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Abstract

A Robotic Mobile Fulfillment System is a recently developed automated, parts-to-

picker material handling system. Robots can move storage shelves, also known as

inventory pods, between the storage area and the workstations and can continually

reposition them during operations. This paper shows how to optimize three key

decision variables: (1) the number of pods per product (2) the ratio of the number of

pick stations to replenishment stations, and (3) the replenishment level per pod. Our

results show that throughput performance improves substantially when inventory

is spread across multiple pods, when an optimum ratio between the number of pick

stations to replenishment stations is achieved and when a pod is replenished before

it is completely empty. This paper contributes methodologically by introducing a

new type of Semi-Open Queueing Networks (SOQN): cross-class matching multi-

class SOQN, by deriving necessary stability conditions, and by introducing a novel

interpretation of the classes.

Introduction

E-commerce order fulfillment can be quite challenging for warehouses. Assortments tend

to be large, and the number of daily orders and relative demand across products can

fluctuate strongly. Robotic Mobile Fulfillment Systems (RMFS) are a new category of
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automated storage and part-to-picker order picking systems developed specifically to ful-

fill e-commerce orders. These have been brought to the market by companies such as

Amazon Robotics (previously known as Kiva Systems, (Business Wire)), Swisslog, Inter-

link, GreyOrange, Scallog, and Mobile Industrial Robots. Implementations so far suggest

that picking rates may double compared to traditional picker-to-parts systems (Wulfraat).

The core innovation of an RMFS are the robots that transport the pods, i.e., shelves con-

taining products, to workstations. At a workstation, a pod queues until a worker either

picks items from it, or replenishes items on the pod, see Figure 1a and 1b.

(a) Robot carrying a pod (Wurman and Enright,

2011)

(b) Top view of a workstation

Figure 1: Illustration of an inventory pod and close-up of a workstation

An RMFS is flexible in operations. Pods do not need to have a fixed position in the storage

area, but can instead be repositioned continually throughout the day, see also Wurman

and Enright (2011). Inventory can thus be positioned close to the workstations as needed.

In addition, a product can be stored across multiple pods that can be positioned inde-

pendently from each other. The travel times of the pods decrease if the inventory of a

product is spread across multiple pods, because it becomes more likely that a suitable

pod is located close to a workstation, and because different pods can be located close

to different workstations. If the inventory on a pod drops below a threshold level, that

pod is transported to a replenishment station to be fully replenished. In an e-commerce

warehouse, one of the main performance metrics is the order throughput time, which

improves if the travel times decrease. An interesting, unresolved aspect in the design
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of an RMFS is the optimal number of pods over which a product’s inventory should be

spread to minimize order throughput time. Availability of products is another benefit of

spreading inventory across multiple pods. If all inventory of a product is allocated to one

pod, there is a risk of temporary unavailability of that product for picking when that pod

is waiting for replenishment, or when it is in use for another order. Since in e-commerce

environments most orders are single-line, temporary unavailability of that pod directly

delays the orders for that SKU. If inventory is spread across multiple pods, it becomes

less likely that an order for many units can be fulfilled with inventory from a single pod.

In addition, if inventory is allocated across multiple pods, replenishment happens more

frequently because the inventory per product on a pod will drop below the replenishment

level sooner. This is inefficient as more trips are needed to replenish the same number

of units. In both cases, orders for that product are delayed and order throughput time

increases. In practice we observe that while some companies divide the inventory of a

product over many locations (Amazon for example), others choose to keep products closer

together (Timberland for example).

The impact of the trade-off also depends on the replenishment level. A higher replenish-

ment level per product on a pod means that replenishment happens more frequently and

may therefore cause additional robot travel time and additional queueing at the worksta-

tions. However, it also means that the average inventory on a pod is higher, causing the

larger sized orders to wait less. The queueing at the workstations is also influenced by the

ratio of the number of pick stations to replenishment stations. A higher replenishment

level does not necessarily lead to more queueing if the number of replenishment stations

is also higher. If the number of pods per SKU and the replenishment level are not jointly

optimized, long and unnecessary delays may occur that can have a large impact on order

throughput time. If the ratio of the number of pick stations to replenishment stations

is not optimized, pick stations may have unacceptably low utilization while too much

queueing occurs at the replenishment stations, or vice versa.

In view of these trade-offs, this paper studies how to minimize the order throughput

time by optimizing three decision variables: (1) the number of pods per product, (2)

the ratio of the number of pick stations to the number of replenishment stations, and

3



(3) the replenishment level per pod. We develop a novel queueing approach to jointly

analyze the effect of these three variables. The inventory control policies are embedded in

the queueing model’s state transitions. The analytical model is developed to gain more

insights into the system and to solve small instances, but unfortunately it cannot solve

large, realistic instances, which are analyzed using simulation instead. Section 1 discusses

the literature and motivates why a queueing model is suitable for analyzing these decision

variables. To analyze the decisions, Section 2 develops a new type of queueing network,

the cross-class matching multi-class Semi-Open Queueing Network (SOQN) and shows

several counter-intuitive necessary stability conditions. Section 3 provides the results and

insights. Section 4 concludes and presents a future outlook.

1 Literature

Some key features of the system are that robot travel times are stochastic, that queueing

at the workstations comprises a substantial part of the order throughput time and that

suitable pods have to be retrieved that can fulfill the orders. This implies that tradi-

tional inventory models such as (r,Q) or (s, S) policies cannot be used, as these cannot

model some or all of these characteristics and their influence on the order throughput

time. On the other hand, queueing networks have been used extensively for analyzing the

performance of autonomous vehicle storage and retrieval systems (AVS/RS) and auto-

mated storage and retrieval systems (AS/RS). These networks can optimize key decision

variables, because the low computation time allows evaluation of a large set of parame-

ters. For example, Kuo et al. (2007) use queueing models to predict vehicle utilization

and service, waiting and cycle times while varying the number of aisles, storage columns

per aisle, storage tiers in the system, vehicles in the system, and the number of lifts in

AVS/RS. Fukunari and Malmborg (2009) estimate the expected utilization of resources

in an AVS/RS machine using a queueing model that incorporates both single and dual

command cycles. Queueing networks can also incorporate the stochasticity of vehicle

traveling and worker speed and can capture the resulting congestion effects (see Marchet

et al. (2013), Roy et al. (2013), Roy et al. (2015a), Roy et al. (2015b), Roy et al. (2016)

and Tappia et al. (2016)). Networks where orders arrive and depart from the system can
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be divided into two broad categories: Open Queueing Networks (OQN) (Heragu et al.

(2011)) and Semi-Open Queueing Networks (SOQN). SOQNs can capture the matching

of different kinds of resources and can therefore include the time an order has to wait

before being matched with a vehicle. This could be used to model the matching of orders

and pods. For example, Roy et al. (2012) use a multi-class semi-open queueing network

to analyze the performance impact of system parameters such as the number of vehicles

and lifts, the depth-to-width ratio, and the number of zones. They also study the impact

of operational decisions such as vehicle assignment rules on vehicle utilization and order

cycle time. A disadvantage of SOQNs is the absence of product form solutions and ex-

act solutions, only approximations exist. Ekren et al. (2014) apply the matrix-geometric

method to analyze a SOQN for an AVS/RS, which results in quite accurate approxima-

tions for the metrics. Roy et al. (2012) develop a new decomposition technique to evaluate

the system.

Lamballais et al. (2017) and Nigam et al. (2014) develop SOQN and CQN queueing net-

works to estimate the performance of picking operations in an RMFS. Lamballais et al.

(2017) optimize the layout of an RMFS warehouse by estimating the expected order cycle

time, workstation utilization, and robot utilization for a given layout and by determining

the optimal dimensioning of the storage area and the optimal placement of the worksta-

tions. They do not consider replenishment but only look at pick operations.

However, a disadvantage of these SOQN models is that only orders and pods of the same

type can be matched. In our system, if pods and orders are matched there may be some

asymmetry: an order that requires a certain number of units can be fulfilled with a pod

that contains that number of units or more. In addition, the optimal spreading of the

inventory of a product across storage shelves has not been researched yet.

