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Cancer treatment has been subject of discussion for centuries. Surgery was already 

practiced (unsuccessfully) back in ancient Egypt,1 but until recent ages every type of 

cancer was deemed incurable, if detected at all. Whereas methods of surgery and 

radiotherapy were evolving in a revolutionary way during the 19th and early 20th century, 

systemic anti-cancer treatment only found its way into the clinic in the second half of the 

previous century. After World War I, the myelotoxic effect of mustard gas was noticed and 

translated into the first chemotherapy: nitrogen mustard.2 Since then, many other 

systemic anti-cancer agents have been developed for the treatment of many different 

types of cancer. The first group of patients that benefited from systemic anti-cancer 

treatment were those with hematological cancers. Nowadays, many leukemia and 

lymphoma patients can even be cured by systemic treatment sometimes combined with 

radiotherapy. However, except for patients with germline tumors and for the use in 

adjuvant or neoadjuvant setting, systemic therapies still rarely cure patients with solid 

tumors. This indicates that, despite all progress that has been made, there is much to win 

in this field of medicine. 

Although there is still much to be learned, the biological behavior of tumors has 

been scrutinized in parallel to the advent of chemotherapy. Since the 1950s, many 

researchers have examined cancer cells and have – successfully – found ways to stop 

these cells from proliferating. One of the earliest examples of the translation of increasing 

biological understanding into anti-cancer drugs is the group of fluoropyrimidines.3 Basic 

research had shown that rat hepatoma cells take up much more uracil than other 

(healthy) tissue. By attaching the toxic atom fluorine to an uracil base, resulting in 5-

fluorouracil (5-FU), the cytostatic effects of this drug are predominantly, but not 

exclusively, localized in cancer cells. Despite its age, 5-FU is currently still standard of care 

for the treatment of several cancer types.  

Accordingly, the increasing biological knowledge has led to the discovery of many 

other ways to kill cancer cells. Hormones appeared to stimulate cancer cell growth, which 

could be stopped by inhibiting this hormonal signaling, e.g. with the famous selective 

estrogen receptor modulator tamoxifen. Similarly, many other (non-hormonal) signaling 

pathways have been identified. Currently, a number of genes have been described that, 

when mutated or overexpressed, cause either activation of proliferative signaling (proto-
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oncogenes) or inhibition of anti-proliferative signaling (tumor suppressor genes). A 

schematic description of these processes is depicted in Figure 1.  

 

 
Figure 1. A schematic depiction of oncogenes and tumor suppressor genes. (A) Proto-oncogenes are 

physiologically involved in the normal process of cell cycle regulation. Mutated proto-oncogenes can 

become oncogenes and become constitutively activated, which leads to continuous proliferative 

signaling. (B) Tumor suppressor genes are physiologically involved in suppressing cell proliferation. 

When mutated, they can lose their suppressive function, which leads to increased proliferative 

signaling. 

 

Just as for the anti-hormonal agents, drugs are being developed to specifically target these 

aberrant proliferative signals. This has resulted broad spectrum of targeted anti-cancer 

drugs with different mechanisms of decreasing intracellular signaling: tyrosine kinase 

inhibitors (TKIs) prevent the phosphorylation of intracellular proteins, monoclonal 

antibodies (mABs) target extracellular receptors that initiate the intracellular signaling, 

and there are many other examples such as drugs that inhibit mammalian target of 

rapamycin (mTOR-inhibitors). 

 
Precision Medicine 

The first – and still the most impressive – example of a targeted anti-cancer agent is the 

TKI imatinib. In 1996, imatinib was found to inhibit the growth of chronic myelogenous 

leukemia (CML) cells that contained the BCR-ABL translocation.4 Patients with BCR-ABL-
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positive leukemia now have considerably increased chances of long term survival: 83% of 

patient remains recurrence-free after 5 years of systemic treatment.5 Similarly, patients 

with gastrointestinal stromal tumors (GIST) that harbor a mutation in a specific proto-

oncogene, KIT, live substantially longer when treated with imatinib (median overall 

survival (OS) > 50 months)6 than when treated with conventional chemotherapy (median 

OS in doxorubicin treated patients was only 9 months).7 For decades, cancers were 

categorized by their histological features. Recently, however, insight into the biology of 

cancer (which stimuli cause cancer cells to proliferate) has increased rapidly.8, 9 Many 

tumors appear to exhibit unrestrained proliferative signaling, initiated by a “driver” 

mutation. Following the example of imatinib, these proliferative signals are being targeted 

by the increasing number of available targeted agents. By complementing cancer 

diagnostics with molecular tumor cell characteristics, such as the presence of (potential) 

driver mutations, systemic treatment can be allocated much more specific to the patients 

that truly benefit from it. This specification of the diagnostic process is referred to as 

“precision medicine” or as “personalized medicine.” With a rapidly growing number of 

drugs to target the proliferative signaling pathways, precision medicine is thought to 

ultimately result in playing chess with cancer: each step cancer makes to proliferate is 

ideally counteracted by reversing that step with a specific drug. Within that context, the 

Dutch Center for Personalized Cancer Treatment (CPCT) was formed, in which many 

oncology centers currently collaborate. The CPCT investigates intratumoral genetic 

aberrations that are predictive for clinical outcome of existing systemic therapies. Since 

the molecular characteristics of tumors can change over time (and space),10 tumor 

biopsies are obtained from a metastatic lesion, which is likely to represent the most actual 

– and therefore the most malignant – status of the tumor. Subsequently, the DNA of these 

tumors is analyzed using next-generation sequencing (NGS) platforms and compared to 

treatment outcome, i.e. tumor response and survival. Before collecting tumor biopsies on 

a large scale, safety of the biopsy procedures and feasibility of the DNA extraction should 

be assured. These aspects are described in Chapter 2. 

Although the arsenal of available therapies has increased drastically, drugs need 

to be invented to target newly discovered oncogenic pathways. Originally, phase I trials 

were designed to assess the safety of drugs during their first clinical application, and to 
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identify the optimal dose for further study in phase II and III setting. The early phase 

clinical research, however, is also subject to the era of precision medicine and patient 

stratification is increasingly being based upon molecular profile of the tumor, even in 

phase I studies where safety is the primary endpoint.11 That way, endpoints biological 

mechanisms, such as changes in protein expression or phosphorylation, can already be 

integrated in this setting in order to optimize the efficiency of drug development. Even 

treatment effect is being assessed earlier during treatment. Since overall survival (OS), the 

most solid endpoint for treatment effect, will take much longer to investigate than the 

other phase I endpoints, alternatives are sought to determine treatment effect at an 

earlier time point. In Chapter 3, a cohort of everolimus treated patients was used to 

investigate if a novel volumetric surrogate endpoint, i.e. the time to progression (TTP) 

ratio, is a better parameter for detecting clinical benefit in early phase research. 

 

Pharmacokinetics 

Treatment effect is not only a matter of hitting the right target. It is equally important to 

hit the target with sufficient strength. One can envision that (too) low drug concentrations 

in the systemic circulation may lead to insufficient drug exposure in the tumor and, 

consequently, to treatment failure. Vice versa, (too) high systemic concentrations increase 

the risk of causing excessive harm to healthy tissue. Currently, for many anti-cancer drugs, 

especially cytostatic agents, the administered dose is based on body surface area (BSA), 

which is deduced from a patient’s height and weight. The lack of rationale to correct the 

dose for BSA is described in Chapter 4. Over the last years, research has focused 

increasingly on individual characteristics that influence a patient’s exposure to the drug, 

such as activity of drug metabolizing enzymes and drug transporters. The function of these 

enzymes and transporters can be influenced by a variety of factors: their function can be 

inhibited and induced by concomitantly administered drugs (“drug-drug interactions”),12 

by germline genetic polymorphisms in the encoding genes (“pharmacogenetics”),13 or by 

more trivial factors such as organ function.14 When the elimination of a drug is slowed 

down due to inhibition of an efflux transporter, the drug will accumulate within the 

systemic circulation and both tumor and healthy tissue will be exposed increasingly to it. 
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The increased exposure might lead to a better anti-cancer effect, but also to more side 

effects. Vice versa, reduced exposure may cause a drug to be less effective. This illustrates 

the importance of quantifying the influence that different factors have on drug exposure, 

especially in drugs with a wide interindividual variability (IIV) in exposure, such as the TKI 

sorafenib that is used for the treatment of hepatocellular carcinoma (HCC), renal cell 

carcinoma (RCC) and differentiated thyroid cancer (DTC). Once the individual factors that 

cause these interindividual differences in pharmacokinetics (PK) are characterized, the 

dose of sorafenib can be adjusted for those factors. That is another form of precision 

medicine, by which patients ideally experience optimal anti-cancer effects and suffer as 

little as possible from the side effects of a drug. Early steps in characterizing the factors 

that influence sorafenib PK are described in this thesis. In Chapter 5, the efflux transporter 

OATP1B was inhibited – both genetically and chemically – in order to find out if the 

hepatobiliary efflux of sorafenib’s metabolite sorafenib-glucuronide is influenced by this 

process. Since this study only assessed the pharmacokinetics of this TKI, the clinical effects 

of OATP1B inhibition were evaluated in Chapter 6, where the association between single 

nucleotide polymorphisms (SNPs) in the genes encoding for OATP1B (SLCO1B) and the 

clinical outcome was tested retrospectively in sorafenib treated patients.  

  

Changes in exposure over time 

Drug exposure is not a constant, as many of the factors mentioned above change over 

time: concomitant medication can be added or stopped during treatment, but also renal 

or hepatic function can deteriorate. Even without these conditions changing, systemic 

drug exposure can change over time. Systemic imatinib exposure, for example, decreases 

by 30% after three months of treatment.15 At first, this was attributed to decreased 

imatinib absorption from the intestine due to change in drug transporter activity,15 but in 

an alternative explanation it was suggested that decreased inflammatory state would lead 

to decreased presence of alpha-1 acid glycoprotein (AGP, an acute phase protein to which 

imatinib binds predominantly in the systemic circulation) and hence would facilitate 

increased clearance of imatinib.16 In Chapter 7, imatinib treated patients were followed 

for 1 year after imatinib treatment start in order to prospectively assess the course of AGP 
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concentrations during this period and the correlation between AGP levels and imatinib 

pharmacokinetics (PK). 

 

Therapeutic drug monitoring (TDM) 

Based on the variability in exposure, it has become common to monitor systemic drug 

concentrations in other fields of medicine, e.g. infectious diseases or psychiatry.17, 18 If 

drug concentrations are too low and patients are unlikely to benefit from treatment, the 

dose can be increased in order to optimize the treatment effect. Vice versa, too high drug 

concentrations might lead to severe toxicity on the long term, which could be prevented 

by decreasing the dose early during treatment. In oncology, however, TDM has not found 

its way into clinical practice yet, although many anti-cancer drugs lend themselves to 

TDM.19 Imatinib concentrations treatment were retrospectively found to be correlated 

with tumor response in patients with gastrointestinal stromal tumor (GIST)20 and in 

patients with chronic myeloid leukemia (CML).21 For 5-FU, similar results have been 

found.22 Pazopanib is another TKI, for which the relationship between systemic exposure 

and treatment outcome has been described.23 In Chapter 8, it was evaluated if it was 

feasible to increase exposure by increasing dose in pazopanib treated patients that have 

too low exposure on the original dose of 800 mg daily. Additionally, several methods to 

measure the concentration, i.e. by blood withdrawal and by dried blood spot (DBS), were 

compared in the same study (Chapter 9). 
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ABSTRACT 

Background. The discovery of novel biomarkers that predict treatment response in 

advanced cancer patients requires acquisition of high-quality tumor samples. As cancer 

evolves over time, tissue is ideally obtained before the start of each treatment. Preferably, 

samples are freshly frozen to allow analysis by next-generation DNA/RNA sequencing 

(NGS) but also for making other emerging systematic techniques such as proteomics and 

metabolomics possible. Here, we describe the first 469 image-guided biopsies collected in 

a large collaboration in the Netherlands (Center for Personalized Cancer Treatment) and 

show the utility of these specimens for NGS analysis. 

Patients and methods. Image-guided tumor biopsies were performed in advanced cancer 

patients. Samples were fresh frozen, vital tumor cellularity was estimated, and DNA was 

isolated after macrodissection of tumor-rich areas. Safety of the image-guided biopsy 

procedures was assessed by reporting of serious adverse events within 14 days after the 

biopsy procedure. 

Results. Biopsy procedures were generally well tolerated. Major complications occurred in 

2.1%, most frequently consisting of pain. In 7.3% of the percutaneous lung biopsies, 

pneumothorax requiring drainage occurred. The majority of samples (81%) contained a 

vital tumor percentage of at least 30%, from which at least 500 ng DNA could be isolated 

in 91%. Given our preset criteria, 74% of samples were of sufficient quality for biomarker 

discovery. The NGS results in this cohort were in line with those in other groups. 

Conclusion. Image-guided biopsy procedures for biomarker discovery to enable 

personalized cancer treatment are safe and feasible and yield a highly valuable biobank. 

Implications for Practice. This study shows that it is safe to perform image-guided biopsy 

procedures to obtain fresh frozen tumor samples and that it is feasible to use these 

biopsies for biomarker discovery purposes in a Dutch multicenter collaboration. From the 

majority of the samples, sufficient DNA could be yielded to perform next-generation 

sequencing. These results indicate that the way is paved for consortia to prospectively 

collect fresh frozen tumor tissue. 
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INTRODUCTION 

In oncology, the prediction of treatment outcome remains an important issue. The 

number of available treatments steadily increases and re-emphasizes our need for 

guidance on which treatment to choose for a specific patient. Hypothesis-driven 

biomarkers have been successful: For example, BRAF mutations in melanoma predict 

response to BRAF inhibitors.1 However, other effective treatments such as immune 

checkpoint blockers and novel targeted treatments often lack obvious hypothesis-driven 

biomarkers. Therefore, unbiased, large-scale approaches such as next-generation 

DNA/RNA sequencing (NGS), proteomics, and metabolomics may improve the search for 

more and better predictive biomarkers. To enable the use of these large- scale 

technologies on clinical samples, it is essential to start the systematic collection of well 

annotated tissue samples. Because snap freezing is considered the most optimal 

preservation method for nucleic acids as well as proteins and metabolites, this should be 

the preferred way clinical samples intended for current and future biomarker discovery 

are processed.  

One major issue in biomarker discovery remains the heterogeneity of tumors. 

Genetic heterogeneity has been described extensively, and this heterogeneity spans both 

temporal and spatial differences.2-5 Consequently, any biomarker discovery study should 

try to minimize the time elapsing between sampling and treatment and document the 

sampling site. Moreover, imaging and pathology studies have shown extensive 

intralesional heterogeneity with respect to important features such as angiogenesis, 

oxygen supply, energy consumption, and stromal content.6-8 This heterogeneity will cause 

a baseline variability despite any effort to homogenize the sampling time and location. 

Thus, obtaining a large enough sample size to average out our baseline variation is 

required for the detection of true differences. The actual sample size needed to detect a 

meaningful difference remains an elusive matter. However, despite all these potential 

factors that may cause failure to find novel biomarker profiles, there is an increasing 

number of successful examples of biomarker detection using NGS, including a study that 

showed that novel T-cell epitopes predict efficacy of immunotherapy, in which the authors 

were able to detect a meaningful difference in a sample of 11 responders and 14 

nonresponders.9 Therefore, collecting materials from patients who undergo specified 
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treatments could yield interesting results even when only limited patient numbers are 

included, given the proper preservation of such materials. 

Any large-scale technology that uses unbiased data collection suffers from 

difficulty in analysis because of the amount of data generated. This problem needs to be 

addressed at the start of any sample collection project. For NGS-based DNA sequencing 

the collection of adequate germline samples is essential for the detection of somatic 

genetic alteration. Also, sampling multiple times from the same patient allows detection 

of resistance mechanisms.10-12 Thus any protocol should encourage repetitive sampling.  

In the Netherlands, all large oncology centers, including the nine academic 

centers, are now collaborating in the Center for Personalized Cancer Treatment (CPCT). 

The CPCT has set up a pipeline for the collection of fresh frozen tumor tissue and for 

storage in a central biobank. In parallel, all relevant clinical data are recorded in an 

electronic case record form and can be linked to the results of the tests performed on the 

tumor material. The primary objective of this biobanking effort is to analyze the individual 

cancer genome in advanced cancer patients to develop future predictors for response to 

systemic treatment. Here, we show that it is feasible to set up such a multicenter initiative 

by presenting the safety of the first 469 image-guided tumor biopsy procedures and by 

providing the DNA sequencing results of a selected set of 73 biopsy specimens. 

 

PATIENTS AND METHODS 

Study Design 

To obtain research-related biopsies from advanced cancer patients without curative 

treatment options, the institutional review board of the participating centers approved a 

protocol. An important characteristic of the protocol was that it allowed the recruitment 

of patients with all solid tumor types and multiple treatment protocols. Therefore, it was 

called the “umbrella” biopsy protocol (NCT01855477). This umbrella protocol was a 

prospective multicenter trial protocol in which biopsies are obtained to perform next-

generation sequencing on fresh frozen biopsy specimens to allow for biomarker detection 

as well as exploratory biomarker discovery. Patients did not receive systemic treatment as 

part of this protocol itself. Patients participated in the umbrella protocol and received 
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systemic treatment, either standard of care or experimental treatment, within a different 

protocol.  

Within the umbrella protocol a baseline biopsy procedure was performed, and clinical 

data were collected, including radiological response data. The protocol allowed for 

multiple biopsy procedures at different time points to document changes in genetic 

profiles upon treatment. Study related procedures were (a) screening procedures to 

ascertain eligibility and safety of the biopsy procedure, (b) biopsy procedures, and (c) a 

blood draw to determine germline DNA. The umbrella protocol defined radiological tumor 

assessments within 8 to 12 weeks after the start of the first initiated treatment after 

baseline biopsy. The study was conducted in accordance with the latest versions of the 

Declaration of Helsinki and Good Clinical Practice guidelines. 

 

Patient Selection 

All patients provided written informed consent before any of the study-related 

procedures. Patients aged ≥18 years with a locally advanced or metastatic solid tumor 

without curative treatment options were eligible for inclusion. Patients were eligible only 

if systemic treatment according to standard of care or with experimental anticancer 

agents was planned. Eligible patients had an Eastern Cooperative Oncology Group 

performance status of 0 (asymptomatic) to 2, measurable lesions according to Response 

Evaluation Criteria in Solid Tumors,13 and adequate renal and hepatic functions. Patients 

with a history of bleeding disorders or bleeding complications, using anticoagulant 

medication in which discontinuation of anticoagulants was unadvisable, and patients with 

a contraindication for lidocaine and, if applicable, midazolam or phentanyl (or their 

derivatives) were excluded. Biopsy of a locally advanced or metastatic lesion had to be 

considered safe according to the intervening physician. 

 

Blood Sample Collection and Processing 

Tumor-matched blood samples were collected to determine patient’s germline variation. 

This information was used to differentiate between somatic and germline mutations in the 

tumor and was specifically not used to detect cancer predisposition. Venous blood was 
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collected in K2EDTA tubes. Blood samples were shipped at room temperature to the 

central core facility of the CPCT for subsequent processing. 

 

Biopsy Procedure 

Percutaneous biopsy procedures were performed under ultrasound or computed 

tomographic guidance after local anesthesia (and in incidental cases under conscious 

sedation). Whether a guiding needle was used mainly depended on tumor localization and 

on the preference of the individual physician. We aimed to retrieve two to four core 

biopsy specimens, preferably with at least an 18-gauge biopsy needle. If appropriate, a 

gastroenterologist performed an endoscopic (ultrasound) guided procedure using a 19-

gauge endoscopic ultrasound histology needle under sedation with midazolam and 

opioids (phentanyl) for pain relief. When we suspected possible complications with 

patients, we used ultrasound or computed tomography (CT) to check for major 

complications (e.g., pneumothorax or initial bleeding complications). 

 

Biopsy Sample Processing 

Biopsy specimens were labeled and snap-frozen directly after the biopsy procedure. 

Subsequently, the specimens were stored at -80°C until they were shipped on dry ice to 

the central core facility of the CPCT. 

 

Histological Assessment 

From each biopsy, 4-mm frozen sections were cut and stained for hematoxylin and eosin. 

A dedicated pathologist (S.M.W. or P.J.D.) performed histological assessment to confirm 

the presence of tumor tissue as well as the percentage of tumor cells based on the 

quantity of nuclei and tumor cell vitality. Tissue morphology was comparable to frozen 

sections and allowed for reliable confirmation of the presence of cancer. Obvious tumor-

rich islands within the sections were marked to obtain an optimal tumor cellularity and 

quality and to facilitate macrodissection, during which regions of interest were scraped off 

with a scalpel and collected in phosphate-buffered saline solution. Only when the 

percentage of vital tumor cells was at least 30%, we proceeded to DNA isolation after 

macrodissection of indicated areas. 
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DNA Isolation 

DNA was isolated from 500 mL of whole blood and from approximately five 

macrodissected 20-mm sections using the NorDiag Arrow machine (Isogen Life Science, De 

Meern, The Netherlands, http://www.isogen-lifescience.com) for isolation and purification 

of the DNA. DNA extraction was performed in batches (1 to 12 samples per run) using 230 

mL of lysis buffer and 20 mL of proteinase K and comprised two washing steps with a final 

elution volume of 100 mL, according to the manufacturer’s protocol. DNA quantity was 

measured with the Qubit 2.0 fluorometer (Thermo Fisher Scientific Life Sciences, 

Waltham, MA, http://www.thermofisher.com). Depending on DNA quantity, the protocol 

was repeated on additional tissue sections to aim for a DNA quantity of at least 500 ng of 

DNA.DNA was stored at220°C until sequencing was performed. 

 

Safety Evaluation 

Observation after the biopsy procedure was performed according to local protocols. No 

observation was required for patients undergoing superficial tumor biopsies (e.g., biopsy 

of a subcutaneous lesion or low-risk biopsy of a superficial lymph node). After a 

percutaneous lung biopsy, a chest x-ray was routinely performed after 1 to 4 hours, 

depending on local protocols, which in some cases required overnight hospitalization. 

After all other biopsy procedures, patients were clinically observed for 1 to 4 hours.  

Biopsy procedures of individual patients were included in the safety evaluation if 

specimens for research purposes had been retrieved. All major complications, defined as 

any adverse events grade 3 or higher related to the biopsy procedure, and all serious 

adverse events (SAE) occurring within 14 days after tumor biopsy, were registered 

prospectively. Adverse events were graded according to the National Cancer Institute 

Common Terminology Criteria for Adverse Events (version 4).14 An SAE was defined in the 

protocol as any complication that resulted in death, was life threatening, required 

prolonged hospitalization, resulted in persistent or significant disability or incapacity, or 

was a congenital anomaly or birth defect. Clinical observation or hospitalization to 

facilitate biopsy procedures was not considered a criterion for seriousness. Special 

attention was paid to the occurrence of bleeding complications and to pneumothorax 
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sedation). Whether a guiding needle was used mainly depended on tumor localization and 

on the preference of the individual physician. We aimed to retrieve two to four core 

biopsy specimens, preferably with at least an 18-gauge biopsy needle. If appropriate, a 

gastroenterologist performed an endoscopic (ultrasound) guided procedure using a 19-

gauge endoscopic ultrasound histology needle under sedation with midazolam and 

opioids (phentanyl) for pain relief. When we suspected possible complications with 

patients, we used ultrasound or computed tomography (CT) to check for major 

complications (e.g., pneumothorax or initial bleeding complications). 

 

Biopsy Sample Processing 

Biopsy specimens were labeled and snap-frozen directly after the biopsy procedure. 

Subsequently, the specimens were stored at -80°C until they were shipped on dry ice to 

the central core facility of the CPCT. 

 

Histological Assessment 

From each biopsy, 4-mm frozen sections were cut and stained for hematoxylin and eosin. 

A dedicated pathologist (S.M.W. or P.J.D.) performed histological assessment to confirm 

the presence of tumor tissue as well as the percentage of tumor cells based on the 

quantity of nuclei and tumor cell vitality. Tissue morphology was comparable to frozen 

sections and allowed for reliable confirmation of the presence of cancer. Obvious tumor-

rich islands within the sections were marked to obtain an optimal tumor cellularity and 

quality and to facilitate macrodissection, during which regions of interest were scraped off 

with a scalpel and collected in phosphate-buffered saline solution. Only when the 

percentage of vital tumor cells was at least 30%, we proceeded to DNA isolation after 

macrodissection of indicated areas. 
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DNA Isolation 

DNA was isolated from 500 mL of whole blood and from approximately five 

macrodissected 20-mm sections using the NorDiag Arrow machine (Isogen Life Science, De 

Meern, The Netherlands, http://www.isogen-lifescience.com) for isolation and purification 

of the DNA. DNA extraction was performed in batches (1 to 12 samples per run) using 230 

mL of lysis buffer and 20 mL of proteinase K and comprised two washing steps with a final 

elution volume of 100 mL, according to the manufacturer’s protocol. DNA quantity was 

measured with the Qubit 2.0 fluorometer (Thermo Fisher Scientific Life Sciences, 

Waltham, MA, http://www.thermofisher.com). Depending on DNA quantity, the protocol 

was repeated on additional tissue sections to aim for a DNA quantity of at least 500 ng of 

DNA.DNA was stored at220°C until sequencing was performed. 

 

Safety Evaluation 

Observation after the biopsy procedure was performed according to local protocols. No 

observation was required for patients undergoing superficial tumor biopsies (e.g., biopsy 

of a subcutaneous lesion or low-risk biopsy of a superficial lymph node). After a 

percutaneous lung biopsy, a chest x-ray was routinely performed after 1 to 4 hours, 

depending on local protocols, which in some cases required overnight hospitalization. 

After all other biopsy procedures, patients were clinically observed for 1 to 4 hours.  

Biopsy procedures of individual patients were included in the safety evaluation if 

specimens for research purposes had been retrieved. All major complications, defined as 

any adverse events grade 3 or higher related to the biopsy procedure, and all serious 

adverse events (SAE) occurring within 14 days after tumor biopsy, were registered 

prospectively. Adverse events were graded according to the National Cancer Institute 

Common Terminology Criteria for Adverse Events (version 4).14 An SAE was defined in the 

protocol as any complication that resulted in death, was life threatening, required 

prolonged hospitalization, resulted in persistent or significant disability or incapacity, or 

was a congenital anomaly or birth defect. Clinical observation or hospitalization to 

facilitate biopsy procedures was not considered a criterion for seriousness. Special 

attention was paid to the occurrence of bleeding complications and to pneumothorax 
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after transthoracic biopsy. Pneumothorax and hematothorax are treated invasively at 

grade 2 and were therefore registered at that grade or higher. 

 

Feasibility 

Within the umbrella protocol, retrieval of research specimens for biomarker analyses 

could be combined with a biopsy procedure for diagnostic assessment. All the image-

guided biopsy procedures during which research specimens were retrieved were 

evaluable for quantification of vital tumor cellularity. Sequencing was performed if DNA 

yield was at least 500 ng. Performing extended sequencing on paired blood samples 

(germline DNA) allowed for filtering for true somatic mutations in tumor samples. 

 

DNA Sequencing 

Two different platforms have been used for DNA sequencing, that is, a targeted panel 

analysis using SOLiD sequencing and exome sequencing analysis using Illumina 

sequencing.  

For SOLiD, single nucleotide variants and insertions or deletions (INDELs) were 

detected by targeted sequencing of a designed “cancer mini-genome” consisting of 1,977 

cancer genes (Supplementary Table S1). Barcoded fragment libraries were generated 

from 2 mg of isolated DNA from tumor and control samples, as described previously.15 

Pools of libraries were enriched for 1,977 cancer-related genes (cancer mini-genome16 

using SureSelect technology [Agilent, Santa Clara, CA, http://www.agilent.com/home]). 

Enriched libraries were sequenced on a SOLiD 5500xl instrument, according to the 

manufacturer’s protocol. Reads were mapped on the human genome (GRCh37) by using 

Burrows-Wheeler Aligner (BWA)17 with the following parameters: -c –l 25 –k 2 –n 10. 

Variant calling was done using a custom pipeline identifying variants with at 

least103coverage,an allele frequency of 15%, and multiple (>2) occurrences in the seed 

(the first 25 base pairs [bp] most accurately mapped part of the read), as well as support 

from independent reads (>3). All variant positions identified were subsequently 

genotyped in the raw datasets of all samples using SAMtools mpileup (SourceForge.net, 

http://samtools.sourceforge.net/mpileup.shtml) to ensure the presence or absence of 

Large-Scale Biobank of Fresh Frozen Tumor Tissue| 25 
 

possible low-frequency variants. To identify somatic mutations, we excluded all variants 

identified in both tumor and blood from further analysis.  

The Illumina data were processed with an in-house developed pipeline (version 

1.2.1) (https://github.com/CuppenResearch/IAP), including GATK v3.2.2,18 according to 

the best- practices guidelines.19 Briefly, we mapped the pairs withBWA-MEMv0.7.5a,17 

marked duplicates, merged lanes, and realigned INDELs. Base recalibration did not 

improve our exome results, so this step was skipped. Next, GATK Haplotype caller was 

used to call single nucleotide polymorphisms (SNPs) and INDELs. Variants are flagged as 

PASS only if they do not meet the following criteria: QD < 2.0, MQ < 40.0, FS > 60.0, 

HaplotypeScore > 13.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, snpclusters ≥ 3 in 

35 bp. For INDELs: QD < 2.0, FS >200.0, ReadPosRankSum < -20.0. Effect predictions and 

annotation were added using snpEFF20 and dbNSFP.21 Somatic mutation is determined by 

providing the reference and tumor sequencing data to the following algorithms: Strelka 

v1.0.14,22 Varscan v2.3.7,23 and Freebayes v0.9.20.24 High-confident variants are 

determined by the tool-filtering steps and merged to a single .vcf file. 

 

Statistical Analysis 

All baseline patient characteristics, image-guided biopsy procedure characteristics, and 

other described analyses were performed using descriptive statistics (Microsoft Excel 

2010; Microsoft, Redmond, WA, https://www.microsoft.com/en-us). Tumor cellularity and 

DNA yield were recorded as continuous variables but were grouped (on the basis of our 

preset criteria) to allow for descriptive analysis. 

 

RESULTS 

Baseline Characteristics 

From August 17, 2011, until December 31, 2013, a total of 500 patients signed informed 

consent and were included in the study. In 50 patients, the biopsy procedure was not 

performed, because the procedure was not deemed safe or because of clinical progression 

before the planned biopsy. In Table 1, baseline characteristics are depicted for the 450 

biopsied patients, of which the majority had been diagnosed with breast cancer, lung 

cancer, colorectal cancer, or melanoma.  



2

24 | Chapter 2 
 

 

after transthoracic biopsy. Pneumothorax and hematothorax are treated invasively at 

grade 2 and were therefore registered at that grade or higher. 

 

Feasibility 

Within the umbrella protocol, retrieval of research specimens for biomarker analyses 

could be combined with a biopsy procedure for diagnostic assessment. All the image-

guided biopsy procedures during which research specimens were retrieved were 

evaluable for quantification of vital tumor cellularity. Sequencing was performed if DNA 

yield was at least 500 ng. Performing extended sequencing on paired blood samples 

(germline DNA) allowed for filtering for true somatic mutations in tumor samples. 

 

DNA Sequencing 

Two different platforms have been used for DNA sequencing, that is, a targeted panel 

analysis using SOLiD sequencing and exome sequencing analysis using Illumina 

sequencing.  

For SOLiD, single nucleotide variants and insertions or deletions (INDELs) were 

detected by targeted sequencing of a designed “cancer mini-genome” consisting of 1,977 

cancer genes (Supplementary Table S1). Barcoded fragment libraries were generated 

from 2 mg of isolated DNA from tumor and control samples, as described previously.15 

Pools of libraries were enriched for 1,977 cancer-related genes (cancer mini-genome16 

using SureSelect technology [Agilent, Santa Clara, CA, http://www.agilent.com/home]). 

Enriched libraries were sequenced on a SOLiD 5500xl instrument, according to the 

manufacturer’s protocol. Reads were mapped on the human genome (GRCh37) by using 

Burrows-Wheeler Aligner (BWA)17 with the following parameters: -c –l 25 –k 2 –n 10. 

Variant calling was done using a custom pipeline identifying variants with at 

least103coverage,an allele frequency of 15%, and multiple (>2) occurrences in the seed 

(the first 25 base pairs [bp] most accurately mapped part of the read), as well as support 

from independent reads (>3). All variant positions identified were subsequently 

genotyped in the raw datasets of all samples using SAMtools mpileup (SourceForge.net, 

http://samtools.sourceforge.net/mpileup.shtml) to ensure the presence or absence of 

Large-Scale Biobank of Fresh Frozen Tumor Tissue| 25 
 

possible low-frequency variants. To identify somatic mutations, we excluded all variants 

identified in both tumor and blood from further analysis.  

The Illumina data were processed with an in-house developed pipeline (version 

1.2.1) (https://github.com/CuppenResearch/IAP), including GATK v3.2.2,18 according to 

the best- practices guidelines.19 Briefly, we mapped the pairs withBWA-MEMv0.7.5a,17 

marked duplicates, merged lanes, and realigned INDELs. Base recalibration did not 

improve our exome results, so this step was skipped. Next, GATK Haplotype caller was 

used to call single nucleotide polymorphisms (SNPs) and INDELs. Variants are flagged as 

PASS only if they do not meet the following criteria: QD < 2.0, MQ < 40.0, FS > 60.0, 

HaplotypeScore > 13.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, snpclusters ≥ 3 in 

35 bp. For INDELs: QD < 2.0, FS >200.0, ReadPosRankSum < -20.0. Effect predictions and 

annotation were added using snpEFF20 and dbNSFP.21 Somatic mutation is determined by 

providing the reference and tumor sequencing data to the following algorithms: Strelka 

v1.0.14,22 Varscan v2.3.7,23 and Freebayes v0.9.20.24 High-confident variants are 

determined by the tool-filtering steps and merged to a single .vcf file. 

 

Statistical Analysis 

All baseline patient characteristics, image-guided biopsy procedure characteristics, and 

other described analyses were performed using descriptive statistics (Microsoft Excel 

2010; Microsoft, Redmond, WA, https://www.microsoft.com/en-us). Tumor cellularity and 

DNA yield were recorded as continuous variables but were grouped (on the basis of our 

preset criteria) to allow for descriptive analysis. 

 

RESULTS 

Baseline Characteristics 

From August 17, 2011, until December 31, 2013, a total of 500 patients signed informed 

consent and were included in the study. In 50 patients, the biopsy procedure was not 

performed, because the procedure was not deemed safe or because of clinical progression 
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biopsied patients, of which the majority had been diagnosed with breast cancer, lung 
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Biopsy Procedures 

In order to be evaluable for this study, patients had to be biopsied at least once before the 

start of designated treatment. We attempted to obtain other biopsies during or directly 

after treatment. Multiple biopsies for study purposes were performed in 44 patients, that 

is, two biopsies in 37 patients, three biopsies in 5 patients, and four biopsies in 2 patients. 

Of the 503 biopsy procedures in this study, 469 were performed under image guidance of 

ultrasonography, CT scan, or endoscopy (Figure 1, Table 2). Most image-guided biopsies 

were performed on the liver (n 5 185; 39%). Other abdominal organs (n 5 94; 20%) and 

intrathoracic organs (n 5 56; 12%) were also biopsied frequently. Superficial lesions such 

as cutaneous, subcutaneous, and soft tissue lesions were biopsied in 120 procedures 

(26%) and osseous lesions in 14 (3%). 

 

 

Table 1. Baseline characteristics. 

 Biopsied patients 
N=450 

Sequenced biopsies 
N=73 

Age   mean (SD) 59  (11) 58  (11) 
Sex  Male 

 Female 
239  (53%) 
211  (47%) 

37  (51%) 
36  (49%) 

Primary  GI: CRC 
tumor     Lung cancer 

 Breast cancer 
 Melanoma 
 Hepatobiliary cancer 
 GI: other 
 Gynecological cancer 
 GU cancer 
 Other 
 Sarcoma 
 Head / neck cancer 

99  (22%) 
61  (14%) 
49  (11%) 
44  (10%) 
37  (8%) 
32  (7%) 
31  (7%) 
31  (7%) 
27  (6%) 
26  (6%) 
13  (3%) 

16  (22%) 
3  (4%) 
5  (7%) 
16  (22%) 
6  (8%) 
7  (10%) 
5  (7%) 
2  (3%) 
6  (8%) 
4  (5%) 
3  (4%) 

Abbreviations: CRC, colorectal cancer; GI, gastrointestinal tract; GU, genitourinary tract. 
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Treatment Details 

Of all biopsied patients, 324 (72%) were subsequently treated with systemic therapy. The 

majority of these patients were treated with targeted agents (Table 3). 

 

Table 3. Treatment details of all biopsied patients. 
Details Subjects  

N=450 
Treatment 
Classical chemotherapy 
Phase I drug(s) 
Everolimus 
VEGF TKI (sunitinib / sorafenib / pazopanib) 
Monoclonal antibody 
Vemurafenib 
Anti-hormonal therapy  
Other TKI 
No treatment started 

 
83  (18%) 
76  (17%) 
51  (11%) 
37  (8%) 
26  (6%) 
23  (5%) 
16  (4%) 
12  (3%) 
126 (28%) 

Treatment duration (months) 
Observations  
Median (range)  
Median (IQR)  
 
Lost to follow up 

 
301 
1.91  (0.00-20.24) 
1.91  (0.92-3.88) 
 
23 

Response at first evaluation 
Complete response (CR) 
Partial response (PR) 
Stable disease (SD) 
Progressive disease (PD) 
Not evaluable 
Not done 
Lost to follow up 

 
1  (0%) 
39  (13%) 
129  (43%) 
110  (37%) 
2  (1%) 
12  (4%) 
8 (3%) 

Abbreviations: IQR, interquartile range; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial 

growth factor. 

 

Safety 

Adverse events occurred after 10 image-guided biopsy procedures (2.1%; Table 4). Four 

tients experienced grade 3 pain, one patient had grade 3 hypertension, and one patient 
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experienced grade 3 vasovagal reaction. Of the 41 patients who underwent percutaneous 

CT-guided lung biopsy, three patients (7.3%) suffered from pneumothorax, for which 

drainage was indicated (grade 3 in two patients and grade 2 in one patient). Grade 2 

pleural hemorrhage was observed once after a CT-guided liver biopsy of a metastatic 

lesion that was situated directly subdiaphragmatic. In this case, drainage was required, but 

treatment was not delayed. 

 

Table 4. Adverse events. 

Adverse event Grade  Related to 

biopsy 

Biopsied organ Duration of  

hospitalization 

Pain 3 Definite Abdomen (US-guided) NA 

Pain 3 Definite Liver (US-guided) Hours* 

Pain 3 Definite Para-vertebral mass 

(US-guided) 

NA 

Pain 3 Possible Liver (US-guided) Days 

Vasovagal reaction 3 Definite Liver (US-guided) NA 

Hypertension 3 Possible Abdomen (US-guided) Hours* 

Pneumothorax 3 Definite Lung (CT-guided) Days 

Pneumothorax 3 Definite Lung (CT-guided) Days 

Pneumothorax  2 Definite Lung (CT-guided) Days 

Pleural hemorrhage 2 Definite Liver (CT-guided) Days 

Abbreviations: CT, computed tomography; NA, not applicable; US, ultrasonography. 
*Two patients were admitted to the hospital for several hours after the biopsy procedure and were 
discharged on the same day. 
 

 

Tumor Cells and DNA Yield 

From 20 patients who underwent image-guided biopsies, no samples were sent in for 

analysis, because all material was used for standard-of-care treatment. In 363 of the 

remaining 449 image-guided biopsy-retrieved specimens (81%), we found a tumor cell 

percentage of 30% or more. Of the 86 tumor specimens with an insufficient percentage of 
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experienced grade 3 vasovagal reaction. Of the 41 patients who underwent percutaneous 

CT-guided lung biopsy, three patients (7.3%) suffered from pneumothorax, for which 

drainage was indicated (grade 3 in two patients and grade 2 in one patient). Grade 2 

pleural hemorrhage was observed once after a CT-guided liver biopsy of a metastatic 

lesion that was situated directly subdiaphragmatic. In this case, drainage was required, but 

treatment was not delayed. 

 

Table 4. Adverse events. 

Adverse event Grade  Related to 

biopsy 

Biopsied organ Duration of  

hospitalization 

Pain 3 Definite Abdomen (US-guided) NA 

Pain 3 Definite Liver (US-guided) Hours* 

Pain 3 Definite Para-vertebral mass 

(US-guided) 

NA 

Pain 3 Possible Liver (US-guided) Days 

Vasovagal reaction 3 Definite Liver (US-guided) NA 

Hypertension 3 Possible Abdomen (US-guided) Hours* 

Pneumothorax 3 Definite Lung (CT-guided) Days 

Pneumothorax 3 Definite Lung (CT-guided) Days 

Pneumothorax  2 Definite Lung (CT-guided) Days 

Pleural hemorrhage 2 Definite Liver (CT-guided) Days 

Abbreviations: CT, computed tomography; NA, not applicable; US, ultrasonography. 
*Two patients were admitted to the hospital for several hours after the biopsy procedure and were 
discharged on the same day. 
 

 

Tumor Cells and DNA Yield 

From 20 patients who underwent image-guided biopsies, no samples were sent in for 

analysis, because all material was used for standard-of-care treatment. In 363 of the 

remaining 449 image-guided biopsy-retrieved specimens (81%), we found a tumor cell 

percentage of 30% or more. Of the 86 tumor specimens with an insufficient percentage of 
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tumor cells, 40 did not contain tumor cells at all. A sufficient amount of DNA (i.e., 500 ng 

or more) was obtained from 331 of the 363 biopsy specimens containing ≥30% tumor 

cells. From 14 of these specimens, DNA had to be isolated a second time to retrieve the 

required amount of DNA. These 331 specimens (74% of the 449 image-guided biopsy-

retrieved specimens received at the central core facility) met our preset criteria to 

perform DNA sequencing. For all three centers individually, the proportion of samples that 

met the criteria was 70% or higher and did not differ significantly between the centers (p = 

.77; Chi-square test). 

 

DNA Sequencing 

At data cut-off for this analysis, the sequencing results from 73 biopsied specimens were 

available. DNA data could be retrieved from all specimens. On SOLiD (n554) we sequenced 

samples for the 1,977-gene panel until a minimum mean coverage of 1503 was reached 

(mean of 1853). For exome analysis on Illumina (n519) we sequenced reference samples 

at least ∼753 (mean of 953) and tumor ∼1503 (mean of 1853). The most frequently 

mutated genes were TP53, APC, and BRAF (Table 5). 

 

DISCUSSION 

With these results we have shown that it is feasible to set up large, multicenter logistics to 

biobank image-guided retrieved tumor biopsies. In several other retrospective studies, it 

has been shown that research-related biopsies are safe and feasible.25–28 Description of 

large biopsy series have generally reported on comparable frequencies of major 

complications.29–31 The incidence of pneumothorax requiring drainage after percutaneous 

lung biopsies (3 out of 41 biopsied patients) was similar to that described by El-Osta et 

al.32 (2 out of 42). Importantly, the additional value of our series is that we have also 

shown that it is feasible to extract sufficient DNA from the majority of the biopsy 

specimens to perform analyses such as NGS. Moreover, because all samples are processed 

at a central location within the CPCT, uniformity of the analyses is ensured. We could 

retrieve sufficient DNA for NGS from 74% of the image-guided retrieved biopsy specimens. 

