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Chapter 1
GENERAL INTRODUCTION & SCOPE OF THIS THESIS

ALL TOGETHER Final.indd   7 1/5/17   12:03 PM



ALL TOGETHER Final.indd   8 1/5/17   12:03 PM



9

1
1. General introduction
In mammals, each individual arises from the successful fusion of two competent gam-

etes: the sperm and the oocyte, derived from the father and the mother, respectively. 

Following fertilization, a single totipotent cell, called the zygote, will divide mitotically to 

generate numerous genetically identical cells. These will eventually give rise to the rough-

ly 200 different cell types of the mammalian adult organism through several steps of 

specification. During these steps, certain genes are switched on or off to give each cell its 

unique function within the organism. In somatic cells (defined as all the cells that make 

the body, except the (developing) germ cells), DNA is wrapped around histone octamers, 

named nucleosomes, and this compacts the DNA to form the 30nm chromatin fibers. The 

switching on or off of genes is regulated through various mechanisms, usually involving 

modifications of histones or DNA, or both. Together, these are referred to as epigenet-

ic modifications. An important property of epigenetic modifications is that they can be 

inherited through cell divisions, and even sometimes from parent to child, and to subse-

quent generations, through processes called inter- and trans-generational inheritance, 

respectively. 

Throughout mouse development, major epigenetic reorganization events characterize 

certain developmental phases. Four major events, relevant in the context of this the-

sis, are illustrated in Figure 1. The first is evident immediately after fertilization, when 

the paternal pronucleus is drastically remodelled, because the DNA of sperm nucle-

us that entered was tightly packaged by protamines instead of histones. Upon fertili-

zation these protamines are removed and replaced by maternal histones to generate 

a canonical chromatin structure, built from nucleosomes (see 1.2.1). This leads to an 

epigenetic asymmetry between the paternal (unmodified histones) and maternal (modi-

fied histones) pronucleus within the zygote. The epigenetic asymmetry between the two 

parental genomes persists until around the 2- to 4-cell stage of the pre-implantation 

embryo. Until that stage the maternal and paternal chromosomes remain compartmen-

talized and therefore the maternally derived histone marks are present in only half the 

nuclear area (reviewed in Burton & Torres-Padilla 2010).

Second, in the preimplantation female embryos, X chromosome inactivation is a major 

event (see 1.2.2). Maleness in mammals is determined by the presence of the Y chro-

mosome. This chromosome is relatively gene-poor but evolutionary derived from the X 

chromosome that is gene rich. The X and the Y chromosome are the sex chromosomes, 

whereby male cells carry an X and a Y chromosome, and female cells have two X chro-

mosomes but no Y. All other chromosomes (numbered based on their length, 1 being 

the longest) come in pairs. The presence of two X chromosomes per diploid genome 
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in females and only one in males creates a difference in the dosage of X-linked genes 

versus autosomal genes between males and females. To compensate for this difference, 

a mechanism has evolved that ensures inactivation of one complete X chromosome al-

ready in female mouse pre-implantation embryos. 

Third, after implantation, the future germ line is set apart and its epigenome is reset (see 

1.2.5). The germline emerges from epiblast cells, which are cells already programmed 

towards a somatic fate. In the germline cells, specific changes in histone and DNA modi-

fications will reset the epigenome of those cells and ensure that competent gametes can 

arise later, when the animal reaches puberty.  

Finally, in males, the histone to protamine transition reprogramming event takes place 

in the final stage of spermatogenesis, called spermiogenesis. During this phase, the his-

tones of the developing sperm are genome-widely replaced by protamines, which are 

small, positively charged proteins. The replacement of histones by protamines in the 

sperm will compact the DNA, to protect the genome during its journey to the oocyte (see 

1.2.8). Generation of mature oocytes and sperm in females and males, respectively, may 

then be followed by fertilization and development thus ensuring that the cycle of life 

never stops. 

In this chapter, I will first give a general overview of chromatin organization, with most 

emphasis on the detailed organisation of pericentric heterochromatin. Then I will de-

scribe each of the above mentioned reprogramming events that accompany the cycle of 

life in more detail, starting with the epigenetic asymmetry in the mouse zygote. 
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Figure 1: Major epigenetic reorganisation events during the mouse life cycle

The genome of sperm is tightly packaged by protamines, while the oocyte retains a nucleosome based 
chromatin. Shortly after fertilization, protamines are replaced by unmodified histones provided by the 
oocyte.  This generates a genome-wide epigenetic asymmetry between the paternal and maternal pronu-
cleus. The asymmetry persists approximately until the 4-cell stage of mouse embryo development. At this 
stage, if the embryo is female, the paternal X chromosome will become inactivated (iXCI). Reactivation of 
the paternal X takes place in the inner cell mass (ICM) of the blastocyst (followed by random XCI (rXCI) in 
the developing embryo), while iXCI is retained in the trophectoderm (TE). Later on, PGC precursor cells (pre-
PGCs) are specified in the epiblast by signals emerging from the extra-embryonic ectoderm (ExE), where 
XCI remains imprinted. During migration of PGCs to the developing gonads, genome wide reprogramming 
occurs, which includes changes in histone marks, DNA modifications and reactivation of the inactive X if 
the embryo is female.

1.1. A general overview of chromatin organization 

1.1.1 The overall assembly of chromatin
The diploid mouse genomic DNA is organized into 20 pairs of chromosomes, of which 19 

pairs are autosomal and one pair determines the sex (XY or XX). Human diploid cells also 

contain one pair of sex chromosomes (XY or XX), but 22 pairs of autosomes. Haploid cells 

(sperm and ova) of all species contain one copy of each autosome and either an X (all ova 

and half of the sperm) or a Y chromosome (sperm only). 

The DNA of each diploid cell in the mouse consists of approximately 5 billion (5.8 billion in 

human) bases (adenine (A), thymidine (T), cytocine (C) and guanine (G)) (Mouse Genome 

Sequencing Consortium et al. 2002) and if stretched, it reaches up to approximately 1.7 

meters in length (2 meters in human). In order for such a lengthy molecule to fit into a 

microscopic nucleus (~10μm) several layers of compaction must take place (Figure 2). 

Important compaction mediators are the histones, positively charged proteins steadily 

binding the negatively charged DNA, which form the histone octamer complex. Specifi-

cally the octamer complex consists of two of each of the four different canonical histone 

types: H2A, H2B, H3 and H4 (Eickbush & Moudrianakis 1978). In particular cases, canon-

ical histones can be replaced by non-canonical histone variants such as H2A.Z, in a repli-

cation independent manner (reviewed in Skene & Henikoff 2013). The first layer of DNA 

compaction is achieved by the wrapping of the DNA around the histones. Specifically, a 

DNA segment of approximately 150bp wraps around the histone octamer and an addi-

tional histone, the linker H1, binds the DNA connecting tandem histone octamers, but it 

is not part of these octamer complexes (Kornberg 1974). The wrapped DNA around the 

octamer, the octamer itself and the linker H1 form a unit termed as nucleosome (Luger 

et al. 1997). In general, the DNA and all associated proteins are termed as chromatin. 
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In addition to the folding of the DNA that is mediated by the nucleosomes, histone 

post-translational modifications provide an extra layer of compaction and play an im-

portant role in the regulation of gene expression. The histone post-translational modifi-

cations are usually established on the N-terminal tails of histones, which protrude from 

the nucleosomal core. Different enzymes add acetyl-, methyl-, phosphate- and other 

groups to histone tails and depending on the position and the type of each modification 

the chromatin will appear in a more or less condensed form and can be transcriptionally 

silenced or activated. 

Figure 2: Chromatin structure 

In order for the long double stranded DNA molecule (blue - green lines) to fit into the microscopic nucleus 
the DNA has to fold thousands of times. The folding is mediated by the coiling of the DNA around posi-
tively charged proteins that form a barrel-shaped octamer (histone octamer). The complex of the DNA, 
the histone octamer and the linker H1 (green) form the nucleosome. The linker DNA links consecutive 
nucleosomes. Further folding is facilitated by post-translational modifications (PTMS) on the histone tails 
protruding from the nucleosome. In certain cases, canonical histones can be replaced by histone variants. 
As cells enter mitosis, their chromatin reaches the maximum level of compaction to form visually distinct 
chromosomes. 

1.1.2 The distinction between euchromatin and heterochromatin
In 1928 Heitz was already able to distinguish two chromatin states through cytological 

analysis of DNA with nuclear dyes. He distinguished a heavily stained state, named het-

erochromatin, and DNA that was not stained; the euchromatin. From that moment on, 

researchers have tried to determine the different features and functions of these two 
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chromatin states. In particular research has focused on how different chromatin struc-

tures are established and how dynamic they are. 

In general, euchromatin is typically gene-rich, relatively decondensed, and contains cer-

tain histone modifications such as tri-methylation of H3 on lysine 4 (H3K4me3) and lysine 

acetylation on H3 and H4 tails that ensure accessibility of the DNA to the transcriptional 

machinery (Zhang et al. 2015). 

Heterochromatin on the other hand forms a condensed and transcriptionally silent en-

vironment. Two distinct types of heterochromatin exist: facultative and constitutive. Fac-

ultative heterochromatin can be found in various chromosomal regions and is viewed 

as a flexible heterochromatin form, since its chromatin compaction state may vary (Tro-

jer & Reinberg 2007). This means that facultative heterochromatin can switch from a 

transcriptionally inactive to an active state in certain contexts, such as during specific 

developmental stages upon certain cues (Trojer & Reinberg 2007). An example is the 

inactive X chromosome that switches between active and inactive states during mouse 

pre-implantation embryo development (see 1.2.2). The most common post-translational 

modifications characterizing facultative heterochromatin are tri-methylation of lysine 27 

of H3 (H3K27me3) and ubiquitination of lysine 119 of H2A (H2AK119Ub), mediated by 

the Polycomb Repressor Complexes (PRC) 1 and 2, respectively (Di Croce & Helin 2013).

In contrast, constitutive heterochromatin appears to be less flexible compared to facul-

tative heterochromatin and it is formed at specific genomic regions like telomeres, cen-

tromeres and pericentromeres in every cell type (Figure 3). The bulk of constitutive het-

erochromatin forms in the pericentric regions. These areas are largely devoid of genes, 

but are rich in tandem repetitive elements (reviewed in Saksouk et al. 2015; Déjardin 

2015). Traditionally, constitutive heterochromatin has been considered as transcription-

ally inert; however, recent evidence suggests that tightly controlled transcription of the 

underlying repetitive elements can take place (Terranova et al. 2005; Grewal & Elgin 2007; 

Probst et al. 2010; Casanova et al. 2013). Similar to facultative heterochromatin, consti-

tutive heterochromatin is also characterized by specific epigenetic features, which are 

discussed in more detail below. 

Figure 3: Constitutive heterochromatin
Regions of the chromosome, where constitu-
tive heterochromatin forms. 

centromere
pericentromere

telomere
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1.1.3 Chromatin formation at pericentromeres: components and specific features 
Despite the fact that the existence of pericentric heterochromatin (PHC) has been known 

for a long time, the true mechanisms by which it contributes to proper chromosomal 

function is still not clear. However, it is clear that these regions must maintain their het-

erochromatic identity, since defects in PHC structure due to the absence of some com-

ponent or regulator, cause genomic instability and increase the risk for tumorigenesis 

(Peters et al. 2001; De Koning et al. 2009). 

Although the DNA of coding genes is generally highly conserved among mammals, the 

underlying DNA of PHC is highly different both in size and sequence identity when com-

pared among various organisms. Still, a common feature is the fact that pericentric DNA 

mainly consists of tandem repeats. In the mouse, these reach up to several megabases 

in length. The repeat unit of the mouse pericentric DNA array is a 234 bp AT-rich unit, 

also called major satellite (Vourc’h & Biamonti 2011; Saksouk et al. 2015). In human, peri-

centric DNA sequence is composed of three different repetitive element classes termed 

as satellites I, II and III. In addition, the composition of PHC DNA sequence in human dif-

fers between different chromosomes. For example, satellite III is not equally distributed 

over all chromosomes. It is mainly found in PHC of chromosome 1, 5, 9, 10, 17, 20 and Y, 

but this repeat sequence contributes much less to the PHC of the other chromosomes 

(Vourc’h & Biamonti 2011).

In the nuclei of mouse cells, PHC from different chromosomes clusters together to form 

specific, more or less round-shaped structures, termed chromocenters. The centromeres 

of these chromosomes localize in the periphery of the chromocenters and chromo-

centers can easily be visualized since they are typically heavily stained for DNA dyes, such 

as 4’,6-diamidino-2-phenylindole (DAPI) (Guenatri et al. 2004) (Figure 4). When comparing 

different somatic cell types, the size and number of chromocenters differ between differ-

ent nucleus types (Cerda et al. 1999). 

A number of proteins have been identified as being generally enriched at pericen-

tromeres, where they are thought to facilitate the organization of PHC. The list includes 

histone variants, chromatin remodelers, transcription factors, replication related or cell 

cycle control proteins, DNA methylation binding proteins, and enzymes such as histone 

modifiers as well as cohesin. In addition, certain modifications, both of the DNA itself and 

of the histones, contribute to the compact nature of PCH. For example, a very classical 

feature of heterochromatinisation is DNA methylation, and in mammals, this mark is 

generally placed in so-called CpG islands. Three enzymes have been identified as DNA 

methyltransferases: DNMT1 is responsible for maintaining DNA methylation during rep-

lication. In contrast, de novo DNA methylation is established by another set of proteins, 

which includes the de novo DNA methyltransferases DNMT3A and DNMT3B, as well as the 

ALL TOGETHER Final.indd   14 1/5/17   12:03 PM



15

1
GENERAL INTRODUCTION

catalytically inactive protein DNMT3L, that facilitates recruitment of DNMT3A/B to their 

DNA targets (Hata et al. 2002; Ooi et al. 2007).

Figure 4: Chromocenters in mouse somatic cells
A Schematic representation of pericentric heterochromatin organization into chromocenters within the 
nucleus of somatic cells.  Each chromocenter consists of pericentric heterochromatin of different chromo-
somes (PHC). The centromeres of the corresponding chromosomes are localized in the periphery of each 
chromocenter. B Representative image of chromocenter organization in a somatic nucleus (marked by 
white dash line). The nucleus is counterstained by DAPI and chromocenters are identified as DAPI dense 
regions. The centromeres (yellow) are located in the periphery of the chromocenters and are identified by 
CREST, a centromere marker.

In addition to an enhanced DNA methylation level, PHC is characterized by the presence 

or absence of certain histone modifications that confer an extra layer of compaction. The 

most typical post-translational histone modifications that are known to be enriched in 

PHC include tri-methylation of H3 on lysine 9 (H3K9me3), tri-methylation of H4 on lysine 

20 (H4K20me3), tri-methylation of H3 on lysine 64 (H3K64me3) and mono-methylation 

of H3 on lysine 27 (H3K27me1). Additionally, histones of PHC are hypoacetylated, since 

acetylation in general promotes a more open and accessible chromatin environment 

(Görisch et al. 2005). 

Despite the fact that the presence (or absence) of these histone marks in PHC has been 

thoroughly characterized, the molecular mechanism of their biogenesis is not fully clear. 

Most detailed information is available about H3K9me3 biogenesis in PHC. In a first 

step, PRDM3 and PRDM16 catalyse formation of mono-methylation of H3 on lysine 9 

(H3K9me1) before its incorporation into the chromatin (Pinheiro et al. 2012), and this 

is followed by SUV39H1/2 methyltransferase mediated di- and tri-methylation at PHC 

only (Peters et al. 2003). Interestingly, SUV39H1 has a dual activity: one as a SUMO E3 li-

gase and one as a histone methyltransferase (Maison et al. 2011). No additional function 

has been reported for SUV39H2. The mechanism of initial recruitment of these meth-

yltransferases to PHC is not clear, but once they are present, H3K9me3 sustains their 
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continuous targeting (Grewal & Moazed 2003). Loss of SUV39H activity leads to specific 

absence of H3K9me3 at pericentromeres, but not in other regions, suggesting that these 

two enzymes specifically act at PHC (Peters et al. 2003). In a similar way, H4K20me3 is 

generated by recruitment of SUV4-20H1/2 methyltrasferase enzymes through one of the 

most important components of PHC, Heterochromatin Protein 1 (HP1), the “reader” of 

H3K9me3 (Schotta et al. 2004; Schotta et al. 2008).  Still, the mechanisms of generation 

of H3K27me1 and of the newly identified histone mark H3K64me3 at PHC are currently 

unclear. 

Among factors that were identified as components of the PHC, members of the Het-

erochromatin Protein family 1 (HP1) stand out. HP1a was first discovered in Drosophi-

la melanogaster as a major non-histone component of heterochromatin (James & Elgin 

1986). Following its initial identification, HP1 protein isoforms and homologues were also 

rapidly identified and characterized in other organisms (reviewed in Eissenberg & Elgin 

2000). In mammals, there are three HP1 isoforms: HP1α, HP1β and HP1γ, encoded by the 

Cbx5, Cbx1 and Cbx3 genes, respectively. In general, HP1 proteins are highly conserved 

and based on their structural and biochemical characteristics three domains can be 

identified in all HP1 proteins. The N-terminal chromodomain (CD), recognizes and binds 

di- or tri-methylated H3K9 (Lachner et al. 2001; Bannister et al. 2001). The C-terminal 

chromoshadow domain (CSD), mediates dimerization of HP1 proteins with each other or 

with other proteins containing the PxVxL pentapeptide motif (Smothers & Henikoff 2000; 

Lechner et al. 2005).  The CD and the CSD are highly conserved between HP1 isoforms 

and homologues. The third and less well-conserved region which separates the CD and 

CDS domains is the hinge or linker region. This domain has been reported to mediate 

binding of HP1 proteins to PHC together with the CD and also to interact with RNA, an 

activity that contributes to the formation and maintenance of the higher order chromatin 

structure in pericentromeres (Maison et al. 2002; Muchardt et al. 2002). 

HP1 proteins carry different post-translational modifications, which allow them to inter-

act with various partners, and to have different localization patterns within the nucleus, 

while they exert their various functions. So, HP1 proteins are not solely coupled to gene 

silencing and heterochromatinisation. For example, in NIH3T3 cells, a subpopulation of 

HP1γ, which is phosphorylated at serine 38, localizes uniquely at euchromatic regions 

that are coupled with transcriptional elongation. The non–phosphorylated HP1γ is en-

riched in DAPI dense regions, but it is also present in euchromatic areas (Lomberk et al. 

2006; Vakoc et al. 2005; Minc et al. 2000). Also, HP1β has been found to regulate expres-

sion of rDNA genes by RNA PolI (Horáková et al. 2010). 

With regard to cellular functions, HP1 proteins have been implicated in genome stability 

(Aucott et al. 2008), DNA damage response (reviewed in Dinant & Luijsterburg 2009) and 
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regulation of alternative splicing (Lev Maor et al. 2015).  Interestingly, the HP1 isoforms 

are not functionally redundant, since single HP1 isoform knockout experiments have 

revealed different phenotypes. This indicates that the different HP1 isoforms possess 

different functions within the cell. Cbx1 (encoding HP1β) null mutation leads to perinatal 

lethality and to genomic instability (Aucott et al. 2008), while absence of HP1γ has a mild-

er effect, since Cbx3 knockout mice are viable, albeit sterile (Takada et al. 2011; Abe et al. 

2011). No Cbx5 (encoding HP1α) knockout mice have been reported. 

How HP1 proteins are targeted to PHC was very recently published. In spite of the gen-

eral knowledge that HP1α binds H3K9me3 via its CD domain (Lachner et al. 2001; Ban-

nister et al. 2001), this interaction does not necessarily qualify H3K9me3 as the de novo 

targeting mechanism of HP1α in PHC. Pull down experiments in NIH-3T3 cells revealed 

that HP1α (and the other HP1 isoforms) carries a SUMO-1 moiety attached to its hinge 

domain and this post-translational modification, together with the interaction of HP1α 

with pericentric transcripts (or major satellite transcripts), is an absolute prerequisite for 

the targeting of HP1α to PHC, even in the absence of H3K9me3. This suggests that su-

moylation promotes the de novo HP1α targeting to heterochromatin (Maison et al. 2011). 

A surprising discovery was that SUV39H1 methyltransferase, is not only responsible for 

catalyzing H3K9me3 formation in those regions, but also for enhancing SUMO-1 depo-

sition on HP1α, thereby acting as a SUMO E3 enzyme in the HP1α-specific SUMO path-

way (Maison et al. 2016). Maintenance of HP1α on PHC is mediated by the presence of 

H3K9me3, as well as of other components, such as SENP7, a SUMO-protease enriched in 

PHC, which carries two PxVxL motifs that robustly bind and maintain HP1 molecules from 

neighboring nucleosomes on PHC (Romeo et al. 2015). 

Another protein that is often found enriched at pericentric heterochromatin is ATRX (al-

pha thalassemia/mental retardation syndrome X-linked). This protein is a chromatin re-

modeler and was first identified in human. Mutations within this gene result in a very 

profound phenotype characterized by various developmental defects, cognitive disability 

and mild α-thalassemia (Bérubé 2011). In the mouse, Atrx knock out is embryonic lethal, 

due to developmental defects of the placenta (Garrick et al. 2006).

The ATRX protein contains domains that are critical for its proper function. At the N–

terminal part of the protein, three regions pack together and form the ADD (ATRX-DN-

MT3-DNMT3L) domain, which facilitates targeting of ATRX to the chromatin. At the C-ter-

minal part seven-helicase motifs comprise the Snf2 ATPase domain, which gives ATRX its 

ATPase activity.  Apart from these two domains, ATRX contains a number of other motifs, 

which mediate binding with various partners, such as H3K9me3 and HP1α. 

Immunofluorescence and ChIP-seq data revealed that ATRX localizes not only to PHC but 

also to genome wide heterochromatic regions such as transposable elements and to the 

ALL TOGETHER Final.indd   17 1/5/17   12:03 PM



18

1
CHAPTER 1

methylated allele of imprinted DMRs (McDowell et al. 1999; Goldberg et al. 2010; Voon 

et al. 2015). The important function of ATRX at heterochromatic sites is to recruit DAXX, 

which can incorporate the histone variant H3.3. The deposition of H3.3 is critical for the 

de novo formation of PHC during early preimplantation development in mice (Santenard 

et al. 2010) and for the general maintenance of heterochromatin at a number of genomic 

sites, such as at the locations of imprinted genes  (Voon et al. 2015).

Apart from its role in heterochromatin formation and maintenance, ATRX has been found 

to be involved in a number of different cellular processes such as in maintaining genome 

integrity during meiosis and mitosis, DNA replication and damage repair, transcriptional 

regulation, X chromosome inactivation and more (reviewed in Bérubé 2011; De La Fuente 

et al. 2011; De La Fuente et al. 2012; Sarma K et al. 2014). 

The general epigenetic profile of PHC led to the general consensus that transcription 

from these regions would never occur. Today, with the development of various sensitive 

molecular technologies, it has become evident that transcription of pericentric repeats 

does occur, in a regulated manner. It is necessary for and linked to various regulatory 

processes, for example during early pre-implantation development (Probst et al. 2010), 

cell proliferation (Lu & Gilbert 2007), for heterochromatin formation (Maison et al. 2016; 

Santenard et al. 2010) and differentiation (Martens et al. 2005; Terranova et al. 2005). 

However, as with many other noncoding RNAs, the transcriptional regulation of these 

repetitive elements must be tightly controlled, since overexpression has been coupled to 

pathological conditions such as cellular stresses (Jolly et al. 1997; Rizzi et al. 2004), cancer 

(Eymery et al. 2009; Ting et al. 2011), and genetic disorders (Shumaker et al. 2006; Ehrlich 

et al. 2008). 

1.2 Major reprogramming events in the cycle of life

Chromatin structure is not static, and drastic remodeling occurs at specific moments in 

development. Although the cycle of life inherently does not have a real beginning, I will 

start my journey in the zygote, the point in the cycle where a new genetically unique 

individual has just formed. However, it will immediately become clear that everything in 

the cycle of life is connected. Events that occurred during development of the germ cells 

that fused to form the zygote, determine the epigenetic constitution and regulation of 

the paternal and maternal genomes during their first joint efforts to regulate early devel-

opment. Therefore it is inevitable that I have to refer to other phases of the life cycle, no 

matter where I begin.
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1.2.1 Epigenetic asymmetry in the mouse zygote
The very first drastic chromatin reconfiguration in an individual’s life takes place just af-

ter the fusion of two highly specialized cells: the sperm and the oocyte (gametes). The 

successful fusion of the gametes will generate the totipotent one-cell zygote. This is the 

stage, where chromatin differences between the parental genomes are the most prom-

inent, despite the fact that they share the same environment (ooplasm). Some of these 

differences are directly mediated by the gametes. For example, at the time of fertiliza-

tion, the sperm’s genome is roughly two times more heavily methylated compared to 

that of the oocyte (Peat et al., 2014). In addition to such intrinsic differences between the 

parental genomes, differences between them are generated after fertilization, leading to 

a remarkable epigenetic asymmetry at several levels of chromatin organization for exam-

ple in histone modifications and DNA methylation. In general, the maternal chromatin is 

reminiscent of that of a somatic cell, while the paternal chromatin (after the replacement 

of protamines by maternal histones - see below) displays a more open and transcrip-

tionally permissive chromatin. In line with this feature, transcription from the paternal 

genome has been documented to occur before the general activation of the embryonic 

genome, that takes place around the 2- to 4-cell stage (Aoki et al., 1997). 

The most striking difference in chromatin structure between the maternal and paternal 

genome is induced by the replacement of the sperm’s protamines by unmodified his-

tones provided by the oocyte, in order to create a nucleosome-based chromatin struc-

ture. The deposition of the histones on the DNA of the paternal genome takes place 

before the first S phase (van der Heijden et al. 2005), therefore only the non-canonical 

histone variant H3.3 can be introduced, since incorporation of nucleosomes containing 

this H3 variant can occur via a DNA replication-independent mechanism (Torres-Padilla 

et al. 2006). At the same time, the maternal genome, which mostly maintains the same 

chromatin state as it had in the oocyte, and does not need to exchange histones, contains 

nucleosomes built with the canonical H3 histones, H3.1 and H3.2 (van der Heijden et al. 

2005). Asymmetry in the histone code between the two parental genomes is clearly illus-

trated by the paternal-specific pattern of acetylation of certain residues in H4 and H3 his-

tones (H4K16, H4K5 and H3K27) (Adenot et al. 1997; Stein et al. 1997; Hayashi-Takanaka 

et al. 2011), which at the same hypomethylated. While, the maternal chromatin displays 

mono-, di- and tri-methylation marks in certain H3 and H4 histone residues (e.g. H3K4, 

H3K9, H3K27 and H4K20), the paternal pronucleus only contains the mono-methylated 

versions of these histones (Lepikhov & Walter 2004; van der Heijden et al. 2005). 

When focusing on specific regions of the genone, PHC is differentially modified in the two 

parental genomes. In general, the structure of PHC in the early mouse pre-implantation 

embryo is in a completely different organization form compared to that of somatic cells 
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and typical somatic chromocenters in the early pre-implantation embryo start forming 

only after the 4-cell stage (Martin et al. 2006). Before this stage, chromosomal pericentric 

heterochromatin of different chromosomes is organized in the periphery of the Nucleo-

lus Precursor Bodies (NPBs) and forms a ring around them, with the centromeres located 

between the pericentric domains (Figure 5). NPBs are an atypical kind of nucleoli (re-

viewed in Fulka & Aoki 2016) and in spite of the morphological dissimilarities of somatic 

and early embryo heterochromatin, the heterochromatic ring in the early embryo is also 

heavily stained by DNA dyes, just like the chromocenters (Martin et al. 2006). 

Figure 5: Pericentric heterochromatin in the mouse zygote

In the zygote pericentric heterochromatin (PHC) of the parental genomes (maternal and paternal pronu-
cleus) is organized in the periphery of the nuclear precursor bodies (NPB). The centromeres of the corre-
sponding chromosomes are also located in the periphery of these bodies, between the pericentric hetero-
chromatic regions (green lines connecting centromeres).

The maternal PHC is enriched for the classical constitutive heterochromatin features, 

such as H3K9me3, H4K20me3, H3K64me3 and HP1β; whereas paternal PHC shows en-

richment for facultative heterochromatin markers (Liu et al. 2004; Puschendorf et al. 

2008; Kourmouli et al. 2004; Daujat et al. 2009). Histone modifications mediated by the 

Polycomb Repressive Complex 2 (PRC2), H3K27me2 and H3K27me3, clearly define the 

paternal ring-shaped PHC, that is also enriched for components of the canonical Poly-

comb Repressive Complex 1 (PRC1) such as RNF2, BMI1, CBX2 and PHC2, accompanied 

by H2AK119Ub (Puschendorf 2008). Recruitment of PRC1 components on the maternal 

PHC is blocked by the presence of HP1β (Tardat et al. 2015). 

As mentioned at the beginning of this paragraph, epigenetic asymmetry between the 

paternal and maternal pronucleus also includes DNA methylation differences, whereby 

Zygote

Maternal pronucleus
Paternal pronucleus
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the paternal genome is more heavily methylated than the maternal genome (Peat et al., 

2014). Soon after fertilisation, a genome wide DNA demethylation wave starts that lasts 

until the early blastocyst stage, where methylation reaches the lowest levels (Mayer et 

al. 2000). It should be noted, that during the global demethylation wave, not all meth-

ylation marks are removed. In particular, methylation patterns of imprinted genes are 

maintained. For imprinted genes, the expression pattern is determined by an epigenetic 

mark (usually DNA methylation) placed during male or during female gametogenesis in 

the parent.

In general, the global demethylation wave during early preimplantation development is 

thought to involve both active and passive mechanisms. However, the initiation of DNA 

demethylation in the zygote is accompanied with signatures of active demethylation ob-

served primarily on the paternal and not on the maternal genome. Thus, in addition 

to differences in overall levels of DNA methylation between the paternal and maternal 

genome, the processing of the parental methylomes is also differentially regulated. The 

molecular components of active DNA demethylation were largely unknown, but the re-

cent discovery of the Tet-Eleven-Translocation (TET) proteins, oxygenases that catalyze 

the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and the oth-

er derivatives 5-formylcytosine (5fmC) and 5-carboxylcytosine (5cmC) (Ito et al. 2011), 

was a major breakthrough in the mechanistic unravelling of the active DNA demethyl-

ation mechanisms that operate at different steps of the life cycle. Subsequent research 

proposed that the 5fmC and 5cmC metabolites are intermediates in the process of active 

demethylation, where they are enzymatically recognized and removed from the genome 

by components of the DNA repair machinery, such as by thymine–DNA–glycosylase 

(TDG). Thereafter, an unmodified cytosine is replacing the excised base (reviewed in Kohli 

& Zhang 2013; Dawlaty et al. 2014). Based on the information provided above, immuno-

fluorescence experiments using antibodies against 5mC and 5hmC revealed astonishing-

ly evident differences between the maternal and paternal genomes with respect to the 

presence of these modifications, already before the first zygotic mitotic division. 5hmC 

formation is prominent in the paternal pronucleus, suggesting that an active mechanism 

of DNA demethylation is ongoing, while the maternal pronucleus is rich for 5mC and 

shows no apparent signs of demethylation (Santos et al. 2002; Santos & Dean 2004). 

It has been established that oxidation of 5mC to 5hmC on the paternal genome in the 

zygote is catalyzed by TET3, which is highly expressed in the oocyte and sperm and it is 

therefore abundantly present in the zygote. Accordingly, TET3 also shows preferential 

localization on the paternal genome (Gu et al. 2011). However, genetic TET3 ablation has 

little effect on the paternal DNA methylome, indicating that TET3 mediated formation of 

5hmC might not be as critical for the active demethylation of the paternal  genome as 
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was suggested previously (Shen et al. 2014; Gu et al. 2011). Indeed, both parental 5mC 

(maternal) and 5hmC (paternal) marks undergo replication-mediated dilution in the zy-

gotic S-phase and during subsequent divisions (Inoue & Zhang 2011; Inoue et al. 2011). At 

this stage, the additional absence of the DNA methylation maintenance machinery com-

ponents (DNMT1) from the nuclei of the developing embryo favours a passively mediated 

demethylation process (Hirasawa et al. 2008; Inoue et al. 2011).  Recently, Amouroux et 

al. (2016), carefully timed 5mC disappearance and 5hmC appearance during early pronu-

clear development. Using ultrasensitive liquid chromatography/mass spectrometry and 

immunofluorescence, the authors observed a clear 5mC reduction in the early paternal 

pronucleus, but no concomitant 5hmC increase. Again, inhibition of TET3 did not affect 

the process, which is also replication independent. Furthermore, no significant 5mC loss 

was detected at this early zygotic stage from the maternal genome. Their results indicate 

that an alternative DNA – replication as well as TET3 independent - demethylation path-

way is active in the very early embryo specifically targeting the paternal genome. In fact, 

de novo DNA methylation also occurs (by maternally provided DNMT3A & DNMT1), and 

only the newly formed 5mC is subjected to TET3 mediated oxidation at the late stages of 

the zygote development (Amouroux et al. 2016; Messerschmidt 2016). 

At present, insight into the functional significance of the specific active demethylation, 

and the TET3-mediated formation of 5hmC on the paternal genome of the preimplanta-

tion embryo is lacking. In addition, it is not known if the differences in the histone code 

between the two parental genomes have any specific function. An attractive scenario is 

that all these forms of epigenetic asymmetry may be important for proper regulation of 

gene expression and development of the embryo (Gu et al. 2011 and reviewed in Feil 

2009). What is important to consider, though, is that the majority of studies on epigenetic 

reprogramming at these early stages of development have used mainly the mouse em-

bryo as a model and these results cannot be generalized and assumed for all mammalian 

species. The early preimplantation embryo stage is considered to be particularly crucial 

for further development and therefore different species may require distinct epigenetic 

mechanisms to regulate expression of developmental genes at specific time points. For 

example, in the human early pre-implantation embryo the epigenetic asymmetry in the 

PHC as observed in the mouse does not apply; classical pericentric heterochromatin his-

tone marks (e.g. H3K9me3) are retained in the human sperm and transferred to the oo-

cyte at fertilization (van de Werken et al. 2014). In line with this evidence, no enrichment 

for the PRC1/PRC2 components is apparent in the paternal human pronucleus like it is in 

the mouse (van de Werken et al. 2014). Even in human somatic cell nuclei, chromocenters 

cannot be easily identified by DNA dyes, as is the case for mouse (Mayer et al. 2005).
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1.2.2 Dosage compensation in the preimplantation embryo
Additionally to the epigenetic differences between the maternal and the paternal pronu-

cleus in the zygote, there is also a difference in the chromosomal composition (sex chro-

mosomes) between female and male embryos. The maternally provided genome always 

consists of a set of autosomes and the X chromosome and female mammalian individu-

als always carry two X chromosomes. In contrast, male mammals carry two different sex 

chromosomes, the X and Y, whereby the Y chromosome carries the male-determining Sry 

gene. This means that half of the sperm cells carry the Y chromosome and upon fusion 

with the oocyte will generate an XY male embryo, whereas the other half will carry the X 

chromosome and generate a female embryo.  

The difference between male and female cells, whereby female cells carry two copies of 

all X-linked genes, and males only have a single copy of all these genes (>1000), gener-

ates a dosage problem in X-linked gene expression between the two sexes that needs 

to be equalized. During evolution, this problem has occurred in many animal lineages, 

since genetic sex determining mechanisms are usually associated with gradual loss of 

genes from the chromosome that carries the sex determining locus (the Y chromosome 

in mammals), due to reduced recombination and other evolutionary relevant processes. 

In mammals, the X-linked gene dosage problem is solved by inactivation of one of the 

two X chromosomes in all female somatic nuclei by a mechanism termed X chromosome 

inactivation (XCI). Already in the late 1940s differences in the cytological morphology of 

somatic male and female nuclei were described, with the latter having an extra ‘body’ or 

‘nucleolar satellite’ present (Barr & Bertram 1949). A few years later it was proposed that 

this nucleolar satellite in female cells might correspond to an inactive X chromosome and 

that this inactivation would be a natural phenomenon taking place specifically in female 

cells (Ohno & Hauschka 1960; Lyon 1961) in order to compensate for the genetic imbal-

ance between heterogametic males and homogametic females.

