gemaakt van de

stroom aan maandindicatoren, maar wordt uitsluitend gebruik gemaakt van het (re-

cente) beloop van het BBP. De voorspelkwaliteit van beide strategieën wordt ook afgezet

tegen de voorspelkwaliteit van professionele analisten. De kwartaalvoorspellingen van

professionele analisten zijn afkomstig van papieren edities van de Consensus forecasts,

verzameld door het bedrijf Consensus Economics. In de analyse wordt de informatie die

de professionele analisten voorhanden hadden ten tijde van het maken van hun kwar-

taalvoorspelling zo goed mogelijk nagebootst. Daarbij wordt rekening gehouden met de

publicatiekalender van de indicatoren, maar niet met de (soms aanzienlijke) revisies in

het BBP en de indicatoren (pseudo real-time). De empirische resultaten wijzen uit dat

het loont om bij het voorspellen van de Nederlandse BBP-groei een statistisch model

te gebruiken dat de beschikbare maandinformatie benut: de voorspelfout is over het

algemeen kleiner dan van een näıef voorspelmodel. Het DFM heeft de hoogste voor-

spelprecisie, vooral bij het voorspellen van de BBP-groei in het lopende en voorgaande

kwartaal. Dit resultaat wordt in belangrijke mate gedreven door de goede voorspelkwa-

liteit tijdens de crisisjaren. De voorspelfout van professionele analisten is groter dan de

voorspelfout van het DFM, met uitzondering van de financiële crisis. Deze uitkomst

suggereert dat analisten vooral in periodes van grote volatiliteit gebruik maken van

meer informatie dan de maandindicatoren die zijn opgenomen in het DFM.

Hoofdstuk 3 breidt de analyse uit hoofdstuk 2 in drie richtingen uit. Ten eerste wordt

het aantal geanalyseerde statische modellen uitgebreid. Ten tweede wordt getracht

meer inzicht te krijgen in de ‘succesfactoren’ van een voorspelmodel. Zo wordt onder

meer onderzocht of de voorspelkracht van indicatormodellen toeneemt indien factoren

–zoals in het DFM– of individuele indicatoren –zoals in de standaard VAR– worden

opgenomen. Ten derde wordt het aantal landen, waarvoor een ‘voorspelcompetitie’

is uitgevoerd, vergroot. Naast Nederland wordt de voorspelkracht van de modellen

ook onderzocht in de eurozone en haar vier grootste lidstaten Duitsland, Frankrijk,

Italië en Spanje. Dit heeft tot doel vast te stellen of de voorspelkwaliteit van statische

modellen en professionele analisten verschilt tussen landen. Een van de belangrijkste

bevindingen is dat het DFM voor de meeste landen en de meeste voorspelhorizonten

de kleinste voorspelfout heeft. Dit komt vooral door de relatief hoge voorspelkwaliteit

van het DFM tijdens de crisisjaren. Dit resultaat bevestigt de uitkomst van hoofdstuk

2 voor een groter aantal landen. De belangrijkste ‘succesfactor’ van het DFM lijkt de

flexibiliteit om meer dan één factor op te kunnen nemen in het model. Daarnaast maakt

het model relatief goed gebruik van de voorhanden zijnde maandelijkse informatie.

Het combineren van verschillende modeltypes –bijvoorbeeld een DFM en een VAR–

blijkt de voorspelkwaliteit niet tot nauwelijks te verbeteren. Dit ligt anders voor de

voorspelling van professionele analisten. De voorspelling van analisten blijkt andere
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–aanvullende– informatie te bevatten die mechanische modellen niet of onvoldoende

(kunnen) meenemen, die de voorspelkwaliteit verbetert.

Hoofdstuk 4 beantwoordt een nieuwe nieuwe vraag in de literatuur: hoe en wanneer

moet een beleidsmaker de voorspelling van statistische modellen en professionele ana-

listen combineren om de BBP-groei zo accuraat mogelijk te ramen? De analyse wordt

uitgevoerd in een volledige real-time opzet. Verschil met de pseudo real-time analyse

in de vorige hoofdstukken is dat nu rekening wordt gehouden met het feit dat de gepu-

bliceerde waarde van maandindicatoren en het BBP in de loop der tijd (fors) kunnen

worden gereviseerd. De analyse is uitgevoerd voor de periode 1999 tot en met 2013 voor

de zogenoemde G7-landen (VS, VK, Canada, Duitsland, Frankrijk en Italië). Voor elk

van deze landen is een database geconstrueerd die voor elke maand een momentopname

(‘foto’s’) bevat van de beschikbare maandindicatoren. De momentopnames zijn zodanig

gemaakt dat ze nagenoeg overeenstemmen met de datum waarop professionele analis-

ten hun voorspelling maakten. In de analyse worden twee manieren beschouwd om de

BBP-voorspelling van modellen en professionele analisten te combineren: een gerestric-

teerd gewogen gemiddelde en een ongerestricteerde lineaire combinatie. In dit hoofdstuk

wordt enkel het DFM geanalyseerd, vanwege de aangetoonde goede voorspelkwaliteit

in de eerdere hoofdstukken van dit proefschrift. Een van de belangrijkste inzichten uit

hoofdstuk 4 is dat professionele analisten een stevige concurrent zijn voor het DFM.