This paper is the first to study how inventory should be spread across pods, how the ratio

of pick stations to replenishment stations should be set, and what the replenishment level

should be, such that the order throughput time is minimized.
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2 Model

This paper determines the optimal number of pods over which the inventory of a product

should be spread, the optimal ratio of the number of pick stations to replenishment

stations, and the optimal replenishment level of a pod. We construct a queueing network

using two main ideas. The first idea is to use the various movements of a pod as queueing

stations within the network. The second idea is to capture the number of units of a product

as classes within the queueing network. The class of a pod signifies how many units of a

product are left on the pod, and the class of an order indicates how many units the order

requires. These two ideas are explained in detail in the sections below. In modeling the

queueing network, we make the following assumptions to keep the model tractable. (1)

Orders are assumed to be single-line orders. This is not too strong a simplification as

RMFS were built especially for e-commerce order fulfillment. An order can still require

multiple units of an SKU. In our context, a small order thus requires few units of an SKU

and a large order requires many units of an SKU. (2) Orders arrive according to a Poisson

process. (3) Pods are dedicated to an SKU. i.e., a pod can carry only one SKU at a time

and is always replenished with the same SKU. The inventory of an SKU can be spread

over multiple pods. (4) The maximum number of units in inventory per product is fixed,

as is the number of workstations. (5) The pick or replenishment station at which a pod

will be handled is chosen randomly. (6) Multiple pick stations can be modeled as one

queueing station with multiple servers and similarly for multiple replenishment stations.

(7) Pods are stored at any of the storage locations with equal probabilities; no distinction

is made between fast and slow moving SKUs. (8) If multiple, equally suitable pods are

available for order picking, the one that is nearest to the workstation will be fetched. Note

that, if the inventory of a product is spread across more pods, travel times will become

shorter on average, because it becomes more likely that a suitable pod is close to a pick

station. This is elaborated in section 2.2. (9) The number of robots is not a constraint and

does not delay any of the processes. (10) An order has to be matched with exactly one

pod and “order splitting” is not allowed. This implies that if each of the pods carrying a

certain SKU have some, but insufficient, units for an order, the order cannot be matched

and needs to wait until one of the pods is replenished. (11) A pod can only be matched
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with one order at a time and “order merging” is not allowed. This implies that if there

are two orders that each require one unit and there is a single pod with two units, the

pod will be matched with the orders sequentially.

2.1 Pod Movement

From the perspective of a pod, the following eight processes occur, see Figures 2 and 3.

The pod (1) waits to be matched with an order, (2) waits for a robot to come to its

storage location, (3) moves to the pick station, (4) queues for its turn at the pick stations

and then has items picked from it. If its inventory is not below the replenishment level,

(5) the pod returns to the storage area, otherwise it (6) moves to a replenishment station,

(7) queues for its turn and is replenished and (8) returns to the storage area.

Each of these processes can be modeled as a queue, where the distribution of the travel

times in a situation becomes the distribution of the service time of the corresponding

queue. The pick stations are modeled as the servers of the queueing station corresponding

to process (4) and the replenishment stations are modeled as the servers of the queueing

station corresponding to process (7). The queueing network, which is shown in Figure 3,

is a Semi-Open Queueing Network that captures the matching of an order to a pod. The

numbers in Figure 2 and Figure 3 show which process corresponds with which queue and

Table 1 shows the modeling approach for each of the decision variables. Here S is the

number of SKUs, M s is the number of pods of SKU s, r is the ratio of the number of pick

stations to replenishment stations and ξ is the replenishment level, which is expressed as

a percentage of the capacity of a pod, U .

2.2 Travel Times and Service Times

For steady state performance analysis, the process in Figure 2 repeats indefinitely and

each of these eight processes can be translated one-to-one to a queue, as shown in Figure

3. The handling times at the pick and replenishment stations are assumed to follow

an exponential distribution. The number of servers at queue (4) equals the number of

pick stations in the RMFS and the number of servers at queue (7) equals the number of

replenishment stations. The travel times are modeled as Infinite Server (IS) stations, since
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from storage to storage from storage to pick station picking at picking station

from pick station to storage

from pick station to replenishment stationreplenishing at the replenishment stationfrom replenishment station to storage

no replenishment

replenishment needed

matching pod and orderorder

1

2 3 4

5

678

Figure 2: Illustration of pod movement

Table 1: Modeling approach for each of the decision variables

Symbol Decision variable Modeling approach

∑S
s=1M

s Total number of pods Number of “tokens” circulating in the

SOQN (see Buitenhek et al. (2000))

r Ratio of the number of pick

stations to replenishment sta-

tions

Ratio of the number of servers at the pick

queue to the number of servers at the re-

plenishment queue

ξ Replenishment level Pod classes in the SOQN
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pick stations

replenishment stations

synchronization station

pod queue

request queue
requests leave

µr

µss

µps

µpr

µpr

µps

µrs

µrs

µss

storage to storage storage to pick station

from pick station to storage

from pick station to
replenishment station

from replenishment station to storage

1

2 3
4

5

6

7

8

orders of class (u, s)
arrive with rate λu,s

µp

µsp

µsp

µp

µr

Figure 3: Queueing model of pod movements in the RMFS
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pods can start traveling immediately and do not have to wait for other pods to finish.

At these IS stations, the average service time corresponds to the average time needed for

traveling. The aisles have a single travel direction to prevent deadlock and reduce aisle

congestion. Unloaded robots can move underneath the pods and do not need to use the

aisles. Movement through an aisle with a pod in the area between the workstations and

storage area is also single directional, see also Figure 4.

Figure 4: Example of travel directions in a part of the warehouse

This means that the travel distance between any two locations can be calculated exactly

(see also Lamballais et al. (2017)). We make the following assumptions when calculating

the travel times: (1) Robot velocity is constant. This can be an average velocity that

takes acceleration and deceleration into account (see also Lamballais et al. (2017)). (2)

Delays due to robot congestion or blocking in aisles, battery recharges, or robot downtime

do not occur.

As mentioned earlier, we assume that storage and retrieval occur at a random location.

For a single pod, the distribution of the travel time can be created by calculating the

travel time from the current location to every possible destination and giving these equal

probabilities of occuring. These probabilities can be adjusted to suit the application,

for example, to include storage zones for products with different pick frequencies (see

Lamballais et al. (2017)).

For multiple pods, the travel time distribution can be created as follows. Suppose that

the cumulative distribution function (cdf) of the travel times of a single pod is given by

F (x). The travel times decrease if the inventory of a product is spread across multiple

pods, because the pod nearest to a workstation can be chosen. The cdf of the travel times
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of the nearest pod of SKU s is given by F̃ (x) = 1 − [1 − F (x)]M
s
. For any IS station

modeling travel times, the service time distribution has the cdf F̃ (x) corresponding to

those travel times.

2.3 Inventory Levels

If every order line requires only one unit of a product, the queueing model can be solved

using the methods in Buitenhek et al. (2000) and Bolch et al. (2006). If an order line

requires more than one unit, the behavior of the queueing network becomes more compli-

cated, because a pod with u remaining units cannot fulfill an order line that needs j units

if j > u. It is therefore necessary to keep track of the number of units per product on

each pod and the number of units required by each order. The queueing network achieves

this by modeling the number of units remaining on a pod as the class of that pod and

the number of units an order requires as the class of that order. In other words, a pod

dedicated to SKU s with u units remaining has class (u, s). Since pods are dedicated to

SKUs, the SKU class s of a pod cannot change. Similarly, orders for a product s that

require u units have class (u, s) and arrive with a rate λu,s. Since orders are single-line

orders, s simply denotes the product of the order. For a class (u, s), index u refers to the

“inventory class”, and index s refers to the “SKU class”.

The replenishment level, denoted by ξ, is a percentage between 0% and 100%, the max-

imum number of units on a pod is denoted by U , so 0 ≤ u ≤ U , and the replenishment

point is ξU . Consider a pod that leaves a pick station. If the pod has inventory class

j, j > ξU , it returns to the storage area, but if it has inventory class j ≤ ξU , it moves

to a replenishment station. In other words, the routing depends on the inventory class of

the pod, and the routing probability to go from process (4) to process (6) in Figure 3 is

either 0 or 1.

At the synchronization station (see process (1) in Figure 3), a pod of class (j, s) can be

matched with an order of class (i, s) if i ≤ j. We call this kind of matching “cross-class”

matching. Due to this cross-class matching, both orders and pods with the same SKU

class may be waiting at the synchronization station simultaneously. This happens if j < i

for all pods and all orders. If multiple orders are available, the pod is matched with the
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order of the highest suitable class available. In other words, the pod is matched with the

order that requires the most units, but no more units than the current pod inventory. At

the pick station, the pod’s inventory class is lowered after picking. If the pod belonged to

class (j, s) and was matched with an order of class (i, s), then the pod’s class after picking

changes to class (j − i, s), because j − i is the number of units left after picking. Figure

5 illustrates these class switches for a situation where the maximum inventory level is six

units and the replenishment level is zero.

time
0

class 6

class 5

class 4

class 3

class 2

class 1

number of units on pod

pick: order line with 2 units

pick: order line with 3 units

pick: order line with 1 unit, pod becomes empty

replenishment

replenishment level

Figure 5: Illustration of a pod’s class switching

Since pods are dedicated to a single SKU, a switch from a class (u, s) to a class (u′, s′)

is not allowed for any s 6= s′.