In mouse preimplantation embryos, XCI is imprinted (Figure 1). Around the four-cell 

stage, imprinted XCI (iXCI) is initiated and inactivates always the paternal X chromosome 

in female mouse embryos. iXCI is essential for development, since female embryos that 

are incapable of inactivating the paternal X die in utero due to placental defects (Ma-

rahrens et al. 1997; Lee 2000; Sado et al. 2001; Wang et al. 2001; Shin et al. 2010). iXCI is 

maintained in the extraembryonic cell lineage, but is reversed in the inner cell mass of 

the blastocyst, that will give rise to the embryo proper. XCI is then re-initiated in a random 

fashion in the developing embryo, stably inactivating either the paternal or maternal X 

with roughly equal probabilities. The inactive X which is inherited by daughter cells upon 

cell division. A defined X-linked locus, termed the X-inactivation center is required for 
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the establishment of XCI. The X-inactivation center contains mostly genes that produce 

non-coding RNAs, and the noncoding Xist and Tsix RNAs are the major players in the XCI 

process. When XCI is initiated, Xist becomes highly expressed only from the future inac-

tive X chromosome, covers this X in cis and becomes detectable as a cloud in the nucleus 

using RNA FISH (Clemson et al. 1996).  This is then followed by addition of repressive 

histone modifications (e.g. H3K27me3, H4K20me1 and H2AK119ub1) to ensure the faith-

ful establishment of XCI (reviewed in Payer 2016). Tsix is partly overlapping with Xist, it 

is transcribed in the opposite direction and acts as an Xist antagonist. This means that 

on the future inactive X chromosome, the levels of Tsix are reduced when Xist is highly 

expressed, in order for XCI to initiate (Lee & Lu 1999; Sado et al. 2001). In contrast, on the 

active X chromosome, Tsix is actively transcribed, and interferes with expression of Xist, 

leading to subsequent inactivation of the gene, and maintenance of an active X chromo-

some (Luikenhuis et al. 2001; Stavropoulos et al. 2001). 

In iXCI, Xist expression from the paternal allele only initiates at the late 2-cell stage, con-

comitant with the ZGA (Zuccotti et al. 2002; Kay et al. 1994; Patrat et al. 2009). Following 

Xist accumulation at the 4-cell stage, other marks start to become established on the 

inactive paternal X chromosome, in order to ensure its robust silencing. These marks 

include H3K4 hypomethylation, and H3K9 hypoacetylation, followed by H3K27 tri-meth-

ylation and H3K9 di-methylation. Additionally, RNA PolII is excluded from the inactive X 

chromosome (Okamoto et al. 2004). 

Inactivation of the Xp takes place in two steps. In the first step, intergenic regions of Xp 

become inactivated in a Xist independent manner. This step is then followed by silencing 

of X-linked genes in a manner that does depend on Xist (Namekawa et al. 2010). 

But what determines the absolute choice for Xp inactivation in favor of Xm in the pre-im-

plantation embryo? Studies with uniparental embryos suggested that there may be two 

types of imprints on the parental X chromosomes required for specific inactivation of Xp, 

and maintenance of an active Xm. Specifically, when androgenetic embryos were gener-

ated (XpXp, XpY or XpO), Xist expression and accumulation took place from all X chromo-

somes, and importantly, the time point of initiation of Xist expression was identical to that 

of wild type XpXm embryos (Okamoto et al. 2000; Matsui et al. 2001). This suggests that 

the paternal X chromosome is programmed to become inactivated in the pre-implanta-

tion embryo regardless of the number of X chromosomes the embryo carries. The other 

way around, when parthenogenetic embryos were generated (XmXm) expression of Xist 

was never observed until the early morula stage, suggesting that the maternal Xist is im-

printed to resist expression in the early pre-implantation embryo and that this imprint is 

overridden later in development (Kay et al. 1994; Nesterova et al. 2001). 

It is well accepted that the imprint resisting X inactivation on the maternal X is set during 
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oogenesis. This view is based on observations of parthenogenetic embryos derived by 

serial nuclear transplantations, resulting from the combination of haploid non-growing 

(ng) and fully grown (fg) oocyte genomes. These early preimplantation embryos and their 

extra embryonic tissues preferentially inactivate the X chromosome derived from the ng 

oocyte, similar to Xp inactivation in normally fertilized wild type XmXp embryos (Tada et 

al. 2000). This indicates that the genome of the ng oocyte still lacks the imprint on Xm that 

makes it resistant to XCI up to the morula stage. Deposition of H3K9me3 at the promoter 

of Xist was thought to be responsible for blocking Xist expression from Xm (Fukuda et 

al. 2014), but closer examination of H3K9me3 levels on Xist during oogenesis did not re-

veal any differences between non-growing and fully-grown oocytes (Fukuda et al. 2015). 

However, DNA FISH experiments suggested that the chromatin organization of the Xist 

locus in a fully-grown oocyte is more compact compared to that of a non-growing oocyte 

and this could influence Xist expression from the maternal X (Fukuda et al. 2015). It still 

remains an open question what exactly is the imprint on the maternal X, and how it is 

established. In any case, the imprint appears to differ from the DNA methylation imprints 

found in association with classic imprinted genes such as Igf2, in the sense that it is not 

stably maintained throughout embryonic development. 

With respect to possible epigenetic marks that may actually facilitate Xist transcription 

from the paternal X, two hypotheses have been put forward. First, it has been suggest-

ed that the overall lack of histone modifications on the paternal genome (the epigenet-

ic asymmetry described in 1.2.1) may actually facilitate transcription of paternal genes, 

including Xist (Okamoto et al. 2005). Secondly, it has been suggested that the specific 

silencing of the X (and the Y) chromosome during meiotic and postmeiotic male germ cell 

development, mediated by the process of Meiotic Sex Chromosome Inactivation (MSCI) 

and by the formation of Postmeiotic Sex Chromosome chromatin (PMSC) (for details see 

1.2.7) somehow may be important in mediating an initial Xist-independent silencing of 

intergenic regions of the paternal X (Namekawa et al. 2010). In addition, or alternatively, 

these two processes may generate epigenetic marks that somehow facilitate paternal Xist 

gene expression. MSCI and PMSC are thought to be triggered by the lack of homology 

between the X and Y chromosomes, that are stably connected through a very limited area 

during meiotic prophase, when all autosomes pair fully with their homologous partner. 

Taking this into account, recent experiments tested the effect of having a transgenic Xist 

locus and the surrounding region, in multiple copies, in a homozygous or a heterozygous 

setting, mimicking the presence or absence of a pairing partner, respectively. When the 

transgene array was inherited from a heterozygote transgene array carrier, the transgen-

ic Xist gene was induced during the preimplantation period in the offspring. This was not 

the case when the parent was homozygous for the transgene. Thus, in the absence of a 
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pairing partner, meiotic silencing may be induced, similar to MSCI, and this may result in 

an imprint that recapitulates the normal Xp specific Xist expression in early preimplan-

tation embryos (Sun et al. 2015). However, in an earlier study, similar experiments were 

conducted, but in this case, only one copy of the transgene was incorporated in an auto-

some. In that setting, paternally imprinted expression of the transgenic Xist took place, 

independent of hetero-or homozygosity of the transgene. These authors suggested that 

the open chromatin of the paternal genome immediately after fertilization, due to the 

protamine to histone transition, might favor Xist expression from the Xp (Okamoto et al. 

2005). In conclusion, despite the fact that there is evidence for the existence of both Xm 

and Xp imprints during the pre-implantation period, knowledge on how these imprints 

are set and what their exact molecular nature is, is still missing. 

The paternal XCI is only transient for most cells, because at around embryo implanta-

tion (~E4.5), the paternal X chromosome becomes reactivated. This occurs only in the 

cells that express the pluripotency factor NANOG, thereby corresponding to the inner 

cell mass (ICM) cells of the blastocyst, and will give rise to the embryo proper (Mak et al. 

2004; Okamoto et al. 2004). Subsequently, random XCI is initiated, whereby both parental 

X chromosomes have an equal chance to become silenced and this then ensures stable 

and proper X linked gene dosage compensation in the tissues of developing female em-

bryos relative to XY males (Lee & Lu 1999). The mechanism by which random XCI is initi-

ated should be viewed as a stochastic mechanism in which multiple players -in addition 

to Xist and Tsix- that can be X-linked or autosomal, participate to modify the chance of 

initiation of XCI on a particular X chromosome. This mechanism also clearly depends on 

the number of X chromosomes that are present, relative to the autosomes.

In addition to the non-coding, acting in cis non coding RNAs Xist and Tsix other factors 

have been identified to participate in XCI. One critical XCI-trans activator is the X-linked 

Rnf12 gene. RNF12 is an E3 ubiquitin ligase which ubiquitinates the pluripotency factor 

REX1, and thereby targets it for proteasomal degradation (Jonkers et al. 2009; Shin et al. 

2010, Gontan et al. 2012).  An autosomal gene encodes REX1, which binds DNA and acts 

to repress XCI in pluripotent stem cells (Gontan et al. 2012).

Lastly, despite the fact that extra embryonic lineages maintain iXCI, a number of genes 

located on the inactive X escape silencing, and therefore it appears that iXCI is less robust 

compared to random XCI that takes place in the soma of the embryo (Hadjantonakis et 

al. 2001; Corbel et al. 2013; Merzouk et al. 2014).

1.2.3 iXCI in species other than mouse
Most of our knowledge today about iXCI comes from the mouse model. However, studies 

conducted in other eutherian species suggest that what we know about iXCI in mice may 
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not be applicable to other mammals. For example, detailed analysis of XIST/Xist expres-

sion in human and rabbit preimplantation embryos revealed dissimilarities in the time 

of XIST/Xist upregulation compared to the mouse, but also in its expression pattern, pos-

sibly reflecting different regulatory XCI trajectories between eutherian species. While in 

the mouse Xist accumulation takes place around the 4-cell stage and only from the Xp, in 

human and rabbit preimplantation embryos XIST/Xist accumulates later (~morula stage), 

potentially reflecting differences in the ZGA between species. Strikingly different, though, 

is the observation that both in human and rabbit embryos expression of XIST/Xist takes 

place from both X chromosomes. In the rabbit, this situation is resolved in the ICM of the 

blastocyst,  where both X chromosomes become active, similar to the mouse. However, 

in human blastocysts XIST RNA accumulates on all X chromosomes regardless of the em-

bryo’s sex. Remarkably, XIST accumulation does not result in X-linked gene silencing as 

examined by RNA FISH experiments (Okamoto et al. 2011; Petropoulos et al. 2016). This 

observation is similar to what has been described for the rhesus monkey, where also XIST 

is expressed from both X chromosomes in females and the single X in males as examined 

by RT-PCR, and chromosome-wide XCI has not yet been induced in female blastocysts 

(Tachibana et al. 2012). All these data suggest that the mouse model as a system may 

not be an optimal representative of the XCI process especially when studying diseases 

related to XCI in humans. 

Addressing the question whether iXCI takes place in pre-implantation embryos and extra 

embryonic tissues in other species than the mouse is frequently quite challenging due to 

lack of data regarding polymorphisms that can reveal parent specific X-linked gene ex-

pression. In any case, using alternative methods and genetic approaches, iXCI has been 

shown to take place in rat yolk sac, an extra embryonic membrane (Wake et al. 1976). In 

addition, iXCI has also been reported for both cow pre-implantation embryos (morula 

only) and placentas (Xue et al. 2002; Ferreira et al. 2010), but in these studies only one 

gene was analysed. On the other hand, analysis of mule and horse placentas revealed 

that random XCI takes place in the extra embryonic tissues of these animals (Wang et 

al. 2012). In human the issue remains unresolved since both imprinted and random XCI 

have been reported to occur in the placenta (Goto et al. 1997; Moreira de Mello et al. 

2010). 

Taken together, and despite some contradictory findings that still need to be resolved, 

it is clear that different eutherian mammals have evolved different strategies for XCI. 

However, the end result in the soma of all mammals is the achievement of dosage com-

pensation visualized by the presence of the Barr body, representing the inactivated X 

chromosome. The only cell type that actively reverses this situation is the female primor-

dial germ cell.
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1.2.4 Primordial germ cells: specification of a unique population of cells
Primordial germ cells (PGCs) are unique for their ability to generate gametes (oocytes 

and spermatozoa) that pass the genetic and epigenetic information from one generation 

to the next, thereby ensuring species survival. In general, PGCs in diverse species are 

specified during early embryonic development via two different mechanisms: through 

preformation or via epigenesis (or induction). 

In the case of preformation the oocyte contains cytoplasmic components such as mRNA 

transcripts and proteins (known as nuage or germ plasm) at a specific location. Upon 

fertilization and subsequent mitotic divisions, cells that will physically inherit these de-

terminants will become PGCs (Bertocchini & Chuva de Sousa Lopes 2016). In the epigen-

esis scenario, no germ plasm is transmitted from the oocyte, but rather secreted mole-

cules from the tissue surrounding the site of PGC formation will induce the specification 

of PGCs to that site (Bertocchini & Chuva de Sousa Lopes 2016). In the mouse, PGCs’ 

(mPGCs) specification takes place through induction around embryonic day 6.0 (E6.0). 

Specifically, signaling emerging from the extra-embryonic ectoderm (ExE) upon the proxi-

mal epiblast will induce cells at this region to adopt a PGC fate (Lawson & Hage 1994; Tam 

& Zhou 1996) (Figure 1). By default, epiblast cells are destined towards a somatic fate and 

by receiving an inductive signal to do otherwise, the molecular and epigenetic signature 

of these cells must change drastically. 

The inductive signaling includes members of the TGFβ signaling pathway such as various 

Bone Morphogenetic Protein ligands (BMP) and SMAD proteins, as well as WNT3A. Par-

ticularly, BMP4, BMP2 and BMP8b have been shown to be important for PGC specifica-

tion with BMP4 being absolutely crucial, since Bmp4 knockout mouse embryos, among 

other abnormalities, do not present any PGCs (Lawson et al. 1999). Bmp2 and Bmp8b 

knock out mouse embryos form PGCs, albeit in lower numbers compared to their wild 

type littermates (Ying et al. 2000; Ying & Zhao 2001). WNT3A has been proposed to be 

essential for responsiveness of the epiblast to BMP4 (Ohinata et al. 2009). Additionally, 

SMAD1 and SMAD5 have also been shown to be vital for PGC specification in the mouse 

(Hayashi et al., 2002; Tremblay et al., 2001).

Nonetheless, despite the overall extensive research in PGC biology over the years and 

the identification of a plethora of factors participating in the process of PGC specification, 

the intriguing question on how the transcriptional network of epiblast cells can change 

from somatic to pluripotent and how specific fates are determined remained unclear. 

Biochemical studies in PGCs with the current technologies are challenging or not feasible, 

due to the small size population of these cells in the initial steps of germline development, 

reaching approximately ~40 cells per (early) embryo in the mouse. The development of 
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in vitro systems based on naïve embryonic stem cells (ESCs) sufficiently recapitulating 

the process of PGCs’ specification, and at the same time having the potential to mature 

to fully functional gametes, has provided a solid platform for the characterization of the 

signaling principle of mPGC specification. In accordance with this Aramaki et al. (2013), 

using such an in vitro system (Hayashi et al. 2011; Hayashi et al. 2012), identified that a 

synergistic activity of the BMP/SMAD and WNT3 pathways in the posterior part of the 

proximal epiblast induces germ cell fate.  WNT3A expressing cells at this specific position 

are exposed to high levels of BMP4 coming from the ExE. WNT3A induces expression of 

T (also known as Brachyury), a mesodermal transcription factor, which in the absence of 

BMP4 activates the expression of mesodermal somatic genes (Martin & Kimelman 2010). 

However, in the presence of BMP4, this activity of T is blocked, and instead, T activates 

key transcription factors for germ cell development: PRDM1 (also known as BLIMP1) and 

PRDM14 (Aramaki et al. 2013; Cantú & Laird 2013). PRDM1 and PRDM14 play a decisive 

role in PGC development, since both individual mutant mice display loss of germ cells 

(Ohinata et al. 2005; Vincent et al. 2005; Kurimoto et al. 2008; Yamaji et al. 2008; Grabole 

et al. 2013). Together, these two transcription factors suppress the somatic program al-

ready imposed in the future PGCs and at the same time they promote re-installment of 

a pluripotent status, expression of germ cell specific genes, as well as initiation of the 

PGC program-coupled epigenetic reprogramming (Bikoff & Robertson 2008; Nakaki et al. 

2013; Magnúsdóttir et al. 2013; Grabole et al. 2013; Saitou & Yamaji 2012). In addition, 

they activate genes important for PGCs’ maintenance, such as Tfap2c (Weber et al. 2010).

The mechanism that initiates the process of germ cell specification in human is still un-

known. Due to obvious ethical restrictions, human embryos older than two weeks old 

can not be kept in culture (Bertocchini & Chuva de Sousa Lopes 2016), precluding devel-

opment of useful models, since it is speculated that germ cell specification takes place 

around this time point (Tang et al. 2015). However, it should be noted that the organiza-

tion of the extra-embryonic and embryonic layers in the early post-implantation human 

embryo is very different compared to that of the mouse, indicating a possible different 

germ cell – line inductive signaling mechanism in humans (Bertocchini & Chuva de Sousa 

Lopes 2016; Saitou et al. 2016). 

Many attempts have been made to generate hPGCs in vitro (Chen et al. 2007; Clark et 

al. 2004; West et al. 2010) to study the molecular mechanisms beyond time points for 

which human material is unavailable (between 2 to 4 weeks). However the potential germ 

cells derived from these studies were poorly characterized and the efficiency of obtaining 

such cells was low. Recently, scientists applied a strategy similar to the method that gen-

erated the robust in vitro system established in the mouse, using human ESCs, and they 

identified SOX17, an endodermal factor, as the key regulator for inducing hPGCs (Irie et 
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al. 2015). In the mouse SOX17 has no apparent inductive role in mPGC specification (Hara 

et al. 2009). Interestingly, single cell transcriptome analysis of in vivo hPGCs from week 4 

to week 19 confirmed expression of SOX17, but also of SOX15, which is expressed earlier 

and more robustly than SOX17, indicating a possibly more pivotal role of SOX15 in hPGCs’ 

development (Guo et al. 2015). Despite the fact that in vitro hPGCs have not been tested 

for their full potential, which would determine their functionality, their usage has con-

firmed previous skepticism for significant differences in the germline signaling network 

between human and mouse (reviewed in Surani 2015). These differences underscore the 

necessity for usage of non-human primate models. Such models may prove to be bene-

ficial for understanding germ cell development in humans, as well as provide knowledge 

for establishing human gametogenesis in vitro, a tool valuable for both basic and applied 

scientific purposes. 

1.2.5 Epigenetic reprogramming of primordial germ cells: the first repro-
gramming event in the gametic line
After the inductive wave for PGC specification, a small population of nascent PGCs be-

comes apparent at ~E7.0 as a small cluster of around 40 cells in the extra-embryonic 

mesoderm (primitive streak) at the base of allantois (Chiquoine 1954; Ginsburg et al. 

1990). In order for the PGCs to become part of the developing gonads, they migrate 

from the extra-embryonic mesoderm to the developing hindgut endoderm and finally 

they reach the genital ridges by E10.5 (Tam & Snow 1981; Molyneaux et al. 2001; Seki et 

al. 2007; Richardson & Lehmann 2010). Their migratory pathway is accompanied by cell 

proliferation, but most importantly by epigenetic reprogramming, that targets genome 

wide histone modifications, as well as DNA methylation. The dynamics of histone modi-

fications in PGCs has been mainly studied by immunofluorescence analyses covering all 

stages of germ cell development. However, the recent application of ChIP-seq technol-

ogies using small numbers of cells (Ng et al. 2013; Sachs et al. 2013) aimed for a more 

precise characterization of the PGCs’ epigenome. At the same time the use of in vitro 

systems (Kurimoto & Saitou 2015) has opened the road for elucidating the functional 

significance of PGC reprogramming and possibly it will decipher the regulatory networks 

that mediate PGC reprogramming, in more detail.

The earliest (around E8.0) observed chromatin change that PGCs encounter is the global 

loss of H3K9me2, most likely triggered by the downregulation of its catalyzing enzymes 

GLP and G9a (Seki et al. 2007). The genome wide loss of H3K9me2 is accompanied by 

a temporal transcriptional quiescence as assessed by immunofluorescent detection of 

phosphorylated RNA PolII. This global silencing acts presumably to protect PGCs from 

deregulated transcription until enriched levels of H3K27me3 are well established in PGCs 
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(Seki et al. 2007; Kagiwada et al. 2013). Concomitant with the enriched H3K27me3 levels, 

PGCs in the female reactivate their inactive X chromosome, which remains silenced in 

the surrounding somatic cells (see section 1.2.2) (Sugimoto & Abe 2007; Chuva de Sousa 

Lopes et al. 2008). By ~E10.0 global transcription is restored, as well as histone modifi-

cations coupled to permissive and active chromatin which were also transiently absent 

from chromatin in earlier PGCs (H3K4me2, H3K4me3 and H3K9ac) (Seki et al. 2007). Sub-

sequently, at E11.5 when PGCs have arrived in the genital ridges, another genome wide 

reprogramming event has been reported to take place in the germ cells. At this time 

immunostaining results indicate that H3K27me3, H3K9me3, H1 histone linker, HP1 iso-

forms and numerous other histone modifications and histones variants disappear from 

PGC chromatin. Subsequently, they re-appear at E12.5 germ cells (Hajkova et al. 2008). 

However, further inspection of the chromatin status of E11.5 PGCs failed to confirm a 

number of these findings (Kagiwada et al. 2013), necessitating additional examination 

which eventually might advance our understanding on the overall germ cell reprogram-

ming. 

To date the functional importance of histone reprogramming in PGCs is not fully un-

derstood. In other epigenetic reprogramming events redundancy can ensure successful 

completion of a developmental process upon absence of standard histone modifications 

(for example during histone to protamine transition – see section 1.2.8). However, failure 

to reduce H3K9me2 or to subsequently increase H3K27me3 levels around E9.0 in PGCs, 

leads to their loss (Yamaji et al. 2008; Mansour et al. 2012). A potential role of the epige-

netic reprogramming event in PGCs could be to provide a basis for epigenetic inheritance 

in the next generation, since promoters of many somatic developmental regulators are 

bivalently marked (and transcriptionally silenced) with H3K27me3 and H3K4me3 in E11.5 

and E13.5 germ cells. The bivalency may contribute to prevent the expression of the so-

matic program in the germline, but at the same time keep it accessible for activation after 

fertilization (Sachs et al. 2013). It would be interesting to examine whether bivalency is 

established and detected in earlier stages of PGC development.

An additional epigenetic change that participates into the eradication of the somat-

ic differentiation programme in PGCs targets the PGC methylome. Genome wide DNA 

demethylation takes place in two waves in PGCs (Seisenberger et al. 2012; Yamaguchi, 

Shen, et al. 2013; Hackett et al. 2013). During the first wave, that initiates approximately 

at E8.0-E8.5, DNA demethylation occurs in various regions, such as promoters and is-

lands, genic and intergenic regions. At a later phase, at around E10.5, DNA demethylation 

targets CpG islands of the X chromosome in females as well as differentially methylated 

regions of imprinted genes (Seisenberger et al. 2012). Remarkably, PGCs are the only 

cells in the body in which the methylation marks of imprinted genes are reset, in order 
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to allow new sex-dependent marks to be established in the emerging male and female 

germline. Methylation reaches the lowest levels at E13.5, with female germ cells appear-

ing less methylated compared to male germ cells (Seisenberger et al. 2012; Guibert et al. 

2012; Popp et al. 2010). However, not all methylation marks are erased during the global 

DNA demethylation wave. A number of genomic regions escape this process and retain 

their methylation signature as described in BOX1.

The mechanism by which DNA demethylation is accomplished in PGCs has been under 

debate for over 60 years and in general it was believed that DNA demethylation relied 

on active mechanisms. A number of observations pointed in that direction: 1) the meth-

ylation marks of some imprinted genes were reported to be erased at E11.5 when PGCs 

were considered to be arrested in the G2 phase of the cell cycle (Hajkova et al. 2002); 2) 

the replication cycle of PGCs was considered to be quite slow (Tam & Snow 1981) and 3) 

deficiency of components considered to be important for the DNA demethylation pro-

cess (such as of Activation Induced Cytidine Deaminase, short known as AICD or AID) 

resulted in higher methylation levels in these mutated PGCs compared to wild type PGCs 

(Popp et al. 2010). However, as presented below, most of these points have now been 

refuted by results from more robust experiments, and passive demethylation appears to 

be the main mechanism involved. 

When the TET pathway (thought to be involved in active DNA methylation, see section 

2.1.1) was first discovered, this was then also studied in developing PGCs. Some studies 

indicated that TET proteins were expressed, concomitant with the formation of 5hmC in 

migratory PGCs (Hackett et al. 2013; Yamaguchi, Hong, et al. 2013; Yamaguchi, Shen, et 

al. 2013). Another group observed very low expression levels of solely Tet1 in PGCs, while 

Tet2 and Tet3 were not detected at all (Kagiwada et al. 2013). Furthermore, although Tet1/

Tet2 double knock out PGCs completely lack global 5hmC as assessed by immunofluores-

cence, this 5hmC loss, was not accompanied by global increased levels of 5mC (Dawlaty et 

al. 2013). In addition, when assessing methylation levels specifically at regulatory regions 

of imprinted genes, hypermethylation was indeed recorded, but only in a fraction of Tet1/

Tet2 knock out embryos. In general, Dawlaty et al. (2013) observed that the “increased 

methylation levels” phenotype in regulatory regions of imprinted regions was variable 

among embryos of the same litter, and aberrant imprinting was not exclusively linked 

to lethality (Dawlaty et al. 2013). Together, these data have led to the now well accepted 

view that TET proteins affect DNA demethylation only at specific loci (review in Hill et al. 

2014). Evidence supporting a much larger role for passive demethylation in PGCs came 

from the observation that components of the de novo or maintenance DNA methylation 

machineries, like DNMT3A/3B, DNMT1 and UHRF1, are either not expressed or depleted 

from PGC nuclei (Kurimoto et al. 2008; Kagiwada et al. 2013). In addition, re-analysis of 
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the PGC cell cycle with BrdU pulse-chase experiments revealed that the proliferation of 

the germ cell precursors occurs frequent enough to support a passive DNA demethyla-

tion model (Kagiwada et al. 2013). In support of the passive demethylation scenario, not 

only genetic ablation of genes encoding the TET enzymes, but also of molecular com-

ponents that are also thought to participate in the active DNA demethylation in PGCs, 

does not have such a dramatic effect on methylation levels, as someone would expect 

if only active demethylation pathways takes place. For example in Aid deficient embryos 

the increase in DNA methylation levels is only slight (Popp et al. 2010). A mathematical 

model that was built to recapitulate DNA methylation in mouse ESCs, which might be 

similar to what occurs in PGCs, also predicts that global DNA demethylation is driven by 

impaired DNA methylation maintenance (passive demethylation), and not by active DNA 

demethylation. However, TET-dependent demethylation was indeed confirmed with this 

mathematical model in a limited number of specific loci, including that of certain imprint-

ed genes (von Meyenn et al. 2016). 

All the above mentioned information comes from mouse studies. A lot of attention 

has lately turned to human, in order to specify whether analogous mechanisms occur 

in human developing germ cells. These studies revealed that, in the human germline, 

PGCs also undergo reprogramming, although there are some differences compared to 

the mouse. While in the mouse there is persistent enrichment of the repressive histone 

mark H3K27me3, compared to the surrounding soma, throughout germ cell develop-

ment (Kagiwada et al. 2013), this histone modification, was undetectable by  immuno-

fluorescence analysis in hPGCs after week 9 of development. Conversely, H3K9me2 is 

globally depleted from mouse PGC nuclei shortly after these cells are specified (Seki et al. 

2007), but is still detected in the human germ cell nuclei, albeit in lower levels compared 

to the surrounding somatic cells (Tang et al. 2015). Still, reactivation of the inactive X 

chromosome takes place both in mouse and human female PGCs (Gkountela et al. 2015; 

Guo et al. 2015). 

Concerning the status of DNA methylation, detailed examination of the methylome by 

whole genome bisulfite sequence revealed that similar to the mouse, DNA demethyl-

ation takes place also in hPGCs. DNA methylation reprogramming targets promoters, 

transcription sites, intergenic regions and gene bodies (Tang et al. 2015). Most impor-

tantly, DNA demethylation targets imprints, highlighting the evolutionary conservation 

of epigenetic reprogramming as a whole taking place in the germline of mammals. The 

general DNA demethylation mechanism in hPGCs seems to include parallel operations 

of passive and active DNA demethylation pathways like mouse PGCs. TET1 and TET2 are 

enriched in hPGCs, and at the same time 5hmC is enriched in certain genomic areas (such 

as in germ cell gene promoters and imprinted genes), indicating the operation of active 
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DNA demethylation mechanisms (Gkountela et al. 2015; Guo et al. 2015; Tang et al. 2015). 

However, RNA-seq experiments failed to detect components that are thought to actively 

remove 5hmC from the DNA of hPGCs (e.g. AID) (Tang et al. 2015). 

At the same time, despite detection of DNMT3A/3B, as well as of UHRF1 mRNA in the hu-

man germline, the protein levels examined by immunofl uorescence are below detection 

in hPGCs (Tang et al. 2015), pointing to a passive dilution of 5hmC, since the de novo and 

maintenance methylation machineries are largely disabled. 

BOX1: Escape from DNA demethylation 
Despite the gradual loss of DNA methylation during mouse PGCs’ reprogramming, 

certain regions of the genome resist DNA demethylation and remain methylated ei-

ther fully or partially (Seisenberger et al. 2012; Guibert et al. 2012; Hackett et al. 2013). 

Classic examples of elements that behave in such manner are repetitive transposable 

elements like IAPs, ERV-LTR1, -ERVL, and -ERVK. Transposable elements are DNA se-

quences, which have the ability to mobilize and jump from one position in the genome 

to the next, thereby interrupting genes and leading to diseases. Therefore their ex-

pression must stay under tight control. An example of such control takes place in the 

germ line, where even in E13.5 germ cells, that have the lowest DNA methylation levels 

(Popp et al. 2010; Seisenberger et al. 2012) these elements do manage to retain their 

methylation signature. 

DNA demethylation escapees also include single copy sequences that are widely dis-

tributed in the genome, including gene bodies, promoters, intergenic regions as well 

as regions located in close proximity to DNA demethylation resistant transponsable 

elements. In addition, retention of DNA methylation is also observed in pericentric 

satellite repeats and in subtelomeric regions (Guibert et al. 2012; Seisenberger et al. 

2012; Hackett et al. 2013; Guo et al. 2015). 

Intriguingly, all these DNA regions (transposons and not) that resist DNA demethyla-

tion may be vectors of epigenetic information across generations, leading to transgen-

erational inheritance, since they might infl uence activity of neighboring genes. How 

these elements resist DNA demethylation is largely unknown. A mechanism found 

recently to operate in PGCs involves H3K9me3 and/or H3K27me3 enrichment in these 

elements. Somehow, these repressive histone marks confer a level of protection 

against both active and passive DNA demethylation machineries. Deletion of Setdb1, 

the gene encoding H3K9me3 methyltransferase, resulted in loss of methylation and 

in de-repression of many retrotransposons. Other elements, however, remained si-

lenced indicating the presence of alternative repressive pathways (Liu et al. 2014).
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Like in the germline, early preimplantation embryos undergo a global DNA demeth-

ylation wave (reviewed in Marcho et al. 2015). However, in this case imprinted genes 

escape the demethylation process. Therefore early embryos and ESCs (derived from 

the ICM of the blastocyst) have been used to unravel escaping DNA demethylation 

mechanisms. Subsequently, the same mechanisms may also apply to the germ-line 

escapees. 

Research in early embryos and ESCs revealed several factors participating in the pro-

cess of protection of methylated DNA against demethylation, like the pluripotency fac-

tor STELLA in collaboration with H3K9me2, or the repressive TRIM28 complex. STELLA 

has been shown to protect 5mC from TET3-mediated conversion to 5hmC by bind-

ing to maternal chromatin containing H3K9me2 in mice (Nakamura et al. 2012). The 

TRIM28 complex includes heterochromatinisation components such as the H3K9me3 

catalysing histone methyltrasnferase SETDB1, HP1 and the DNA methyltranferases 

DNMT1, DNMT3A/3B (Quenneville et al. 2011; Zuo et al. 2012). In addition, TRIM28 

itself has been shown to associate with the KRAB zinc fi nder protein 57 (ZFP57) (Alex-

ander et al. 2015; Li et al. 2008) and these proteins have been detected at imprinted 

loci and other regions, which contain the ZFP57 binding motif (TGCCGC) (Quenneville 

et al. 2011; Liu et al. 2012). It is evident, that the TRIM28/ZFP57 and co-factors complex 

plays a major role in controlling endogenous retroelements both in mouse (Rowe et 

al. 2010) and human stem cells (Turelli et al. 2014), in preimplantation embryos (Li 

et al. 2008; Alexander et al. 2015) as well as in other types of cells (Fasching et al. 

2015); however, a direct role in maintaining retroelements methylated in the mouse 

germline has not been explored yet. In the human germline, binding motifs for the 

KRAB-TRIM28/ZFP57 repressive complex have been identifi ed in retroelements that 

escape DNA demethylation (Tang et al. 2015), indicating that this complex may be 

used as a general repressor of diff erent elements during reprogramming events tak-

ing place in the mammalian genome. 

Interestingly, other types of repeat elements, like LINES, do follow the demethylation 

wave in the germline, but their demethylation is not necessarily coupled to transcrip-

tion, which may have detrimental eff ects to the cells (Tang et al. 2015; Hackett et al. 

2013; Seisenberger et al. 2012; Kim et al. 2014). The protein arginine methyltrans-

ferase 5 (PRMT5) has been found to repress transcription of such elements upon their 

demethylation during the reprogramming wave in PGCs (Kim et al. 2014). Specifi cally, 

PRMT5 catalyses formation of the repressive histone-mark H4/H2AR3me2, and ChIP 
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1.2.6 Meiosis: activity and inactivity of sex chromosomes
When PGCs have completed the global wave of DNA methylation and overall reorganisa-

tion of their chromatin, they enter a quiescent stage in males that persists up to puber-

ty. In contrast, all female PGCs enter meiotic prophase around E13.5 in mouse. During 

meiotic prophase, homologous chromosomes come in a very close proximity to pair and 

physically connect through a process termed synapsis. The pairing of the chromosomes 

is mediated by complex regulatory mechanisms involving specifi c telomere anchoring to 

the nuclear membrane, chromosome movement, and generation and repair of meiotic 

DNA double-strand breaks, whereby sequence similarity between parental homologs is 

used to ensure correct partner recognition. Concomitant with the progression of chro-

mosome pairing and synapsis, homologs undergo meiotic recombination, so that genetic 

material of the parental genomes is shuffl  ed and at the end of meiosis genetically unique 

haploid cells will arise. 

In female meiosis, the sex chromosomes behave similar to the autosomes and as men-

tioned in 1.2.5, both X chromosomes are active in female oocytes (Sugimoto & Abe 2007; 

Chuva de Sousa Lopes et al. 2008). Meiosis then arrests at the end of prophase I, and 

is resumed at puberty, when a follicle has reached pre-ovulatory size, and the Follicle 

Stimulating Hormone (FSH) and Luteneizing Hormone (LH) surge initiate ovulation and 

trigger the oocyte to complete meiosis I. This is an asymmetrical division, generating a 

small polar body and a mature oocyte that is arrested at metaphase II. Upon fertilization, 

this second arrest is relieved and a second polar body forms. 

Male meiosis initiates at puberty (Figure 5), and is re-initiated at regular time intervals 

from diff erentiated spermatogonia that develop from a spermatogonia stem cell pool 

during the rest of the adult life. The presence of the largely non-homologous X and Y 

chromosome challenges the chromosome pairing process in males: X and Y stably syn-

apse only in a small region of homology, called the pseudoautosomal region (PAR) (Perry 

et al. 2001). The extensive asynapsis between the X and Y chromosomes is associated 

experiments showed that this histone modifi cation is enriched in transposons that 

become demethylated. In addition, at E11.5, PRMT5 exits the nucleus and then meth-

ylates the cytoplasmic PIWI proteins, which are major components of the piRNA-me-

diated de novo DNA methylation pathway of transposons (Kim et al. 2014; Berrens & 

Reik 2016). Therefore, PRMT5 seems to act in diff erent ways in controlling transpos-

able elements. Potentially, additional epigenetic controls may participate in their tight 

(post) transcriptional restraint.
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with their transcriptional inactivation (Monesi 1965) in a process called Meiotic Sex Chro-

mosome Inactivation (MSCI). MSCI itself is a version of a more general silencing phenom-

enon known as Meiotic Silencing of Unsynapsed Chromatin (MSUC) (Baarends et al. 2005; 

Turner et al. 2005). Similar to the X and Y, when homologous autosomes do not manage 

to synapse during meiosis they also become transcriptionally silenced. 

The molecular players involved in triggering MSCI and MSUC appear to be very similar. 

In both cases there is persistence of meiotic DNA DSBs, accumulation of proteins such 

as HORMAD1/2 that recognize unsynapsed regions (Wojtasz et al. 2009), and activation 

of the DNA damage response pathway, whereby ATR and BRCA1 will accumulate. This 

leads to the phosphorylation of γH2AX in a positive feedback loop (Turner et al. 2004; 

Mahadevaiah et al. 2008) causing gene silencing (Royo et al. 2013).