Although this may be too low for a regular diagnostic test, we feel this hit rate justifies 
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tumor cells, 40 did not contain tumor cells at all. A sufficient amount of DNA (i.e., 500 ng 

or more) was obtained from 331 of the 363 biopsy specimens containing ≥30% tumor 

cells. From 14 of these specimens, DNA had to be isolated a second time to retrieve the 

required amount of DNA. These 331 specimens (74% of the 449 image-guided biopsy-

retrieved specimens received at the central core facility) met our preset criteria to 

perform DNA sequencing. For all three centers individually, the proportion of samples that 

met the criteria was 70% or higher and did not differ significantly between the centers (p = 

.77; Chi-square test). 

 

DNA Sequencing 

At data cut-off for this analysis, the sequencing results from 73 biopsied specimens were 

available. DNA data could be retrieved from all specimens. On SOLiD (n554) we sequenced 

samples for the 1,977-gene panel until a minimum mean coverage of 1503 was reached 

(mean of 1853). For exome analysis on Illumina (n519) we sequenced reference samples 

at least ∼753 (mean of 953) and tumor ∼1503 (mean of 1853). The most frequently 

mutated genes were TP53, APC, and BRAF (Table 5). 

 

DISCUSSION 

With these results we have shown that it is feasible to set up large, multicenter logistics to 

biobank image-guided retrieved tumor biopsies. In several other retrospective studies, it 

has been shown that research-related biopsies are safe and feasible.25–28 Description of 

large biopsy series have generally reported on comparable frequencies of major 

complications.29–31 The incidence of pneumothorax requiring drainage after percutaneous 

lung biopsies (3 out of 41 biopsied patients) was similar to that described by El-Osta et 

al.32 (2 out of 42). Importantly, the additional value of our series is that we have also 

shown that it is feasible to extract sufficient DNA from the majority of the biopsy 

specimens to perform analyses such as NGS. Moreover, because all samples are processed 

at a central location within the CPCT, uniformity of the analyses is ensured. We could 

retrieve sufficient DNA for NGS from 74% of the image-guided retrieved biopsy specimens. 

Although this may be too low for a regular diagnostic test, we feel this hit rate justifies 
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systematic tissue collection in this manner, because similar proportions have been 

reported in other series26 and because this hit rate is therefore likely to represent the true 

potential of image-guided tumor biopsies. For the specimens that did not meet the criteria 

for DNA sequencing, we found that 86 of the 118 specimens contained less than 30% 

tumor cells. Retrospectively, we cannot discern whether this low tumor cell percentage is 

due to issues with the biopsy procedure or due to intratumoral aspects, such as 

heterogeneity. As sequencing techniques advance, specimens with lower tumor cell 

percentage can probably be sequenced in the future, but especially in these specimens it 

will remain challenging to determine the clinical relevance of infrequent aberrations. The 

DNA sequencing data for the first 73 biopsy specimens are largely concordant with the 

results from the Cancer Genome Atlas (TCGA).33 Alterations in TP53, APC, KRAS, and 

PIK3CA were among the most frequently found genomic aberrations across all tumor 

types. The higher incidence of PTEN and VHL in the TCGA set and of BRAF in our set is 

likely to be caused by the difference in tumor types between the two sets: The TCGA set 

contains glioblastoma multiforme samples and many samples, relatively, from 

gynecological and kidney cancers, whereas our set contains a large number of melanoma 

samples. By sequencing germline DNA as a reference for the intratumoral findings, we 

were bound to detect hereditary mutations, as had been foretold almost a decade ago.34 

The way these findings have been handled in our consortium has been published 

separately.35 By establishing a multi-institutional pipeline for large-scale collection of fresh 

frozen tumor material, we have shown that it is possible for consortia to prospectively 

collect high-quality fresh frozen tumor tissue. In our collaboration, we have set up a 

unique framework in which tumor biopsies are obtained prior to standard-of-care 

systemic treatment and in which these biopsies are stored in a way that enables us to 

perform not only NGS, but also many other analyses on RNA, protein, epigenetic 

processes, or even metabolite concentrations if sufficient tissue remains. Because the 

biopsy specimens are obtained just before the start of the treatment, we are able to 

capture the most accurate status of genetic and metabolic processes within a tumor. The 

process of obtaining fresh frozen samples is seemingly simple but requires significant 

investment when introduced into the clinical setting. The effort we describe is meaningful 

if intended to serve as a discovery tool. Although many groups have shown that NGS and 
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other molecular techniques such as RNA sequencing are possible from formalin-fixed, paraffin-

embedded (FFPE) tissue samples,36 there are still discordances between RNA sequencing 

results from FFPE and fresh frozen tissue,37 and our experience is that NGS results from fresh 

frozen tissue are more consistent. However, the logistical process needed to implement our 

protocol in itself represents added value for discovery purposes and large-scale biobanking.  

 Patient accrual is one of the major issues in gathering biopsies in the context of a 

clinical study in which there is no direct benefit for an individual patient. Both the willingness 

of patients and the reluctance of the treating physician to ask their patients for research 

biopsies play a role here. This is a common phenomenon in the process of acquiring research 

biopsies and has recently been described elsewhere.38 Consequently, many of the early-phase 

clinical trials that include mandatory biopsies fail to report on biomarker analysis.39,40 Despite 

the scarcity of adequately collected tumor material, many tumor biopsies are still collected in 

small initiatives or by industry studies, looking predominantly at only RAS, RAF, or the ERBB 

family.41 An alternative would be to identify predictive markers in preclinical model systems, 

but here the major discrepancies between pharmacologic drug responses for identical cell lines 

in the two largest pharmacogenomics cell line studies suggest that preclinical studies often lack 

predictive power.42 Thus, current and future clinical research should be aimed at collecting 

tumor tissue and at correlating molecular data to clinical outcome to identify true predictive 

biomarkers. In this study we have shown that it is feasible to perform next-generation 

sequencing on fresh frozen biopsies for biomarker discovery in a multi-institutional setting. 

Additionally, we have confirmed that acquiring fresh frozen tumor biopsies under image 

guidance is safe in advanced cancer patients. 
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systematic tissue collection in this manner, because similar proportions have been 

reported in other series26 and because this hit rate is therefore likely to represent the true 

potential of image-guided tumor biopsies. For the specimens that did not meet the criteria 

for DNA sequencing, we found that 86 of the 118 specimens contained less than 30% 

tumor cells. Retrospectively, we cannot discern whether this low tumor cell percentage is 

due to issues with the biopsy procedure or due to intratumoral aspects, such as 

heterogeneity. As sequencing techniques advance, specimens with lower tumor cell 

percentage can probably be sequenced in the future, but especially in these specimens it 

will remain challenging to determine the clinical relevance of infrequent aberrations. The 

DNA sequencing data for the first 73 biopsy specimens are largely concordant with the 

results from the Cancer Genome Atlas (TCGA).33 Alterations in TP53, APC, KRAS, and 

PIK3CA were among the most frequently found genomic aberrations across all tumor 

types. The higher incidence of PTEN and VHL in the TCGA set and of BRAF in our set is 

likely to be caused by the difference in tumor types between the two sets: The TCGA set 

contains glioblastoma multiforme samples and many samples, relatively, from 

gynecological and kidney cancers, whereas our set contains a large number of melanoma 

samples. By sequencing germline DNA as a reference for the intratumoral findings, we 

were bound to detect hereditary mutations, as had been foretold almost a decade ago.34 

The way these findings have been handled in our consortium has been published 

separately.35 By establishing a multi-institutional pipeline for large-scale collection of fresh 

frozen tumor material, we have shown that it is possible for consortia to prospectively 

collect high-quality fresh frozen tumor tissue. In our collaboration, we have set up a 

unique framework in which tumor biopsies are obtained prior to standard-of-care 

systemic treatment and in which these biopsies are stored in a way that enables us to 

perform not only NGS, but also many other analyses on RNA, protein, epigenetic 

processes, or even metabolite concentrations if sufficient tissue remains. Because the 

biopsy specimens are obtained just before the start of the treatment, we are able to 

capture the most accurate status of genetic and metabolic processes within a tumor. The 

process of obtaining fresh frozen samples is seemingly simple but requires significant 

investment when introduced into the clinical setting. The effort we describe is meaningful 

if intended to serve as a discovery tool. Although many groups have shown that NGS and 
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other molecular techniques such as RNA sequencing are possible from formalin-fixed, paraffin-

embedded (FFPE) tissue samples,36 there are still discordances between RNA sequencing 

results from FFPE and fresh frozen tissue,37 and our experience is that NGS results from fresh 

frozen tissue are more consistent. However, the logistical process needed to implement our 

protocol in itself represents added value for discovery purposes and large-scale biobanking.  

 Patient accrual is one of the major issues in gathering biopsies in the context of a 

clinical study in which there is no direct benefit for an individual patient. Both the willingness 

of patients and the reluctance of the treating physician to ask their patients for research 

biopsies play a role here. This is a common phenomenon in the process of acquiring research 

biopsies and has recently been described elsewhere.38 Consequently, many of the early-phase 

clinical trials that include mandatory biopsies fail to report on biomarker analysis.39,40 Despite 

the scarcity of adequately collected tumor material, many tumor biopsies are still collected in 

small initiatives or by industry studies, looking predominantly at only RAS, RAF, or the ERBB 

family.41 An alternative would be to identify predictive markers in preclinical model systems, 

but here the major discrepancies between pharmacologic drug responses for identical cell lines 

in the two largest pharmacogenomics cell line studies suggest that preclinical studies often lack 

predictive power.42 Thus, current and future clinical research should be aimed at collecting 

tumor tissue and at correlating molecular data to clinical outcome to identify true predictive 

biomarkers. In this study we have shown that it is feasible to perform next-generation 

sequencing on fresh frozen biopsies for biomarker discovery in a multi-institutional setting. 

Additionally, we have confirmed that acquiring fresh frozen tumor biopsies under image 

guidance is safe in advanced cancer patients. 
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Supplementary Table S1. SureSelect design CPCT capture kit > 1977 genes (update 
september 2011). 
AAK1 
AATK 
ABCA1 
ABL1 
ABL2 
AC005726.6 
AC005756.1 
AC008735.15 
AC012652.1 
AC013461.1 
AC021106.1 
AC068353.1 
AC107883.1 
AC113191.2 
AC114947.1 
AC130454.2 
ACTR2 
ACVR1 
ACVR1B 
ACVR1C 
ACVR2A 
ACVR2B 
ACVRL1 
AD000671.3 
ADAM17 
ADAM29 
ADAMTS15 
ADAMTS18 
ADAMTSL3 
ADCK1 
ADCK2 
ADCK4 
ADCK5 
ADORA1 
ADRBK1 
ADRBK2 
AGK 
AIFM1 
AIFM2 
AIM1 
AIMP2 
AIP 
AKAP4 
AKT1 
AKT1S1 
AKT2 
AKT3 

AL117209.2 
ALK 
ALKBH1 
ALKBH2 
ALKBH3 
ALMS1 
ALPK1 
ALPK2 
ALPK3 
AMH 
AMHR2 
ANAPC1 
ANAPC10 
ANAPC11 
ANAPC13 
ANAPC2 
ANAPC4 
ANAPC5 
ANAPC7 
ANGPTL4 
ANK1 
ANK2 
ANKK1 
ANKRD29 
AP000654.1 
AP003355.2 
APAF1 
APC 
APC2 
APH1A 
APPL1 
AR 
ARAF 
AREG 
AREGB 
ARFRP1 
ARID1A 
ARIH2 
ARL13B 
ARL4C 
ARL6 
ARNT 
ARNT2 
ARPC3 
ARPC4 
ARPC5 
ARRB1 

ARRB2 
ASAP1 
ASCC1 
ASH1L 
ASH2L 
ASPSCR1 
ASXL1 
ATF1 
ATF2 
ATF4 
ATM 
ATP5S 
ATP8B1 
ATR 
ATRX 
AURKA 
AURKB 
AURKC 
AXIN1 
AXIN2 
AXL 
B9D1 
BACH1 
BAD 
BAG2 
BAI1 
BAI3 
BAIAP2 
BAP1 
BARD1 
BAX 
BBC3 
BBS2 
BBS4 
BBS5 
BBS7 
BBS9 
BCKDK 
BCL2 
BCL2L1 
BCL2L11 
BCL2L14 
BCL2L2 
BCL6 
BCL9 
BCR 
BDNF 

BID 
BIRC2 
BIRC3 
BIRC5 
BLK 
BLM 
BMP1 
BMP10 
BMP15 
BMP2 
BMP2K 
BMP4 
BMP5 
BMP6 
BMP7 
BMP8A 
BMP8B 
BMPR1A 
BMPR1B 
BMPR2 
BMX 
BOC 
BRAF 
BRCA1 
BRCA2 
BRD2 
BRD3 
BRD4 
BRDT 
BRIP1 
BRSK1 
BRSK2 
BTC 
BTK 
BTRC 
BUB1 
BUB1B 
BUB3 
C10orf104 
C10orf137 
C13orf34 
C14orf153 
C16orf53 
C17orf106 
C8ORF4 
C9orf100 
C9orf96 

CAB39 
CAB39L 
CABC1 
CACYBP 
CAD 
CALM1 
CALM2 
CALM3 
CALML3 
CALML5 
CALML6 
CAMK1 
CAMK1D 
CAMK1G 
CAMK2A 
CAMK2B 
CAMK2D 
CAMK2G 
CAMK4 
CAMKK1 
CAMKK2 
CAMKV 
CAMP 
CAPG 
CAPN1 
CAPN2 
CARD9 
CARM1 
CARS 
CASK 
CASP1 
CASP10 
CASP2 
CASP3 
CASP4 
CASP5 
CASP6 
CASP7 
CASP8 
CASP9 
CBL 
CBLB 
CBLC 
CCBE1 
CCDC6 
CCDC99 
CCNA1 

CCNA2 
CCNB1 
CCNB2 
CCNB3 
CCND1 
CCND2 
CCND3 
CCNE1 
CCNE2 
CCNG1 
CCNG2 
CCNH 
CCR3 
CCR7 
CCRK 
CD109 
CD14 
CD248 
CD40 
CD47 
CD82 
CDC14A 
CDC14B 
CDC16 
CDC20 
CDC23 
CDC25A 
CDC25B 
CDC25C 
CDC26 
CDC27 
CDC2L5 
CDC2L6 
CDC42 
CDC42BPA 
CDC42BPB 
CDC42BPG 
CDC45L 
CDC6 
CDC7 
CDC73 
CDCA8 
CDH1 
CDH20 
CDH3 
CDK1 
CDK10 
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CDK11A 
CDK17 
CDK2 
CDK4 
CDK5 
CDK6 
CDK7 
CDK8 
CDK9 
CDKL1 
CDKL2 
CDKL3 
CDKL4 
CDKL5 
CDKN1A 
CDKN1B 
CDKN1C 
CDKN2A 
CDKN2B 
CDKN2C 
CDKN2D 
CDON 
CDT1 
CEBPA 
CENPA 
CENPE 
CEP290 
CER1 
CERK 
CFL2 
CFLAR 
CHD3 
CHD5 
CHD8 
CHEK1 
CHEK2 
CHIC2 
CHL1 
CHRD 
CHRM1 
CHUK 
CIB2 
CIC 
CIR1 
CIT 
CITED1 
CKS1B 
CLDN1 
CLIP1 
CLK1 

CLK2 
CLK3 
CLK4 
CLSPN 
CLSTN1 
CLTC 
CLUAP1 
CNKSR1 
CNKSR2 
CNTN4 
CNTN6 
COL14A1 
COL1A1 
COL4A1 
COL4A2 
COL4A4 
COL4A6 
COMP 
COX7A2L 
CREB1 
CREB3L2 
CREBBP 
CRK 
CRKL 
CRKRS 
CRLF2 
CSF1 
CSF1R 
CSF2RA 
CSF2RB 
CSF3R 
CSK 
CSMD1 
CSMD3 
CSNK1A1 
CSNK1A1L 
CSNK1D 
CSNK1E 
CSNK1G1 
CSNK1G2 
CSNK1G3 
CSNK2A1 
CSNK2A2 
CSNK2B 
CTBP1 
CTBP2 
CTNNA1 
CTNNA2 
CTNNA3 
CTNNB1 

CTNNBIP1 
CUBN 
CUL1 
CUL2 
CXCL12 
CXCR4 
CXCR7 
CXXC4 
CYCS 
CYLD 
CYS1 
DAAM1 
DAAM2 
DAPK1 
DAPK2 
DAPK3 
DARC 
DAXX 
DBF4 
DCC 
DCLK1 
DCLK2 
DCLK3 
DCN 
DDB2 
DDIT3 
DDIT4 
DDR1 
DDR1 
DDR2 
DDX23 
DFFA 
DFFB 
DGKA 
DGKB 
DGKD 
DGKE 
DGKG 
DGKH 
DGKI 
DGKQ 
DGKZ 
DHH 
DIABLO 
DIP2C 
DKK1 
DKK2 
DKK3 
DKK4 
DLK1 

DLL1 
DLL3 
DLL4 
DMAP1 
DMPK 
DNAH11 
DNAH5 
DNAH9 
DNAI1 
DNLZ 
DOT1L 
DPP3 
DPP4 
DSCAML1 
DSTYK 
DTX1 
DTX2 
DTX3 
DTX3L 
DTX4 
DUSP1 
DUSP10 
DUSP14 
DUSP16 
DUSP2 
DUSP3 
DUSP4 
DUSP5 
DUSP6 
DUSP7 
DUSP8 
DUSP9 
DVL1 
DVL2 
DVL3 
DYRK1A 
DYRK1B 
DYRK2 
DYRK3 
DYRK4 
E2F1 
E2F2 
E2F3 
E2F4 
E2F5 
E2F6 
E2F7 
E2F8 
E4F1 
ECSIT 

EDA 
EEF2K 
EFNB1 
EFNB2 
EGF 
EGFL6 
EGFR 
EGLN1 
EGLN2 
EGLN3 
EGR1 
EHMT1 
EHMT2 
EI24 
EIF2AK1 
EIF2AK2 
EIF2AK3 
EIF2AK4 
EIF2B5 
EIF3J 
EIF4A2 
EIF4B 
EIF4E 
EIF4E1B 
EIF4E2 
EIF4EBP1 
ELF3 
ELF4 
ELK1 
ELK3 
ELK4 
EML4 
ENDOD1 
ENDOG 
EP300 
EPAS1 
EPCAM 
EPHA1 
EPHA10 
EPHA2 
EPHA3 
EPHA4 
EPHA5 
EPHA6 
EPHA7 
EPHA8 
EPHB1 
EPHB2 
EPHB3 
EPHB4 

EPHB6 
EPS8 
ERBB2 
ERBB3 
ERBB4 
ERC2 
ERCC1 
ERCC2 
ERCC3 
ERCC4 
ERCC5 
ERCC6 
ERCC6L 
EREG 
ERGIC3 
ERN1 
ERN2 
ERO1L 
ESCO2 
ESPL1 
ESR1 
ETFA 
ETS1 
EVL 
EWSR1 
EXO1 
EXOC4 
EXOC7 
EXOG 
EXT1 
EXT2 
EYA4 
EZH1 
EZH2 
FADD 
FAM123B 
FAM20C 
FANCA 
FANCC 
FANCD2 
FANCE 
FANCF 
FANCG 
FARP1 
FARP2 
FAS 
FASLG 
FASN 
FASTK 
FAT3 
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Supplementary Table S1. SureSelect design CPCT capture kit > 1977 genes (update 
september 2011). 
AAK1 
AATK 
ABCA1 
ABL1 
ABL2 
AC005726.6 
AC005756.1 
AC008735.15 
AC012652.1 
AC013461.1 
AC021106.1 
AC068353.1 
AC107883.1 
AC113191.2 
AC114947.1 
AC130454.2 
ACTR2 
ACVR1 
ACVR1B 
ACVR1C 
ACVR2A 
ACVR2B 
ACVRL1 
AD000671.3 
ADAM17 
ADAM29 
ADAMTS15 
ADAMTS18 
ADAMTSL3 
ADCK1 
ADCK2 
ADCK4 
ADCK5 
ADORA1 
ADRBK1 
ADRBK2 
AGK 
AIFM1 
AIFM2 
AIM1 
AIMP2 
AIP 
AKAP4 
AKT1 
AKT1S1 
AKT2 
AKT3 

AL117209.2 
ALK 
ALKBH1 
ALKBH2 
ALKBH3 
ALMS1 
ALPK1 
ALPK2 
ALPK3 
AMH 
AMHR2 
ANAPC1 
ANAPC10 
ANAPC11 
ANAPC13 
ANAPC2 
ANAPC4 
ANAPC5 
ANAPC7 
ANGPTL4 
ANK1 
ANK2 
ANKK1 
ANKRD29 
AP000654.1 
AP003355.2 
APAF1 
APC 
APC2 
APH1A 
APPL1 
AR 
ARAF 
AREG 
AREGB 
ARFRP1 
ARID1A 
ARIH2 
ARL13B 
ARL4C 
ARL6 
ARNT 
ARNT2 
ARPC3 
ARPC4 
ARPC5 
ARRB1 

ARRB2 
ASAP1 
ASCC1 
ASH1L 
ASH2L 
ASPSCR1 
ASXL1 
ATF1 
ATF2 
ATF4 
ATM 
ATP5S 
ATP8B1 
ATR 
ATRX 
AURKA 
AURKB 
AURKC 
AXIN1 
AXIN2 
AXL 
B9D1 
BACH1 
BAD 
BAG2 
BAI1 
BAI3 
BAIAP2 
BAP1 
BARD1 
BAX 
BBC3 
BBS2 
BBS4 
BBS5 
BBS7 
BBS9 
BCKDK 
BCL2 
BCL2L1 
BCL2L11 
BCL2L14 
BCL2L2 
BCL6 
BCL9 
BCR 
BDNF 

BID 
BIRC2 
BIRC3 
BIRC5 
BLK 
BLM 
BMP1 
BMP10 
BMP15 
BMP2 
BMP2K 
BMP4 
BMP5 
BMP6 
BMP7 
BMP8A 
BMP8B 
BMPR1A 
BMPR1B 
BMPR2 
BMX 
BOC 
BRAF 
BRCA1 
BRCA2 
BRD2 
BRD3 
BRD4 
BRDT 
BRIP1 
BRSK1 
BRSK2 
BTC 
BTK 
BTRC 
BUB1 
BUB1B 
BUB3 
C10orf104 
C10orf137 
C13orf34 
C14orf153 
C16orf53 
C17orf106 
C8ORF4 
C9orf100 
C9orf96 

CAB39 
CAB39L 
CABC1 
CACYBP 
CAD 
CALM1 
CALM2 
CALM3 
CALML3 
CALML5 
CALML6 
CAMK1 
CAMK1D 
CAMK1G 
CAMK2A 
CAMK2B 
CAMK2D 
CAMK2G 
CAMK4 
CAMKK1 
CAMKK2 
CAMKV 
CAMP 
CAPG 
CAPN1 
CAPN2 
CARD9 
CARM1 
CARS 
CASK 
CASP1 
CASP10 
CASP2 
CASP3 
CASP4 
CASP5 
CASP6 
CASP7 
CASP8 
CASP9 
CBL 
CBLB 
CBLC 
CCBE1 
CCDC6 
CCDC99 
CCNA1 

CCNA2 
CCNB1 
CCNB2 
CCNB3 
CCND1 
CCND2 
CCND3 
CCNE1 
CCNE2 
CCNG1 
CCNG2 
CCNH 
CCR3 
CCR7 
CCRK 
CD109 
CD14 
CD248 
CD40 
CD47 
CD82 
CDC14A 
CDC14B 
CDC16 
CDC20 
CDC23 
CDC25A 
CDC25B 
CDC25C 
CDC26 
CDC27 
CDC2L5 
CDC2L6 
CDC42 
CDC42BPA 
CDC42BPB 
CDC42BPG 
CDC45L 
CDC6 
CDC7 
CDC73 
CDCA8 
CDH1 
CDH20 
CDH3 
CDK1 
CDK10 
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CDK11A 
CDK17 
CDK2 
CDK4 
CDK5 
CDK6 
CDK7 
CDK8 
CDK9 
CDKL1 
CDKL2 
CDKL3 
CDKL4 
CDKL5 
CDKN1A 
CDKN1B 
CDKN1C 
CDKN2A 
CDKN2B 
CDKN2C 
CDKN2D 
CDON 
CDT1 
CEBPA 
CENPA 
CENPE 
CEP290 
CER1 
CERK 
CFL2 
CFLAR 
CHD3 
CHD5 
CHD8 
CHEK1 
CHEK2 
CHIC2 
CHL1 
CHRD 
CHRM1 
CHUK 
CIB2 
CIC 
CIR1 
CIT 
CITED1 
CKS1B 
CLDN1 
CLIP1 
CLK1 

CLK2 
CLK3 
CLK4 
CLSPN 
CLSTN1 
CLTC 
CLUAP1 
CNKSR1 
CNKSR2 
CNTN4 
CNTN6 
COL14A1 
COL1A1 
COL4A1 
COL4A2 
COL4A4 
COL4A6 
COMP 
COX7A2L 
CREB1 
CREB3L2 
CREBBP 
CRK 
CRKL 
CRKRS 
CRLF2 
CSF1 
CSF1R 
CSF2RA 
CSF2RB 
CSF3R 
CSK 
CSMD1 
CSMD3 
CSNK1A1 
CSNK1A1L 
CSNK1D 
CSNK1E 
CSNK1G1 
CSNK1G2 
CSNK1G3 
CSNK2A1 
CSNK2A2 
CSNK2B 
CTBP1 
CTBP2 
CTNNA1 
CTNNA2 
CTNNA3 
CTNNB1 

CTNNBIP1 
CUBN 
CUL1 
CUL2 
CXCL12 
CXCR4 
CXCR7 
CXXC4 
CYCS 
CYLD 
CYS1 
DAAM1 
DAAM2 
DAPK1 
DAPK2 
DAPK3 
DARC 
DAXX 
DBF4 
DCC 
DCLK1 
DCLK2 
DCLK3 
DCN 
DDB2 
DDIT3 
DDIT4 
DDR1 
DDR1 
DDR2 
DDX23 
DFFA 
DFFB 
DGKA 
DGKB 
DGKD 
DGKE 
DGKG 
DGKH 
DGKI 
DGKQ 
DGKZ 
DHH 
DIABLO 
DIP2C 
DKK1 
DKK2 
DKK3 
DKK4 
DLK1 

DLL1 
DLL3 
DLL4 
DMAP1 
DMPK 
DNAH11 
DNAH5 
DNAH9 
DNAI1 
DNLZ 
DOT1L 
DPP3 
DPP4 
DSCAML1 
DSTYK 
DTX1 
DTX2 
DTX3 
DTX3L 
DTX4 
DUSP1 
DUSP10 
DUSP14 
DUSP16 
DUSP2 
DUSP3 
DUSP4 
DUSP5 
DUSP6 
DUSP7 
DUSP8 
DUSP9 
DVL1 
DVL2 
DVL3 
DYRK1A 
DYRK1B 
DYRK2 
DYRK3 
DYRK4 
E2F1 
E2F2 
E2F3 
E2F4 
E2F5 
E2F6 
E2F7 
E2F8 
E4F1 
ECSIT 

EDA 
EEF2K 
EFNB1 
EFNB2 
EGF 
EGFL6 
EGFR 
EGLN1 
EGLN2 
EGLN3 
EGR1 
EHMT1 
EHMT2 
EI24 
EIF2AK1 
EIF2AK2 
EIF2AK3 
EIF2AK4 
EIF2B5 
EIF3J 
EIF4A2 
EIF4B 
EIF4E 
EIF4E1B 
EIF4E2 
EIF4EBP1 
ELF3 
ELF4 
ELK1 
ELK3 
ELK4 
EML4 
ENDOD1 
ENDOG 
EP300 
EPAS1 
EPCAM 
EPHA1 
EPHA10 
EPHA2 
EPHA3 
EPHA4 
EPHA5 
EPHA6 
EPHA7 
EPHA8 
EPHB1 
EPHB2 
EPHB3 
EPHB4 

EPHB6 
EPS8 
ERBB2 
ERBB3 
ERBB4 
ERC2 
ERCC1 
ERCC2 
ERCC3 
ERCC4 
ERCC5 
ERCC6 
ERCC6L 
EREG 
ERGIC3 
ERN1 
ERN2 
ERO1L 
ESCO2 
ESPL1 
ESR1 
ETFA 
ETS1 
EVL 
EWSR1 
EXO1 
EXOC4 
EXOC7 
EXOG 
EXT1 
EXT2 
EYA4 
EZH1 
EZH2 
FADD 
FAM123B 
FAM20C 
FANCA 
FANCC 
FANCD2 
FANCE 
FANCF 
FANCG 
FARP1 
FARP2 
FAS 
FASLG 
FASN 
FASTK 
FAT3 



38 | Chapter 2 
 

 

FBXL14 
FBXW11 
FBXW7 
FER 
FES 
FGF1 
FGF10 
FGF11 
FGF12 
FGF13 
FGF14 
FGF16 
FGF17 
FGF18 
FGF19 
FGF2 
FGF20 
FGF21 
FGF22 
FGF23 
FGF3 
FGF4 
FGF5 
FGF6 
FGF7 
FGF8 
FGF9 
FGFR1 
FGFR2 
FGFR3 
FGFR4 
FGR 
FH 
FIGF 
FKBP1A 
FLCN 
FLNA 
FLNB 
FLNC 
FLOT1 
FLOT2 
FLT1 
FLT3 
FLT3LG 
FLT4 
FN1 
FOS 
FOSL1 
FOXC1 
FOXC2 

FOXL2 
FOXM1 
FOXO1 
FOXO3 
FOXO4 
FRAT1 
FRAT2 
FRK 
FRZB 
FST 
FTO 
FYB 
FYN 
FZD1 
FZD10 
FZD2 
FZD3 
FZD4 
FZD5 
FZD6 
FZD7 
FZD8 
FZD9 
FZR1 
GAB1 
GABRA6 
GADD45A 
GADD45B 
GADD45G 
GAK 
GALNS 
GAS1 
GATA1 
GATA2 
GATA3 
GCK 
GDF5 
GDF6 
GDF7 
GDNF 
GLI1 
GLI2 
GLI3 
GMNN 
GMPS 
GNA12 
GNAQ 
GNAS 
GNG12 
GPR141 

GRAP2 
GRB10 
GRB2 
GRK1 
GRK4 
GRK5 
GRK6 
GRK7 
GSG2 
GSK3A 
GSK3B 
GSTP1 
GSX2 
GTSE1 
GUCY1A2 
GUCY2C 
GUCY2D 
GUCY2F 
GYS1 
GYS2 
H2AFX 
H2AFY2 
HABP4 
HAPLN1 
HAT1 
HAUS3 
HBEGF 
HBXIP 
HCK 
HDAC1 
HDAC10 
HDAC11 
HDAC2 
HDAC3 
HDAC4 
HDAC5 
HDAC6 
HDAC7 
HDAC8 
HDAC9 
HES1 
HES5 
HGF 
HHIP 
HIF1A 
HIF1AN 
HIF3A 
HIPK1 
HIPK2 
HIPK3 

HIPK4 
HIST1H1B 
HK1 
HK2 
HK3 
HNF1A 
HNF1B 
HNRNPH2 
HRAS 
HSF4 
HSP90AA1 
HSP90AB1 
HSP90B1 
HSPA1A 
HSPA1B 
HSPA1L 
HSPA2 
HSPA6 
HSPA8 
HSPB1 
HSPB8 
HUNK 
ICAM1 
ICAM2 
ICAM3 
ICAM4 
ICK 
ID1 
ID2 
ID3 
ID4 
IDH1 
IDH2 
IDUA 
IFNG 
IFT172 
IFT57 
IFT81 
IFT88 
IGF1 
IGF1R 
IGF2 
IGF2R 
IGFBP1 
IGFBP2 
IGFBP3 
IGFBP4 
IGFBP5 
IHH 
IKBKAP 

IKBKB 
IKBKE 
IKBKG 
IL12RB1 
IL18BP 
IL1R1 
IL1R2 
IL1RAP 
IL3RA 
IL6 
IL6ST 
IL8 
ILK 
INCENP 
INHBA 
INHBB 
INHBC 
INHBE 
INPP4A 
INPP5D 
INPP5K 
INPPL1 
INS 
INSR 
INSRR 
INVS 
IP6K1 
IP6K2 
IP6K3 
IPMK 
IPPK 
IQCB1 
IQGAP2 
IRAK1 
IRAK2 
IRAK3 
IRAK4 
IRF3 
IRS1 
IRS2 
IRS4 
ITCH 
ITGA2 
ITGA2B 
ITGA3 
ITGA6 
ITGAE 
ITGAV 
ITGB1 
ITK 

ITPK1 
ITPKA 
ITPKB 
ITPKC 
ITPR2 
JAG1 
JAG2 
JAK1 
JAK2 
JAK3 
JARID2 
JHDM1D 
JMJD1C 
JMJD4 
JMJD5 
JMJD6 
JMJD7-
PLA2G4B 
JMJD8 
JUN 
JUNB 
JUND 
JUP 
KALRN 
KAT2A 
KAT2B 
KAT5 
KCNE1 
KDM1A 
KDM1B 
KDM2A 
KDM2B 
KDM3A 
KDM3B 
KDM4A 
KDM4B 
KDM4C 
KDM4D 
KDM4DL 
KDM5A 
KDM5B 
KDM5C 
KDM5D 
KDM6A 
KDM6B 
KDR 
KIAA1468 
KIF11 
KIF15 
KIF1B 
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KIF2C 
KIF3A 
KIF3B 
KIFAP3 
KISS1 
KIT 
KITLG 
KLC3 
KLHL4 
KLK3 
KNTC1 
KRAS 
KREMEN1 
KREMEN2 
KRT20 
KRT71 
KRT73 
KRTCAP2 
KRTCAP3 
KSR1 
KSR2 
L3MBTL 
LAMA1 
LAMA2 
LAMA3 
LAMA4 
LAMA5 
LAMB1 
LAMB2 
LAMB3 
LAMB4 
LAMC1 
LAMC2 
LAMC3 
LATS1 
LATS2 
LCK 
LEF1 
LEFTY1 
LEFTY2 
LFNG 
LGR5 
LGR6 
LIMK1 
LIMK2 
LMTK2 
LMTK3 
LNX1 
LRDD 
LRP2 

LRP2BP 
LRP5 
LRP6 
LRRC50 
LRRC6 
LRRK1 
LRRK2 
LTBP1 
LTK 
LYN 
LZTS2 
MACC1 
MAD1L1 
MAD2L1 
MAD2L1BP 
MAD2L2 
MAK 
MAML1 
MAML2 
MAML3 
MAP2 
MAP2K1 
MAP2K2 
MAP2K3 
MAP2K4 
MAP2K5 
MAP2K6 
MAP2K7 
MAP3K1 
MAP3K10 
MAP3K11 
MAP3K12 
MAP3K13 
MAP3K14 
MAP3K15 
MAP3K2 
MAP3K3 
MAP3K4 
MAP3K5 
MAP3K6 
MAP3K7 
MAP3K7IP1 
MAP3K7IP2 
MAP3K8 
MAP3K9 
MAP4K1 
MAP4K2 
MAP4K3 
MAP4K4 
MAP4K5 

MAPK1 
MAPK10 
MAPK11 
MAPK12 
MAPK13 
MAPK14 
MAPK15 
MAPK3 
MAPK4 
MAPK6 
MAPK7 
MAPK8 
MAPK8IP1 
MAPK8IP2 
MAPK8IP3 
MAPK9 
MAPKAPK2 
MAPKAPK3 
MAPKAPK5 
MAPKSP1 
MAPRE1 
MAPRE3 
MAPT 
MARK1 
MARK2 
MARK3 
MARK4 
MAST1 
MAST2 
MAST3 
MAST4 
MASTL 
MATK 
MAX 
MBIP 
MCC 
MCF2L2 
MCL1 
MCM2 
MCM3 
MCM4 
MCM5 
MCM6 
MCM7 
MCM8 
MDM2 
MDM4 
MECOM 
MED12 
MED12L 

MEF2C 
MELK 
MEN1 
MERTK 
MET 
MFSD4 
MGMT 
MGST1 
MINK1 
MITF 
MKKS 
MKNK1 
MKNK2 
MKRN2 
MKS1 
MLH1 
MLH3 
MLKL 
MLL 
MLL2 
MLL3 
MLL5 
MLST8 
MMP1 
MMP2 
MMP7 
MMP9 
MOS 
MPL 
MRAS 
MRE11A 
MSH2 
MSH3 
MSH6 
MSN 
MST1 
MST1R 
MTAP 
MTOR 
MUC1 
MUSK 
MUTYH 
MVP 
MXD1 
MXI1 
MYC 
MYCBP2 
MYCL1 
MYCN 
MYCNOS 

MYD88 
MYLK 
MYLK2 
MYLK3 
MYLK4 
MYO18B 
MYO3A 
MYO3B 
MYST1 
MYST2 
MYST3 
MYST4 
MYT1 
NBN 
NCK1 
NCK2 
NCOA4 
NCOR1 
NCOR2 
NCSTN 
NDC80 
NDP 
NDUFV3 
NEDD9 
NEK1 
NEK10 
NEK11 
NEK2 
NEK3 
NEK4 
NEK5 
NEK6 
NEK7 
NEK8 
NEK9 
NF1 
NF2 
NFAT5 
NFATC1 
NFATC2 
NFATC3 
NFATC4 
NFKB1 
NFKB2 
NFKBIA 
NFKBIE 
NGF 
NKD1 
NKD2 
NKX2-1 

NKX3-1 
NLK 
NODAL 
NOG 
NOS2 
NOS3 
NOSIP 
NOSTRIN 
NOTCH1 
NOTCH2 
NOTCH2NL 
NOTCH3 
NOTCH4 
NPHP1 
NPHP3 
NPHP4 
NPM1 
NPR1 
NPR2 
NR4A1 
NRAS 
NRBP1 
NRBP2 
NRG1 
NRG2 
NRG3 
NRG4 
NRK 
NSD1 
NTF3 
NTF4 
NTHL1 
NTRK1 
NTRK2 
NTRK3 
NUAK1 
NUAK2 
NUF2 
NUMA1 
NUMB 
NUMBL 
NUP98 
OBSCN 
ODC1 
OFD1 
OGG1 
OPRM1 
ORC1L 
ORC2L 
ORC3L 
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FBXL14 
FBXW11 
FBXW7 
FER 
FES 
FGF1 
FGF10 
FGF11 
FGF12 
FGF13 
FGF14 
FGF16 
FGF17 
FGF18 
FGF19 
FGF2 
FGF20 
FGF21 
FGF22 
FGF23 
FGF3 
FGF4 
FGF5 
FGF6 
FGF7 
FGF8 
FGF9 
FGFR1 
FGFR2 
FGFR3 
FGFR4 
FGR 
FH 
FIGF 
FKBP1A 
FLCN 
FLNA 
FLNB 
FLNC 
FLOT1 
FLOT2 
FLT1 
FLT3 
FLT3LG 
FLT4 
FN1 
FOS 
FOSL1 
FOXC1 
FOXC2 

FOXL2 
FOXM1 
FOXO1 
FOXO3 
FOXO4 
FRAT1 
FRAT2 
FRK 
FRZB 
FST 
FTO 
FYB 
FYN 
FZD1 
FZD10 
FZD2 
FZD3 
FZD4 
FZD5 
FZD6 
FZD7 
FZD8 
FZD9 
FZR1 
GAB1 
GABRA6 
GADD45A 
GADD45B 
GADD45G 
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IGF2R 
IGFBP1 
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IGFBP5 
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IKBKAP 
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IL18BP 
IL1R1 
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INHBA 
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INHBE 
INPP4A 
INPP5D 
INPP5K 
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INSR 
INSRR 
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ITGAE 
ITGAV 
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KRT71 
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ORC4L 
ORC5L 
ORC6L 
OSR1 
OXSR1 
P2RX7 
PAK1 
PAK2 
PAK3 
PAK4 
PAK6 
PAK7 
PALB2 
PAPD5 
PARD3 
PARD6A 
PARK2 
PARK7 
PARP1 
PARP10 
PARP11 
PARP12 
PARP14 
PARP15 
PARP16 
PARP3 
PARP8 
PARP9 
PASK 
PAX8 
PBK 
PBRM1 
PCBD1 
PCK1 
PCK2 
PCNA 
PCTK1 
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PDE3A 
PDE3B 
PDE4D 
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PDGFB 
PDGFRA 
PDGFRB 
PDGFRL 
PDIK1L 
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PDK2 
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PDK4 
PDPK1 
PERP 
PFTK1 
PFTK2 
PGF 
PGPEP1 
PHF15 
PHF16 
PHF17 
PHF2 
PHF8 
PHIP 
PHKA1 
PHKA2 
PHKB 
PHKG1 
PHKG2 
PHLDB2 
PHOX2A 
PHOX2B 
PI4K2A 
PI4K2B 
PI4KA 
PI4KB 
PIAS1 
PIAS2 
PIAS3 
PIAS4 
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PIK3C2B 
PIK3C2G 
PIK3C3 
PIK3CA 
PIK3CB 
PIK3CD 
PIK3CG 
PIK3R1 
PIK3R2 
PIK3R3 
PIK3R4 
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PIK3R6 
PIKFYVE 
PIM1 
PIM2 
PIM3 
PIN4 
PINK1 
PIP4K2C 

PIP5K1A 
PIP5K1B 
PIP5K1C 
PIP5K2A 
PIP5K2B 
PIP5KL1 
PIPSL 
PITX2 
PIWIL1 
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PKD2 
PKDCC 
PKHD1 
PKLR 
PKMYT1 
PKN1 
PKN2 
PKN3 
PKNOX1 
PLA2G2A 
PLCB1 
PLCB2 
PLCB3 
PLCB4 
PLCG1 
PLCG2 
PLCXD1 
PLCXD2 
PLCXD3 
PLCZ1 
PLD1 
PLD6 
PLK1 
PLK2 
PLK3 
PLK4 
PLXNB3 
PMAIP1 
PML 
PMS1 
PMS2 
PNCK 
POLS 
PORCN 
POU2F1 
PPA1 
PPA2 
PPARD 
PPARG 
PPARGC1A 
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PPM1B 
PPM1D 
PPP1CA 
PPP1CB 
PPP1CC 
PPP1R13B 
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PPP1R3B 
PPP1R3C 
PPP1R3D 
PPP2CA 
PPP2CB 
PPP2R1A 
PPP2R1B 
PPP2R5A 
PPP2R5B 
PPP2R5C 
PPP2R5D 
PPP2R5E 
PPP3CA 
PPP3CB 
PPP3CC 
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PPP3R2 
PPP5C 
PRCC 
PRDM2 
PRDM4 
PRDM6 
PRDM7 
PRDM9 
PRICKLE1 
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PRKAA1 
PRKAA2 
PRKAB1 
PRKAB2 
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PRKAG3 
PRKAR1A 
PRKAR1B 
PRKAR2A 
PRKAR2B 
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PRKDC 
PRKG1 
PRKG2 
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PROC 
PRPF4 
PRPF4B 
PSEN1 
PSEN2 
PSENEN 
PSKH1 
PSKH2 
PSMC4 
PSPH 
PTCH1 
PTCH2 
PTCRA 
PTEN 
PTGS2 
PTK2 
PTK2B 
PTK6 
PTK7 
PTN 
PTPN1 
PTPN11 
PTPN13 
PTPN14 
PTPN3 
PTPN5 
PTPN6 
PTPN7 
PTPRA 
PTPRD 
PTPRF 
PTPRG 
PTPRJ 
PTPRN2 
PTPRR 

PTPRS 
PTPRT 
PTPRU 
PTTG1 
PXK 
PXN 
PYGB 
PYGL 
PYGM 
PYGO1 
PYGO2 
RAB23 
RAC1 
RAC2 
RAC3 
RAD21 
RAD50 
RAD51 
RAD52 
RAD54L 
RAD9A 
RAD9B 
RAET1E 
RAET1L 
RAF1 
RAGE 
RALA 
RALB 
RALBP1 
RALGDS 
RANBP2 
RAP1A 
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RAP1GAP 
RAPGEF1 
RAPGEF2 
RAPGEF3 
RAPGEF4 
RARA 
RARB 
RASA1 
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RASA3 
RASGRF1 
RASGRF2 
RASGRP1 
RASGRP2 
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RASGRP4 
RASSF1 
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RASSF5 
RAVER2 
RAX2 
RB1 
RBBP4 
RBBP5 
RBBP8 
RBL1 
RBL2 
RBPJ 
RBPJL 
RBX1 
RCHY1 
REEP5 
REL 
RELA 
RELB 
RET 
RFC1 
RFC2 
RFC3 
RFC4 
RFC5 
RFNG 
RFWD2 
RFX2 
RHEB 
RHO 
RHOA 
RHOC 
RHOQ 
RICTOR 
RIOK1 
RIOK2 
RIOK3 
RIPK1 
RIPK2 
RIPK3 
RIPK4 
RMI1 
RNASEL 
RNF213 
RNF220 
ROCK1 
ROCK2 
ROR1 
ROR2 
ROS1 
RP11-
330H6.5 

RP11-
481A12.5 
RP5-862P8.2 
RPA1 
RPA2 
RPA3 
RPA4 
RPGR 
RPGRIP1 
RPGRIP1L 
RPRM 
RPS6 
RPS6KA1 
RPS6KA2 
RPS6KA3 
RPS6KA4 
RPS6KA5 
RPS6KA6 
RPS6KB1 
RPS6KB2 
RPS6KC1 
RPS6KL1 
RPTOR 
RRAS 
RRAS2 
RRM1 
RRM2 
RRM2B 
RSPO1 
RUNX1 
RUNX1T1 
RUVBL1 
RXRA 
RXRB 
RXRG 
RYK 
SBK1 
SBK2 
SCEL 
SCYL1 
SCYL2 
SCYL3 
SDCCAG1 
SDHB 
SDHD 
SEC31A 
SENP2 
SEPT9 
SERPINB5 
SERPINE1 

SESN1 
SESN2 
SESN3 
SETD1A 
SETD1B 
SETD2 
SETD3 
SETD4 
SETD5 
SETD6 
SETD7 
SETD8 
SETDB1 
SETDB2 
SETMAR 
SFN 
SFRP1 
SFRP2 
SFRP4 
SFRP5 
SFRS6 
SGCB 
SGK1 
SGK2 
SGK3 
SGOL1 
SGOL2 
SH2B2 
SH2D2A 
SH2D7 
SHC1 
SHC2 
SHC3 
SHC4 
SHFM1 
SHH 
SHISA5 
SHOX 
SIAH1 
SIK1 
SIK2 
SIK3 
SIN3A 
SIN3B 
SIX4 
SKP1 
SKP2 
SLC26A1 
SLC29A1 
SLC2A1 

SLC2A4 
SLK 
SMAD1 
SMAD2 
SMAD3 
SMAD4 
SMAD5 
SMAD6 
SMAD7 
SMAD9 
SMARCA4 
SMARCB1 
SMARCD1 
SMARCE1 
SMC1A 
SMC1B 
SMC3 
SMG1 
SMO 
SMURF1 
SMURF2 
SMYD1 
SMYD2 
SMYD3 
SMYD4 
SMYD5 
SNAI1 
SNAI2 
SNRK 
SNTB1 
SNW1 
SNX25 
SNX4 
SOCS1 
SOCS2 
SOCS3 
SOCS4 
SORBS1 
SOS1 
SOS2 
SOST 
SOX17 
SP1 
SPAG5 
SPC24 
SPC25 
SPEG 
SPHK1 
SPHK2 
SPI1 

SPINK1 
SPINK2  
SPINK4  
SPINK5 
SPINK6 
SPINK7 
SPINK8 
SPINK9 
SPRED1 
SPTBN2 
SRC 
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SRM 
SRMS 
SRPK1 
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SRPK3 
SSBP1 
SSBP2 
SSH1 
SSH2 
SSSCA1 
SSTR1 
SSTR2 
SSTR3 
SSTR4 
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ST13 
STAG1 
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STAM 
STAT1 
STAT3 
STAT5A 
STAT5B 
STAT6 
STEAP3 
STK10 
STK11 
STK16 
STK17A 
STK17B 
STK19 
STK24 
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STK3 
STK31 
STK32A 
STK32B 

STK32C 
STK33 
STK35 
STK36 
STK38 
STK38L 
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STK4 
STK40 
STMN1 
STOML3 
STRADA 
STRADB 
STYK1 
SUFU 
SUV39H1 
SUV39H2 
SUV420H1 
SUV420H2 
SYK 
SYMPK 
TAF1 
TAF1L 
TAOK1 
TAOK2 
TAOK3 
TBCK 
TBK1 
TBL1X 
TBL1XR1 
TBL1Y 
TBX22 
TBX3 
TCEB1 
TCEB2 
TCEB3 
TCF3 
TCF4 
TCF7 
TCF7L1 
TCF7L2 
TEC 
TECTA 
TEK 
TESK1 
TESK2 
TEX14 
TFDP1 
TFDP2 
TFE3 
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ABSTRACT 

Background. Early signs of efficacy are critical in drug development. Response Evaluation 

Criteria in Solid Tumors (RECIST) are commonly used to determine the efficacy of anti-cancer 

therapy in clinical trials. RECIST, however, emphasizes the value of tumor shrinkage, while 

many targeted agents induce prolonged tumor growth arrest. This limits its use for the 

detection of treatment efficacy for these more cytostatic regimens. Therefore, we designed an 

individualized variant of a time to progression (TTP) end point based on prospective volumetric 

measurements and an intra-patient control, the TTP ratio.  