2.4 Creating the Compact Queueing Model

SOQN models do not have a product form, although good approximation methods exist

(Buitenhek et al. (2000), Jia (2005)). However, existing methods for analyzing multi-

class SOQN models cannot be applied to the model in Figure 3, because these methods

cannot analyze a network that uses cross-class matching. Therefore, we construct a novel

Continuous Time Markov Chain (CTMC) to analyze the multi-class SOQN with cross-

class matching. Since the size of the state space of the Markov Chain corresponding to the

12



queueing network in Figure 3 grows rapidly in the number of pods and classes, a (nearly)

equivalent, compact queueing network is created which state space size grows less rapidly.

The Markov Chain of this compact queueing network can then be used to analyze the

system. To transform the queueing network in Figure 3 to the compact queueing network

requires an additional, intermediate queueing network, which is shown in Figure 6.

The transformation works as follows. In the queueing network in Figure 3, no queueing

occurs at the IS stations that model travel. Interaction of the robots via queueing only

occurs at the pick and replenishment stations, and at the synchronization queue. The

network can therefore be reduced to three queues, a synchronization queue, a pick queue,

and a replenishment queue. This reduction is done by grouping the IS stations and the

pick and replenishment queues into two groups as shown in Figure 6. Each group can

then be transformed into an equivalent load-dependent queue using Norton’s theorem

(Bolch et al. (2006)). This results in the compact queuing network shown in Figure 7. To

create the two groups, the IS station in Figure 3, process 5, needs to be changed because it

cannot readily be incorporated into a group with the pick stations or into a group with the

replenishment stations. However, in a layout where the pick stations and replenishment

stations are next to each other, at the same side of the storage area, processes 5 and 8

modeling travel from pick stations to storage and travel from replenishment stations to

storage will have about identical service time distributions. Process 5 can be directly after

the pick stations, so in other words, even if the pod goes for replenishment, it first has

to visit this IS station. However, by omitting process 8 in the other group of queues, the

network consisting of two groups of queues still contains the same underlying processes.

This results in two groups of queues as shown in Figure 6.

In the compact queueing model in Figure 7, the service rate at the picking queue with i

pods in the queue is µ̃p(i) and the service rate at the replenishment queue with i pods

is µ̃r(i). As the number of pick stations is equal to or larger than one, µ̃p(1) ≤ µ̃p(i) for

i > 1. A similar statement holds for µ̃r(i). To further reduce the size of the state space,

we change the class switching mechanism. Class switching of the pods happens before

rather than after the picking queue. This means that the information about which class

of orders was matched with each pod does not have to be included in the state space of
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the Markov Chain. This reduces the state space without affecting the results that can be

obtained from the queueing network.

pick stations

replenishment stations

synchronization station

pod queue

request queue
requests leave

µr

µss µsp

µps

µpr

µpr

µps

µss µsp

storage to storage storage to pick station

from pick station to storage

from pick station to
replenishment station

orders of class (u, s)
arrive with rate λu,s

µp

µp

µr

Figure 6: Intermediate queueing model

O (orders)

P (Picking)

R (Replenishment)

Q (Pods)

class switching happens here
orders of class (u, s)
arrive with rate λu,s

orders leave

µ̃p(i)

µ̃r(i)

Figure 7: The compact model
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2.5 Model States and Transitions

This section explains the states and transitions of the compact queueing model in Figure

7. Let S be the number of SKUs in the system and let U be the maximum number of units

a pod can contain. Then the total number of inventory classes per SKU is U + 1, since a

pod can also be empty (inventory class zero). The state space of the Markov Chain for the

compact queueing network in Figure 7 consists of four parts: (1) A “waiting orders part”,

denoted by O , which is a vector that contains the number of orders of each class that

are waiting at the synchronization station. Since orders for zero units cannot arrive, the

dimension of O equals U×S. (2) A “waiting pods part”, denoted by Q , which is a vector

that contains the number of pods of each class that are waiting at the synchronization

station. Since pods with fewer units than replenishment level ξ go for replenishment

and not to the synchronization station, the dimension of Q equals (U − bξUc)S. (3) A

“picking part”, denoted by P , that contains the number of pods of each class that are

waiting to be picked. As discussed earlier, to reduce the size of the state space class

switching happens before this queue and hence the order leaves the system before this

queue. This reduction trick does not change the average order throughput time, since

the average service time for the pods at the picking queue is known and is the same as it

would be for the orders. This also means that the dimension of P equals U × S rather

than (U + 1)S, because the number of units of the order have already been subtracted

from the class of the pod. Hence a pod at the pick queue cannot be full. Switching class

before the pick queue avoids including information about the orders and order assignment

to pods in the Markov Chain, which strongly reduces the size of the Markov Chain. (4)

A “replenishment part”, denoted by vector R, which contains the number of pods of each

class that are waiting to be replenished at the replenishment queue. Since only pods with

bξUc units or less go for replenishment, including pods that are empty, the dimension of

R equals (bξUc+ 1)S. The state can hence be described as (O ,Q ,P ,R).

Let Oψ
u,s denote the number of orders of class (u, s) waiting at the synchronization station

in state ψ, Qψ
u,s the number of pods of class (u, s) waiting at the synchronization station

in state ψ, Pψ
u,s the number of pods of class (u, s) at the pick queue in state ψ, and Rψ

u,s

the number of pods of class (u, s) at the replenishment queue in state ψ. To limit the
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number of states, the total number of orders allowed to wait at the synchronization station

is limited to K, in the sense that for any state ψ it must hold that
∑

u,sO
ψ
u,s ≤ K. In a

stable system, the number of orders waiting at the synchronization station should not grow

too large. Therefore, as long as K is not too small, its effect on the performance metrics

is negligible. The size of the state space is also limited by the number of pods per SKU,

denoted by M s, in the sense that
∑

u

(
Qψ

u,s + Pψ
u,s + Rψ

u,s

)
= M s,∀s, ψ. Appendix A

shows how to calculate the size of the state space for various parameters.

Three categories of transitions exist: (1) The arrival of an order, which either (1a) matches

with a pod, (1b) queues at the synchronization station, or (1c) is rejected from the system.

(2) The completion of picking a pod, after which either (2a) the pod matches with an order,

(2b) the pod queues at the synchronization station, or (2c) the pod goes for replenishment.

(3) The completion of replenishing a pod, after which either (3a) the pod matches with

an order, or (3b) the pod queues at the synchronization station. In other words, for

each category of transition, the entity involved (an order or a pod) either matches or

does not match with its complement (pod or order). In addition to this, the transitions

also include order rejection (1c) and replenishment (2c). Order rejection occurs when the

arriving order cannot be matched with a pod and K orders are already queueing at the

synchronization station.

If the inventory class of a pod falls at or below bξUc after picking, the pod goes to the

replenishment station to be replenished. After replenishment, the pod has class (U, s)

so it can match with any waiting order for SKU s. Table 2 shows for each transition:

the transition rate, the requirements that the state must meet for the transition to be

possible, and how the state changes due to the transition. No information about the

sequence of arrival is stored in the state, so at the pick and replenishment queue the

queueing discipline is Random rather than FCFS. The number of states is finite and all

the transitions are known, a generator matrix Γ and the state probabilities π can be

calculated via πΓ = 0 under the condition that π1 = 1 (Bolch et al. (2006), page 69).

Once the state probabilities have been calculated, they can be used to derive any metric

of interest for the system.