In striking contrast to MSCI though, MSUC can occur both in the female and male germline, 

is related to abnormal situations, and eventually leads to male and female infertility or 

reduced fertility due to germ cell arrest (reviewed in Turner 2015). MSCI, on the other 

hand, has evolved to be an absolute prerequisite for normal male meiosis, and if disrupt-

ed (e.g. upon induction of MSUC) male fertility is compromised (Lè Ne Royo et al. 2010). 

So despite the continuous presence of an obligatory unsynapsed chromosome pair (XY) 

during male meiosis, MSCI will never trigger germ cell arrest in normal situations. 

Since transcription must be tightly restricted (BOX2) from the male sex chromosomes, the 

nuclear territory that the X and Y occupy (also known as XY or sex body) carries a number 

of heterochromatic features. Phosphorylation of γH2AX sets the basis for transcriptional 

inactivation. Subsequently, other chromatin alterations take place in the XY body. For 

example, there is enrichment of H3K9me2 (Greaves et al. 2006), H3K9me3 (Page et al. 

2012), ubiquitinated H2A (Baarends et al. 2005), HP1β (Motzkus et al. 1999; Turner et al. 

2001), HP1γ (Greaves et al. 2006), macroH2A variant (Hoyer-Fender et al. 2000) and the 

canonical H3 is substituted by the H3.3 variant (van der Heijden et al. 2007). In addition, 

histone modifi cations associated with transcriptional activity, such as H3K9ac, as well as 

(phosphorylated) RNA Polymerase II, are depleted from the XY body and in general this 

region is compartmentalized to the periphery of the nucleus (Page et al. 2012).

BOX2: Transcription from the X & Y during MSCI leads to arrest
MSCI has been linked to transcriptional dormancy of the X and Y chromosome in the 

male germ cells. This implies that, during MSCI, male germ cells are able to tolerate 

the absence of X and Y gene transcription. Interestingly though, X-linked genes im-

portant for meiosis and male fertility have been discovered to be expressed at the 

earliest stage of  male germ cell development (spermatogonia), before meiosis com-
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1.2.7 Silencing in post-meiotic haploid cells: Postmeiotic Sex Chromosome Repres-
sion (PSCR)
After completion of meiosis, diploid cells have given rise to four haploid spermatids that 

carry either an X or a Y chromosome. At this point, the XY body has dismantled and 

γH2AX and several proteins related to MSCI have been removed from the X and Y.  Still, 

mences and evolution came up with an additional mechanism, so that genes with 

important functions (e.g. housekeeping genes located on the X) will fi nd alternative 

ways of expression during meiosis. In this case, a number of genes located on the X 

chromosome have been duplicated and integrated themselves via retrotransposition 

in autosomal positions, and around the time of MSCI they will be expressed and back 

up the function of the parental genes that are subjected to silencing via MSCI (Sin 

2013). In addition, there appears to be a special mRNA stabilization mechanism that 

operates early during male and female meiotic prophase, in association with glob-

al transcriptional silencing during this phase (Abby et al. 2016). As autosomal gene 

transcription then re-initiates in pachytene, the sex chromosomes remain silent, and 

some transcripts might still be stabilized, although the observed overall reduction of 

sex-linked transcripts versus autosomal transcripts in purifi ed spermatocytes nicely 

illustrates the global nature of MSCI (Turner et al. 2006). To provide a theory that could 

explain how this mechanism might have evolved, it was proposed that sex-linked gene 

mis-expression at the time of MSCI could be deleterious for male germ cells. In line 

with this argument, experiments with XYY male mice, and with transgenic mice ex-

pressing specifi c Y-linked genes from an autosome, provided compelling evidence in 

support of this hypothesis. In this case, the Y-chromosomes (or the autosomes car-

rying the Y-linked genes) perfectly synapse, escape MSCI, remain transcriptionally ac-

tive, and the transcriptional activation of Y-linked genes leads to germ cell arrest (Royo 

et al. 2010). 

Lastly, if MSUC is induced, due to an autosomal pairing problem in male germ cells, 

MSCI is incomplete. In this case, the mediators of MSCI are partially redistributed to 

the autosomal unsynapsed chromatin and therefore the MSCI process is impaired. 

The sex chromosomes are now transcriptionally active and the accumulation of toxic 

X and Y transcripts leads to germ cell arrest (Royo 2010). At the same time, MSUC itself 

is quite a germ cell stressful event and germ cells are not evolutionary adapted to 

cope with it, as they do with MSCI. Meiotic silencing in this situation will starve germ 

cells for a multitude of gene products related to the unsynapsed chromatin, and this 

may also contribute to germ cell arrest (Turner, 2015).  
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certain heterochromatic features are maintained in the sex chromosomes in the round 

spermatids, largely maintaining the transcriptionally silenced state of X and Y. The per-

sistence of the X and Y in a silent postmeiotic state is referred to as post-meiotic sex 

chromosome repression (PSCR) (Namekawa et al. 2006). 

Microarray analysis showed that 13% of the 676 genes examined on the X-chromosome 

are postmeiotically induced (87% silent genes). Interestingly, the majority of genes evad-

ing PMSC correspond to multi-copy genes, and their escape has been connected to their 

functional role in spermiogenesis (reviewed in Turner 2015). Knockdown experiments of 

such genes results in impaired sperm motility, numbers and reduced fertility (Mueller et 

al. 2008, Coquet et al. 2009). In addition, single copy genes have been reported to escape 

PSCR. These involve again genes both essential for fertility  (e.g. Akap4) and genes that do 

not have a clear function in postmeiotic germ cell development (e.g. Rnf8, Rnf12) (Name-

kawa et al. 2006; Hu & Namekawa 2015).

Given that transcriptional silencing is highly maintained after MSCI, immunofluorescence 

studies revealed that solely the X (or the Y) among the rest of the chromosomes in round 

spermatids is marked by a more intense DAPI signal compared to the surrounding chro-

matin and is visible as a domain alongside the chromocenter. The chromocenter itself 

is also DAPI dense and consists of the pericentric heterochromatin of the autosomes 

present within the nucleus of round spermatids. As expected, histone modifications and 

proteins usually found in heterochromatin, such as H3K9me2/3, HP1β and HP1γ, also 

mark the sex chromosomes in round spermatids (Namekawa et al. 2006; Sin & Nameka-

wa 2013). In addition, the histone variant H2A.Z is also enriched, and is thought to replace 

macroH2A (Greaves et al. 2006). 

1.2.8 The histone-to-protamine transition: setting the paternal epigenome 
for the next generation
Despite the fact that the basic steps of meiosis are very similar between males and fe-

males, the mature gametes deriving from each sex are very different from each oth-

er, not only morphologically and structurally, but also epigenetically. The most striking 

difference between the two is that during the maturation process of the male haploid 

gametes, known as spermiogenesis (Figure 6), histones are replaced by other small ba-

sic proteins called protamines so that the genome of the sperm will be packaged and 

condensed in the most compact way. The packaging will facilitate the sperm to adapt a 

compact hydrodynamic shape needed for its journey along both male and female repro-

ductive tracts, but also to protect its DNA from damage (Rathke et al. 2014).  

The epigenetic transformation from histones to protamines occurs in three steps. In the 

first step, a number of canonical histones are replaced by testis specific histone variants. 
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The histone variants can incorporate at pre- and postmeiotic stages of spermatogenesis 

and both canonical histones and histone variants are present in the testis. The testis 

specific histones variants contribute to loosening of the chromatin structure and thus 

prepare the genome for the histone-to-protamine transition (Montellier et al. 2013). Al-

ternatively, or in addition, testis specific histone variants may somehow guide the dep-

osition of transition proteins (second step, see below) and protamines (Bao & Bedford 

2016). Furthermore, in the testis, both canonical histones and histone variants can be 

post transcriptionally modified, and this type of regulation is also thought to contribute 

to the histone removal. For example, the ubiquitination of H2A and H2B has been pro-

posed to be required for the hyperacetylation of H4 (H4K5, H4K8 and H4K16) (Lu et al. 

2010), which subsequently promotes histone replacement and chromatin compaction 

(Hazzouri et al. 2000; Govin et al. 2006). 

In the second step and just before the deposition of protamines, transition proteins 

briefly take the place of the majority of histones. In the mouse there are two transition 

proteins, TP1 and TP2. TP1 and TP2 can compensate for each other’s loss, since the phe-

notypes of the single Tp1 or Tp2 knockout mouse models are quite similar and both are 

still able to produce offspring. In these single knockout models, transcription from the 

intact Tp gene was found to be upregulated (Yu et al. 2000; Zhao et al. 2001). In accord-

ance with the functional compensation hypothesis, Tp1 and Tp2 double knockout mice 

are sterile, have abnormal sperm morphology, chromatin condensation is compromised 

and histones are retained during spermiogenesis (Zhao et al. 2004).  

The third and last step that is required for full chromatin condensation in maturing sper-

matids is the deposition of protamines. With this step, the chromatin in the sperm nu-

cleus will be 6-20 times more compact compared to a nucleus containing histone-based 

chromatin (Bao & Bedford 2016). The mouse genome encodes two types of protamines: 

PRM1 and PRM2. Similar to transition proteins, protamines are also small basic proteins. 

Interestingly, deletion of one allele of either Prm1 or Prm2 leads to haploinsufficiency 

accompanied by sterility; therefore single protamine gene knockout mice cannot be gen-

erated (Cho et al. 2001), demonstrating the essential role of these proteins in spermat-

ogenesis.   

At the end of mouse spermiogenesis, the vast majority of nucleosomes has been re-

placed by protamines. However, a small fraction (1%) of histones is retained in the mouse 

genome and in human this fraction is much higher (15%) (reviewed by Rathke et al. 2014). 

The presence of such histones and their epigenetic signature is of great interest since 

they may contribute to the regulation of developmental processes in the next genera-

tion(s). Therefore, many labs sought to determine their genomic position. One well-ac-

cepted genomic position where nucleosomes are retained is the centromere. Studies in 
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different organisms revealed that CENPH3 (also known as CENPA), a variant of histone 

H3 found on centromeres is not exchanged for protamines in a variety of species, includ-

ing mammals, suggesting that the centromere identity must remain intact throughout all 

intense reprogramming processes that accompany developmental processes, and pro-

vide a centromere basis for early embryogenesis (Palmer et al. 1990; McKinley & Chee-

seman 2015).

Apart from the clear retention of CENPH3, a number of studies, both in human and mouse 

sperm, support the notion that sperm histones are overrepresented in developmental 

gene promoters or exons and are barely found at repeat regions or introns (Hammoud 

et al. 2009; Hisano et al. 2013). Contrarily to this view, one recent publication indicated 

that nucleosome retention does not occur at gene promoters, but mostly in gene poor 

regions (Carone et al. 2014). At the same time, another publication indicated retention of 

sperm histones mostly at centromeric repeats and sites containing retrotransposons (Sa-

mans et al. 2014). Interestingly, re-analysis of the latter study by a different group (Royo 

et al. 2016), revealed that the bioinformatics strategy followed in their study was trivially 

performed; over-representation of nucleosomes at genomic repeats could not be detect-

ed upon re-examination of their data. The other discrepancies between the published 

studies may be caused by different experimental conditions in order to assess genomic 

position of nucleosome retention; enrichment at gene promoters could only be detected 

when high concentration micrococcal nuclease (MNase) was used. 

Novel approaches may be needed to resolve this matter. However, whatever the exact 

location of the sperm histones is, experimental evidence suggests that these histones, 

also carrying specific modifications, may have a great impact on offspring development 

for more than one generation (Siklenka et al. 2015). 
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GENERAL INTRODUCTION

Aim and scope of this thesis
During development, certain epigenetic signatures portray specific developmental pro-

cesses. Each cell type in the body possesses a unique epigenome that will determine its 

proper gene expression and will ensure its specialized function. The field of epigenetics 

is continuously growing and with it our understanding that even environmental factors 

or nutrition can alter the epigenome of an individual. These potential epigenetic altera-

tions may be then inherited from parent to future generations and lead to altered gene 

expression profiles.  

In this thesis, I have focused on obtaining more insight onto epigenetic signatures and 

events that appear during early embryo development (pre- and post-implantation peri-

ods) or during differentiation of early embryo representatives (ESCs). By developing tech-

nical innovative approaches aimed at better detection of chromatin components and 

DNA, and at developing relevant models to study the molecular basis of XCI, I have aimed 

to contribute to insight in the regulation of PHC in primordial germ cells and in (imprint-

ed) XCI in mouse and rat.

First, we have investigated the possible functional link between PSCR and iXCI in pre-im-

plantation mouse female embryos using round spermatid injection (ROSI) into oocytes 

(Chapter 2). ROSI was used as a tool to investigate the possible impact of disturbance of 

the epigenome on early developmental processes, using iXCI as readout.  ROSI technol-

ogy has been shown to be able to generate several generations of mice, and it has been 

recently succesfully used in the clinic (Tanaka et al. 2015). Very little is known about pos-

sible epigenetic consequences of applying this technique, and our results warrant further 

research in that direction.

Another central point of this thesis concerns the epigenetic signature of PHC in early de-

veloping PGCs. Epigenetic reprogramming in PGCs has been mainly studied through im-

munofluorescence analysis. Interestingly, it has been reported that various histone mod-

ifications and readers, including those present on PHC, are transiently lost from E11.5 

PGCs. They are then rapidly re-established one day later. This phenomenon resembles 

in some aspects the PHC signature of the paternal genome in the zygote. In Chapter 3 

we aimed to examine whether there is indeed a resemblance link between the PHC epi-

genetic signature of the paternal genome and of the developing PGCs. Taking into con-

sideration that epitope availability can be compromised upon different conditions, we 

characterized in detail the epigenetic make up of PHC in developing PGCs using various 

preparation protocols. 

In Chapter 4 we aimed to characterize XCI in differentiating rat ESCs. In most XCI studies 

the mouse has been ‘the model’ species to study dosage compensation between males 
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and females. Relevant studies in other rodent species were lacking. Despite the fact that 

different differentiation rat ESCs protocols are reported, these are not suitable to study 

XCI, since they make use of 2i inhibitors that block XCI from occuring. Therefore, we es-

tablished a robust differentiation protocol in the absence of 2i inhibitors, to recapitulate 

and study the epigenetic phenomena accompanying XCI in the rat model. In addition, we 

aimed to unravel if the function of important XCI players is conserved between rodents.

Lastly, the establishment of robust and reproducible procedures is of great importance 

for both scientific and diagnostic purposes. Commonly, the detection of both RNA and 

DNA molecules in the same sample is laborious, long and technically challenging and 

many times the current procedures compromise the quality of the sample. Therefore 

in Chapter 5, we sought to establish a protocol for rapid, simultaneous and combined 

detection of RNA-DNA FISH signals in pre-implantation embryos.

In Chapter 6 I discuss the findings presented in the research chapters and I provide 

insight on future experiments that may be pivotal in expanding our knowledge on these 

specific topics. 

 

ALL TOGETHER Final.indd   56 1/5/17   12:03 PM



57

2

Chapter 2
ROUND SPERMATID INJECTION RESCUES LETHALITY OF 

A PATERNALLY INHERITED XIST DELETION IN MOUSE

Federica Federici1#, Aristea Magaraki1#, Evelyne Wassenaar1, Catherina JH van Veen-Buurman2, 
Christine van de Werken2, Esther B Baart2, Joop SE Laven2, J Anton Grootegoed1, Joost Gribnau1 and 

Willy M Baarends1* 

Published in PLoS Genet
12:e1006358 (2016)

ALL TOGETHER Final.indd   57 1/5/17   12:03 PM



ALL TOGETHER Final.indd   58 1/5/17   12:03 PM



59

ROUND SPERMATID INJECTION RESCUES FEMALE LETHALITY OF A PATER-
NALLY INHERITED XIST DELETION IN MOUSE
Federica Federici1#, Aristea Magaraki1#, Evelyne Wassenaar1, Catherina JH van Veen-Buur-

man2, Christine van de Werken2, Esther B Baart2, Joop SE Laven2, J Anton Grootegoed1, 

Joost Gribnau1 and Willy M Baarends1* 

Author Affiliations:
1Department of Developmental Biology, Erasmus MC, University Medical Center, Rotter-

dam, The Netherlands
2Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, 

Rotterdam, The Netherlands
#Both authors contributed equally to this work
*Corresponding author:

Dr. Willy M. Baarends

e-mail: w.baarends@erasmusmc.nl
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Abstract 
In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced 

by imprinted X chromosome inactivation (iXCI). This requires production of the noncod-

ing Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome 

(Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance 

of an Xist deletion (XpΔXist) is embryonic lethal to female embryos, due to iXCI abolish-

ment. Here, we circumvented the histone-to-protamine and protamine-to-histone transi-

tions of the paternal genome, by fertilization of oocytes via injection of round spermatids 

(ROSI). This did not affect initiation of XCI in wild type female embryos. Surprisingly, ROSI 

using ΔXist round spermatids allowed survival of female embryos. This was accompanied 

by activation of the intact maternal Xist gene, initiated with delayed kinetics, around the 

morula stage, resulting in Xm silencing. Maternal Xist gene activation was not observed 

in ROSI-derived males. In addition, no Xist expression was detected in male and female 

morulas that developed from oocytes fertilized with mature ΔXist sperm. Finally, the ex-

pression of the X-encoded XCI-activator RNF12 was enhanced in both male (wild type) 

and female (wild type as well as XpΔXist) ROSI derived embryos, compared to in vivo ferti-

lized embryos. Thus, high RNF12 levels may contribute to the specific activation of mater-

nal Xist in XpΔXist female ROSI embryos, but upregulation of additional Xp derived factors 
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and/or the specific epigenetic constitution of the round spermatid-derived Xp are ex-

pected to be more critical. These results illustrate the profound impact of a dysregulated 

paternal epigenome on embryo development, and we propose that mouse ROSI can be 

used as a model to study the effects of intergenerational inheritance of epigenetic marks.

Author Summary
In sexual reproduction, maternal and paternal haploid sets of DNA are combined in one 

new diploid individual. However, not only DNA, but also epigenetic information, defined 

by DNA and histone modifications, is transferred to the zygote. Specific inactivation of the 

paternally inherited X chromosome (Xp) in the preimplantation female mouse embryo is 

required for embryo survival. This imprinted X chromosome inactivation (iXCI) is initiated 

by transcription of the Xist gene from Xp. In contrast, the maternal Xist gene is imprinted 

during oogenesis to remain silent. We have investigated the consequences of elimination 

of the histone-to-protamine and protamine-to-histone transitions on iXCI, by fertilization 

through injection of immature round spermatids into oocytes (ROSI). Interestingly, when 

the round spermatids used for ROSI carried an X chromosome with an Xist deletion (ΔX-

ist), we found that the Xist gene on the maternal X chromosome was activated, which 

rescued the female lethality of embryos that is invariably observed upon fertilization with 

mature ΔXist spermatozoa. This striking result is best explained by deregulation of em-

bryonic gene expression, in particular from Xp, when the paternal genome originates 

from round spermatids rather than spermatozoa. From this, we suggest that the use of 

round spermatids has unforeseen consequences for embryonic gene expression and its 

use in human assisted reproduction must be carefully considered.

Introduction
In mammals, as in all diploid organisms with a sexual reproduction cycle, the diploid 

zygote is formed upon fertilization by combination of the haploid maternal and paternal 

genomes. Sperm and egg each contribute a complete set of chromosomes, and in addi-

tion the gametes carry sex-specific epigenetic information that is important for correct 

execution of the early developmental gene expression program. A striking epigenetic 

difference between the paternal and maternal epigenomes is caused by the fact that the 

paternal chromatin undergoes two rounds of complete remodelling in the reproductive 

cycle. First, during the final post-meiotic phase of spermatogenesis, in elongating and 

condensing spermatids, the vast majority of histones is replaced by protamines, gener-

ating the compact sperm nucleus. Second, immediately following fertilization, the pro-

tamines are replaced by maternal histones. The maternally provided histones H3 and 

H4 on the paternal pronucleus are devoid of lysine di- and tri-methylation marks, which 
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leads to clear global differences in heterochromatin organization between the paternal 

and maternal genomes that are maintained up to the 8-cell stage (Puschendorf et al. 

2008; van der Heijden GW et al. 2005). In addition to a haploid set of autosomes, a sper-

matozoon contributes either an X or a Y chromosome to the zygote. The sex chromo-

somes are more drastically remodelled than the autosomes during spermatogenesis, 

because the heterologous X and Y chromosomes undergo meiotic sex chromosome in-

activation (MSCI) in spermatocytes (reviewed by Turner 2007), which is associated with 

chromosome wide nucleosome exchange (van der Heijden et al. 2007). After meiosis, 

silencing of X- and Y-linked genes is largely maintained during spermatid differentiation 

through post-meiotic sex chromatin repression (PSCR) (Namekawa et al. 2006). Notewor-

thy, a number of X- and Y-linked genes, single and multi-copy, escape PSCR and become 

specifically reactivated (Namekawa et al. 2006; Mulugeta Achame et al. 2010; Hendriksen 

et al. 1995) until the global transcriptional silencing that accompanies the histone-to-pro-

tamine transition sets in, in condensing spermatids. Subsequently, after fertilization, the 

X chromosome of paternal origin (Xp) will always be inactivated in female pre-implanta-

tion embryos and this is maintained in the extra-embryonic tissues of post-implantation 

embryos. This imprinted X chromosome inactivation (iXCI) depends on expression and 

spreading in cis of the Xist noncoding RNA on the Xp (Okamoto et al. 2004). X-encoded 

RNF12 is a known and important XCI trans activator, acting through a dose-dependent 

mechanism in the activation of Xist transcription (Shin et al. 2010; Jonkers et al. 2009; 

Gontan et al. 2012). Maternal expression of RNF12 has been shown to be essential for 

iXCI, whereas deletion of the paternal copy is compatible with normal female embryo de-

velopment and establishment if iXC (Shin et al. 2010).  Thus, the inactive state established 

on the Xp by MSCI and PSCR in spermatogenesis is not directly transmitted to female 

pre-implantation embryos but has to be re-established. However, whether the epigenetic 

events associated with the presence of unsynapsed chromatin are involved in establish-

ing a paternal imprint at the Xic is not fully clear. In one study, expression of the Xist trans-

gene was observed in preimplantation embryos only when the transgene was inherited 

from the father, independently of hemi- or homozygosity, indicating that imprinting was 

normally established on the single copy Xist transgene (Okamoto et al. 2005). However, 

in a more recent study, correct imprinted expression was observed only when transgenic 

inserted Xist was transmitted from a hemizygous father (Sun et al. 2015). Here the trans-

gene was present in multiple copies. Irrespective of the mechanistic background of the 

paternal Xic imprint, it is clear that paternal X-linked genes are transcriptionally active 

at the 2-cell stage and are then gradually inactivated de novo via Xist RNA-dependent 

silencing (Okamoto et al. 2005; Q. Deng et al. 2014). During iXCI Xist RNA spreading on the 

Xp triggers the recruitment of chromatin-modifying protein complexes, which in turn will 
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establish repressive epigenetic marks on the Xp, rendering it transcriptionally inactive. 

At the blastocyst stage, while iXCI is stably maintained in extra-embryonic tissues, the Xp 

becomes reactivated in the epiblast followed by random XCI without a parent-of-origin 

bias (Mak et al. 2004). Paternal inheritance of a Xist deletion (ΔXist) completely abolishes 

iXCI of the Xp (Marahrens et al. 1997), arrests development around E6.5, and results in 

reabsorption of mutant female embryos by E12.5 (Mugford et al. 2012). The strong bias 

towards Xp inactivation in iXCI is favoured by the presence of an imprinting mark on the 

X chromosome of maternal origin (Xm) that prevents it from expressing Xist (Tada et al. 

2000; Fukuda et al. 2014). In addition, Xp may also be imprinted to become preferential-

ly inactivated, as might be inferred from the recently reported effects from the pairing 

status of an Xist transgene during male meiotic prophase (Sun et al. 2015), although the 

nature of such an imprint remains elusive. It has been proposed that iXCI occurs as a two-

step process (Namekawa et al. 2010). First, pre-inactivated intergenic repeat regions on 

the Xp may carry transgenerational epigenetic information from the paternal germline 

to the zygote, predisposing the Xp for iXCI independently of Xist (Namekawa et al. 2010). 

This might rely on the inheritance of sperm-derived nucleosomes and their associated 

modifications. Second, subsequent establishment of genic silencing strictly depends on 

Xist expression from the paternal allele (Namekawa et al. 2010). Alternatively, it has been 

suggested that the preferential inactivation of Xp may simply rely on early and robust 

activation of the paternal Xist gene (Heard et al. 2004). This may be facilitated, upon ferti-

lization, by the protamine-to-histone transition, during which the protamine-based chro-

matin of the sperm acquires newly deposited histones lacking most heterochromatic 

marks. The transcriptionally permissive chromatin signature deposited on the haploid 

genome in the paternal pronucleus would then allow Xist expression from the paternal 

allele. Conclusive evidence for the contribution of the protamine-to-histone transition in 

the initiation of iXCI is lacking.

To test if the chromatin rearrangement in spermatids impacts on iXCI, we made use of 

mouse round spermatids to fertilize oocytes. When a round spermatid is injected into a 

mouse oocyte (ROSI), the paternal genome has a histone-based chromatin constitution, 

contrary to the protamine-packaged chromatin of spermatozoa. Hence, ROSI evades 

the protamine-to-histone replacement in the male pronucleus, but rather provides for a 

paternal genome with a spermatogenic histone-based chromatin composition. Here, by 

using ROSI as an experimental tool, and a method to visualize individual chromosomes 

in fixed early embryos, we could establish that the chromatin constitution of the X chro-

mosome in round spermatids is maintained in ROSI-derived zygotes. Next, we observed 

that absence of genome wide paternal chromatin remodelling did not affect the timing 

of Xist expression in ROSI-derived female zygotes, on a wild type background. We then 
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asked if the transcriptionally repressed state and the heterochromatin marks present on 

the X chromosome of round spermatids, because of MSCI and PSCR, might be sufficient 

to establish iXCI independently of Xist-mediated silencing. This was tested using round 

spermatids from male mice lacking a functional Xist gene (XpΔXist) for ROSI. Here, we 

would expect rescue of the early embryonic lethality of XpΔXist female embryos through 

maintenance of MSCI- and PSCR-mediated inactivation of Xp, which is Xist-independent. 

Our results showed that injection of XpΔXist round spermatids indeed prevents the fe-

male lethality, that is always observed upon fertilization with mature XpΔXist spermato-

zoa. Surprisingly, this rescue occurred through inactivation of the Xm and not by Xist-in-

dependent Xp silencing. In addition, we observed high levels of the XCI activator RNF12, 

in all ROSI derived embryos, independent of sex and genotype. These findings are dis-

cussed in the context of our current views on iXCI, and possible implications for transfer 

of dysregulated paternal epigenetic information to the embryo are described in relation 

to the clinical application of assisted reproductive technology. 

Results and Discussion

Histones and associated epigenetic modifications are transmitted from round 
spermatids to ROSI-derived zygotes
To analyze the histone modification patterns of round spermatid-derived paternal chro-

matin in early embryos, and in particular the epigenetic profile of the Xp, we arrested 

ROSI-derived mouse embryos at the pro-metaphase stage of the first or second cleavage 

divisions (Avo Santos et al. 2011). This allows the visualization of epigenetic marks on 

individual chromosomes. As a control for staining specificity, zygotes obtained by intra-

cytoplasmic sperm injection (ICSI), using epididymal spermatozoa, were subjected to the 

same experimental procedure. 

Following the histone-to-protamine transition in spermatids, mouse epididymal sper-

matozoa contain approximately 1% of residual histones (Balhorn et al. 1977; van der 

Heijden et al. 2006). After sperm decondensation by heparin treatment and immunos-

taining for histone H3.1/2 and centromeres (with anti-centromere antibody, ACA), limit-

ed histone retention associated with pericentromeric regions was visible (Figure 1A, left 

panel), as previously shown (van der Heijden et al. 2006). After fertilization, when the 

protamine-to-histone transition has taken place, we did not detect any H3K9me3 at pa-

ternal prometaphase chromosomes of ICSI-derived zygotes (Figure 1A, right panel), while 

prometaphase chromosomes of maternal origin were strongly enriched for H3K9me3 

at pericentromeric regions and displayed moderate H3K9me3 levels along the chromo-

some arms. These results are in accordance with results from previous studies on in vivo 
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fertilized embryos, that showed epigenetic asymmetry between maternally and paternal-

ly inherited chromatin up to the third cleavage division (Puschendorf et al. 2008; van der 

Heijden et al. 2005; Arney et al. 2002; Santos et al. 2005). 

In round spermatids, the X and Y chromosomes, as well as the constitutive pericentric 

heterochromatin clustered in the chromocenter, are enriched for H3K9me3 (Figure 1B, 

left panel), in accordance with previously published data (van der Heijden et al. 2007). In 

ROSI-derived zygotes at the first cleavage division, we detected persistence of H3K9me3 

at the DAPI-dense heterochromatic chromosome ends of paternal origin and on the en-

tire Xp (Figure 1B, right panel). This epigenetic profile mirrors the H3K9me3 pattern ob-

served in round spermatids. ROSI-derived 2-cell stage female embryos that were arrest-

ed at the pro-metaphase of the second cleavage division displayed maintenance of a high 

enrichment for H3K9me3 in particular on one of the two X chromosomes (Figureure 1C), 

as confirmed by Xist DNA FISH (note that some residual H3K9me3 signal generates back-

ground staining after the FISH procedure Figureure 1C, right panel and enlargements). 

One blastomere (the lower one, in Figure 1C) showed DNA FISH staining also on the Xm, 

confirming that the embryo was indeed female. 

The present results are in agreement with previous observations, that a substantial frac-

tion of modified histones present in round spermatid chromatin is maintained in early 

pre-implantation embryos generated by ROSI (Kishigami et al. 2006). Here, we show that 

this concerns in particular the X chromosome, where the H3K9me3 chromatin signature 

covers the entire chromosome.
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Figure 1: Chromatin remodeling in ROSI-derived embryos

A Left panel: Representative image of a decondensed nucleus of a mature mouse spermatozoon stained 
with H3.1/2 (green) and anti-centromere antibody (ACA) (red), to illustrate the limited presence of histones 
in association with pericentromeric chromatin in mature mouse sperm, as shown previously by others (van 
der Heijden et al. 2006). Right panels: Representative image of immunolocalization of H3K9me3 (green) in 
chromosome spreads of prometaphase-arrested mouse zygotes obtained by ICSI (as represented by the 
drawing, n=3 zygotes). The condensed chromosomes of paternal and maternal origin are cutouts from the 
whole zygote images (paternal chromosome set on top; maternal below). DNA is counterstained with DAPI 
(blue). B Left panel: Representative image of a nucleus of a mouse round spermatid immunostained for 
H3K9me3 (green), to illustrate the enrichment of H3K9me3 on the chomocenter (encircled) and adjacent 
sex chromosome (arrowhead) as described previously (van der Heijden et al. 2007). Right panels: Repre-
sentative image of immunolocalization of H3K9me3 (green) in chromosome spreads of prometaphase-ar-
rested zygotes obtained by ROSI (as represented by the drawing, n=20 zygotes). The condensed chromo-
somes of paternal and maternal origin are cutouts from the whole zygote images (paternal chromosome 
set on top; maternal below). The X chromosome is indicated by a white dashed square box, whose identity 
is inferred from the known enrichment of the round spermatid X chromosome for this marker (Nameka-
wa et al. 2006). C Representative image of immunofluorescence analysis for H3K9me3 (green) on chro-
mosome spreads of a representative prometaphase-arrested 2-cell stage embryo obtained by ROSI (as 
indicated by the drawing on the left, n=2). Each blastomere from the same embryo is cutout into separate 
images (1st blastomere on top; 2nd blastomere below). The X chromosome is indicated by a white dashed 
square box. Xist DNA FISH (left panel) was performed on the same chromosome spreads represented on 
the left. Square boxes on the right are blowups of each corresponding boxed area containing one X chro-
mosome (1st blastomere, one X is not visible) or two X chromosomes (2nd blastomere). 

Normal establishment of iXCI in ROSI-derived female zygotes
We then aimed to investigate if absent or limited remodeling of paternal chromatin in 

ROSI-derived female zygotes, and the heterochromatic epigenetic signature of the X 

chromosome specifically, might affect the timing of Xist expression and interfere with iXCI 

establishment. In ROSI-derived female embryos, Xist expression started normally at the 

4-cell stage (Figure 2A), when clear Xist RNA FISH clouds are already visible, and these are 

further enhanced at the 8-cell stage (Figure 2B), similarly to what has been described for 

in vivo fertilized control embryos (Okamoto & Heard 2006). We cannot discriminate be-
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tween the two parental X chromosomes in this experiment, but since we never observed 

Xist clouds,nor Xist mRNA expression above background in male wild type ROSI-derived 

morulas (see below), and since the timing of Xist expression is normal, we infer that it is 

the Xp that is inactivated. Thus, the data suggest that the protamine-to-histone transition 

does not play a major role in the activation of the paternal Xist gene. In addition, the 

enrichment of H3K9me3 along the X chromosome does not appear to interfere with Xist 

transcription. It therefore seems more likely that another type of imprint, or a different 

mechanism, controls preferential Xist expression from Xp. 

Figure 2: Xist expression in ROSI-derived embryos

A Representative images of Xist RNA FISH on a ROSI-derived 4-cell stage embryo on the left (n=5 ROSI 
embryos), and a 4-cell stage embryo derived by in vivo fertilization (n=4). Dashed red square boxes are 
blowups of each corresponding boxed area. B Representative image of Xist RNA FISH on a ROSI-derived 
8-cell stage embryo on the left (n= 5 ROSI embryos), and an 8-cell stage embryo derived by in vivo fertiliza-
tion. Dashed red square boxes are blowups of each corresponding boxed area.

Transmission of XpΔXist through round spermatids rescues female embryonic le-
thality
Female embryos inheriting an Xist deletion on the Xp can no longer be recovered by E12, 

because lack of imprinted inactivation of the Xp leads to embryonic lethality (Marahrens 

et al. 1997). We tested if transmission of an Xp carrying the Xist deletion through ROSI, 

instead of fertilization with mature sperm, might rescue the embryonic lethal pheno-
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type. This experiment was based on the hypothesis that inheritance of an Xp that carries 

the transcriptionally silenced PSCR heterochromatic signature, might provide sufficient 

dosage compensation of X-linked genes in the absence of Xist, and thereby would allow 

female embryo survival. We performed ROSI with XpΔXist round spermatids from the 

C57BL/6 ΔXist mouse line generated by Csankovszki et al. (1999). We also performed ICSI 

with XpΔXist mature sperm from the C57BL/6 mouse line. At E15, we obtained 17 pups 

after ROSI and 11 after ICSI (Table 1). This was approximately 10% of the number of 

2-cell stage embryos that were transferred to pseudopregnant females, and 25% of the 

counted implantations, for both techniques. The sex of the embryos was determined by 

visual inspection of the isolated gonads and confirmed by genotyping PCR for all females 

and most males (Supplemental Figure S1A and S1B). The ICSI experiments yielded only 

males, as expected. In contrast, 5 out of the 17 E15 embryos generated by ROSI were 

female (p<0.05, chi square test). All male and female surviving embryos appeared nor-

mal in size and appearance and there was no overt difference between ICSI versus ROSI 

embryos, or between males and females. Interestingly, female embryos could not be 

generated when using XpΔXist spermatids from M. musculus castaneus (CAST/EiJ) males 

(Table 1, male sex assessed by the presence of testes). Male fertility parameters of CAST/

EiJ mice differ significantly from those of C57BL/6 mice (Odet et al. 2015). Although CAST/

EiJ males are normally fertile, this result indicates that there may be critical differences in 

gene expression between the two subspecies. At present we cannot point to any specific 

causal difference that would explain our failure to rescue on this background. For all our 

subsequent experiments we continued with C57BL/6 spermatids.

Table 1

#; number, numbers in brackets indicates number of animals in each experiment
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ICSI	  C57BL/6	  

(E15)	  
ROSI	  C57BL/6	  

(E15)	  
ROSI	  C57BL/6	  

(P0)	  
ROSI	  CAST/EiJ	  

(E15)	  

#	  of	  independent	  
experiments	  

4	   4	   2	   3	  

#	  of	  2-‐cell	  embryos	  
transferred	  

104	   163	   64	   156	  

#	  of	  pups	   11	   17	   7	   12	  

#	  of	  XY	  Males	   11	  (2,3,1,5)	   12	  (1,5,1,5)	   5	  (2,3)	   12	  (2,5,5)	  

#	  of	  XX	  Females	   0	   4	  (0,1,1,2)	   2	  (0,2)	   0	  

#	  of	  XO	  Females	   0	   1(1,0,0,0)	   0	   0	  
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We genotyped all ROSI-derived female embryos, and found both a wild type Xist allele 

and a deleted Xist allele in embryonic and extraembryonic tissues of four of the female 

embryos, while one embryo was an XO female which had lost the mutated paternal X 

chromosome (Figure 3A). Next, we analysed the X chromosome to autosome ratio (X:A) 

for all embryos using quantitative PCR on genomic DNA, and observed the expected 1:1 

ratio for the four XX embryos, and their placentas and isolated gonads (Figure 3B).