 

Patients and methods. Patients with any metastatic malignancy, without regular treatment 

options, were treated with the mTOR inhibitor everolimus. Treatment response was 

determined using both RECIST and the TTP ratio. The TTP ratio was defined as the volumetric 

pretreatment TTP divided by the volumetric on-treatment TTP. A patient was classified as a 

responder if the TTP ratio was <0.7. Consistency and reproducibility of volumetric 

measurements were determined.  

 

Results. Seventy-three patients were included of whom 59 started treatment. A TTP ratio could 

be established in 73% (n = 43) of the treated patients. The inter-observer agreement for 

volumetric progression was 0.78 (95% confidence interval 0.70–0.87) (Krippendorff's α-

coefficient). According to RECIST, 35 patients (59%) had stable disease (SD) and 1 patient 

demonstrated a partial response (PR), whereas only 21 patients (36%) met the prespecified 

criteria for treatment efficacy according to the TTP ratio. Treatment response according to 

both the TTP ratio and RECIST (SD + PR) correlated with overall survival (OS) [P(log-rank) < 

0.001]. The TTP ratio, however, was also able to differentiate which patients had a better OS 

within the RECIST SD group [P(log-rank) = 0.0496].  

 

Conclusion. The TTP ratio had a high inter-observer agreement, correlated with OS and 

identified which patients within the RECIST SD group had a longer OS.   
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INTRODUCTION 

Early signs of clinical activity are important in the decision to further develop new drugs. 

At present, Response Evaluation Criteria in Solid Tumors 1.1 (RECIST)-based parameters 

such as the response rate (RR) or progression-free survival (PFS) are standard to 

determine drug efficacy in early clinical trials.1 The introduction of targeted and 

immunomodulatory agents, however, has intensified the debate on the validity of these 

commonly used endpoints in clinical trials.2 Although RR reliably measures significant 

tumor progression and regression, it lacks the capability to detect growth rate reduction, 

which may be of great clinical value. This is an important limitation because targeted 

agents often exert a more cytostatic effect than chemotherapy, resulting in delayed 

growth rather than objective tumor regression.3 Patients with indolent growing tumors 

will end up in the stable disease (SD) group, obscuring the distinction between a slow 

natural course of disease and treatment effect. The value of PFS in single-arm studies is 

also adversely affected by inter-tumor variation in the natural growth rate. A drug-induced 

decrease in growth rate will not be detected without knowledge of the intrinsic growth 

rate. Using only RR or PFS as an efficacy end point in early-phase clinical trials may 

therefore lead to wrongful interpretation of the results with all untoward consequences.4  

These limitations of RECIST emphasize the need for a reliable parameter of 

clinical benefit that corrects for growth characteristics of the individual patient's tumor. 

Such a parameter will not only improve detection of drug efficacy but also support drug 

development in early clinical trials. Here, we introduce and evaluate a new personalized 

response parameter to measure the efficacy of targeted therapy: the time to progression 

(TTP) ratio (Figure 1). The TTP ratio prospectively compares volumetric tumor growth off 

and on treatment and therefore serves as an intra-patient control for natural tumor 

growth rate.  

 

METHODS 

Patients  

Patients with any advanced malignancy, who progressed on their previous treatment and 

had no regular systemic treatment options left, were eligible for inclusion. Key eligibility 

criteria included an age of 18 years or older; Eastern Cooperative Oncology Group (ECOG) 
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performance status of ≤2; volumetrically measurable disease; feasibility of histologic 

tumor biopsy; and adequate hepatic, renal and hematologic function.  

 

Study Regulatory Compliance  

The protocol (ClinicalTrials.gov identifier NCT01566279) was approved by the ethical 

review board of The Netherlands Cancer Institute and complied with the Declaration of 

Helsinki, Dutch law and Good Clinical Practice. All patients provided written informed 

consent before study-related procedures.  

 

 

Figure 1. TTP ratio.  
The TTP1 ratio is used to determine treatment efficacy in this study. If everolimus is beneficial for an 
individual patient, the time to progression under treatment (TTP2) is longer than the time to 
progression without treatment (TTP1). If the ratio of TTP1:TTP2 is <0.7, the patient is classified as a 
responder. In this figure, an example is given of a non-responder and responder. In the case of a 
>30% volumetric increase or new lesions on CT, the patient is classified as having progressive disease. 
The timing of CT evaluations has also been incorporated in this figure. The CT evaluation at 4 weeks 
in TTP2 will be done only if a patient is progressive at the first evaluation in TTP1. 
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Study Design  

The CPCT-03 study was an open-label, prospective, single-arm, multicenter intervention 

study. Study objectives included biomarker identification using RECIST and TTP ratio, 

evaluating the TTP ratio as a marker for treatment efficacy, and determining PFS, overall 

survival (OS) and Disease Control Rate (DCR) as defined by RECIST. Patients were accrued 

at the Netherlands Cancer Institute, UMC Utrecht Cancer Center and Erasmus MC Cancer 

Institute Rotterdam.  

 

Treatment  

All patients received everolimus 10 mg once daily, orally, on a continuous basis until 

disease progression according to RECIST. Dose reductions to 5 mg once daily and 5 mg 

every other day were allowed. A third dose reduction, or treatment interruption of more 

than 3 weeks, was not allowed.  

 

Efficacy Assessments  

After study inclusion, the time to an either ≥30% volumetric increase in target lesions or 

the development of new lesions was determined in a prospective manner, before the 

treatment with everolimus. This period was called time to progression 1 (TTP1) and 

represented the natural tumor growth rate. In TTP1, tumor assessments were carried out 

at baseline, 4 weeks after baseline and every 6 weeks subsequently. In the case of obvious 

clinical progression during TTP1, a computed tomography (CT) scan was carried out 

immediately. Subsequently, treatment with everolimus was started and patients were 

again followed until a ≥30% volumetric increase in target lesions or the development of 

new lesions. This was called time to progression 2 (TTP2) and represented the growth 

speed of the tumor under treatment. In TTP2, tumor assessments were carried out every 

8 weeks until progressive disease, according to RECIST, was observed. The only exception 

was patients who were already progressive in TTP1 at 4 weeks, they had their first on-

treatment scan at 4 weeks. The TTP ratio was calculated by dividing TTP1 by TTP2. A 

patient was classified as a responder if the TTP ratio was <0.7. The 0.7 cut-off for response 

was based on the PFS ratio of Von Hoff et al.5 Von Hoff et al. divided TTP2 by TTP1 (in 
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contrast to TTP1 by TTP2) and used a threshold of >1.33 for response, which corresponds 

to 0.75 for our TTP ratio. They determined TTP1 under the previous treatment, whereas 

here it is determined without treatment and the more stringent cut-off 0.7 was chosen.  

 

All tumor assessments were carried out using CT and sent to a central facility. Volumetric 

measurements were carried out using semiautomatic software (EncoreUnFoie, v5.0, 

Image Sciences, UMC Utrecht, the Netherlands, 2012). All CT scans were measured by at 

least two independent observers (GAC, FW, CGMG-H, IU) using the same set of target 

lesions. At study entry, volumetrically measurable target lesions were selected in 

adherence to RECIST guidelines.1 A lesion was considered volumetrically measurable if its 

borders could be delimited on every single CT scan slice. Volumetric measurements were 

carried out by manually contouring the lesion on all axial slices. Subsequently, the volume 

of each individual lesion was calculated automatically (Supplementary Figure S1). The 

percent change in volume was calculated for the sum of volumes. If there was no 

consensus on the presence or absence of volumetric progressive disease, a third observer 

was consulted. An increase of 30% since nadir or more in the cumulative volume of target 

lesions or appearance of new lesions was considered PD. The 30% cut-off was chosen 

based on the work of van Kessel et al.6, who found that for individual observers, 95% of all 

repeated lesion measurements fell within the limit of −28.6% and 30.4%. Patients were 

also evaluated according to the conventional RECIST during the TTP2 period. For all TTP 

ratio assessable patients, the PFS ratio as described by Von Hoff et al.5 was also 

determined to enable comparison with the TTP ratio. The PFS ratio uses TTP on the most 

recent line of treatment as an intra-patient control.  

 

Evaluability of Patients  

Patients were not evaluable for TTP ratio if they did not complete the TTP1 period or if 

they had a protocol violation, lost their volumetric measurability or stopped treatment 

due to reasons other than PD [with the exception of patients that had already passed the 

threshold of response (<0.7)]. Patients were evaluable for RECIST if treatment response 

was determined on at least one CT.  
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Statistical Analyses 

The majority of analyses were carried out using SPSS Statistics version 22 (IBM). Baseline 

data were reported with descriptive statistics. PFS and OS curves were constructed using 

the Kaplan–Meier technique, and analyzed using a log-rank test. Numbers of target lesions 

were compared using a paired t-test. A Spearman correlation was used to analyze the 

relation between TTP1 and TTP ratio, TTP1 and the wash-out period of the previous 

treatment, and baseline tumor volume and percentage change. Inter-observer variability 

was calculated using R version 3.2.0 (www.r-project.org) with Krippendorff's α-coefficient.  

 

 
Table 1. 
Demographic or clinical  
characteristic 

Patients  
(N) 

 
% 

No. of patients 73  
Sex  
Male 

 
29 

 
39.7 

Age, years  
Mean 
Range 

 
59 
31–79 

 

WHO PS 
0 
1 
2 
Missing 

 
21 
42 
2 
8 

 
28.8 
57.5 
2.7 
11.0 

Primary tumor 
Colorectal 
NET 
Esophageal 
Breast 
NSCLC 
Ovarian 
Bladder 
Sarcoma 
Cervical 
Head and neck 
Renal cell 
Unknown origin 

 
23 
9 
5 
4 
4 
3 
3 
3 
2 
2 
2 
2 

 
31.5 
12.3 
6.8 
5.5 
5.5 
4.1 
4.1 
4.1 
2.7 
2.7 
2.7 
2.7 

Demographic or clinical  
Characteristic 

Patients  
(N) 

 
% 

   
Time since initial  
diagnosis 
≤6 months 
>6 months to ≤2 years 
>2 to ≤5 years 
>5 years 

 
 
6 
27 
23 
17 

 
 
8.2 
37.0 
31.5 
23.3 

No. of organs involved 
1 
2 
>2 
Unknown 

 
13 
17 
38 
5 

 
17.8 
23.3 
52.1 
6.8 

Prior treatment 
Chemotherapy 
Targeted therapy 
Hormone therapy 
Immunotherapy 
Radiotherapy 

 
68 
27 
9 
0 
38 

 
93.1 
37.0 
12.3 
— 
52.1 

Abbreviations: NET, neuroendocrine tumor; 
NSCLC, non-small cell lung cancer; WHO PS, 
World Health Organisation Performance 
Score. 
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RESULTS 

Study Population 

Seventy-three patients were included between 15 August 2012 and 23 April 2014 

(Supplementary Figure S2). Fifty-nine patients started treatment with everolimus. 

Reasons for drop-out during TTP1 included clinical deterioration (n = 8), initiation of other 

treatment (n = 2), toxicity from a previous treatment (n = 1), screen failure (n = 1) or 

withdrawal of informed consent (n = 1). Baseline patient characteristics are depicted in 

Table 1.  

 

TTP Ratio Versus RECIST  

To compare the TTP ratio and RECIST, we evaluated several factors, including number of 

target lesions, concordance of change and response classification. Forty-three (73%) 

patients reached TTP2 and were evaluable for efficacy using the TTP ratio. Fifty-one (86%) 

patients were evaluable using RECIST. Reasons for non-evaluability according to TTP ratio 

included protocol violation (n = 1), loss of volumetric measurability (n = 3) and stop of 

treatment due to reasons other than PD (n = 12). Patients were not evaluable for RECIST 

when treatment response was not determined (n = 8). Because not all lesions can be 

measured volumetrically, we compared the number of target lesions used for RECIST and 

volumetric measurements. Within patients evaluable for both methods, fewer lesions 

were selected as target lesions for volumetric measurements [mean 2.5 (±1.0 SD)] 

compared with RECIST [mean 3.0 (±1.2 SD)]. This difference was statistically significant (P 

< 0.001, paired t-test). Volumetric and RECIST measurements were concordant in 

measuring either tumor growth or regression in 79% of cases (Supplementary Figure S3).  

 

Using standard RECIST, most patients were classified as having SD (59%, Table 2). Twenty-

five percent of patients were classified as progressive (PD) and one patient had a partial 

response (PR). Using the TTP ratio, 36% of patients were classified as responders and 37% 

as non-responders. The RECIST SD cohort could be split in 20 TTP ratio responders and 8 

non-responders.  
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TTP Ratio As an Efficacy End Point 

To evaluate the consistency of measuring volumetric progressive disease, the inter-observer 

agreement was calculated using Krippendorff's α-coefficient. The inter-observer agreement 

was 0.78 [95% confidence interval (CI) 0.70–0.87] with 199 evaluated scans. Baseline tumor 

volume was not correlated to the percentage of change in target lesions (P = 0.413, Spearman). 

TTP1 was not correlated to TTP ratio (P = 0.551, Spearman) or the wash-out period of the 

previous treatment (P = 0.251, Spearman).  

 

 

 

 
 
Figure 2. Correlation of outcome measures 
to OS. (A) TTP ratio correlated with OS in the 
TTP ratio evaluable cohort, (B) PR and SD 
according to RECIST also correlated with OS 
in the TTP ratio evaluable cohort, (C) 
response according to TTP ratio within the SD 
cohort (n = 28) correlated to OS. 
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To explore the predictive value of outcome according to TTP ratio, we analyzed its relation with 

OS in the TTP ratio evaluable cohort (n = 43). Figure 2A shows OS of responders versus non-

responders according to TTP ratio. A significant difference in OS between responders [median 

12 months (95% CI 6.0–18.0)] and non-responders [median 4 months (95% CI 2.9–5.1)] was 

observed [P(log-rank) < 0.001]. There was also a significant difference in OS between the 

RECIST SD and PR patients versus the PD patients in the same cohort [P(log-rank) < 0.001, 

Figure 2B]. Because a large proportion of the RECIST SD population were TTP ratio responders, 

we carried out a separate analysis within the RECIST SD cohort to evaluate if TTP ratio response 

was correlated to OS within this subgroup (n = 28). The median OS was significantly longer in 

the TTP ratio responder group [median 11 months (95% CI 4.4–17.6)] than in the non-

responder group [median 5 months (95% CI 3.2–6.8)] [P(log-rank) = 0.0496, Figure 2C]. PFS 

ratio response also correlated to OS [P(log-rank) = 0.008]. However, in contrast to the TTP 

ratio, response according to PFS ratio was not correlated to OS in the RECIST SD cohort [P(log-

rank) = 0.311].  

 

Efficacy of Everolimus 

Within this study, we also evaluated the efficacy of everolimus according to both end 

points among different tumor types (Table 2). Individual TTP times and ratios are shown in 

Supplementary Figure S4. According to RECIST, high disease control rates (PR + SD) were 

observed for breast (75%) and esophageal (80%) cancer, including a PR for esophageal 

cancer. Both tumor types also had a high rate of responders according to the TTP ratio: 

60% for esophageal cancer and 75% for breast cancer.  

 

All TTP ratio evaluable breast cancers and esophageal adenocarcinomas had a short TTP1 

and a response according to the TTP ratio. The squamous cell esophageal carcinomas 

included a patient with a long TTP1 and response according to the TTP ratio (this patient 

also had a RECIST PR). The second patient was not evaluable for response according to the 

TTP ratio. RECIST response was SD. On CT, however, necrosis of the lung metastases was 

observed (Supplementary Figure S5).  
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The majority of patients stopped treatment due to PD (n = 35). Other reasons to stop 

treatment were adverse events (AEs) (n = 7); toxicity (n = 3); patient refusal (n = 1); clinical 

deterioration (n = 1); death (n = 1); other (n = 7). At the time of analysis, four patients 

were still on treatment. AEs are summarized in Table 3.  

 
Table 2. Efficacy of everolimus. 
 All patients  

(n = 59)  
Colorectal  
(n = 17)  

Neuro-
endocrine 
(n = 9)  

Esophageal 
(n = 5)  

Breast  
(n = 4)  

TTP ratio (n, %)  
Response (<0.7) 
Non-response (≥0.7) 
Unknown 

 
21 (36%) 
22 (37%) 
16 (27%) 

 
5 (29%) 
10 (59%) 
2 (12%) 

 
2 (22%) 
2 (22%) 
5 (56%) 

 
3 (60%) 
0 (—) 
2 (40%) 

 
3 (75%) 
0 (—) 
1 (25%) 

Best response (n, %)  
CR 
PR 
SD 
PD 
Unknown 

 
0 (—) 
1 (2%) 
35 (59%) 
15 (25%) 
8 (14%) 

 
0 (—) 
0 (—) 
8 (47%) 
8 (47%) 
1 (6%) 

 
0 (—) 
0 (—) 
6 (67%) 
1 (11%) 
2 (22%) 

 
0 (—) 
1 (20%) 
3 (60%) 
1 (20%) 
0 (—) 

 
0 (—) 
0 (—) 
3 (75%) 
0 (—) 
1 (25%) 

Disease control rate 36 (61%) 8 (47%) 6 (67%) 4 (80%) 4 (75%) 
PFS 
Events (n, %)  
Median, months 
95% CI 

 
45 (62%) 
2 
1.2–2.8 

 
14 (82%) 
2 
1.5–2.5 

 
3 (33%) 
15 
0–39.2 

 
4 (80%) 
3 
0.5–5.5 

 
3 (75%) 
1 
0–6.2 

OS 
Events (n, %)  
Median, months 
95% CI 

 
50 (85%) 
5 
4.3–5.7 

 
17 (100%) 
5 
4.0–6.0 

 
6 (67%) 
17 
0–34.5 

 
4 (80%) 
3 
0–6.2 

 
4 (100%) 
4 
0–9.9 

Abbreviations: CR, complete response; OS, overall survival; PD, progressive disease; PFS, progression 
free survival; PR, partial response; TTP ratio, time to progression ratio. 
 

Table 3. Adverse events. 
Adverse event All grades, N(%) Grade 3/4, N(%) 
Ƴ-GT increased 16 (26.7%) 1 (1.7%) 
AF increased 8 (13.3%) 1 (1.7%) 
Fatigue 6 (10%) 1 (1.7%) 
Anemia 5 (8.3%) 1 (1.7%) 
Dyspnea 5 (8.3%) 5 (8.3%) 
Hyperglycemia 5 (8.3%) 0 (-) 
Fever 4 (6.7%) 4 (6.7%) 
AST increased 3 (5%) 0 (-) 
Trombocytopenia 3 (5%) 0 (-) 
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DISCUSSION 

The results of our study suggest that the TTP ratio has additional value when determining 

the clinical benefit of targeted therapies in early-phase clinical studies. In this phase I 

population, both TTP ratio and RECIST correlated to OS. However, TTP ratio was also able 

to differentiate within the RECIST SD group which patients had a longer OS, which could 

be interpreted as a sign of clinical benefit. TTP ratio measurements were highly 

reproducible among observers in this study. If validated in other cohorts, this provides an 

opportunity to determine whether patients classified as having SD actually experienced 

clinical benefit, and gives more insight as to which patient groups benefit from treatment. 

Ultimately, we believe the TTP ratio could support drug development by improved 

detection of early signs of clinical activity.  

 

Furthermore, TTP ratio as an outcome measure was able to detect the efficacy of 

everolimus in breast and esophageal cancer. Previous studies show that everolimus 

combined with exemestane is active in breast cancer. However, the beneficial effect of 

everolimus for esophageal cancer patients has never been fully explored. Early phase 

studies by Werner et al.7 and Wainberg et al.8 report low RRs and a large SD population. 

Because it remains unclear if patients with SD actually benefit from treatment, further 

studies were discontinued. Our data, however, suggest that we were able to evaluate 

whether patients within the SD group indeed had a drug-attributable decrease in tumor 

growth rate. For all esophageal cancer patients in this study (n = 5), this was, in fact, the 

case. Despite their heavily pretreated status, these patients seemed to benefit from 

treatment with everolimus. Taking into account small patient numbers, these results may 

spark an interest to further investigate everolimus in esophageal cancer.  

 

Despite the advantages discussed above, using the TTP ratio as an end point in clinical 

studies also has several limitations. First, it has been a laborious effort to perform 

volumetric measurements (in duplicate) of each CT scan. Volumetric measurements are, 

and will remain, time-consuming procedures until robust and reliable fully automatic 

software is developed. Secondly, the wait-and-see period to assess natural growth rate 

initially raised concerns with physicians and patients. Eight patients (11%) were not able to 
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start treatment due to clinical deterioration during the waiting period. Percentagewise, 

this is comparable to the early drop-out rate in large phase I cohorts.9 In this regard, it is 

important to realize that participants in this study had no other treatment options besides 

best supportive care or phase I study participation, with a small chance of treatment 

success, possible suboptimal dosing and unknown toxicity profiles. A wait-and-see 

approach is also not necessarily disadvantageous. In this study, six patients had a TTP1 of 

>100 days. These patients had no strict indication to start treatment immediately and 

their quality of life was not negatively affected by treatment-related AEs during their 

waiting period. In addition, a first follow-up CT taking place at 4 weeks ensured early 

detection of highly progressive tumors with a low threshold to start treatment because a 

volumetric increase of 30% equals a much smaller increase in diameter.6 Altogether we 

feel that the aforementioned considerations legitimate the design of this study and 

exploratory end point. We cannot exclude the possibility of pseudoprogression in some 

patients. When adopting the TTP ratio to evaluate the efficacy of treatments that can 

result in pseudoprogression, we recommend a similar approach as the Immune-Related 

Response Criteria, namely performing a consecutive CT after 4 weeks to confirm PD.  

 

Previous studies have also recognized the limitations of on-treatment RECIST for targeted 

therapies and several alternative end points have been explored4,5,10,11 such as the tumor 

growth rate (TGR), by Ferté et al.,11 which compared tumor growth rate on-treatment and 

before treatment. They compared TGR and RECIST in a large cohort of renal cancer 

patients treated with sorafenib or everolimus and found that it facilitated detection of 

early signs of efficacy and was associated with PFS and OS. However, growth rate before 

treatment was determined retrospectively in the wash-out period, making it a less reliable 

end point. Another example is the PFS ratio by Von Hoff et al. where PFS according to 

RECIST was compared with PFS on the previous treatment.5 Although an intra-patient 

control is used, the success of the previous treatment is a major determinant of efficacy of 

the treatment of interest. Although PFS ratio also correlated to OS, PFS ratio was not able 

to differentiate within the RECIST SD group which patients had a longer OS. The TTP ratio, 

in contrast to the aforementioned examples, is thus far the only efficacy end point in 
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Ultimately, we believe the TTP ratio could support drug development by improved 

detection of early signs of clinical activity.  
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Despite the advantages discussed above, using the TTP ratio as an end point in clinical 
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volumetric measurements (in duplicate) of each CT scan. Volumetric measurements are, 

and will remain, time-consuming procedures until robust and reliable fully automatic 

software is developed. Secondly, the wait-and-see period to assess natural growth rate 

initially raised concerns with physicians and patients. Eight patients (11%) were not able to 
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start treatment due to clinical deterioration during the waiting period. Percentagewise, 

this is comparable to the early drop-out rate in large phase I cohorts.9 In this regard, it is 

important to realize that participants in this study had no other treatment options besides 
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Previous studies have also recognized the limitations of on-treatment RECIST for targeted 

therapies and several alternative end points have been explored4,5,10,11 such as the tumor 

growth rate (TGR), by Ferté et al.,11 which compared tumor growth rate on-treatment and 

before treatment. They compared TGR and RECIST in a large cohort of renal cancer 

patients treated with sorafenib or everolimus and found that it facilitated detection of 

early signs of efficacy and was associated with PFS and OS. However, growth rate before 

treatment was determined retrospectively in the wash-out period, making it a less reliable 

end point. Another example is the PFS ratio by Von Hoff et al. where PFS according to 

RECIST was compared with PFS on the previous treatment.5 Although an intra-patient 

control is used, the success of the previous treatment is a major determinant of efficacy of 

the treatment of interest. Although PFS ratio also correlated to OS, PFS ratio was not able 
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which natural growth rate (via intra-patient control) was prospectively determined and 

which correlated to OS in the RECIST SD group.  

 

To summarize, we believe that measuring clinical benefit according to TTP ratio is of 

additional value to standard RECIST measurements when determining the efficacy of 

targeted therapeutics in early-phase clinical studies as it (i) corrects for the natural growth 

rate of the tumor, (ii) corresponds well with OS in a phase I population of patients, (iii) is 

able to differentiate which patients had a longer OS within the SD cohort, (iv) shows high 

inter-observer agreement and (v) is able to identify potential patient groups (i.e. 

esophageal cancer) that might benefit from treatment. Our findings warrant further 

exploration and validation of this approach as it could greatly facilitate early detection of 

drug efficacy and thereby support drug development.  
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Semi-automated volumetric measurements. A) this figure demonstrates 
the delineation of the tumor on one CT slice. After delineating the tumor on every single CT slice, you 
get figure B and the volume is calculated automatically by the computer.    
 
 

 
Supplementary Figure 2. Evaluability of patients. This figure describes the evaluability of patients for 
the analyses included in this study. The flowchart demonstrates how many of the patients are 
evaluable for RECIST response and response according to the TTP ratio. A single patient can be 
evaluable in both cohorts. *Patients are non-evaluable for TTP ratio if they stopped treatment due to 
reasons other than PD, with the exception of patients that surpassed the threshold for response 
(<0.7) during follow-up. Abbreviations: IC, Informed Consent; PD, Progressive Disease; TTP1, Time To 
Progression 1; TTP2, Time To Progression 2.  
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Supplementary Figure 3. Waterfall plot volumetric and RECIST best response. This figure shows 
the best response as measured volumetrically (red bar) and by diameter (blue bar) for all patients 
that were evaluable for both outcomes. Absence of the blue bar means that no change has been 
detected. Using volumetric measurements, change in tumor size is more easily detected. Both 
outcome measures are highly concordant in reporting either a decrease or increase in tumor size.   
 

 
Supplementary Figure 4. Individual TTP1 & TTP2 periods and ratios. This figure portrays the time 
to progression pre-treatment (blue bar) and on-treatment (red bar) for individual patients in weeks 
on the left y-axis. The right y-axis and black stripes represent the TTP ratio.  
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Supplementary Figure 5. CT scan pre- and post-everolimus. A) pre-treatment scan, B) post-
treatment scan which shows substantial necrosis of the lung metastases.  
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Interindividual variability (IIV) in the pharmacokinetics of anticancer drugs is influenced by 

a wide variety of factors, including body composition, organ function, genetics, and 

environmental elements.1 Unfortunately, the body surface area (BSA)–based dosing 

strategy adjusts only for height and weight and is therefore unlikely to be sufficient to 

(safely) dose agents with a narrow therapeutic window. Moreover, this approach is 

conceptually invalid and should be replaced by better alternatives based on fundamental 

principles of clinical pharmacology. 

 

History 

Dose adjustments for BSA acquired their role in oncology in a rather controversial way. In 

1958, Donald Pinkel concluded that the maximum tolerable dose of a few cytostatic 

agents appeared to be quite comparable among different animal species, including 

humans (both young and adult) if corrected for BSA.2 The BSA range in his study was huge 

(from 0.0075 m2 in mice to 1.85 m2 in humans). In accordance with this finding and the 

hypothesis that the most important pharmacological processes are related to body size, 

the starting dose in oncology phase I studies was thereafter based on BSA.3 Something 

remarkable happened: this correction for BSA in early clinical trials was simply generalized 

to standard-of-care dosing of anticancer drugs in adults, without any additional evidence 

that this extrapolation was valid. In the decades that followed, the original 1916 formula 

by Du Bois and Du Bois4 was modified and simplified by others (i.e., Mosteller5 in 1987), 

but the principle remained the same. Even though this almost antique formula was based 

on the body compositions of (only) nine randomly chosen people, the correlation between 

all these formulas is strikingly high,1 making these formulas interchangeable. 

 

Evidence-based dosing? 

Although BSA-adjusted dosing has been widely utilized in oncology for decades, there has 

been extensive criticism of this approach. For many agents (e.g., 

epirubicin, cisplatin, and irinotecan), studies have demonstrated that this approach has 

little or no value in achieving the goal of reducing the IIV in exposure.6 For some drugs 

(e.g., paclitaxel), a correction for BSA may lead to reduced variability in clearance,6,7 and 

BSA is often a significant covariate in population pharmacokinetic models. However, 
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statistical significance is not necessarily associated with clinical relevance. To clarify this, 

we took a representative data set of 270 cancer patients treated with paclitaxel 

chemotherapy, with the pharmacokinetic parameters estimated from a population 

pharmacokinetic model.8 This modeling procedure is thought to deliver the most reliable 

pharmacokinetic data. Following current daily practice, all patients were dosed using BSA. 

If the BSA for these patients is plotted against paclitaxel clearance, the coefficient of 

variation is still over 30% (Figure 1). If we look at patients with a mean BSA of 1.8 m2, 

clearance may differ threefold within this subset. In addition, as shown earlier, BSA is not 

related to paclitaxel toxicity, especially myelosuppression.9 So, even for drugs like 

paclitaxel for which correction for BSA has the potential to reduce the IIV, the value of BSA 

in its dosing strategy is limited and should therefore be seriously questioned. In other 

words, despite its ability to lower the IIV of some drugs, BSA does not provide enough 

improvement in IIV to be used as the sole correction factor in dosing strategies. 

 

Another problem with BSA-based dosing is that it leads to a false sense of security. 

Calculating a dose on the basis of BSA will generate a very precise dose. For instance, for a 

patient 161 cm tall and weighing 54.7 kg who receives a drug dose of 75 mg/m2, a dose of 

117.31 mg (Mosteller5) will be displayed on the calculator. Although this dose is very 

precise, this precision is relevant only if it is also accurate. Unfortunately, the calculation 

of BSA is not as accurate as we would wish. In an obese population, it was found that the 

original formula underestimated BSA by 2.7% and 4.5% in males and females, 

respectively.10 Precision without accuracy has no medical value. 

 

Practical considerations for choosing a dosing strategy 

For newer drugs, particularly those given orally, the concept of BSA-based dosing has 

already been abandoned, and the starting dose is the same (fixed) for all patients. Because 

both BSA-adjusted dosing and fixed dosing are strategies with many imperfections, one 

should balance their workability. Fixed dosing comes with many practical advantages over 

BSA-adjusted dosing. First, the risk of prescription errors is smaller if there is only one 

dose to prescribe. A recent French study showed that prescription errors accounted for 

more than 90% of all errors in dosing chemotherapy, and that, if not discovered in time, 
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such errors may lead to serious overdosing issues, which in turn could cause potentially 

life-threatening damage.11 As a result of the current practice of electronically prescribing 

anticancer drugs, oncologists are no longer required to calculate a dose because it is 

automatically generated in many systems. However, this could potentially increase the 

risk of prescription errors because physicians may fail to recognize their own errors. 

Furthermore, administration of (oral) drugs by patients themselves is simplified by 

maintaining only one dose that applies to all patients. This could enhance compliance and 

will also lead to a reduction in (self-)administration errors. Moreover, it is not always easy 

to round doses to the nearest strength of available pills. Consequently, many patients are 

handed a dose of—for example—capecitabine that differs from the calculated dose 

according to their BSA. Deviating from the calculated dose introduces yet another error. 

 

 
Figure 1. Relationship between body surface area (x-axis) and the clearance of paclitaxel (based on 
unbound plasma concentrations) in 270 cancer patients (139 men and 131 women). Raw data were 
obtained from a recent clinical study.8 The mean clearance ±SD in this group was 488 l/h ± 149 l/h, 
and the coefficient of variation (CV) was 30.6%. Clearance was significantly higher in male patients 
(open circles) than in female patients (closed circles) (541 l/h ± 154 l/h; CV 28.5% vs. 432 l/h ± 141 
l/h; CV32.7%, respectively; P < 0.001). 
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Finally, several parties will benefit from a fixed-dosing strategy. The most obvious benefit 

concerns the preparation of parenteral drugs for administration, as single-dose vials could be 

used for all patients (absent any need for dose reduction). This would reduce preparation time 

and avoid the waste of partial vials. 

 

Some critics say fixed dosing is not realistic because patients with extremely low or high BSAs 

will be overdosed or underdosed if no correction is made for body size. Therefore, another 

interesting alternative dosing strategy for BSA was introduced by Plumridge and Sewell.12 They 

divided their patients into a few groups (based on a range of BSAs), and all patients within a 

group received the same dose (Figure 2). This dose was based on the mean BSA in that group. 

This dosing strategy, called dose banding, seems to combine the advantages of both fixed 

dosing and BSA-based dosing because only a limited number of standard doses (e.g., three or 

five) need to be available, and patients with extreme body-size measures will receive a dose 

more adjusted to their body size than the overall mean. A recent study with six cytostatic 

agents showed that the IIV for dose banding is comparable to that for BSA-based dosing.13 

 

 
Figure 2. Example of dose banding for paclitaxel, originally dosed at 175 mg/m2.  
The population has been divided into three (arbitrarily chosen) categories (BSA <1.60 m2, 1.60–2.00 
m2, and >2.00 m2). In each category, the dose is set on the BSA-adjusted dose for the mean BSA of 
that category. This leads, after rounding, to three fixed doses of 260, 315, and 370 mg, respectively 
(indicated by stars). Because the large majority of patients will fall into the middle category, only a 
small minority receive the low or high fixed dose. 
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dosing and BSA-based dosing because only a limited number of standard doses (e.g., three or 

five) need to be available, and patients with extreme body-size measures will receive a dose 

more adjusted to their body size than the overall mean. A recent study with six cytostatic 

agents showed that the IIV for dose banding is comparable to that for BSA-based dosing.13 

 

 
Figure 2. Example of dose banding for paclitaxel, originally dosed at 175 mg/m2.  
The population has been divided into three (arbitrarily chosen) categories (BSA <1.60 m2, 1.60–2.00 
m2, and >2.00 m2). In each category, the dose is set on the BSA-adjusted dose for the mean BSA of 
that category. This leads, after rounding, to three fixed doses of 260, 315, and 370 mg, respectively 
(indicated by stars). Because the large majority of patients will fall into the middle category, only a 
small minority receive the low or high fixed dose. 
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Rational alternatives to BSA 

Figure 1 shows clearly that BSA-based dosing is a misconception for dosing paclitaxel 

chemotherapy. From this figure we also see that clearances differ significantly between 

men and women (despite the widely overlapping range); nonetheless, in clinical practice 

we do not distinguish men and women in dosing paclitaxel. If we are truly willing to 

improve our treatment by personalizing therapies, we should take the crucial step of 

implementing factors other than body size in our dosing regimens. These factors can be 

categorized as intrinsic (e.g., age, sex), genetic (e.g., variation in drug-metabolizing 

enzymes and transporters), and environmental (smoking, comedication, alternative 

medicine) and are likely to have a much larger influence on IIV than BSA does.1 Oral drugs 

are even less likely to be impacted by BSA, given the additional factors of adherence, 

concomitant food intake, increased risk of drug–drug interactions, and variability in 

absorption and first-pass metabolism. 

 

When looking for better and more rational options in dosing anticancer drugs, it is 

important to create a good starting dose. For some drugs, pharmacogenetic differences 

may help to prevent toxic doses for subgroups of patients (e.g., TPMT genotyping before 

dosing 6-mercaptopurine). However, any predictive test will have limited accuracy. 

Alternative phenotyping procedures are in development that might be more accurate than 

other approaches, with dosing of subsequent cycles based on observed plasma 

concentrations and toxicities. 

 

Implementation of alternative dosing strategies 

Dosing strategies remain a controversial issue in oncology. There are many opinions 

regarding the ideal way to maximize the likelihood of benefit while minimizing the risk of 

excessive toxicity. It is unlikely that BSA-based dosing will have the same role in the future 

that it has today. 
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Regrettably, despite the coming era of personalized medicine, the majority of the factors 

influencing the disposition of these agents are not yet taken into account by today's 

applied dosing strategies. From a practical, ethical, and financial point of view, randomized 

trials of dosing strategies are unlikely to be conducted. Therefore, we propose the 

following strategy:  

1. For marketed drugs, continue using BSA-based dosing if supported by data. If not, 

then dose banding is recommended, with adjustment for other important 

parameters (e.g., food, comedication, smoking, certain genotypes). 

2. For investigational drugs, BSA (and weight) should be utilized only if 

pharmacokinetically or clinically relevant. 

Application of this strategy might result in implementation of a more accurate way of 

dosing anticancer agents in the short term. Nevertheless, practical disadvantages should 

always be regarded carefully before implementation because the potential obstacles 

might otherwise outweigh the benefits of this strategy. 