As an example, suppose that there is just one SKU, so s = 1, and that U = 2 and ξ = 0,
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Table 2: Transitions from a state ψ to a state σ

No Transition

rate

Requirements for transi-

tion of current state ψ to

next state σ

Change of current state ψ to next

state σ after transition

1a
∑

u,s λu,s ∃j|j ≥ u,Qψ
j,s > 0 h = argmin

j
{j ≥ u,Qψ

j,s > 0}

Qσ
h,s := Qψ

h,s − 1, Pσ
h−u,s := Pψ

h−u,s + 1

1b
∑

u,s λu,s @j|j ≥ u,Qψ
j,s > 0

∑
u,sO

ψ
u,s < K

Oσ
u,s := Oψ

u,s + 1

1c
∑

u,s λu,s @j|j ≥ u,Qψ
j,s > 0

∑
uO

ψ
u,s = K

State remains the same, σ = ψ

2a µ̃p(
∑

u,sP
ψ
u,s) Pψ

u,s > 0, u > ξU

∃j|u ≤ j,Oψ
j,s > 0

h = argmax
j
{j ≤ u,Oψ

j,s > 0}

Oσ
h,s := Oψ

h,s − 1, Pσ
u,s := Pψ

u,s − 1

Pσ
u−h,s := Pψ

u−h,s + 1

2b µ̃p(
∑

u,sP
ψ
u,s) Pψ

u,s > 0, u > ξU

@j|u ≤ j,Oψ
j,s > 0

Pσ
u,s := Pψ

u,s − 1

Qσ
u,s := Qψ

u,s + 1

2c µ̃p(
∑

u,sP
ψ
u,s) Pψ

u,s > 0, u ≤ ξU Pσ
u,s := Pψ

u,s − 1, Rσ
u,s := Rψ

u,s + 1

3a µ̃r(
∑

u,sR
ψ
u,s) Rψ

u,s > 0

∃j|Oψ
j,s > 0

h = argmax
j
{Qψ

j,s > 0}

Oσ
h,s := Oψ

h,s − 1, Rσ
u,s := Rψ

u,s − 1

Pσ
U−h,s := Pψ

U−h,s + 1

3b µ̃r(
∑

u,sR
ψ
u,s) Rψ

u,s > 0

@j|Oψ
j,s > 0

Rσ
u,s := Rψ

u,s − 1, Qσ
U,s := Qψ

U,s + 1
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then O = (O1,1,O2,1), Q = (Q1,1,Q2,1), P = (P0,1,P1,1) and R = (R0,1). Suppose

furthermore that there are two pods in the system. One is waiting at the pick queue with

one unit left, the other is at waiting the replenishment queue and an order is waiting for one

unit at the synchronization station. The state would then be ψ = ((1, 0), (0, 0), (0, 1), (1))

and Figure 8 shows the transitions into and out of this state. In Figure 8, λ1,1 is the arrival

rate of orders requiring just one unit, λ2,1 is the arrival rate of orders requiring two units,

µ̃p(1) is the service rate at the pick station with one pod, µ̃p(2) is the service rate with

two pods, µ̃r(1) is the service rate at the replenishment queue with one pod, and µ̃r(2) is

the service rate with two pods.

λ1,1

λ2,1

µ̃p(1)

µ̃r(1)

λ1,1

µ̃p(2)

µ̃r(2)

((1, 0), (0, 0), (0, 1), (1))

((1, 1), (0, 0), (0, 1), (1))

((0, 0), (0, 0), (1, 0), (1))

((0, 0), (0, 0), (0, 2), (0))

((2, 0), (0, 0), (0, 0), (2))

((0, 0), (0, 0), (0, 1), (1))

((1, 0), (0, 0), (1, 1), (0))

((2, 0), (0, 0), (0, 1), (1))

O Q P R

O Q P R

O Q P R

O Q P R

O Q P R

O Q P R

O Q P R

O Q P R

Figure 8: Example of transitions for U = 2 and ξ = 0

2.6 Aggregate Classes

A disadvantage of using classes to indicate the number of units is that the number of

classes can grow large quickly. To mitigate this disadvantage, “aggregate classes” can be

constructed for each SKU s. An aggregate class contains a range of m inventory classes

of SKU s. An example would be to create three aggregate classes for each SKU, where

aggregate class number 1 is labeled “low”, number 2 is labeled “medium” and number

3 is labeled “high”. If U = 29, and m = 10, then aggregate class low would contain

inventory classes 0 to 9, aggregate class medium would contain inventory classes 10 to 19,
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and aggregate class high would contain inventory classes 20 to 29. So a pod with 14 units

would belong to aggregate class medium. The main difference that comes with using ag-

gregate classes is that the way in which a pod changes class is no longer deterministic, but

stochastic. As described earlier, when using inventory classes, the inventory class of the

pod after picking equals the inventory class of the pod before picking minus the inventory

class of the order that the pod is matched with, so in other words the class changes of

the pod are completely deterministic. This is not the case when using aggregate classes.

For example, if a pod with 14 units is matched with an order for 2 units, then the pod

has 12 units left after picking. When using inventory classes this means a class change

from class 14 to class 12, but when using aggregate classes the pod retains its aggregate

class medium. In other words, a pod of aggregate class medium matched with an order of

aggregate class low and after picking the pod had aggregate class medium. However, had

the order required 6 units, the pod would have been left with 8 units after picking and

would have changed from aggregate class medium to aggregate class low. In other words,

a pod of aggregate class medium matched with an order of aggregate class low and after

picking the pod had aggregate class low. As this example shows, when using aggregate

classes the way in which a pod changes class is stochastic rather than fixed.

The main assumptions for adopting aggregate classes are the following. (1) Both pods

and orders have aggregate classes, i.e., it is not possible that pods are designated with

aggregate classes, whereas orders are designated with inventory classes. (2) When ag-

gregate classes are used, the exact number of units needed by orders and left on pods is

not tracked. (3) Every aggregate class contains the same number of m inventory classes.

(4) The replenishment level is an inventory class and determines the probability of going

for replenishment. In the example, if the replenishment level is 12, a pod of aggregate

class low goes for replenishment with probability 1, and a pod of class medium goes for

replenishment with probability 0.3. (5) Orders match with a pod of the same or higher

aggregate class. If an order matches with a pod of the same aggregate class, we assume

that the number of units that the order actually requires is less than or equal to the

number of units that are actually left on the pod.

With inventory classes, if a pod of class a matches with an order of class b, the class of
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the pod would be a − b after picking. As it turns out, under the assumptions above a

similar rule holds for aggregate classes, shown in Theorem 2.1.

Theorem 2.1. If a pod of aggregate class number α, with α ≥ 1, matches with an order

of aggregate class number β, with 1 ≤ β ≤ α, then with a probability p the pod will have

aggregate class number α−β+ 1 after picking and with probability 1− p the pod will have

aggregate class number α − β, where for α > β it holds that p→ 0.5 as m→∞ and for

α = β it holds that p→ 1 as m→∞.

Proof. Let an aggregate class number δ contain the inventory classes in the range [nδ, nδ],

nδ ≡ (δ − 1)m and nδ ≡ δm− 1, so m = nδ − nδ−1 = nδ − (nδ − 1) = nδ − nδ + 1. For an

inventory class d, d ∈ [nδ, nδ], define d̂ as d̂ ≡ d − nδ, which implies that 0 ≤ d̂ < m. A

pod of aggregate class number α will, in reality, have a units remaining, a ∈ [nα, nα], and

an order of aggregate class number β will, in reality, require b units, b ∈ [nβ, nβ]. After

picking, the pod will have a− b units left. Subsequently, equations (1) to (4) hold.

a− b = â+ nα − b̂− nβ (1)

= â+ (α− 1)m− b̂− (β − 1)m (2)

= â− b̂+ ((α− β + 1)− 1)m (3)

= â− b̂+ n(α−β+1) (4)

From equation (4) it can be seen that if â − b̂ < 0, the pod will be in aggregate class

number α−β as the number of its units falls below the lower boundary of class α−β+ 1.

However, if â − b̂ ≥ 0, the number of units on the pod will be at or above the lower

boundary of aggregate class number α − β + 1, so the pod will be in aggregate class

number α − β + 1. If α > β, then the probability that â > b̂ equals the probability that

â < b̂ and as m → ∞ the probability that â = b̂ will go to zero, hence p → 0.5. If

α = β, then as stated earlier, it is assumed that â ≥ b̂ and hence p→ 1 as m→∞ as the

probability that â = b̂ goes to zero.
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2.7 Simulation and Validation

As can be seen from Table 9 in Appendix A, the number of states in the Markov Chain

grows rapidly in the design parameters. Therefore we also develop a queueing network

simulation, built in Java for analyzing large test cases. The network simulated is the

compact queueing network depicted in Figure 7, where the warehouse layout in Figure

11 was used to create the travel times. To validate the results from the simulation,

Table 3 shows the results for three instances. Each instance considers one SKU, one pick

station, one replenishment station, and a replenishment level of zero for both the Markov

Chain (MC) and the simulation (Sim), with ten runs each of ten weeks of working hours

simulated, of which one third serves as the warm-up period. The order arrival rate equals

18 orders per hour per inventory class. The resulting confidence intervals were less than

1 percent of the averages and have therefore been omitted. For the first instance U = 2,

M s = 2, K = 2 resulting in 53 states in the MC, for the second instance U = 3, M s = 6,

K = 2 resulting in 2814 states in the MC, and for the third instance U = 3, M s = 6,

K = 5 resulting in 9324 states in the MC, see also Table 9. The pod utilization, denoted

by ρpod, is the percentage of time that a pod on average is being carried by a robot.