We then verified if ROSI-derived XpΔXist female embryos might develop to term. To this 

end, we collected pups in the morning after birth (P0). We obtained 7 live born pups (10% 

survival of 2-cell embryos that were transferred, Table 1), of which 5 were males and 2 

were females. Sex was confirmed by PCR for UbeX and UbeY (Supplemental Figure S1C). 

The two XpΔXist females were comparable in size and body weight to the male wild type 

siblings (Figure 3C). Genotyping for the mutated and wild type Xist allele confirmed hete-

rozygosity of these females (Figure 3C).  Our recovery of embryos following ICSI or ROSI 

is relatively low, compared to previously published data (Yamauchi et al. 2015). Part of 

the low recovery yield from the ICSI can be explained by the lethality of females due to 

the paternal Xist deletion. For the ROSI experiments, the rescue that we observe appears 

to be only partial. This is based on a comparison between the male to female sex ratio of 

2.83 observed when XpΔXist ROSI embryos and pups are taken together (n=23), and pub-

lished sex ratios observed in 12 different published mouse ROSI experiments, involving 

comparable numbers of mice per experiment, whereby a mean male:female sex ratio 

of 0.93 ±0.48 was observed, with a maximum observed sex ratio of 2.33 (Supplemental 

Table S1). 
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Figure 3: ROSI rescues female-specific lethality of a paternally inherited Xist deletion (XpΔXist)

A Representative E15 XpΔXist ROSI-derived female embryo (E) and attached placenta (P). Genotypes on 
DNA isolated from embryo and placenta of 4 ROSI-derived XpΔXist E15 female embryos and the single RO-
SI-derived XO embryo are shown on the right. Genotype was determined by the presence of a PCR product 
for the wt Xist allele (431bp band) and deleted allele (513 bp band). Water negative control and 100 bp 
marker were also loaded. B Bar graph showing X:A ratios determined for different tissues in E15 embryos 
as indicated below the X-axis. To determine the X:A ratios, qPCR on genomic DNA isolated from E15 embry-
os, placentas and gonads was performed for Xist (chromosome X) and Rex1 (chromosome 8). Results for 
each gene in each tissue were normalized to the values obtained in one reference wild type female. The 
X:A ratio was then determined for each individual tissue in 4 wild type females, 4 wild type males and in the 
4 XpΔXist ROSI-derived female embryos. Results for each individual tissue are shown as dots, the average 
values (black horizontal line) and standard deviations (error bars) are also indicated.  C Image of 5 newborn 
pups with normal appearance derived with ROSI using XpΔXist round spermatids (2 females on the left and 
3 males on the right). Genotypes for the wt and deleted Xist alleles are shown below. As expected, both 
females were heterozygotes, while the males only had the wt Xist allele inherited from the mother.

ROSI with XpΔXist allows initiation of XCI on the maternal X chromosome
The unexpected survival of XpΔXist female embryos might be explained by maintenance 

of the PSCR state of the round spermatid-derived Xp, as we initially hypothesized. How-

ever, it cannot be excluded that survival of the embryos might be explained by inacti-

vation of the wild type Xm, replacing iXCI of the mutant Xp. In order to distinguish be-

tween these different possibilities, we analyzed Xist expression levels by qPCR in three 

E15 control male and female placentas and in the ROSI-derived XpΔXist female placentas 

for which RNA samples were available. As expected, male placentas showed very low 

Xist expression, which most probably reflects expression from a very small number of 

maternal cells through decidua contamination (Figure 4A). Conversely, Xist expression 

was very high in wild type female placentas, in accordance with maintenance of stable 

iXCI of the Xp in this tissue, as is required for proper extraembyonic tissue development. 

Surprisingly, Xist RNA levels of ROSI-derived XpΔXist female placentas were comparable to 
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those of wild type female placentas (Figure 4A). Since the paternal Xist allele was deleted, 

this expression is expected to be explained by robust transcription occurring from the 

wild type Xm. To investigate this further, we first checked Xist expression by RNA FISH on 

E15 placenta sections obtained from ROSI-derived XpΔXist female embryos (Figure 4B). 

By using the Reichert’s membrane as reference for the embryonic side of the placenta, 

we verified that Xist RNA clouds were formed in the whole population of labyrinth cells 

of embryonic origin. Next, we performed a combined DNA/RNA FISH experiment, using 

two different probes; one recognizing both the wild type and mutant X chromosome, 

and the other recognizing only the wild type X chromosome. The results show that most 

cells display an Xist RNA cloud signal with both probes on the maternal wild type X, and 

that Xist RNA clouds are never observed on the paternal ΔXist X chromosome (Figure 4C). 

Together, these results indicate that a switch from Xp inactivation to Xm inactivation has 

occurred in the XpΔXist female embryos that were obtained by ROSI.  This is consistent 

with previous data showing that Xist mRNA is retained by the Xi of its origin (Jonkers et 

al. 2008).
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Figure 4:  ΔXist female survival is mediated by a shift to inactivation of the maternal X (Xm) 
A Average Xist gene expression levels ± s.d. on RNA isolated from E15 placentas of 3 control males (light 
blue bars), 3 control females (pink bars) and 3 ROSI-derived XpΔXist females (red bars). The data were 
normalized to actin. B Representative image of the Xist RNA FISH (in green) on cryosections from a E15 
ROSI-derived XpΔXist female placenta (n=2). From the phase contrast image on top (right), the Reichert’s 
membrane on the embryonic side of the placenta can be visualized (marked by asterisk). DNA is counter-
stained with DAPI. C Top: Schematic drawing of the RNA/DNA FISH probes used to detect the wild type (wt) 
Xist and the ΔXist gene and/or RNA. Exon numbers are indicated. The green probe localizes to sequences 
present in both the wild type Xist and ΔXist gene, whereas the red probe localizes to sequences that are 
only present in the wild type Xist gene (for further details see the Materials and Methods section). Left: 
representative merged image of the Xist RNA/DNA FISH using a probe recognizing the RNA produced by 
the wild type maternal allele and the DNA of both wild type Xist (signal is hidden under Xist RNA FISH cloud) 
and ΔXist alleles (green), and a probe recognizing only the DNA of the wild type Xist allele (hidden under Xist 
RNA FISH cloud) and RNA produced by the wild type maternal X chromosome (red) on cryosections from a 
E15 ROSI-derived XpΔXist female placenta (n=2). DNA (Dapi) is shown in blue. Examples of nuclei are shown 
with an RNA FISH cloud signal with both probes, and a separate DNA FISH pinpoint in green (type 1), or 
with only an RNA FISH cloud signal with both probes (type 2). Cells lacking a cloud (some nuclear sections 
may not include the Xi) or with complicated staining patterns (due to the presence of polyploid cells, as 
was documented previously (Hu & Cross 2010) were not counted. Examples of such nuclei are indicated by 
asterisks. Scale bar represents 10 μm. Separate images of the nuclei in the boxed area are shown below, 
and the wild type and mutant chromosome are indicated with arrows for one nucleus. Scale bar represents 
5 μm. Right: Quantification of type 1 and type 2 nuclei in two E15 ROSI-derived XpΔXist female placentas. 
Cells with a single green/red RNA FISH cloud and a separate red DNA FISH pinpoint were never observed. 
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Next, Xist mRNA expression was quantified through qRT-PCR on RNA isolated from mor-

ulas from normal fertilization with wild type and XpΔXist males, and from morulas gen-

erated by ROSI with XpΔXist round spermatids. We determined the sex of the embryos 

from the presence or absence of the Y-specific transcript Eif2s3y. As expected, Xist was 

present at very high levels in wild type female morulas, but absent from males. Also, 

none of the in vivo fertilized XpΔXist male and female morulas showed any Xist expres-

sion above background (Figure 5A). Interestingly, Xist levels were variable in ROSI-derived 

XpΔXist female morulas, and only one out of 11 analysed female embryos did not display 

any Xist expression. None of the wild type male morulas arising from these ROSI experi-

ments with XpΔXist round spermatids showed Xist expression above background (Figure 

5A). We further analysed the onset of Xm inactivation, and its variability.  In wild type 

ROSI-derived female embryos, Xist clouds were prominent from the 4-cell stage onwards 

(Figure 1D & E, Figure 5B & C).  This pattern was not significantly different from what was 

observed upon in vivo fertilization of wild type embryos. In contrast, none of the XpΔXist, 

8-cell ROSI embryos that we analysed displayed Xist clouds in any of the cells (Figure 4B & 

C), but we did observe clear Xist RNA FISH clouds at the morula stage. The number of cells 

with an Xist cloud appeared somewhat more variable compared to what was observed 

in wild type female ROSI derived or in vivo fertilized morulas, and the average fraction of 

positive cells was lower, when compared to in vivo fertilized morulas, and on the border 

of significance for wild type ROSI derived females (Figure 5C).  Thus, Xm Xist activation in 

the XpΔXist female preimplantation embryos is delayed compared to what is observed 

following ROSI or in vivo fertilization using wild type spermatids or sperm, respectively. 

The observed variation in the number of cells that have formed an Xist cloud at the mor-

ula stage, including two embryos with no Xist clouds (Figure 5C), is consistent with the 

variation in Xist level that we detected in the qRT-PCR experiments (Figure 5A). The lack of 

clouds in some embryos is also in accordance with the notion that we did not rescue all 

XpΔXist females by performing ROSI.
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Figure 5: Maternal Xist expres-
sion in ROSI-derived XpΔXist fe-
males is variable and delayed 
compared to paternal Xist ex-
pression during iXCI

A Dot plot showing Xist (black) and 
Eif2s3y (red) mRNA expression lev-
els for RNA isolated from individual 
in vivo fertilized wt and XpΔXist male 
(blue) and female (pink) mouse 
morulas, and from ROSI-derived 
XpΔXist male and female morulas. 
Expression levels were normalized 
to Actin. Grey lines indicate the av-
erage values, n values are indicated 
below the graph. B Representative 
images of Xist clouds in wild type 
in vivo fertilized female embryos, 
and wild type and XpΔXist ROSI-de-
rived female embryos, analysed at 
the 8-cell and morula stages. Scale 
bars in whole embryo and single 
cell images represent 10, and 5 μm, 
respectively. C Quantification of 
Xist cloud formation in the embryo 
types described in B. Individual 
measurements are indicated, hori-
zontal bars represent the average 
value. Asterisk indicates significant-
ly different from the corresponding 
stage in wild type ROSI female em-
bryos (P=0,00025). Numbers of ana-
lysed embryos are indicated at the 
bottom, and followed by total num-
bers of nuclei that could be scored 
(some nuclei were lost during pro-
cedures, and some embryos that 
were in the “8-cell” group contained 
9 or 10 cells) in parenthesis.
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Previous reports have shown that also in diploid parthenogenetic embryos one of the 

two maternal X chromosomes starts to express Xist around the morula stage (Kay et al. 

1994; Nesterova et al. 2001). It was then suggested that this could occur because a re-

pressive imprint on the Xm Xist allele, preventing its expression, is not retained through-

out pre-implantation development. However, in a similar situation, when in vivo fertilized 

blastocysts disomic for Xm were analysed, Xm derived Xist clouds were hardly ever ob-

served (Goto & Takagi 2000; Matsui et al. 2001). Thus, in this latter situation, the presence 

of a paternal genome most likely somehow helps to maintain the maternal imprint up to 

the blastocyst stage. Consistent with these findings, we also did not observe Xist expres-

sion above background levels in any of the XpΔXist female morulas obtained by natural 

mating (Figure 5A).  

To further substantiate that the observed Xist clouds in the XpΔXist female morulas result 

in robust XCI, we investigated the immunolocalisation of H3K27me3 in female blasto-

cysts derived from in vivo wild type fertilization in comparison to ROSI-derived XpΔXist 

female blastocysts. H3K27me3 is one of the earliest known histone modification that 

accompanies XCI, and is detectable as a domain covering the inactive Xp in wild type 

trophoblast cells (Plath 2003) and Figure 6A. We also observed such H3K27me3 domains 

in ROSI-derived XpΔXist female embryos, (Figure 6, B). These data are consistent with the 

occurrence of robust maternal XCI in trophoblast cells in ROSI-derived, XpΔXist female 

embryos. Still, not all cells may be able to activate Xist expression from Xm, and only if 

the fraction of cells that manage to do so is high enough, the embryo may be rescued.
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Figure 6: H3K27me3 marks the inactive Xm in ROSI-derived XpΔXist female blastocysts

H3K27me3 (green) marks the inactive Xp in wild type in vivo fertilized female blastocyst and the inactive 
Xm in ROSI-derived XpΔXist female blastocysts. DAPI is shown in blue. Size bars in whole embryo and 
single cell images represent 20, and 5 μm, respectively. H3K27me3 domain is indicated by arrows in the 
enlargements.

Recently, it was shown that expression of the X-linked XCI activator RNF12 is reduced in in 

vitro fertilized mouse embryos, and that this causes impaired iXCI, leading to skewed sex 

ratios of the offspring (Tan et al. 2016). In our ROSI model, we anticipated an opposite sit-

uation with high Rnf12 expression, since Rnf12 is one of the X-linked genes that becomes 

specifically reactivated in spermatids (Namekawa et al. 2006). If this status is maintained 

upon ROSI, then it may lead to higher RNF12 levels compared to what is observed fol-

lowing fertilization with mature sperm. We analysed RNF12 protein levels at the eight-

cell stage, in wild type and XpΔXist ROSI derived, and in vivo fertilized female and male 

embryos. This time point was chosen because it is just prior to the initiation of Xist cloud 

formation in the XpΔXist female ROSI embryos. Interestingly, the overall RNF12 level was 

increased approximately three-fold in all ROSI-derived embryos compared to in vivo ferti-

lized embryos (Figure 7A, B). However, no difference between male and female embryos 

was noted. In addition, RNF12 levels of all in vivo derived embryos, fertilized either by 

wild type or ΔXist sperm, were similar (Figure 7A, B). This latter observation indicates that 

failure to inactivate the paternal X does not lead to a measurable significant increase in 

RNF12 levels using this type of semi-quantitative immunocytochemical analysis.
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Figure 7: Enhanced expression of RNF12 in ROSI-derived compared to in vivo fertilized 8-cell embryos

A Quantification of RNF12 protein levels ± s.d.  per male 8-cell embryo as measured from immunocyto-
chemical staining using Image J (see Materials and Methods for details). Representative images of each an-
alysed condition are shown on the right. Size bars represent 10 μm. Asterisk indicates significant difference 
(P=0,05) with in vivo wild type derived embryos. B As in A, for female embryos. Asterisk indicates significant 
difference (P≤0,05) with in vivo fertilized embryos. The following P values were obtained per comparison: wt 
in vivo versus wt ROSI derived embryos P=0,016, wt in vivo versus XpΔXist ROSI derived embryos P=0,0005, 
in vivo XpΔXist versus wt ROSI derived embryos P=0,0098 and in vivo XpΔXist versus XpΔXist ROSI derived 
embryos P=0,004.

RNF12 expression from the paternally inherited postmeiotically reactivated X chromo-

some by itself cannot easily explain our findings, since ROSI-derived males also display 

high RNF12 levels. Somehow, the injection of a round spermatid nucleus must either 

transfer a substantial amount of very stable RNF12 protein or mRNA, or other, autoso-

mal spermatid-expressed genes ensure continuous Rnf12 expression from the maternal 

X in males, and perhaps from both X chromosomes in females. It might be suggested 
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that the observed enhanced RNF12 expression could contribute to the ability of XpΔXist 

embryos to overcome the maternal imprint on the Xic, and allow maternal XCI. However, 

other X-linked factors are most likely more critically involved in lowering the threshold 

for activation of the Xm Xist gene in the XpΔXist female embryos, because Xm inactivation 

was never observed in male ROSI embryos. Alternatively, or in addition, the chromatin 

structure of the paternal X chromosome, being heavily marked by silencing histone mod-

ifications, may titrate away factors that are important for maintenance of the inactive 

status of the maternal Xist gene. 

In future experiments, comparative global gene expression analyses of ROSI derived and 

ICSI derived embryos might be used to identify novel XCI factors involved in both imprint-

ed and random X chromosome inactivation. From this perspective, it will also be interest-

ing to compare the gene expression profiles of purified round spermatids from C57BL/6 

mice and CAST/EiJ mice, since we failed to rescue the lethality of paternal Xist deletion 

using ROSI on the latter genetic background. Microarray analyses of gene expression 

using total testis mRNAs of M. musculus musculus and M. musculus castaneus identified 

a relatively small number of differentially expressed spermatogenesis genes (Voolstra 

et al. 2007). In this dataset, expression of Rnf12 was not significantly different between 

the M. musculus subspecies (Voolstra et al. 2007). Thus, we speculate that differences in 

regulation of expression of genes other than Rnf12 may be critical for inducing maternal 

Xist expression in ROSI derived XpΔXist embryos on the C57BL/6 background only.  

In the model in Figure 8, we schematically depict the differences between regulation of 

iXCI following in vivo fertilization, ROSI, or induction of parthenogenesis. When iXCI is 

initiated in wild type embryos carrying an Xp and an Xm (as opposed to two Xms in the 

parthenogenic situation), the Xp most likely is more responsive to XCI trans activator(s) 

such as RNF12 than the Xm. This differential response is related to an imprint of the Xist 

promoter on the Xm, which prevents Xist expression, and which is absent from the pro-

moter on Xp (Fukuda et al. 2014). In addition, Xp may carry an (MSCI-dependent) imprint 

to facilitate Xist expression. At this stage, RNF12 expression is relatively high, due to the 

maternally provided store, and paternal Xist activation occurs independent of the X:A 

ratio. Transcription of the XCI activator(s) would reach the threshold for Xist expression 

from the Xp in all blastomeres by the 4-cell stage, but virtually never reach the threshold 

for activation of Xist expression from Xm. When the paternal copy of Xist is deleted, iXCI 

can not occur, and the maternal Xist gene remains repressed due to a paternal inhibito-

ry effect that is missing in parthenogenetic embryos. ROSI somehow leads to elevated 

levels of RNF12 in morulas, but this by itself will not be enough to activate Xm in RO-

SI-derived males, consistent with earlier findings using Rnf12 overexpression (Tan et al. 

2016). Somehow, either the presence of two X chromosomes, or the specific epigenetic 
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constitution of the Xp, contributes to efficient stimulation of Xist expression from Xm. 

Subsequent Xm silencing most likely allows rescue of XpΔXist females. In addition, prior 

to the establishment of Xist mediated Xm inactivation, the silencing epigenetic marks that 

are carried by the round spermatid-derived Xp may also contribute to a more optimal 

gene-expression balance. This may exert an additional positive effect on the fitness of 

the ROSI-derived XpΔ female embryos.
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Figure 8: Schematic representation of critical factors during iXCI in wild type and parthenogenetic 
females, compared to XpΔXist females arising from in vivo fertilization or ROSI

Xp (blue) and Xm (pink) are schematically drawn, and the Xist and Rnf12 loci are indicated where relevant. 
RNF12 protein levels are represented by the size of the orange circle.  A green Xist locus indicates that it is 
primed for expression, whereas a red locus indicates that it is repressed. An open Xist locus represents the 
ΔXist allele. During normal iXCI, that initiates around the four cell-stage, high maternally regulated RNF12 
levels ensure Xist expression from Xp, establishing iXCI by the morula stage (green signal on Xp represent-
ing the Xist cloud). In parthenogenic embryos, the imprint on Xm is lost by the morula stage and Xist can 
be activated in a manner that appears to be regulated by dosage dependent XCI activators such as RNF12 
(effect symbolized by two black arrows coming from the Rnf12 loci), but this is inefficient. In contrast, when 
Xist is deleted from Xp, iXCI cannot be induced, most likely because the presence of a paternal genome 
helps to maintain repression of the maternal Xist gene (red arrow). Upon ROSI, round spermatid-specific 
epigenetic regulation (green arrow), possibly in combination with the double dosage of X chromosomes, 
allows activation of Xm by the morula stage. In addition, RNF12 levels are relatively high and may also aid 
in this process. 

Taken together, the present experiments have demonstrated that ROSI allows activation 

of Xist transcription from the Xm in preimplantation mouse embryos in the absence of 

a paternal Xist gene. We propose that correct regulation of expression of X-linked trans 

activators of XCI from both the paternal and maternal X chromosome is of critical impor-

tance in iXCI in mouse. 

In humans, X chromosome inactivation is initiated later than in mouse, and most likely is 

not imprinted (reviewed in (X. Deng et al. 2014). Still, our results do provide evidence that 

disturbances of the paternal epigenome impact on embryonic gene regulation, and this 

is relevant for considerations on human embryo quality. In humans, there is an increase 

in the histone:protamine ratio when sperm from male factor subfertility patients is com-

pared with sperm from fertile men (Simon et al. 2014; Aoki et al. 2006). Also, when sperm 

is extracted from the testis and used for ICSI, it cannot be excluded that spermatids with 

an incomplete histone-to-protamine transition are selected for injection into oocytes, so 

that ICSI resembles ROSI. Furthermore, the birth of 14 ROSI-derived babies was recently 

described (Tanaka et al. 2015), making careful assessment of possible associated epige-

netic risks more topical than ever.  

Future clinical and basic animal research should go hand in hand to evaluate if there is 

a relation between embryo paternal epigenome quality and oocyte injection using sper-

matids or spermatozoa in which the histone-to-protamine transition has not been com-

pleted or is disturbed. 
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Materials and Methods
Ethics statement
For all experiments we aimed to reduce pain and stress as much as possible by housing 

animals in groups whenever possible, and using appropriate anesthetic agents during 

operation, followed by treatments to reduce pain. Animals more than one week old were 

killed using cervical dislocation. Embryos collected after day 13 of embryonic develop-

ment, and pups younger than 1 week old were killed by decapitation and immediate 

collection of heads in liquid nitrogen. All animal experiments were approved by and were 

performed in strict accordance with the recommendations by the local animal experi-

ments committee DEC-consult (approval numbers EMC2448 and EMC3200).

Animals
B6D2F1 mice (C57BL/6 × DBA/2) were used as oocyte donors. We used B10CBA females 

that were mated with vasectomized males as pseudopregnant surrogates for transfer of 

ICSI- and ROSI-derived two-cell stage embryos. C57Bl6 mice carrying an Xist deletion (ΔX-

ist) were those originally generated by Csankovszki and colleagues (1999), the allele was 

also crossed into a CAST/EiJ background for several generations, but round spermatids 

isolated form ΔXist males with this background did not result in retrieval of viable female 

embryos. Control wild type C56BL/6 males were also used as spermatid and spermato-

zoa donors. To obtain embryos from in vivo fertilized oocytes, superovulated B6D2F1 

females (see below for the superovulation protocol) were mated with wild type or ΔXist 

males and zygotes were retrieved from the oviduct and cultured for different applica-

tions as described in the expanded view.

Microinsemination with round spermatids (ROSI)
ROSI was carried out as described previously [44] with minor modifications:

ROSI: Oocyte collection. Mature oocytes were collected from the oviducts of 6- to 16-wk-

old B6D2F1 female mice (Harlan) that had been induced to superovulate with 5 IU preg-

nant mare’s serum gonadrotopin (PMSG; Intervet), followed by 5 IU human chorionic 

gonadotropin (hCG; Intervet) 48 h later. Oocytes were collected from oviducts approxi-

mately 16 h after hCG injection and treated with 80 IU ml-1 hyaluronidase (Sigma) until 

the cumulus cells dispersed. The oocytes were then placed in G-1 PLUS medium (Vit-

rolife), covered with mineral oil (Sigma), and stored at 37°C (5% CO2:95% air). Before 

injection, oocytes were placed into Ca2+-free M16 containing 10 mM SrCl2 (Sigma) for 60 

min. Oocytes were injected in MEMα medium (Life Technologies) supplemented per 500 

ml with 2.5 g HEPES, 684 mg 50% sodium lactate solution, 55 mg sodium pyruvate, 70 mg 
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L-glutamin, 6% (v/v) fetal calf serum (pH set at 7.2).

ROSI: Spermatogenic cell suspension preparation. To collect round spermatids, seminif-

erous tubules of the testes from male mice were gently minced using two blunt ended 

curved forceps, and single cells were suspended in G-MOPS PLUS medium (Vitrolife).

ROSI: Microinsemination with round spermatids. ROSI was carried out at room temper-

ature. The cover of a plastic dish was used as a microinjection chamber. A row of three 

10 μl drops containing HEPES-buffered MEMα + supplements (for oocytes), 12% poly-

vinylpyrrolidone (PVP; Irvine scientific) in G-MOPS PLUS, and of the spermatogenic cell 

suspension, was placed on the bottom of the dish and covered with mineral oil. The dish 

was placed on the stage of an inverted microscope. The nuclei of the round spermatids 

were collected from the spermatogenic cell suspension drop by gentle pipetting using 

a 5 μm Piezo Drill Micropipette (Humangen) until the nuclei of the round spermatids 

had lost all cytoplasm and could then be collected, transferred to the clean PVP drop 

and subsequently used for microinjection. An oocyte was held to the holding pipette 

with the metaphase II spindle at either the 12 or the 6 o’clock position. The zona pellu-

cida was breached by a laser applied pulse (XY clone, Hamilton Thorne) and the plasma 

membrane was subsequently penetrated by using a piezo-activated device (Burleigh). 

The spermatid nucleus was readily expelled into the ooplasm. 

Injected oocytes were then transferred to G-1 PLUS medium and cultured for 24 and 96 

h, to examine their development in vitro. 

 

Microinsemination with mature spermatozoa (ICSI)
ICSI was carried out as described previously (Yoshida & Perry 2007).

Embryo culture and transfer
Injected oocytes were cultured for 24–30 h in G-1 PLUS medium until the two-cell stage. 

Thereafter, 10-15 two-cell embryos were transferred to each oviduct of surrogate fe-

males on day 1 of pseudopregnancy. Alternatively, embryos were cultured up to the 

4-cell, 8-cell, or morula stage in G-1 PLUS medium and further processed for different 

applications as described below.

Chromosome spread preparations
Zygotes or two-cell embryos were incubated with colcemid (1.5 µg/ml) to arrest cells at 

prometaphase until pronuclei had disappeared. To obtain chromosome spreads, after 

zona pellucida removal with Acidic Tyrode’s Solution (Sigma), arrested zygotes were incu-

bated in hyposolution (25 % v/v FCS, 0.5 % w/v sodium citrate) for 5 min and subsequent-

ly transferred to a drop of fixative (1 % v/v paraformaldehyde, 0.2 % v/v Triton X-100, 0.1 
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mM dithiothreitol, pH 9.2) on a glass slide. After horizontal drying for 1 hour, the slides 

were washed with 0.08 % Photo-Flo (Kodak) and air dried. All slides were stored at −20 

°C until further use.

Decondensation of mouse caput sperm
Decondensation of wild type mouse caput sperm was performed as described previously 

(van der Heijden et al. 2006).

Preparation of spread spermatid nuclei
Nuclei of wild type mouse spermatogenic cells were spread as previously described (Pe-

ters et al. 1997).

Immunofluorescence
For immunofluorescence stainings, the zona pellucida of the 8-cell embryos was re-

moved with incubation in Acidic Tyrode’s Solution (Sigma) at room temperature for 1 

minute. Afterwards, embryos were washed in M2 medium, fixed in 4% PFA for 15 min-

utes at room temperature and then washed again in M2 medium. Subsequently, embry-

os and slides containing zygote or embryo chromosome spreads, decondensed sperm, 

or spread spermatid nuclei, were rinsed in PBS-phosphate-buffered saline PBS-T (PBS, 

0.01% v/v Tween-20) and locked with blocking solution (PBS-T, 2% w/v bovine serum al-

bumin (BSA fraction V), 5% v/v normal goat serum) for 30 minutes and incubated with 

primary antibodies at 4°C overnight. The following antibodies were used in this study: 

rabbit polyclonal against H3K9me3 (1:200, Abcam Ab8898-100), mouse monoclonal anti 

H3.1/2 (1:1000, gift from dr. P. de Boer, for validation see Godfried W van der Heijden 

et al. 2007), mouse monoclonal against RNF12 (1:50 Abnova), and human centromere 

autoantigen (ACA, 1:1000, Fitzgerald Industries, 90C-CS1058). After washing with PBS-T, 

slides were incubated with the appropriate secondary antibodies for 1 hour, washed 

with PBS-T and mounted with ProLong Gold mounting solution for DNA counterstaining. 

Images were obtained using a LSM700 confocal laser scanning microscope (Zeiss) and 

processed with Fiji and Adobe Photoshop CS3 software. Imaging of RNF12 stained em-

bryos was performed using the same exposure time for each embryo. Quantification of 

total RNF12 levels per embryo was performed using Image J (Fiji) software. Subsequently, 

statistical significance was determined by Student’s t test (*P≤0.05, significant).

RNA/DNA FISH on preimplantation embryos
Pre-implantation embryos were treated with Acidic Tyrode’s Solution (Sigma) to remove 

the zona pellucida. The method for Xist RNA-FISH has been described (Barakat & Grib-
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nau 2014), and we used a 5.5 Kb BglII cDNA fragment,covering exons 3-7 (in part) as a 

probe. For DNA FISH on chromosome spreads of prometaphase arrested embryos and 

on 8 cell embryos after RNA FISH or immunostaining (for sex determination), slides were 

denatured in 70% v/v formamide/2x SSC/10mM phosphate buffer for 5 minutes at 78o C 

followed by dehydration in ice cold ethanol series (70%, 85% and 100%) 3 minutes each. 

Slides were left to dry for a few minutes at room temperature and then, the same Xist 

probe used for RNA FISH was applied on the slide. Detection was performed as for RNA 

FISH. 

Placenta cryosections
Placentas were removed at E15. The tissues were snap frozen and stored at -80°C un-

til use. For RNA FISH, 14 μm-thick frozen sections were made from frozen tissues on 

a cryostat and mounted on glass slides. Sections were briefly air-dried, extracted with 

0.5% Triton X-100 in phosphate-buffered saline (PBS) on ice, fixed in 4% formaldehyde, 

5% acetic acid for 18 min at room temperature, washed 3 times in PBS for 5 min each, 

dehydrated in 70-100% ethanol series and air-dried. Then the probes were applied.  For 

DNA FISH the same procedure as described above for RNA/DNA FISH on preimplantation 

embryos’ was followed. Both for RNA and DNA FISH, an additional Xist probe was used 

that is specific for the wild type X chromosome. This probe covers a 8.4 Kb fragment lying 

within the deleted area of the ΔXist. It was generated by combination of PCR products ob-

tained with the following primer sets: Fwprom CCCTCTGGAAGAGCAGTCAG and Rvprom 

GCCATAAGGCTTGGTGGTAG (~1,7Kb), Fw1 GCCAACCAATGAGACCACTT and Rv1 TGGCAT-

GATGGAATTGAGAA (~2.5Kb), Fw2 CTACCCACCCCAGTACATGC and Rv2 TTGGCTCAGTGCT-

TATGGTG (~2.1Kb), Fw3 CAGTTGCCTTCTCCTTGCTC and Rv3 AGCTGTTAGTGCCGTCCAGT 

(~2.1Kb). The PCR conditions were: initial denaturation 94o C for 5 min, followed by 35 

cycles of 94o C 30 sec, 55o C 30 sec, 72oC  3 min, and final extension at 72o C for 5 min. PCR 

products were loaded on a 1% agarose gel, bands were extracted and DNA was isolated 

using NucleoSpin Extract II (Macherey Nagel) according to the manufacturer’s protocol. 

Subsequently, the probe was made using the Biotin Nick translation mix (Roche diagnos-

tics), according to the manufacturer’s instructions. 

Genotyping PCR 
The primer pairs used to assess the genotype of the mice for the presence or absence of 

the Xist deletion, and to detect Ube1x and Ube1y have been previously described (Xist de-

letion: Gribnau et al. 2005, Ube1x/y: Chuma and Nakatsuji 2001). For Sry we used forward 

primer 5’GTGGTCCCGTGGTGAGAG3’, and reversed primer 5’TTTTGTTGAGGCAACTG-

CAG3’, generating a 250bp fragment. PCR conditions were as follows: Initial hold for 2 

A  PATERNALLY INHERITED XIST DELETION IN MOUSE 
ROUND SPERMATID INJECTION RESCUES EMBRYONIC LETHALITY OF 

2

ALL TOGETHER Final.indd   83 1/5/17   12:03 PM



84

minutes at 98°C, followed by 35 cycles of 98°C for 10 seconds, 63°C for 15 seconds, and 

72°C for 30 seconds, and finally 72°C for 5 minutes.

Quantitative PCR analyses
For quantitative RT–PCR (RT–qPCR) of single embryos, the Taqman® Cells-to-Ct Kit (Ap-

plied Biosystems) was used according to the manufacturer’s protocol. All samples were 

analyzed in triplicate in a 10 μl final reaction volume using the BioRad CFX 384 Real-time 

System. The reaction mixture contained SYBR Green PCR Master Mix (Applied Biosys-

tems), primers (for Actin, Xist, or Eif2s3y) and 2.5 μl of cDNA. The following primers were 

used: Xist for GGATCCTGCTTGAACTACTGC and Xist rev CAGGCAATCCTTCTTCTTGAG 

(Chureau et al. 2011), Actin for AACCCTAAGGCCAACCGTGAAAAG and rev CATGGCTGGG-

GTGTTGAAGGTCTC, Eif2s3y for CCAGGGACCAAAGGAAACTT and rev TAGCCTGGCTTTCT-

TTCACC (Vernet et al. 2014). 

For copy number qPCR on genomic DNA, primers were designed for the X chromosome 

on the Tsix promoter region (for CCGAGATATCCACGCATCTT and rev AGCTGGCTAT-

CACGCTCTTC) and for chromosome 12 on the Rex1 allele (for GGTGCAAGAAGAAGCT-

GAGG and rev GTTTCGAGCTCTCCGTGAAG). 

After an initial hold at 94°C for 2 minutes, reaction mixtures underwent 40 cycles of 30s at 

94°C, 30s at 60°C, and 30s at 72°C. Results were expressed as Cycle threshold (Ct) values. 

Gene expression levels were normalized over Actin gene expression, according to the 

2-ΔCT method (Livak & Schmittgen 2001). In order to be able to use a relative quantification 

approach to compare expression levels we ensured that the primer pairs have similar 

amplification efficiencies (E = 100 ± 10%). 
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Supporting Information:

S1 Figure: Genotyping of ROSI and ICSI embryos and pups

A DNA was isolated from E15 ROSI embryos and genotyped using primer sets amplifying either Ube1x and 
Ube1y or Sry (top). In addition, PCR was performed to detect the presence of Xist loci (wild type (wt) and 
knockout (ko)). All PCRs from XX female embryos should display a band for both alleles. One female was 
found to carry only a single X chromosome (20, X; XO). Results are grouped per experiment (1-4) in chrono-
logical order. In experiment 4, DNA was isolated for only 1 of the 5 males that were obtained. For the other 
four embryos, sex assignment was based solely on the presence of testes, since the results were congruent 
with the morphological assessment in all previous experiments. B DNA was isolated from E15 ICSI embry-
os and genotyped using primer sets amplifying either Ube1x and Ube1y. All embryos were male, a control 
female (CF)  is shown for comparison. Results are grouped per experiment (1-4) in chronological order. 
C DNA was isolated from P1 ROSI embryos and genotyped using primer sets amplifying Ube1x and Ube1y 
(CF; control female, CM; control male). Results are grouped per experiment (1-2) in chronological order.
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S1 Table: Sex ratios reported in published mouse ROSI experiments
#: number; m: male; f: female  
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embryos	  	  

#	  
pups	  	   m	   f	  

m
/f	  
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survival	  

sex	  
ratio	  

Kimura	  et	  al.,	  1995	  [1]	   wt	  ROSI	   131	   37	   16	   19	   2	   28,24%	   0.84	  

Ogura	  et	  al.,	  1996	  [2]	   ICGN	  males	  ROSI	   53	   9	   4	   5	  
	  

16,98%	   0.80	  
Sasagawa	  and	  
Yanagimachi.	  1997	  	  [3]	   wt	  ROSI	   46	   11	   4	   7	  

	  
23,91%	   0.57	  

Sasagawa	  and	  
Yanagimachi.	  1997	  [3]	   Cryptorchid	  male	  ROSI	   40	   9	   5	   4	  

	  
22,50%	   1.25	  

Sasagawa	  and	  
Yanagimachi.	  1997	  [3]	  

reversal	  	  Cryptorchid	  males	  
6w	   41	   9	   4	   5	  

	  
21,95%	   0.80	  

Sasagawa	  and	  
Yanagimachi.	  1997	  [3]	  

reversal	  	  Cryptorchid	  males	  
14w	   43	   10	   7	   3	  

	  
23,26%	   2.33	  

Sasagawa	  et	  al.,	  1998	  [6]	  
ROSI	  with	  spermatids	  from	  
immature	  mice	   148	   29	   13	   16	  

	  
19,59%	   0.81	  

Sasagawa	  et	  al.,	  1998	  [6]	   wt	  ROSI	   46	   11	   5	   6	  
	  

23,91%	   0.83	  

Sasagawa	  et	  al.,	  1998b	  [7]	  
ROSI	  with	  Balb/c	  (hybrid	  
sterile)	   55	   12	   7	   5	  

	  
21,82%	   1.40	  

Sasagawa	  et	  al.,	  1998b	  [7]	  
ROSI	  with	  B6D2F1	  (hybrid	  
fertile)	   61	   14	   6	   8	  

	  
22,95%	   0.75	  

Marh	  et	  al.,	  2003	  [10]	   wt	  ROSI	   60	   16	   9	   7	  
	  

26,67%	   1.29	  
Yanagimachi	  et	  al.,	  2004	  
[11]	   ROSI	  wit	  qk/qk	  spermatids	   96	   18	   8	   10	  

	  
18,75%	   0.80	  

TOTALS	  
	  

820	   185	   88	   95	   2	   22,56%	   0.93	  
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Abstract
Background
In the nuclei of most mammalian cells, pericentric heterochromatin is characterized by 

DNA methylation, histone modifications such as H3K9me3 and H4K20me3, and specific 

binding proteins like heterochromatin binding protein 1 isoforms (HP1 isoforms). Main-

tenance of this specialized chromatin structure is of great importance for genome integ-

rity and for the controlled repression of the repetitive elements within the pericentric 

DNA sequence. Here we have studied histone modifications at pericentric heterochro-

matin during primordial germ cell (PGC) development using different fixation conditions 

and fluorescent immunohistochemical and immunocytochemical protocols.