 

One final thought: what if we were currently using another dosing strategy instead of BSA-

based dosing? Would the current evidence convince the vast majority of prescribers to 

switch to BSA-based dosing, or would it be viewed as not worth the effort? 
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ABSTRACT 

Sorafenib undergoes extensive UGT1A9-mediated formation of sorafenib-β-D-glucuronide 

(SG). This metabolite can be extruded into bile by ABCC2 or follow a liver-to-blood 

shuttling loop via ABCC3-mediated efflux into the systemic circulation and subsequent 

uptake in neighboring hepatocytes by OATP1B-type transporters. We assessed SG uptake 

in OATP1B1, Oatp1b2 and/or ABCC2 transfected cells in the presence and absence of 

rifampin. The effect of rifampin on the pharmacokinetics of sorafenib and its metabolites 

was measured in Oatp1b2 knock-out (KO) and wildtype (WT) mice, as well as in 9 

sorafenib treated patients in a randomized cross-over trial. The in vitro transport of SG by 

human OATP1B1 and its murine equivalent Oatp1b2 was potently inhibited by rifampin. In 

mice, rifampin increased plasma levels of SG 15-fold, but not in Oatp1b2-KO animals. In 

human subjects on a chronic sorafenib regimen, rifampin acutely more than doubled 

exposure to SG (P<0.001). We show impaired OATP1B-type transport leads to systemic 

accumulation of SG. In view of the dominant role of SG in the enterohepatic recirculation 

of sorafenib, prolonged OATP1B inhibition by co-medication or by an inherited genetic 

predisposition may lead to reduced plasma levels of sorafenib, and consequently a 

diminished therapeutic efficacy. 
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INTRODUCTION 

The multikinase inhibitor sorafenib is used as a chemotherapeutic agent in the treatment 

of multiple malignant diseases, including cancers of the liver, kidney, and thyroid.1-3 The 

pharmacokinetic properties of sorafenib are characterized by up to 90% variation in oral 

exposure between patients receiving the same therapeutic regimen.4 The high degree of 

interindividual pharmacokinetic variability observed with sorafenib has important 

toxicological ramifications. For example, it was recently demonstrated that levels of 

sorafenib in plasma are correlated with the incidence of skin rash,5 with dose reduction 

and study withdrawal due to adverse effects 6, and with the development of severe 

adverse reactions.7 

The mechanisms underlying the unpredictable pharmacokinetic profile of 

sorafenib remain largely unexplained. After oral administration, sorafenib enters 

hepatocytes by incompletely defined mechanisms,8, 9 and then undergoes CYP3A4-

mediated oxidation10, 11 and UGT1A9-mediated glucuronidation.11 A mass balance study of 

oral sorafenib in humans has shown that 15% of the dose was eliminated as sorafenib-β-

D-glucuronide (SG), compared to less than 5% as oxidative metabolites. Interestingly, SG 

was not detectable in feces, which may be due to its instability in the presence of bacterial 

glucuronidases present in the gut.12 Therefore, it has been suggested that the actual 

contribution of glucuronidation to sorafenib elimination may have been underestimated 

in the mass balance study,9 and that, because of its effective secretion into bile,13 the 

appearance of SG in the systemic circulation represents an overshoot mechanism that 

poorly reflects the actual extent of its formation. These observations suggest that a critical 

determinant of sorafenib’s pharmacokinetic variability with possible consequences for 

clinical management may be associated with differential expression and function of SG 

transporters regulating its distribution and elimination.14 

After its formation, SG is secreted into the bile through a process mediated by the 

ATP-binding cassette efflux transporter ABCC2 (MRP2).13 Under normal physiologic 

conditions, a fraction of the hepatocellular SG is secreted back into the blood stream by 

ABCC3 (MRP3), from where it can be taken up again into downstream hepatocytes via the 

uptake carrier OATP1B1 (Oatp1b2 in mice) (Figure 1).13 This liver-to-blood shuttling loop 

called hepatocyte-hopping, may prevent saturation of ABCC2-mediated biliary secretion of 
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endogenous and xenobiotic glucuronides in upstream hepatocytes, thereby ensuring 

their efficient biliary elimination and hepatocyte detoxification. Once secreted into 

bile, SG enters the intestinal lumen where it serves as a substrate for a bacterial β-

glucuronidase that produces sorafenib, which subsequently undergoes intestinal 

absorption and then reenters the systemic circulation.13 In the current proof-of-

concept study, we tested the hypothesis that the hepatocyte hopping of SG can be 

interrupted by a clinical OATP1B1-mediated drug-drug interaction based on the 

expectation that inhibition of a hepatic uptake mechanism will lead to acute increases 

in levels of SG in plasma. 

 

METHODS 

Cell lines and chemicals 

A model of OATP1B1-expressing cells was created by transfecting HEK293 cells with 

the pIRES2-EGFP vector (Clontech) containing SLCO1B1 cDNA. Similarly, HEK293 cells 

were transfected with the pDream2.1/MCS vector (GenScript) containing Slco1b2 

cDNA. The HEK293 (ATCC® CRL¬1573™) cell line was obtained from ATCC (American 

Type Culture Collection).  This cell line was exclusively used to study drug transport, 

and was not authenticated by the authors. All stable cell lines were selected and 

maintained in DMEM supplemented with 10% FBS and G418 sulfate (500-1,000 

µg/mL; AG Scientific) at 37ºC under 5% CO2. 

Sorafenib and rifampin were obtained from Chemie Tek. General tritium-

labeled sorafenib (specific activity, >1 Ci/mmol; radiochemical purity, >97.1%) was 

custom made by Moravek Biochemicals, and [3H]estradiol-17β-D-glucuronide (E2G; 

specific activity, 50.1 Ci/mmol; radiochemical purity, 99.0%), a positive control 

substrate for OATP1B1 and Oatp1b2, was obtained from American Radiolabeled 

Chemicals.  

 
  

Fi
gu

re
 1

. H
ep

at
oc

yt
e 

ho
pp

in
g 

an
d 

re
ci

rc
ul

at
io

n 
of

 so
ra

fe
ni

b-
β-

D-
gl

uc
ur

on
id

e.
 A

fte
r o

ra
l a

dm
in

ist
ra

tio
n,

 so
ra

fe
ni

b 
en

te
rs

 th
e 

he
pa

to
cy

te
s b

y 
in

co
m

pl
et

el
y 

de
fin

ed
 tr

an
sp

or
te

rs
 

m
ec

ha
ni

sm
s, 

in
clu

di
ng

 O
AT

P1
B-

ty
pe

 c
ar

rie
rs

 a
nd

 O
CT

1,
 a

nd
 u

nd
er

go
es

 A
BC

G2
-m

ed
ia

te
d 

bi
lia

ry
 s

ec
re

tio
n,

 C
YP

3A
4-

m
ed

ia
te

d 
m

et
ab

ol
ism

 to
 s

or
af

en
ib

-N
-o

xi
de

 (S
-N

-o
xi

de
), 

or
 

UG
T1

A9
- m

ed
ia

te
d 

gl
uc

ur
on

id
at

io
n 

to
 fo

rm
 s

or
af

en
ib

-β
-D

-g
lu

cu
ro

ni
de

 (S
G)

. A
fte

r c
on

ju
ga

tio
n,

 S
G 

is 
ex

te
ns

iv
el

y 
se

cr
et

ed
 in

to
 th

e 
bi

le
 b

y 
a 

pr
oc

es
s 

th
at

 is
 m

ai
nl

y 
m

ed
ia

te
d 

by
 

AB
CC

2.
 U

nd
er

 p
hy

sio
lo

gi
ca

l c
on

di
tio

ns
, a

 fr
ac

tio
n 

of
 th

e 
in

tr
ac

el
lu

la
r S

G 
is 

se
cr

et
ed

 b
y 

AB
CC

3 
an

d 
at

 le
as

t o
ne

 o
th

er
 tr

an
sp

or
te

r b
ac

k 
to

 th
e 

bl
oo

d,
 fr

om
 w

he
re

 it
 c

an
 b

e 
ta

ke
n 

up
 a

ga
in

 in
to

 d
ow

ns
tr

ea
m

 h
ep

at
oc

yt
es

 v
ia

 O
AT

P1
B-

ty
pe

 c
ar

rie
rs

. T
hi

s 
se

cr
et

io
n-

an
d-

re
up

ta
ke

 lo
op

 m
ay

 p
re

ve
nt

 t
he

 s
at

ur
at

io
n 

of
 A

BC
C2

-m
ed

ia
te

d 
bi

lia
ry

 e
xc

re
tio

n 
in

 t
he

 
up

st
re

am
 h

ep
at

oc
yt

es
, t

he
re

by
 e

ns
ur

in
g 

ef
fic

ie
nt

 b
ili

ar
y 

el
im

in
at

io
n 

an
d 

he
pa

to
cy

te
 d

et
ox

ifi
ca

tio
n.

 O
nc

e 
se

cr
et

ed
 in

to
 b

ile
, S

G 
en

te
rs

 th
e 

in
te

st
in

al
 lu

m
en

 w
he

re
 it

 c
an

 e
ith

er
 

be
 e

xc
re

te
d 

or
 s

er
ve

 a
s 

a 
su

bs
tr

at
e 

fo
r a

n 
as

 y
et

 u
nk

no
w

n 
ba

ct
er

ia
l β

-g
lu

cu
ro

ni
da

se
 th

at
 p

ro
du

ce
s 

so
ra

fe
ni

b,
 w

hi
ch

 is
 s

ub
se

qu
en

tly
 u

nd
er

go
in

g 
in

te
st

in
al

 a
bs

or
pt

io
n 

an
d 

re
-

en
te

rs
 th

e 
sy

st
em

ic 
cir

cu
la

tio
n.

 



5

72 | Chapter 5 
 

 

endogenous and xenobiotic glucuronides in upstream hepatocytes, thereby ensuring 

their efficient biliary elimination and hepatocyte detoxification. Once secreted into 

bile, SG enters the intestinal lumen where it serves as a substrate for a bacterial β-

glucuronidase that produces sorafenib, which subsequently undergoes intestinal 

absorption and then reenters the systemic circulation.13 In the current proof-of-

concept study, we tested the hypothesis that the hepatocyte hopping of SG can be 

interrupted by a clinical OATP1B1-mediated drug-drug interaction based on the 

expectation that inhibition of a hepatic uptake mechanism will lead to acute increases 

in levels of SG in plasma. 
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Sorafenib and rifampin were obtained from Chemie Tek. General tritium-
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Uptake studies 

Cells were seeded in 6-well plates in phenol red-free DMEM media containing 10% 

FBS, and were incubated at 37oC for 24 hours. Cells were then washed with warm PBS 

and incubated with sorafenib or SG in phenol-free DMEM media (without FBS and 

supplements) at 37oC. Uptake and inhibition studies were performed as outlined in 

detail elsewhere.13 The experiment was terminated by placing cells on ice and 

washing twice with ice-cold PBS. Cells were collected and centrifuged at 1050 r.p.m. 

for 5 min at 4oC. The cell pellet was lysed in 1 N NaOH by vortex-mixing, incubated at 

4oC overnight, and then the solution was neutralized with 2 M HCl. Total protein was 

measured using a Pierce BCA Protein Assay Kit (Thermo Scientific) and total protein 

content was quantified using a Biotek µQuant microplate spectrophotometer. 

Intracellular drug concentrations were determined in the remaining cell lysate by 

liquid scintillation counting using a LS 6500 Multipurpose Scintillation Counter 

(Beckman). The experiments were performed in triplicate. Intracellular concentrations 

of SG were measured by liquid chromatography-tandem mass spectrometry (LC-

MS/MS), as described previously.11 

 

Transcellular transport 

MDCKII cells were transduced with pIRES2 construct containing CFP-ABCC2-V5, GFP-

OAT1B1-FLAG, or GFP-OATP1B1-FLAG/CFP-ABCC2-V5 (Figure 2). The MDCKII (ATCC® 

CRL¬2936™) cell line was obtained from ATCC (American Type Culture Collection).  

This cell line was exclusively used to study drug transport, and was not authenticated 

by the authors. Transport of SG (1 µM) was performed in 6-well plates (Corning), as 

described.11 Trans-epithelial electrical resistance was measured to confirm the 

integrity of cell monolayers. 
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Figure 2. Transcellular transport of SG in transfected MDCKII cells.  
MDCKII cells were stably transduced with pIRES2-GFP-OATP1B1-FLAG (A), pIRES2-CFP-ABCC2-V5 (B), 
or both (C).  Cells were stained with antibodies against FLAG (red; OATP1B1), V5 (green; ABCC2), or 
both.  Panels on top and left sides of the images represent x-z and y-z projections and represent slide 
to coverslip image where OATP1B1 is visualized on the basolateral membrane and ABCC2 on the 
apical membrane.  Basolateral-to apical transcellular transport of SG in these cells is shown for 
OATP1B1 (D), ABCC2 (E), or both (F) in the presence or absence of rifampin.  Cells were incubated 
with SG (1 µM) at t=0 then 50-µL aliquots were taken at 1, 2, 3, and 4 hours from the compartment 
opposite to where the drug was added.  Data are expressed as percent of the initial SG 
concentration, and symbols represent mean ± SE (error bars) of at least 3 replicate experiments. 
 

 

Immunofluorescence 

MDCKII cells transduced with CFP-ABCC2-V5 and/or GFP-SLCO1B1-FLAG were seeded at 

2×105 cells/well into 6-transwell plates. When they have reached about 90% confluence, 

cells were washed with ice-cold PBS, fixed with 4% paraformaldehyde-PBS, permeabilized 

with 0.1% TritonX-100-PBS and incubated in 3% BSA-PBS blocking buffer. Then, cells were 

stained with either anti-V5 (Sigma-Aldrich) or anti-FLAG M2 (Sigma-Aldrich) followed by 

staining with Alexa488 and Alex568 (Life Technologies), respectively, along with DAPI 

(Invitrogen) to stain the nuclei. Transwell membranes were cut out and placed on a slide, 

covered with a coverslip, and sealed. Imaging was done using a Marianas spinning disk 

confocal (SDC) imaging system (Intelligent Imaging Innovations/3i) based on AxioObserver 
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Z1 inverted microscope (Carl Zeiss MicroImaging). Images were acquired with Zeiss 

Plan-Apochromat 63× 1.4 NA DIC objective and Evolve 512 EMCCD camera 

(Photometrics) using SlideBook 5 software (3i). 

 

Murine pharmacokinetics 

Eight female mice knockout for Oatp1b2 [Oatp1b2(-/-)] and eight age-matched wild-

type mice on a DBA1/lacJ background were bred in-house. Mice were housed in a 

temperature-controlled environment with a 12-hour light cycle and given a standard 

diet and water ad libitum. Experiments were approved by the Institutional Animal 

Care and Use Committee.  

Sorafenib was formulated in 50% Cremophor EL (Sigma Aldrich) and 50% 

ethanol, and diluted 1:4 (vol/vol) with deionized water immediately before 

administration by oral gavage at a dose of 10 mg/kg. Mice were fasted for 3 hours 

before and during the study, with unrestricted access to drinking water. In four 

Oatp1b2(-/-) and in four wild-type mice, rifampin (20 mg/kg) was administered 

intravenously 5 minutes prior to the oral sorafenib administration. At select time 

points, blood samples (30 μL each) were taken from individual mice at 0.25, 0.5, and 

1.5 h from the submandibular vein using a lancet, and at 3, and 4.5 h from the retro-

orbital venous plexus using a capillary. A final blood draw was obtained at 7.5 h by a 

cardiac puncture using a syringe and needle. For sampling via retro-orbital bleeding, 

mice were anesthetized under 1-5% isoflurane through inhalation, and blood was 

collected using a heparinized capillary tube. The total blood volume collected during 

the procedure from each mouse was 150 μL. All blood samples were centrifuged at 

3000 × g for 5 min, and plasma was separated and stored at -80oC until analysis. At 

the terminal time points, liver samples were immediately collected and flash-frozen 

on dry ice. Liver specimens were stored at -80°C until further processing. Plasma and 

liver concentrations of sorafenib, sorafenib-N-oxide, and SG were determined by LC-

MS/MS, as described previously.11 Pharmacokinetic parameters were calculated using 

WinNonlin 6.3 software (Pharsight).  
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Clinical studies 

Patients were enrolled and received standard of care treatment with sorafenib in an open-

label randomized cross-over trial. The principle inclusion criteria were: age ≥18 years, 

confirmed diagnosis of cancer, WHO performance score 0-1, and adequate organ function. 

Also, patients had to be on steady state of sorafenib, which we had defined as at least 14 

days treatment at the same sorafenib dose. The major exclusion criteria were prior liver 

transplantation, contra-indications for any of the study drugs, and use of any co-

medication or supplement that can interact with the study drugs. The sample size of the 

study was determined to be 9 in order to detect a difference of 239 ng/mL (25%) in steady 

state exposure to SG in the presence of rifampin, with a significance level of 0.05, power 

of 0.8, and an estimated SD of the difference between two measurements in one patient 

of 223 ng/mL (unpublished data). Between August 2013 and March 2015, 9 evaluable 

patients with hepatocellular carcinoma were included in the clinical study, of which 8 

were male and 1 was female. Their mean age was 71 years (range, 62-79) and all patients 

had WHO performance score 1. Patients were randomized by minimization using the web 

based application Trial Online Process (TOP). Patient characteristics were entered in TOP 

by one of the investigators and the patient’s trial number and randomization arm were 

then sent to all investigators in an automatic email from TOP. Four patients were 

randomized to receive rifampin during the first sampling period and 5 were randomized to 

rifampin during the second period. The administered sorafenib (Nexavar®; Bayer, the 

Netherlands) dose was 200 mg BID for 5 patients and 400 mg BID for 4 patients. The study 

was approved by the institutional review board (Protocol number, MEC 2013-194), and 

registered in the Dutch Trial Registry (www.trialregister.nl; number NTR4110). All patients 

provided written informed consent, and the study was conducted in accordance with 

Good Clinical Practice guidelines and the Declaration of Helsinki (59th WMA General 

Assembly, Seoul, Republic of Korea, October 2008).  

Subjects were admitted to the hospital for two separate days of blood sampling: 

once with prior rifampin administration and once without. Days of blood sampling were 

separated by a period of 9 days. Patients were randomized to receive rifampin either in 

advance of the first or the second sampling period. Rifampin was taken without food as 

600 mg tablets (Rifadin®; Sanofi-Aventis, the Netherlands) on the day before and on the 



5

76 | Chapter 5 
 

 

Z1 inverted microscope (Carl Zeiss MicroImaging). Images were acquired with Zeiss 

Plan-Apochromat 63× 1.4 NA DIC objective and Evolve 512 EMCCD camera 

(Photometrics) using SlideBook 5 software (3i). 

 

Murine pharmacokinetics 

Eight female mice knockout for Oatp1b2 [Oatp1b2(-/-)] and eight age-matched wild-

type mice on a DBA1/lacJ background were bred in-house. Mice were housed in a 

temperature-controlled environment with a 12-hour light cycle and given a standard 

diet and water ad libitum. Experiments were approved by the Institutional Animal 

Care and Use Committee.  

Sorafenib was formulated in 50% Cremophor EL (Sigma Aldrich) and 50% 

ethanol, and diluted 1:4 (vol/vol) with deionized water immediately before 

administration by oral gavage at a dose of 10 mg/kg. Mice were fasted for 3 hours 

before and during the study, with unrestricted access to drinking water. In four 

Oatp1b2(-/-) and in four wild-type mice, rifampin (20 mg/kg) was administered 

intravenously 5 minutes prior to the oral sorafenib administration. At select time 

points, blood samples (30 μL each) were taken from individual mice at 0.25, 0.5, and 

1.5 h from the submandibular vein using a lancet, and at 3, and 4.5 h from the retro-

orbital venous plexus using a capillary. A final blood draw was obtained at 7.5 h by a 

cardiac puncture using a syringe and needle. For sampling via retro-orbital bleeding, 

mice were anesthetized under 1-5% isoflurane through inhalation, and blood was 

collected using a heparinized capillary tube. The total blood volume collected during 

the procedure from each mouse was 150 μL. All blood samples were centrifuged at 

3000 × g for 5 min, and plasma was separated and stored at -80oC until analysis. At 

the terminal time points, liver samples were immediately collected and flash-frozen 

on dry ice. Liver specimens were stored at -80°C until further processing. Plasma and 

liver concentrations of sorafenib, sorafenib-N-oxide, and SG were determined by LC-

MS/MS, as described previously.11 Pharmacokinetic parameters were calculated using 

WinNonlin 6.3 software (Pharsight).  

Interaction of Rifampin with Sorafenib Disposition | 77 
 

Clinical studies 

Patients were enrolled and received standard of care treatment with sorafenib in an open-

label randomized cross-over trial. The principle inclusion criteria were: age ≥18 years, 

confirmed diagnosis of cancer, WHO performance score 0-1, and adequate organ function. 

Also, patients had to be on steady state of sorafenib, which we had defined as at least 14 

days treatment at the same sorafenib dose. The major exclusion criteria were prior liver 

transplantation, contra-indications for any of the study drugs, and use of any co-

medication or supplement that can interact with the study drugs. The sample size of the 

study was determined to be 9 in order to detect a difference of 239 ng/mL (25%) in steady 

state exposure to SG in the presence of rifampin, with a significance level of 0.05, power 

of 0.8, and an estimated SD of the difference between two measurements in one patient 

of 223 ng/mL (unpublished data). Between August 2013 and March 2015, 9 evaluable 

patients with hepatocellular carcinoma were included in the clinical study, of which 8 

were male and 1 was female. Their mean age was 71 years (range, 62-79) and all patients 

had WHO performance score 1. Patients were randomized by minimization using the web 

based application Trial Online Process (TOP). Patient characteristics were entered in TOP 

by one of the investigators and the patient’s trial number and randomization arm were 

then sent to all investigators in an automatic email from TOP. Four patients were 

randomized to receive rifampin during the first sampling period and 5 were randomized to 

rifampin during the second period. The administered sorafenib (Nexavar®; Bayer, the 

Netherlands) dose was 200 mg BID for 5 patients and 400 mg BID for 4 patients. The study 

was approved by the institutional review board (Protocol number, MEC 2013-194), and 

registered in the Dutch Trial Registry (www.trialregister.nl; number NTR4110). All patients 

provided written informed consent, and the study was conducted in accordance with 

Good Clinical Practice guidelines and the Declaration of Helsinki (59th WMA General 

Assembly, Seoul, Republic of Korea, October 2008).  

Subjects were admitted to the hospital for two separate days of blood sampling: 

once with prior rifampin administration and once without. Days of blood sampling were 

separated by a period of 9 days. Patients were randomized to receive rifampin either in 

advance of the first or the second sampling period. Rifampin was taken without food as 

600 mg tablets (Rifadin®; Sanofi-Aventis, the Netherlands) on the day before and on the 



78 | Chapter 5 
 

 

day of sampling at 8 AM, exactly one hour before sorafenib administration. Two and a half 

hours after sorafenib intake, midazolam (2.5 mg; Actavis, the Netherlands) was 

administrated intravenously as a probe for CYP3A4 activity.15 During both hospitalizations, 

blood samples (6 mL each) for the determination of sorafenib and metabolite levels were 

collected just before the administration of sorafenib, and 2, 4 and 7.5 hours after the 

administration of sorafenib. Samples were prepared by centrifugation at 1,200 g for 5 

minutes to obtain plasma, which was stored at -80°C until analysis. Concentrations of 

midazolam and its metabolites were measured in three plasma samples taken 2, 4 and 6 

hours after midazolam administration during both sample periods. The midazolam 

samples were centrifuged and stored as described above. WinNonlin 6.3 (Pharsight) was 

used for calculating pharmacokinetic parameters. 

Patients were seen in the outpatient clinic on a weekly basis for clinical 

examination, laboratory tests, and to evaluate possible side effects. Skin toxicity and 

diarrhea were managed according to local guidelines. Adverse events were registered 

according to the National Cancer Institute’s CTCAE version 4.03. During the study, dose 

changes of sorafenib and the use of co-medication that influences CYP3A4 function were 

not allowed. 

 

Statistical analysis 

Pharmacokinetic data are presented as geometric mean and 95% confidence interval. No 

statistical analyses have been performed on the cell line and murine experiments, since 

these experiments were replicated less than five times each and these results should 

therefore be regarded as exploratory. In patients that received sorafenib 200 mg BID, 

AUCs and absolute concentrations were corrected towards a 400 mg BID dose, i.e. all 

parameters were doubled, as sorafenib has been described to exhibit linear 

pharmacokinetics.16 Statistical analysis was performed using GraphPad Prism 5.0 

(GraphPad Software). Geometric means of the pharmacokinetic parameters were 

compared using two-sided paired t-tests, and P<0.05 was considered statistically 

significant.    
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RESULTS 

Influence of rifampin on SG transport in vitro 

Experiments were initially carried out with HEK293 cells expressing OATP1B1 or its 

murine equivalent Oatp1b2 using the recommended model substrate estradiol-17β-

glucuronide (E2G),17 and the clinically-relevant OATP1B-type transporter inhibitor 

rifampin.18 Following a 15-min incubation period, E2G uptake by human OATP1B1 and 

mouse Oatp1b2 was strongly inhibited by a pre-incubation with rifampin (30 µM) 

(Figure 3A-B). Since rifampin-mediated inhibition of OATP1B1 can be substrate-

dependent, with up to 12-fold variation in IC50 values,19 we next used SG as a test 

substrate in the same models. Similar to E2G, the intracellular uptake of SG by both 

OATP1B1 and Oatp1b2 was efficiently inhibited by rifampin (Figure 3A-B), and this 

process was dependent on the rifampin concentration (Figure 3C). The resulting IC50 

values of approximately 1 µM for both OATP1B1 and Oatp1b2 were similar to those 

reported previously for uptake inhibition by rifampin of other substrates.20 As 

measured plasma levels of rifampin after an oral dose of 600 mg reach >7 µM,21 the 

intrinsic likelihood of an OATP1B1-mediated pharmacokinetic drug-drug interaction 

between rifampin and SG is high. 

Because rifampin is also a known inhibitor of various ABC transporters,22 and 

can influence the transport of SG in inside-out vesicles expressing ABCC2,13 we next 

evaluated the influence of rifampin on the flux of SG in MDCKII cells engineered to 

overexpress OATP1B1, ABCC2, or both OATP1B1 and ABCC2 (Figure 2). Transfection of 

OATP1B1 (basolaterally localized) into MDCKII cells significantly increased the basal-

to-apical transport of SG, and this translocation was diminished in the presence of 

rifampin (Figure 2D). However, the basal-to-apical flux of SG was not substantially 

enhanced by co-transfection of ABCC2 (apically localized), and not further reduced by 

rifampin in cells expressing both OATP1B1 and ABCC2 (Figure 2D). This suggests that 

rifampin can be utilized for in vivo studies as a bona fide inhibitor of SG transport by 

OATP1B-type carriers. 
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reported previously for uptake inhibition by rifampin of other substrates.20 As 

measured plasma levels of rifampin after an oral dose of 600 mg reach >7 µM,21 the 

intrinsic likelihood of an OATP1B1-mediated pharmacokinetic drug-drug interaction 

between rifampin and SG is high. 

Because rifampin is also a known inhibitor of various ABC transporters,22 and 

can influence the transport of SG in inside-out vesicles expressing ABCC2,13 we next 

evaluated the influence of rifampin on the flux of SG in MDCKII cells engineered to 

overexpress OATP1B1, ABCC2, or both OATP1B1 and ABCC2 (Figure 2). Transfection of 

OATP1B1 (basolaterally localized) into MDCKII cells significantly increased the basal-

to-apical transport of SG, and this translocation was diminished in the presence of 

rifampin (Figure 2D). However, the basal-to-apical flux of SG was not substantially 

enhanced by co-transfection of ABCC2 (apically localized), and not further reduced by 

rifampin in cells expressing both OATP1B1 and ABCC2 (Figure 2D). This suggests that 

rifampin can be utilized for in vivo studies as a bona fide inhibitor of SG transport by 

OATP1B-type carriers. 
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Figure 3. Transport of SG by OATP1B-type transporters. 
Transport of estradiol-17β-glucuronide (E2G; 0.1 µM) and sorafenib-β-D-glucuronide (SG; 10 µM) in 
HEK293 cells engineered to overexpress OATP1B1 (a) or OATP1B2 (b) with or without rifampin (20 
µM). All results are normalized to the transport rate in OATP1B transfected cells without rifampin, 
i.e. the experiments with unrestricted OATP1B effect, which were 4.77 pmol/mg protein (OATP1B1) 
and 26.73 pmol/mg protein (OATP1B2) in 15 minutes for E2G, and  57.46 pmol/mg protein 
(OATP1B1) and 770.17 pmol/mg protein (OATP1B2) in 15 minutes for SG. (c) Inhibition of OATP1B1 
or OATP1B2-mediated transport of SG (10 µM) by different concentrations of rifampin (0-100 µM). 
Data are normalized to the relative uptake without rifampin, i.e. when the function of OATP1B is 
unrestricted, and represent the mean ± SE from 3-4 independent experiments (9-12 replicates). (d) 
Transcellular transport of SG in MDCKII cells expressing OATP1B1 and/or ABCC2. Cells were 
incubated with SG (1 µM), and 50-µl aliquots were taken at 1, 2, 3, and 4 hours from the 
compartment opposite to where the drug was added, in the presence or absence of rifampin (100 
µM). Data are expressed as transporter-mediated apparent permeability coefficient (Papp) for the 
basolateral to apical direction (B-to-A). Data represent the mean ± SE (at least 3 replicates). 
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Figure 4. Pharmacokinetics of sorafenib and SG in wild-type and Oatp1b2(-/-) mice. 
Plasma concentration-time profiles of SG (a) and sorafenib (d) in wild-type mice and Oatp1b2(-/-) 
mice in the presence and absence of rifampin pretreatment. Corresponding area under the plasma 
concentration-time curves (AUCs) of SG, sorafenib, and sorafenib-N-oxide (S-N-oxide) are shown in 
(b), (e), and (f). Sorafenib was administered orally at a dose of 10 mg/kg with or without 
pretreatment with rifampin (20 mg/kg). Livers were taken at 7.5 h after sorafenib administration 
(n=4 per group), with results expressed as the liver-to-plasma concentration ratio of SG (c). 
Concentrations in liver were normalized to corresponding concentrations in plasma. All data 
represent the geometric mean and the 95% confidence interval. 
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Figure 3. Transport of SG by OATP1B-type transporters. 
Transport of estradiol-17β-glucuronide (E2G; 0.1 µM) and sorafenib-β-D-glucuronide (SG; 10 µM) in 
HEK293 cells engineered to overexpress OATP1B1 (a) or OATP1B2 (b) with or without rifampin (20 
µM). All results are normalized to the transport rate in OATP1B transfected cells without rifampin, 
i.e. the experiments with unrestricted OATP1B effect, which were 4.77 pmol/mg protein (OATP1B1) 
and 26.73 pmol/mg protein (OATP1B2) in 15 minutes for E2G, and  57.46 pmol/mg protein 
(OATP1B1) and 770.17 pmol/mg protein (OATP1B2) in 15 minutes for SG. (c) Inhibition of OATP1B1 
or OATP1B2-mediated transport of SG (10 µM) by different concentrations of rifampin (0-100 µM). 
Data are normalized to the relative uptake without rifampin, i.e. when the function of OATP1B is 
unrestricted, and represent the mean ± SE from 3-4 independent experiments (9-12 replicates). (d) 
Transcellular transport of SG in MDCKII cells expressing OATP1B1 and/or ABCC2. Cells were 
incubated with SG (1 µM), and 50-µl aliquots were taken at 1, 2, 3, and 4 hours from the 
compartment opposite to where the drug was added, in the presence or absence of rifampin (100 
µM). Data are expressed as transporter-mediated apparent permeability coefficient (Papp) for the 
basolateral to apical direction (B-to-A). Data represent the mean ± SE (at least 3 replicates). 
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Figure 4. Pharmacokinetics of sorafenib and SG in wild-type and Oatp1b2(-/-) mice. 
Plasma concentration-time profiles of SG (a) and sorafenib (d) in wild-type mice and Oatp1b2(-/-) 
mice in the presence and absence of rifampin pretreatment. Corresponding area under the plasma 
concentration-time curves (AUCs) of SG, sorafenib, and sorafenib-N-oxide (S-N-oxide) are shown in 
(b), (e), and (f). Sorafenib was administered orally at a dose of 10 mg/kg with or without 
pretreatment with rifampin (20 mg/kg). Livers were taken at 7.5 h after sorafenib administration 
(n=4 per group), with results expressed as the liver-to-plasma concentration ratio of SG (c). 
Concentrations in liver were normalized to corresponding concentrations in plasma. All data 
represent the geometric mean and the 95% confidence interval. 
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Effects of rifampin on SG disposition in mice 

The in vivo role of rifampin (20 mg/kg) in the transport of SG was next evaluated in wild-

type mice and Oatp1b2-deficient [Oatp1b2(-/-)] littermates receiving a single oral dose of 

sorafenib (10 mg/kg). This experiment was based on the expectation that the systemic 

exposure to SG would increase by rifampin in an Oatp1b2-dependent manner, as 

predicted from our in vitro transport experiments. In line with our previous findings,9 

Oatp1b2-deficiency in mice was associated with a substantially increased systemic 

exposure to SG (Figure 4; Table 1).  

The liver-to-plasma ratio of SG was reduced by approximately 90% in wild-type 

mice pre-treated with rifampin, and similar to that observed in Oatp1b2(-/-) mice 

receiving sorafenib either alone or when given in combination with rifampin (Figure 4C). 

Oatp1b2-deficiency and/or rifampin pre-treatment did not substantially affect the plasma 

levels of sorafenib parent drug or of its primary oxidated metabolite sorafenib-N-oxide 

(Figure 4D-F). This observation is consistent with our previous finding that sorafenib itself 

is not a transported substrate of Oatp1b2,9 and with the contention that the applied single 

dose of rifampin is unlikely to have artificially influenced other enzymes and transporters 

of relevance to the disposition of sorafenib or SG. 

 

Effects of rifampin on SG disposition in humans 

We next assessed the influence of pre-treatment with rifampin (two daily oral doses of 

600 mg) on the pharmacokinetics of SG in human subjects receiving oral sorafenib at 

steady-state using an open-label randomized cross-over design. As predicted from the 

murine pharmacokinetic studies, we found that concomitant rifampin administration 

resulted in acute, statistically significant increases in the systemic exposure to SG (32,479 

ng×h/mL versus 14,646 ng×h/mL; P<0.001) (Figure 5A; Table 2), and this was independent 

of the randomization sequence (Figure 5B). 
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Effects of rifampin on SG disposition in mice 

The in vivo role of rifampin (20 mg/kg) in the transport of SG was next evaluated in wild-

type mice and Oatp1b2-deficient [Oatp1b2(-/-)] littermates receiving a single oral dose of 

sorafenib (10 mg/kg). This experiment was based on the expectation that the systemic 

exposure to SG would increase by rifampin in an Oatp1b2-dependent manner, as 

predicted from our in vitro transport experiments. In line with our previous findings,9 

Oatp1b2-deficiency in mice was associated with a substantially increased systemic 

exposure to SG (Figure 4; Table 1).  

The liver-to-plasma ratio of SG was reduced by approximately 90% in wild-type 

mice pre-treated with rifampin, and similar to that observed in Oatp1b2(-/-) mice 

receiving sorafenib either alone or when given in combination with rifampin (Figure 4C). 

Oatp1b2-deficiency and/or rifampin pre-treatment did not substantially affect the plasma 

levels of sorafenib parent drug or of its primary oxidated metabolite sorafenib-N-oxide 

(Figure 4D-F). This observation is consistent with our previous finding that sorafenib itself 

is not a transported substrate of Oatp1b2,9 and with the contention that the applied single 

dose of rifampin is unlikely to have artificially influenced other enzymes and transporters 

of relevance to the disposition of sorafenib or SG. 

 

Effects of rifampin on SG disposition in humans 

We next assessed the influence of pre-treatment with rifampin (two daily oral doses of 

600 mg) on the pharmacokinetics of SG in human subjects receiving oral sorafenib at 

steady-state using an open-label randomized cross-over design. As predicted from the 

murine pharmacokinetic studies, we found that concomitant rifampin administration 

resulted in acute, statistically significant increases in the systemic exposure to SG (32,479 

ng×h/mL versus 14,646 ng×h/mL; P<0.001) (Figure 5A; Table 2), and this was independent 

of the randomization sequence (Figure 5B). 
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Figure 5. Influence of rifampin on the pharmacokinetics of sorafenib in humans. 
Plasma concentration-time profiles of SG (a) and sorafenib (d) in patients with hepatocellular carcinoma in 
the presence and absence of rifampin pretreatment. The corresponding area under the plasma 
concentration-time curve (AUC) of SG is shown as a function of the randomization sequence of the cross-
over trial (b). The metabolic ratios for SG to sorafenib, 1’-hydroxy-midazolam (1’-OH-MDZ) to midazolam 
(MDZ) and sorafenib-N-oxide (S-N-oxide) to sorafenib are shown in (c), (e), and (f), respectively. All data 
represent the geometric mean and the 95% confidence interval. 
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Figure 5. Influence of rifampin on the pharmacokinetics of sorafenib in humans. 
Plasma concentration-time profiles of SG (a) and sorafenib (d) in patients with hepatocellular carcinoma in 
the presence and absence of rifampin pretreatment. The corresponding area under the plasma 
concentration-time curve (AUC) of SG is shown as a function of the randomization sequence of the cross-
over trial (b). The metabolic ratios for SG to sorafenib, 1’-hydroxy-midazolam (1’-OH-MDZ) to midazolam 
(MDZ) and sorafenib-N-oxide (S-N-oxide) to sorafenib are shown in (c), (e), and (f), respectively. All data 
represent the geometric mean and the 95% confidence interval. 
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The mean metabolic ratios of SG to sorafenib in the studied patient cohort were also 

significantly increased during rifampin administration (Figure 5C). No statistically 

significant differences were observed in the pharmacokinetic parameter estimates of 

sorafenib (Figure 5D). Although the mean ratio between 1’-hydroxymidazolam and 

midazolam, used as a measure of CYP3A4 activity changes,23 was approximately 2 times 

higher after rifampin intake (P=0.005; Figure 5E), the extent of sorafenib-N-oxide 

formation was not different between treatment cycles (Figure 5F). During the course of 

the clinical study, no toxicities were observed that could be attributed to rifampin or 

midazolam. In one patient, bilirubin levels in plasma were elevated from 14 to 29 μM (upper 

limit of normal, 16 μM) on the second day of rifampin intake, but bilirubin levels normalized to 

baseline within 2 days. 

 

DISCUSSION 

This study shows that acute inhibition of the hepatic uptake transporter OATP1B1 by 

rifampin results in a substantial pharmacokinetic interaction with SG at steady-state in 

human subjects receiving oral sorafenib. This finding not only emphasizes the need to 

consider hepatic handling of xenobiotic glucuronides in the design of pharmacokinetic 

drug-drug interaction studies of agents that undergo extensive Phase II conjugation, but 

also has potentially direct clinical relevance for the chemotherapeutic treatment with 

sorafenib. 

It was previously suggested based on in vitro microsomal studies that the most 

prominent pathway of sorafenib elimination consists of CYP3A4-mediated metabolism 

leading to the formation of sorafenib-N-oxide and several other metabolites.8 This finding 

suggested that sorafenib was potentially subject to a host of CYP3A4-mediated drug 

interactions with commonly co-prescribed medications.24 Here, the AUCs of the CYP3A4-

mediated metabolites of midazolam and sorafenib were nearly 2 times higher after 

rifampin, but – to a smaller extent – this was  also true for sorafenib. As the ratio of 

sorafenib-N-oxide to sorafenib did not change between both cycles, the interaction of 

rifampin on sorafenib-N-oxide formation does not seem to be relevant. Additionally, the 

prototypical CYP3A4 inhibitor ketoconazole has been demonstrated to have no influence 

on the pharmacokinetics of sorafenib in healthy male volunteers after single-dose 
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sorafenib administration, suggesting that the fraction of sorafenib that is metabolized by 

the Phase I oxidative pathway is low.12 However, although clinical data suggest that 

sorafenib glucuronidation accounts for only 15% of the dose, it is likely that this 

percentage is grossly underestimated,13 and may be increased further if the competing 

CYP3A4-mediated pathway is inhibited.12 The long-term clinical implications of such 

pharmacokinetic drug-drug interaction remain unstudied. 

The use of rifampin as an OATP1B1 inhibitor in our studies was based on 

considerations published elsewhere.18 The relatively strong impact of rifampin on SG 

levels in mice (>9-fold increase) compared with humans (~2-fold) likely reflects a 

differential direct influence of rifampin on the uptake of sorafenib itself into hepatocytes, 

which process is partially dependent on OATP1B-type transporters in humans but appears 

of less relevance in mice.9 In addition, SG is known to undergo substantial renal excretion 

in humans but not in mice,13 and the possible presence of a rifampin-insensitive escape 

mechanism in the kidney may result in shunting of SG to urine when OATP1B1 function in 

humans is impaired. 

It should also be pointed out that, although acute exposure to rifampin inhibits 

OATP1B1,25 extended daily administration of rifampin may induce enzymes and 

transporters of putative relevance to sorafenib. For example, exposure to rifampin for 5 

days or more dramatically increased the clearance of the CYP3A4 substrate drugs 

midazolam,26 alfentanil,27 and erythromycin.28 Several recent studies have evaluated the 

effects of acute and extended exposure to rifampin on CYP3A4 activity in the same 

individuals. For example, rifampin 600 mg given once daily for 1-2 doses (acute exposure) 

and for 6.5 days (extended exposure) changed the systemic exposure to bosentan, a dual 

OATP1B1 and CYP3A4 substrate drug, by +500% and -58%, respectively.29 If induction of 

enzymes occurs, it is likely that rifampin exposure for 5 days or more is required to cause a 

clinically-relevant, induced CYP3A4 phenotype. Because CYP3A4 induction seems to play 

only a modest role here, the present observations with sorafenib in conjunction with 

acute exposure to rifampin may not be extrapolated to the situation where the agent is 

co-administered with rifampin for an extended period of time or have relevance to a 

scenario in which other OATP1B1-interfering medications are co-prescribed with 

sorafenib. 
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sorafenib. 



88 | Chapter 5 
 

 

Interestingly, administered at a dose of 600 mg once daily for 5 days with a single 

oral dose of sorafenib in healthy volunteers, rifampin was previously found to cause a 37% 

decrease in the mean systemic exposure to sorafenib.30 The causal connection of this 

observation with altered CYP3A4 activity, however, remains uncertain and other plausible 

mechanisms could contribute to the reported observations. For example, prolonged 

exposure to rifampin can significantly upregulate OATP1B1 and ABCC2 in primary 

hepatocytes,31 and can induce UGT1A9 mRNA and UGT1A9 activity in human subjects 

after 6 days of exposure to a once daily dose of 600 mg.32 Interestingly, prolonged 

treatment with rifampin may also affect the hepatic expression and function of the uptake 

transporter OCT1,33 which has been proposed as a possible hepatic uptake carrier of 

sorafenib.8, 34 However, this may not be of concern clinically, since recent studies in mice 

with a hepatic OCT1-deficiency indicate this transporter plays only a relatively minor role 

in the overall elimination of sorafenib.35 

The potential clinical ramifications of the hepatocyte-hopping phenomenon of SG 

and the impact of interference in this process with transporter inhibitors such as rifampin 

requires additional investigation. For example, it should be examined if excessive systemic 

accumulation of SG leads to adverse events, as is the case with morphine-6-glucuronide.36 

This is further emphasized by the fact that single nucleotide polymorphisms in SLCO1B1 

are associated with the risk of sorafenib toxicity.37 On the other hand, future research 

should be aimed at the consequences of reduced biliary SG excretion on the maintenance 

of systemic sorafenib exposure: sorafenib undergoes enterohepatic recirculation38 

following bacterial β-glucuronidase-mediated de-conjugation of SG within the intestinal 

lumen,39 and interference of this de-conjugation by neomycin treatment decreases the 

systemic exposure to sorafenib by more than 50% (Nexavar package insert). It can be 

envisaged that interference of the biliary excretion of SG by inhibition of OATP1B1-

mediated uptake into hepatocytes could potentially lead to diminished enterohepatic 

recycling of sorafenib and, ultimately, a reduced systemic exposure to the 

pharmacologically active species. A similar phenomenon has been recently reported for 

mycophenolate mofetil, an immune-suppressive drug that, like sorafenib, undergoes 

extensive glucuronidation. In this case, a cohort of renal transplant patients with an 

inherited genotype associated with decreased OATP1B1 function had reduced circulating 
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levels of the active moiety, mycophenolic acid, and a concomitant increase in the levels of 

its glucuronide metabolite, presumably due to a disturbance in enterohepatic cycling.40 

Although phenotypes similar to those reported for mycophenolate mofetil were not 

observed with sorafenib, it should be pointed out that our current study was neither 

designed nor statistically powered to observe effects of rifampin treatment on parent 

drug levels, despite the fact that we administered rifampin a day longer than 

recommended by the International Transporter Consortium18 in order to be able to 

observe the maximal effect on parent drug levels. It is also conceivable that direct 

inhibition of OATP1B1-mediated transport of sorafenib by rifampin in the studied patient 

population, in addition to an independent inhibitory effect of rifampin on SG transport by 

OATP1B1, could have masked an influence on enterohepatic recirculation. 