Tijdens en na de financiële crisis is de ‘verse’ –net gepubliceerde– voorspelling van pro-

fessionele analisten voor het lopende en eerstvolgende kwartaal vrijwel niet te verslaan

door het DFM. In de periode voor de financiële crisis verdwijnt dit voordeel en is de

voorspelfout van analisten groter dan van het DFM. Dit patroon suggereert dat profes-

sionele analisten meer aandacht besteden aan het opstellen van hun BBP-voorspelling

in volatiele tijden. De voorspelfout van professionele analisten is het kleinst voor ‘verse’

voorspellingen van de BBP-groei. De relatieve voorspelfout ten opzichte van het DFM

neemt toe naarmate de voorspelling van analisten veroudert. Dit komt omdat het DFM

blijft ‘leren’ door gebruik te maken van nieuwe maandinformatie. Een andere uitkomst

is dat de voorspelfout van het DFM kan worden verkleind door deze te combineren met

de voorspellingen van professionele analisten, ook wanneer laatstgenoemde enigszins ge-

dateerd zijn. Er lijkt geen ‘gouden’ combinatieregel te bestaan voor het combineren van

de voorspellingen van het DFM en professionele analisten. Een ongewogen gemiddelde

van de onderzochte combinatieregels blijkt te leiden tot de kleinste voorspelfout.

Hoofdstuk 5 analyseert wat de meest geschikte modelspecificatie van het DFM is

voor het voorspellen van de BBP-groei in de nabije kwartalen. Een grondige analyse

van de specificatie van het DFM is van belang in het licht van het wijdverbreide ge-

bruik van dit modeltype en de vastgestelde relatief goede voorspelkracht in de eerdere

hoofdstukken van dit proefschrift. Het hoofdstuk analyseert de voorspelprestatie van

vier veelgebruikte specificaties. In het eerste deel van het hoofdstuk worden de tech-
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nische details van de modellen beschreven en worden, gebaseerd op de inzichten uit de

eerdere hoofdstukken van dit proefschrift, enkele technische modificaties doorgevoerd.

In het tweede deel van het hoofdstuk wordt de voorspelkracht van de (gemodificeerde)

factormodellen getoetst voor de eurozone en haar vijf grootste lidstaten in de periode

1992–2012. Net als in de voorgaande hoofdstukken wordt onderscheid gemaakt tussen

de voorspelkracht vóór, tijdens en na de financiële crisis. Belangrijkste conclusie is dat

het recent door Bräuning and Koopman (2014) voorgestelde factormodel voor de meeste

landen, de meeste voorspelhorizonten, en zowel vóór als tijdens en na de financiële crisis

een hogere voorspelprecisie heeft dan de andere factormodellen. Daarnaast blijken de

voorgestelde modelmodificaties te leiden tot een kleinere voorspelfout.

Hoofdstuk zes vat de belangrijkste uitkomsten samen en schetst een aantal moge-

lijkheden voor toekomstig onderzoek gebaseerd op de uitkomsten van dit proefschrift.
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vue de l’OFCE-Débats et politiques 137, Observatoire français des conjonctures
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This thesis contains four chapters that cast new light on the ability of professional 
analysts and statistical models to forecast where the economy currently stands 
and is headed in the very short term, i.e. this quarter and next quarter. This is not 
a trivial issue. An accurate assessment of the current state of the economy is 
important as a starting point for medium-term forecasts of macro-economic 
models, especially during times of heightened volatility such as the recent 
financial crisis.

Practitioners now have a wealth of statistical models to choose from; but which 
one should they use? Can model forecasts be combined to improve forecast 
quality? Did the financial crisis change the forecasting performance of statistical 
models relative to professional analysts? Can statistical models be modified to 
deliver better forecasts?  How should practitioners incorporate the forecasts of 
professional analysts in their projections? This thesis gives answers to these 
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This thesis contains four chapters that cast new light on the ability of 
professional analysts and statistical models to assess economic growth in the 
current quarter (nowcast) and its development in the near future. This is not a 
trivial issue. An accurate assessment of the current state of the economy is 
important as a starting point for medium-term forecasts, especially during 
times of heightened volatility, such as the recent financial crisis.

Nowadays, practitioners have a wealth of statistical models to choose from; but 
which one should they use? Can statistical models be modified to improve their 
forecasting accuracy? What are the gains from combining the forecasts of 
different statistical models? Did the financial crisis change the forecasting 
performance of statistical models relative to professional analysts?  Can 
practitioners use the near-term outlook of professional analysts to improve the 
forecasting accuracy of statistical models? This thesis gives answers to these 
questions, providing new insights of interest to both academics and practitioners. 
Central to this research is the construction of a new dataset, comprised of the 
near-term economic growth forecasts of professional analysts, and the monthly 
indicators available when analysts made their forecasts.
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