Results
We observed that pericentric heterochromatin marks, such as H3K9me3, H4K20me3, 

and HP1 isoforms, were retained on pericentric heterochromatin throughout PGC de-

velopment. However, the observed immunostaining patterns varied, depending on the 

fixation method, explaining previous findings of a general loss of pericentric heterochro-

matic features in PGCs.  Also, in contrast to the general clustering of multiple pericentric 

regions and associated centromeres in DAPI dense regions in somatic cells, the pericen-

tric regions of PGCs were organized as individual entities. We also observed a transient 
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enrichment of the chromatin remodeler ATRX in pericentric regions in E11.5 PGCs. We 

did not detect transcription of major satellite repeats in PGCs.

Conclusion
These results indicate that even though the structure and organization of PGCs’ peri-

centric heterochromatin differs from that of the surrounding somatic cells at E11.5, this 

is not associated with major changes in known histone modifications, as previously re-

ported, or with derepression of transcription from pericentromeres, but may involve a 

specific function of ATRX.

Keywords
pericentric heterochromatin; primordial germ cell, centromere; histone modifications; 

H3K9me3; H4K20me3; ATRX; HP1; immunochemistry; major satellites

Background
Chromatin is composed of DNA, histones, and other tightly associated proteins. Modifi-

cations of the DNA and of histones, directly or indirectly control the regulation of DNA 

related processes like transcription. Globally, the chromatin in a nucleus can be func-

tionally divided in active and accessible euchromatin, and inactive and condensed het-

erochromatin. Heterochromatin exists in two forms: facultative and constitutive hetero-

chromatin. Facultative heterochromatin is a flexible form of heterochromatin and can be 

found in various chromosomal regions, when gene-coding regions need to be repressed. 

Its size varies from gene clusters to an entire chromosome (the inactive X in female cells). 

Facultative heterochromatin is frequently marked by specific histone modifications such 

as H2AK119Ub and H3K27me3, mediated by the Polycomb Repressor Complexes (PRC) 

1 and 2, respectively. Constitutive heterochromatin forms at specific regions of the ge-

nome, which are characterized by arrays of tandem DNA repeats: at the centromeres 

(minor satellite repeats), telomeres (telomeric repeats), and at pericentric regions (major 

satellite repeats). Here we focus on the pericentric heterochromatin. A known hallmark 

of this chromatin type is the lack of histone modifications that generally mark active chro-

matin, such as histone acetylation. Conversely, there is an accumulation of repressive 

histone marks such as H3K9me3 and H4K20me3 (Rea et al. 2000; Peters et al. 2001; Leh-

nertz et al. 2003; Schotta et al. 2004; Kourmouli et al. 2004). The presence of H3K9me3 

results in recruitment of different heterochromatin protein (HP) isoforms that contribute 

to heterochromatin establishment and maintenance of this chromatin state (Bannister 

et al. 2001; Lachner et al. 2003). The basic unit of the major satellites in the mouse is an 

A/T rich ~230bp long monomer, which can be repeated many times, leading to regions of 

up to several megabases in size. In an interphase mouse nucleus, pericentric constitutive 

3
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heterochromatin can be visualized as 4’, 6 – diamidino – 2 – phenylindole (DAPI) dense re-

gions, termed chromocenters, with each chromocenter consisting of multiple pericentric 

regions from different chromosomes. The periphery of each chromocenter contains the 

centromeres of the chromosomes as individual entities (Guenatri et al. 2004).

Maintenance of the heterochromatic nature of pericentric DNA is important for proper 

cell functions; failure impairs cell viability, induces chromosomal instabilities and increas-

es the risk of tumorigenesis (Peters et al. 2001). Therefore, pericentric heterochromatin 

has for a long time been considered as an inert, highly condensed and inaccessible do-

main. In recent years, however, it has become clear that the biology of pericentric hetero-

chromatin is more complicated. Emerging evidence indicates that some well controlled 

dynamical changes of pericentric heterochromatin structure may occur, which are asso-

ciated in some cases with brief bursts of major satellite transcription. Transcription of 

major satellites has been shown to occur during canonical cell processes, e.g. during the 

normal cell cycle (Lu & Gilbert 2007; Boyarchuk et al. 2014), cell differentiation (Terranova 

et al. 2005; Govin et al. 2007) and during early (Puschendorf et al. 2008; Casanova et al. 

2013), and late (Rudert et al. 1995) embryonic development. For example in pre-implan-

tation mouse embryos, the paternal pericentric domains initially lack heterochomatin 

marks, such as H3K9me3 and HP1 proteins. This likely relates to the fact that the paternal 

genome enters the oocyte as a protamine packaged compact structure, largely devoid of 

nucleosomes. 

After fertilization, the DNA rapidly decondenses as protamines are removed and re-

placed by maternal histones that lack pericentric heterochromatin histone modifications 

(Santos et al. 2005; Torres-Padilla et al. 2006; van der Heijden 2005). Concomitantly, ac-

tive DNA demethylation occurs (Santos et al. 2002; Santos & Dean 2004). In contrast, ma-

ternal pericentric heterochromatin displays the typical somatic histone posttranslational 

modification marks. Interestingly, major satellites are transcribed (in forward direction) 

solely from the paternal pronucleus at the 2-cell stage, which might reflect the above-de-

scribed specific epigenetic status of the paternal genome (Albert & Peters 2009). Then, 

a burst in transcription of the major satellites (in reversed direction) from both parental 

genomes facilitates the reorganization of pericentric heterochromatin from nuclear pre-

cursor bodies to the typical somatic like chromocenters in the developing embryo. This 

is completed by the 4- to 8-cell stage after which pericentric heterochromatin displays its 

specific H3K9me3 – HP1 chromatin state (Probst et al. 2010; Casanova et al. 2013). 

Developing mouse primordial germ cells (PGCs) also undergo genome-wide epigenetic 

reprogramming, and this occurs between E8.0 and E13.5. It includes changes in histone 

modifications (e.g. global loss of H3K9me2 and H3K27me3 enrichment as assessed by 

immunofluorescence experiments), reactivation of the inactive X chromosome in the fe-
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male embryos and global loss of DNA methylation, the last reaching its lowest levels at 

E13.5, both in male and female embryos (Hackett et al. 2012; Hill et al. 2014). Initiation of 

imprint erasure in PGCs takes place between E10.5 and E11.5 (Hajkova et al. 2002; Kagi-

wada et al. 2013) and concomitantly it has been reported that PGCs lose the DAPI-dense 

chromocenters (Hajkova et al. 2008). These events are accompanied by a transient ap-

parent loss of H3K9me3, HP1 proteins, and other heterochromatin marks (Hajkova et al. 

2008). 

In this study we focus specifically on the pericentric heterochromatin in germ cells be-

tween E10.5 and E13.5 of mouse embryo development. Since we experienced difficul-

ties to reproduce the previously reported transient loss of pericentric heterochromatin 

marks  (Hajkova et al. 2008), we decided to revisit the possible loss and re-establishment 

of pericentric heterochromatin marks and of chromocenters during PGC development, 

by testing different preparation methods and fixation conditions. It is well known that 

different fixation and preparation methods may lead to variations in immunostaining 

results, and these should thus be interpreted with caution. In particular the inability to 

detect a protein does not always result from its absence, but could be caused, for exam-

ple, by epitope masking. Using a method that is known as ”drying down” or “spreading” of 

(meiotic) nuclei (Peters et al. 1997) we observed persistence of H3K9me3, HP1 isoforms 

and H4K20me3 on pericentric heterochromatin of PGCs. Based on these results we con-

clude that the reported loss and re-establishment of pericentric heterochromatin signa-

ture (Hajkova et al. 2008) may reflect a structural change in pericentric heterochromatin, 

affecting epitope availability, rather than the actual loss of the markers.  

In addition, we found ATRX, a chromatin remodeler known to associate with constitu-

tive heterochromatin (McDowell et al. 1999; Baumann et al. 2008), to be highly enriched 

at pericentric heterochromatin in PGCs at E11.5 compared to the somatic cells of the 

same developmental stage. Lastly, immunofluorescent analysis of centromere and peri-

centromere (adjacent to the centromeres) staining showed that pericentromeres do not 

cluster together in the same fashion as in the surrounding somatic cells, and this may 

explain the weak DAPI staining of pericentric heterochromatin in developing PGCs. Still, 

consistent with the overall persistence of histone modifications and the enrichment of 

ATRX, no transcription of major satellite repeats was detected in isolated E11.5 PGCs.  To-

gether, our data indicate that although the pericentric heterochromatin in E11.5 mouse 

PGCs may exist as a less condensed structure compared to the chromocenters in somatic 

cells, this phenomenon is neither associated with a complete loss of heterochromatin 

hallmarks nor a burst in transcription of major satellite repeats. 

3

ALL TOGETHER Final.indd   96 1/5/17   12:03 PM



97

DURING MURINE PRIMORDIAL GERM CELL DEVELOPMENT
SILENCING MARKERS ARE RETAINED ON PERICENTRIC HETEROCHROMATIN

3

Results
H3K9me3 remains present in pericentric heterochromatin throughout germ cell-
development
In somatic mouse interphase nuclei, pericentromere clusters can be visualized as large 

blocks, which colocalise with the DAPI dense regions, the chromocenters (Guenatri et al. 

2004). Among the global epigenetic changes that accompany mouse PGC development 

between E8.0 and E13.5, it has been reported that there is a transient loss of the chromo-

centers at E11.5, accompanied by loss of H3K9me3 (Hajkova et al. 2008). We wished to 

study this phenomenon further, and therefore we first re-analysed the reported dynam-

ics of H3K9me3 (Hajkova et al. 2008) in PGCs of E10.5 to E13.5 mouse embryos. For this, 

we used a fluorescent immunohistochemical approach. Since fixation conditions may 

influence epitope availability, we fixed and embedded embryos using different protocols. 

OCT4 (E10.5 and E11.5) or TRA98 (E13.5) were used as germ cell markers. For H3K9me3 

staining, we did not observe any robust and reproducible staining pattern using par-

affin-embedded tissue sections. In contrast, cryosectioning of paraformaldehyde fixed 

samples did produce the typical pattern of H3K9me3 enrichment in heterochromatin 

areas of somatic cells. Interestingly, using two different fixation protocols, one involving 

fixation only prior to freezing and embedding (regular fixation), and another protocol 

that included a post-fixation step after sectioning (extended fixation, see Methods for 

details), two different staining patterns were observed. Using both methods, the pattern 

of H3K9me3 immunostaining in PGCs was similar to that of surrounding somatic cells at 

E10.5, despite the overall DAPI weak appearance of the PGCs’ chromocenters (Figure 1, 

panel A and B). Using the regular fixation procedure, we observed an overall reduction 

of H3K9me3 signal solely from E11.5 germ cells, in accordance with previous observa-

tions (Hajkova et al. 2008) (Figure 1, panel A). In contrast, when using extended fixation, 

H3K9me3 signal was retained on the pericentric heterochromatin as the PGCs developed 

between E10.5 and E13.5 (Figure 1, panel B). As an alternative approach, and to further 

ensure epitope availability, we used a drying-down, alias meiotic spread method that 

is commonly used to study the localization of chromatin modifications and associated 

proteins in nuclei of meiotic prophase cells (Peters et al. 1997). It involves mixing of a cell 

suspension on a glass slide covered with a Triton-X100-containing fixative, followed by 

gradual drying, whereby the nuclei spread on glass. The spreading results in loss of most 

cytoplasmic and loosely DNA associated proteins, and flattening of the nuclear chroma-

tin. Therefore, we will further refer to this type of preparation as nuclear spreads. We 

prepared slides containing nuclei from E10.5 and E11.5 gonadal regions and from E13.5 

male and female gonads. Similar to the results obtained with the extended fixation pro-
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tocol, H3K9me3 signal was retained in the pericentric heterochromatin of PGCs from 

E10.5 to E13.5 (Figure 1, panel C), indicating that there is no major loss of H3K9me3 from 

the pericentric regions in E11.5 PGCs. Lastly, in accordance with Kagiwada et al. (2013), 

we did not observe complete loss of the DAPI dense regions at any of the examined stag-

es in all protocols tested, but the regions appeared less DAPI intense and at the same 

time smaller and less dense. This indicates that there may be some difference between 

the pericentric chromatin structure of PGCs and somatic cells. Importantly, our results 

indicate that previously reported absence of pericentric heterochromatin marks in E11.5 

PGCs might be a consequence of the chosen experimental methodology. 

3
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Figure 1: H3K9me3 persists on pericentric heterochromatin throughout germ cell development 

A Immunofluorescent analysis of H3K9me3 (green) in cryosections of E10.5 and E11.5 trunks containing 
germ cells, and of E13.5 male and female gonads using the regular fixation protocol. H3K9me3 staining is 
present in DAPI (blue) dense regions of E10.5 PGCs and somatic cells. At E11.5 H3K9me3 transiently disap-
pears from pericentric heterochromatin of E11.5 PGCs only. Thereafter, H3K9me3 returns in E13.5 DAPI 
dense regions. B Using extended fixation, H3K9me3 is retained in DAPI dense regions of PGCs and somatic 
cells in all embryonic stages examined. C Similar to B, H3K9me3 remains present in pericentric heterochro-
matin when nuclear spreads are used. E10.5 and E11.5 germ cells are marked with OCT4 (red), while E13.5 
germ cells are marked with TRA98 (red). Using regular or extended fixation, two embryos or gonads were 
analysed per stage, and at least 20 PGC nuclei were recorded. Four or more embryo trunks or gonads were 
pooled for the nuclear spread preparations and at least 30 PGC nuclei were recorded. Representative germ 
cells are marked with yellow dashed circles. Scale bars represent 5μm in panels A and B (sections), and 
10μm in panel C (nuclear spread).
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HP1 isoforms are stably recruited to pericentric heterochromatin of developing 
germ cells
Specific histone modifications recruit certain proteins. Members of the Heterochromatin 

Protein 1 (HP1) protein family bind H3K9me3 and mark constitutive heterochromatin. 

In mammals, there are three different HP1 isoforms: HP1α, HP1β and HP1γ also known 

as CBX5, CBX3, and CBX1, respectively. We examined the localization of these three iso-

forms during PGC development. In the regular fixation protocol and using paraffin sec-

tions, HP1α immunostaining marked pericentric heterochromatin in E10.5 PGCs. Already 

at this stage, the signal for HP1α appeared lower in PGCs compared to surrounding so-

matic cells. Thereafter, HP1α was undetectable in developing germ cells (Additional file 1, 

panel A), which is in accordance with Haijkova et al., (2008). Using extended fixation con-

ditions, HP1α signal appeared to be reduced (E10.5, E11.5 some PGCs, E13.5 female germ 

cells) or absent (E11.5 some PGCs, E13.5 male germ cells). It should be noted that in E13.5 

male gonad sections, we could not reproducibly detect HP1α even in the surrounding so-

matic cells of sections, using either regular or extended fixation protocols (Additional file 

1, panel A and B). This may be due to the different consistency of the male versus the fe-

male gonad at this age, causing differential and variable effects of the fixation protocols. 

When nuclear spreads from genital ridges or embryonic gonads were examined, HP1α 

immunostaining was readily detectable in DAPI dense regions of all cells, and appeared 

to be very similar in PGCs and surrounding somatic cells in all developmental stages ex-

amined (Figure 2, panel A).

Like HP1α, HP1β is also known to predominantly localize to heterochromatin. When 

we use our regular fixation protocol we observed accumulation of HP1β signal in DAPI 

dense regions of both somatic and germ cell nuclei at E10.5 and E11.5 stages. However, 

at E13.5, hardly any enrichment was observed in the DAPI dense regions of both in male 

and female germ cells (Additional file 2, panel A).  Following extended fixation, HP1β sig-

nal was preserved on pericentric heterochromatin in all developmental germ cell stages 

examined (Additional file 2, panel B), similar to what was observed in nuclear spread 

preparations, where the levels of HP1β staining were comparable between germ and 

somatic cells at all stages examined (Figure 2, panel B). 

The last HP1 isoform, HP1γ, is known to interact both with constitutive heterochroma-

tin and euchromatin (Takada et al. 2011; Smallwood et al. 2012; Vakoc et al. 2005). Ex-

amination of HP1γ in nuclear spreads revealed a clear immunostaining signal for this 

HP1 isoform in DAPI dense regions in the nuclei of germ cells throughout development, 

with HP1γ levels appearing similar between the nuclei of the soma and the germline 

in E10.5 and E13.5 germ cells. HP1γ signal seemed more enriched at pericentric het-

erochromatic regions of E11.5 PGCs compared to those of the somatic cells (Figure 2, 

3
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panel C). Comparable results were obtained upon regular or extended fixation in paraf-

fin sections of E10.5, E11.5 genital ridges and of E13.5 female gonads. However, at the 

stage of E13.5 male development, detection of HP1γ in the surrounding somatic cells of 

paraffin sections, was difficult and variable, using either our regular or extended fixation 

protocol. This was similar to our HP1α results. We could detect accumulation of HP1γ 

in DAPI dense regions in some E13.5 male germ cells (Additional file 3, panel A and B, 

arrowhead), but not in all. Taken together, the observed localisation patterns of the HP1 

isoforms during PGC development are consistent with the results obtained for H3K9me3, 

the histone modification that recruits the HP1 proteins. Therefore, HP1 isoforms remain 

on PHC of PGCs.
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Figure 2: HP1 isoforms are recruited to pericentric heterochromatin in E10.5 to E13.5 germ cells  

A Nuclear spread preparations from E10.5, E11.5 embryos and from E13.5 male and female gonads were 
stained for HP1α (green). The pericentric heterochromatin of germ cells was always decorated with HP1α. 
B Similar to HP1α, HP1β (green) was always present in DAPI (blue) dense regions of germ cells in all stages 
examined. C The last HP1 isoform, HP1γ (green), is also stably recruited to pericentric heterochromatin of 
PGCs, in the three stages examined, but at E11.5 the levels of HP1γ seem higher at pericentric heterochro-
matin of PGCs compared to the somatic nuclei. E10.5 and E11.5 germ cells were identified by OCT4 (red), 
and E13.5 germ cells with TRA98 (red). For the spread preparations at least three embryos trunks or gonads 
were pooled and at least 30 PGC nuclei were recorded per stage for each HP1 isoform. Representative 
germ cells are marked with yellow dashed circles. Scale bars represent 10μm. 

H4K20me3 is retained at pericentric heterochromatin of E11.5 PGCs  
An additional histone mark that participates in the establishment of pericentric hetero-

chromatin is H4K20me3 (Schotta et al. 2004; Kourmouli et al. 2004). This histone mod-

ification is mediated by the histone methyltransferase Suv4-20h2 in a Suv39h and HP1 

dependent manner (Kourmouli et al. 2004). Suv39h is the enzyme responsible for estab-

lishing tri-methylation of H3K9 (Peters et al. 2001). Similar to H3K9me3, H4K20me3 is 

strongly enriched at DAPI dense regions (Kourmouli et al. 2004; Schotta et al. 2004). Again 

we performed comparative immunofluorescence in sections processed with regular and 

extended fixation, and in nuclear spreads. When using the regular fixation procedure 

on paraffin embedded embryo sections, H4K20me3 signal intensity appeared similar in 

developing PGCs and surrounding somatic cells at E10.5 (Figure 3, panel A). However, at 

E11.5 the immunostaining signal for this histone modification transiently disappeared 

from the DAPI dense chromocenters of the PGCs only, while it was strongly retained in 

the surrounding somatic cells (Figure 3, panel A).  Two days later, at ~E13.5, H4K20me3 

signal re-appeared, albeit at low levels compared to the surrounding soma and only in 

some TRA98 (red) positive cells, regardless of the embryo sex. When using the extend-

ed fixation protocol, H4K20me3 signal was retained throughout PGCs’ development, but 

clearly reduced in the PGCs compared to the surrounding somatic cells at E11.5-E13.5 

(Figure 3, panel B). Lastly, upon analysis of nuclear spread preparations, H4K20me3 sig-

nal was also retained on pericentric hererochromatin of PGCs in all stages examined. 

Here, the amount of signal for this histone modification also seemed to be somewhat 

reduced compared to that of the surrounding somatic cells at the two later stages (E11.5 

& E13.5; Figure 3, panel C). Therefore, similar to H3K9me3, H4K20me3 did not transiently 

disappear from the DAPI dense regions of E11.5 PGCs. Nonetheless, its overall levels 

seemed to be reduced in the germ cells compared to the surrounding soma from that 

stage onwards. This indicates that a change in this modification accompanies the overall 

remodeling process of the chromatin in PGCs and contributes to the difference in epige-

netic pericentric structure between germ cells and somatic cells. 
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Figure 3: H4K20me3 is present in pericentric heterochromatin of developing germ cells

A Paraffin sections of E10.5 and E11.5 embryo trunks and of E13.5 male and female gonads were immu-
nostained using anti-H4K20me3 (green) after applying the regular fixation protocol. At E10.5 H4K20me3 is 
present in pericentric heterochromatin of PGCs and surrounding soma. At E11.5, H4K20me3 is lost from 
DAPI (blue) dense regions of PGCs, while it is maintained in the somatic cells. At E13.5 H4K20me3 re-ap-
pears in some germ cells, but in substantially reduced levels compared to the surrounding gonadal somatic 
cells. B When applying the extended fixation protocol, H4K20me3 is retained at pericentric heterochro-
matin in PGC nuclei from E10.5 to E13.5.  However, when compared to the H4K20me3 pattern in the 
surrounding somatic cells, the levels are somewhat reduced. C Similar to the extended fixation protocol, 
H4K20me3 enrichment at pericentric heterochromatin is retained in PGCs throughout germ cell develop-
ment when analysed on nuclear spread preparations. From E11.5 onwards the levels of H4K20me3 seem 
to be reduced in PGCs compared to surrounding somatic cells. E10.5 and E11.5 germ cells were identified 
by OCT4 (red), and E13.5 germ cells with TRA98 (red). Using regular or extended fixation, two embryos or 
gonads were analysed per stage, and at least 20 PGC nuclei were recorded. Three or more embryo trunks 
or gonads were pooled for the nuclear spread preparations and at least 30 PGC nuclei were recorded. Rep-
resentative germ cells are marked with yellow dashed circles. Scale bars represent 5μm in panels A and B 
(sections), and 10μm in panel C (nuclear spreads). 
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ATRX is enriched in pericentric heterochromatin of germ cells
The α-thalassemia mental retardation X-linked protein ATRX is a chromatin remodeler 

and a prominent marker of pericentric heterochromatin in somatic cells, in the mouse 

zygote and in neonatal spermatogonia (McDowell et al. 1999; Ishov et al. 2004; De La 

Fuente et al. 2015; Baumann et al. 2008). We explored the presence of ATRX in develop-

ing germ cells, only in nuclear spread preparations, since we observed that this protocol 

yielded the most reproducible results. At E10.5, the levels of ATRX in germ cells seemed 

to be similar to those of the somatic cells. Interestingly, in the germ cells of E11.5, ATRX 

immunostaining was increased in pericentric heterochromatin compared to that of the 

soma. At E13.5, ATRX levels were comparable to those of the gonadal somatic cells again 

(Figure 4, panel A). We did not observe any re-localisation of ATRX to the nuclear periph-

ery in any of the E11.5 germ cells examined, in contrast to what was previously reported  

(Hajkova et al. 2008).

Figure 4: ATRX is enriched at pericentric heterochromatin of E11.5 PGCs 

Analysis of ATRX (green) localisation patterns in nuclear spread preparations of E10.5 and E11.5 embryo 
trunks and E13.5 male and female gonads. ATRX is enriched at pericentric heterochromatin of germ and 
somatic cells in all stages examined. At E11.5, ATRX levels seem to be higher in PGCs compared to the sur-
rounding somatic cells, while at E10.5 and E13.5 the levels of ATRX are comparable between germ cell and 
somatic nuclei. For the nuclear spread preparations at least three embryo trunks or gonads were pooled 
and at least 30 PGC nuclei were recorded. Representative germ cells are marked with yellow dashed circles. 
Scale bars represent 10μm. 
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Spatial organization of constitutive heterochromatin in germ cells 
In order to examine the organisation of the chromocenters during germ cell develop-

ment more globally, we stained nuclear spreads of all developmental stages examined 

within this study with CREST antisera, a marker of chromosome centromeres. Additional-

ly, we used H4K20me3 to visualize the pericentric heterochromatin. In somatic cells the 

chromocenters consisted of more than one pericentric domain, as indicated by the mul-

tiple CREST signals within the DAPI dense (or H4K20me3 enriched) regions. This organi-

sation reflects the clustering of groups of pericentromeres, which is a common hallmark 

of chromocenters (Guenatri et al. 2004). However, already at E10.5, we observed a large 

number of individual pericentric regions, containing only a single CREST signal, within the 

nucleus of germ cells (Figure 4, panel B, examples pointed with arrowheads). This obser-

vation may explain the size, number and intensity differences between the DAPI dense 

regions in germ cell versus somatic cell nuclei. This type of autonomous pericentromere 

organization persisted during subsequent stages of primordial germ cell development. 

Thus, we demonstrate that the organization of the chromocenters in E10.5-E13.5 PGCs is 

different compared to that of the somatic surrounding cells. A summary of all immunos-

taining results is presented in Table 1.
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Figure 5: Chromocenters dissosiate during germ cell development

Nuclear spread preparations were immunostained for CREST (yellow) and H4K20me3 (green). At E10.5, 
many small sized chromocenters (identified by DAPI (blue) and H4K20me3 enrichment) and their corre-
sponding CREST signals can be observed in the PGCs. Examples of pericentric regions containining only 
a single CREST focus are indicated by arrowheads. This pattern of dispersed pericentric heterochromatin 
organisation in germ cells, as opposed to the clustering of pericentric heterochromatin regions and asso-
ciated centromeres in somatic cells, is observed until E13.5. Germ cells were identified by the presence 
of OCT4 (red, E10.5 and E11.5), or TRA98 (red, E13.5). For the nuclear spread preparations at least three 
embryo trunks or gonads were pooled and at least 30 PGC nuclei were recorded. Representative germ cells 
are marked with yellow dashed circles. Scale bars represent 10μm. 
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Table 1: Summary of the immunosignals at pericentric heterochromatin of PGCs

The table displays whether a certain histone modification or chromatin binding protein at the pericentric 
heterochromatin is detected (+), not detected (-) or detected in some but not all (*) PGC nuclei at the embry-
onic stages indicated. Differences in the degree of enrichment between the pericentric heterochromatin of 
PGCs and somatic cells are not taken into account. n.d.: not determined

Major satellites are not transcribed in E11.5 murine PGCs
In order to examine if the altered organisation of the chromocenters during PGC de-

velopment is associated with reduced transcriptional repression of major satellites, we 

FACS-sorted PGCs and somatic cells from developing gonads isolated from E11.5 em-

bryos carrying a transgene encoding GFP under the control of the Oct4 promoter. We 

isolated RNA and analysed expression of major satellite repeats. In addition, we analysed 

Atrx, Oct4 and Canx gene expression. Oct4 expression was detected only in the purified 
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GFP-positive germ cell fraction and was negligible in the GFP-negative somatic cells, con-

firming the success of our sorting strategy (Figure 6, A). We used Canx as a reference gene 

for our analysis, since it has been reported to have more stable expression compared to 

commonly used housekeeping genes, like Actb and Gapdh, between germ and somatic 

cells (van den Bergen et al. 2009). From the results of this analysis  we conclude that 

although there is a enrichment of Oct4 and Atrx mRNA in the E11.5 PGC fraction (Figure 

6, A and B), in accordance with our immunocytochemical observations, no specific signal 

for major satellite RNA transcripts above the DNA contamination background (-RT) can 

be observed in both cell fractions (Figure 6, C). Reverse transcriptase controls (-RT) for 

the single-copy genes that were examined were always negative. To confirm the absence 

of major satellite transcription, we repeated the FACS-sorting experiment and included 

major satellite expressing NIH-3T3 cells as a positive control, this time using a slightly dif-

ferent protocol (see Methods). The results again indicate that there are no major satellite 

transcripts in the PGC or soma fraction, while they could be detected in NIH-3T3 cells 

(Additional file 4), as can be inferred from the ~5 cycles difference between Ct values of 

the +RT and – RT experiments. 
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Figure 6: Atrx is more highly expressed in E11.5 PGCs compared to the soma, and no major satellite 
transcription is detected in either cell fraction 

A Normalized expression values derived from qRT-PCR of E11.5 sorted OCT4-GFP positive (E11.5_GCs) and 
negative (E11.5_SM) cells, show that expression of Oct4 and B Atrx is higher in PGCs compared to the soma.  
C Ct values aveage obtained after qRT-PCR of major satellites in OCT4-GFP positive (E11.5 GCs) and nega-
tive (E11.5 SM) cells shows that no transcription of major satellites above the background levels (lower Ct 
values in negative control (-RT)) could be detected in both E11.5 somatic and germ cells. E11.5_GCs and 
E11.5_SM correspond to the sorted PGC and somatic cell populations respectively. Error bars represent 
standard deviations within triplicates of one biological experiment.

Discussion 

At the time of their specification, PGCs are epigenetically identical to the surrounding 

epiblast, and therefore primed towards a somatic fate [38, 39]. In order to activate their 

germ cell transcriptional network and at the same time repress their somatic fate, PGCs 

go through a series of extensive reprogramming events, which have been thoroughly 

characterized. The reprogramming encompasses DNA demethylation at several genomic 

loci, including the imprinted genes, but also involves changes in histone modifications 

(Hajkova et al. 2002; Seki et al. 2005; Seki et al. 2007; Kagiwada et al. 2013). An additional 

reprogramming cycle has been reported to take place specifically at E11.5, when many 

histone modifications are transiently lost, including those marking constitutive hetero-

chromatin and its readers (Hajkova et al. 2008). 

In our study, we carefully re-evaluated epigenetic remodeling targeting specifically con-

stitutive heterochromatin from the period when PGCs enter the genital ridges (Moly-

neaux et al. 2001) -that is E10.5- until E13.5. At this time female germ cells enter meiosis, 

while male germ cells continue to be mitotically active until E15.5 (Yoshioka et al. 2009). 

Taking into account that epitope availability can be compromised under certain fixation 

conditions we decided to test different preparation and fixation protocols. Indeed, when 

using our regular fixation protocol in sections, we observed loss of constitutive hetero-

chromatin marks such as H3K9me3, H4K20me3 and HP1α exclusively in the germ cell 

nuclei at E11.5. In striking contrast, upon extended fixation in sections, and in nuclear 

spread preparations, loss of these marks could not be reproduced.  We obtained the 

most consistent results using nuclear spread preparations. This type of single cell meth-

odology may in this case be superior to the former two, due to a better penetrance of 

the fixative and/or of the antibodies to the spread chromatin (Baarends et al. 2005; van 

der Heijden et al. 2005). In addition, loss of proteins that localise to the nucleoplasm and 

cytoplasm, and loss of proteins that are loosely associated with chromatin, may reduce 

the background signals, when histone modifications are studied. Previous studies used 

cytospin preparations to examine reprogramming taking place in germ cells  (Hajkova et 
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al. 2008). The discrepancy between our results using nuclear spreads and these results 

using whole fixed cells, may thus be attributed to higher background signals or reduced 

epitope accessibility in a more three-dimensional environment, whereby structural cellu-

lar and nuclear components such as membrane and matrix are still present. In support 

of our results, previous studies (Kagiwada et al. 2013) could also not reproduce chro-

matin changes of H1 linker histone or loss of H3K27me3 at E11.5 reported by Hajkova 

et al. (2008). This again illustrates that testing different experimental methodologies is 

important in order to correctly understand and characterize epigenetic phenomena dur-

ing different developmental states. In addition, somite counting at these early stages of 

development is a prerequisite for consistent developmental staging of the different em-

bryos examined, to reduce inter-individual variability, and thus improve reproducibility. 

From our findings it appears that neither H3K9me3 nor the HP1 proteins are lost from 

pericentric heterochromatin in PGCs between developmental stages E11.5 and E13.5 in 

mouse. H4K20me3 may be somewhat reduced between E11.5 and E13.5, but is also still 

enriched at pericentric sites compared to the surrounding euchromatin. In light of our 

observations, it would also be interesting to re-examine if H3K64me3, a newly identified 

histone modification marking constitutive heterochromatin, is truly absent from E12.0 to 

E13.5 germ cells as has been reported (Daujat et al. 2009). For this immunolocalization 

study, cryosections of embryo trunks and gonads were used, using a protocol very simi-

lar to our own regular fixation protocol (Daujat et al. 2009). As our results suggest, such 

a protocol may not be suitable for answering constitutive heterochromatin localization 

questions, since somehow epitopes may be masked.

Interestingly, our results show that ATRX, a chromatin remodeler and crucial factor for 

heterochromatin formation (McDowell et al. 1999; Sadic et al. 2015), is maintained on 

pericentric heterochromatin throughout germ cell development. In addition, ATRX is 

enhanced in these locations of E11.5 PGCs compared to the surrounding somatic cells. 

Importantly, ATRX has been reported to transcriptionally block expression of major sat-

ellites from the maternal genome in the mouse zygote (De La Fuente et al. 2015). At this 

stage, in the early zygote, the maternal pericentromeres are labelled with the classical 

somatic histone modifications, while these marks are absent from the paternal genome, 

where transcription of major satellites has been recorded (Puschendorf et al. 2008). In 

addition, studies in embryonic stem cells report that ATRX, together with the histone 

chaperone DAXX, safeguard the genome against expression of tandem repeats, even 

when DNA methylation levels are absent at those regions (He et al. 2015). Thus, in PGCs 

ATRX may also perform such a repressive function.  It has been described that DNA meth-

ylation at pericentromeres is gradually replaced by 5-hydroxylmethylation and this DNA 

modification has also been suggested to mediate transcriptional repression from those 
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repeats  (Yamaguchi et al. 2013). Therefore, it is possible that more than one mechanism 

exists for silencing major satellite transcription in germ cells. In our study, we were un-

able to detect a burst in transcription of major satellites at E11.5 PGCs. Taking into ac-

count that the vital players of constitutive heterochromatin are continuously present and 

that ATRX is enriched at pericentric repeats of E11.5 PGCs, we dispute that expression 

of major satellite repeats takes place in these cells, in a fashion similar to what has been 

observed in the mouse pre-implantation embryos.

Nevertheless, analyses of the general distribution pattern of centromeres and adjacent 

pericentric heterochromatin revealed that there is a different organization of constitutive 

heterochromatin in germ cells compared to the surrounding somatic cells. Specifical-

ly, germ cells lack organization of their pericentromeres into chromocenters. This may 

be a natural consequence of germ cell development as they move from a somatic fate 

towards the more stem cell-like fate of a primordial germ cell and eventually towards 

the gonocyte. A similar phenomenon of a more dispersed constitutive heterochromatin 

has been described to take place upon reprogramming of mouse embryonic fibroblasts 

towards induced pluripotent stem cells, but also in the Nanog-positive cells of the inner 

cell mass of developing blastocysts (Fussner et al. 2011). In addition, DAPI rich regions 

appear to spread upon induction of embryonic stem cells towards 2-cell stage-like cells 

(Ishiuchi et al. 2015). Conversely, when cells differentiate, chromocenters appear to clus-

ter. For example, when male germ cells reach their ultimate differentiated state in mouse 

adult testes, all chromocenters fuse into a single chromocenter in the nucleus of round, 

elongating and condensed spermatid  (Govin et al. 2007). In addition, differentiation of 

myoblasts towards myocytes is also accompanied by centromere clustering and chro-

mocenter formation, as well as further enrichment of H3K9me3 and H4K20me3. This dif-

ferentiation is accompanied  with transcriptional activation of major and minor satellite 

repeats  (Terranova et al. 2005). 