Overall, our findings signify an important contribution of OATP1B1 in the 

elimination of sorafenib in humans, whereby compromised OATP1B1 function leads to 

systemic SG accumulation, of which the clinical relevance needs to be assessed. The 

OATP1B1-related excretion of SG seems to take place via a sinusoidal liver-blood shuttling 

loop. As the design of this study was not suitable to detect the influence of OATP1B1 

inhibition on sorafenib exposure, the theory for lower systemic sorafenib exposure after 

prolonged OATP1B1 inhibition still cannot be rejected, with important potential 

ramifications illustrated by the established exposure-toxicity relationships. We expect that 

the current observations with sorafenib may have relevance to other kinase inhibitors 

undergoing Phase II conjugation through glucuronidation (Table 3). Therefore, the effects 

of prolonged OATP1B1 inhibiting factors, e.g. clarithromycin41 and ramipiril,20 on the 

pharmacokinetics of glucuronidated drugs should be assessed. Until then, we suggest that 

caution is warranted if such drugs have to be administered together with agents that 

potently inhibit OATP1B-type transporters.  
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lumen,39 and interference of this de-conjugation by neomycin treatment decreases the 

systemic exposure to sorafenib by more than 50% (Nexavar package insert). It can be 

envisaged that interference of the biliary excretion of SG by inhibition of OATP1B1-

mediated uptake into hepatocytes could potentially lead to diminished enterohepatic 

recycling of sorafenib and, ultimately, a reduced systemic exposure to the 

pharmacologically active species. A similar phenomenon has been recently reported for 

mycophenolate mofetil, an immune-suppressive drug that, like sorafenib, undergoes 

extensive glucuronidation. In this case, a cohort of renal transplant patients with an 

inherited genotype associated with decreased OATP1B1 function had reduced circulating 
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levels of the active moiety, mycophenolic acid, and a concomitant increase in the levels of 

its glucuronide metabolite, presumably due to a disturbance in enterohepatic cycling.40 

Although phenotypes similar to those reported for mycophenolate mofetil were not 

observed with sorafenib, it should be pointed out that our current study was neither 

designed nor statistically powered to observe effects of rifampin treatment on parent 

drug levels, despite the fact that we administered rifampin a day longer than 

recommended by the International Transporter Consortium18 in order to be able to 

observe the maximal effect on parent drug levels. It is also conceivable that direct 

inhibition of OATP1B1-mediated transport of sorafenib by rifampin in the studied patient 

population, in addition to an independent inhibitory effect of rifampin on SG transport by 

OATP1B1, could have masked an influence on enterohepatic recirculation. 

Overall, our findings signify an important contribution of OATP1B1 in the 

elimination of sorafenib in humans, whereby compromised OATP1B1 function leads to 

systemic SG accumulation, of which the clinical relevance needs to be assessed. The 

OATP1B1-related excretion of SG seems to take place via a sinusoidal liver-blood shuttling 

loop. As the design of this study was not suitable to detect the influence of OATP1B1 

inhibition on sorafenib exposure, the theory for lower systemic sorafenib exposure after 

prolonged OATP1B1 inhibition still cannot be rejected, with important potential 

ramifications illustrated by the established exposure-toxicity relationships. We expect that 

the current observations with sorafenib may have relevance to other kinase inhibitors 

undergoing Phase II conjugation through glucuronidation (Table 3). Therefore, the effects 

of prolonged OATP1B1 inhibiting factors, e.g. clarithromycin41 and ramipiril,20 on the 

pharmacokinetics of glucuronidated drugs should be assessed. Until then, we suggest that 

caution is warranted if such drugs have to be administered together with agents that 

potently inhibit OATP1B-type transporters.  
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Table 3. Kinase inhibitors undergoing glucuronidation. 

Compound Target Enzyme(s) Ref. 
ASP015K JAK1/3 N/a 42 

Apatinib VEGFR2 UGT2B7, 1A4 43 

Axitinib VEGFR1-3 UGT1A1, 1A3, 1A9 44, 45 

BMS-690514 pan-ErbB UGT2B4, 2B7 46 

Briciclib Cyclin D1 N/a 47 

Cediranib VEGFR2 UGT1A4 48 

Dasatinib BCR/ABL N/a 49 

Flavopiridol CDK UGT1A9 50 

Flumatinib BCR/ABL N/a 51 

Fostamatinib SYP N/a 52 

JNJ-10198409 PDGFR N/a 53 

MDC-1016 RAS N/a 54 

NU7026 DNA-PKcs N/a 55 

OTS167 MELK UGT1A1, 1A3 56 

PKI-166 EGFR N/a 57 

Regorafenib Multikinase UGT1A9 14 

Ruxolitinib JAK1/2 N/a 58 

Sapitinib Pan-ErbB N/a 59 

Sorafenib Multikinase UGT1A9 11 

Tanzisertib JNK UGT1A1, 1A4, 1A10, 2B4 60, 61 

Trametinib MEK N/a 62 

Vandetanib VEGFR2 N/a 63 

Abbreviation: N/a, not available. 
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ABSTRACT 

Aim. Sorafenib-treated patients display a substantial variation in the incidence of toxicity. 

We aimed to investigate the association of genetic polymorphisms with observed toxicity 

on sorafenib.  

Patients & methods. We genotyped 114 patients that were treated with sorafenib at the 

Erasmus MC Cancer Institute, the Netherlands, for SLCO1B1, SLCO1B3, ABCC2, ABCG2, 

UGT1A1 and UGT1A9.  

Results. The UGT1A1 (rs8175347) polymorphism was associated with hyperbilirubinemia 

and treatment interruption. Polymorphisms in SLCO1B1 (rs2306283, rs4149056) were 

associated with diarrhea and thrombocytopenia, respectively. None of the investigated 

polymorphisms was associated with overall or progression-free survival in hepatocellular 

cancer patients.  

Conclusion. Polymorphisms in SLCO1B1 and UGT1A1 are associated with several different 

sorafenib side effects. 
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INTRODUCTION 

Sorafenib, a tyrosine kinase inhibitor (TKI), is currently approved for the treatment of 

unresectable or metastatic hepatocellular carcinoma (HCC), renal cell carcinoma (RCC) and 

iodine-refractory differentiated thyroid cancer.1-3 Like other TKIs, sorafenib shows a wide 

variation in toxicity, which cannot be predicted for individual patients. The most common 

sorafenib-induced adverse events include hand–foot skin reaction (HFSR), diarrhea, 

hypertension and liver function disorders. These adverse events may lead to dose 

reductions (26%) or treatment discontinuation (38%).1 In addition, these side effects have 

at least partly been related to sorafenib pharmacokinetics (PK), which show large inter-

individual variability on its own.4-6 

 

 
Figure 1. Important proteins regarding hepatic disposition and effect of sorafenib and its major 
metabolites.  
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Although little is known about factors that induce this inter-individual variability 

in sorafenib exposure, many pharmacokinetic processes have already been described in 

detail.7 Sorafenib is primarily metabolized in the liver and undergoes both UGT1A9-

mediated glucuronidation and CYP3A4-mediated oxidation.8 Different membrane 

transporters (e.g., OATP1B1, ABCC2; Figure 1) are responsible for hepatocellular uptake 

and efflux of sorafenib and its metabolites.7 Theoretically, differences in function of these 

proteins may lead to altered systemic sorafenib exposure, for example, due to co-

medication or genetic variation. Systemic sorafenib exposure is known to correlate with 

certain toxicities, such as hypertension and HFSR.5,9 Moreover, multiple studies have 

identified SNPs in a variety of genes to be associated with sorafenib toxicity. OATP1B1 and 

OATP1B3, major influx transporters for both sorafenib and sorafenib-glucuronide, have 

predominantly been investigated in patients treated with irinotecan, which is 

glucuronidated and distributed by OATP1B (SLCO1B) in a similar fashion as sorafenib. 

Homozygous polymorphisms in SLCO1B1 388A>G have been associated with longer 

progression-free survival (PFS) in irinotecan treated non-small cell lung cancer patients 

and also with more grade 3 diarrhea.10,11 Another polymorphism, SLCO1B1 521T>C, leads 

to decreased transporter activity and consequently to increased exposure of the 

irinotecan metabolite SN-38, which might explain the higher incidence of neutropenia in 

patients with this polymorphism.10,11 SNPs in SLCO1B3 have been investigated scarcely, 

but the 334T>G polymorphism has been associated with decreased plasma concentrations 

of mycophenolic acid, which has a similar pattern of hepatobiliary disposition as 

sorafenib.12 The efflux transporters ABCC2 and ABCG2 are involved in the biliary secretion 

of several anticancer drugs. For sorafenib, patients with the ABCC2 -24CC genotype were 

at higher risk of skin rash than those with the computed tomography (CT) genotype.13 

Besides, reduced risk of neutropenia and diarrhea was associated with ABCC2 -24CT for 

irinotecan.11 Reports on PFS in patients with the -24TT genotype showed contradictory 

results.11,14 For imatinib, neither trough levels nor response were found to be affected by 

this SNP.15 The ABCG2 421C>A polymorphism has been associated with increased risk of 

developing diarrhea and higher 5-year PFS rate for a variety of TKIs.16,17 UGT1A9 is 

involved in the metabolism of sorafenib and patients with the -2152C>T polymorphism 

have a higher risk of diarrhea.19 UGT1A1 is not identified in sorafenib metabolism, but its 
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function is inhibited by sorafenib. Patients with at least one UGT1A1 -53TA6>TA7 allele 

(UGT1A1*28) have increased plasma bilirubin concentrations.19 For irinotecan, UGT1A1 -

53TA7 carriers have an increased risk of neutropenia and diarrhea and a reduced PFS.11,20–

21 

Here, we aimed to investigate whether these pharmacogenetic polymorphisms 

are correlated with the observed clinical toxicity of sorafenib in a relatively large cohort of 

patients exposed to this TKI. 

 

PATIENTS & METHODS 

Study design  

In this retrospective study, we analyzed 114 patients treated with sorafenib between 2006 

and 2016 at the Erasmus MC Cancer Institute. We included patients from whom whole 

blood for DNA analysis was collected (local ethics board study number MEC 02.1002). 

Patient charts were reviewed to record demographic and clinical information, in other 

words, age, gender, ethnicity, Eastern Cooperative Oncology Group (ECOG)-performance 

status, tumor type, prior treatment and sorafenib dose changes. 

 

Adverse events were registered during the entire treatment period and graded according 

to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-

CTCAE) v4.0. HFSR, diarrhea, hyperbilirubinemia, cytopenias, increased liver enzymes, 

rash, hypertension and any toxicity were recorded as end point if ≥grade 3, except for 

HFSR, which was also recorded if ≥grade 2. Additionally, the maximum bilirubin level 

during the first 2 months of treatment was compared with total bilirubin at baseline and 

acute hyperbilirubinemia was defined as a ≥100% increase in blood bilirubin 

concentrations during these 2 months. In case of treatment interruption, dose reduction 

or treatment discontinuation, all details were recorded. 

 

PFS was defined as time from start of sorafenib treatment to date of radiological or clear 

clinical progression. Patients who did not have progressive disease, were censored for PFS 

at the time of last follow-up, at start of next treatment or at date of death. Overall survival 
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(OS) was defined as time from start of sorafenib treatment to date of death, or date at 

which patients were last known to be alive. 

 

SNP selection  

We identified eight potentially functional polymorphisms in six genes involved in the PK of 

sorafenib. These polymorphisms were selected based on previously reported research 

into clinically relevant associations. The genes and the selected polymorphisms are listed 

in Table 1. Although CYP3A4 is involved in sorafenib metabolism, CYP3A4 polymorphisms 

were not included, because the only clinically relevant SNP, in other words, CYP3A4*22 

(rs35599367), leads to impaired protein function and CYP3A4 inhibition has previously 

been shown not to influence sorafenib exposure.22–25 

 

DNA isolation  

Four hundred microliters of whole-blood specimens collected in EDTA tubes were 

extracted on the MagNAPure Compact instrument (Roche Diagnostics GmbH, Germany) 

using the Nucleic Acid Isolation Kit I (Roche Diagnostics GmbH, Germany) and a final 

elution volume of 200 μl. 

 

Table 1. Investigated single nucleotide polymorphisms. 
Gene Rs-number Variant Allele WW WM MM MAF 
SLCO1B1 rs2306283 

rs4149056 
388A>G 
521T>C 

*1B 
*5 

39 
85 

51 
25 

24 
4 

43% 
14% 

SLCO1B3 rs4149117 334T>G  5 32 77 18% 
ABCC2 rs717620 -24C>T  82 30 2 15% 
ABCG2 rs2231142 421C>A  95 17 2 9% 
UGT1A1 rs8175347 -53TA6>TA7 *28 53 46* 14 33% 
UGT1A9 rs17868320 

rs6714486 
-2152C>T 
-275T>A 

 104 
103 

10 
11 

0 
0 

4% 
5% 

*One patient harbored a TA5/TA6 genotype, which was categorized as a heterozygous variant. 
Abbreviations: MAF, minor allele frequency; MM, mutant - mutant; WM, wild type - mutant; WW, 
wild type - wild type. 
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Taqman genotyping  

The SLCO1B1 388A>G and 521T>C, SLCO1B3 334T>G, ABCC2 -24C>T, ABCG2 421C>A, 

UGT1A9 -2152C>T and -275T>A genotyping was done using predesigned Drug Metabolism 

Enzymes Taqman allelic discrimination assays on the Life Technologies Taqman 7500 

system (Applied Biosystems, Life Technologies Europe BV, Bleiswijk, The Netherlands). The 

assay IDs are listed in Table 1. Each assay consisted of two allele-specific minor groove 

binding probes, labeled with the fluorescent dyes VIC and FAM. PCRs were performed in a 

reaction volume of 10 μl, containing assay-specific primers, allele-specific Taqman minor 

groove binding probes, Abgene Absolute QPCR Rox Mix (Thermo Scientific, Life 

Technologies Europe BV, Bleiswijk, The Netherlands) and genomic DNA (20 ng). The 

thermal profile consists of 40 cycles of denaturation at 95°C for 20 s and annealing at 92°C 

for 3 s and extension at 60°C for 30 s. Genotypes were scored by measuring allele-specific 

fluorescence using the 7500 software v2.3 for allelic discrimination (Applied Biosystems). 

 

LightCycler  

The real-time PCR assay was developed on the LightCycler 2.0 instrument (Roche 

Diagnostics GmbH, Mannheim, Germany). The primers and fluorescence resonance energy 

transfer hybridization probes were analyte-specific reagents from Roche Molecular 

Diagnostics targeting the UGT1A1 gene. The PCR assay was performed using the LC 

FastStart DNA master hybridization probe kit (Roche Diagnostics GmbH). The total volume 

per reaction mixture was 21 μl (20 μl of master mix plus 1 μl of extracted nucleic acid 10 

ng/μl). PCR amplification with real-time detection was performed using the following 

cycling parameters: one-template denaturing cycle at 95°C for 10 min, followed by 45 

amplification cycles at 95°C for 0 s, 60°C for 10 s and 72°C for 15 s. Following amplification, 

a melting curve analysis was performed by measuring the fluorescent signal during the 

following cycling parameters: 95°C for 30 s, 45°C for 30 s and 70°C for 0 s, with a transition 

of 0.2°C/s. Following a second melting curve analysis was performed by measuring the 

fluorescent signal during the following cycling parameters: 95°C for 30 s, 45°C for 30 s and 

70°C for 0 s, with a transition of 0.1°C/s. Finally a cooling down step was performed at 

40°C for 30 min. Positive results were detected at 640 nm and using the melting curve-Tm 
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system (Applied Biosystems, Life Technologies Europe BV, Bleiswijk, The Netherlands). The 

assay IDs are listed in Table 1. Each assay consisted of two allele-specific minor groove 

binding probes, labeled with the fluorescent dyes VIC and FAM. PCRs were performed in a 

reaction volume of 10 μl, containing assay-specific primers, allele-specific Taqman minor 

groove binding probes, Abgene Absolute QPCR Rox Mix (Thermo Scientific, Life 

Technologies Europe BV, Bleiswijk, The Netherlands) and genomic DNA (20 ng). The 

thermal profile consists of 40 cycles of denaturation at 95°C for 20 s and annealing at 92°C 

for 3 s and extension at 60°C for 30 s. Genotypes were scored by measuring allele-specific 

fluorescence using the 7500 software v2.3 for allelic discrimination (Applied Biosystems). 

 

LightCycler  

The real-time PCR assay was developed on the LightCycler 2.0 instrument (Roche 

Diagnostics GmbH, Mannheim, Germany). The primers and fluorescence resonance energy 

transfer hybridization probes were analyte-specific reagents from Roche Molecular 

Diagnostics targeting the UGT1A1 gene. The PCR assay was performed using the LC 

FastStart DNA master hybridization probe kit (Roche Diagnostics GmbH). The total volume 

per reaction mixture was 21 μl (20 μl of master mix plus 1 μl of extracted nucleic acid 10 

ng/μl). PCR amplification with real-time detection was performed using the following 

cycling parameters: one-template denaturing cycle at 95°C for 10 min, followed by 45 

amplification cycles at 95°C for 0 s, 60°C for 10 s and 72°C for 15 s. Following amplification, 

a melting curve analysis was performed by measuring the fluorescent signal during the 

following cycling parameters: 95°C for 30 s, 45°C for 30 s and 70°C for 0 s, with a transition 

of 0.2°C/s. Following a second melting curve analysis was performed by measuring the 

fluorescent signal during the following cycling parameters: 95°C for 30 s, 45°C for 30 s and 

70°C for 0 s, with a transition of 0.1°C/s. Finally a cooling down step was performed at 

40°C for 30 min. Positive results were detected at 640 nm and using the melting curve-Tm 
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calling analysis. Wild-type TA6 peaked at about 55°C. Heterozygous TA (6)/TA (7) patients 

peaked at about 55 and 59°C, and the variant TA7 peaked at about 59°C. 

 

Statistical analysis  

The distribution of genotypes was tested for Hardy–Weinberg equilibrium using the Chi-

square test. Polymorphisms with a minor allele frequency <1% were not analyzed. 

Polymorphisms within a single gene were tested for linkage disequilibrium (LD) in the 

European population in reference haplotypes from Phase III of the 1000 Genomes Project 

using LDlink.26 The limit for LD was set at R2 > 0.8. In Utah Residents from north and west 

Europe (CEU population), the polymorphisms in UGT1A9 met the criteria for LD (R2 = 0.94) 

and the polymorphisms in SLCO1B1 were not correlated (R2 = 0.14). Therefore, the 

polymorphisms in UGT1A9 were further analyzed as haplotype. The selected 

polymorphisms and haplotype were fitted and the most appropriate model was selected. 

As for the dominant and recessive model, the polymorphisms and haplotype were tested 

against the toxicity end points using the Chi-square test or Fisher's exact test, while logistic 

regression analysis was applied for the multiplicative and additive model27 If an end point 

occurred in more than 20 patients, candidate genetic variables with p ≤ 0.1 were selected 

for the multiple logistic regression analysis with toxicity as depending variable. All 

multivariable analyses corrected for age, gender and ECOG performance status. PFS and 

OS were estimated in patients with HCC by the Kaplan–Meier method, and the log-rank 

test was used for univariable survival analysis. If all groups in the model contained more 

than ten patients, multivariable survival analysis was considered. All statistical analyses 

were performed using SPSS version 21 software (SPSS, IL, USA). A two-sided p < 0.05 was 

considered significant. In view of the exploratory nature of this study, no correction for 

multiple testing was applied. 

 

RESULTS 

Patients & treatment  

Between 2006 and 2016, 114 sorafenib-treated patients provided blood samples for 

pharmacogenetic analysis. Baseline patient characteristics are depicted in Table 2. Fifty-

five patients (48%) started sorafenib at 400 mg b.i.d., 57 patients (50%) started at 200 mg 
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b.i.d. and two patients (2%) started at 600 mg. In the latter two groups, the dose was 

increased to 400 mg b.i.d. by adding 200 mg to the daily dose every 2 weeks, if deemed 

safe and feasible. Any drug-related toxicity ≥grade 3 occurred in 76 patients (67%): 39 

patients had elevated liver enzymes (34%), 14 had hyperbilirubinemia (12%), ten had 

hypertension (9%), nine had diarrhea (8%), nine had HFSR (8%), nine had rash (8%) and 

nine had thrombocytopenia (8%). Grade 2 HFSR occurred in 36 patient (32%). Dose at start 

of treatment (200 vs 400 mg b.i.d.) was not significantly associated with incidence of 

toxicity ≥grade 3, although hyperbilirubinemia was observed significantly more frequent in 

the group started at 200 mg b.i.d. (p = 0.016, Fisher's exact test). At data cut-off on 1 

March 2016, eight patients were still treated with sorafenib, whereas the other patients 

had stopped treatment due to progressive disease (PD; n = 63; 55%), toxicity (n = 33; 

29%), both PD and toxicity (n = 8; 7%) or other reasons (n = 2; 2%). During treatment, in 50 

patients both dose reduction and interruption was pursued (44%), dose reduction alone 

was pursued in 13 patients (11%) and dose interruption alone in eight patients (7%). 

 

 

Table 2. Baseline patient characteristics. 
 Characteristics Patients (n=114) 

Gender 
Male 
Female 

 
89 (78%) 
25 (22%) 

Age (years) 
mean (± SD) 

 
63 (± 11) 

Primary tumor 
Hepatocellular carcinoma (HCC) 
Renal cell cancer (RCC) 
Desmoid fibromatosis 

 
99 (87%) 
14 (12%) 
1 (1%) 

WHO-score 
0 
1 
2 

 
20 (18%) 
90 (79%) 
4 (4%) 

Ethnicity 
Caucasian 
Black 
Asian 
Combination 

 
104 (91%) 
3 (3%) 
5 (4%) 
2 (2%) 
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calling analysis. Wild-type TA6 peaked at about 55°C. Heterozygous TA (6)/TA (7) patients 

peaked at about 55 and 59°C, and the variant TA7 peaked at about 59°C. 
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The distribution of genotypes was tested for Hardy–Weinberg equilibrium using the Chi-

square test. Polymorphisms with a minor allele frequency <1% were not analyzed. 

Polymorphisms within a single gene were tested for linkage disequilibrium (LD) in the 

European population in reference haplotypes from Phase III of the 1000 Genomes Project 

using LDlink.26 The limit for LD was set at R2 > 0.8. In Utah Residents from north and west 

Europe (CEU population), the polymorphisms in UGT1A9 met the criteria for LD (R2 = 0.94) 

and the polymorphisms in SLCO1B1 were not correlated (R2 = 0.14). Therefore, the 

polymorphisms in UGT1A9 were further analyzed as haplotype. The selected 

polymorphisms and haplotype were fitted and the most appropriate model was selected. 

As for the dominant and recessive model, the polymorphisms and haplotype were tested 

against the toxicity end points using the Chi-square test or Fisher's exact test, while logistic 

regression analysis was applied for the multiplicative and additive model27 If an end point 

occurred in more than 20 patients, candidate genetic variables with p ≤ 0.1 were selected 

for the multiple logistic regression analysis with toxicity as depending variable. All 

multivariable analyses corrected for age, gender and ECOG performance status. PFS and 

OS were estimated in patients with HCC by the Kaplan–Meier method, and the log-rank 

test was used for univariable survival analysis. If all groups in the model contained more 

than ten patients, multivariable survival analysis was considered. All statistical analyses 

were performed using SPSS version 21 software (SPSS, IL, USA). A two-sided p < 0.05 was 

considered significant. In view of the exploratory nature of this study, no correction for 

multiple testing was applied. 

 

RESULTS 

Patients & treatment  

Between 2006 and 2016, 114 sorafenib-treated patients provided blood samples for 

pharmacogenetic analysis. Baseline patient characteristics are depicted in Table 2. Fifty-

five patients (48%) started sorafenib at 400 mg b.i.d., 57 patients (50%) started at 200 mg 
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b.i.d. and two patients (2%) started at 600 mg. In the latter two groups, the dose was 

increased to 400 mg b.i.d. by adding 200 mg to the daily dose every 2 weeks, if deemed 

safe and feasible. Any drug-related toxicity ≥grade 3 occurred in 76 patients (67%): 39 

patients had elevated liver enzymes (34%), 14 had hyperbilirubinemia (12%), ten had 

hypertension (9%), nine had diarrhea (8%), nine had HFSR (8%), nine had rash (8%) and 

nine had thrombocytopenia (8%). Grade 2 HFSR occurred in 36 patient (32%). Dose at start 

of treatment (200 vs 400 mg b.i.d.) was not significantly associated with incidence of 

toxicity ≥grade 3, although hyperbilirubinemia was observed significantly more frequent in 

the group started at 200 mg b.i.d. (p = 0.016, Fisher's exact test). At data cut-off on 1 

March 2016, eight patients were still treated with sorafenib, whereas the other patients 

had stopped treatment due to progressive disease (PD; n = 63; 55%), toxicity (n = 33; 

29%), both PD and toxicity (n = 8; 7%) or other reasons (n = 2; 2%). During treatment, in 50 

patients both dose reduction and interruption was pursued (44%), dose reduction alone 

was pursued in 13 patients (11%) and dose interruption alone in eight patients (7%). 

 

 

Table 2. Baseline patient characteristics. 
 Characteristics Patients (n=114) 

Gender 
Male 
Female 

 
89 (78%) 
25 (22%) 

Age (years) 
mean (± SD) 

 
63 (± 11) 

Primary tumor 
Hepatocellular carcinoma (HCC) 
Renal cell cancer (RCC) 
Desmoid fibromatosis 

 
99 (87%) 
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1 (1%) 
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Association of pharmacogenetic polymorphisms with toxicity  

The results of the genotyping analyses are depicted in Table 1. The polymorphisms that 

met our preset criteria for association with the end points in univariable analysis were 

entered in the multivariable logistic regression (Table 3). For any toxicity ≥grade 3, no 

association was found with the polymorphisms in multivariable analysis. This was also the 

case for elevated liver enzymes. Hyperbilirubinemia, thrombocytopenia, diarrhea and rash 

occurred in less than 20 patients and were therefore not considered for multivariable 

analysis. Hypertension, HFSR ≥grade 3 and HFSR ≥grade 2 were not associated with any of 

the polymorphisms in univariable analysis. The presence of at least one mutant UGT1A1 

allele was associated with 3.4-fold higher odds of interrupting treatment (p = 0.002), 

whereas the homozygous variant was associated with over fivefold higher odds of acute 

hyperbilirubinemia (p = 0.016). In univariable analysis, polymorphisms in SLCO1B1 were 

also related to the incidence toxicity: at least one mutant allele at codon 388 was 

associated with almost eightfold lower odds of developing diarrhea (p = 0.007) and at 

least one C allele at codon 521 was associated with 4.2-fold higher odds of 

thrombocytopenia (p = 0.045). Between HCC patients and the other patients the incidence 

of acute hyperbilirubinemia (41 vs 40%, respectively; p = 0.917), of hyperbilirubinemia (14 

vs 0%, respectively; p = 0.209) and of thrombocytopenia (9 vs 0%, respectively; p = 0.224) 

did not differ significantly. Other liver enzymes were elevated more frequently in HCC 

patients (38%) than in patients with RCC or desmoid fibromatosis (7%; p = 0.018). 

 

Association of pharmacogenetic polymorphisms with survival  

None of the SNPs were associated to PFS for HCC in univariable analysis. For OS, the 

recessive ABCC2 and ABCG2 models seemed associated, but both models had only two 

patients in the homozygous affected group and were therefore excluded. 

 

DISCUSSION 

In this study, we have found new associations between genetic polymorphisms in genes 

encoding for drug transporters and various kinds of well-recognized sorafenib toxicity. 

Earlier genotyping efforts in sorafenib-treated patients have predominantly focused on 

genes related to pharmacodynamics, for example, VEGF and VEGFR2 .9,28–29 Up till now, 
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genetic polymorphisms in ABCC2, UGT1A1 and UGT1A9 have been associated with 

sorafenib-induced toxicity.13,18–19 In our population, the significant association between 

polymorphisms in ABCC2 and UGT1A9 and toxicity could not be confirmed, but we did find 

that patients carrying a homozygous UGT1A1 -53 TA7 repeat (rs8175347) were at an 

increased odds for a more than twofold – and therefore clinically relevant – increase of 

bilirubin concentrations during the first 2 months of treatment. Any toxicity ≥grade 3 also 

occurred twice as often in patients with at least one mutant UGT1A1 -53 allele, although 

this was not statistically significant (p = 0.088). Furthermore, patients with at least one 

mutant allele at this position had their treatment interrupted significantly more often in 

our series, which is likely to be caused (partly) by the higher incidence of acute 

hyperbilirubinemia. This phenomenon was described in a case report, in which a 

sorafenib-treated patient with one mutant allele had a marked unconjugated 

hyperbilirubinemia.30 This has also been described before for several other drugs, like 

atazanavir and nilotinib.31,32 Unfortunately, we were unable to differentiate conjugated 

from unconjugated hyperbilirubinemia due to the retrospective character of this study. As 

systemic accumulation of unconjugated bilirubin is essentially benign, it may be useful for 

clinicians to be aware of UGT1A1*28 status in order to adequately consider sorafenib 

therapy in case of hyperbilirubinemia. 

 

Diarrhea and thrombocytopenia occurred significantly more often in patients with at least 

one mutant allele in SLCO1B1. The presence of a mutant G allele at codon 388 

(rs2306283), which leads to OATP1B1 activation,33 was associated with much lower odds 

of diarrhea than the wild-type genotype. On the other hand, patients with at least one 

mutant C allele at codon 521 (rs4149056), which is known to reduce OATP1B1 activity,33 

had significantly higher odds of developing thrombocytopenia. The OATP1B1 transporter, 

encoded for by SLCO1B1, is known to mediate hepatic transport of sorafenib-glucuronide,7 

but is possibly also involved in transport of unconjugated sorafenib.34 Our findings suggest 

that systemic concentrations of sorafenib or its glucuronide are highly dependent of 

OATP1B1 activity. Higher OATP1B1 activity and the subsequent higher hepatic clearance 

of the drug, for example, for *1B, leads to lower systemic exposure and therefore less 

toxicity (diarrhea) and vice versa for *5 and thrombocytopenia. As for the unconjugated 
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bilirubin, we do not have pharmacokinetic data from these patients at our disposal and 

therefore cannot substantiate this theory with pharmacokinetic evidence. Still, our 

findings are similar to those in studies with other drugs like irinotecan10,11 or pravastatin.35 

Hence the scenario sketched above may not only be plausible, but also relevant since 

OATP1B1 function can also be altered by co-medication.8 

 

To provide definite proof of these retrospective observations, a prospective study, 

including PK and additional unconjugated bilirubin analysis, should be pursued. We were 

limited in registering low grade toxicity, which was not reported structurally in the patient 

records. On the other hand, clinically relevant adverse events are reported in a 

standardized way and therefore it is unlikely that we have missed important toxicity in our 

dataset. Finally, some of the end points we used, in other words, thrombocytopenia, 

hyperbilirubinemia and elevated liver enzymes, can also manifest as a symptom of 

advanced HCC. In our population however, only the latter occurred significantly more 

often in HCC patients. Therefore, the potential bias caused by differences in primary 

tumor seems to be limited. 

 

 

Conclusion 

We have observed that genetic polymorphisms in SLCO1B1 (rs2306283 and rs4149056) 

are associated with sorafenib-induced toxicity. Future fundamental research has to be 

aimed at discovering whether sorafenib itself or its metabolite sorafenib-glucuronide is 

being accumulated and causes toxicity. Additionally, we have confirmed that UGT1A1*28 

(rs8175347) is associated with acute hyperbilirubinemia, which causes physicians to 

interrupt treatment significantly more frequent. 
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ABSTRACT 

Background. For imatinib, a relationship between systemic exposure and clinical outcome 

has been suggested. Importantly, imatinib concentrations are not stable and decrease 

over time, for which several mechanisms have been suggested. In this study, we 

investigated if a decrease in alpha-1 acid glycoprotein (AGP) is the main cause of the 

lowering in imatinib exposure over time. 

Methods. We prospectively measured imatinib trough concentration (Cmin) values in 28 

patients with gastrointestinal stromal tumours, at 1, 3 and 12 months after the start of 

imatinib treatment. At the same time points, AGP levels were measured. 

Results. Overall, imatinib Cmin and AGP levels were correlated (R2 = 0.656; P < 0.001). 

However, AGP levels did not fluctuate significantly over time, nor did the change in AGP 

levels correlate with the change in the imatinib Cmin. 

Conclusion. We showed that systemic AGP levels are not likely to be a key player in the 

decrease in systemic imatinib exposure over time. As long as intra-individual changes in 

imatinib exposure remain unexplained, researchers should standardize the sampling times 

for imatinib in order to be able to assess the clinical applicability of therapeutic drug 

monitoring. 
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BACKGROUND 

Imatinib is one of the first tyrosine kinase inhibitors (TKIs) for which therapeutic drug 

monitoring (TDM) is deemed suitable in the treatment of both chronic myeloid leukaemia 

(CML) and gastrointestinal stromal tumours (GISTs). In CML, higher imatinib exposure has 

been found in patients with a treatment response,1-4 and imatinib trough concentration 

(Cmin) values above 1000 ng/mL have been found to be predictive of higher response 

rates.1,2 For GIST, the target imatinib Cmin has been established in a phase II study, in which 

patients with an imatinib Cmin in the lowest quartile (i.e. below 1100 ng/mL) had 

significantly worse progression-free survival (PFS), and it was suggested that this 

concentration should serve as a target Cmin.5 Studies conducted in the context of routine 

care have shown that more than half of imatinib-treated patients do not reach that Cmin.6–8 

In these studies performed in daily practice, the Cmin was measured more than 3 months 

after the start of treatment, whereas in the study describing the threshold of 1100 ng/mL, 

the imatinib Cmin was established after 4 weeks of treatment. Meanwhile, it has been 

shown that imatinib clearance increases—and systemic concentrations therefore 

decrease—during the first 3 months of treatment.9,10 Hence, it could be expected upfront 

that an even larger proportion of patients than the 25 % in the phase II study would have a 

Cmin below 1100 ng/mL when it was determined later than 3 months after the start of 

treatment, and doubts have been raised as to whether this threshold set at a time when 

systemic exposure has not yet stabilized is indeed the appropriate target imatinib Cmin in 

patients with GIST.11 Accordingly, in one of the more recent retrospective studies in GIST 

patients, a threshold of 760 ng/mL led to better prediction of the outcome.8 In the same 

study population, however, the median PFS was longer for patients with a Cmin >1100 

ng/mL than for those with a Cmin >760 ng/mL (67 versus 56 months).8 

Several mechanisms have been suggested to account for the reduction in 

systemic imatinib concentrations over time, the first being decreased absorption.9 

Alternatively, Chatelut et al.12 proposed that systemic imatinib exposure decreases 

because of increased clearance rather than because of decreased absorption. As imatinib 

is predominantly bound to the acute-phase protein alpha-1 acid glycoprotein (AGP),13-15 a 

reduction in AGP over time would lead to less protein-bound imatinib and therefore a 

larger proportion of free imatinib that could be metabolized or excreted.12 According to 
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this theory, it is assumed that a decrease in the tumour burden leads to a reduced 

inflammatory syndrome, which in turn causes lowering of AGP levels. The finding that 

changes in AGP levels over time correlate well with changes in imatinib concentrations 

seems to back this mechanism.16 However, these data were analysed in retrospect and, 

more importantly, they were not collected in a structured manner, as imatinib 

concentrations and AGP levels were measured at separate time points. Additionally, AGP 

levels and imatinib concentrations were not assessed synchronously in that study. To 

firmly establish the influence of AGP levels on blood imatinib concentrations, this study 

aimed to prospectively assess the correlation between imatinib Cmin values and AGP levels. 

 

METHODS 

Patients 

Adult patients with GIST in whom commencement of imatinib treatment was planned 

were eligible for inclusion in this study. The exclusion criteria were prior imatinib 

treatment within 3 months prior to the start of the study, major surgery within 2 weeks 

prior to the start of the study, use of potent cytochrome P450 (CYP) 3A inhibitors or 

inducers, and inability to give or understand informed consent. The study protocol was 

approved by the local institutional review board (protocol number MEC13-203). All 

procedures performed in this study were in accordance with the ethical standards of the 

institutional and/or national research committee and with the 1964 Helsinki Declaration 

and its later amendments or comparable ethical standards. Written informed consent was 

obtained from all individual participants included in the study. 

 

Study Procedures 

Pharmacokinetic sampling was performed at 1, 3 and 12 months after the start of imatinib 

treatment. At each time point, two blood samples were collected in addition to the 

standard-of-care blood draw at scheduled outpatient visits. The first sample was collected 

in a glass tube containing lithium heparin as an anticoagulant, and was used to quantify 

the concentrations of imatinib and its main metabolite, CGP74588. This sample was 

processed to plasma within 30 minutes by centrifugation for 15 min at 2500×g (4 °C). 

Next, the plasma was transferred to polypropylene tubes and stored at −70 °C unl the 
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time of analysis at the Laboratory of Translational Pharmacology, Erasmus MC Cancer 

Institute (Rotterdam, the Netherlands). The methods used for quantification of imatinib 

and CGP74588 concentrations have been described previously.17 The second sample was 

collected in a serum-separating tube and processed to serum. Serum AGP levels were 

measured using an immunoturbidimetric assay on a Cobas Integra 800 (Roche Diagnostics 

GmbH, Mannheim, Germany) in accordance with the instructions of the manufacturer. 

Briefly, serum AGP was agglutinated with a polyclonal goat-antihuman AGP antibody. The 

amount of agglutination of the antigen–antibody complex was measured turbidimetrically. 

 

Statistical Considerations 

At least 24 patients had to be included to identify a rho value of 0.55 in a two-sided test 

with alpha = 0.05 and power = 0.8. Correlation was tested using Pearson’s correlation, 

equality of two means was tested using t tests and equality of more than two means was 

tested using one-way analysis of variance (ANOVA). P values <0.05 were considered 

statistically significant. Descriptive statistics were performed using IBM SPSS Statistics 

version 21 software (SPSS, Chicago, IL, USA). All other statistical analyses were performed 

using GraphPad Prism 5.0 software (GraphPad Software, La Jolla, CA, USA). 

 

RESULTS 

Baseline 

Between April 2013 and March 2015, 35 patients signed informed consent and were 

included in the study. Four patients were not evaluable because they stopped imatinib 

treatment within 3 months and therefore did not provide repetitive pharmacokinetic 

samples. In another three patients, only one Cmin value was available because the patients 

had taken imatinib prior to the other sampling time points or because they had an 

imatinib concentration below the limit of quantification (<20.0 ng/mL). The baseline 

characteristics of the 28 evaluable patients are depicted in Table 1. Eight of the evaluable 

patients stopped treatment before the final sampling time point because of progressive 

disease (n = 3), cessation of neoadjuvant treatment (n = 4) or toxicity (n = 1). 
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AGP Levels and Imatinib Concentrations 

A total of 73 imatinib trough concentration samples were obtained. In 69 cases, a blood 

sample for measurement of the AGP level was collected synchronically. The mean values 

of AGP, imatinib and CGP74588 at each time point are depicted in Table 2. At any of the 

three time points, the AGP levels in the five patients treated in the adjuvant setting did 

not differ significantly from those in the patients treated in the neoadjuvant or palliative 

settings (Figure 1a). 

 
 
 
Table 1. Baseline patient characteristics. 
Characteristics  Patients (n=28) 
Age at start Years 69 (36-85) 
Gender 
 

- Male 
- Female 

16 (57%) 
12 (43%) 

WHO performance - 0 
- 1 
- 2 
- Unknown 

12 (43%) 
13 (46%) 
1 (4%) 
2 (7%) 

c-KIT mutation - Wildtype 
- Exon 9 
- Exon 11 
- Exon 13 
- Unknown 

5 (18%) 
6 (21%) 
12 (43%) 
3 (11%) 
2 (7%) 

Treatment setting - Neoadjuvant 
- Adjuvant 
- Palliative 

11 (39%) 
5 (18%) 
12 (43%) 

Dose at start - 300 mg QD 
- 400 mg QD 
- 800 mg QD 

1 (4%) 
26 (93%) 
1 (4%) 

All values are presented as n (%) or as mean (SD). 
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Figure 1. (a) Geometric means of the AGP concentrations at 30 days (white bars), 90 days (striped 
bars), and 365 days (dotted bars) from treatment start, for each treatment setting. (b) Geometric 
means of imatinib trough concentrations (black bars) and AGP (white bars) at each of the time 
points. The error bars represent the 95% confidence intervals. 
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Figure 1. (a) Geometric means of the AGP concentrations at 30 days (white bars), 90 days (striped 
bars), and 365 days (dotted bars) from treatment start, for each treatment setting. (b) Geometric 
means of imatinib trough concentrations (black bars) and AGP (white bars) at each of the time 
points. The error bars represent the 95% confidence intervals. 
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AGP Versus Imatinib 

Overall, AGP levels were significantly correlated with imatinib concentrations (R2 = 0.656; P < 

0.001; Figure 2) and with the sum of imatinib and CGP74588 concentrations (R2 = 0.667; P < 

0.001). The correlation between imatinib concentrations and AGP levels was less strong in the 

25 samples that were taken at the first time point after 30 days (R2 = 0.526; P < 0.001; Figure 3) 

in comparison with the correlations assessed at the two later time points. The absolute 

difference in AGP levels between time points 1 and 2 was also significantly correlated with the 

absolute difference in imatinib concentrations between time points 1 and 2 (R2 = 0.381; P = 

0.002) and between time points 1 and 3 (R2 = 0.355; P = 0.03). The relative differences in AGP 

levels and imatinib concentrations between time points were not significantly correlated. The 

geometric mean AGP levels did not differ significantly between the three time points (P = 

0.141; Figure 1b). 

 
 
Table 2. Analyses of the samples obtained at the different time points. 
 Time point 1 

(n=25) 
Time point 2 
(n=25) 

Time point 3 
(n=19) 

Total 
(n=69) 

Actual time since  
start imatinib (days) 

30 (3) 97 (30) 364 (20)  

     
AGP  
(g/L) 

0.97  
(0.85-1.10) 

0.81  
(0.69-0.94) 

0.89  
(0.78-1.00) 

0.89  
(0.82-0.96) 

Imatinib  
(ng/mL) 

1,457  
(1,155-1,838) 

1,305  
(1,001-1,702) 

1,193  
(967-1,472) 

1,325  
(1,158-1,516) 

CGP74588 (ng/mL) 308  
(247-384) 

265  
(205-343) 

231 
(179-299) 

270  
(235-309) 

Imatinib + CGP74588  
(ng/mL) 

1,777  
(1,420-2,224) 

1,578  
(1,217-2,047) 

1,439  
(1,165-1,777) 

1,606  
(1,407-1,833) 

     
Correlation between  
imatinib and AGP 

0.526  
(p<0.001) 

0.839  
(p<0.001) 

0.411  
(p=0.003) 

0.656  
(p<0.001) 

The three time points represent the 3 moments at which sampling was scheduled according to 
protocol, i.e. 30 days, 90 days, and 365 days after start of treatment. Correlations are depicted as r2 
(p-value). Units of time are presented as mean (SD). All other values are presented as geometric 
mean (95% confidence interval).  
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Figure 2. Correlation between imatinib and AGP in all samples (n=69). 
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Figure 3. Correlation between imatinib and AGP at day 30 (n=25). 
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difference in AGP levels between time points 1 and 2 was also significantly correlated with the 

absolute difference in imatinib concentrations between time points 1 and 2 (R2 = 0.381; P = 

0.002) and between time points 1 and 3 (R2 = 0.355; P = 0.03). The relative differences in AGP 

levels and imatinib concentrations between time points were not significantly correlated. The 

geometric mean AGP levels did not differ significantly between the three time points (P = 

0.141; Figure 1b). 