ρpick denotes the utilization of the pick stations, ρrepl the utilization of the replenishment

stations, tot the average order throughput time, Ls the average number of orders in the

system, Lo the average number of orders waiting at the synchronization station, and Lp

the average number of pods waiting at the synchronization station. These measures can

be calculated exactly from the Markov Chain as shown in Equations (5) to (11). Here

πψ denotes the steady state probability to be in state ψ and 1[x] denotes the indicator

function, which equals 1 if condition x is true and equals 0 is condition x is false. The order

throughput time is calculated as the average number of orders in the system (Ls) divided

by the total arrival rate. As no more than K orders can be present at the synchronization

station, orders arriving at the system may be rejected, which means that the actual arrival

rate will be lower than
∑

u,s λu,s. This is taken into account via the indicator function in

Equation (11).
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ρpod =
∑
ψ

(
πψ ×

∑
u,sP

ψ
u,s + Rψ

u,s∑
sM

s

)
(5)

ρpick =
∑
ψ

πψ1[
∑
u,s P

ψ
u,s>0] (6)

ρrepl =
∑
ψ

πψ1[
∑
u,sR

ψ
u,s>0] (7)

Ls =
∑
ψ

πψ

∑
u,s

(Oψ
u,s + Pψ

u,s) (8)

Lo =
∑
ψ

πψ

∑
u,s

Oψ
u,s (9)

Lp =
∑
ψ

πψ

∑
u,s

Qψ
u,s (10)

tot =
Ls∑

ψ πψ1[
∑
u,sO

ψ
u,s<K]

∑
u,s λu,s

(11)

Table 3 shows that the outcomes of the simulations agree with the results from the exact

calculations based on the Markov Chain. Table 4 shows the validation for using the

aggregate classes. The results all come from simulation and show two experiments. In

the first experiment, each SKU is spread over two pods, whereas in the second experiment

each SKU is spread over six pods. In both experiments, the simulations with aggregate

classes, indicated with ”Agg.”, had four aggregate classes. For the simulation with normal

inventory classes, case (a) has 20 inventory classes, case (b) 40 inventory classes and case

(c) 80 inventory classes. As can be seen, the results for the cases with aggregate classes

are close to the results for the cases with normal inventory classes. In other words, using

the aggregate classes does not reduce the accuracy of the performance estimates while

simultaneously complexity is greatly reduced since far fewer classes are needed to model

the system.
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Table 3: Validation of the simulation with the Markov Chain

Metric MC 1 Sim 1 MC 2 Sim 2 MC 3 Sim 3

ρpod(%) 74.1 74.1 41.0 41.2 42.6 42.8

ρpick(%) 70.3 70.0 81.8 81.2 82.9 82.2

ρrepl(%) 46.1 45.9 56.7 56.6 58.2 58.0

tot(s) 225.6 226.7 158.7 157.0 238.0 233.4

Ls(# orders) 1.736 1.744 2.116 2.106 3.291 3.237

Lo(# orders) 0.795 0.805 0.478 0.460 1.592 1.535

Lp(# pods) 0.517 0.519 3.542 3.527 3.443 3.434
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Table 4: Validation of the use of aggregate class via simulation

Metric Agg.1 1a 1b 1c Agg.2 2a 2b 2c

ρpod(%) 74.5 75.2 74.4 74.1 24.9 24.9 24.7 24.7

ρpick(%) 70.3 70.8 70.6 70.6 62.0 62.0 62.1 62.1

ρrepl(%) 43.5 44.1 43.1 42.8 40.1 40.3 39.8 39.5

tot(s) 358.7 379.6 376.7 370.9 122.6 122.8 122.3 122.7

Ls(# orders) 2.867 3.037 3.012 2.961 0.982 0.981 0.981 0.984

Lo(# orders) 1.893 2.058 2.033 1.983 0.002 0.002 0.002 0.002

Lp(# pods) 0.510 0.496 0.512 0.518 4.506 4.505 4.516 4.517

2.8 Necessary Stability Conditions

Finding order arrival rates for which the queueing network is stable is much more inter-

esting for cross-class matching multi-class SOQNs than for other types of SOQNs, and

leads to some surprising results. For example, suppose that a pod can carry a maxi-

mum of 6 units of an SKU, the replenishment level is zero, and orders only arrive for

either 1 or 5 units. Then the system is unstable if the arrival rate for orders of 1 unit is

lower than the arrival rate for orders of 5 units, because each time an order of 5 units is

matched to a pod, an order of 1 unit must also be matched to that pod before it goes

to replenishment. In other words, the system can become unstable if the arrival rates of

certain inventory classes become too low, which is an uncommon condition. There are

three necessary stability conditions that the system must satisfy for each SKU separately,

otherwise it will become unstable. These are the replenishment level reachability condi-

tion, the combinatorial matching condition, and the maximum capacity condition, which
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are explained below. Fulfilling these conditions does not mean that the system will be

stable, but fulfilling the sufficient condition mentioned at the end of this section does.

2.8.1 Condition 1: Replenishment Level Reachability

As an example, suppose that all inventory for a certain SKU is put on only one pod,

U = 6 and λu,s = 0,∀u, s with the exception that λ3,s > 0 and λ4,s > 0 and that ξ = 0%

so that a pod only goes for replenishment if it has zero units remaining. The system is

unstable, because after a full pod synchronizes with an order of inventory class 4, the pod

will change to an inventory class 2 and can no longer match with an order. It will then

never reach the replenishment level and never replenish to inventory class 6.

The replenishment level reachability condition checks whether a pod can be trapped at an

inventory level where it can no longer match with an order and at the same time cannot

go to replenishment. This also means that for this condition the number of pods per SKU

does not matter. Let H be the set of u for which λu,s > 0, then the feasible arrival rates

for an SKU s must be in the set Λ1
s:

Λ1
s =

{
λu,s | ∃n ∈ N , 0 ≤ U −

∑
u∈H

nu ≤ bξUc
}

(12)

2.8.2 Condition 2: Combinatorial Matching

Suppose that the necessary stability condition 1 of Equation (12) is met. A counterin-

tuitive feature of the necessary stability conditions for a cross-class matching multi-class

SOQN is that there can also be lower bounds to the arrival rate of certain classes. An

example would be if ξ = 0 and λu,s = 0 except λ1,s > 0 and λU−1,s > 0 and λ1,s < λU−1,s.

Each time an order of class U − 1 is matched with the pod, the order before or after must

belong to inventory class 1 so that the pod can go for replenishment. This means that

if fewer class 1 orders than class U − 1 orders arrive, class U − 1 orders cannot all be

matched and will build up to infinity. Hence in this case λU−1,s is a strict lower bound

for λ1,s.

More generally, the combinatorial matching condition essentially looks at the order arrival

rates relative of each other. Matching orders of certain sizes to a pod may put constraints
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on which orders can be matched to that same pod in between replenishments. In the ex-

ample, matching a pod with an order of size U − 1 means that the pod must be matched

with an order of size 1 before or after, otherwise it cannot go for replenishment. Certain

order sizes can only be matched to a pod in combination(s) with orders of other sizes,

which constrains the arrival rates. This means that for this condition, the number of pods

per SKU does not matter.

If U
u

is an integer, then orders of inventory class u alone can empty the pod and can

therefore always bring the pod below the replenishment level ξ. If U
u

is not an integer, an

additional condition is needed to ascertain that the pod can be brought below ξ. Define

the set G as all u for which U
u
/∈ N, then the feasible arrival rates must be in the set Λ2

s.

Λ2
s =

{
λu,s|∃wg,u ∈ N, U − bξUc ≤ g +

U∑
u=1

(u× wg,u) ≤ U ∀g ∈ G,

∑
g∈G

wg,uλg,s ≤ λu,s ∀u /∈ G
}

(13)

Here U − bξUc ≤ g +
∑U

u=1 (u× wg,u) ≤ U means that it must be possible to match an

order of inventory class g to a pod together with an integer number (wg,u) of orders of

other inventory classes u, such that the amount g +
∑U

u=1 (u× wg,u) is equal to or larger

than the number U − bξUc required to bring the pod below the replenishment level, but

equal to or less than the maximum number U on a pod. As an example, assume again

that ξ = 0, λu,s = 0 except λ1,s > 0 and λU−1,s > 0, and λ1,s < λU−1,s. Then G = {U −1}
and wU−1,u = 1, so that the equation (13) becomes U ≤ U−1+1×1 ≤ U, 1×λU−1,s ≤ λ1,s

2.8.3 Condition 3: Maximum Capacity

The maximum capacity necessary condition examines the number of trips to the pick

stations and replenishment stations that are made given the order arrival rates. If the

amount of time needed to do picking and replenishment per order times the arrival rate

exceeds one, then the system cannot be stable. Here we disregard the time a pod is

queueing at the stations, which means that this condition provides an upper bound on

the order arrival rates. The system operates at maximum capacity when the pods do

not have to wait for an order, but instead immediately synchronize with an order as
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soon as they reach the synchronization station. For each SKU s, this corresponds to

a CQN network where the pods go to replenishment with a probability ps. Figure 9a

shows the compact queueing network, a SOQN model, and Figure 9b the CQN model

that corresponds with the compact model working at full capacity, i.e., the orders are

always waiting.