Conclusion
The present study reveals that pericentric heterochromatin organization in the embryon-

ic PGC nucleus has changed dramatically from a clustered pattern into individual distri-

bution, but retains the known hallmarks of heterochromatin are still present. In addition, 

ATRX, in combination with other mechanisms, may provide an extra level of protection 

against expression of major satellite transcripts. The observed changes in pericentric 

chromatin organization could be related to the transition of the germ cells from a somat-

ic fate towards a stem cell-like one.
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Methods

Collection of mouse embryos for immunofluorescence and immunocytochemistry
Female DBA2 mice were mated with C57BL/6 males to produce F1 fetuses. Mating was 

confirmed the next morning by the presence of a vaginal plug and recorded as E0.5. At 

E10.5, E11.5 and E13.5, embryos were dissected out of the uteri and were assessed for 

somite counting. We scored embryos with 34-36 somites as E10.5, 44-47 somites as E11.5. 

We could not determine with precision the somite number at E13.5 (60-62 somites), due 

to the advanced developmental stage of the embryo. Embryos were kept in ice cold PBS 

at all times, before any further processing. 

Tissue processing for immunofluorescence and immunocytochemistry
After embryo isolation from the uteri, embryo regions containing the developing germ 

cells were dissected from E10.5 and E11.5 embryos. Gonads were isolated from the E13.5 

embryos and the sex was determined by morphology. E10.5 and E11.5 gonadal regions 

were fixed in ice cold 4% PFA for 2 hours and 3 hours respectively, followed by consec-

utive washes in PBS. Gonads were fixed for 1.5 hours in ice cold 4% PFA. Tissues were 

then processed for O.C.T. or paraffin embedding using standard histology procedures. 

Cryo- and paraffin sections were 10μm and 5μm respectively. 

For the regular and extended fixation, sections were fixed for an additional 10 minutes at 

room temperature or for 30 minutes at 37o C, respectively, followed by brief PBS wash-

es. The fixation step was performed after the O.C.T. or paraffin was removed from the 

sections. 

Drying-down or nuclear spread preparations of germ cells
Embryo trunks containing the germ cells from E10.5, E11.5 and gonads from E13.5 em-

bryos were dissected, pooled as indicated in figure legends, and incubated in 500μl Try-

pLE™ Express (ThermoFisher Scientific) for 6 minutes at 37o C. Dissociation was followed 

by two washes with 5% FBS in PBS. Spreads of nuclei for immunocytochemistry were 

obtained as described by Peters et al. (1997). 

Immunohistochemistry and immunocytochemistry
Heat-mediated (900W in a microwave for 20 minutes) epitope retrieval in citrate buffer 

pH=6 was performed on paraffin sections. The following staining protocol was performed 

in all samples. Sections and nuclear spreads were blocked with 2% BSA, 5% donkey se-

rum in PBS (blocking solution) for 30 minutes at room temperature, followed by primary 
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antibody incubation, diluted in blocking solution, at 4o C overnight in a humid chamber. 

The next day, slides were washed in PBS (3x5 minutes) and blocked with secondary anti-

bodies, diluted in blocking buffer, for 1 hour at room temperature, in a humid chamber. 

Slides were then washed in PBS (3x5 minutes) and mounted with ProLong® Gold An-

tifade Mountant with Dapi (ThermoFisher Scientific). Confocal imaging was performed 

on a Zeiss LSM700 microscope (Carl Zeiss, Jena). In this study the following primary an-

tibodies were used: goat anti-OCT3/4 (N-19) by Santa Cruz (sc-8628) diluted 1:800 for 

sections and 1:50 for spread preparations, rabbit anti-OCT4 by Abcam (ab19857) diluted 

1:250 for sections and 1:50 for spread preparations, rat anti-TRA98 by Abcam (ab82527, 

1:500), rabbit anti-DDX4/MVH by Abcam (ab13840, 1:300), anti- rabbit H3K9me3 by Ab-

cam (ab8898, 1:300), rabbit anti-H4K20me3 diluted 1:300 [49], goat anti-HP1α by Abcam 

(ab77256) diluted 1:200 for sections and 1:400 for spread preparations, mouse anti-HP1β 

by Abcam (ab10478, 1:200), rabbit anti-HP1γ by Abcam (ab10480, 1:200) and rabbit an-

ti-ATRX (H-300) by Santa Cruz (sc-15408) 1:250, human anti- CREST (CS-1058) by Cortex 

Biochem 1:1000. The following Alexa Fluor secondary antibodies were used: donkey an-

ti-goat 555/488, donkey anti-rat 555, donkey anti-mouse 488 and donkey anti-rabbit 488 

by ThermoFisher Scientific. All the Alexa Fluor 555 antibodies were used at a dilution of 

1:400, while the Alexa Fluor 488 antibodies were diluted 1:250. To detect CREST we used 

donkey anti-human 488 DyLight 488 (SA5-10126) by ThermoFisher Scientific at a 1:250 

dilution.

FACS sorting
Female DBA2 mice were mated with OCT4-GOF18/GFP C57BL/6 males to produce F1 fe-

tuses carrying the OCT4-GFP transgene [50]. Staging of the embryos and dissociation of 

the tissue was performed as described above (Drying-down or nuclear spread prepa-
rations of germ cells section). Equal numbers of PGCs and somatic cells were isolated 

using the SORP-FACSAria II flow cytometer (BD). 

qRT-PCR
For quantitative RT-PCR (RT-qPCR) cells were collected by centrifugation after FACs sort-

ing, RNA was isolated and cDNA was made using Cells-to-cdna II kit (Thermo Fisher Sci-

entific; AM1722) according to the manufacturer’s instructions. All samples were analysed 

in a triplicate in a 15μl final reaction volume using the BioRad CFX 384 Real-time Sys-

tem. An alternative method was used to generate data of Additional file 4. Here, RNA 

isolation was performed with Trizol. Subsequently, RNA samples were treated with Tur-

bo DNAse (Thermo Fisher Scientific; AM1970) and cDNA was made with Superscript III 

(Thermo Fisher Scientific; AM1970) and cDNA was made with Superscript III (Thermo 
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Fisher Scientific; 18080-044) according to manufacturer’s instructions. Each reaction 

contained SYBR Green PCR Master Mix (4309155; Thermo Fisher Scientific), primers to 

a final concentration of 0,2μM and 1μl of cDNA. The following primers were used: Oct4 

Fw CCCCAATGCCGTGAAGTTG and Rv TCAGCAGCTTGGCAAACTGTT, major satellites Fw 

GGCGAGAAAACTGAAAATCACG and Rv AGGTCCTTCAGTGTGCATTTC [50], Canx Fw CCA-

CATAGGAGGTCTGACAGC and Rv CACCACCAGCATTCCAAAA [35], Atrx Fw GAGCTTGACGT-

GAAACGAAGAG and Rv TTGTTGCTGTTGCTGCTGAG.

After an initial hold at 94o C for 4 minutes, reaction mixtures underwent 40 cycles of 30 

seconds at 94o C, 30 seconds at 60o C and 30 seconds at 72o C. Gene expression levels 

were normalized over Canx expression according to the 2-ΔCt method. For the major satel-

lites, the Ct values were compared.

List of abbreviations
4’, 6 – diamidino – 2 – phenylindole (DAPI)

Heterochromatin Protein 1 (HP1)

Primordial Germ Cell (PGC)

Polycomb Repressor Complexes 1 and 2 (PRC1 and PRC2)
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Additional Files:

Additional file 1: Immunofluorescent analysis of HP1α in paraffin sections using the regular and 
extended fixation protocols 

A In E10.5 embryos HP1α (green) is enriched at pericentric heterochromatin, but its levels are lower in PGCs 
compared to somatic cells. From E11.5 onwards, HP1α signal is depleted from DAPI (blue) dense regions in 
PGCs. B Results were similar to A when using extended fixation conditions. However, at E11.5 some PGCs 
could be detected with some signal of HP1α still present at the percentric heterochromatin (marked by 
arrowhead). Note that in E13.5 male gonads HP1α could not be reproducibly detected in somatic cells, both 
in A and B. For each stage two embryos were analysed per fixation protocol and at least 20 nuclei were 
recorded.  E10.5 and E11.5 PGCs were marked with OCT4 (red). E13.5 male and female germ cells were 
identified by the presence of DDX4/MVH (red). Representative images are shown with germ cells highlight-
ed by dashed yellow circles and scale bars represent 5μm.
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Additional file 2: Immunofluorescent analysis of HP1β in paraffin sections using the regular and 
extended fixation protocols 

A Using the regular fixation protocol, HP1β signal is enriched at DAPI (blue) dense regions of E10.5 and 
E11.5 PGCs and somatic cells. HP1β is then substantially reduced in E13.5 female and male germ cells. B 
With the extended fixation protocol, HP1β is retained in pericentric heterochromatin of PGCs throughout 
development. For each stage two embryos were analysed per fixation protocol and at least 20 nuclei were 
recorded. E10.5 and E11.5 PGCs were marked with OCT4 (red). E13.5 male and female germ cells were 
identified by the presence of TRA98 (red). Representative images are shown with germ cells highlighted by 
dashed yellow circles and scale bars represent 5μm.

E13.5 ME11.5 E13.5 FE10.5

H
P1β

H
P1β

A

B

regular fixation
extended fixation

M
erged

M
erged

D
api

D
api

ALL TOGETHER Final.indd   121 1/5/17   12:03 PM



122

CHAPTER 3

Additional file 3: Immunofluorescent analysis of HP1γ in paraffin sections using the regular and 
extended fixation protocols 

A HP1γ (green) signal is enriched at DAPI (blue) dense regions of E10.5 and E11.5 PGCs and somatic cells us-
ing the regular fixation protocol. Thereafter, at E13.5, HP1γ could not be detected in male germ cells, while 
it was still present in E13.5 female germ cell nuclei. B Upon application of the extended fixation protocol, 
enrichment of HP1γ signal was observed in pericentric heterochromatin of E10.5 and E11.5 PGCs. Similar 
to A, HP1γ could not be detected at pericentric heterochromatin of male E13.5 germ cells, while it was still 
present in E13.5 female germ cells. Note that in both protocols (A and B) HP1γ could not reproducibly be 
detected in pericentric heterochromatin of E13.5 somatic cells. For each stage two embryos were analysed 
per fixation protocol and at least 20 PGC nuclei were recorded. E10.5 and E11.5 PGCs were marked with 
OCT4 (red). E13.5 male and female germ cells were identified by the presence of TRA98 (red). Representa-
tive images are shown with germ cells highlighted by dashed yellow circles and scale bars represent 5μm.
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Additional file 4: Expression of major satellites in NIH-3T3 cells and in sorted E11.5 PGCs and somatic 
cells

Results from qRT-PCR (shown as Ct values) for major satellites in E11.5 sorted GFP positive (PGCs) and 
negative (soma) cells after Trizol RNA isolation and Turbo DNAse treatment shows that expression of major 
satellites could not be detected above background (-RT) in both sorted populations. In contrast, mouse 
NIH-3T3 cells show expression of these transcripts above background levels, as previously described (Fres-
cas D et al., 2008). The average Ct values are plotted for each cell type in +RT and – RT samples. Error bars 
indicate standard deviation within triplicate samples of one biological experiment.
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Abstract
X chromosome inactivation (XCI) is a developmentally regulated process and  its accom-

plishment relies on several mechanisms including antisense transcription, non-coding 

RNA-mediated silencing, and recruitment of chromatin remodelling complexes. In vitro 

modelling of XCI provides a powerful tool to study the dynamics of this process by ge-

netically modifying key regulatory players. Importantly, in vitro strategies are based on 

differentiation of pluripotent stem cells into functional cell types and overcome the need 

to use early developing embryos, thus increasing the number of species in which XCI can 

be investigated. However, to date, robust XCI in vitro has been exclusively achieved upon 

differentiation of mouse pluripotent cells. Here, we established a novel monolayer dif-

ferentiation protocol for rat ES cells to study XCI. We show that efficient XCI initiation can 

only be achieved upon complete withdrawal of MEK and GSK3 inhibitors upon differenti-

ation. We also show that in differentiating rat female cells, Xist RNA starts accumulating in 

cis on the X chromosome around day 2 of differentiation, and the accumulation is rapidly 

followed by H3K27me3 enrichment on the inactive X (Xi). Finally, we demonstrate that the 

critical roles of RNF12 and REX1 in mediating XCI in the mouse, are also well conserved in 

rats. Our work provides the basis to investigate the mechanisms directing the XCI process 

in a model organism different from the mouse.

Introduction
In mammals, X chromosome inactivation (XCI) ensures the dosage compensation of sex 
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chromosomal genes between females (XX) and males (XY) (Gendrel & Heard 2014; van 

Bemmel et al. 2016). The process of XCI occurs early upon female embryonic develop-

ment and is mediated by a multitude of epigenetic mechanisms that result in the com-

plete transcriptional inactivation of one entire X chromosome within the nucleus of every 

female somatic cell. In eutherians, initiation of XCI is mediated by long non-coding RNAs, 

with the non-coding gene Xist being the major player of XCI in placental mammals (Grant 

et al. 2012; Marahrens et al. 1997; Penny et al. 1996; Borsani et al. 1991; Brockdorff et al. 

1991). During XCI, Xist RNA spreads in cis along the entire length of the X chromosome 

and triggers chromosome-wide silencing of X-linked genes. Although most likely func-

tionally similar, the molecular mechanisms by which Xist and Rsx (a large, repeat-rich 

RNA, that similar to Xist is transcribed from and coats the inactive X chromosome in mar-

supial Monodelphis domestica (Grant et al. 2012)) induce transcriptional inactivation re-

main largely unknown. The study of XCI relies both on in vivo and in vitro models that 

allow genetic manipulation of the factors involved, and the vast majority of our current 

knowledge has been achieved by using the mouse as a model organism. In vivo studies 

have shown that XCI starts around the 4-8 cell stage of female mouse embryonic devel-

opment and is initially imprinted (iXCI), resulting in exclusive inactivation of the paternal 

X chromosome (Xp) (Huynh & Lee 2003; Mak et al. 2004; Okamoto et al. 2004; Patrat 

et al. 2009). Later on in development, at the blastocyst stage (~E4.5), the Xp becomes 

reactivated in the inner cell mass (ICM) of the embryo, whereas iXCI is maintained in the 

extra-embryonic lineages (Mak et al. 2004; Okamoto et al. 2004). Reactivation of Xp in 

the ICM is then followed by random inactivation (rXCI) of either the paternal or maternal 

X chromosome in cells of the developing epiblast. In vitro, mouse embryonic stem cells 

(mESCs) have been extensively used to model rXCI. In fact, undifferentiated mESCs carry 

two active X chromosomes and faithfully mimic the pluripotent environment of the ICM, 

whereas their differentiation results in random inactivation of one of the two X chromo-

somes. Mouse ESC-based in vitro studies have led to the discovery of the long non-coding 

gene Tsix, which is transcribed antisense to Xist and represents the major repressor of Xist 

upregulation at the onset of XCI in the mouse (Lee & Lu 1999; Navarro et al. 2006; Sado 

et al. 2005; Ohhata et al. 2008). XCI is tightly linked to loss of the pluripotent state (Wutz 

& Jaenisch 2000; Schulz et al. 2014) and several pluripotency factors including NANOG, 

SOX2, OCT4, REX1 and PRDM14 have been described to function as XCI-inhibitors either 

by directly inhibiting Xist expression or by enhancing Tsix upregulation (Ma et al. 2011; 

Navarro et al. 2008; Navarro et al. 2010; Payer et al. 2013). Activation of XCI is mediated at 

least in part by the X-linked E3 ubiquitin ligase RNF12 that mediates degradation of REX1 

in a dose-dependent manner (Jonkers et al. 2009; Gontan et al. 2012). Interestingly, the 

study of XCI in female pre-implantation embryos from different species suggested that 
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the epigenetic processes that mediate XCI might be more heterogeneous than expect-

ed. Similar to mouse, iXCI occurs in the extra-embryonic lineages of rat and cow (Wake 

et al. 1976; Dindot 2004; Xue et al. 2002), but in other species such as human, monkey, 

horse, pig and rabbit, only rXCI has been exclusively observed in both embryonic and 

extra-embryonic tissues (Okamoto et al. 2011; Moreira de Mello et al. 2010). Compara-

tive analysis of Xist RNA expression dynamics and X-linked gene silencing between rabbit 

and human pre-implantation embryos confirmed substantial diversity in the timing and 

regulation of XCI initiation among mammals, with cells of the human ICM showing two 

active X chromosomes regardless of Xist RNA coating (Okamoto et al. 2011, Petropoulos 

et al. 2016). In addition, the overall Xist gene structure appears to be conserved in all 

placental mammals, but the Xist sequence evolved rapidly and differs considerably be-

tween species (Chureau et al. 2002; Duret 2006; Nesterova et al. 2001; Elisaphenko et al. 

2008). Finally, Tsix antisense transcription through the Xist promoter has not been found 

in human (Migeon et al. 2001; Migeon et al. 2002) but appears to be conserved in rodents 

(Shevchenko et al. 2011). Interestingly, differentiation of mouse-rat allodiploid ES cells 

leads to specific primary inactivation of the mouse X chromosome (Li et al. 2016). This 

mouse allele-biased expression of Xist has been proposed to result from the higher ex-

pression of Tsix from the rat allele, interfering with expression of Xist in cis (Li et al. 2016).

Clearly, the development of novel in vitro systems derived from different species is neces-

sary to reach a comprehensive understanding of the XCI process. However, although the 

induced pluripotent stem cells (iPSCs) technology has allowed the generation of several 

ES cell-like lines from different species (Takahashi & Yamanaka 2006; Watanabe et al. 

2007; Friedrich Ben-Nun et al. 2011), both the characterization of the X chromosomes 

status and the generation of in vitro differentiation protocols that recapitulate XCI have 

proven to be challenging (Tchieu et al. 2010; Mekhoubad et al. 2012; Pasque & Plath 

2015). In this context, rat ES cells (rESCs) only recently became well characterized (Meek 

et al. 2014; Meek et al. 2013; Meek et al. 2010; Buehr et al. 2008; Li et al. 2008; Masaki 

Kawamata & Ochiya 2010a; M. Kawamata & Ochiya 2010b; Hirabayashi et al. 2009; Men 

et al. 2012), and the establishment of the novel CRISPR/Cas9 system for genome editing 

rapidly enhanced the generation of genetically modified rat models potentially facilitat-

ing genetic studies on XCI in rESCs (Shao et al. 2014; Guan et al. 2014). Therefore, we set 

out to generate a robust in vitro system that could faithfully mimic the dynamics of XCI 

in rat. By developing a monolayer differentiation protocol for rESCs similar to the one 

recently reported by Vaskova and colleagues (Vaskova et al. 2015), we were able to follow 

several aspects of XCI regulation in rat. Similar to mouse, we were able to observe (I) Xist 

up-regulation at an early stage of rESCs differentiation followed by (II) transcriptional 

inactivation of X-linked genes and (III) H3K27me3 accumulation on the inactive X chro-
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mosome (Xi). In addition, (IV) overexpression experiments in rESCs confirmed that the 

REX1-RNF12 axis of Xist regulation is conserved between rat and mouse. Thus, we have 

established the technical basis to study the dynamics of XCI in a different system from 

the mouse and shown that specific aspects of XCI are conserved in rodents. 

Results 
In vitro neuronal differentiation of rESCs 
In vitro differentiation of mESCs towards different functional cell types including neurons, 

cardiomyocytes, hepatocytes and pancreatic cells can be efficiently achieved by several 

established protocols (Schroeder et al. 2009). Usually, differentiation strategies are based 

on the formation of embryoid bodies (EB) followed by growth-factor-mediated induc-

tion of early progenitor cells to differentiate into their respective lineages. Despite of the 

growing list of differentiation protocols for mESCs, differentiation of rESC is extremely 

difficult to achieve in vitro. To date, only two strategies have been described in which 

rESCs were triggered to differentiate into either cardiomyocytes or neuronal precursors. 

In these differentiation protocols MEK and GSK3β inhibitors (generally known as 2i), that 

are commonly used for ESC culture, are always present in low concentrations in the dif-

ferentiation media (Cao et al. 2011; Peng et al. 2013). Normally, when for example mouse 

ESCs are induced to differentiate, these inhibitors are removed from the culture medium, 

but in the case of the rat ESCs, such an immediate removal rapidly leads to massive cell 

death. Only later in the rESC differentiation protocol (day 3) the two inhibitors are com-

pletely removed. We initially set out to assess rat XCI after inducing rESCs differentiation 

according to the already established protocols. Several rESCs derived from different rat 

inbred strains were differentiated, including three pure Lewis lines (LEW) (A4p20, A9p20, 

A10p20), and two lines of a mixed background of dark agouti (DA) and Sprague-Dawley 

(SD) (135-7, 141-6). In all cases, we were never able to observe either Xist up-regulation or 

its associated X-linked gene silencing, although both female and male rat cells appeared 

to be morphologically differentiated. 

XCI is closely linked to loss of pluripotency, and the presence of an inactive X chromo-

some is a powerful readout for cell differentiation. We reasoned that the lack of XCI fea-

tures upon differentiation could rely on the differentiation culture conditions we applied. 

As already mentioned above, in both experimental published strategies, rESC differen-

tiation is never achieved without complete withdrawal of the MEK and GSK3 inhibitors. 

Inhibiting both the MAPK and Gsk3β pathways is necessary for the maintenance of the 

homogeneous pluripotent ground state of rESCs (Buehr et al. 2008). However, since Xist 

regulation and function are strictly linked to cell differentiation, stabilizing the pluripotent 

state results in tight repression of Xist expression (Schulz et al. 2014; Navarro et al. 2008; 
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2010; Payer et al. 2013). Therefore, we hypothesized that the supplement of MEK and 

GSK3 inhibitors at the onset of rESCs differentiation might interfere with Xist up-regula-

tion, thus preventing XCI initiation. To test our hypothesis, we implemented the neuronal 

differentiation protocol initially described by Peng and colleagues (Peng et al. 2013) as 

follows: (I) we completely eliminated the presence of both 2i factors starting from day 1 

of neuronal differentiation, (II) we increased the concentration of ROCK (rho-associated 

protein kinase) inhibitor, which has been shown to prevent dissociation-induced apop-

tosis in cultured human ES cells  (Ishizaki et al., 2000; Watanabe et al., 2007) and finally, 

(III) we started rESCs differentiation with a greater number of cells. Using these modified 

conditions, we were able to maintain viable differentiating male and female rESCs in the 

absence of 2i (Figure 1A). Importantly, qPCR analysis of both pluripotency and differen-

tiation marker expression levels at different time points upon differentiation confirmed 

efficient downregulation of the pluripotency factors Esrrb, Prdm14 and Rex1, and parallel 

up-regulation of the neuronal precursor marker Nestin (Figure 1B). Interestingly, we also 

observed massive cell death of female rESCs compared to male cells around day 3 of 

differentiation, suggesting that impairment of XCI initiation might have an impact on cell 

survival. Cell death was not observed when the already published protocols (2i factors 

present throughout differentiation) were used.
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Figure 1: Neuronal diff erentiation of rESCs

A Schematic representation of our neuronal diff erentiation strategy. Brightfi eld images of female (A4p20, 
top) and male (A8p20, bottom) rESCs at several time points upon diff erentiation are shown. B qRT-PCR 
analysis of Esrrb, Prdm14, Rex1 (pluripotency factors) and Nestin (neuronal diff erentiation marker) expres-
sion levels normalised to Actin in female (A10p20, A4p20) and male (A8p20) diff erentiating rESCs at diff er-
ent time points after initiation of diff erentiation as indicated. Error bars represent standard deviation of 
three technical experiments. 

Female rESCs undergo XCI upon in vitro neuronal diff erentiation
We then addressed the question of whether diff erentiating rESCs without the supple-

ment of 2i factors would facilitate XCI to occur. To this end, four independent female 

rESC lines were diff erentiated and the Xist RNA expression level was assessed by qRT-PCR 

analysis at diff erent time points upon neuronal diff erentiation. Importantly, in order to 

assess the sex-specifi c regulation of Xist RNA, one male rESC line was also included into 

our analysis. As in mouse, Xist upregulation occurs exclusively in female rat cells between 

day 2 and day 4 of diff erentiation (Figure 2A). In parallel, we also assessed Tsix expres-

sion levels and contrary to what is observed in mouse, where expression of Xist and Tsix 

is anti-correlated (Loos et al. 2016), Tsix appears to be effi  ciently downregulated upon 

diff erentiation in only two out of four female rESC lines. Moreover, male rESCs showed 

persistent Tsix expression throughout diff erentiation, although the expression levels de-

creased around day 2 (Figure 2A). These observations suggest that the interplay between 

Tsix and Xist regulation at the onset of XCI might diff er slightly between mouse and rat.

Next, we addressed the dynamics of Xist expression by performing Xist RNA FISH analysis 

at diff erent time points upon neuronal diff erentiation. In undiff erentiated rESCs, Xist RNA 

pinpoint signals were observed within the nuclei of both female and male cells (Figure 

2B). However, since the Xist RNA FISH probe can hybridize to either Xist or Tsix RNA, the 

pinpoint signal might represent Tsix expression instead of Xist. Around day 2 of neuronal 

diff erentiation, Xist RNA starts to accumulate exclusively on a single X chromosome within 

female nuclei, whereas Xist RNA accumulation was never observed in diff erentiating male 

rESCs (Figure 2B). Importantly, upon diff erentiation of A10p20 and A4p20 rESC female 

THE DYNAMICS OF X CHROMOSOME INACTIVATION IN RAT
GENERATION OF A NOVEL IN VITRO DIFFERENTIATION STRATEGY TO STUDY 

4

ALL TOGETHER Final.indd   133 1/5/17   12:03 PM



134

CHAPTER 4

4

lines, 60% of the nuclei showed a Xist RNA-coated X chromosome at day 6 of diff erentia-

tion (Figure 2C). Taken together, these observations show that neuronal diff erentiation 

of rESCs in absence of 2i inhibitors allows Xist RNA to be upregulated and to spread in cis 

from a single X chromosome in female cells. 

In addition, we determined at which time point upon neuronal diff erentiation Xist-medi-

ated silencing of X-linked genes is established. In mouse, the gene silencing-associated 

H3K27me3 histone modifi cation represents one of the earliest histone marks that ac-

cumulates on the Xi during XCI (Chaumeil et al. 2006; Silva et al. 2003; Plath et al. 2003). 

Therefore, in order to determine whether the formation of Xist clouds was followed by 

further downstream events normally associated with robust XCI, we monitored enrich-

ment of H3K27me3 by immunofl uorescence analysis upon diff erentiation of both male 

and female rESCs. In undiff erentiated rESCs, no H3K27me3 domains were observed in 

neither male nor female cells (Figure 3A). However, starting from day 2 of diff erentiation 

and in line with female-specifi c upregulation of Xist RNA, H3K27me3 starts to accumulate 

into specifi c nuclear domains within female cells. By day 6, more that 60% of the fe-

male nuclei show one H3K27me3 domain, thus confi rming that XCI is effi  ciently initiated 

upon female rESCs diff erentiation (Figure 3A). Finally, to precisely assess the dynamics of 

X-linked gene silencing, we followed the Xist-mediated inactivation of the X-linked gene 

Pgk1 in conjunction with Xist RNA cloud formation by two-colour RNA-FISH analysis at dif-

ferent time points upon rESCs diff erentiation. While the single copy of Pgk1 in male cells 

remains actively transcribed throughout diff erentiation, the transcriptional inactivation 

of one copy of Pgk1 in female cells starts around day 2 of diff erentiation (Figure 3C). How-

ever, robust Pgk1 inactivation in up to 70% of the female nuclei is only reached around 

day 6 of diff erentiation (Figure 3C). 

A
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Figure 2: Monoallelic upregulation of Xist RNA upon female rESCs diff erentiation

A Xist and Tsix qRT-PCR expression analysis in female (A10p20, A4p20, 135-7, 141-6) and male (A8p20) dif-
ferentiating rESCs. Expression levels of Xist and Tsix at diff erent time points upon neuronal diff erentiation 
are shown. Error bars represent standard deviation of three technical experiments. B Representative imag-
es of Xist RNA FISH (green) analysis upon diff erentiation of female (A10p20) and male (A8p20) rESCs. DNA 
is stained with DAPI (blue). Xist RNA FISH was performed in two independent female cell lines (A10P20 and 
A4p20) and one male (A8P20). C Quantifi cation of relative number of Xist RNA signals (pinpoints or clouds 
in patterns as indicated to the right of the graphs) in A10p20 and A4p20 female rESCs at day 0, 2, 3, 4 and 
6 upon neuronal diff erentiation. Xist clouds were never observed in male nuclei. 150 nuclei were counted 
for each diff erentiation time point per female cell line. 

THE DYNAMICS OF X CHROMOSOME INACTIVATION IN RAT
GENERATION OF A NOVEL IN VITRO DIFFERENTIATION STRATEGY TO STUDY 

4

B

C

ALL TOGETHER Final.indd   135 1/5/17   12:03 PM



136

CHAPTER 4

4

A

A10P20A4P20

B

ALL TOGETHER Final.indd   136 1/5/17   12:03 PM



137

Figure 3: Xist-mediated silencing of X-linked genes

A Representative images of H3K27me3 (green) immunofl uorescence analysis in female (A10p20) and male 
(A8p20) rESC at diff erent time points upon neuronal diff erentiation. DNA is stained with DAPI (blue). Stain-
ing against H3K27me3 was performed in two independent female cell lines (A10P20 and A4p20) and one 
male (A8P20). B Quantifi cation of relative number of cells carrying a H3K27me3 domain at day 0, 2, 3, 4 and 
6 of neuronal diff erentiation. Data of A10p20 and A4p20 female rESC lines are shown. H3K27me3 domains 
were never noticed in male nuclei (A8P20). 150 nuclei were counted for each depicted diff erentiation time 
point.  C Xist (green)/Pgk1 (red) two-colour RNA-FISH quantitative analysis at diff erent time points upon 
neuronal diff erentiation of female (A10p20) and male (A8p20) rESCs. The relative number of cells showing 
either biallelic or monoallelic Pgk1 expression is quantifi ed, together with the relative number of cells car-
rying Xist pinpoints or clouds signals in patterns as indicated to the right of the graphs. DNA is stained with 
DAPI (blue). Representative images of both female and male D6 diff erentiating rat cells are shown. 100 
nuclei were counted for each depicted diff erentiation time point in each female and male cell line.

Overexpression of RNF12 and REX1 in undiff erentiated rESCs modulates Xist ex-
pression
The X-linked E3 ubiquitin ligase RNF12 has been previously shown to activate Xist tran-

THE DYNAMICS OF X CHROMOSOME INACTIVATION IN RAT
GENERATION OF A NOVEL IN VITRO DIFFERENTIATION STRATEGY TO STUDY 

4

C
A8P20A4P20

Day 6
Xist Pgk1

Day 6
Xist Pgk1

ALL TOGETHER Final.indd   137 1/5/17   12:04 PM



138

scription at the onset of XCI (Barakat et al. 2011; Jonkers et al. 2009). Importantly, the 

pluripotency factor REX1 has been identifi ed as a key target of RFN12, and dose-depend-

ent degradation of REX1 by RNF12 has been proposed to act as an important mechanism 

directing the initiation of XCI upon diff erentiation of female mESCs (Gontan et al. 2012). 

Since the RNF12-REX1 axis represents an important pathway for XCI to occur in mouse, 

we asked whether these factors play similar roles in rat XCI. To this end, we transiently 

overexpressed the mouse RNF12 (mRNF12) and REX1 (mREX1) proteins in rESCs, and 

determined the impact of overexpression on Xist RNA regulation. According to the mouse 

data, we expected REX1 overexpression to result in the inhibition of Xist transcription 

whereas overexpressing RNF12 would lead to Xist up-regulation  (Barakat et al. 2011; 

Gontan et al. 2012). Xist RNA expression levels were determined by qRT-PCR analysis, and 

the experiment was performed in two independent female rESC lines and a single male 

rESC line (Figure 4). Overexpression of mRNF12 consistently resulted in upregulation of 

Xist RNA in both male and female rESCs, thus confi rming RNF12 to act as major trans-act-

ing activator of XCI in both mouse and rat (Figure 4A and B right graph). Interestingly, 

overexpressing mREX1 in rESCs did not lead to a clear inhibition of Xist RNA transcription 

(Figure 4A). This observation might be explained by the fact that Xist RNA repression in 

undiff erentiated mESCs is already maximal, and established not only by REX1, but also 

by other pluripotency factors (Navarro et al. 2008; 2010; Payer et al. 2013). However, it 

can not be excluded that the lack of eff ect could be caused by the fact that we used the 

mouse protein, which may not function optimally in a rat ESC environment. 

Although the critical catalytic ring fi nger domain of RNF12 shows 100% of amino acid se-

quence identity between mouse and rat, the important zinc fi nger domains, determining 

DNA binding specifi city, of REX1 are less well conserved (Figure 4C). Indeed, overexpres-

sion of rat REX1 (rREX1) in undiff erentiated rESCs resulted in downregulation of Xist RNA 

in both female and male cells (Figure 4B).

CHAPTER 4

4

A

ALL TOGETHER Final.indd   138 1/5/17   12:04 PM



139

Figure 4: RNF12 and REX1 overexpression in rESCs

A qRT-PCR analysis of Xist, Rex1 and Rnf12 expression levels after overexpression of mREX1 and mRNF12 
proteins. In the A4P20 female cell line only the mRNF12 (and not the mREX1) was overexpressed. B qRT-
PCR analysis of Xist, Rex1 and Rnf12 expression levels after overexpression rREX1 protein in undiff erentiat-
ed female (A10p20 and A4P20) and male (A10p20) rESCs. C Amino acid sequences alignment of mouse and 
rat REX1 and RNF12. Highlighted in red are the not conserved amino acids. In blue, the four zinc fi ngers 
domains of REX1 protein and the RING fi nger domain of RNF12. 
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Discussion
Our knowledge concerning the regulation of XCI in developing rat embryos is limited 

and relies on conservation of the key regulators Xist and Tsix between mouse and rat 

and a few studies in which, similar to mouse, iXCI has been proposed to occur in ear-

ly rat embryonic development (Wake et al. 1976; Nesterova et al. 2001; Chureau et al. 

2002; Elisaphenko et al. 2008; Duret et al. 2006). Studying the XCI process in rESCs offers 

the opportunity to explore species-specific epigenetic features and will generally help to 

reach a more comprehensive understanding of the XCI process in mammals. Although 

rESCs in vitro differentiation protocols have been previously established (Cao et al. 2011; 

Peng et al. 2013), the potential difference between female and male differentiation ca-

pacity and efficiency has never been taken into account, and the transcriptional status of 

the X chromosomes has never been characterized. Here, we did not observe any of the 

XCI-related epigenetic features of rESCs during differentiation according to the previous-

ly established protocols, and we therefore set up a novel monolayer in vitro differentia-

tion strategy that efficiently recapitulates the XCI process in rat cells. Importantly, the key 

feature that allowed us to achieve robust initiation of XCI is the complete absence of 2i 

inhibitors throughout the entire differentiation protocol. In the meantime, Vaskova and 

colleagues reported a similar strategy to trigger XCI upon differentiation of pluripotent 

rat cells (Vaskova et al. 2015). As in our protocol, withdrawing 2i factors from the differ-

entiating culture medium resulted in efficient Xist up-regulation, thus confirming that in-

hibition of the MAPK and Gsk3β pathways upon in vitro differentiation of rESCs prevents 

XCI. We next exploited our in vitro system to assess the dynamics of XCI in differentiating 

rESCs. As in mESCs, both X chromosomes are active in undifferentiated rESCs and Xist 

RNA monoallelic upregulation starts to occur around day 2 of neuronal differentiation. 

Interestingly, the downregulation of Tsix expression at the onset of rat XCI appeared to 

be heterogeneous compared to what we observed in mESCs (Loos 2016). However, since 

allele-specific analysis of Tsix expression levels cannot be assessed in our rESCs system, 

whether the observed Tsix expression is derived from the active or the inactive chromo-

some remains an open question and will need to be addressed in hybrid cell lines. 