 
 
Table 2. Analyses of the samples obtained at the different time points. 
 Time point 1 

(n=25) 
Time point 2 
(n=25) 

Time point 3 
(n=19) 

Total 
(n=69) 

Actual time since  
start imatinib (days) 

30 (3) 97 (30) 364 (20)  

     
AGP  
(g/L) 

0.97  
(0.85-1.10) 

0.81  
(0.69-0.94) 

0.89  
(0.78-1.00) 

0.89  
(0.82-0.96) 

Imatinib  
(ng/mL) 

1,457  
(1,155-1,838) 

1,305  
(1,001-1,702) 

1,193  
(967-1,472) 

1,325  
(1,158-1,516) 

CGP74588 (ng/mL) 308  
(247-384) 

265  
(205-343) 

231 
(179-299) 

270  
(235-309) 

Imatinib + CGP74588  
(ng/mL) 

1,777  
(1,420-2,224) 

1,578  
(1,217-2,047) 

1,439  
(1,165-1,777) 

1,606  
(1,407-1,833) 

     
Correlation between  
imatinib and AGP 

0.526  
(p<0.001) 

0.839  
(p<0.001) 

0.411  
(p=0.003) 

0.656  
(p<0.001) 

The three time points represent the 3 moments at which sampling was scheduled according to 
protocol, i.e. 30 days, 90 days, and 365 days after start of treatment. Correlations are depicted as r2 
(p-value). Units of time are presented as mean (SD). All other values are presented as geometric 
mean (95% confidence interval).  
 

 

 

Influence of AGP on Imatinib PK | 119 
 

1.00 2.00 3.00
0

4,000

8,000

12,000

AGP concentration (g/L)

Im
at

in
ib

 c
on

ce
nt

ra
tio

n 
(n

g/
m

L)

 
Figure 2. Correlation between imatinib and AGP in all samples (n=69). 
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Figure 3. Correlation between imatinib and AGP at day 30 (n=25). 
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DISCUSSION 

In this prospective setting, imatinib pharmacokinetics were closely correlated with 

systemic AGP levels when all samples obtained at the three different time points were 

considered together (R2 = 0.656; P < 0.001). Although—at first sight—this appeared to be 

in line with the hypothesis that the increase in imatinib clearance is due to reduced 

systemic AGP levels,14,16 the differences in AGP levels and imatinib Cmin values between the 

time points were less strongly correlated. Moreover, the argument that AGP decreases 

during treatment and thereby contributes to increased imatinib clearance over time12 did 

not seem to hold true, as we did not find substantial reductions in AGP levels during 

treatment (P = 0.141; Figure 1). Patients treated in the adjuvant setting even had a 

gradual increase in AGP levels, which contradicted the theory that AGP levels are initially 

elevated because of an inflammatory syndrome directly after tumour surgery and decline 

over time when the surgery effects resolve.12 Even though the decrease in imatinib 

concentrations was not as large as those published previously, the implication of our 

current findings is that the role of systemic AGP levels in the reduced systemic imatinib 

exposure over time is relatively small and that other factors, e.g. reduced bioavailability, 

likely have larger influences on systemic exposure. Still, AGP might seriously interfere with 

imatinib exposure in vivo, as extravascular AGP affects imatinib pharmacokinetics beyond 

the systemic circulation,15 and preclinical research has shown that the pharmacodynamic 

effects of imatinib are reduced in the presence of AGP.18-20 Nonetheless, it remains 

questionable whether these extravascular effects can be used to determine the optimal 

dose for individual patients. 

 

Unfortunately, the available evidence for individualized imatinib dosing in GIST patients is 

currently not robust, hampering assessment of the clinical relevance of TDM in GIST. 

Imatinib Cmin values measured at different time points during treatment have previously 

been related to the clinical outcome.5,8 Also, as mentioned previously, because of the 

decrease in systemic imatinib concentrations over time, target Cmin values after 1 month 

cannot be extrapolated into a dosing algorithm for the entire treatment period. Although 

it has been proposed that TDM be performed only after imatinib pharmacokinetics have 

stabilized after 3 months of treatment,11 whether or not an individual with GIST receives 
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the proper treatment and dose would ideally become visible much earlier during 

treatment. For example, by using fludeoxyglucose (18F) [18F-FDG] positron emission 

tomography [PET] as early as a few days after the start of treatment, it is possible to know 

whether or not a GIST patient is responding to treatment.21 Either way, TDM in imatinib 

treatment can reach its full potential only when sampling times are standardized between 

research groups.22 The sampling schedule employed in the current study could serve as a 

blueprint for larger studies because it incorporated Cmin values at 1 month and at later 

time points, enabling assessment of long-term pharmacokinetic targets, which could 

subsequently be compared with the established target at 1 month. Alternatively, long-

term pharmacokinetic targets could be derived from the target Cmin at 1 month, using a 

formula that corrects for the parameters that contribute to the decrease in imatinib 

exposure. However, as the biological mechanism of this decreased exposure seems to be 

complex and multifactorial, the latter option to determine long-term pharmacokinetic 

targets is not likely to be computed soon. In parallel, other challenges in making TDM 

clinically usable will be to integrate the dosing range (300–800 mg daily) and the possible 

options in the case of insufficient concentrations (dose escalation or a treatment switch), 

but these are secondary to standardization of the sampling time points. Last, but certainly 

not least, it remains to be proven that imatinib TDM in GIST really translates into a better 

outcome in terms of either less toxicity or better anti-tumour effects. 

 

Conclusion 

We found that systemic AGP levels are not likely to be a key player in the decrease of 

systemic imatinib exposure over time. We believe that TDM is a very potent tool to 

improve personalized imatinib treatment, but it can flourish only if researchers ensure 

that their results are obtained in a standardized way. 
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ABSTRACT 

Purpose. Pazopanib is a tyrosine kinase inhibitor approved for the treatment of renal cell 

carcinoma and soft tissue sarcoma. Retrospective analyses have shown that an increased 

median PFS and tumor shrinkage appears in patients with higher plasma trough levels 

(Cmin). Therefore, patients with low Cmin might benefit from pharmacokinetically-guided 

individualized dosing.  

Experimental Design. We conducted a prospective multicenter trial in 30 patients with 

advanced solid tumors. Pazopanib Cmin was measured weekly by LC-MS/MS. At week 3, 5 

and 7 the pazopanib dose was increased if the measured Cmin was <20 mg/L and toxicity 

was < grade 3.  

Results. In total, 17 patients had at least one Cmin <20 mg/L at week 3, 5 and 7. Of these, 

10 were successfully treated with a pharmacokinetically-guided dose escalation, leading to 

daily dosages ranging from 1000 to 1800 mg daily. Cmin in these patients increased 

significantly from 13.2 (38.0%) mg/L (mean (CV%)) to 22.9 mg/L (44.9%). Thirteen patients 

had all Cmin levels {greater than or equal to}20 mg/L. Of these, nine patients with a high 

Cmin of 51.3 mg/L (45.1%) experienced {greater than or equal to} grade 3 toxicity and 

subsequently required a dose reduction to 600 or 400 mg daily, yet in these patients Cmin 

remained above the threshold at 28.2 mg/L (25.3%).  

Conclusions. A pharmacokinetically-guided individualized dosing algorithm was 

successfully applied and evaluated. The dosing algorithm led to patients being treated at 

dosages ranging from 400 to 1800 mg daily. Further studies are needed to show a benefit 

of individualized dosing on clinical outcomes such as progression free survival. 
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INTRODUCTION 

Pazopanib is a tyrosine kinase inhibitor targeting VEGFR-1,2,3, PDGFR α/β, FGFR and c-Kit.1 

Pazopanib increased progression free survival (PFS) from 4.2 to 9.2 months in renal cell 

carcinoma (RCC) and from 1.6 to 4.6 months in soft tissue sarcoma (STS) compared to 

placebo.2,3  

A retrospective analysis in 177 RCC patients by Suttle et al. showed an increased 

tumor shrinkage and longer PFS in patients with plasma trough levels (Cmin) ≥20.5 mg/L 

compared to patients with a Cmin below this threshold (4). Median PFS was found to be 50.2 

weeks in patients with higher pazopanib Cmin versus 19.6 weeks in patients with lower Cmin. 

Median tumor shrinkage was 37.9% in the high versus 6.9% in the low exposure group. No 

further increase in PFS or tumor shrinkage was found above a pazopanib plasma concentration 

of 20.5 mg/L. 

This threshold for efficacy seems to be in accordance with preclinical data showing 

optimal VEGFR2 inhibition by pazopanib in vivo at a concentration ≥17.5 mg/L (40 μmol/L) in 

mouse models.5 Additionally, in the phase I trial hypertension, a pharmacodynamic biomarker 

for response to anti-angiogenic agents, correlated with C24h values above 15 mg/L at day 22.6 

Plasma concentrations were also correlated with radiographic response in a phase II study of 

patients with progressive, radioiodine-refractory, metastatic differentiated thyroid cancers 

treated with pazopanib.7 The above indicates that efficacy of pazopanib is strongly associated 

with pharmacokinetic (PK) exposure in many tumor types. Pazopanib PK shows significant 

inter-individual variability in plasma exposure6,8,9 and may be affected by various factors, such 

as concomitant medication (e.g. drugs increasing gastric pH or inhibiting/inducing CYP3A4), 

intake of food, patient compliance and (exact) time of tablet ingestion and blood sampling.9–12  

Despite the large variability in exposure, pazopanib is currently still administered at a 

fixed dose of 800 mg daily. This may however result in suboptimal treatment in a subset of 

patients who have a low Cmin. In a retrospective analysis performed by the manufacturer of 

pazopanib, 20% of patients had a Cmin below 20.5 mg/L and might have had benefit from an 

increased dose.4 The feasibility of PK-guided dosing has already been shown in prospective 

clinical trials for tamoxifen13 and another tyrosine kinase inhibitor with similar properties, 

sunitinib.14 Therefore, we now conducted a prospective feasibility trial to investigate whether 

the dose of pazopanib could be safely increased in patients who have a low Cmin on the fixed 
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Cmin of 51.3 mg/L (45.1%) experienced {greater than or equal to} grade 3 toxicity and 

subsequently required a dose reduction to 600 or 400 mg daily, yet in these patients Cmin 

remained above the threshold at 28.2 mg/L (25.3%).  

Conclusions. A pharmacokinetically-guided individualized dosing algorithm was 

successfully applied and evaluated. The dosing algorithm led to patients being treated at 

dosages ranging from 400 to 1800 mg daily. Further studies are needed to show a benefit 

of individualized dosing on clinical outcomes such as progression free survival. 
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INTRODUCTION 

Pazopanib is a tyrosine kinase inhibitor targeting VEGFR-1,2,3, PDGFR α/β, FGFR and c-Kit.1 

Pazopanib increased progression free survival (PFS) from 4.2 to 9.2 months in renal cell 

carcinoma (RCC) and from 1.6 to 4.6 months in soft tissue sarcoma (STS) compared to 

placebo.2,3  

A retrospective analysis in 177 RCC patients by Suttle et al. showed an increased 

tumor shrinkage and longer PFS in patients with plasma trough levels (Cmin) ≥20.5 mg/L 

compared to patients with a Cmin below this threshold (4). Median PFS was found to be 50.2 

weeks in patients with higher pazopanib Cmin versus 19.6 weeks in patients with lower Cmin. 

Median tumor shrinkage was 37.9% in the high versus 6.9% in the low exposure group. No 

further increase in PFS or tumor shrinkage was found above a pazopanib plasma concentration 

of 20.5 mg/L. 

This threshold for efficacy seems to be in accordance with preclinical data showing 

optimal VEGFR2 inhibition by pazopanib in vivo at a concentration ≥17.5 mg/L (40 μmol/L) in 

mouse models.5 Additionally, in the phase I trial hypertension, a pharmacodynamic biomarker 

for response to anti-angiogenic agents, correlated with C24h values above 15 mg/L at day 22.6 

Plasma concentrations were also correlated with radiographic response in a phase II study of 

patients with progressive, radioiodine-refractory, metastatic differentiated thyroid cancers 

treated with pazopanib.7 The above indicates that efficacy of pazopanib is strongly associated 

with pharmacokinetic (PK) exposure in many tumor types. Pazopanib PK shows significant 

inter-individual variability in plasma exposure6,8,9 and may be affected by various factors, such 

as concomitant medication (e.g. drugs increasing gastric pH or inhibiting/inducing CYP3A4), 

intake of food, patient compliance and (exact) time of tablet ingestion and blood sampling.9–12  

Despite the large variability in exposure, pazopanib is currently still administered at a 

fixed dose of 800 mg daily. This may however result in suboptimal treatment in a subset of 

patients who have a low Cmin. In a retrospective analysis performed by the manufacturer of 

pazopanib, 20% of patients had a Cmin below 20.5 mg/L and might have had benefit from an 

increased dose.4 The feasibility of PK-guided dosing has already been shown in prospective 

clinical trials for tamoxifen13 and another tyrosine kinase inhibitor with similar properties, 

sunitinib.14 Therefore, we now conducted a prospective feasibility trial to investigate whether 

the dose of pazopanib could be safely increased in patients who have a low Cmin on the fixed 
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800 mg dose of pazopanib and whether this led to increased drug exposure, without 

intolerable toxicity. 

 

MATERIALS AND METHODS 

Patient population 

Cancer patients for whom pazopanib was considered standard of care, or for whom no 

remaining standard treatment options were available, were eligible for enrollment. Patients 

also had to be at least 18 years of age, had to have a WHO performance score of 0 or 1, needed 

to have evaluable disease according to RECIST 1.1 and also had to have an adequate organ 

function at baseline defined as: absolute neutrophil count ≥ 1.5x109/L, hemoglobin ≥ 5.6 

mmol/L, platelets ≥ 100x109/L, prothrombin time or international normalized ratio ≤ 1.2x ULN, 

activated partial thromboplastin time ≤ 1.2x ULN, total bilirubin ≤ 1.5x ULN, alanine amino 

transferase and aspartate aminotransferase ≤ 2.5x ULN, serum creatinine ≤ 133 μmol/L or, if 

>133 μmol/L a calculated creatinine clearance of 30 to 50 mL/min, urinary protein (on dipstick) 

<2 + or <1 gram in 24-hour urine. 

Exclusion criteria were: corrected QT interval (QTc) > 480 milliseconds, history of any 

relevant cardiovascular conditions, cerebrovascular accidents, transient ischemic attack, 

pulmonary embolisms or untreated deep venous thrombosis (DVT) within the past 6 months, 

poorly controlled hypertension (defined as systolic blood pressure (SBP) of ≥140 mmHg or 

diastolic blood pressure (DBP) of ≥ 90mmHg), clinically significant gastrointestinal 

abnormalities that might increase the risk for gastrointestinal bleeding, major surgery or 

trauma within 28 days prior to first pazopanib dose, evidence of active bleeding or bleeding 

diathesis, known endobronchial lesions and/or lesions infiltrating major pulmonary vessels, 

recent hemoptysis within 8 weeks before the first dose, any anti-cancer therapy within 14 days 

or five half-lives of the previous anti-cancer drug (whichever was longer) prior to first 

pazopanib dose, any ongoing toxicity from prior anti-cancer therapy that was grade >1 and/or 

that was progressing in severity, except for alopecia. 

 

Pharmacokinetically guided dosing 

All patients started at the approved pazopanib dose of 800 mg once daily (QD). Plasma samples 

for Cmin measurements were collected weekly in the first 8 weeks of pazopanib treatment and 

every 4 weeks thereafter. Pazopanib concentrations were measured using a validated LC-
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MS/MS assay. A 10 μL plasma aliquot was used, to which 500 μL of methanol containing 
13C,2H3-pazopanib as internal standard and 500 μL of 10 mM ammonium hydroxide in water 

were added. This solution was then centrifuged at 15.000 rpm and 5 μL of the supernatant was 

injected into the LC-MS/MS system (LC-system from Agilent Technologies (Santa Clara, CA) and 

API3000 MS by AB Sciex (Framingham, MA). Elution was performed using an isocratic gradient 

of 45% 10 mM ammonium hydroxide in water and 55% methanol on a Gemini C18 column, 2.0 

x 50 mm, 5 μm by Phenomenex (Torrance, CA). This assay was validated and fulfilled all 

requirements of the FDA and EMA guidelines for bioanalytical method validation. Cmin results 

were reported to the treating physician within 1 week. 

At week 3, day 1 (Day 15); week 5, day 1 (Day 29) and week 7, day 1 (Day 43), the 

dose could be adapted, based on the measured Cmin collected a week earlier and observed 

toxicity was graded according to the National Cancer Institute’s Common Terminology Criteria 

for Adverse Events (NCI-CTCAE v4.02). The target exposure for efficacy used during this trial 

was a Cmin ≥20.0 mg/L. Patients with a Cmin <15.0 mg/L received a dose increase of 400 mg daily 

in the absence of ≥ grade 2 toxicity or 200 mg daily when experiencing grade 2 toxicity, but not 

≥ grade 3 adverse events (AEs). Patients with a Cmin of 15.0-19.9 mg/L received a 200 mg dose 

increase if toxicity was below grade 3. No patients would be treated above the prespecified 

dose limit of 2,000 mg QD, as this was the highest dose previously tested in humans.6 In case of 

severe (≥ grade 3) treatment related toxicity the dose was lowered by 1 dose level, or to the 

previous dose level in case of an earlier dose increment. 

 

Safety assessments 

Recording of AEs, physical examination, hematology and blood chemistry assessments were 

performed weekly during the first 8 weeks and monthly thereafter. The incidence, severity, 

start and end dates of all serious AEs (SAEs) and of non-serious AEs related to pazopanib were 

recorded. 

 

Efficacy assessments 

CT-scan and/or MRI-scans were performed every 8 weeks after initiation of therapy until 

documented disease progression according to the Response Evaluation Criteria in Solid Tumors 

(RECIST) version 1.1. Data on best response and time to progression was collected. 

 



8

128 | Chapter 8 
 

 

800 mg dose of pazopanib and whether this led to increased drug exposure, without 

intolerable toxicity. 

 

MATERIALS AND METHODS 

Patient population 

Cancer patients for whom pazopanib was considered standard of care, or for whom no 

remaining standard treatment options were available, were eligible for enrollment. Patients 

also had to be at least 18 years of age, had to have a WHO performance score of 0 or 1, needed 

to have evaluable disease according to RECIST 1.1 and also had to have an adequate organ 

function at baseline defined as: absolute neutrophil count ≥ 1.5x109/L, hemoglobin ≥ 5.6 

mmol/L, platelets ≥ 100x109/L, prothrombin time or international normalized ratio ≤ 1.2x ULN, 

activated partial thromboplastin time ≤ 1.2x ULN, total bilirubin ≤ 1.5x ULN, alanine amino 

transferase and aspartate aminotransferase ≤ 2.5x ULN, serum creatinine ≤ 133 μmol/L or, if 

>133 μmol/L a calculated creatinine clearance of 30 to 50 mL/min, urinary protein (on dipstick) 

<2 + or <1 gram in 24-hour urine. 

Exclusion criteria were: corrected QT interval (QTc) > 480 milliseconds, history of any 

relevant cardiovascular conditions, cerebrovascular accidents, transient ischemic attack, 

pulmonary embolisms or untreated deep venous thrombosis (DVT) within the past 6 months, 

poorly controlled hypertension (defined as systolic blood pressure (SBP) of ≥140 mmHg or 

diastolic blood pressure (DBP) of ≥ 90mmHg), clinically significant gastrointestinal 

abnormalities that might increase the risk for gastrointestinal bleeding, major surgery or 

trauma within 28 days prior to first pazopanib dose, evidence of active bleeding or bleeding 

diathesis, known endobronchial lesions and/or lesions infiltrating major pulmonary vessels, 

recent hemoptysis within 8 weeks before the first dose, any anti-cancer therapy within 14 days 

or five half-lives of the previous anti-cancer drug (whichever was longer) prior to first 

pazopanib dose, any ongoing toxicity from prior anti-cancer therapy that was grade >1 and/or 

that was progressing in severity, except for alopecia. 

 

Pharmacokinetically guided dosing 

All patients started at the approved pazopanib dose of 800 mg once daily (QD). Plasma samples 

for Cmin measurements were collected weekly in the first 8 weeks of pazopanib treatment and 

every 4 weeks thereafter. Pazopanib concentrations were measured using a validated LC-

Individualized pazopanib dosing | 129 
 

MS/MS assay. A 10 μL plasma aliquot was used, to which 500 μL of methanol containing 
13C,2H3-pazopanib as internal standard and 500 μL of 10 mM ammonium hydroxide in water 

were added. This solution was then centrifuged at 15.000 rpm and 5 μL of the supernatant was 

injected into the LC-MS/MS system (LC-system from Agilent Technologies (Santa Clara, CA) and 

API3000 MS by AB Sciex (Framingham, MA). Elution was performed using an isocratic gradient 

of 45% 10 mM ammonium hydroxide in water and 55% methanol on a Gemini C18 column, 2.0 

x 50 mm, 5 μm by Phenomenex (Torrance, CA). This assay was validated and fulfilled all 

requirements of the FDA and EMA guidelines for bioanalytical method validation. Cmin results 

were reported to the treating physician within 1 week. 

At week 3, day 1 (Day 15); week 5, day 1 (Day 29) and week 7, day 1 (Day 43), the 

dose could be adapted, based on the measured Cmin collected a week earlier and observed 

toxicity was graded according to the National Cancer Institute’s Common Terminology Criteria 

for Adverse Events (NCI-CTCAE v4.02). The target exposure for efficacy used during this trial 

was a Cmin ≥20.0 mg/L. Patients with a Cmin <15.0 mg/L received a dose increase of 400 mg daily 

in the absence of ≥ grade 2 toxicity or 200 mg daily when experiencing grade 2 toxicity, but not 

≥ grade 3 adverse events (AEs). Patients with a Cmin of 15.0-19.9 mg/L received a 200 mg dose 

increase if toxicity was below grade 3. No patients would be treated above the prespecified 

dose limit of 2,000 mg QD, as this was the highest dose previously tested in humans.6 In case of 

severe (≥ grade 3) treatment related toxicity the dose was lowered by 1 dose level, or to the 

previous dose level in case of an earlier dose increment. 

 

Safety assessments 

Recording of AEs, physical examination, hematology and blood chemistry assessments were 

performed weekly during the first 8 weeks and monthly thereafter. The incidence, severity, 

start and end dates of all serious AEs (SAEs) and of non-serious AEs related to pazopanib were 

recorded. 

 

Efficacy assessments 

CT-scan and/or MRI-scans were performed every 8 weeks after initiation of therapy until 

documented disease progression according to the Response Evaluation Criteria in Solid Tumors 

(RECIST) version 1.1. Data on best response and time to progression was collected. 
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Statistical methods 

All statistical analyses were performed in R version 3.2.2.15 For exposure-response relationships 

the mean of all measured Cmin levels for each patient during the entire treatment period (from 

start of treatment to discontinuation) was used as the measure of pazopanib exposure. For the 

purpose of exposure-toxicity relationships, the Cmin measurement closest to the first 

presentation of the toxicity was used. Unless otherwise specified, hypotheses were tested 

using a two-sided independent sample t-test. P-values <0.05 were considered significant. 

 

Study Conduct and registry 

This trial was conducted in accordance with the World Medical Organization declaration of 

Helsinki, compliant with Good Clinical Practice and approved by the Medical Ethics Committee 

of the each participating medical centers. All patients provided written informed consent 

before enrollment. This trial was registered in the EudraCT database (2013-001567-24) and the 

Netherlands Trial Registry (NTR3967). 

 

RESULTS 

Patient population 

A total of 30 patients were included from September 2013 until March 2014 in 3 Dutch cancer 

centers. Characteristics of included patients are shown in Table 1. Tumor types of included 

patients were soft tissue sarcoma (n=7), colorectal carcinoma (n=6), cancer of unknown 

primary (n=4), neuroendocrine carcinoma (n=2), thymus carcinoid, hepatocellular carcinoma, 

ovarian carcinoma, mesothelioma, esophageal carcinoma, meningeoma, perivascular epithelial 

tumor, renal cell carcinoma, choroidal melanoma, endometrial carcinoma and 

cholangiocarcinoma (all n=1). All patients received at least one dose of pazopanib, underwent 

at least one Cmin measurement and were eligible for PK evaluation. Median study follow up was 

34 weeks. 

 

Pharmacokinetic guided dosing 

Based on treatment outcome patients were divided into four groups, see Figure 1. Patients 

who had at least one Cmin below 20.0 mg/L at day 15, 29 or 43 were appointed group 1, 

patients who had all these Cmin measurement above the target were appointed group 2. 

Patients who did not experience any toxicity requiring a dose reduction or interruption during 
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the dose escalation period (the first 8 weeks of treatment) were classified as group a (no 

severe toxicity), those who did were classed as group b (severe toxicity). Based on this 

classification the distribution of patients was 10 in group 1a (eligible for a dose escalation), 

7 in 1b (no dose escalation possible due to toxicity), 4 in group 2a (adequate Cmin, no 

toxicity) and 9 in group 2b (adequate Cmin, severe toxicity) (Figure 1). A full overview of 

treatment outcomes (Cmin measurements, dose received and percentage of patients above 

the Cmin target) is provided in Table 2. Plots of the Cmin over time per treatment outcome 

group are shown in Figure 2. 

 

Table 1. Demographics of included patients.  
Characteristic Patients (n=30) 
Gender (n (%)) 
Male 
Female 

 
14       (53) 
16       (47) 

Age  (median (range))         58      (33– 88) 
Steady state Cmin (mg/L) at  
800 mg dose (W2D1) (mean (CV %)) 

 
30.0   (71.9) 

Performance status (n (%)) 
0 
1 

 
7  (23) 
23  (77) 

Previous lines of systemic therapy   
(median (range)) 
 
Type (n(%)) 
Chemotherapy 
Targeted therapy 
Endocrine therapy 

2  (1-5) 
 
 
 
24  (80) 
7  (23) 
3  (10) 

Primary tumor (n (%)) 
Soft tissue sarcoma 
Colorectal carcinoma 
Cancer of unknown primary 
Neuroendocrine carcinoma 
Miscellaneous* 

  
7 (23) 
6 (20) 
4      (13) 
2      (6) 
11    (33) 

* Hepatocellular carcinoma, ovarian carcinoma, mesothelioma, esophageal carcinoma, 
meningeoma, perivascular epithelial tumor, renal cell carcinoma, choroidal melanoma, endometrial 
carcinoma, cholangiocarcinoma and thymus carcinoid (all n=1). 
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Figure 1a. Trial outcome flowchart. Toxicity for the purposes of this chart is defined as any adverse 
event requiring a dose interruption or reduction in the first 8 weeks of treatment. Cmin below or 
above the target of ≥20.0 mg/L is based on samples from week 2, 4 or 6 as per protocol dose 
escalations were based on these samples.  
 

 
Figure 1b. Percent change in dose from baseline (steady state at W2D1) to the end of the dose 
algorithm period (Last dose change (W7D1) and corresponding steady state Cmin W8D1). Grey bars 
represent % change in pazopanib dose (mg QD) white bars represent % change in pazopanib Cmin 
(mg/L). Each patient is represented by adjacent bars, plotted per treatment outcome group, only 
patients evaluable at both week 2 and week 8 are shown. 

Patients included

(N=30)

Patients with at least 
one Cmin < 20 mg/L

(N=17)

Patients successfully 
treated with PK-guided 

dose escalation
(N=10)

Patients with Cmin > 20mg/L 
and toxicity ≥ grade 3
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Patients with Cmin > 20mg/L 
and toxicity < grade 3

(N=4)

Patients unable to be 
escalated due to toxicity

(N=7)

Group 
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Group 
1a
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Table 2. Pazopanib Cmin, percentage of patients above target and dose per treatment outcome group‡. 
Outcome Group 1a Group 1b Group 2a Group 2b Total 

 TOX - TOX + TOX - TOX + n = 30 
 Cmin <20.0 mg/L Cmin <20.0 mg/L Cmin ≥20.0 mg/L Cmin ≥20.0 mg/L 
 n = 10 n = 7 n = 4 n = 9 

Mean pazopanib Cmin (mg/L (CV %)) 
W2D1 13.2 (38.0) 19.7 (56.6) 37.4 (19.4) 51.3 (45.1) 30.0 (71.9) 
W4D1 15.5 (52.8) 16.2 (39.6) 31.8 (8.1) 39.4 (29.5) 24.8 (54.8) 
W6D1 19.7 (27.4) 13.3 (39.6) 26.8 (29.2) 33.2 (30.5) 22.8 (43.2) 
W8D1 22.9 (44.9) 18.9 (40.5) 25.9 (18.8) 28.2 (25.3) 24.1 (33.9) 

% of pts above the target Cmin of ≥20.0 mg/L† 
W2D1 10.0 42.8 100.0 100 56.7 
W4D1 20.0 14.3 100.0 88.6 50.0 
W6D1 40.0  14.3 100.0 66.6 50.0 
W8D1 40.0 28.6 100.0 55.6 50.0 

Mean daily pazopanib Dose (mg) 
W3D1 1040 933 800 725 893 
W5D1 1280 1000 800 667 1000 
W7D1 1378 950 800 633 1009 

*40% of patients in group 1a achieved the target in week 8. During study follow up, 7 patients in group 1a (70%) achieved target  
exposure of > 20.0 mg/L within 3 months since start of treatment.  
†Patients for whom no Cmin was available or who discontinued treatment are scored as below the target 
‡Toxicity for the purposes of grouping is defined as any adverse event requiring a dose interrupon or reducon in the first 8 weeks  
of treatment. Cmin below or above the target of ≥20.0 mg/L is based on samples from week 2, 4 or 6. 
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Group1a: Group 1a (patients with low drug exposure, and no severe toxicity) consisted of 
10 patients who were sustainably treated at an increased dose. The Cmin in this group 
increased from 13.2 (CV 38.0%) mg/L in week 2 to 22.9 (CV 44.9%) mg/L in week 8 
(p=0.02). Only two patients did not show an increase in Cmin after the dose escalation. Four 
patients reached the target at the end of the dose escalation period (week 8) and 7 
patients reached the target exposure of ≥20 mg/L within 3 months of treatment. After the 
last dose escalation (day 43), patients in group 1a were treated at a 

Figure 2. Pazopanib exposure over time per outcome group (mean Cmin ± standard deviation). The 
dotted line indicates the threshold of 20 mg/L. Cmin did not change in group 1b (p=0.89). In group 2a 
and 2b Cmin declined significantly (p=0.04 and 0.04 respectively). Group 1a showed a significant 
increase in Cmin from 13.2 mg/L to 22.9 mg/L (p=0.02). 
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mean dose of 1,378 mg, ranging from 1,000 to 1,800 mg. One patient was treated with 

1,800 mg QD for over 33 weeks, with acceptable (<grade 3) toxicity.  

Group 1b: Patients in group 1b (patients with low drug exposure, but with toxicity 

requiring a dose interruption or reduction, n=7) had a stable Cmin during the dose 

escalation phase. In this group, one patient could not have a dose escalation because of 

toxicity (ASAT/ALAT increase) at the prespecified dose escalation moments. Another 

patient required a dose interruption but could later continue treatment on 800 mg QD. 

Five patients experienced toxicity after an initial escalation and required a subsequent 

dose reduction. Four of these five could hereafter be treated successfully until disease 

progression at a dose of 800 mg (n=3) or 1,000 mg (n=1) daily. One patient discontinued 

treatment due to toxicity after dose escalation (fatigue, grade 3).Their Cmin was 19.7 (CV 

56.6%) mg/L at week 2 and 18.9 (CV 40.5%) mg/L at week 8 (p=0.89). 

Group 2a: Four patients (group 2a, patients with high drug exposure, and no 

severe toxicity) could be treated on the fixed 800 mg dose with adequate Cmin without the 

need for a dose reduction or interruption in the first 8 weeks. Surprisingly, the Cmin 

decreased in these patients from 37.4 mg/L (CV 19.4%) at week 2 to 25.9 mg/L (CV 18.8%) 

at week 8 (p=0.04). 

Group 2b: Patients in group 2b (patients with a high drug exposure, but also 

severe toxicity, n=9) had a decrease in Cmin from week 2 to week 8 from 51.3 mg/L (CV 

45.1%) to 28.2 mg/L CV 25.3%) (p=0.04). The mean dose was reduced from 800 mg to 600 

mg in the same interval. 

Use of gastric acid reducing agents was discouraged but not prohibited during 

this trial. Of patients in the low exposure groups 9 (7 in group 1a and 2 in 1b) and in the 

high exposure groups 4 (all in 2b) used a PPI at any point during treatment. Patients were 

instructed to take the PPI concomitantly with pazopanib as recommended in the summary 

of product characteristics. 

 

Adverse events 

An overview of the observed AEs related to pazopanib with a frequency of ≥10% is shown 

in Table 3. The most common severe (≥ grade 3) AEs were hypertension, fatigue, 

ASAT/ALAT increase. 
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Group1a: Group 1a (patients with low drug exposure, and no severe toxicity) consisted of 
10 patients who were sustainably treated at an increased dose. The Cmin in this group 
increased from 13.2 (CV 38.0%) mg/L in week 2 to 22.9 (CV 44.9%) mg/L in week 8 
(p=0.02). Only two patients did not show an increase in Cmin after the dose escalation. Four 
patients reached the target at the end of the dose escalation period (week 8) and 7 
patients reached the target exposure of ≥20 mg/L within 3 months of treatment. After the 
last dose escalation (day 43), patients in group 1a were treated at a 

Figure 2. Pazopanib exposure over time per outcome group (mean Cmin ± standard deviation). The 
dotted line indicates the threshold of 20 mg/L. Cmin did not change in group 1b (p=0.89). In group 2a 
and 2b Cmin declined significantly (p=0.04 and 0.04 respectively). Group 1a showed a significant 
increase in Cmin from 13.2 mg/L to 22.9 mg/L (p=0.02). 
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mean dose of 1,378 mg, ranging from 1,000 to 1,800 mg. One patient was treated with 

1,800 mg QD for over 33 weeks, with acceptable (<grade 3) toxicity.  

Group 1b: Patients in group 1b (patients with low drug exposure, but with toxicity 

requiring a dose interruption or reduction, n=7) had a stable Cmin during the dose 

escalation phase. In this group, one patient could not have a dose escalation because of 

toxicity (ASAT/ALAT increase) at the prespecified dose escalation moments. Another 

patient required a dose interruption but could later continue treatment on 800 mg QD. 

Five patients experienced toxicity after an initial escalation and required a subsequent 

dose reduction. Four of these five could hereafter be treated successfully until disease 

progression at a dose of 800 mg (n=3) or 1,000 mg (n=1) daily. One patient discontinued 

treatment due to toxicity after dose escalation (fatigue, grade 3).Their Cmin was 19.7 (CV 

56.6%) mg/L at week 2 and 18.9 (CV 40.5%) mg/L at week 8 (p=0.89). 

Group 2a: Four patients (group 2a, patients with high drug exposure, and no 

severe toxicity) could be treated on the fixed 800 mg dose with adequate Cmin without the 

need for a dose reduction or interruption in the first 8 weeks. Surprisingly, the Cmin 

decreased in these patients from 37.4 mg/L (CV 19.4%) at week 2 to 25.9 mg/L (CV 18.8%) 

at week 8 (p=0.04). 

Group 2b: Patients in group 2b (patients with a high drug exposure, but also 

severe toxicity, n=9) had a decrease in Cmin from week 2 to week 8 from 51.3 mg/L (CV 

45.1%) to 28.2 mg/L CV 25.3%) (p=0.04). The mean dose was reduced from 800 mg to 600 

mg in the same interval. 

Use of gastric acid reducing agents was discouraged but not prohibited during 

this trial. Of patients in the low exposure groups 9 (7 in group 1a and 2 in 1b) and in the 

high exposure groups 4 (all in 2b) used a PPI at any point during treatment. Patients were 

instructed to take the PPI concomitantly with pazopanib as recommended in the summary 

of product characteristics. 

 

Adverse events 

An overview of the observed AEs related to pazopanib with a frequency of ≥10% is shown 

in Table 3. The most common severe (≥ grade 3) AEs were hypertension, fatigue, 

ASAT/ALAT increase. 
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Less patients experienced ≥ grade 3 AEs in the low exposure groups (1a and 1b), 

with 41.2% of patients experiencing at least one ≥ grade 3 AE, compared to 76.9% in the 

high exposure groups (2a and b). The percentage of patients discontinuing due to toxicity 

was similar between the high and low exposure groups, 11.8% in 1a plus 1b and 15.4% in 

2a plus 2b. Of patients with a high exposure requiring a dose reduction (group 2b, n=9), all 

but 2 (both cases fatigue grade 3) could be successfully treated at a lower dose until 

disease progression. Overall, events causing the discontinuation were fatigue (n=3) and 

ASAT/ALAT increase (n=1). Remarkably, the Cmin at week 2 appeared higher in patients in 

group 1 experiencing toxicity (19.7 mg/L versus 13.2 mg/L (p=0.19), respectively) and the 

same trend was observed in group 2 (37.4 mg/L for patients without toxicity versus 51.3 

mg/L for patients with toxicity (p=0.27), respectively). 

Patients who experienced fatigue (n=3) or ASAT/ALAT increase (n=2) had a Cmin 

(at first presentation of grade 3 toxicity) 51.4 mg/L (range 21.4 - 98.1) and 8.9 mg/L (range 

7.3 - 10.5) respectively. Patients with grade 3 hypertension (n=11) had a Cmin at 

presentation of 37.3 mg/L (range 7.0 - 76.5) while that patients who experienced grade 2 

hypertension (n=10) was 27.8 mg/L (range 16.7 – 43.8). 

 

Efficacy 

From 27 patients at least one response evaluation was available. Of these, 3 patients had 

a partial response (perivascular epithelial tumor, renal cell carcinoma and soft tissue 

sarcoma, all n=1), 18 had stable disease, and 6 had progressive disease as best response. 

 
The mean of all measured Cmin levels per patient (from start of treatment to 

discontinuation) was calculated as a measure of exposure during pazopanib therapy for 

the purpose of exposure-response relationships. Overall, the average of the mean Cmin of 

each patient was 24.4 mg/L (CV 39.1%). In total, 19 patients had a mean Cmin above and 11 

below the target of 20 mg/L. A waterfall plot of the maximum decrease in tumor size from 

baseline is shown in Figure 3. All three patients who had a partial response had a mean 

Cmin above the 20 mg/L threshold (with an average of 27.6 mg/L (CV 14.4%). In non-

prespecified, exploratory analyses of all evaluable patients (n=27), tumor response was 
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associated with mean Cmin of pazopanib. An average change from baseline for patients 

above and below the PK threshold of -6.49% and +14.6% respectively, (p=0.01). In soft 

tissue sarcoma patients (n=7), mean change from baseline was -6.01% (n=5) for patients 

above the threshold and +13.5% for patients below (n=2)(p=0.28). In sarcoma patients PFS 

was 47.9 weeks (range 8 - 60, n=5) and 11.5 weeks (range 7 - 16, n=2) for patients below 

the PK threshold (p=0.06, log-rank test). 

 

 

 
Figure 3. Left panel: Waterfall plot showing the maximum change in tumor size from baseline in all 
evaluable patients (n = 27). Grey bars represent patients with a mean Cmin ≥20.0 mg/L (n=17), white 
bars represent patients with a Cmin <20.0 mg/L (n=10). Mean change from baseline for all evaluable 
patients (n=27) above and below the PK threshold was -6.49% and +14.6%, (p=0.01). Right Panel: 
Mean change from baseline in soft tissue sarcoma patients (n=7) above and below the PK threshold 
was -6.01% (n=5) and +13.5% (n=2), (p=0.28). 
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Cmin above the 20 mg/L threshold (with an average of 27.6 mg/L (CV 14.4%). In non-

prespecified, exploratory analyses of all evaluable patients (n=27), tumor response was 

Individualized pazopanib dosing | 137 
 

associated with mean Cmin of pazopanib. An average change from baseline for patients 

above and below the PK threshold of -6.49% and +14.6% respectively, (p=0.01). In soft 

tissue sarcoma patients (n=7), mean change from baseline was -6.01% (n=5) for patients 

above the threshold and +13.5% for patients below (n=2)(p=0.28). In sarcoma patients PFS 

was 47.9 weeks (range 8 - 60, n=5) and 11.5 weeks (range 7 - 16, n=2) for patients below 

the PK threshold (p=0.06, log-rank test). 

 

 

 
Figure 3. Left panel: Waterfall plot showing the maximum change in tumor size from baseline in all 
evaluable patients (n = 27). Grey bars represent patients with a mean Cmin ≥20.0 mg/L (n=17), white 
bars represent patients with a Cmin <20.0 mg/L (n=10). Mean change from baseline for all evaluable 
patients (n=27) above and below the PK threshold was -6.49% and +14.6%, (p=0.01). Right Panel: 
Mean change from baseline in soft tissue sarcoma patients (n=7) above and below the PK threshold 
was -6.01% (n=5) and +13.5% (n=2), (p=0.28). 
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DISCUSSION 

We performed a prospective multicenter clinical trial to assess the safety and feasibility of 

PK-guided individualized dosing of pazopanib in 30 patients with advanced solid tumors. 

With the PK-guided dosing algorithm, 33.3% of all patients could be treated at a higher 

dose (1000 – 1800 mg daily) with acceptable toxicity (Figure 1). Most of these patients 

achieved the target Cmin of 20.0 mg/L within study follow up. Furthermore, overall 

variability in pazopanib Cmin was reduced from 71.9% before the dose escalation period to 

33.9% thereafter (Table 2). 

An equal number of patients discontinued treatment in the low Cmin versus the 

high Cmin group and only one patient discontinued treatment after a dose escalation. This 

suggests PK-guided increasing of the dose does not lead to more severe toxicity or higher 

rates of treatment discontinuation. Meanwhile, a reduction of the dose in case of very 

high systemic concentrations, may lead to less toxicity and still maintain therapeutic Cmin 

levels (group 2b, Figure 2). 

High pazopanib exposure seemed predictive of dose reductions for toxicity in 

patients not eligible for a dose escalation (group 2a en 2b). The Cmin at week 2 was higher 

(though not significantly) in the patients that would require a dose reduction (2b) than 

those who would not (2a), (mean of 51.3 versus 37.4 mg/L, table 2, Figure 2). This implies 

that patients are unlikely to tolerate a very high trough level for a longer period of time 

and could support strategies to prevent toxicity by implementing dose reduction in 

patients with Cmin >50 mg/L, although this is based on limited data. 

No clear relations between Cmin and specific grade ≥ 3 toxicities were found. The 

most common severe AE was hypertension. This is thought to be related to higher 

pazopanib exposure;6 our study found a mean Cmin at occurrence of hypertension 37.3 and 

27.8 mg/L in patients experiencing grade 3 (n=11) and 2 (n=10) hypertension respectively. 

But this was not significantly higher than the overall mean Cmin. It might be the case 

however, that another pharmacokinetic parameter (e.g. Cmax) may be more appropriate to 

study exposure-toxicity relationships than Cmin, the one used in the current trial. 

Two patients experienced severe hepatotoxicity, in one case leading to ASAT and 

ALAT values of over 13 times the upper limit of normal and discontinuation of treatment. 

This seemed unrelated to high exposure, as the mean Cmin of these patients (in the sample 
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DISCUSSION 

We performed a prospective multicenter clinical trial to assess the safety and feasibility of 

PK-guided individualized dosing of pazopanib in 30 patients with advanced solid tumors. 

With the PK-guided dosing algorithm, 33.3% of all patients could be treated at a higher 

dose (1000 – 1800 mg daily) with acceptable toxicity (Figure 1). Most of these patients 

achieved the target Cmin of 20.0 mg/L within study follow up. Furthermore, overall 

variability in pazopanib Cmin was reduced from 71.9% before the dose escalation period to 

33.9% thereafter (Table 2). 

An equal number of patients discontinued treatment in the low Cmin versus the 

high Cmin group and only one patient discontinued treatment after a dose escalation. This 

suggests PK-guided increasing of the dose does not lead to more severe toxicity or higher 

rates of treatment discontinuation. Meanwhile, a reduction of the dose in case of very 

high systemic concentrations, may lead to less toxicity and still maintain therapeutic Cmin 

levels (group 2b, Figure 2). 