O (orders)

P (Picking)

R (Replenishment)

Q (Pods)

class switching happens here
orders of class (u, s)
arrive with rate λu,s

orders leave

µ̃p(i)

µ̃r(i)

(a) SOQN model, multiple inventory classes

Picking

Replenishment

ps

1− ps

(b) CQN model, single class

Figure 9: The compact queueing model and the corresponding CQN model

Suppose that φs is the average number of times per time unit that the pod goes for

replenishment for SKU s. For each SKU s, λu,s orders of inventory class u arrive per

time unit that each need u units. In a stable system, all these orders across all inventory

classes are fulfilled and the units needed to fill these orders come from replenishment.

This implies that the total number of units needed per time unit, divided by the number

of units put on the pod during replenishment, equals φs, see also equation (14). Suppose

furthermore that θs is the average number of times per SKU s and per time unit that the

pod goes through the CQN. A pod carries one order at any point in time. In a stable

system, it needs to synchronize with every order and for every order the pod carries it

goes through the network once. θs can then be calculated as shown in equation (15).

Assuming that the replenishment level is zero, probability ps can be calculated as shown

in equation (16). If ps /∈ [0, 1], the network is not stable.
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φs =

∑U
u=1 uλu,s
M sU

∀s (14)

θs =
U∑
u=1

λu,s
M s

∀s (15)

ps =
φs

θs
∀s (16)

The pick and replenishment queue are load-dependent queues and for both queues it holds

that the largest service time happens when one pod is at the queue, since then only one

workstation is operating at a time. The service time is denoted by µ̃−1p (i) for the pick

queue and by µ̃−1r (i) for the replenishment queue. As described earlier in section 2.4,

µ̃p(1) ≤ µ̃p(i) for i > 1, therefore using µ̃−1p (1) as the time picking takes provides an

upper bound on the picking time needed. µ̃−1r (1) gives an upper bound for replenishment.

Per time unit and per SKU s, the pod goes to the pick queue θs number of times, where

each time it will spend on average at most µ̃−1p (1) time units. This means that per time

unit, a pod is, on average, busy with picking at most θsµ̃−1p (1) time. Furthermore, per

time unit the pod goes to the replenishment queue φs number of times, where each time

it spends, on average, at most µ̃−1r (1) time units. This means that per time unit, a pod

will on average be busy with replenishment at most φsµ̃−1r (1) time. Let tbusy denote the

percentage of a time unit that a pod is used. In a stable system, this all needs to fit within

one time unit, therefore the order arrival rates needs to be in the set Λ3
s as depicted in

equation (18).

tbusy = θsµ̃−1p (1) + φsµ̃−1r (1)) (17)

Λ3
s = {λu,s|ps ∈ [0, 1], tbusy ∈ [0, 1]} (18)

2.8.4 Sufficiency Condition

For the necessary stability conditions it holds that Λ2
s ⊂ Λ1

s but neither Λ1
s and Λ3

s, nor Λ2
s

and Λ3
s are subsets of each other. Figure 10 shows an example of these sets for a situation

with one pod, U = 6, ξ = 0% and λu,s = 0 except λ1,s > 0 and λ5,s > 0.

The three necessary stability conditions do not guarantee that the system will be stable.
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λ5,s

λ1,s
0

Λ2
s

Λ3
s

Λ2
s ∩ Λ3

s

λ5,s = λ1,s

λ5,s =
1−λ1,s(µ̃p(1)+

1
6 µ̃r(1))

µ̃p(1)+
5
6 µ̃r(1)

Figure 10: Example of arrival rates that meet the combinatorial matching and the maxi-

mum capacity necessary stability conditions

To see this, consider a system with one SKU and one pod, U = 3, ξ = 0% and λ1,s =

λ2,s > 0, λ3,s = 0, where the arrival rates are such that the maximum capacity necessary

stability condition is met, i.e., they are in Λ3
s. These arrival rates would be in Λ1

s, as the

replenishment level can clearly be reached, and would be in Λ2
s, for example, by setting

wg,u = 1 ∀g, u. This system would be stable if every time the pod comes back from

replenishment, it would first match with an order of inventory class 1 and later with

an order of inventory class 2 or vice versa. However, after replenishment the pod could

match twice with an order of inventory class 1, after which it will need to match again

with an order of inventory class 1, else it cannot go to replenishment. Each time this

happens, three orders of inventory class 2 cannot be matched. This means that the stock

of inventory class 2 orders builds up and thus that the system is unstable, despite the fact

that the necessary stability conditions are met.

The problem is that the pod will not reach the replenishment level sufficiently often to

prevent the build-up of orders in the queue. A sufficient condition to prevent this situation

would be that λ1,s orders for each SKU s is very large relative to the arrival rates of the
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other inventory classes. If there are enough orders for 1 unit, the pod will reach the

replenishment level sufficiently often. Theorem 2.2 shows a sufficient condition.

Theorem 2.2. Assuming that λu,s ∈ Λ2
s ∩ Λ3

s for 1 ≤ u ≤ U , 1 ≤ s ≤ S, it holds that

λ1,s ≥
∑U

u=2 ((U − bξUc)− u)λu,s is a sufficient condition for stability of the network

Proof. Let C be a collection of orders that such
∑

ou,s∈C u = U − (bξUc + 1), with ou,s

denoting an order of class (u, s). Here C can have multiple orders of the same class (u, s),

but they all have to be for the same SKU s. If a pod of class (U, s) would be sequentially

matched with all orders in C and only with the orders in C, the pod would attain class

(bξUc + 1, s). Let C be the set of all such collections C that meet this condition. Let

ηC be the rate at which a pod of class (U, s) is matched with a sequence of orders that

contains orders of the same classes in the same number as C. λ1,s ≥
∑

C∈C ηC is not a

sufficient condition, because inventory class (1, s) may also appear one or multiple times in

a collection C. For an inventory class u, let Cu be the set of all collections C that contain

at least one order of inventory class u. Define Lu =
∑

C∈Cu ηC , then Lu is the rate with

which a pod attains class (bξUc + 1, s) due to a collection C that contained an order of

inventory class u. Besides an order of inventory class u, it could happen that this collection

C consists only of orders of inventory class (1, s). If a pod is matched with an order of

inventory class u, it is certain that the pod will reach the replenishment level if it is also

matched with (U − bξUc) − u number of orders of inventory class (1, s). Therefore, the

pod will reach the replenishment level sufficiently often if λ1,s ≥
∑

u ((U − bξUc)− u)Lu.

As λu,s ≥ Lu, λ1,s ≥
∑U

u=2 ((U − bξUc)− u)λu,s is a sufficient condition.

3 Results

Figure 11 shows the layout and Table 5 shows the parameters used to generate the results

in this section. In Figure 11 on the left side, there are six workstations, separated by a

traffic corridor from the storage area. In the storage area, stored pods are shown as dark

grey squares and empty storage locations as light grey squares. The time needed for pod

lifting and storing, the robot speed, and the distribution of the pick and replenishment

time are based on Lamballais et al. (2017). However, the Markov Chain would become
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far too large when using these parameters. Therefore we simulated the queueing network

describing the pod movements as depicted in the Figure 3 to generate the results in this

section. The simulation time was 604800 seconds per run, with 10 runs and a warm-up

time of 201600 seconds. The width of the 95% confidence intervals were typically about

1% of the average values of the metrics.

Figure 11: Top view of the warehouse layout used for the experiments
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Table 5: Parameters used in all the experiments

Parameter Value Parameter Value

Number of aisles 10 Number of cross-aisles 10

Number of storage lo-

cations

1100 Number of workstations 6

Time for pod lifting

and storing

1 (s) Robot speed 1.3 (m/s)

Pick time & replenish-

ment time (Identically

distributed)

Exponentially

distributed,

mean is 8 (s)

∑
u λu,s 2 (h−1)

K 1200 Number of SKUs S 100

Layout width 98.8 meters Layout length 41.6 meters

To investigate the optimal number of pods to use for inventory, we keep the maximum

inventory in the experiments at 36 units per SKU and vary the number of pods per SKU,

M s, which can be 1, 2, 3, 4 or 6, while keeping the layout fixed. The number of SKUs

S is 100 and the SKUs are identical. Taken together, this means that the total number

of pods that are actively used in the system varies from 100 to 600. The total number of

pods in the system is always 935, which equals 85% of the number of storage locations.