In addition, we showed that transcriptional inactivation of X-linked genes directly follows 

Xist RNA accumulation on one of the two X chromosomes. In fact, the exclusive enrich-

ment of H3K27me3 loci in female nuclei starts around day 3 of neuronal differentia-

tion, and Xist-mediated silencing of X-linked gene Pgk1 occurs with dymanics similar to 

H3K27me3 acummulation. Finally, by overexpressing the XCI key regulators RNF12 and 

REX1 in undifferentiated rESCs, we have confirmed the conservation of their critical func-

tion in directing Xist expression. Importantly, we show that overexpression of mRNF12 
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protein in rESCs efficiently recapitulates RNF12 function, whereas in the case of REX1 only 

the overexpression of the rREX1 homologue results in Xist RNA downregulation in rESCs. 

In line with this observation, the DNA-binding domains of REX1 proteins from different 

species show an average of 11-20 amino acid differences (Kim et al. 2007) thus confirm-

ing that the degree of protein conservation between mouse and rat REX1 homologues 

may explain our results. In contrast, RNF12 is highly conserved among mammals (Bach 

et al. 1999), and the observed up-regulation of rat Xist upon mRNF12 overexpression 

confirms what we previously observed upon overexpression of human RNF12 in mESCs 

(Jonkers et al. 2009). In conclusion, we were able to set up a robust in vitro system to study 

the regulation of XCI in differentiating rESCs and our results suggest that the main steps 

of XCI in our rat in vitro system are highly similar to those of mouse XCI. The generation 

of hybrid F1 polymorphic rESCs and utilisation of the recently developed CRISPR/Cas9 

technology for genomic editing will increase the use of rat as a model organism in basic 

epigenetic and biomedical research.

Experimental procedures
Cell culture and DNA transfection
rESCs were derived as previously described (Meek et al. 2010) and subsequently 

maintained in N2B27 medium supplemented with 3μM CHIR99021 (Stemgent), 1μM 

PD0325901 and 1000U/ml mouse LIF on mouse embryonic (MEF) feeders. 

For the monolayer differentiation culture plates were coated with 100μg/ml laminin (Sig-

ma-Aldrich) for at least 4 hours at 37o C, followed by three PBS washes. Single rESCs were 

plated at a density of 105/cm2 for the female cell lines and 2x104/cm2 for the male cell 

lines in N2B27 supplemented with 10μM of ROCK inhibitor (Sigma-Aldrich) for the first 

three days. Thereafter, the ROCK inhibitor was eliminated the culture medium. Medium 

was refreshed daily. 

For the overexpression experiments, the mRex1, rRex1 and mRnf12 coding sequences 

were subcloned into pCAG-Flag, a CAG-driven expression vector containing a Flag-tag. 

Undifferentiated rESCs, maintained as described above, were transfected using lipo-

fectamine 2000 (Invitrogen) according to the manufacturer’s instructions, followed by 48 

hours of puromycin selection. 

Probe preparation and Fluorescent in Situ Hybridization (FISH)
For preparing probes detecting Xist and Pgk1 mRNAs, BACs harboring these genes 

were labelled as a whole, with digoxigenin and biotin respectively, by nick translation 

(11745816910 and 11745824910, Roche diagnostics) following the manufacturer’s in-

structions.
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For RNA-FISH at different time points of neuronal differentiation, cells were grown on 

glass coverslips and then fixed with 3% PFA for 10 minutes on ice, followed by three 

washes in PBS. Next, cells were permeabilised with 0.5% Triton and washed again three 

times in PBS. Cytoplasm was removed by treating the cells with 0.025% pepsin in 0.01N 

HCL for 3 minutes at 37o C. Subsequently, cells were dehydrated with sequential eth-

anol washes (70%, 85% and 100% 2 minutes each) and air-dried. Finally, probes were 

applied on the samples overnight at 37o C in a 50% Formamide/2XSSC humid chamber. 

The next day, slides were washed two times, 5 minutes each, in 50% Formamide/2xSSC 

pH=7.4 at 37o C, followed by two washes, 5 minutes each. in 2xSSC at 37o C and cells were 

blocked for 30 minutes at room temperature with TSBSA (2 mg/ml bovine serum albumin 

in 0.1 M Tris and 0.15 M NaCl) in a humid chamber at room temperature. Detection was 

performed by incubation with anti-digoxigenin FITC (Boehringer, 1:250) and streptavidin 

alexa fluor 555 (Thermofisher Scientific, 1:400) in TSBSA for 30 minutes at room tempera-

ture. Slides were then washed two times, 5 minutes each with TS (0.1 M Tris, 0.15 M NaCl) 

and mounted with ProLong® Gold Antifade Mountant with Dapi (ThermoFisher Scientif-

ic). Imaging was performed on a Zeiss LSM700 microscope (Carl Zeiss, Jena).

Expression analysis 
Cells were lysed by direct addition of 500 μl of TRIZOL and total RNA was extracted ac-

cording to the manufacturer’s instructions (Invitrogen). To remove genomic DNA con-

tamination, samples were treated 15 minutes at 37°C with DNaseI (Invitrogen). Next, 1 

μg of RNA was reverse transcribed by Superscript II reverse transcriptase with random 

hexamers (Invitrogen). For quantitative PCR (qPCR) gene expression levels were quan-

tified using 2x SYBR Green PCR Master Mix (Applied Biosystems) in a CFX384 Real-Time 

machine (Bio-Rad) with primers listed is Table S1. Expression levels were normalized to 

Actin b using the 2-ΔCt method (Livak & Schmittgen 2001). 

Immunocytochemistry
For immunofluorescence analysis on different time points of neuronal differentiation, 

cells were grown on glass coverslips and then fixed with 3% PFA for 10 minutes at room 

temperature followed by three washes in PBS (3x5’). Thereafter, cells were permeabilised 

with 0.5% Triton, washed with PBS (3x5’) and blocked with 2% BSA, 5% donkey serum 

in PBS (blocking solution) for 30 minutes at room temperature. This was followed by 

rabbit anti-H3K27me3 (Diagenode, 1:500) incubation, diluted in blocking solution, at 4o 

C overnight in a humid chamber. The next day, slides were washed in PBS (3x5’) and 

blocked with donkey anti-rabbit alexa fluor 488 (ThermoFischer Scientific, 1:250) second-

ary antibody, diluted in blocking solution for 1 hour at room temperature in a humid 
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chamber. Slides were then washed in PBS (3x5’) and mounted with ProLong® Gold Anti-

fade Mountant with Dapi (ThermoFisher Scientific). Confocal imaging was performed on 

a Zeiss LSM700 microscope (Carl Zeiss, Jena).
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Supplementary Table 1

List of primers used in this study 

THE DYNAMICS OF X CHROMOSOME INACTIVATION IN RAT
GENERATION OF A NOVEL IN VITRO DIFFERENTIATION STRATEGY TO STUDY 

4

ALL TOGETHER Final.indd   147 1/5/17   12:04 PM



ALL TOGETHER Final.indd   148 1/5/17   12:04 PM



149

5

Chapter 5
A ROBUST PROTOCOL FOR SIMULTANEOUS DNA-RNA FISH

IN MOUSE PRE-IMPLANTATION EMBRYOS

Aristea Magaraki, Agnese Loda, Joost Gribnau and Willy M. Baarends

Invited manuscript (Springer Protocols)

ALL TOGETHER Final.indd   149 1/5/17   12:04 PM



ALL TOGETHER Final.indd   150 1/5/17   12:04 PM



151

A ROBUST PROTOCOL FOR SIMULTANEOUS DNA-RNA FISH IN MOUSE PRE-
IMPLANTATION EMBRYOS
Aristea Magaraki1, Agnese Loda1, Joost Gribnau1 and Willy M. Baarends*1

Author Affiliations:
1Department of Developmental Biology, Erasmus University Medical Center, Wytemaweg 

80, 3015 CN Rotterdam, The Netherlands

*Corresponding author:

Dr. Willy M. Baarends

e-mail: w.baarends@erasmusmc.nl

Abstract
Fluorescence in situ hybridization (FISH) is a powerful cytogenetic technique that allows 

the visualization and quantification of RNA and DNA molecules in different cellular con-

texts. In general, FISH applications help to advance research, cytogenetics and diagnos-

tics. DNA FISH can be applied, for example, for gene mapping and for detecting genetic 

aberrations. RNA FISH provides information about gene expression. However, in cases 

where RNA and DNA molecules need to be detected in the same sample, the result is 

often compromised by the fact that the tissue sample is damaged due to the multitude 

of processing steps that are required for each application. In addition, the sequential 

application of RNA and DNA FISH protocols on the same sample is very time consuming. 

Here we describe a brief protocol that enables the combined and simultaneous detection 

of the non-coding Xist RNA, abundantly present in female cells, and centromeric DNA 

of chromosome 6 in mouse pre-implantation embryos. In addition, we describe how to 

generate indirect-labeled probes starting from BACs. This protocol may be potentially 

applied to any combination of RNA and DNA detection. 

Key words 
RNA and DNA FISH, combination of RNA and DNA FISH Fluorescent in situ hybridiza-

tion (FISH), mouse pre-implantation embryos, Xist FISH, X chromosome inactivation, long 

non-coding RNA FISH, DNA FISH
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1 Introduction
Fluorescence in situ hybridization is a macromolecule detection technology that is based 

on the ability of a single stranded DNA (probe) to anneal to complementary DNA (DNA 

FISH) or to RNA (RNA FISH).  In general, this technology is applied for many different 

purposes in molecular research and diagnostics. Importantly, FISH not only provides vis-

ualization of the subcellular localization of nucleic acids, but it can also be used for quan-

tification purposes. For example, the development of very sensitive RNA FISH protocols 

using multi-color probes, has allowed the analysis of spatio-temporal patterns of endog-

enous gene expression in the same environment (Raj et al. 2008; reviewed in Kwon 2013). 

The probes used for FISH can be directly or indirectly labeled using different protocols, 

such as the nick translation method. When probes are directly labeled, a fluorophore 

is directly associated with the DNA probe, while in the case of indirectly labeled probes 

a non-fluorescent molecule is covalently attached to the probe. Thereafter, detection 

is accomplished by incubating the specimen with appropriate fluorophore-labeled anti-

bodies or specific binding molecules. The unlabeled molecule is typically a hapten, such 

as digoxigenin or biotin. Digoxigenin is derived from the plant steroid hormone digoxin, 

found in the plants Digitalis sp (Hart & Basu 2009). Biotin, on the other hand, is a small 

protein (vitamin B7) that is also present in all mammalian cells, but is more abundant in 

certain tissues, such as brain and liver (Said 2012). 

The advantage of using indirect labeled probes lies in the fact that the antibodies or 

molecules (such as avidin or streptavidin when biotinylated probes are generated) that 

are used to detect the hybridized probe can carry multiple fluorophores. Therefore, this 

methodology has the potential to generate a more intense fluorescent signal, compared 

to directly labeled probes, and this can be of critical importance when the genomic area 

to be detected is small in size. On the other hand, using an indirect labeling method re-

quires a detection reaction that will always generate some background signal. Additional 

background signal may be also generated by non-specific binding of the probe itself. This 

disadvantage applies particularly to biotin-labeled probes, since biotin is a biological mol-

ecule present in mammalian cells and binding of, for example fluorescent-tagged avidin, 

to endogenous biotin can cause a high background signal. Background issues may not 

constitute a significant problem when nascent RNA transcripts, directly transcribing from 

the corresponding chromosome itself, need to be detected. In this case, the cytoplasm of 

the specimen can be completely digested by enzymes, such as pepsin, which are routine-

ly used in immunohistochemistry, RNA and DNA FISH procedures. In addition, digestion 

of structural and soluble protein components of the cytoplasm would also allow better 

penetration of the probe and the fluorophore-conjugated antibodies or molecules (e.g. 
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avidin) into the nucleus, which will result in enhanced nuclear signal. In general, despite 

the fact that indirect labeled probes produce more background compared to direct labe-

led ones, robust and clear signals can be produced when the probe and sample prepa-

ration are well monitored, the target genes or transcripts are efficiently exposed, and at 

the same time the morphology and integrity of the sample are well maintained. Lastly, 

the indirect labeling procedure is cheaper compared to direct labeling.

A transcript frequently and commonly studied in the X chromosome inactivation field 

is Xist. Female cells carry two copies of all X-linked genes, and males only have a single 

copy of all these genes (>1000). This generates a dosage problem in X-linked gene ex-

pression between the two sexes that needs to be equalized. In mammals, the X-linked 

gene dosage problem is solved by inactivation of one of the two X chromosomes in all 

female somatic nuclei by a mechanism termed X chromosome inactivation (XCI). When 

XCI is initiated, Xist becomes highly expressed only from the future inactive X chromo-

some, covers this X in cis and becomes detectable as a cloud in the nucleus using RNA 

FISH (Clemson et al. 1996).  This is then followed by addition of a repertoire of repressive 

histone modifications to ensure the faithful establishment of X silencing (Okamoto et al. 

2004; Brockdorff & Turner 2015; Wutz 2011). In mouse preimplantation embryos, XCI is 

imprinted. Around the four-cell stage, imprinted XCI (iXCI) is initiated always targeting 

the paternal X chromosome in female mouse embryos (Marahrens et al. 1997; Okamoto 

et al. 2004; Mak et al. 2004). While iXCI is maintained in the extraembryonic cell lineage, 

it is eventually reversed in the inner cell mass of the blastocyst that will give rise to the 

embryo proper (Okamoto et al. 2004; Mak et al. 2004). XCI is then re-initiated in a random 

fashion in the developing embryo, where either the paternal or the maternal X chromo-

some becomes inactive (Takagi et al. 1982).

Over the years, accumulating evidence suggests that the position of a gene within the 

nucleus environment can influence its transcriptional activity (revied in Takizawa et al. 

2008). To study such relationships between gene nuclear spatial positioning and activity, 

numerous DNA-RNA FISH protocols have been developed (Chaumeil et al. 2008; Nameka-

wa & Lee 2011). Nonetheless, despite the excellent detection of the nucleic acids in these 

protocols, RNA and DNA FISH are performed sequentially, rather than simultaneously. 

Due to the sensitivity of RNA transcripts to degradation by traces of RNAse or by the 

harsh conditions routinely applied during DNA FISH, RNA FISH is usually performed first. 

It is then followed by DNA FISH. 

Here we have developed a robust and reproducible DNA-RNA FISH protocol, where RNA 

and DNA molecule detection is performed simultaneously, and without compromising 

the sample’s quality. We have incorporated a 0.2N HCl incubation step in our protocol, 

which we found to be an absolute prerequisite for the successful detection of DNA tar-
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gets. Treatment of formalin-fixed tissue samples with HCL is a standard step in DNA FISH, 

and it is thought to help to deproteinize the sample and reverse formaldehyde fixation 

(Bartlett 2004; Sommerlad et al. 2002). In particular, the basic histones may be extract-

ed, allowing better access to DNA. The stripping of the proteins during DNA-RNA FISH 

may be very essential, especially if proteins mask the DNA targets and at the same time 

extremely harsh conditions (e.g. long denaturation times in high temperatures) cannot 

be applied if RNA molecules are to be detected. In addition, we applied two different 

denaturation steps, which also enhanced the DNA FISH signal, since omitting one of the 

two, compromised the DNA FISH signal. Usually, when RNA FISH protocols are followed, 

HCl treatment and denaturation steps are not applied, while they are typically found in 

DNA FISH protocols. Incorporation and adjustment of these two steps in our combined 

protocol did not influence detection of RNA transcripts. We set up our protocol in mouse 

pre-implantation embryos where we detected Xist transcripts and centromeric regions of 

chromosome 6. Therefore this protocol may be used to study different aspects XCI in the 

early embryo. At the same time it may be likely adapted and applied to other systems, 

such as on differentiating embryonic stem cells, frozen tissue sections and differentiated 

cultured cells (e.g. fibroblasts), where both nascent RNA transcripts (Xist or others) and 

genomic positions need to be detected. In the future, it would be important to determine 

whether this protocol can be applied successfully in detecting coding mRNAs together 

with DNA targets. Such an application may provide important information on how differ-

ent genomic loci interact with each other, and at the same time how such interactions 

influence gene activity at the single cell level and in different cellular developmental and 

differentiation contexts. 

2 Materials 

2.1 Generating probes from BACs
2.1.1 BAC culture and isolation
1. BAC containing the genomic region to be detected

2. Agar (A1296, Sigma-Aldrich)

3. Sterile toothpicks

4. Antibiotics for bacterial selection

5. LB broth (L3022, Sigma-Aldrich)

6. 10cm petri dishes (90032TS, Thermo Fisher Scientific)

7. BAC DNA isolation kit (740414, Macherey Nagel)

8. Pyrex 500ml bottles (B5420-500, Corning®)

9. Inoculating loop (8388-500EA, Sigma-Aldrich)
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10. Sterile, RNAse free H2O

11. Glycerol (G9012, Sigma-Aldrich)

12. Erlenmeyer flasks (N3231, Sigma-Aldrich)

13. Centrifuge (Model Allegra® X-15R, Beckman Coulter)

14. Centrifuge bottles for bacterial cultures (for Allegra® X-15R Item number 356855, 

Beckman Coulter) 

15. Incubator shaker (Model Innova® 43, Incubator Shaker Series)

16. 15ml and 50ml falcon tubes (14-959-53A and 14-432-22, Thermo Fisher Scientific) 

17. Heating-drying oven (Model UT 6060, Thermo Fisher Scientific Heraeus)

2.1.2 Probe preparation, purification and precipitation
1. Sterile, RNAse free water

2. Eppendorf tubes (30120086, Eppendorf)

3. Absolute ethanol (32221, Sigma-Aldrich)

4. Eppendorf (refrigerated) centrifuge (Model 5417R and Model 5810R, Eppendorf)

5. NaAc 3M pH 5.5 (S7670, Sigma-Aldrich)

6. Digoxigenin (11745816910, Roche Diagnostics) and Biotin nick translation kit 

(11745824910, Roche Diagnostics) 

7. 0.5M EDTA pH 8.0 (E9884, Sigma-Aldrich)

8. Mouse Cot-1 DNA (18440016, Thermo Fisher Scientific) 

9. UltraPure™ Salmon Sperm DNA Solution (15632011, Thermo Fisher Scientific)

10. Yeast tRNA (15401011, Thermo Fisher Scientific)

11. Sephadex G-50 (17004101, GE Healthcare Life Sciences) 

12. Syringes, 1ml (300013, BD Plastipak)

13. Medical cotton

14. 2% agarose gel

15. 100bp DNA ladder (N3231, NEB)

16. Eppendorf™ ThermoStat Plus Interchangeable Block Heater (Model 22670565, Ep-

pendorf)

17. Tube centrifuge (Model 5810R, Eppendorf)

18. 15ml falcon tubes (14-959-53A, Thermo Fisher Scientific)

2.2 Slide pre-preparation for embryo deposition
1. 50x Denhardt’s solution: 1% BSA (BU-102, Jena Bioscience), 1% Ficoll (46326 Fluka), 

1% Polyvinylpyrrolidone (PVP-360, Sigma-Aldrich) in sterile H2O, filter sterilized, aliquoted 

and stored in -20o C. Use to make 3xDenhardt/3x SSC.

2. 20x SSC: 3M NaCl (S9888, Sigma-Aldrich), 0,3M sodium citrate tribasic dehydrate 
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(C8532, Sigma-Aldrich) in sterile RNAse free H2O, pH 7.2-7.4. Use to make 3xDenhardt/3x 

SSC

3. 1M HCl (100317, Merck Millipore)

4. Sterile, RNAse free water

5. Absolute ethanol (32221, Sigma-Aldrich)

6. Acetic acid (33209, Sigma Aldrich)

7. Diamond pen (6120300, Marienfeld-Superior)

8. Slides superfrost (10143560W90, Thermo Fisher Scientific)

9. Slide rack

10. 50ml falcon tubes (14-432-22, Thermo Fisher Scientific) 

2.3 Embryo donors’ preparation, embryo isolation & culture
1. 6-8 week old female mice and 8 weeks or older male mice 

2. Pregnant Mare Serum Gonadotrophin (PMSG) (REG NL 1396, MSD Animal Health; In-

tervet) 

3. Human Chorionic Gonadotropin (hCG) (REG NL 1249, MSD Animal Health; Intervet) 

4. 1ml syringe with 26G needle (300013, BD Plastipak with 305111, BD Worldwide)

5. Embryo-tested bovine testes hyaluronidase (H-4272, Sigma) 

6. M2 medium (M7167, Sigma)

7. M16 (M7292, Sigma)

8. Mineral Oil tested for embryo culture (M8410, Sigma)

9. Forceps, watchmaker’s #5, two pairs (HB105, Meekers Medical)

10. Glass capillaries (1,5 OD x 1,17 ID x 150L, GC150T-10, Harvard Apparatus)

11. The STRIPPER BP Stainless Steel Slimline embryo-handling micropipetter (MXL3-STR-

BP-SW, ORIGIO) with silicone bulb (MXL3-BUBL, ORIGIO)

12. Stereomicroscope, SZH10 Olympus

13. Humidified CO2 (5% v/v in air) incubator (MCO-17AIC, Sanyo)

14. 60x15 mm IVF one well dish tested for embryotoxicity (353653, Falcon)

15. 60x15 mm IVF round dish tested for embryotoxicity (353652, Falcon)

2.4 DNA-RNA FISH Day 1
2.4.1 Probe preparation for DNA-RNA FISH procedure
1. 50+ hybridization solution: 50% Formamide (3272350000, Acros organics), 2x SSC (use 

20x SSC provided in 2.2), 50mM phosphate buffer pH 7.0 (use 1M phosphate buffer: 6,9g 

NaH2PO4-H2O (S9638, Sigma-Adlrich), 7,1g Na2PO4 (255793, Sigma-Aldrich) in 50ml of ster-

ile, RNAse free H2O, pH 7.0), 10% dextrane sulfate pH 7 (31403, Fluka)

2. Mouse Cot-1 DNA (18440016, Thermo Fisher Scientific) 
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3. Eppendorf™ ThermoStat Plus Interchangeable Block Heater (Model 22670565, Eppen-

dorf)

4. 15ml and 50ml falcon tubes (14-959-53A and 14-432-22, Thermo Fisher Scientific) 

2.4.2 Sample preparation for DNA-RNA FISH and DNA-RNA FISH procedure (Day 1)
1. 10cm cell culture dishes or petri dishes (CLS430167, Sigma-Aldrich or 90032TS, Thermo 

Fisher Scientific)

2. Acidic Tyrode’s Solution (T1788, Sigma-Aldrich)

16. M2 and M16 (M7167, Sigma and M7292, Sigma)

17. Glass capillaries (1,5 OD x 1,17 ID x 150L, GC150T-10, Harvard Apparatus)

18. The STRIPPER BP Stainless Steel Slimline embryo-handling micropipetter (MXL3-STR-

BP-SW, ORIGIO) with silicone bulb (MXL3-BUBL, ORIGIO)

19. Embryo transfer glass pipette: Glass capillaries were pulled on a flame to smoothly 

produce a tube with an internal diameter slightly larger than the diameter of the zygotes 

(200-300 μm) and a narrow shaft approximately 1-2 cm long. The edge of the shaft was 

smoothened by rapidly flaming it (adapted from Sarvari et al. 2013). 

20. Denhartd’s coated slides (see 2.2 and 3.2)

21. Fixing solution: 3% PFA (50-980-487, Electron Microscopy Sciences) supplemented 

with 0,5% Triton X-100 (T8787, Sigma-Aldrich) in PBS

22. Post fixing solution: 3% PFA in sterile, RNAse free H2O

23. Cell culture grade PBS (D8537, Sigma-Aldrich)

24. 0.2N HCl in sterile, RNAse free H2O

25. 70%, 85% (diluted in sterile, RNAse free H2O) and 100% ethanol

26. 0.02% pepsin (P7000, Sigma-Aldrich) in 0.01N HCl

27. 50% Formamide (3272350000, Acros organics)/2xSSC pH 7.2-7.5 (prepare from 

20xSSC section 2.2) in sterile, RNAse free H2O 

28. Denaturation buffer: 70% Formamide /2x SSC/10 mM phosphate buffer in sterile, 

RNAse free H2O (see 2.4.1) pH 7.0

29. Slide chamber

2.4.3 DNA-RNA FISH procedure (Day 2)
1. FA/2xSSC washing solution: 50% Formamide (3272350000, Acros organics)/2xSSC pH 

7.2-7.5 (prepare from 20xSSC section 2.2) in sterile, RNAse free H2O 

2. Detection antibodies: Anti-Digoxigenin-Fluorescein, Fab fragments conjugated with 

FITC (11207741910, Roche, 1:250), streptavidin Alexa Fluor® 555 conjugate (S-21381, 

Thermo Fisher Scientific 1:400)

3. Vanadyl Ribosyl Complex ((VRC) S1402S, New England Biolabs)
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4. 10x saline solution: 1.5M NaCl (S9888, Sigma-Aldrich) in sterile, RNAse free H2O

5. Blocking solution: 500 μl 10x saline, 250 μl 2 M Tris base (T1503, Sigma-Aldrich), 1 ml 

100x BSA (B9001S, New England Biolabs), 3.25 ml sterile, RNAse free H2O

6. Tris-saline washing solution (TS): 100 ml 10x saline, 50 ml 2M Tris, in 1 L of sterile, 

RNAse free water. 

7. ProLong® Gold Antifade Mountant with DAPI (P36931, Thermo Fisher Scientific).

3 Methods

3.1 Generating probes from BACs
There are several ways to prepare a DNA probe, in order to detect RNA or DNA mole-

cules. In the following lines we provide a detailed description on how to generate indirect 

labeled probes using BACs as a template. The same procedure applies for probes to be 

used for DNA or RNA FISH. In general, it is extremely important to use RNAse free water 

in all steps, such as DEPC treated water or commercial RNAse free H2O. Autoclaved H2O 

is not sufficient and it will compromise the RNA FISH signal. 

3.1.1 BAC culture and isolation (adapted from Wood 1983) 
1. Identify and order the BAC containing the area of interest, where the DNA FISH probe 

will hybridize. Here we used a BAC containing the centromeric region of chromosome 

6. For the RNA FISH probe, identify a BAC containing the gene of interest. The RNA FISH 

probe will hybridise to the gene’s nascent RNA, directly transcribing from the correspond-

ing chromosome. Here we use a BAC containing the Xist gene (Note 1). We routinely ac-

quire BAC clones from http://dna.brc.riken.jp/en/NBRPB6Nbacen.html. 

2. BAC clones are supplied in agar. Prepare a stock of LB broth (according to the manu-

facture’s instructions) containing the appropriate bacterial resistance antibiotic (provided 

with the specification sheet of the BAC).

3. Dip a sterile toothpick in the BAC-agar and transfer it in 10ml of LB broth. Grow over-

night at 37o C shaking.

4. To prepare LB-agar solution, add 17.5 gr of agar in 500ml of LB in a pyrex 500ml bottle. 

Autoclave the bottle with the content. Allow the LB-agar to cool down and add the ap-

propriate antibiotic. Distribute the content in petri dishes (approximately 20ml per petri 

dish). Let the petri dishes with the LB-agar stand at room temperature overnight (the 

LB-agar solidifies after a couple of hours) and then store them at 4o C for three months.

5. The next day, dip an inoculating loop into the liquid culture from step 3 and make a 

wave-shaped line on a 37o C pre-warmed LB agar plate (Figure 1) containing the appro-

priate antibiotic. 
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6. Grow overnight at 37o C.

7. Pick an individual colony with a sterile toothpick (Figure 1) and transfer it in a 15ml 

falcon tube with 5ml of LB containing the appropriate antibiotic. Culture overnight at 37o 

C shaking.

8. Create a frozen stock of the expanded bacterial colony containing the BAC, by mixing 

500μl of the culture of step 7 with 500μl of 100% glycerol. Store at -80o C. 

9. Expand the culture further by transferring the remaining bacterial culture in 500ml LB 

broth containing the appropriate antibiotic. Grow overnight at 37o C, shaking. 

10. Collect the culture in a centrifuge bottle and centrifuge at 4000 rpm for 30’ at 4o C.

11. Discard the supernatant and isolate BAC DNA using a BAC DNA isolation kit (Note 2). 

Alternatively the pellet can be stored at -20o C or -80o C and the BAC DNA can be isolated 

later.

12. Re-suspend in 150μl of sterile H2O and store at 4o C.

3.1.2 Probe preparation, purifi cation and precipitation
Take approximately 1.5μg of BAC DNA. We routinely use 5μl of the DNA suspension from 

3.1.1 BAC culture and isolation step 12. 

1.Prepare four tubes with 1.5μg BAC DNA. Prepare two tubes with the nick translation 

reaction mixture from each labeling kit (Digoxigenin or Biotin labeled) according to the 

manufacturer’s instructions. One replica from each kit is used to monitor the size of the 

probe fragments (step 3).

2. After the incubation time indicated by the manufacturer of the kit, stop the reactions 

temporarily by placing them on ice, and prepare a 2% gel. 

3. Take 3μl of the replicas (both from the Digoxigenin and Biotin labeled mixtures) and 

denature at 95o C for 5’. Add H2O and loading solution to generate a total volume of 20μl 

(test probe). Place on ice for a few minutes.

Figure 1: Plating bacteria on a LB-agar plate (containing the ap-
propriate antibiotic)

Make a wave shaped line with the inoculating loop containing the bac-
teria, and culture overnight at 37o C. The next day pick up an individu-
al colony and culture it further.
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4. Load the 20μl of each test probe on the 2% gel with a 100bp ladder as a size control 

and run the gel until the bands of the marker are clearly separated. 

5. Inspect the size of the probes. The size of the majority probe fragments should range 

between 100bp to 500bp, as shown in Figure 2.

6. If the probe size is appropriate, the nick translation reaction in all tubes should be 

permanently stopped by supplementing it with 0.5M EDTA and heating it to 65o C for 10 

minutes in a thermoblock. If the probe size is not as expected refer to Note 3. 

7. The two tubes containing the reactions (one containing a complete reaction mixture, 

and the other containing the remainder after removing some probe for the size inspec-

tion) from each kit can now be combined. Add sterile water up to 60μl and place on ice. 

8. In order to purify the probes, prepare two ‘home-made’ sephadex G50 columns as 

follows: add medical cotton into an empty 1ml syringe (discard the plunger) up to the 

150-200μl mark (Figure 3). Place the syringe into an empty 15ml tube, load the sephadex 

G50 beads and centrifuge 1 minute at 1800 rpm. Discard the fl ow through and repeat the 

loading of the sephadex beads until they fi ll approximately 80-90% of the syringe volume. 

Figure 2: Probe size after nick translation 

The majority of the probe fragments should be between 
100bp and 500bp as shown in the fi gure (Note 4).

Figure 3: Home-made sephadex G50 column

A Discard the syringe’s plunger and B place medical cotton 
at the tip of the syringe until it reaches ~200μl. The syringe 
is now ready to be loaded with the sephadex G-50 beads.

A B

500bp

200bp

pr
ob

eM
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9. Transfer the column into a new 15ml tube and load the probe (60μl) without touching 

the beads. Centrifuge 2 minutes at 1800rpm. The flow through contains the probe. 

10. Transfer each of the two probes into an eppendorf tube and precipitate the DNA by 

adding 10μl of 10mg/ml tRNA, 20μl of 1mg/ml mouse cot-1 DNA, 10μl of 10mg/ml salmon 

sperm DNA, 50μl of 3M NaAc pH 5.6 (Note 5) and 350μl of 100% ethanol. Mix well and 

store in -20o C for 20 minutes (Note 6). 

11. Centrifuge for 30 minutes at max speed at 4o C. A pellet should be visible. Discard the 

supernatant and wash the pellet with 500μl 70% ethanol. Centrifuge 5’ at max speed at 4o 

C. Discard the 70% ethanol and repeat the 70% ethanol-washing step. 

12. Allow the pellet to dry at 37o C for a few minutes. Inspect that the ethanol is fully evap-

orated. When the pellet is dry dissolve the pellet in 50μl of 50+ hybridization solution at 

37o C until it is completely dissociated. The probe is now ready and can be stored at -20o 

C for several years (Note 7).

3.2 Slide pre-preparation for embryo deposition (adapted from Veuskens et al. 
1993)
To prepare the slides, wear talc free gloves and touch only the edges of the slides. 

1. Place slides in racks and soak them in 1M HCl for 30 minutes.

2. Rinse briefly two times in sterile, RNAse free H2O.

3. Soak in absolute ethanol for 30 minutes and air-dry the slides.

4. Place them in 3x Denhardt’s/3x SSC in sterile RNAse free H2O at 65o C overnight.

5. Dip briefly in sterile RNAse free H2O.

6. Place the slides in Ethanol:Glacial acetic acid 3:1 for 20 minutes at room temperature.

7. Air dry. Make a mark line on the back of the slide and close to the edge of the slide 

using the diamond pen, as shown in Figure 4.

8. Store at 4o C up to 6 months.

3.3 Superovulation, plugging, embryo isolation & culture
In order to obtain a relatively large number of embryos per female donor we routinely 

super-ovulate the female donor mice. We use DBA2 females and C57B/6 males.

1. Inject the females (26G needle, intraperitoneal (IP)) with 5UI of PMSG. 

2. Approximately 48 hours later inject the females with 5IU of hCG (26G needle, IP) and 

place the male in the same cage. 

3. The next day (approximately 16 hours post-hCG injection), females should be inspect-

ed for the presence of a vaginal plug. If a plug is present, then embryos at embryonic day 
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0.5 (E0.5) are expected to be present in the oviduct.

4. Sacrifice the females, collect the oviducts and place each oviduct in a ~100μl drop of 

M2 medium in a 60x15 mm IVF round dish. 

5. Working under the stereomicroscope, hold the oviduct wall with one pair of forceps 

and tear the evidently plugged ampulla containing the fertilised oocytes (zygotes). The 

zygotes are still in complex with the cumulus cells and after tearing they should emerge 

from the oviduct as a single mass. Discard the oviducts and keep the zygote-cumulus cell 

masses in the M2 medium drop.

6. After the zygote-cumulus cell masses isolation has been completed move them by 

using a glass capillary (not pulled in the flame) attached to the hand pipette in a 60x15 

mm IVF one well dish containing M2 medium supplemented with 300μg/ml bovine testis 

hyaluronidase. 

7. Allow the masses to stay in the solution for approximately 1 minute – inspect them 

carefully - and gently pipette up and down with the same glass capillary to release the 

zygotes from the cumulus cells (Note 8). 

8. After the zygotes have detached from the cumulus cells, remove them with a transfer 

pipette (pulled in the flame) and place them in a 60x15 mm IVF one-well dish with fresh 

M2 medium (without hyaluronidase). 

9. Transfer the zygotes to a 50μl drop of pre-equilibrated M16 medium under mineral oil 

in a 60x15 mm IVF round dish (place the plate 10 minutes before use in the incubator). 

Then distribute 5 zygotes per 20μl drop of pre-equilibrated M16 medium under mineral 

oil in a 60x15 mm IVF round dish (Note 9). 

10. Examine the embryos after 2 or 3 days for the presence of blastocysts.

3.4 DNA-RNA FISH 

3.4.1 Probe preparation for DNA-RNA FISH procedure (Day 1)
1. Start preparing the DNA and RNA FISH probes before you start step 12 of 3.4.2 DNA-

RNA FISH procedure.

2. Place 13,5μl of hybridization solution 50+ in an eppendorf tube and add 1μl of each 

probe (total volume 16μl, approximately 60-100ng per DNA FISH or RNA FISH probe) and 

0.5μl of cot-1 DNA (1mg/ml). Mix well and denature the probes at 99o C for 6 minutes. 

3. Incubate 45 minutes at 37o C on a thermoblock to allow Cot-1 DNA to hybridize to re-

peat sequences that are present in the probe.

4. Place on ice until the sample is ready. 
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3.4.2 Sample preparation for DNA-RNA FISH and DNA-RNA FISH procedure (Day 1)
1. Take the lid of a 10cm cell culture dish and make 20μl drops of the following solutions: 

2 drops of M2, 2 drop of Acidic Tyrode’s (AT) solution, 3 drops of M2. All solutions should 

be at room temperature.

2. Place all the embryos to be processed in the M2 medium to wash away the M16 (Note 

10).

3. Transfer 10 embryos at a time in the fi rst AT drop to wash away the M2 media and 

then in the second AT drop to remove the zona pellucida. Incubate for a few seconds in 

AT, and when the zona pellucida starts to dissociate, transfer the embryos into the next 

M2 drop.

4. Pipette the embryos gently up and down with the transfer pipette until the zona pellu-

cida is completely removed. 

5. Transfer the embryos in the 2 subsequent M2 drops for additional washes. 

6. Transfer one embryo at a time on a Denhardt’s coated slide, next to the line that was 

drawn with the diamond pen as depicted in Figure 4. Carefully remove all the transferred 

media with the transfer pipette. 

7. Repeat step 5, for all the remaining embryos (Note 11).

8. Allow the embryos to dry well on the slide for 30 minutes at room temperature.

9. Fix the embryos by placing the slide ice cold 3% PFA/0.5% Triton in PBS on ice for 10 

minutes. 