High pazopanib exposure seemed predictive of dose reductions for toxicity in 

patients not eligible for a dose escalation (group 2a en 2b). The Cmin at week 2 was higher 

(though not significantly) in the patients that would require a dose reduction (2b) than 

those who would not (2a), (mean of 51.3 versus 37.4 mg/L, table 2, Figure 2). This implies 

that patients are unlikely to tolerate a very high trough level for a longer period of time 

and could support strategies to prevent toxicity by implementing dose reduction in 

patients with Cmin >50 mg/L, although this is based on limited data. 

No clear relations between Cmin and specific grade ≥ 3 toxicities were found. The 

most common severe AE was hypertension. This is thought to be related to higher 

pazopanib exposure;6 our study found a mean Cmin at occurrence of hypertension 37.3 and 

27.8 mg/L in patients experiencing grade 3 (n=11) and 2 (n=10) hypertension respectively. 

But this was not significantly higher than the overall mean Cmin. It might be the case 

however, that another pharmacokinetic parameter (e.g. Cmax) may be more appropriate to 

study exposure-toxicity relationships than Cmin, the one used in the current trial. 

Two patients experienced severe hepatotoxicity, in one case leading to ASAT and 

ALAT values of over 13 times the upper limit of normal and discontinuation of treatment. 

This seemed unrelated to high exposure, as the mean Cmin of these patients (in the sample 
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closest in time to occurrence) was only 8.9 mg/L. This finding is corroborated by a recent 

study suggesting the mechanism of pazopanib hepatotoxicity may be immunological and 

therefore unrelated to pazopanib PK or dose.16 

A significant reduction in pazopanib Cmin was seen in patients treated 

continuously at the 800 mg fixed dose (group 2a, Figure 2).Though in our trial this group 

consisted of only a small number of patients, the same effect was observed in a 

population pharmacokinetic analysis of previously published clinical trials.17 A time 

dependent decrease in exposure was also observed for another tyrosine kinase inhibitor, 

imatinib.18 For imatinib, upregulation of drug transporters or CYP3A4 have been suggested 

as possible explanations, which could also be the case for pazopanib as it is a known 

substrate of both. 

In addition to PK-guided dosing of pazopanib other dose individualization 

strategies could be explored. Pharmacodynamic biomarkers could be used for example, 

such as interleukin 12 (IL12) or soluble VEGFR2 (sVEGFR2).19 However given that for 

pazopanib the relation between Cmin and PFS was very significant at p=0.0038 and resulted 

in a remarkable median PFS difference of 32.4 weeks in RCC patients,4 Cmin might be a 

more appropriate biomarker for pazopanib than sVEGFR2 or IL12. 

Toxicity based dosing could also be proposed as a dose individualization approach 

and has been explored previously for erlotinib (using rash), sorafenib and axitinib (both 

using hypertension).20–22 A drawback of this strategy is that it, per definition, would lead to 

more toxicity. The PK-guided approach applied in this trial with pazopanib did not seem to 

lead to less tolerability. 

Another trial was performed to assess PK-guided dosing of pazopanib by De Wit 

et al.9 In that trial, pazopanib area under the curve (AUC0-24h) was used as the 

pharmacokinetic parameter to individualize dosing and a target window of 715-920 

mg∙h∙L-1 (corresponding to Cmin values of 20.5 – 46.0 mg/L) was specified. The primary 

endpoint of that study in 13 patients was a reduction in variability and, per protocol, only 

one dose change was allowed. AUC-guided dosing did not significantly reduce inter-

patient variability, probably due to intra-patient variability or sampling time issues. Based 

on this trial the authors concluded it may be more beneficial to target the Cmin threshold 

rather than an AUC window.4,9 In addition, dosing base on Cmin will also be more practical 
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to implement in routine care, as it requires just one instead of multiple samples. 

Moreover, as target inhibition is thought to be concentration dependent, dosing should 

strive to keep the drug concentration above a certain minimally efficacious concentration 

during the whole dose interval, which is most accurately reflected by Cmin. 

Most importantly, studies relating pazopanib exposure to response have used 

Cmin, rather than AUC, further strengthening the case for Cmin threshold monitoring.4,6 

Finally, self-sampling approaches facilitated by dried blood spot sampling may further 

enable the use of PK-guided dosing in routine care and several assays have already been 

developed for this purpose.23,24 

The number of patients who had a Cmin below the target at a moment of possible 

dose modification was 56.7%, which is markedly higher than the 20% found by Suttle et 

al.4 This may partly be explained by the combination of repeated measurements and 

relatively large intra-individual variability in Cmin. The large number of patients with low 

drug exposure may also partially be caused by use of proton pump inhibitors (PPI), which 

are known to decrease the pH-dependent absorption of pazopanib.25 9 patients in the low 

exposure groups (1a and 1b) used a PPI. The use of gastric-pH increasing agents was 

discouraged but not prohibited during this trial. On the other hand, it also shows that PK-

guided dosing may overcome the problem of pH-limited absorption of pazopanib in 

patients for whom treatment with PPIs is medically necessary. 

A drawback of the current study is that dose modification was limited to three 

pre-specified time points. If later dose increments would have been allowed, more 

patients in the low exposure group might have achieved the target threshold. Another 

limitation is that our study was performed in patients with a wide range of advanced solid 

tumors. Therefore, a satisfying analysis of the effect of individualized dosing on tumor 

response or PFS is impossible. Nonetheless, all patients who had a partial response had a 

Cmin above the 20.0 mg/L threshold and in a non-prespecified analysis, we found 

significant association between tumor response (measured as maximum change in tumor 

size from baseline) and pazopanib Cmin, which would provide further support for targeting 

a Cmin of ≥20.0 mg/L. Interestingly, in a subgroup analysis of STS patients (n=7), a trend 

toward increased response and longer PFS with higher Cmin was found. Yet, perhaps due to 

the small size of this subgroup, these results were not significant. 
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The results of this trial merit further investigation of individualized pazopanib 

dosing in cancer patients. A similar design to the one that was previously used for axitinib 

dose titration in RCC patients could be explored.21,26 As the ideal form of for future studies 

would be a prospective randomized placebo controlled trial in either STS or RCC patients. 

 

CONCLUSION 

In summary, this prospective multicenter trial in patients with advanced solid tumors 

showed that pazopanib dose could safely be escalated in selected patients with a Cmin 

<20.0 mg/L and that pazopanib exposure increased significantly in patients whose dose 

was escalated based on a low Cmin. Moreover, a significant association between Cmin and 

tumor response was found. The outcomes of this trial support further investigation of 

individualized pazopanib dosing, using the here described dosing algorithm, ideally in a 

large prospective randomized clinical trial using PFS or overall survival as an endpoint. 
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ABSTRACT 

Background. Pazopanib is approved for the treatment of renal cell carcinoma and soft 

tissue sarcoma. Analyses show increased benefit in patients with plasma trough 

concentrations ≥20.5 μg/ml compared with patients with lower concentrations. 

Methods & results. We developed a DBS assay as a patient friendly approach to guide 

treatment. The method was validated according to US FDA and EMA guidelines and 

European Bioanalysis Forum recommendations. Influence of spot homogeneity, spot 

volume and hematocrit were shown to be within acceptable limits. Analysis of paired 

clinical samples showed a good correlation between the measured plasma and DBS 

concentrations (R2 of 0.872). 

Conclusion. The method was successfully validated, applied to paired clinical samples and 

is suitable for application to therapeutic drug monitoring of pazopanib. 
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BACKGROUND 

Pazopanib is an angiogenesis inhibitor targeting the VEGFR-1,2,3, PDGFR α/β, FGFR and 

the stem cell receptor/c-Kit.1 Pazopanib has shown efficacy in advanced renal cell 

carcinoma and soft tissue sarcoma in a fixed dose of 800 mg once daily.2,3 A recent 

retrospective analysis of a trial of 177 patients treated with pazopanib showed a markedly 

increased median progression free survival in patients with (steady-state) plasma trough 

concentrations (Cmin) ≥20.5 μg/mL compared with patients with lower Cmin (50.2 vs 19.6 

weeks).4 In addition, pazopanib shows large interindividual variability in plasma exposure, 

resulting in a subset of patients at risk of receiving less than optimal exposure.4–7 Given 

the established exposure–response relationship and large interindividual variability in 

exposure, patients might benefit from pharmacokinetically guided dosing, also known as 

therapeutic drug monitoring 

(TDM), based on a measured Cmin. A quantitative assay is needed to identify patients with 

a low Cmin that might benefit from treatment at a higher dose. Several assays to quantify 

pazopanib in (mouse and human) plasma have been described, both using diode array 

detection8 and LC–MS/MS.9–11 Last year, a review article by Wilhelm et al. discussed the 

application of DBS to support TDM.12. A DBS method would allow patients to take a 

sample themselves using a simple finger prick. Compared with plasma methods, DBS 

sampling could be more patient friendly and lead to increased sample stability, limited 

sample volume, convenient storage and shipping. Additionally DBS methods may be 

ideally suited to measure Cmin concentrations, because a blood sample can be obtained at 

the planned time point by the patients themselves and will not be dependent on the time 

of the visit to an out-patient clinic. This may be relevant for pazopanib as De Wit et al. 

found a strong correlation (R2 of 0.940) between the trough sample (exactly C24h) and 

pazopanib area under the curve.7 However, quantification in DBS samples may be more 

challenging for several reasons. Patients or nurses will need additional training to provide 

good quality samples and additional validation tests need to be performed, such as the 

influences of blood hematocrit, spot volume, punch carryover and blood spot 

homogeneity on analytical outcome.13 Moreover, a clinical validation study to investigate 

the relationship between the plasma and DBS concentrations is needed.14,15 But once a 

comprehensively validated method is available and patients and nurses are familiar with 
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the sampling technique, a DBS method will be optimally suited to pharmacokinetically 

guided dosing of pazopanib. Here, we describe the development, analytical and clinical 

validation of an LC–MS/MS method for the quantification of pazopanib in DBS. 

 

MATERIALS, METHODS & PATIENTS 

Chemicals & reagents 

Pazopanib hydrochloride and stable isotopically labeled internal standard (IS) 13C,2H3-

pazopanib hydrochloride, with purities as free base of 92.3 and 92.6%, respectively were 

supplied by GlaxoSmithKline (Zeist, The Netherlands). Formic acid and dimethyl sulfoxide 

were purchased from Merck (Darmstadt, Germany) and methanol (analytical grade) and 

water (LC–MS grade) from BioSolve Ltd (Valkenswaard, The Netherlands). Blank human 

whole K2EDTA blood was obtained from healthy volunteers and used for preparation of 

the quality control (QC) samples, calibration standards and matrix blanks. 

 

Stock solutions, calibration standards & quality control samples 

Stock solutions of pazopanib (2 mg/mL) were prepared in dimethyl sulfoxide. Working 

solutions were prepared by dilution from stocks with methanol. The IS stock solution (1 

mg/mL) was prepared in methanol. The IS working solution was prepared by further 

dilution with methanol to a concentration of 0.1 μg/mL. All stock and working solutions 

were stored at -20°C, the IS working solution at 2–8°C. Calibration standards and QC 

samples were prepared by spiking 30 μL of the working solutions to 570 μL of control 

whole blood. Concentrations of 1.00, 3.00, 15.0 and 37.5 μg/mL were used for the QC 

samples (LLOQ, low, mid and high concentrations, respectively). The concentrations for 

the calibration standards were: 1.00, 2.00, 5.00, 10.0, 20.0, 30.0, 40.0 and 50.0 μg/mL. 

From the blanks, calibration standards and QC samples a volume of 15 μL whole blood 

was spotted on the DBS cards. The blood spots were dried at ambient temperatures (20–

25°C) for at least 3 h after which the samples were stored at ambient temperature with 

desiccant in a sealed foil bag. Hematocrit values of calibration standards and QC samples 

were not standardized in each run. 
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Equipment & conditions 

Blood was spotted on Whatman™ 903 protein saver cards and punches from these cards were 

made using a Harris Uni-Core™ 3.0 mm puncher both purchased from GE Healthcare Europe 

GmbH (Diegem, Belgium). Samples were shaken using an L45 shaker by Labinco (Breda, The 

Netherlands). 

All LC–MS/MS experiments were performed using an 1100 series binary pump, 

degasser, column oven and autosampler from Agilent Technologies (Santa Clara, CA, USA) and 

an API3000 triple quadrupole equipped with Turbo ionspray interface operating in positive ion-

mode, on Analyst™ software for data analysis from Sciex (Framingham, MA, USA). Mass 

transitions of precursor and product ions and other MS parameters were optimized. Final 

settings were: tubro, nebulizer, curtain and collision gases 7 ll/min 7, 8 and 12 au, ion spray 

voltage 3000 V, ionization temperature 500°C, declustering potential 41 V, collision energy 43 

V, collision cell exit and entrance potential 24 V and 10 V. Quantification was performed using 

the m/z 438.2 → m/z 357.3 transition for pazopanib and m/z 442.2 → m/z 361.2 for 13C,2H3-

pazopanib (see Figure 1). 

 
Figure 1. Chemical structure and proposed mass transition of pazopanib and 13C,2H3-pazopanib. 
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Sample preparation 

Separation was performed on a Sunfire C18 Column, 2.1 × 50 mm, 5 μm from 

Waters (Milford, MA, USA) with a Gemini SecurityGuard, 2.0 × 4.0 mm guard column by 

Phenomenex (Torrance, CA, USA). The column oven was set at 55°C and the tray 

temperature of the autosampler at 5°C. Elution was achieved by using a gradient of 

methanol and 0.1% formic acid in water. The gradient started at a flow of 0.4 ml/min at a 

percentage of 27% methanol, after 1.5 min the gradient was increased to 80% methanol. 

At 2 min, the flow increased to 0.6 ml/min and at 2.5 min the percentage of methanol was 

returned to 27% for 1.5 min. The total runtime was 4 min. 

On the day of analysis a 3 mm diameter punch was taken from the blood spots 

and transferred to an eppendorf tube. A total of 50 μL of concentrated formic acid (99%) 

was added to the spot and the sample was vortex mixed and consequently shaken for 10 

min at 1250 rpm. Hereafter, 500 μL of methanol containing the IS (at a concentration of 

0.1 μg/mL) was added and the samples were again vortexed and shaken for 10 min at 

1250 rpm. After centrifugation at 23100 g, 300 μL of the supernatant was transferred to a 

clean vial containing 300 μL of water. These vials were then vortex mixed and 5 μL was 

injected into the LC–MS/MS system. 

For plasma samples, a 10 μl aliquot was used, to which 500 μL of IS containing 

methanol and 500 μL eluent was added. This solution was then centrifuged at 23100 rpm 

and 5 μL of the supernatant was analyzed by LC–MS/MS. 

 

Validation 

The method was validated in accordance with US FDA and EMA guidelines on bioanalytical 

method validation and Good Laboratory Practices.16,17 DBS-specific validation tests were 

performed, as recommended by the European Bioanalysis Forum.18,19 

 

Analytical validation 

Three separate validation runs were executed on separate days and the following 

validation parameters were assessed: LLOQ, calibration model, accuracy and precision, 

dilution integrity, selectivity, instrumentation carryover, matrix effect and recovery. 
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Linear regression was applied. Nonweighted, 1/x and 1/x2 weighted regression 

were evaluated (where x equals the peak area ratio). In every run at least 75% of the 

nonzero standards (including at least one LLOQ and ULOQ) should be within ±15% of the 

nominal value (or ±20% for the LLOQ), additionally for the LLOQ and ULOQ level at least 

50% should meet these criteria. Regression coefficients were calculated in each run. 

Accuracy and precision of the method were assessed by injecting five replicates 

of LLOQ, QC low, mid and high samples in three separate validation runs. Intra- and inter-

run accuracy was expressed as the bias in% and intra- and inter-run precision as the 

coefficient of variation (CV) in%. At each of the QC levels the bias should be within ±15% 

and the precision should not exceed 15%. 

The LLOQ was evaluated in each run using the signal-to-noise ratio expressed as 

the signal (peak height of the 1.00 μg/ml calibration standard) to the noise (peak height) 

of a blank sample. This ratio should be at least 5. 

Dilution integrity was calculated by analyzing five replicates of samples with a 

concentration of 100 μg/ml, diluted 10-times with a processed controlled matrix and 

comparing the measured concentration with the nominal concentration. This bias should 

be within ±15% and the precision should not exceed 15%. 

For selectivity, the effect of endogenous interferences and IS interference were 

determined. Six different batches of human whole blood were processed both as blanks 

and spiked at the LLOQ concentration to investigate possible endogenous interferences. 

Cross analyte interference was assessed by extracting pazopanib without the addition of 

the IS and by spiking IS separately to a double blank sample (a matrix sample; 3 mm punch 

from a blood spot without spiking analyte or IS) at the concentration used in the assay. 

The interference should be less than 20% of the response of the LLOQ of the analyte and 

less than 5% of the response of the IS. 

Instrumentation carryover was tested by injecting two double blank samples 

after injecting an ULOQ sample in each validation run and expressed as the peak area in 

the blanks as a percentage of the LLOQ peak area. Carryover was considered acceptable 

when the response in the first blank at the retention time of the analyte is less than 20% 

of the response of the LLOQ. 
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The matrix factor (MF) was calculated by dividing the analyte and IS peak area in 

presence of matrix by the peak area of the analyte and IS in a neat solution, using six 

different batches of whole blood spiked at both the QC low and QC high concentration. 

The IS normalized MF was calculated by dividing the MF of pazopanib by the MF of the IS 

of which the CV was calculated. This CV was considered acceptable if it was less than 15%.  

The (sample pretreatment) recovery was determined by comparing peak area of 

pazopanib in processed validation samples to peak area of pazopanib area in presence of 

matrix, at QC low and high concentrations in triplicate. No specific requirement for 

recovery was predefined except that it should be reproducible. 

 

DBS-specific validation 

The influence of spot (in)homogeneity, spot volume, blood hematocrit and spot-to-spot 

carryover was investigated. The spot-to-spot carryover was tested by punching a double 

blank sample after an ULOQ sample. Carryover was considered acceptable as the response 

in this blank sample at the retention time of the analyte was ≤20% of the mean (n = 5) 

response at the LLOQ. 

The effect of (in)homogeneity within the blood spot was examined in triplicate by 

taking punches from the edge of the blood spot and comparing the measured 

concentration with the nominal concentration, at low and high QC concentrations. The 

effect of spot volume and blood hematocrit was investigated in triplicate at QC low and 

QC high concentrations, by spotting a range of volumes on the DBS cards (10, 15, 30 μL). 

The effect of the hematocrit was determined by preparing batches of whole blood with 

different hematocrit values in the range from nominally 35 to 50% (tested values: 34.1, 

42.4 and 49.7%). 

The effect of spot volume, inhomogeneity and hematocrit was considered 

acceptable if bias and precision were within ±15 and ≤15%, respectively. 

 

Stability 

Stability of processed samples stored at nominally 2–8°C and samples on the DBS cards at 

ambient temperature (in a foil bag with desiccant) was investigated in triplicate at both 
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low and high QC concentrations. Samples were considered stable if the bias was within ±15% 

of the nominal concentration and the CV was ≤15%.  

 

Clinical validation 

Paired DBS and (venous) plasma samples were obtained from patients with advanced solid 

tumors treated with pazopanib (n = 30) recruited from three centers (the Netherlands Cancer 

Institute, Amsterdam, Utrecht University Medical Center, Utrecht and Erasmus MC Cancer 

Institute, Rotterdam). Doses administered ranged from 400 mg to 1800 mg daily following 

protocol and within patient adjustments of the dose were possible.20 The trial was approved by 

the independent ethics committee of each participating hospital (Dutch Trial Registry; trial 

identifier NTR3967) and all patients provided written informed consent before enrollment. DBS 

samples were taken by a finger prick under the supervision of a study nurse and the obtained 

blood spots were dried at ambient temperatures for at least 3 h, after which the samples were 

stored with desiccant in a sealed foil bag and sent to the analytical laboratory. 

Weighted Deming fit was used to investigate the relationship between the plasma 

and DBS concentration. Using the observed slope and intercept the plasma concentration were 

calculated. Bland–Altman plots were made to investigate the bias between the calculated and 

measured plasma concentrations. These analyses were all performed in R (version 3.0.0).21 

An arbitrarily selected subset of DBS samples (n = 47) was measured in duplicate (two 

separate blood spots on the same card, obtained from the same patient at the same date and 

time) to investigate the variability during the spotting procedure in clinical practice. Another 

subset of DBS samples was measured in duplicate with one punch of 3 mm and another of 6 

mm (n = 51), to assess the effect of punch size in the clinical samples. In this separate analysis 

the calibration standards and QC samples were also analyzed using a 6 mm punch for the DBS.  

 

RESULTS & DISCUSSION 

Analytical validation results 

An overview of the validated parameters is shown in Table 1. Analytical performance data for 

pazopanib in DBS are shown in Table 2. All tested parameters met their predefined acceptance 

criteria. As 1/x weighted regression resulted in the lowest total bias this was selected for the 

calibration model. 
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The effect of the hematocrit was determined by preparing batches of whole blood with 

different hematocrit values in the range from nominally 35 to 50% (tested values: 34.1, 

42.4 and 49.7%). 

The effect of spot volume, inhomogeneity and hematocrit was considered 
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Stability 

Stability of processed samples stored at nominally 2–8°C and samples on the DBS cards at 

ambient temperature (in a foil bag with desiccant) was investigated in triplicate at both 
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low and high QC concentrations. Samples were considered stable if the bias was within ±15% 

of the nominal concentration and the CV was ≤15%.  

 

Clinical validation 

Paired DBS and (venous) plasma samples were obtained from patients with advanced solid 

tumors treated with pazopanib (n = 30) recruited from three centers (the Netherlands Cancer 

Institute, Amsterdam, Utrecht University Medical Center, Utrecht and Erasmus MC Cancer 
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An arbitrarily selected subset of DBS samples (n = 47) was measured in duplicate (two 

separate blood spots on the same card, obtained from the same patient at the same date and 
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RESULTS & DISCUSSION 

Analytical validation results 

An overview of the validated parameters is shown in Table 1. Analytical performance data for 

pazopanib in DBS are shown in Table 2. All tested parameters met their predefined acceptance 

criteria. As 1/x weighted regression resulted in the lowest total bias this was selected for the 

calibration model. 
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Table 1. Summary of validation results. 
Parameter Result 
Calibration model Linear regression coefficients all >0.99 
Validated range  1.00–50.0 μg/mL 
Overall (in)accuracy  Bias ±4.0% 
Inter- and intra-run precision (CV)  ≤8.6% 
Lower limit of quantification (S/N)  >27 
Dilution integrity  Bias ±1.0%, CV 10.7% 
Selectivity (endogenous and cross analyte)  ≤0.6% 
Instrument carryover  0.6% of the LLOQ 
IS normalized matrix factor (mean, CV)  1.01, 1.6% (QC low), 0.980, 1.9% (QC high) 
Recovery  97.6% (QC low), 103.7% (QC high), CV ≤2.7% 
Spot-to-spot carry-over  6.4% of the LLOQ 
Blood spot homogeneity  Bias ±3.5%, CV ≤4.6% 
Effect of blood spot volume  Bias ±9.5%, CV ≤4.8% 
Effect of blood hematocrit  Bias ±14.2%, CV ≤10.2% 
Final extract stability (2–8°C)  168 days 
DBS stability (ambient temperatures)  398 days 
All tested parameters met their predefined criteria (predefined acceptance criteria are mentioned in 
the text). 
 
 
Table 2. Analytical performance data for pazopanib in DBS. 
Run  Nominal 

concentration  
(μg/mL) 

Mean measured 
concentration  
(μg/mL) 

(In)accuracy  
(%deviation) 

Precision  
(% CV)  

Replicates  
(n) 

1 1.01 1.09 8.1 5.6 5 
2 1.01 1.02 1.2 5.9 5 
3 1.01 1.00 -0.8 6.1 5 
Overall 1.01 1.04 2.8 3.7 15 
1 3.03 3.04 0.2 5.1 5 
2 3.03 2.95 -2.7 5.3 5 
3 3.03 3.20 5.7 7.1 5 
Overall 3.03 3.06 1.1 3.4 15 
1 15.1 15.9 5.0 3.0 5 
2 15.1 14.8 -2.3 8.6 5 
3 15.1 16.5 9.3 3.8 5 
Overall 15.1 15.7 4.0 5.0 15 
1 37.9 38.5 1.6 5.8 5 
2 37.9 36.6 -3.5 4.9 5 
3 37.9 40.3 6.4 3.2 5 
Overall 37.9 38.5 1.5 4.4 15 
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DBS-specific validation results 

The spot-to-spot carryover was 6.4% of the mean (n = 5) LLOQ level for pazopanib and 

0.0% for 13C,2H3-pazopanib. Spot (in)homogeneity resulted in a bias of 3.5 and 2.2% for 

low and high QC levels with CV percentages of 1.3 and 4.6, respectively. 

Data for the effect of spot volume are presented in Table 3. The biases for all 

tested volumes were ≤9.5% of the nominal concentration and the CV was  ≤4.8%, 

indicating that the influence of spot volume was within the requirements. 

Results for the influence of hematocrit are shown in Table 4. The calibration 

standards used in the analysis had a hematocrit value of 43.8%. The effect of the 

hematocrit was within the predefined limits as the mean measured concentration was 

≤14.2% of the nominal concentration, with a CV of ≤10.2%.  

 

Table 3. Effect of spot volume on the quantification of pazopanib (n = 3). 
Spot volume QC low bias (%) CV  

(%) 
QC high bias 
(%) 

CV  
(%) 

10 μL -9.0 4.7 -5.0 0.7 
20 μL 5.2 4.8 -0.7 1.8 
30 μL 9.5 3.1 5.5 1.9 
 
 
Table 4. Effect of blood hematocrit on the quantification of pazopanib (n = 3). 
Blood hematocrit QC low bias (%) CV  

(%) 
QC high bias 
(%) 

CV  
(%) 

34.1% -14.2 7.1 -10.0 10.2 
42.4% -4.2 4.4 -7.4 2.4 
49.7% 7.4 3.9 1.0 1.3 
 

Stability 

QC samples at low and high concentrations (n = 3), deviated ≤15% of the nominal 

concentration after being stored at ambient temperatures (in a foil bag with desiccant) at 

398 days. Therefore, pazopanib was considered to be stable for at least 398 days on the 

DBS cards. Processed samples stored at nominally 2–8°C deviated ≤15% of the nominal 

concentration and were therefore considered stable at nominally 2–8°C for at least 168 

days. 
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DBS-specific validation results 

The spot-to-spot carryover was 6.4% of the mean (n = 5) LLOQ level for pazopanib and 
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low and high QC levels with CV percentages of 1.3 and 4.6, respectively. 
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Stability 

QC samples at low and high concentrations (n = 3), deviated ≤15% of the nominal 

concentration after being stored at ambient temperatures (in a foil bag with desiccant) at 

398 days. Therefore, pazopanib was considered to be stable for at least 398 days on the 

DBS cards. Processed samples stored at nominally 2–8°C deviated ≤15% of the nominal 

concentration and were therefore considered stable at nominally 2–8°C for at least 168 

days. 
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Clinical validation 

The method was applied to clinical samples taken approximately 24 h after the last dose 

(at steady state) from cancer patients treated with pazopanib. In total, 329 paired DBS and 

plasma samples were obtained from the 30 enrolled patients. Irregular, very large (larger 

than the printed ring on the DBS card), very small (smaller than the punch diameter) spots 

were excluded. Samples resulting in concentrations below the LLOQ15 were also excluded. 

In total, 221 spots were used for the analysis. As shown in Figure 2, a good correlation 

between the DBS and the plasma concentration was found (R2 of 0.872 with a slope of 

0.709 and an intercept of -0.182). 

The plasma concentration was back calculated based on the measured DBS 

concentration, using [pazopanibcalculated plasma] = ([pazopanibDBS] + 0.182) / 0.709. The 

plotted calculated versus measured plasma concentrations are shown in Figure 3. The  

difference between the calculated and measured plasma concentrations versus the 

measured plasma concentration is shown in a Bland–Altman plot in Figure 4. Back 

calculated plasma concentrations were within 20% of measured plasma concentrations for 

79.2% of the DBS samples. 

Correction for patient-specific hematocrit when calculating the plasma 

concentration (using the formula proposed by Kromdijk et al.14, [pazopanibcalculated plasma 

(hmtcrt corrected)] = [pazopanibDBS]/(1-hematocrit)*fraction bound to plasma protein) did not 

improve the correlation between the calculated and measured plasma concentrations 

compared with the empirically found Deming regression. The hematocrit values of the 

patients used for this sub analysis were within the validated range, the mean was 40%, 

ranging from 36 to 48%. 

When used to identify patients above or below the 20 μg/mL threshold the 

plasma and DBS methods were in agreement in 91.4% of the cases. A Bland–Altman plot 

of the difference between two spots taken at the same time as a function of the mean of 

the two measurements is given in Figure 5. The Bland–Altman plot showing the deviations 

of clinical samples punched with both a 3 and a 6 mm diameter punch is shown in Figure 

6. 
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Figure 2. Measured DBS concentration versus the measured plasma concentration (n= 
221). The solid black line represents the weighted Deming fit, the dotted black lines 
represent the 95% CI of the Deming fit, the green dotted line is the line of unity. 
 
 

 
Figure 3. Calculated plasma versus the measured plasma concentration (n = 221). 
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Figure 4. Bland–Altman plot showing the difference between the calculated and measured 
pazopanib plasma concentration (n = 221). The mean difference between the two methods 
was 0.08 μg/ml. 

 
Figure 5. Bland–Altman plot showing the difference between the measured pazopanib 
spots in the subset of samples of which two spots provided by the same patient at the 
same time were measured (n = 47). The mean difference between the two methods was -
0.105 μg/ml. 
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Figure 6. Bland–Altman plots showing the difference between the measured pazopanib 
spots in the subset of samples (n = 51) which were measured after a 3 mm punch (A) and a 
6 mm punch (B) from the DBS card. The mean difference was -0.09 and 0.44 μg/ml for the 
3 and 6 mm punched samples, respectively. 
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Our method was successfully developed to quantify pazopanib in DBS and 

validated in accordance with FDA and EMA guidelines on bioanalytical method validation 

and good laboratory practices.16,17 With a run time of only 4 min, the developed method is 

suitable for routine analyses of patient samples. Moreover processed samples were 

shown to be stable for at least 168 days, therefore calibration standards can be reused 

several times, reducing the time needed to perform an analytical run. 

Spot volume resulted in a small positive bias for large volumes and a small 

negative bias for small volumes (both within the predefined requirements). No clear 

mechanism for this effect has been reported. The same trend was found for the tyrosine 

kinase inhibitor vemurafenib22 and other compounds such as everolimus, tacrolimus and 

sirolimus.23 

Spot-to-spot carryover was shown to be only 6.4% of the LLOQ and will therefore 

have no relevant effect on the analytical outcome when applying this method. 

The influence of spot homogeneity was assessed in the laboratory and showed a 

bias within ±3.5 and a CV of ≤4.6%. In practice however it is likely that this effect will be 

larger, as samples provided by patients will be less uniform than those made using a 

pipette. 

During the DBS-specific validation experiments, hematocrit values from 35 to 

50% were tested and the bias and variability were within predefined limits. Low 

hematocrit values resulted in a negative bias, while high hematocrit resulted in a positive 

bias. This might be explained by the higher viscosity with higher hematocrit and, 

consequently, less spreading on paper. The effect of hematocrit seems to be dependent 

on the analyte tested. For example, a trend similar to that of pazopanib was found for 

vemurafenib, everolimus and sirolimus, no clear trend was observed for tamoxifen, 

endoxifen, tacrolimus and an opposite trend was found for cyclosporine A.22–24 

A good correlation was observed between the DBS concentration and the plasma 

concentration (R2 = 0.872), with a slope of 0.709 and intercept of -0.182 (Figure 2). The 

lower DBS concentration probably results from pazopanib’s high plasma protein binding 

causing a higher concentration in the plasma relative to blood cells. 

Based on this weighted Deming fit, the plasma concentration could be back 

calculated using the formula: [pazopanibcalculated plasma] = ([pazopanibDBS] + 0.182) / 0.709 
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(Figure 3). Correction for patient-specific hematocrit when calculating the plasma 

concentration, did not improve the correlation between the calculated and measured 

plasma concentrations compared with the empirical Deming regression formula. This 

suggests that even though hematocrit influences the analytical results (as seen in the DBS-

specific validation tests) in the clinical setting it is not the most important factor driving 

the variability between the two methods. 

Despite the good correlation between plasma and DBS samples, 20.8% of the 

calculated plasma concentrations deviated more than 20% from the measured plasma 

concentration (Figure 4). Taking into account the excellent analytical performance of the 

assay during the validation with the laboratory spots (Table 2) it is likely that the variability 

arises during the clinical spotting procedure. 

This is supported by the results of the DBS samples measured in duplicate. As 

even in these samples, which were taken from the same patient at the same time, 

differences of up to 17.2% were observed (Figure 5). Spot quality, volume and 

(in)homogeneity are the likely factors that cause this variability. Since these samples were 

taken from the same patient at the same time, blood hematocrit could not explain this 

difference. Using a larger 6 mm punch resulted in a small reduction of the imprecision 

(Figure 6). But using the 6 mm punch would require patients to produce larger spots, 

leading to use of larger blood volumes and most likely to a larger number of samples 

smaller than the punch size. 

Acknowledging the above, care should be taken to inspect the quality of the spot 

before measurement. Very large, very small or irregular spots should not be used, as 

parameters such as spot homogeneity and volume seemed more important than 

hematocrit during the clinical validation study. Careful instruction and training of patients 

in the sampling procedure should thus considered important when using this method, but 

a recent study in breast cancer patients treated with tamoxifen shows the feasibility of 

DBS self-sampling.25 

In guiding pazopanib therapy it will be particularly important to identify patients 

above or below the PK target of ≥20 μg/mL. When the calculated pazopanib plasma 

concentration was used to identify patients below the PK target level of ≥20 μg/mL, the 

DBS method was in agreement with the plasma method in 91.4% of the cases. This makes 
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the DBS method acceptable for the proposed purpose of guiding pazopanib therapy, with 

relevant practical advantages over the plasma method. Furthermore in light of the 

intrapatient variability (CV) of pazopanib of 24.7%,7 the discrepancy between the two 

analytical methods will have little effect on the clinical application. As patients with a Cmin 

around the 20 μg/mL threshold (e.g., 15–25 μg/mL) would require repeated 

measurements of the pazopanib concentration, regardless of the analytical method used. 

An earlier method for the quantification of pazopanib in DBS has been 

described,26 when this method was used to compare calculated versus measured plasma 

pazopanib concentrations in paired samples, 92.6% of the samples were within the 

predefined deviation of ±25% in the Bland–Altman analysis. When applying these (wider) 

acceptance criteria to our current method a similar percentage of 88.2% was found. 

However the earlier method used the patient’s hematocrit in calculating the plasma 

concentration. This is a significant disadvantage if the method is to be applied to patient 

self-sampling, as calculation of the pazopanib plasma level would still require a visit to the 

clinic to measure a patient’s hematocrit. With the current method there was no need to 

use the patient’s hematocrit and no such correction was used during our clinical validation 

study, making it more suited to a patient self-sampling approach. Given the well-

established exposure–response relationship of pazopanib, a fast and minimally invasive 

DBS method might help implementation of an individualized dosing approach or TDM. 

Patients would be able to take DBS samples at home and send these at ambient 

temperatures (these were shown to be stable for at least 398 days) to the analytical 

laboratory. The pazopanib DBS concentration could then be measured before the next 

visit to the clinic and the plasma concentration could be calculated using 

[pazopanibcalculated plasma] = ([pazopanibDBS] + 0.182)/0.709. Subsequently an assessment of 

the Cmin could be made by the treating physician and a dose adjustment could be 

considered for patients with a low pazopanib exposure to optimize their treatment. 

 

CONCLUSION 

An LC–MS/MS method for the quantitative determination of pazopanib in DBS was 

developed and successfully validated in accordance with FDA and EMA guidelines and 

European Bioanalysis Forum recommendations for DBS method validation. The DBS 
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concentrations showed a good correlation with the plasma concentrations (R2 of 0.872) 

and could be used to determine a calculated plasma concentration. The DBS method can 

be used for pharmacokinetically guided dosing of pazopanib therapy. 

 

FUTURE PERSPECTIVE 

The described method is suitable for the application to TDM of pazopanib, with relevant 

advantages over plasma quantification (e.g., patient friendly sampling and sample 

stability) and no need to correct for patient hematocrit. The availability of this assay 

facilitates further implementation of TDM of pazopanib and enables more personalized 

treatment with this drug. But further prospective clinical trials are needed to demonstrate 

the added value of an individualized dosing strategy for pazopanib based a measured drug 

concentration. 
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Genomic precision medicine 

The first part of this thesis represents contemporary efforts to make anti-cancer 

treatment more precise. As mentioned in Chapter 1, many patients still do not benefit 

from systemic treatment or they experience excessive side effects. Internationally, there 

are many consortia that aim to find biomarkers that predict for treatment effect or for the 

occurrence of side effects. The ultimate goal in this quest is to prevent patients from being 

treated with ineffective drugs and to prevent patients from experiencing (unnecessary) 

heavy side effects. The Dutch Center for Personalized Cancer Treatment (CPCT) is an 

example of such a collaboration. The aim of the CPCT is to collect fresh frozen tumor 

biopsies on a large scale and to identify predictive biomarkers in the DNA of these 

biopsies. 

 

CPCT studies 

The backbone of the biopsy collection is the “CPCT-02” study (NCT01855477), in which 

patients that are planned to be treated with systemic anti-cancer treatment are included. 

After inclusion, these patients are biopsied from a – preferably metastatic – tumor lesion 

before start of the treatment. The fresh frozen biopsies are shipped to a central facility, 

where they are further processed, i.e. the percentage of tumor cells is determined and if 

that is sufficient (>30%), DNA is isolated from the macrodissected tumor cells. In case 

there is sufficient DNA (>500 ng), next-generation sequencing (NGS) is performed on it. 

Meanwhile, the clinical patient data is being collected in an electronic case record form 

(eCRF), from which the important clinical endpoints can be distracted. For the primary 

analyses, the DNA sequencing results and the clinical outcome are compared in order to 

identify somatic genetic alterations that can potentially serve as a predictive biomarker for 

the effectivity of a selected anti-cancer agent. In Chapter 2, a part of the logistical process 

of CPCT is outlined. It was already known that performing biopsies from metastatic lesions 

is a relatively safe procedure. However, we have also shown in this chapter that the 

central storage of fresh frozen biopsies from multiple clinical centers is feasible, which 

enabled us to set up a large biobank with high-quality tumor DNA from these biopsies. At 

start of the study, only three hospitals were affiliated to this initiative, being the 

Netherlands Cancer Institute, Amsterdam, the Erasmus MC Cancer Institute, Rotterdam, 
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and the UMC Utrecht. Once the process of biopsy collection and storage was set up in 

these centers, many other Dutch oncology centers have joined the CPCT, resulting in a 

unique collaboration that completely covers the Netherlands.  

The main objective of the CPCT-02 is to identify somatic genetic aberrations 

predictive for treatment outcome. As the spectrum of genetic aberrations investigated is 

extremely large, especially with the continuous development of DNA sequencing 

techniques, and as the effects on treatment outcome might be subtle, large numbers of 

patients are required to have sufficient power for the analyses. Hence, it is estimated that 

no less than tens – or even hundreds – of patients are required for each analysis. As each 

administered drug exhibits a different working mechanism, they should be investigated 

separately. Therefore, it is fundamental that tumor tissue and patient characteristics are 

collected on a large scale, as is being done in CPCT. Currently, CPCT is focusing on 

performing high-throughput DNA sequencing, but since the biopsies are stored fresh 

frozen – and not formalin-fixed and paraffin-embedded (FFPE) – they can also be used for 

analyses on other platforms, such as for RNA sequencing or proteomics. 

During the last years, when the CPCT was already initiated, several relevant 

findings have been reported. For example, the idea that genetic aberrations carry out their 

effects irrespective of tumor type has – at least partially – been refuted. For example, 

targeting mutated BRAF in colorectal cancer appeared to be ineffective,1 whereas it had 

been found earlier that BRAF mutated melanoma responded very well to BRAF inhibition.2 

This effect was found to be caused by different activity of EGFR between the two tumor 

types, which results from the different embryological origin of the tissue.3 Due to this 

context-dependency, it would be very helpful to discover what (histological) tumor types 

are susceptible to the investigated treatment. That way, patients can be recruited to 

specific trials based on the molecular characteristics of their tumor and the low number of 

patients can efficiently be allocated to the most informative trial. Unfortunately, even 

then the matter is probably much more complex than illustrated above. From in vitro 

studies, we have tried to identify genetic aberrations that are predictive for cisplatin 

response. We did so by comparing sensitivity analyses for genetic mutations in different 

cell lines from the Erasmus MC and from the public COSMIC database.4 Strikingly, and 

unfortunately, these sensitivity analyses had very different – if not completely opposite – 
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results, which made it impossible to generate a predictive gene signature. Therefore, we 

were not able to set up a prospective clinical study to validate it. The irreproducibility of 

sensitivity analyses on cell lines was later confirmed on a larger scale, when results from 

the Cancer Genome Project (CGP) and the Cancer Cell line Encyclopedia (CCLE) were found 

to be highly discordant.5 The authors conclude, justly, that experimental and analytic 

uniformity is lacking and should be optimized, especially when these experiments are to 

serve as the basis for further clinical research.6 

As generating hypotheses for targeted anti-cancer treatment appears to be much 

more complex than expected, several initiatives have started giving targeted therapies to 

patients with other tumors than those for which the therapy has been registered. In a 

small set of patients, these targeted agents are aimed at the molecular aberrations, which 

they are known to effectively target in another cancer type, without anteriorly 

investigating the biological mechanism in a preclinical setting. The SHIVA trial7 pioneered 

this type of research by randomizing almost 200 patients to either a targeted therapy 

against a proven molecular aberration or to treatment at the physician’s choice. 

Regrettably, patients in the targeted therapy arm did not have better progression free 

survival (PFS) rates than those in the control arm. These results seem to provide an 

additional message that targeting molecular mechanisms, regardless of tumor type, is 

based on an oversimplified model of tumor biology. Additionally, 40% of the completely 

analyzed tumors did not harbor a mutation that was considered targetable by one of the 

drugs available to this initiative, which is most likely an illustration of the lack of adequate 

therapies to target all investigated molecular aberrations. In addition to this study, several 

other initiatives have been initiated to test the effectivity of targeted therapies outside 

their indication. Each target in the SHIVA trial was only represented by a small number of 

patients across several tumor types, which might have camouflaged successes in one of 

the subsets. The new trials are being performed on a much larger scale and, moreover, are 

designed to investigate the effect of each actionable aberration by itself. The CPCT, for 

example, has initiated a trial (“DRUP protocol”) in which small patient cohorts are created 

to assess the effectivity of a drug per genetic aberration per tumor type. The data are 

then, more importantly, shared in an even larger collaboration, Global Alliance for 

Genomic Health (GA4GH).8 Once the first results from these trials become available, we 
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will be able to see if the previous studies have just been too small or if we have a too 

simplistic view on tumor biology. 