The average travel time to bring a pod to a pick station strongly decreases in the number

of pods. For the northernmost workstation, the average travel time is 43.4, 34.1, 29.5,

26.6, and 23.0 seconds for 1, 2, 3, 4, and 6 pods respectively. In the last case with 6

pods, U = 6, which means that the largest order that can be matched with a pod has 6

units. Therefore in order to keep the experiments comparable, λu,s > 0 for 1 ≤ u ≤ 6 and
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λu,s = 0 for u > 6 across all experiments. To meet the sufficient condition for stability,

the arrival rates are λ2,s = λ3,s = λ4,s = λ5,s = λ6,s and λ1,s = 10 × λ2,s. Having far

more orders arrive for 1 unit than for multiple units seems reasonable, as the system is

typically used in an e-commerce environment.

To investigate the optimal ratio of the number of pick stations to replenishment stations,

we analyze 5 cases. Let the ratio of the number of pick stations to replenishment stations

be denoted by r, where r = (i, j) means that in Figure 11 the upper i workstations are

pick stations and the j lower workstations are replenishment stations. The 5 cases we

consider are r = (1, 5), r = (2, 4), r = (3, 3), r = (4, 2) and r = (5, 1).

Finally, to investigate the optimal replenishment level per pod, we study the following

cases: (1) a pod is not replenished unless it is empty, ξ = 0%, (2) a pod is not replenished

unless it is at least half empty, ξ =50%, and (3) a pod is replenished every time after it

has visited a pick station, ξ = 100%.

From Table 6 we can conclude that spreading inventory across as many pods as possible

(6 in the experiments) appears to consistently result in the lowest order throughput times.

If the inventory of an SKU is contained on a single pod, the replenishment level has a

much larger influence on the order throughput time than if the inventory is spread across

multiple pods. The order throughput time is about one and a half to two times longer

when a single pod is used. This is due to a longer average travel time for a single pod

from storage to a pick station and due to a higher probability that no pod is available

due to replenishment. We can also conclude that in most cases the optimal ratio is

r = (4, 2). In addition, it is clear that r = (1, 5) performs much worse than the other

ratios, and the optimal one in terms of lowest order throughput time depends both on

M s and ξ. Lastly, we can conclude that the optimal replenishment level is ξ = 50% in the

majority of experiments. Setting the replenishment level as ξ = 0% leads to the highest

order throughput times in all experiments except 1. The utilization of the replenishment

stations is typically very low, unless ξ = 100%, so if the pod goes to replenishment after

every pick. Appendix B shows the same results but for equal order arrival rates across

inventory classes. From Table 10 we can conclude that the system is not stable if ξ = 0%,

even though the necessary stability conditions are met. This happens because insufficient
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Table 6: Experiment results, tot in seconds and the utilizations in percentages

ξ = 0% ξ = 50% ξ = 100%

M s , U r tot ρpod ρpick ρrepl tot ρpod ρpick ρrepl tot ρpod ρpick ρrepl

1 , 36 (1, 5) 414.4 11.1 80.7 0.9 168.3 11.2 80.5 1.7 171.0 13.2 80.4 16.1

1 , 36 (2, 4) 330.2 7.4 40.5 1.1 92.7 7.5 40.3 2.1 97.2 9.7 40.5 20.1

1 , 36 (3, 3) 332.7 7.2 26.9 1.5 89.3 7.3 26.9 2.8 93.8 9.6 27.0 27.0

1 , 36 (4, 2) 328.5 7.1 20.1 2.2 88.6 7.3 20.3 4.2 93.2 9.7 20.1 40.2

1 , 36 (5, 1) 323.7 7.1 16.1 4.5 88.9 7.3 16.2 8.4 103.9 13.1 16.1 80.0

2 , 18 (1, 5) 172.0 5.7 80.9 1.8 148.3 5.6 80.1 3.2 146.3 6.5 80.4 16.1

2 , 18 (2, 4) 89.7 3.5 40.3 2.2 77.0 3.6 40.4 3.9 77.2 4.6 40.4 20.1

2 , 18 (3, 3) 85.6 3.4 26.8 3.0 73.7 3.5 26.7 5.2 74.0 4.5 26.9 27.0

2 , 18 (4, 2) 85.4 3.4 20.1 4.4 73.0 3.5 20.1 7.8 73.3 4.6 20.2 40.4

2 , 18 (5, 1) 86.3 3.4 16.0 8.9 73.3 3.5 16.1 15.9 74.0 6.5 16.0 80.4

3 , 12 (1, 5) 147.3 3.6 80.5 2.7 141.4 3.7 80.4 4.5 147.2 4.4 81.2 16.2

3 , 12 (2, 4) 74.5 2.3 40.1 3.4 72.2 2.4 40.3 5.6 72.2 3.0 40.4 20.2

3 , 12 (3, 3) 72.2 2.2 26.9 4.5 69.1 2.3 26.7 7.6 69.2 3.0 26.9 27.0

3 , 12 (4, 2) 71.5 2.2 20.2 6.7 68.6 2.3 20.3 11.4 68.6 3.0 20.1 40.1

3 , 12 (5, 1) 70.7 2.2 16.1 13.4 68.7 2.4 16.1 22.8 68.8 4.4 16.2 81.0

4 , 9 (1, 5) 158.2 2.8 80.7 3.6 140.0 2.8 80.4 5.4 140.3 3.2 80.7 16.2

4 , 9 (2, 4) 87.5 1.7 40.2 4.5 69.5 1.8 40.4 6.7 69.3 2.2 40.3 20.2

4 , 9 (3, 3) 81.1 1.7 26.8 5.9 66.4 1.7 26.9 8.9 66.3 2.2 26.8 26.7

4 , 9 (4, 2) 83.4 1.7 20.1 9.0 65.7 1.7 20.2 13.4 65.7 2.2 20.3 40.4

4 , 9 (5, 1) 84.8 1.7 16.1 17.9 66.0 1.8 16.1 26.5 65.9 3.2 16.0 80.2

6 , 6 (1, 5) 139.9 1.8 80.5 5.4 137.0 1.9 80.4 7.8 144.5 2.2 80.8 16.2

6 , 6 (2, 4) 66.0 1.2 40.0 6.7 65.9 1.2 40.3 9.7 65.9 1.4 40.3 20.2

6 , 6 (3, 3) 63.3 1.1 26.9 8.9 63.1 1.2 27.0 13.0 62.9 1.4 26.8 26.8

6 , 6 (4, 2) 62.6 1.1 20.1 13.4 62.4 1.2 20.1 19.4 62.5 1.4 20.1 40.1

6 , 6 (5, 1) 63.1 1.1 16.1 26.7 62.6 1.2 16.1 39.0 62.6 2.1 16.1 80.4
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orders of inventory class 1 arrive, which means that the pod stays in inventory class 1 far

too long and does not go for replenishment sufficiently often.

4 Conclusions and Future Work

The results show that each of the decision variables can be optimized. The order through-

put time appears lowest when inventory is spread across as many pods as possible, when

the ratio of the number of pick stations to replenishment stations is 4 to 2, and when the

replenishment level is 50%. The relationship between order throughput time and the ratio

of the number of pick stations to replenishment stations has a skewed U shape. More-

over, the replenishment level has a strong influence on the utilization of the replenishment

stations, which can become very low. Tables 7 and 8 summarize some of the additional

insights.

Table 7: Managerial insights regarding stability

Stability of pick

operations

Small arrival rate of orders of

1 unit

Large arrival rate of orders of

1 unit

Replenish when

pod is empty

Not stable Stable

Replenish when

still some units

left on pod

Stable Stable
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Table 8: Managerial insights regarding decision variables

Interaction deci-

sion variables

Inventory of a product on a

single pod

Inventory of a product on mul-

tiple pods

Ratio of the

number of pick

stations to re-

plenishment

stations

Choosing the wrong ratio can

increase order throughput time

by about 25%

Choosing the wrong ratio can

increase order throughput time

by about 100%

Replenishment

level

Large impact on order

throughput time, best to

replenish a pod before it

becomes empty

Small impact on order

throughput time, best to

replenish a pod before it

becomes empty

This paper focused on several important tactical decisions, but there are many promising

directions for future research focusing on operational decisions. For example, an RMFS is

flexible in capacity as robots can be added quickly and workstations can be opened and

closed as needed. The system can thus dynamically increase and decrease the amount of

resources used and how much of the resources to dedicate to different types of activities,

something that has not yet been researched. Another interesting feature is that the

system’s decisions can be decentralized to a high degree. Kiva Systems decentralized

robot movement and collision detection already in the earliest implementation, but other

elements such as route planning, task scheduling, and resource allocation can also be

decentralized (see Wurman et al. (2008)). No research has yet been conducted on the

interplay between the algorithms and policies for each of these elements.
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Appendix A Size of the State Space

This appendix explains how to calculate the total number of states possible in the Markov

Chain. The explanation here assumes there is only one SKU, so S = 1, but for S > 1,

the number of states is just the number of states when S = 1 multiplied by S. The total

number of states is constrained by the maximum number of orders that can wait at the

synchronization station and by the number of pods. There can be at most K orders at

the synchronization station. Let the total number of possible ways to distribute k orders

across the order classes and for all k be denoted by NC
O . These orders can be of any of

U classes (the dimension of O equals U as explained above), so the possible number of

combinations is
(
U+k−1

k

)
as this is similar to choosing with repetition k places out of a

possible number of U places. Then NC
O is given by Equation (19). Let NC

P denote the

number of possible ways that M s pods can be distributed across P , Q and R. This is

again similar to choosing with repetition, and Equation (20) shows how to calculate NC
P .

NC
O =

K∑
k=0

(
U + k − 1

k

)
(19)

NC
P =

(
2U +M s

M s

)
(20)

It is not possible to combine every instance of an order part with every instance of the

other three parts, because whenever a pod of inventory class u is at the synchronization

station, it is not possible to also have orders of inventory class u or lower there. In other

words, O constrains the number of inventory classes u in P for which Pu,s can be bigger

than zero. Let NY
j,s be the number of combinations in O for which Ou,s = 0, u ≤ j and

O j+1,s > 0, so NY
j,s = {O |Ou,s = 0, 0 ≤ u ≤ j,O j+1,s > 0}, j = 0, . . . , U − 1. Suppose

that there are k orders at the synchronization station, with k = 1, . . . , K. For NY
j,s, this

means there can be h orders of class j + 1 and k− h at classes j + 2 to U − 1. Let NY
j,s,k,h

denote all possible situations where k orders are waiting at the synchronization station,

with no orders of class j or lower and h orders of class j + 1, then:
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NY
j,s,k,h =


(
U+k−h−j−2

k−h

)
if U + k − h− j − 2 ≥ 0

1 (no classes > j left to distribute orders to)

(21)

NY
j,s =

K∑
k=1

k∑
h=1

NY
j,s,k,h j = 0, . . . , U − 1 (22)

In the above, j ≤ U − 1, because NY
U,s = 0 and therefore does not follow the structure

and formula above.

Let NF
j,s be the number of combinations in (Q ,P ,R) for which Qu,s > 0, u ≤ j and let

NZ be the total number of states in the Markov Chain. Assume that the replenishment

level is zero, so pods are only replenished when they are empty.

NF
j,s =

(
2U +M s − j

M s

)
, j = 0, . . . , U (23)

NZ =
S∑
s=0

U∑
j=0

NY
j,sN

F
j,s (24)

Table 9 shows the number of states for various combinations of K, U and M s. It seems

that if K increases by 10, NZ roughly doubles. Another pattern that becomes apparent

is that the higher U is, the more rapid NZ grows in M s.

Table 9: Number of states NZ , S = 1

NZ K = 2 K = 5 K = 10 K = 20 K = 30 K = 40

U = 2 , M s = 2 53 155 445 1475 3105 5335

U = 2 , M s = 6 462 1050 2590 7770 15750 26530

U = 3 , M s = 2 155 708 3263 18998 57233 127968

U = 3 , M s = 6 2814 9324 35574 183624 529074 1155924

U = 4 , M s = 2 360 2430 17290 171810 732105 2116675

U = 4 , M s = 6 12105 56313 322773 2802393 11368863 32049183

U = 5 , M s = 2 721 6882 73073 1206580 7190337 26714094

U = 5 , M s = 6 41283 261030 2186327 31200246 176430265 638136884
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Appendix B Results with Equal Order Arrival Rates

Table 10 shows the results for equal order arrival rates. For ξ =50% and ξ =100%, the

results are nearly identical to the results in section 3, but for ξ =0%, the results are

unstable. The order arrival rates meet all the necessary stability conditions, but these

are not sufficient and it turns out that the order throughput time simply becomes longer

if the simulation time is larger. Let TK be the percentage of time the system spends in a

state where the number of orders at the synchronization stations equals K. If TK exceeds

1%, we consider the system unstable and do not show results. The reason the system is

unstable is that the pods in the system remain in state (1, s) too often. This happens,

because of the following. As U = 6, if an order of class (5, s) arrives and matches with a

full pod, the pod goes to state (1, s) and can only be matched with an order of class (1, s).

This also happens if the pod is matched with an order of class (2, s) and an order of class

(3, s) or alternatively an order of class (4, s) and an order of class (1, s). As the arrival

rate of orders of class (1, s) equals the arrival rate of orders of class (5, s), orders of class

(1, s) do not arrive sufficiently often to bring a pod of class (1, s) to the replenishment

level.
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Table 10: Results for experiments with equal order arrival rates, tot in seconds and the

utilizations in percentages

ξ = 0% ξ = 50% ξ = 100%

M s , U r tot ρpod ρpick ρrepl tot ρpod ρpick ρrepl tot ρpod ρpick ρrepl

1 , 36 (1, 5) 1192.0 37.8 20.1 0.4 142.8 38.8 20.1 0.7 182.5 48.3 20.1 4.0

1 , 36 (2, 4) 1237.8 36.7 10.0 0.5 135.9 37.9 10.2 0.9 177.0 48.2 10.1 5.0

1 , 36 (3, 3) 1144.6 36.4 6.8 0.7 133.9 37.5 6.7 1.2 170.1 47.2 6.7 6.6

1 , 36 (4, 2) 1166.7 36.0 5.0 1.0 133.0 37.1 5.0 1.8 175.4 48.1 5.0 10.1

1 , 36 (5, 1) 1222.4 36.1 4.0 2.0 132.7 37.1 4.0 3.6 180.8 49.0 4.1 20.2

2 , 18 (1, 5) 973.6 18.5 20.4 0.8 81.8 19.3 20.1 1.3 84.2 23.1 20.0 4.0

2 , 18 (2, 4) 949.6 17.6 10.0 1.0 76.8 18.5 10.1 1.7 79.2 22.6 10.0 5.1

2 , 18 (3, 3) 872.0 17.5 6.7 1.3 76.3 18.3 6.7 2.2 78.8 22.7 6.7 6.7

2 , 18 (4, 2) 907.4 17.4 5.0 2.0 76.2 18.4 5.1 3.3 78.8 22.9 5.1 10.2

2 , 18 (5, 1) 935.1 17.4 4.0 3.9 76.1 18.4 4.1 6.7 79.6 23.4 4.1 20.2

3 , 12 (1, 5) 1048.7 12.2 20.1 1.2 74.1 12.9 20.1 1.9 74.2 15.1 20.1 4.0

3 , 12 (2, 4) 1166.6 11.7 9.8 1.5 69.4 12.5 10.0 2.3 69.9 14.7 10.1 5.0

3 , 12 (3, 3) 1143.8 11.7 6.8 2.0 68.9 12.3 6.7 3.1 69.0 14.5 6.7 6.7

3 , 12 (4, 2) 1088.3 11.6 5.0 2.9 68.7 12.4 5.0 4.6 68.7 14.8 5.1 10.2

3 , 12 (5, 1) 1048.9 11.5 4.0 5.8 68.8 12.4 4.0 9.3 69.4 15.1 4.0 20.2

4 , 9 (1, 5) 1963.8 9.3 20.2 1.6 71.0 9.8 20.2 2.2 70.9 11.1 20.2 4.1

4 , 9 (2, 4) 2013.2 8.9 10.1 2.0 66.2 9.5 10.1 2.8 66.1 10.8 10.1 5.1

4 , 9 (3, 3) 1897.2 8.9 6.7 2.6 65.7 9.3 6.6 3.7 65.8 10.7 6.7 6.7

4 , 9 (4, 2) 1979.7 8.8 5.0 3.9 65.6 9.4 5.1 5.5 65.6 10.8 5.0 10.1

4 , 9 (5, 1) 2022.5 8.8 4.1 7.9 65.7 9.5 4.0 11.1 65.8 11.1 4.0 20.2

6 , 6 (1, 5) − − − − 67.5 6.7 20.1 3.0 67.4 7.3 20.1 4.0

6 , 6 (2, 4) − − − − 63.0 6.5 10.0 3.8 62.8 7.0 10.0 5.0

6 , 6 (3, 3) − − − − 62.6 6.6 6.8 5.1 62.5 7.0 6.7 6.7

6 , 6 (4, 2) − − − − 62.4 6.6 5.1 7.6 62.2 7.1 5.1 10.1

6 , 6 (5, 1) − − − − 62.5 6.6 4.0 15.3 62.5 7.2 4.0 20.0
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