We already know that our current methods of (genetic) biomarker discovery are 

complicated by several other biological issues, of which the most complicated one appears 

to be tumor heterogeneity. Molecular tumor characteristics are subject to change at 

several levels: metastatic lesions can differ from each other and from the primary tumor, 

each lesion itself can contain multiple heterogeneous areas and the molecular 

characteristics can also change over time.9 Although we know that heterogeneity can have 

both diagnostic and therapeutic implications on precision medicine, it remains unclear 

how to take it into account. For example, it is not known if the mutational profile in a 

single biopsy from a metastatic tumor lesion is representative for the mutational status of 

the tumor as a whole, if that abstraction of total tumor burden exists at all. Liquid 

biopsies, containing circulating tumor cells (CTCs) or DNA (ctDNA) that have been shed 

into the systemic circulation, have been proposed to cover that mutational status of the 

total tumor burden10-12 and are less invasive to obtain than tumor biopsies. However, 

analyzing any circulating tumor material is still accompanied by a lot of diagnostic issues, 

such as capturing CTCs or determining what part of the ctDNA to sequence. Furthermore, 

it remains to be seen whether the hypothesis of circulating biomarkers being 

representative for all tumor burden is a valid one and – if existing – a clinically relevant 

one that can be used to direct the choice of therapy, as has only been described 

incidentally up till now.13, 14 Despite its disadvantages, intratumoral molecular profiling 

remains the golden standard for assessing mutational status and only direct comparison 

between different platforms can show which platform is the most useful, especially since 

there are a lot of differences between the sequencing results of solid and liquid biopsies.15  

Not only tumor material can be analyzed in multiple ways. While being key in the 

assessments of novel treatment strategies, the quantification of an intervention on clinical 

outcome is also not as straightforward as often presented. As quality of life is difficult to 

structurally assess, overall survival (OS) is regarded as the best clinical endpoint. However, 

it can take some time to reach that endpoint, especially in the less aggressive tumor types. 

In drug development, quick assessment of a drug’s effectiveness is vital for efficient 

research and the use of OS would cause this early phase research to be very time-
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results, which made it impossible to generate a predictive gene signature. Therefore, we 

were not able to set up a prospective clinical study to validate it. The irreproducibility of 

sensitivity analyses on cell lines was later confirmed on a larger scale, when results from 
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against a proven molecular aberration or to treatment at the physician’s choice. 

Regrettably, patients in the targeted therapy arm did not have better progression free 

survival (PFS) rates than those in the control arm. These results seem to provide an 

additional message that targeting molecular mechanisms, regardless of tumor type, is 
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designed to investigate the effect of each actionable aberration by itself. The CPCT, for 
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to assess the effectivity of a drug per genetic aberration per tumor type. The data are 

then, more importantly, shared in an even larger collaboration, Global Alliance for 

Genomic Health (GA4GH).8 Once the first results from these trials become available, we 

Discussion | 171 
 

will be able to see if the previous studies have just been too small or if we have a too 

simplistic view on tumor biology. 
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complicated by several other biological issues, of which the most complicated one appears 
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one that can be used to direct the choice of therapy, as has only been described 

incidentally up till now.13, 14 Despite its disadvantages, intratumoral molecular profiling 

remains the golden standard for assessing mutational status and only direct comparison 

between different platforms can show which platform is the most useful, especially since 

there are a lot of differences between the sequencing results of solid and liquid biopsies.15  

Not only tumor material can be analyzed in multiple ways. While being key in the 

assessments of novel treatment strategies, the quantification of an intervention on clinical 

outcome is also not as straightforward as often presented. As quality of life is difficult to 

structurally assess, overall survival (OS) is regarded as the best clinical endpoint. However, 

it can take some time to reach that endpoint, especially in the less aggressive tumor types. 

In drug development, quick assessment of a drug’s effectiveness is vital for efficient 

research and the use of OS would cause this early phase research to be very time-
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consuming. Therefore, surrogate endpoints that are reached much quicker, such as 

progression free survival (PFS) or tumor response according to RECIST,16 better suit this 

setting. In Chapter 3, we investigated another surrogate endpoint, the time to progression 

(TTP) ratio. The TTP ratio was found to be significantly correlated to OS and was even 

better than RECIST in predicting for OS in some patients in this study. Now that drug 

efficacy is being tested earlier during clinical research, the TTP ratio seems to be a valid 

alternative to be used as endpoint for that analyses. 

 

Conclusions on genetic biomarker discovery 

Genomic medicine has advanced greatly during the last two decades. In the 20th century, 

systemic cancer treatment almost exclusively consisted of (combined) chemotherapeutic 

regimens, which were generated much more with empirical than with biological research. 

Now that the increasing knowledge on tumor biology has found its way into the clinic, 

both in diagnostics and in therapeutics, a lot of different classes of drugs have taken the 

place of conventional chemotherapy in cancer treatment. Nevertheless, “old fashioned” 

chemotherapy remains the cornerstone of treatment for the majority of cancer types, 

which illustrates that we are still unable to fully understand what is happening inside (and 

around) tumor cells and how we can reverse all these proliferative processes. However, 

the substantial improvements achieved in cancer treatment over last decades cannot be 

neglected and future research on molecular biomarkers should be aimed at determining 

what type of diagnostic platform is superior, which can only be achieved by direct 

comparison of the available platforms and is likely to be different within the context of 

each tumor type. As these assessments require a lot of resources, e.g. tumor samples, 

their blood samples, clinical data, a network to collect all these and especially a lot of 

funding to finance it, small-scale initiatives by individual institutions should be regarded as 

obsolete. Only by combining (international) efforts the most fundamental questions in this 

field can be addressed in a scientifically proper manner and the CPCT is a prototype in that 

context, combining the resources from almost all Dutch oncology centers into an 

international network of similar collaborations.8  
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Pharmacokinetic precision medicine 

In addition to the molecular characteristics of tumor cells, another main determinant of 

treatment outcome in humans is the amount of anti-tumor drug reaching the tumor sites. 

But the ideal way to determine how much drug reaches the tumor remains a black box. A 

generally accepted surrogate for drug exposure to the tumor is systemic exposure, which 

is evidently easier to sample and to monitor. For some anti-cancer agents, predominantly 

for tyrosine kinase inhibitors (TKIs), it has been found that systemic drug exposure is 

correlated to clinical outcome.17, 18 Logically, the next step in improving clinical outcome is 

optimizing the exposure in patients that experience little effect due to low drug 

concentrations or in those that experience much toxicity due to high drug concentrations. 

Part of this mechanism is already incorporated in the way most anti-cancer drugs, 

especially the chemotherapeutic agents, are being dosed, i.e. based on body surface area 

(BSA). That way, big patients get higher doses and little patients small doses, which should 

ultimately lead to equal systemic drug concentrations. In Chapter 4, however, we argue 

that correcting doses for BSA is an outdated principle and cannot be justified by a 

scientific rationale. Unfortunately, the BSA-guided dose corrections have been 

implemented from the start of clinical oncology research and, hence, no empirical 

evidence is available for other – more simple and practical – dosing algorithms to be (at 

least) equal to it.  

 Most recently developed drugs, including TKIs, are being administered in a flat 

dose, which eliminates the false security of BSA guided dosing being accurate. There are 

still many other factors contributing to inter-individual variation (IIV) in drug exposure, as 

is illustrated by the large coefficient of variation (CV) for many TKIs, such as sorafenib. In 

Chapter 5, we have shown that the activity of the OATP1B membrane transporters 

contributes significantly to the pharmacokinetics of sorafenib’s metabolite sorafenib-

glucuronide (SG). By inhibiting OATP1B function with rifampin in sorafenib-treated 

patients, we were able to inhibit biliary secretion of SG, which caused SG to accumulate 

systemically. Although we predicted that this reduced SG secretion would lead to reduced 

enterohepatic circulation of sorafenib and consequently, to lower systemic sorafenib 

concentrations, we did not observe this effect in our study. However, to fully disprove this 

mechanism of reduced sorafenib exposure and thus of reduced sorafenib anti-cancer 
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that correcting doses for BSA is an outdated principle and cannot be justified by a 
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implemented from the start of clinical oncology research and, hence, no empirical 

evidence is available for other – more simple and practical – dosing algorithms to be (at 
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dose, which eliminates the false security of BSA guided dosing being accurate. There are 

still many other factors contributing to inter-individual variation (IIV) in drug exposure, as 

is illustrated by the large coefficient of variation (CV) for many TKIs, such as sorafenib. In 

Chapter 5, we have shown that the activity of the OATP1B membrane transporters 

contributes significantly to the pharmacokinetics of sorafenib’s metabolite sorafenib-

glucuronide (SG). By inhibiting OATP1B function with rifampin in sorafenib-treated 

patients, we were able to inhibit biliary secretion of SG, which caused SG to accumulate 

systemically. Although we predicted that this reduced SG secretion would lead to reduced 
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mechanism of reduced sorafenib exposure and thus of reduced sorafenib anti-cancer 
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effects, studies with prolonged OATP1B inhibition are needed. As this study did not take 

clinical outcome of the altered sorafenib PK into account, we have retrospectively 

analyzed a sorafenib-treated cohort of patients in Chapter 6. In that study, we assessed if 

genetic polymorphisms in the enzymes involved in the PK of sorafenib and its metabolites 

were associated with clinical outcome. We found that single nucleotide polymorphisms 

(SNPs) in SLCO1B1, which encodes for OATP1B1, is associated with the incidence of 

sorafenib-induced adverse events. This can biologically be explained by increased toxicity 

in case of reduced OATP1B1 function. Although we have not been able to directly assess 

the relation between SG accumulation and toxicity, the results from these two chapters 

are highly suggestive for a causal relation between the two. However, clinical 

implementation of structural SLCO1B1 genotyping before commencing treatment with 

sorafenib is not likely in the near future. First, it is not known either if upfront sorafenib 

dose reductions in patients with an unfavorable pharmacogenetic profile results in less 

toxicity and – equally important – comparable anti-cancer effects. On that behalf, it would 

be interesting to see if patients with a genetic predisposition to sorafenib toxicity are 

more prone to other OATP1B inhibiting stimuli, such as comedication with clarithromycin 

or ramipril. Furthermore, as sorafenib does not frequently lead to catastrophic toxicity, 

such as in fluoropyrimidine-treated patients with a DPYD deficiency19 or as in 

azathioprine-treated patients with a TPMT deficiency,20 OATP1B1 genotyping will to be 

cost-effective in sorafenib treated patients, whereas the other mentioned examples are.21, 

22  

 

Therapeutic drug monitoring (TDM) 

For drugs with a large intrapatient variability in systemic exposure, determining only the 

optimal starting dose will probably not suffice to optimize treatment outcome. Systemic 

drug concentrations will have to be followed during treatment in order to verify that the 

exposure is still within the therapeutic window. For a TKI like imatinib, for instance, it has 

been found that the systemic exposure decreases with 30% within the first three months 

of treatment and stabilizes thereafter.23 Being attributed to differential absorption 

between patients at first, it was later speculated24 that the decrease could be caused by 

reduced alpha-1 acid glycoprotein (AGP) levels, which is an acute phase protein that was 
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thought to lower on treatment due to less tumor burden or fading surgical effects. In 

Chapter 7, however, we did not observe significant or clinically relevant changes in AGP. 

On the other hand, we confirmed that imatinib concentrations remarkably lowered after 

the first month of treatment, albeit less than the 30% decrease that was described earlier. 

By disproving this AGP-based theory, we have again lost sight of a possible biological 

rationale for the systemic imatinib exposure to decrease. This means that it is not possible 

to extrapolate measured (trough) concentrations at 1 month, used to determine the 

relation of PK to treatment effect,18 to concentrations at other time points. In itself, that 

does not have to be a problem, if everyone were to use that same time point to measure 

imatinib trough concentrations. In reality, three retrospective studies have described a 

much higher incidence than the 25% (lowest quartile) of patients that have imatinib 

concentrations below the (assumed) target for efficacy.25-27 In these studies, however, 

patients were sampled at random time points, mostly far beyond the third month of 

treatment, which logically results in a larger proportion of patients below the threshold. In 

a disturbing way, this illustrates the lack of uniformity between different studies that 

investigate TDM of imatinib in GIST patients. Based on the currently available evidence, 

we may conclude that patients with GIST that are being treated with imatinib have better 

progression free survival when their systemic trough concentration is above 1100 ng/mL 

after the first month of treatment, that there is currently no algorithm to predict at what 

concentration a patient’s exposure will stabilize after the third month of treatment and 

that there is no clear evidence what trough concentration discriminates best for efficacy 

after the third treatment month. Regarding the latter conclusion, it would be interesting 

to have trough concentrations at different time points compared to clinical outcome, 

imatinib is given for years and as it might be beneficial to verify if there is sufficient 

imatinib exposure at a later time point, e.g. after 1 year. Possibly, a lower threshold might 

suffice at that moment, although that scenario seems to be unrealistic given the recent 

finding that prolonged adjuvant imatinib leads to better treatment outcome.28 

Additionally, tumor characteristics appear to play a role in the needed exposure as well: 

patients with a somatic KIT mutation in exon 9 benefit more from imatinib 800 mg daily 

than from 400 mg, whereas patients all other GIST subtypes benefited equally from both 
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thought to lower on treatment due to less tumor burden or fading surgical effects. In 

Chapter 7, however, we did not observe significant or clinically relevant changes in AGP. 

On the other hand, we confirmed that imatinib concentrations remarkably lowered after 

the first month of treatment, albeit less than the 30% decrease that was described earlier. 

By disproving this AGP-based theory, we have again lost sight of a possible biological 

rationale for the systemic imatinib exposure to decrease. This means that it is not possible 

to extrapolate measured (trough) concentrations at 1 month, used to determine the 

relation of PK to treatment effect,18 to concentrations at other time points. In itself, that 

does not have to be a problem, if everyone were to use that same time point to measure 

imatinib trough concentrations. In reality, three retrospective studies have described a 

much higher incidence than the 25% (lowest quartile) of patients that have imatinib 

concentrations below the (assumed) target for efficacy.25-27 In these studies, however, 

patients were sampled at random time points, mostly far beyond the third month of 

treatment, which logically results in a larger proportion of patients below the threshold. In 

a disturbing way, this illustrates the lack of uniformity between different studies that 

investigate TDM of imatinib in GIST patients. Based on the currently available evidence, 

we may conclude that patients with GIST that are being treated with imatinib have better 

progression free survival when their systemic trough concentration is above 1100 ng/mL 

after the first month of treatment, that there is currently no algorithm to predict at what 

concentration a patient’s exposure will stabilize after the third month of treatment and 

that there is no clear evidence what trough concentration discriminates best for efficacy 

after the third treatment month. Regarding the latter conclusion, it would be interesting 

to have trough concentrations at different time points compared to clinical outcome, 

imatinib is given for years and as it might be beneficial to verify if there is sufficient 

imatinib exposure at a later time point, e.g. after 1 year. Possibly, a lower threshold might 

suffice at that moment, although that scenario seems to be unrealistic given the recent 

finding that prolonged adjuvant imatinib leads to better treatment outcome.28 

Additionally, tumor characteristics appear to play a role in the needed exposure as well: 

patients with a somatic KIT mutation in exon 9 benefit more from imatinib 800 mg daily 

than from 400 mg, whereas patients all other GIST subtypes benefited equally from both 
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doses.29 It is therefore likely that patients with a KIT exon 9 mutations have a higher 

systemic exposure threshold for efficacy than others. 

As for imatinib, a target trough concentration for pazopanib efficacy (of 20.5 

μg/mL) has been distilled from early phase studies.17 In those studies, 30% of patients did 

not reach the target concentration after four weeks of treatment. In Chapter 8, we 

therefore investigated if increasing the pazopanib dose in those patients would raise their 

trough concentrations above the set target. In more than half of the patients with a 

trough concentration below the target, we were able to raise that concentration above 

that target by increasing the dose. Now that PK-guided pazopanib dosing is proven 

feasible, subsequent studies should investigate the benefit that patients experience from 

correcting a (too) low systemic exposure. The problem of frequent outpatient visits for the 

blood draws to monitor pazopanib concentrations has been tackled in Chapter 9, where 

concentrations measured on dried blood spots (DBS) were proven to be similar to those 

measured from plasma samples. 

 

Conclusions on pharmacokinetics 

As said, there are two main pillars in pharmacokinetics: determining the correct starting 

dose and – if necessary – maintaining sufficient systemic exposure. Both serve the same 

goals of optimizing anti-cancer effects and reducing (long term) toxicity. Pretreatment 

dose adjustments are currently reserved for patients at high risk of toxicity, e.g. elderly 

patients and those with a poor performance status, significant comorbidity or poor renal 

or liver function. Pharmacogenetics or potential drug-drug interactions are, at least in 

oncology, rarely used to base a dose alteration upon. In the context of the other pillar, 

maintaining sufficient exposure, one can question the clinical importance of a precisely 

right starting dose, especially when the first drug monitoring is being performed quickly 

after treatment start. Hence, maintaining adequate systemic exposure seems of more 

importance. Although TDM is also infrequently applied in oncology, systemic drug 

exposure of many anti-cancer agents has been linked to treatment outcome, increasingly 

in a prospective setting.30, 31 High-quality randomized trials are needed to prove that 

systemic exposure is indeed correlated to clinical outcome, but these trials are hard to 

perform, as patients are reluctant to enter such a trial, which necessitated the Sarcoma 
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Alliance for Research through Collaboration to terminate their phase III study on this 

subject. More surprisingly, physicians appear to be reluctant to follow up the dosing 

advice.32 This seems to indicate that medical oncologists can be categorized as believers or 

non-believers, which makes it hard for the believers to perform the necessary research 

required for an honest evaluation of TDM. Therefore, studies to investigate TDM in 

oncology need to be set up in an innovative design. Example can be taken of the 

researchers that have explored the usefulness of concomitant prednisone during 

docetaxel treatment in prostate cancer, who have not randomized their patients to a 

treatment arm, but who have compared treatment outcome at two different hospitals 

with a different docetaxel treatment protocol (with and without concomitant 

prednisone).33 This study design can also serve as a bridge between TDM believers and 

non-believers, who are already practicing according to their belief anyway. 
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De afgelopen decennia heeft de medicamenteuze behandeling van kanker zich sterk 

ontwikkeld. Hoewel opereren in het overgrote deel van de gevallen vereist is voor 

genezing, zorgt de behandeling met medicijnen in toenemende mate voor een betere 

overleving.  In de tweede helft van de 20ee eeuw werden de eerste stappen naar een 

systemische behandeling van kanker gezet met de introductie van chemotherapie. 

Sindsdien heeft er veel onderzoek plaatsgevonden en is het inzicht in welke biologische 

mechanismen een rol spelen in tumoren sterk verbeterd. Dit heeft aan het einde van de 

vorige eeuw geresulteerd in de ontwikkeling van nieuwe geneesmiddelen voor de 

behandeling van kanker, zoals tyrosine kinase remmers (TKIs) en anti-hormonale 

middelen. Deze nieuwe middelen zijn gericht op het remmen van de signalen die 

aanzetten tot celdeling. Deze signalen zijn binnen een kankercel overactief en stimuleren 

daarmee ongeremde celdeling. Oorspronkelijk werd vermoed dat deze middelen door hun 

gerichte werkingsmechanismen een stuk minder giftig zouden zijn dan conventionele 

chemotherapieën, die hun effect op tumoren – en helaas ook op gezonde cellen –  

uitoefenen door de celdeling te remmen. De proliferatieve signalen, die door de nieuwe 

middelen worden geremd, blijken ook een rol te spelen in de fysiologie van gezonde cellen 

en het remmen daarvan leidt dus – net als bij chemotherapie – tot bijwerkingen. De 

uitdaging voor het hedendaagse onderzoek is om te ontdekken welke patiënten geen baat 

hebben van behandeling, omdat deze behandeling geen effect heeft of omdat de 

behandeling teveel bijwerkingen geeft. In dit proefschrift staan twee methoden 

beschreven om de medicamenteuze behandeling van kanker preciezer op de individuele 

patiënt af te stemmen: 1. op basis van genetische afwijkingen in de tumor en 2. op basis 

van de verdeling van het geneesmiddel in het lichaam. Dit laatste wordt ook wel 

farmacokinetiek genoemd.  

 

Genetische afwijkingen in de tumor 

Veel nieuwe behandelingen zijn al gericht op genetische afwijkingen binnen een tumorcel. 

Het medicijn imatinib is bijvoorbeeld alleen effectief bij gastro-intestinale 

stromaceltumoren (GIST) als die een mutatie in het KIT-gen bevatten. Datzelfde geldt voor 

een ander medicijn in dezelfde klasse van geneesmiddelen: vemurafenib, dat wordt 

toegepast bij melanomen met een zogenaamde BRAF-mutatie. Er zijn echter ook nog veel 
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anti-kanker geneesmiddelen waarvoor zo’n genetische biomarker nog niet ontdekt is. Om 

die reden werken vele ziekenhuizen in Nederland samen binnen het Center for 

Personalized Cancer Treatment (CPCT). Binnen het CPCT wordt in tumoren gekeken naar 

genetische afwijkingen die mogelijk de uitkomst van de medicamenteuze behandeling van 

kanker kunnen voorspellen. Voordat patiënten beginnen met die behandeling, wordt er 

een biopt uit de tumor genomen, bij voorkeur uit een uitzaaiing. Als er voldoende biopten 

zijn van patiënten die eenzelfde behandeling hebben gehad, wordt gekeken of de 

patiënten die goed op de behandeling reageerden een ander genetisch profiel van hun 

tumor hadden dan degenen die niet goed reageerden. Voordat de biopten op grote schaal 

verzameld en geanalyseerd kunnen worden, moet duidelijk zijn dat deze procedures veilig 

zijn en dat het verkregen tumormateriaal goed geanalyseerd kan worden. Uit een analyse 

na de eerste 500 biopsieprocedures blijkt dat dit het geval is, zoals staat beschreven in 

Hoofdstuk 2 van dit proefschrift. Hiermee is de weg vrijgemaakt om op grote schaal 

tumorbiopten te verzamelen en inmiddels zijn er een groot aantal Nederlandse 

ziekenhuizen bij dit netwerk aangesloten.  

 Naast het vinden van (genetische) biomarkers voor de uitkomst van de 

behandeling, is de ontwikkeling van nieuwe geneesmiddelen een andere belangrijke pijler 

binnen het oncologische onderzoek. Om die ontwikkeling zo efficiënt mogelijk te laten 

verlopen, is het een uitdaging om zo vroeg mogelijk te zien hoe effectief een 

geneesmiddel is. In Hoofdstuk 3 staat beschreven dat de verhouding tussen de natuurlijke 

groeisnelheid van een tumor en de duur van de behandeling een goede voorspeller is voor 

de effectiviteit (gemeten met 3D-beeldvorming) van behandeling met everolimus.  

 

 

Farmacokinetiek 

Naast kenmerken van de tumor, waarop een geneesmiddel kan aangrijpen, is het net zo 

belangrijk dat er voldoende geneesmiddel bij de tumor aankomt. Ten eerste is het 

belangrijk om een goede startdosering te kiezen, die afgestemd is op de individuele 

patiënt. Veel geneesmiddelen, met name chemotherapieën, worden nog gedoseerd op 

basis van lichaamsoppervlakte (‘body-surface area’; kortweg BSA). BSA wordt berekend 

door middel van een formule, waarin lengte en gewicht worden meegenomen. In 
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Hoofdstuk 4 wordt uitgelegd waarom deze formule vaak geen toereikende correctie biedt 

voor de startdosis van geneesmiddelen binnen de oncologie. Wij menen dat een startdosis 

die in principe bij elke patiënt hetzelfde is, niet perse slechter hoeft te zijn dan doseren op 

basis van BSA.  

 Lengte en gewicht zijn niet de enige factoren die van invloed zijn op de 

farmacokinetiek van een geneesmiddel. Elk geneesmiddel wordt bijvoorbeeld actief in en 

uit de bloedbaan opgenomen door membraantransporters, die onder andere op 

levercellen, darmcellen en tumorcellen zitten. Om tot een patiëntgerichte dosering te 

komen moeten we dus beter rekening gaan houden met deze factoren. In Hoofdstuk 5 is 

gekeken in welke mate de specifieke OATP1B transporteiwitten betrokken zijn bij de 

farmacokinetiek van het middel sorafenib. Hoewel dit onderzoek op cellijnen, muizen en 

patiënten is uitgevoerd, heeft dit onderzoek niet geheel in kaart kunnen brengen wat de 

daadwerkelijke consequenties van de veranderde farmacokinetiek op de klinische effecten 

van sorafenib zijn. Daarom is in Hoofdstuk 6 onderzocht of patiënten met een genetische 

afwijking in deze transporter meer bijwerkingen van sorafenib hadden dan degenen met 

een normaal functionerend eiwit. Deze hypothese is inderdaad bevestigd: afwijkingen in 

het gen dat codeert voor OATP1B1 waren geassocieerd met het optreden van 

bijwerkingen.  

 Omdat de concentraties van het geneesmiddel in het bloed ook tijdens de 

behandeling kunnen veranderen, is het belangrijk om de concentraties periodiek te blijven 

controleren. Van imatinib is bijvoorbeeld bekend, dat de concentraties na drie maanden 

met 30% dalen. De oorzaak daarvan is vooralsnog onbekend. Hoewel anderen eerder 

hebben beweerd dat een gelijktijdige daling van de concentraties van het eiwit AGP in de 

bloedbaan de reden zou kunnen zijn, is in Hoofdstuk 7 aangetoond dat hiervan niet zozeer 

sprake is. Verder onderzoek zal moeten uitwijzen of patiënten met een te lage 

blootstelling aan imatinib wellicht beter af zijn met een dosisverhoging. Datzelfde geldt 

ook voor patiënten die met pazopanib, wederom een ander middel in dezelfde klasse, 

behandeld worden. In Hoofdstuk 8 staat beschreven dat relatief lage concentraties in het 

bloed veilig gecorrigeerd kunnen worden door de dosis geleidelijk te verhogen. Opnieuw 

zal vervolgonderzoek moeten uitwijzen of dit daadwerkelijk tot betere resultaten leidt. 

Door de concentraties te meten in bloed uit een vingerprik in plaats van uit een buis 
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bloed, zou het vervolgen van de geneesmiddelenconcentraties een stuk 

patiëntvriendelijker kunnen verlopen. Dat de metingen met een vingerprik dezelfde 

resultaten geven als met de standaard bloedafnames, hebben we aangetoond en staat 

beschreven in Hoofdstuk 9.  

  

Conclusies 

De ontwikkelingen binnen de oncologie hebben de laatste jaren een vlucht genomen. 

Toch blijft er nog veel ruimte voor verbetering. In dit proefschrift staan een aantal 

voorbeelden van het preciezer maken van de medicamenteuze behandeling door op zoek 

te gaan naar nieuwe (genetische) aangrijpingspunten in de tumor, of door de blootstelling 

aan het geneesmiddel te optimaliseren. Doordat de bestaande onderverdeling van 

tumoren op basis van celtype zal versplinteren, moet toekomstig onderzoek voor elk van 

deze subtype tumoren uitwijzen welk middel daar het beste tegen werkt en bij welke 

blootstelling dat het beste gebeurt. 
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DANKWOORD 
Aan het tot stand komen van dit proefschrift hebben zoveel mensen bijgedragen, dat dit 

hoofdstuk niet toereikend is om iedereen daar persoonlijk voor te bedanken. Toch zal ik 

proberen dat zo volledig mogelijk te doen, te beginnen bij alle patiënten die hebben 

deelgenomen aan de hier beschreven studies. Hun bereidheid om dit belangeloos te doen 

is het fundament van klinisch wetenschappelijk onderzoek. 

 

Mijn beide promotoren ben ik niet minder dank verschuldigd. Prof. dr. Sleijfer, Stefan, ik 

vind het wonderbaarlijk hoe je mij hebt kunnen begeleiden naast al je andere 

werkzaamheden. Je drukke agenda deed niets af aan de vakkundige manier waarop je me 

– altijd op korte termijn – niet alleen van opbouwende kritiek voorzag, maar ook de 

nodige sturing hebt gegeven bij het uitvoeren van de CPCT-studies. De hartelijke woorden, 

die je altijd graag voor me over had, zal ik nog lang meenemen. Prof. dr. Mathijssen, Ron, 

jij blijft me altijd verbazen met de persoonlijke manier waarop je alle promovendi 

begeleidt en met de oneindige gedrevenheid waarmee je je doelen nastreeft. Ik vind het 

bijzonder hoe je deze hele nieuwe groep succesvol hebt opgebouwd. De ontwikkeling die 

ik in Rotterdam heb doorgemaakt is grotendeels te danken aan de ruimte en het 

vertrouwen, die je me daarvoor hebt gegeven. In het bijzonder ben ik jullie beiden enorm 

dankbaar voor jullie actieve betrokkenheid in het afgelopen jaar. 

 

Prof. dr. Huitema, Prof. dr. Van Schaik en Prof. dr. Voest, dank dat jullie dit manuscript 

hebben willen beoordelen als leescommissie. Prof. dr. Aerts, Prof. dr. Van Gelder, Prof. dr. 

Gelderblom en Prof. dr. Schellens, dank dat jullie bereid zijn om in de oppositie plaats te 

nemen.  

 

Dr. Lolkema, Martijn, mijn ‘slakkenfenotype’ sloot niet altijd aan bij de manier waarop jij 

dingen graag geregeld ziet. Toch hebben we – sinds je mij bij mijn eerste 

wetenschappelijke stappen binnen de interne oncologie begeleidde - samen een aantal 

mooie projecten uitgevoerd. Uit het feit dat je me naar Rotterdam gevolgd bent, maak ik 

op dat je mijn vertragende invloed stiekem bent gaan waarderen. Dank voor je 

begeleiding tijdens de afgelopen jaren.  
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Dr. Eskens, Ferry, onze grote plannen voor wetenschappelijke samenwerking bleken niet 

allemaal te realiseren. Alsnog heb je een groot aandeel bij een aantal hoofdstukken in dit 

proefschrift. Daarnaast heb je mijn klinische activiteiten de afgelopen jaren 

gesuperviseerd en heb je mij geholpen om de medische wetenschap in die klinische 

context te leren plaatsen. Dank voor je enorme betrokkenheid. 

 

Dear Sharyn and Alex, many thanks for supervising and coordinating the rifampin study 

and especially for the stay in Memphis. You’ve really introduced me into the fundamental 

part of science. Alice, Shuiying and Aksana, thank you for taking me through all the 

different experiments and for looking after me during the two weeks I was at your lab. 

 

Christa en Geert, jullie hebben je als eerste gewaagd aan de logistiek van de CPCT-studies 

en jullie inspanningen zijn essentieel geweest voor alles wat er nu binnen het CPCT 

gebeurt. Christa, de ‘bioptenpaper’ is grotendeels door jouw inspanningen tot stand 

gekomen. Dank voor al jullie moeite die in deze projecten is gaan zitten. Fleur, het was 

mooi om samen de tweede generatie CPCT-promovendi te vormen bij alle (niet-

wetenschappelijke) CPCT-activiteiten. Succes met de laatste loodjes. 

 

Remy Verheijen, dank voor de prettige samenwerking bij de laatste twee hoofdstukken. 

Kers op de taart was de samenwerking tijdens de derde helft bij de laatste ESMO. Succes 

met het afronden van je eigen proefschrift.  

 

Hoewel er uiteindelijk weinig next-generation sequencing resultaten in dit proefschrift 

terug te vinden is, ben ik veel dank verschuldigd aan allen die hebben geprobeerd om mij 

daar iets over bij te brengen. Marco, Annelies en vooral Ies , jullie stonden altijd klaar in 

Utrecht om de gapende hiaten in mijn kennis geduldig te vullen. Veel dank daarvoor. 

Daniel, onze regelmatige discussies over de resultaten van onder meer de CPCT-01 

hebben helaas (nog) niet geleid tot iets publicabels, maar hopelijk troost het je dat ik er in 

ieder geval een hoop van geleerd heb. Jozien Helleman, John Martens en Erik Wiemer, 

jullie hebben veel met mij om de tafel gezeten om een mooie klinische studie (de CPCT-

04) op te zetten, die helaas nooit van de grond is gekomen. Dat er nooit meer een CPCT-

Dankwoord | 193 
 

studie met rugnummer 04 zal spelen, beschouw ik als terecht respect naar de 

inspanningen die jullie in dit project hebben gestoken. 

 

Bij het verzamelen van alle (klinische) data heb ik de nodige hulp gehad uit meerdere 

windrichtingen. Vooral tijdens de eerste jaren van mijn promotietraject was ik kind aan 

huis bij het CTC van het Erasmus MC. Hoewel vrijwel iedereen van het CTC een bijdrage 

heeft geleverd, wil ik Willeke Bolle, Susan Marinissen, Nelly van der Meer, Robert 

Oostrum, René Vernhout, en Patricia de Vos in het bijzonder danken. Gea van der Hout, 

Lakshmi Mani, Jennifer Samson en Wendy Vorstenbosch, jullie hebben allemaal veel werk 

op de afdeling verricht voor de in dit proefschrift beschreven studies, waarvoor ik jullie erg 

dankbaar ben. Alle stafleden en fellows van het Erasmus MC, bedankt voor jullie actieve 

betrokkenheid bij het benaderen van patiënten voor de studies. De mensen op alle 

verschillende secretariaten (G4, D3, Balie B, behandelcentra, B0zuid) bedankt voor jullie 

hulp bij de planning, in het bijzonder Willy Bierwith, José de Lange en Eline van Munster. 

Marianne Keessen en Ida van Belle, jullie hebben veel betekend voor de logistieke 

processen binnen het CPCT en dus ook voor het tot stand komen van dit proefschrift, veel 

dank daarvoor. Erik van Werkhoven en Henk Botma, dank voor jullie geduld bij het 

verwerken en aanleveren van de klinische CPCT-data. Nicolle Besselink en Jan Beekhuis, 

dank voor jullie gastvrijheid in Utrecht als ik weer eens samples kwam brengen of halen. 

Esther Oomen – de Hoop, dank voor je hulp en opbouwende kritiek bij het stroomlijnen 

van vrijwel alle statistische analyses binnen het PK-lab. Samira, jij hebt je ontfermt over 

alle samples die ik aanleverde voor de PG analyses. Veel dank voor je snelle reacties. 

 

Uiteraard hoort iedereen van het PK-lab (“Translationele Farmacologie”) ook in dit 

dankwoord thuis. Peter, alleen de metingen van midazolam en imatinib benaderen niet 

hoeveel farmacologische kennis van jou in dit proefschrift verwerkt zit. Dank voor alle 

sturing op dat gebied. Inge en Mei, jullie ook bedankt voor het werk dat jullie in alle 

analyses hebben zitten. Vooral van de momenten van bespiegeling op Be-462 heb ik de 

afgelopen jaren genoten. Patricia, we hebben nooit samengewerkt, maar wel vier jaar lang 

schuin achter elkaar gezeten. Bedankt voor alle gezelligheid. Bimla en Robert, dank voor 

jullie noeste arbeid op B0zuid. Het was altijd fijn om even bij jullie te buurten. Jacqueline, 
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dank dat je me hebt ingewerkt op de Daniel, zoals bij het opstellen van de AGP-studie, 

maar vooral bij de verplichte rondleiding langs het dakterras. Van onze discussies over de 

zin van de wetenschap en van andere zaken heb ik (meestal op dat dakterras) genoten. 

Annemieke en Lisette, jullie hebben me de weg gewezen op de centrum locatie. Hoewel 

de kamer soms wat aan de warme kant was, was het leuk om daar samen met jullie te 

zitten. Helaas hebben jullie inmiddels allemaal de oncologie verlaten, maar hopelijk 

vinden we later nog een andere manier om weer samen te werken. Roelof, dank voor je 

positieve inbreng op het lab de afgelopen jaren. De bourgondische derde helften (ESMO in 

Wenen tijdens Oktoberfest...) waren altijd een waar genoegen. Als je nog een keer wat 

over de sora-rifa wil weten, dan weet je me te vinden. Leni, zowel aan de sorafenib- als 

aan de pazopanib-studies heb jij een grote bijdrage geleverd. Dank dat je mij op weg hebt 

geholpen bij de klinische uitvoering van die studies. Veel succes en plezier bij de volgende 

stappen die je binnen de wetenschap aan het maken bent. Astrid en Evelien, een bezoek 

aan/van jullie hoorde bij een werkdag op de Daniel en dat heeft zeker bijgedragen aan het 

werkplezier daar. Bodine, Emma, Femke, Florence, Koen, Stijn en Peric, jullie zijn in de 

loop van de tijd het lab binnen gedruppeld. Het is jammer om straks niet meer dagelijks 

met jullie op het lab te zitten. Allemaal veel succes en vooral plezier de komende jaren. 

Hopelijk houden jullie me een beetje op de hoogte van de ontwikkelingen. Pim, Anne en 

Edwin, ik heb jullie mogen begeleiden bij het schrijven van jullie masterscripties, die 

allemaal tot een (naderende) publicatie hebben geleid. Jullie hebben me regelmatig 

nieuwe dingen geleerd, maar het was vooral leuk om met jullie samen te werken. Edwin, 

heel gaaf dat je nu doorgaat met de onderzoekslijn waar je je masterscriptie mee begon. 

Esther, Jaco, Nick en Wendy, dank dat jullie me geadopteerd hebben in tijden van 

eenzaamheid aan de overkant van de gang. Het was altijd prettig om tijdens of na de lunch 

even met jullie over de zin van het leven te kunnen praten.  

 

Bijzondere dank gaat uit naar mijn paranimfen. Bart, onze studententijd stond bol van de 

onsuccesvolle avonturen: (licht) roeien, WECO, zanglessen, voetballen, etc. Gelukkig 

hebben we er wel veel plezier aan beleefd. Nadat we (gelijktijdig) afstudeerden is het 

allemaal wat serieuzer geworden en nu mogen we ook bijna tegelijk ons proefschrift 

verdedigen over bijna hetzelfde onderwerp. Dat maakt het mooi om jou als paranimf 
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naast me te hebben. Misschien hebben we in de wetenschap dan eindelijk iets gevonden 

wat we wel samen kunnen. Arjan, ik vind het geweldig dat jij ook naast me staat bij de 

verdediging. Vroeger stonden we vaak samen op de voetbal- of tennisbaan, wat voor mij 

als 2 jaar oudere broer niet altijd even goed voor mijn zelfvertrouwen was. Toen je later 

nog wel eens een zinnetje uit mijn schoolverslagen wilde overnemen voor die van jezelf, 

had ik weer even de illusie om je grote broer te kunnen spelen. Inmiddels ben je me weer 

ouderwets links en rechts aan het inhalen met al je opleidingen en met je eigen 

promotietraject. Hoewel ik me daar eigenlijk boos om zou moeten maken, ben ik vooral 

hartstikke trots op wat je allemaal aan het klaarspelen bent. Dounia, jij bent natuurlijk 

stiekem de motor achter Arjan en het is hartstikke mooi dat jij inmiddels een onderdeel 

van de familie bent. 

 

Ma van Stuijvenberg en de hele schoonfamilie, dank voor de warme manier waarop ik zo 

snel welkom ben geheten binnen jullie familie. Ik kijk uit naar de jaren die nog komen. 

 

Lieve pa en ma, aan jullie heb ik te danken dat ik hier überhaupt sta. Mam, jij was 

misschien wel de grootste drijfveer om toch geneeskunde te gaan doen. Pa, jouw 

onvermoeibare pogingen om me warm te maken voor de wetenschap lijken nu (hoewel 

On the origin of species nog altijd ongelezen in de kast staat) pas eindelijk tot me door te 

dringen. Ik ben jullie enorm dankbaar voor jullie grenzeloze steun en voor alles wat ik aan 

jullie te danken heb. Daarbovenop heb ik het laatste half jaar nog meer bewondering voor 

jullie beiden gekregen. Ik hoop nog heel lang van jullie te kunnen genieten. 

 

Lieve Andrieske, ongeveer aan het begin van mijn promotietraject leerden wij elkaar 

kennen. Vanaf toen was al duidelijk dat wij bij elkaar horen en dat gevoel is sindsdien 

alleen nog maar sterker geworden. Ik ben enorm blij dat wij de rest van ons leven aan 

elkaar vast zitten en dat we komend jaar gaan trouwen. Onze toekomst samen gaat alleen 

nog maar mooier worden. 
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Specific courses (e.g. Research school, Medical 
Training) 
- CPO minicourse in methodology 
- Basic and Translational Oncology (MOLMED) 
- Molecular Diagnostics (MOLMED) 
- ‘Integrity in Research’ (Medical Ethics) 
- Genetics for Dummies (MOLMED) 
- Survival Analysis Course (MOLMED) 
- English Biomedical Writing and Communication 
(MOLMED) 
- Statistics (NIHES) 
- NONMEM course 

 
 
2013 
2013 
2013 
2013 
2014 
2014 
2015 
 
2015 
2015 

 
 
8 
 
 
 
 
 
 
 
 
24 

 
 
0.5 
1.8 
1 
2 
0.5 
1 
3 
 
5.7 
2 

Seminars and workshops 
- Training OpenClinica 
- Seminar Spotlight on Individualized Medicine  
- Pharmacogenetics workshop  
- Photoshop and Illustrator CS 6 workshop 
- MS Excel: Advanced workshop 

 
2013 
2013 
2014 
2014 
2014 

 
8 
4 
4 
 
 

 
0.5 
0.25 
0.25 
0.3 
0.4 

Presentations 
- Translational Pharmacology meetings, Erasmus MC 
- CPCT meetings 
- NVFG symposium 
- CPCT symposium 
- Young Oncologists Evening, Erasmus MC 
- Wengen op de Wadden 
- 1st International Workshop on Dose Optimization 
Strategies for Targeted Drugs – Focus on Oncolytics 
- Annual Ethics for Medics Congress 
- Scientific meeting, Medical Oncology, Erasmus MC 
- European Cancer Congress 
- FIGON Dutch Medicine Days 
- 14th International Congress of TDM & Clinical 
Toxicology  
- ASCO 
- JNI Bridge Meeting 
- ESMO 
- ESMO Immunology 

 
2013-2016 
2013-2016 
2014 
2014-2016 
2015 
2015 
2015 
 
2015 
2015 
2015 
2015 
2015 
 
2016 
2016 
2016 
2016 

 
 
 
 
 
 
 
 
 
 

 
2 
2 
0.5 
1,5 
0.5 
0.5 
0.5 
 
0.5 
0.5 
0.5 
0.5 
0.5 
 
0.5 
0.5 
0.5 
0.5 

(Inter)national conferences 
- CGC kick-off meeting 

 
2013 

 
8 

 
0.5 
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- NVKFB spring meeting 
- PhD-day Erasmus Medical Center 
- CPCT symposium 
- STO annual meeting 
- Continuum Oncologie 
- Daniel 100 symposium 
- 1st International Workshop on Dose Optimization 
Strategies for Targeted Drugs – Focus on Oncolytics 
- ESMO 
- FIGON Dutch Medicine Days 
- ASCO 
- ESMO 
- ESMO immuno-oncology 

2013- 2016 
2013 
2013-2015 
2013 
2014, 2015 
2014 
2015 
 
2015 
2015 
2016 
2016 
2016 

32 
8 
24 
8 
16 
12 
16 
 
24 
8 
24 
24 
24 

2 
0.5 
1.5 
0.5 
1 
1 
1 
 
2 
0.5 
2 
2 
2 

Other 
- IKNL netwerkdagen 
- Scientific meeting, Medical Oncology, Erasmus MC 
- Internship Pharmaceutical Sciences, Memphis 
- Wengen op de Wadden 

 
2013 
2013- 2016 
2015 
2015 

 
16 
16 
80 
40 

 
1 
1 
5 
3 

    
 
2. Teaching 

   

Lecturing  
- Lecture “Early phase research in oncology” 

 
2015 

 
 

 
0.5 

Supervising practicals and excursions, tutoring 
- Tutoring first year students 
- Tutoring “klinische begeleiding beroepspraktijk” 

 
2013 
2014 

 
 
10 

 
1.5 
1 

Supervising Master’s thesis 
- Pim Laven 
- Anne Lenting 
- Edwin Basak 

 
2015 
2015 
2016 

  
1 
1 
1 

Other 
- Deel BKO 

 
2016 

 
16 

 
1 
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