10. Wash the embryos with ice-cold PBS 2 times on ice, 2 minutes each.

11. The protocol can be paused here, by washing the slide with ice cold 70% ethanol on 

ice, 2 times each. After the second time place the slide in 70% ethanol and store in -20o C 

up to several months. Otherwise proceed to step 12.

12. If the embryos have been stored in 70% ethanol, rehydrate them by washing them 2 

Figure 4: Slide preparation and embryo deposition

Carve a line on the backside and close to the end of the slide with the use of a diamond pen (green-blue 
line). Place the embryos adjacent to the line (green-blue circles). The line can be used later (upon imaging) 
as a reference to locate the embryos. 
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times, 2 minutes each with ice cold sterile, RNAse free H2O.

13. Place the slide with the embryos in 37o C pre-warmed 0.02% pepsin/0.01N HCl in ster-

ile, RNAse free H2O for 1,5 minutes.

14. Dilute the pepsin by quickly transferring the specimen in ice cold sterile, RNAse free 

H2O (Note 12).

15. Post-fix in ice cold 3% PFA in ice cold sterile, RNAse free H2O for 5’ on ice. 

16. Wash 3 times 2 minutes each in ice cold sterile, RNAse free H2O.

17. Place the slide with the embryos in ice cold 0.2N HCl in ice cold sterile, RNAse free H2O 

on ice for 12 minutes. 

18. Wash 3 times 2 minutes each with ice cold sterile, RNAse free H2O.

19. Place the slide with the embryos at 65o C on a hot plate (Note 13).  Apply 50μl of 

denaturation buffer on the slide next to the embryos. Place a coverslip to spread the 

denaturation buffer on the embryos and incubate 5 minutes (Note 14) (This is the first 

denaturation step).

20. Remove the coverslip with one move by tapping the slide in the edge of a lab chemical 

container in the fume hood and place the slide quickly in -20o C pre-chilled 70% ethanol 

for 3 minutes. 

21. Continue the sample dehydration with subsequent washes with pre-chilled 85% and 

100% ethanol (-20o C) for 3 minutes each. 

22. Allow the embryos to dry for 10 minutes at room temperature.

23. Apply the probe mixture (containing both the labeled DNA and RNA FISH probes) 

on the embryos and cover it with a coverslip. Place the slide at 78o C on a hot plate for 4 

minutes (This is the second denaturation step, note 15).

Place the slide in a humid chamber with 50% formamide/2x SSC pH 7.2-7.5 at 37o C for 

18 hours.

3.4.3 DNA-RNA FISH procedure (Day 2)
1. Wash the slide in pre-warmed FA/2xSSC at 37o C two times, for 5 minutes each.

2. Wash the slide in pre-warmed 2xSSC at 37o C two times, for 5 minutes each. 

3. Wash the slide in 2xSSC for a few seconds at room temperature.

4. Block with blocking solution supplemented with 2mM VRC for 10 minutes at room 

temperature.

5. Incubate with the anti-DIG FITC (1:250) and streptavidin Alexa Fluor® 555 conjugate 

(1:400) diluted in blocking solution, supplemented with 2mM VRC, for 45 minutes at room 

temperature.

6. Wash two times in TS washing solution. 

7. Mount in Prolong Antifade supplemented with Hoechst. 
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8. Proceed for imaging. We routinely use a Zeiss LSM700 microscope (Carl Zeiss, Jena).

9. A representative image is presented in Figure 5.
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4 Notes

1. Note 1: For a strong DNA FISH signal, the corresponding probe should hybridise to at 

least 6Kb of the target DNA.  In addition, no transcription should take place from the cho-

sen genomic region, in order to avoid detection of nascent RNA. Using BACs containing 

centromeric and telomeric regions may provide suitable substrates for generating such 

probes. 

2. Note 2: When isolating the BAC DNA that will be used for detecting nascent RNA, avoid 

using the RNAse that is provided by the kit, during the DNA isolation procedure. Rem-

nants of RNAse after the BAC DNA isolation may compromise the RNA FISH results. 

3. Note 3: If the majority of the probe fragments are larger than 500bp the nick transla-

tion reaction should be continued for another 30’ and the probe size should be re-evalu-

ated. If the majority of the probe fragments are smaller than 100bp, the probe might not 

be optimal, and the nick translation may need to be repeated from the beginning, with a 

shorter incubation time. In general, the final evaluation step of the labeling capacity of a 

probe is the DNA or RNA FISH experiment itself. 

4. Note 4: At times, the intensity of probe fragment bands on the gel may not be as high 

as in Figure 2. If the probe smear is not visible at all, the concentration of the probe might 

be too low. In this case, a pilot RNA or DNA experiment should be conducted in order to 

validate the probe quality. If signal is not detected, prepare the probe from the beginning 

with more BAC substrate.

5. Note 5: The pH of the NaAC should be adjusted with glacial acetic acid and not by HCl.

6. Note 6: The incubation in -20o C can be extended to longer periods e.g. days.

7. Note 7: It is convenient to prepare Digoxigenin and Biotin-labeled probes for both the 

DNA FISH and RNA FISH probes, so that different combinations can be tested.

8. Note 8: The zygotes should not be mechanically forced-squeezed since this can result 

to apoptosis. 

9. Note 9: The use of embryo toxicity certified plastic-ware is essential for optimal em-

bryo development. Non-certified plastics, especially during the culture period, can greatly 

compromise the embryo development. 

10. Note 10: If there are more embryos that still need to be cultured to reach the blasto-

cyst stage, transfer the dish back to the incubator. Inspect the embryos a few hours later 

and process them accordingly.

11. Note 11: We routinely put 16 embryos on one slide. If there are more embryos pres-

ent, replica slides can be made for future use.

12. Note 12: The incubation time with pepsin is very critical. Longer incubation time with 
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pepsin will result in the complete degeneration of the specimen. The specimens can be 

examined under the microscope to ensure that sufficient cytoplasm removal took place. 

Endogenous biotin in cells can cause a significant problem with the use of biotin-labeled 

probes, especially when cytoplasmic pepsin digestion is not sufficient. In such case, con-

tinue incubating with pepsin for additional 20-second intervals until cytoplasmic extrac-

tion is sufficient.

13. Note 13: The drying of the specimen does not create a significant background prob-

lem. For enhancing the DNA signal, aging of the specimen can be performed at 65o C for 

1 hour, before applying the denaturation solution for the first denaturation step. 

14. Note 14: After applying the denaturation solution in the first denaturation step the 

timing of the incubation at 65o C is extremely critical. Long incubation times result in 

complete disintegration of the nucleus. 

16. Note 15: We noticed that by adding a second denaturation step with the probe mix 

improves the intensity of the DNA FISH signal compared to using only the first or the sec-

ond denaturation step. The time of the second denaturation step is as critical as the first. 

Long incubation time results in complete disintegration of the nucleus.

  

In general when this protocol is tested on other types of material e.g. earlier stages of 

embryo development, embryonic stem cells, differentiating stem cells, differentiated 

cells, frozen tissue sections or others, critical parameters may need to be adapted empir-

ically and accordingly. These parameters include: the percentage of pepsin and pepsin 

incubation time to efficiently remove cytoplasm, the HCl incubation time (the 0.2N HCl 

concentration should suffice), and the incubation time of the two denaturation steps at 

65o C and 78o C.

IN MOUSE PRE-IMPLANTATION EMBRYOS
A ROBUST PROTOCOL FOR SIMULTANEOUS DNA-RNA FISH
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Chapter 6
GENERAL DISCUSSION
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General Discussion
Over the last decade, research attention concerning the regulation of gene expression 

has shifted from analyzing short regulatory DNA sequences towards analyses of larg-

er domains, within the context of chromatin. More specifically, there is a general focus 

on the various mechanisms that mediate different layers of DNA and chromatin, and 

on the miscellaneous factors and chemical modifications that participate and regulate 

these processes. A common feature of regulatory modifications, set either on the DNA 

(e.g. methylation) or on its associated histones, is that they do not alter the DNA code. In 

addition, the effect that these modifications exert, for example gene silencing or activa-

tion, can be heritable during cell divisions. Together, all these modifications comprise the 

epigenome. With its multitude of roles in different kinds of processes, such as in develop-

ment and cell differentiation, but also in health and disease, studying the epigenome has 

become a hot scientific topic (epigenetics). However, although we now appreciate that 

there are several extra layers of complexity added to the concept of gene regulation and 

have accepted the importance of the epigenome, we are still far from understanding all 

of its regulatory and functional aspects. 

In contrast to the DNA code, the epigenetic signature can be plastic so that cellular iden-

tities can dynamically change. For example during germ cell development, epigenetic 

reprogramming will erase all the epigenetic makeup that was acquired during early 

post-implantation development (Hackett et al. 2012; Hill et al. 2014). This overall epige-

netic reprogramming facilitates the formation of epigenetic marks that will eventually 

allow totipotency to be transferred to the zygote (Condic 2014). However, certain genom-

ic regions such as centromeric and pericentromeric chromatin, may need to keep their 

epigenetic signature throughout many differentiation and/or reprogramming processes, 

since failure to do so would possibly result in genomic instability (Peters et al. 2001). 

Epigenetic dynamics and plasticity is also evident during the process of X chromosome 

inactivation (XCI) in the early female mouse embryo. Around the 4-cell stage, the active 

paternal X chromosome undergoes imprinted XCI (iXCI)  (Marahrens et al. 1997; Okamoto 

et al. 2004). Subsequently, the inactive state is reversed only in the inner cell mass (ICM) 

of the blastocyst, which gives rise to the embryo-proper. This reactivation of the inactive 

X chromosome is then again followed by another round of inactivation. However, at this 

time, it occurs through a process that involves a random choice of either the maternal or 

the paternal X chromosome in the tissues of the developing embryo (Takagi et al. 1982). 

The majority of our knowledge about the mechanisms leading to iXCI in early pre-implan-

tation development in mammals comes from the mouse, and whether this imprinted 

phenomenon is a peculiarity of the mouse itself or whether it extends to other rodents 
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has not been investigated. 

Interestingly, a dynamic process of sex chromosome inactivation also takes place during 

another developmental process: spermatogenesis. This form of sex chromosome inac-

tivation takes place through a process that is different from the typical XCI, it targets 

both the X and Y chromosome and has been termed Meiotic Sex Chromosome Inactiva-

tion (MSCI) (Turner 2015). This global silencing of the sex chromosomes largely persists 

post-meiotically during the haploid round spermatid stage (Post-meiotic Sex Chromo-

some Repression (PSCR)) (Satoshi H Namekawa et al. 2006). In contrast to XCI, the si-

lencing of the X chromosome in the testis is not driven by gene dosage differences be-

tween the X and Y, but by the almost complete lack of homologous interactions with the 

Y chromosome, as discussed in Chapter 1. However, in spite of the overall temporal and 

mechanistic differences between these two different forms of X inactivation, a common 

feature is represented by the presence of genes escaping the X chromosome wide silenc-

ing process in both cases (reviewed  in Sin & Namekawa 2013 and Peeters et al. 2014).  

Although epigenetic signatures may be dynamic in nature in some situations, they can 

be stably transferred to the next generation. For example, during spermatogenesis, the 

majority, but not all of the histones are replaced by protamines. Certain developmental-

ly important loci remain rich for nucleosomes during the overall histone-to-protamine 

transition and are transferred to the oocytes upon fertilization (reviewed in Rathke et 

al. 2014). In this new environment they are involved in regulating gene expression in the 

early embryo. Surprisingly, the effects of those histones can sometimes be observed in 

subsequent generations, a phenomenon known as transgenerational epigenetic inher-

itance (Siklenka et al. 2015). 

In this thesis we investigated different aspects of epigenome regulation through specific 

developmental processes. Specifically, we investigated whether the epigenetic profile of 

a round spermatid can alter normal regulation of iXCI when used for fertilization of oo-

cytes, through round spermatid injection (ROSI) (Chapter 2). We examined in detail the 

epigenetic signature of pericentric heterochromatin throughout germ cell development 

(Chapter 3). We also characterised XCI dynamics upon differentiation of rat embryonic 

stem cells (rESCs) and assessed if XCI mechanisms are conserved between the mouse 

and the rat (Chapter 4). Lastly, we set up a robust and reproducible protocol for simulta-

neous detection of DNA/RNA molecules (DNA/RNA FISH) (Chapter 5). 

In the following paragraphs I critically discuss the information obtained from our studies. 

In addition, I will provide suggestions for future research directions, in line with exper-

imental restrictions but also possibilities when studying low abundance-cells, such as 

PGCs or early embryos. Further experimentation on the chapters presented in this thesis 

will help in understanding questions that have arisen during the course of my work, but 
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also will facilitate obtaining a better overview of the examined epigenetic phenomena 

described in this thesis. 

PSCR and iXCI: the epigenome of the father matters 
In the female mouse preimplantation embryo the paternal X chromosome (Xp) is prefer-

entially inactivated over the maternal X chromosome (Xm) through iXCI. A longstanding 

question in the field of XCI relates to the mechanism by which this favored inactivation of 

the Xp takes place. While it has become apparent that the compact maternal Xist genomic 

locus does not allow Xist expression from the Xm (Fukuda et al. 2015), the predisposition 

of Xp for iXCI is still under debate (Chapter 1, Sun et al. 2015; Okamoto et al. 2005). 

Regardless of the mechanistic preference for Xp inactivation during the early steps of pre-

implantation development, one important, but yet unexplored question in the iXCI field 

lies in the contribution of the protamine-to-histone transition of the paternal genome in 

the initiation of iXCI. In Chapter 2 we examined whether injection of a round spermatid, 

which already carries a largely inactive X chromosome due to PSCR, into mouse oocytes 

by round spermatid injection (ROSI) is sufficient to establish iXCI. In order to examine our 

hypothesis, we made use of round spermatids deficient for Xist (XpΔXist). The use of such 

spermatids excludes XpXist expression and thus its contribution to Xp silencing during 

iXCI. It is also well known that female XpΔXist embryos derived by natural mating die in 

utero due to failure of iXCI establishment in their extra-embryonic tissues (Marahrens 

et al. 1997). Therefore, by using a round spermatid, which already carries an inactive Xp 

enriched for silencing marks such as H3K9me3, we hypothesized that we would rescue 

the embryonic lethality caused by the lack of a functional paternal Xist allele, and thus 

lack of iXCI. 

Indeed, by performing ROSI we were able to rescue the embryonic lethality and for the 

first time obtain live born female pups carrying an XpΔXist allele. Surprisingly though, 

RNA/DNA FISH analysis of E15.0 female placentas revealed that rescuing was not achieved 

by Xist independent silencing of the Xp as we expected; but rather by Xist dependent si-

lencing of Xm, which compensated for iXCI. Interestingly, this rescue was only obtained 

with C57B/6 XpΔXist round spermatids. When ROSI was performed with CAST/EiJ XpΔXist 

round spermatids, the XpΔXist female embryonic lethality could not be rescued. These 

results suggest differential expression of proteins and/or RNAs in the round spermatids 

of these two mouse subspecies. Comparative global gene expression analysis in C57B/6 

and CAST/EiJ round spermatids, but also from ROSI and ICSI embryos derived from those 

spermatids, may thus lead to the identification of novel Xist regulators. 

In order to examine our finding further we performed immunofluorescence analysis for 

RNF12, an important XCI trans-activator (Jonkers et al. 2009; Shin et al. 2010), in embryos 
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derived by ROSI and ICSI or natural mating (wild type and XpΔXist), since it is known to 

escape PSCR (Satoshi H. Namekawa et al. 2006). Despite the significantly increased levels 

of RNF12 in all ROSI derived embryos compared to the ones derived by ICSI or natural 

mating, the protein levels were similar in both embryo sexes. Since ROSI derived male 

embryos never showed any Xist cloud formation, the immunofluorescence data did not 

provide strong evidence for the critical participation of the enhanced levels of RNF12 in 

the rescuing. Nonetheless, the importance of RNF12 in iXCI has been previously demon-

strated (Shin et al. 2010; Fukuda et al. 2016). We speculate that other X-linked factors may 

facilitate silencing of Xm perhaps also requiring enhanced levels of RNF12. Together with 

Rnf12, a number of other genes escape PSCR and their contribution to XCI needs to be 

evaluated. Again, comparative analysis of RNA-seq data from ROSI and ICSI derived em-

bryos, but also from round spermatids, may be of great value in identifying such factors/

genes, which may be key players in both imprinted and random XCI. 

Valuable information about the possible contribution of paternal RNF12 to Xm inactiva-

tion upon ROSI could be studied by performing ROSI experiments with round spermatids 

that are deficient for both Xist and Rnf12. In addition, such an experiment would provide 

insight into the possible role of RNF12 in the maintenance of XCI in these ROSI derived fe-

male embryos (XpΔXist/ΔRnf12/Xm). The forced Xist expression from the Xm and the sub-

sequent inactivation of the Xm in these ROSI female embryos would render the embryos 

fully deficient for Rnf12 expression. It would then be interesting to determine whether 

the Xm can be maintained and propagated in the inactive form in the complete absence 

of RNF12 and whether viable female mice can be born. Inconveniently though, full knock 

out Rnf12 and Xist male mice cannot be generated, since females carrying the simulta-

neous deletion for Rnf12 and Xist the same X chromosome are not viable and cannot be 

generated by homologous recombination in trans heterozygous females (see table 1). 

Table 1 Phenotype of mice carrying a deletion for Rnf12 or Xist
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	  Rnf12	  (Shin	  et	  al.	  

2010)	  

	   Xist	  (Marahrens	  et	  al.	  

1997)	  

	  

Xm	  Rnf12-‐Y	   viable	   Xm	  Xist-‐Y	   viable	  

Xm	  Rnf12-‐Xp	  Rnf12+	   lethal	   Xm	  Xist-‐Xp	  Xist+	   viable	  

Xm	  Rnf12+Xp	  Rnf12-‐	   viable	   Xm	  Xist+Xp	  Xist-‐	   lethal	  
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Complementary to the above described approach, ROSI using ΔXist spermatids and oo-

cytes from Rnf12 heterozygote females could also provide insight in the mechanisms 

of rXCI and iXCI. In this scenario when a female embryo inherits the Rnf12 knockout al-

lele from the mother, this mutated Xm (XmXistΔRnf12) might become inactivated in the 

extra-embryonic tissue. Again, Xp inactivation cannot occur in this case due to the Xist 

deletion on the paternal X (XpRnf12ΔXist). Therefore, similar to our ROSI experiment, the 

genotype (XpRnf12ΔXistXmXistΔRnf12) that is normally lethal in females generated via nor-

mal fertilization, might also be rescued upon ROSI.

In addition to altered regulation of expression of XCI activators or repressors due to the 

ROSI procedure, the epigenetic status of the paternal genome, and especially that of 

the Xp might also somehow contribute to the rescue of embryonic lethality of XpΔXist 

embryos. During natural fertilization, the sperm’s protamines are rapidly replaced by 

unmodified histones provided by the oocyte rendering the paternal genome transcrip-

tionally permissive. By performing ROSI we transfer a paternal genome carrying a largely 

inactive X chromosome to the oocyte. It might be suggested that the paternal X chromo-

some, in its globally silenced configuration in the oocyte, competes with the XmXist locus 

for factors that normally keep this gene silenced.  It would be interesting to examine the 

epigenetic profile of the maternal Xist locus from ROSI derived embryos by ChIP-Seq and 

compare it to embryos derived by ICSI or natural mating. However, in spite of the devel-

opment of an extremely sensitive ChIP protocol (Brind’Amour et al. 2015), that was also 

recently applied for mapping the genome wide distribution of H3K4me3 and H3K27me3 

in pre-implantation embryos (Liu et al. 2016), this technology may not be easily applied 

to ROSI derived embryos yet. In general the recovery of embryos after ROSI is lower com-

pared to that of ICSI and this novel ChIP-seq protocol requires at least 500 cells. There-

fore, this current methodology might still be challenging when locus specific epigenetic 

signatures need to be analysed in ROSI derived embryos. Additionally, comparative DNA 

FISH experiments on the Xist locus may also provide valuable information about the com-

paction state of this region in ROSI and ICSI derived embryos. Furthermore, comparative 

immunofluorescence experiments on various histone modifications in ROSI and ICSI de-

rived embryos will provide valuable information about the global epigenetic similarities 

and differences between these two embryo types. Subsequently, it may be possible to 

deduce to what extent changes in chromatin structure contribute to the ability of the 

ROSI derived embryos to initiate Xist expression from the Xm. 

Lastly, ROSI-derived embryos may represent an interesting model to investigate inter- 

and trans- generational inheritance in general, especially since ROSI technology has been 

applied to human assisted reproduction (Tanaka et al. 2015). The histone to protamine 

transition taking place during spermiogenesis may be considered as an extra step of 
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epigenetic resetting, as potentially acquired epimutations can be erased through this 

maturation step, by exchanging histones by protamines. In addition, accumulating evi-

dence suggests that histone retention in certain loci in sperm affects gene regulation and 

development of the early embryo in the mouse (Hammoud et al. 2009; Erkek et al. 2013; 

Hisano et al. 2013; Siklenka et al. 2015). It would be of interest to examine if and to what 

extent the expression profile of ROSI embryos is altered compared to those derived by 

natural fertilization, but also whether the offspring of such individuals present any type 

of phenotypic or behavioral abnormalities. In addition, in light of the recent utilization 

of ROSI in human, investigating potential consequences of this technology, using animal 

models is more urgent than ever. 

Primordial Germ Cells: is everything reprogrammed?
Primordial germ cells (PGCs), the precursors of the sperm and oocyte, represent a cell 

lineage with the unique ability to give rise to a new organism. The germ cell lineage is 

specified early in development by inductive signals emerging from the extra-embryonic 

ectoderm upon the epiblast, which gives rise to the embryo (Lawson & Hage 1994; Tam 

& Zhou 1996). 

As already discussed in Chapter 1, PGCs undergo extensive reprogramming, which in-

cludes genome wide DNA de-methylation, chromatin remodeling and erasure of genom-

ic imprints. The latter process is unique to PGCs. Gender specific imprints will be re-es-

tablished later in PGC development so that monoallelic expression of imprinted genes 

can take place in a parent of origin specific manner in the next generation.  

Epigenetic reprogramming in PGCs has been thoroughly investigated. The changes in 

localization and levels of several histone post-translational modifications and their read-

ers during this process have been mainly analyzed by immunofluorescence procedures. 

Using cytospin preparations, Hajkova and colleagues reported that E11.5 gonadal PGCs, 

among others, are devoid of histone modifications and markers related to pericentric 

constitutive heterochromatin (PCH). The identity of PHC is then rapidly re-established 

within 24 hours (Hajkova et al. 2008).

In Chapter 3 we sought to re-examine the epigenetics of PCH in PGCs by using differ-

ent fixation and cell preparation methodologies. Our results indicate that PHC identity 

is maintained throughout germ cell development. We also showed that depending on 

the method of fixation and further processing of the material the results varied, and 

the original observations by others could also be reproduced under certain conditions. 

The data we obtained illustrated nicely the necessity of evaluating results with different 

experimental approaches in order to construct valid conclusions. This is particularly im-

portant in immunohistochemistry of chromatin components, where clear-cut negative 
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control experiments to check for antibody specificity are not always an option due to lack 

of proper (conditional) knockout models, and epitope availability rather than the pres-

ence or absence of a protein or protein modification, may determine the result obtained. 

It appears that in nuclear spread preparations, epitope availability of certain epigenetic 

markers is less variable than in section or cytospin preparations. However, in case of a 

lack of signal for a certain protein, it should be taken into account that if this protein is 

only loosely associated with chromatin, it might be lost during the preparation of the 

samples (Eijpe et al. 2000).  

Now that our studies have revealed that all known components of PHC are still detecta-

ble between E11.5 and E13.5 in PGCs, it might be suggested that this chromatin region 

escapes from any large epigenetic reorganisation event during the overall reprogram-

ming in PGCs. However, we did observe clear changes in the clustering of PHC of different 

chromosomes into chromocenters already at E10.5 when compared to the surrounding 

somatic cells. Specifically, immunofluorescence analysis of centromere (CREST–centro-

meric marker) and pericentromere (H4K20me3-pericentromeric marker) localization 

revealed that the majority of the chromocenters dissociate and PHC regions appear 

as independent entities within the PGC nuclei.  However, this was not the case for the 

surrounding somatic cells, where PHC from different chromosomes remained clustered 

in chromocenters in all the developmental stages we examined. Whether this dynamic 

alteration of chromocenter clustering in PGCs also reflects a less compact chromatin 

structure in PHC regions compared to that of the somatic cells remains to be established. 

In a pilot experiment, we visualized major satellite DNA in E11.5 PGCs and somatic cells 

by DNA FISH (data not shown). However, relative size comparison of the regions that 

were positive for the FISH signal did not reveal any obvious compaction differences of the 

PHC areas between PGCs and somatic cell nuclei. A possible explanation for this result 

might be that the compaction difference in PHC between E11.5 PGCs and somatic cells 

might be too small for detecting small changes in chromatin compaction by a DNA FISH 

approach. An alternative and more sensitive methodology for studying chromatin com-

position questions would be chromatin immunoprecipitation (ChIP) analysis. However, 

such a methodology would require a substantial amount of chromatin substrate, which 

is not available in low abundant cell populations, such as in PGCs. Interestingly though, 

the recent development of ChIP protocols applied with small cell populations (~100 cells) 

may provide valuable quantitative data for compaction mediators in PHC regions in PGCs 

and somatic cells from various developmental stages (Cao et al. 2015; Brind’Amour et 

al. 2015). Lastly, the functional significance of this alteration in PHC organisation is not 

known, although it could be expected to reflect some aspect of the differentiation pro-

cess of PGCs towards the mature gametes. In male spermatogonial stem cells the clus-
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tering of centromeres in chromocenters, like in PGCs, is also lost. This loss of clustering 

results in the localization of centromeres to the periphery of the nucleus. In addition, 

staining of these nuclei against H3K9me3 shows that this histone modification localises 

in the nuclear periphery of the SSCs (Shirakawa et al. 2013) (Figure 1). If the reorganisa-

tion of clustering in early PGCs is the start for the specific organisation in spermatogonial 

stem cells still needs to be determined.

Figure 1: PHC and centromeres of spermatogonial stem cells (SSCs) localize to the periphery of SSC 
nucleus

A DAPI staining reveals the absence of DAPI dense chromocenters from the SSC nucleus. B Analysis of 
H3K9me3 (green) reveals that PHC localizes to the periphery on the SSC nucleus. Centromeres (red) also 
localize as individual entities to the periphery of the nucleus, as visualized by CREST, a centromere marker.

Our present data indicate that whatever change may occur in the organization of PHC 

in PGCs compared to that of the somatic cells in the mouse, the overall repression of 

transcription from these regions appears to be maintained. This is because our real-time 

RT-PCR experiments did not provide any evidence for the presence of transcripts derived 

from the major satellite repeats.

In this context, it is interesting that we identified ATRX as a highly enriched component 

of PHC of E11.5 PGCs. At lower levels, it could also be detected at PHC of somatic cells 

and PGCs at other stages of development. A number of studies have reported that ATRX 

contributes to silencing of tandem repeats such as those of PHC in certain biological con-

texts: I) in the maternal pronucleus during early pre-implantation development, where 

expression of major satellites takes place solely from the paternal pronucleus (De La 

Fuente et al. 2015), II) in heterochromatic repeats found throughout the genome in ESCs 

(Voon et al. 2015; He et al. 2015) and III) in PHC of neonatal spermatogonia, where DNA 
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methylation is lacking from those regions as determined by 5mC immunofluorescence, 

as well as on the Y chromosome of both neonatal spermatogonia and mouse embryon-

ic fibroblasts (Baumann et al. 2008). It is tempting to speculate that the enrichment of 

ATRX on PHC of E11.5 PGCs contributes to the silencing of the repetitive DNA regions 

during germ cell reprogramming. PRMT5 is an arginine methyltransferase that localizes 

throughout the germ cell’s nucleus from ~E8.5 onwards (Ancelin et al. 2006). This enzyme 

catalyses symmetric dimethylation of arginine 3 of the histones H2A and H3, forming a 

repressive epigenetic mark that blocks expression of transposable elements (Kim et al. 

2014). Whether it inhibits expression of major satellites was not reported, but curiously, 

at E11.5 it relocates from the nucleus to the PGCs’ cytoplasm (Kim et al. 2014; Ancelin et 

al. 2006). From this, it might be suggested that ATRX then takes over this function and 

ensures maintenance of transcriptional silencing from PHC regions, and also from trans-

posable elements. Interestingly, Liu et al. (2014) combined ChIP and expression data 

from E13.5 wild type, Setdb1 heterozygotic and knockout germ cells, and showed that 

the SETDB1-H3K9me3 pathway acts as an important guardian against transcriptional ac-

tivation of repetitive elements in E13.5 germ cells (Liu et al. 2014). It would be interesting 

to examine if this pathway also contributes to PHC transcriptional regulation during PGC 

development. 

To conclude, our results indicate that histone modification reprogramming during PGCs’ 

development does not target PHC regions in these cells. Instead, PHC retains its “canon-

ical” epigenetic identity and potential changes in chromatin compaction in those regions 

are not accompanied by expression of major satellites. Now that multiple players and 

pathways have been identified to participate in the organization and regulation of PHC in 

somatic cells and in embryonic stem cells (ESCs) (He et al. 2015; Rapkin et al. 2015; Voon 

et al. 2015; Goldberg et al. 2010; Sadic et al. 2015) functional studies should address 

whether similar mechanisms operate in PGCs.

Aspects of XCI are conserved between mouse and rat
Sex chromosomes differentiate females from males, with mammalian females having 

two X sex chromosomes, while males carry one X and one Y chromosome. This implies 

that females have twice as many X-linked genes compared to males, and if these genes 

were to be transcribed and translated into protein there would be a disequilibrium that 

would disrupt the fine-tuned development of the body. Nature has ensured a solution for 

this issue: mammalian female cells inactivate one of their X chromosomes through the 

process of X chromosome inactivation (XCI), which results into a striking epigenetic and 

functional asymmetry between the two X chromosomes. 

Most of our knowledge concerning the mechanisms of XCI regulation comes from mouse. 

GENERAL DISCUSSION

6

ALL TOGETHER Final.indd   179 1/5/17   12:04 PM



180

Identification of polymorphisms in different mouse strains has allowed the separate 

analysis of paternal and maternal X-linked genes, and thereby formed an important tool 

in the study of XCI, and particularly that of iXCI, during early stages of embryonic develop-

ment. Conveniently, cell culture differentiation protocols of mouse embryonic stem cells 

largely recapitulating the process of random XCI have facilitated the research into this 

topic, and helped to shed light on many mechanistic aspects of the process.  However, 

accumulating evidence suggests that there are significant differences in the biology of 

XCI during the pre-implantation period in several eutherian species (Wang et al. 2012; 

Okamoto et al. 2011; Petropoulos et al. 2016; Ferreira et al. 2010). This has necessitated 

the need for establishment of additional non-mouse models to study XCI.

In Chapter 4 we developed a novel monolayer differentiation protocol, using as starting 

material rat embryonic stem cells (rESCs). Our protocol can be used to characterize the 

dynamics of rat XCI in vitro as well as to determine decisive players of the process. Im-

portantly, it can be used for the evaluation of possibly conserved XCI features between 

the mouse and the rat, especially since the latter is gaining more and more ground in the 

study and modeling of human diseases (Iannaccone & Jacob 2009). We determined that 

XCI during differentiation of rESCs takes place with similar dynamics as observed during 

mESC differentiation. Additionally, overexpression experiments of RNF12 and REX1 re-

vealed that the function of these proteins in the XCI process is conserved between rat 

and mouse. However, in vivo experiments in rat pre- and post-implantation embryos and 

placentas would be essential not only to fully elucidate differences and similarities on 

XCI between the two species, but also to validate our in vitro findings. The application of 

genome editing technologies recently applied in the rat (Chapman et al. 2015; Shao et al. 

2014; Tesson et al. 2016; Tachibana et al. 2012), would be a valuable tool in designing the 

rat models that would be required for such in vivo experiments. 

In general, it has to be noted that in spite of the fact that in vitro systems using ESCs or 

induced pluripotent stem cells (iPSCs) have greatly advanced our knowledge and our 

understanding on the molecular mechanisms of XCI, they do not always faithfully reflect 

the physiological process of in vivo X chromosome inactivation. For example, contrarily to 

the mouse ESCs and iPSCs, where pluripotency is accompanied by the presence of two 

active X chromosomes, faithfully recapitulating the in vivo ESCs of the mouse blastocyst, 

human ESCs and iPSCs have a much more variable X-inactivation/reactivation status. 

Specifically, different female human ESCs cell lines, derived by different protocols, have 

been reported to either carry one inactive X or two active X chromosomes (reviewed in 

Pasque & Plath 2015). Intriguingly, human embryo single cell RNA-sequencing revealed 

that XIST expression takes place from both X chromosomes in female pre-implantation 

embryos. More surprisingly, this study indicated that X chromosome dosage compensa-
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tion in the preimplantation embryo is accomplished by reducing the expression of both 

X chromosomes, in contrast to the complete silencing of one selected X chromosome 

that occurs later in human development, but also in the mouse (Petropoulos et al. 2016). 

Whether the current hESCs derivation protocols result in the establishment of cell lines 

corresponding to late, early or to a very transient developmental stage of human embryo 

development needs to be determined.

All in all, despite that the use of in vitro systems has greatly advanced our knowledge 

about XCI inactivation, the use of in vivo models to study XCI is also extremely important, 

since it provides a more complete overview on the regulation of XCI. 

General conclusions
In general, research studies using small populations of cells, like PGCs, early preimplan-

tation embryos, hematopoietic stem cells and others, have always been technically chal-

lenging. The inability to conduct biochemical studies with such confined cell populations 

prompted researchers to mainly use immunofluorescence technologies, in order to gain 

insight about the molecular identity of those cells. Nevertheless, the urge to gain more 

in-depth knowledge on such cell populations’ identity has led to the development of 

highly sensitive technologies, where accurate results can be obtained in just microscopic 

reactions. One example, is the RNA-seq technology complemented with microfluidics, 

which enables the analysis of a set of transcripts in single cells by quantitative PCR in 

nanolitre volumes, allowing for truly quantitative information of gene expression to be 

extracted (Burton & Torres-Padilla 2014). More interestingly though, even burdensome 

for small populations experiments such as ChIP-seq, can also be conducted with the use 

of microfluidics (Rotem et al. 2015). The application of such technologies to PGCs or early 

pre-implantation embryos would provide an enormous body of information on several 

molecular processes taking place in these cells, but also on their epigenetic profile, even 

on the single gene level. 

In addition to the developments that geared towards improved sensitivity and quality of 

quantitative measurements in very small cell populations, other developments involve 

setting up in vitro models. These models would allow expansion of such cell populations 

followed by more standard, and perhaps still more robust, analyses methods. This is 

of particular importance in the absence of in vivo models to study certain developmen-

tal processes. Still, despite the fact that in vitro models have greatly contributed to the 

knowledge that we have acquired so far, they do not always recapitulate what is hap-

pening in vivo. Therefore, in vitro observations should always be confirmed in vivo and 

if differences are observed between the two, then these differences should assist in de-

signing improved in vitro strategies. This is of great importance especially since good in 
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vitro models can be extremely powerful in rendering breakthroughs that are important 

for both basic science and in the design of treatments for human diseases.
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SUMMARY

During the course of mammalian life the epigenome of each cell in the body responds to 

intra- and extracellular stimuli and it adapts and shapes its features (e.g. histone modifi-

cations, DNA methylation) accordingly. This is in contrast to the genome sequence, which 

mostly remains constant throughout life and it is almost identical in every cell of the 

body. Nevertheless, the coordinated functions of the genome and the epigenome will 

guide the unique gene expression program of each cell type, which will eventually define 

its functional identity during development. 

In this thesis I focused on several major epigenetic reorganization events that take place 

during early preimplantation rodent (mouse and rat) development and also during the 

course of gametogenesis. 

One of the epigenetic changes that occur in the early life of the mouse concerns solely 

the female mouse preimplantation embryo and involves regulation of the activity of its 

two X chromosomes. Following fertilization, the presence of a single X chromosome in 

the male embryo and of two X chromosomes in the female embryo generates a X-linked 

gene dosage imbalance. To establish a balance between X and autosomal gene expres-

sion, and to compensate for the X-linked gene expression dosage difference between 

the sexes, the female embryo silences one of its two X chromosomes through a process 

known as X chromosome inactivation (XCI). In murine preimplantation stages, it is al-

ways the paternal X chromosome (Xp) that is silenced and therefore this is an imprinted 

XCI (iXCI) mechanism. XCI is initiated by Xist, a long non-coding RNA that is transcribed 

from the future inactive X chromosome and covers that chromosome in cis. Interestingly 

enough, iXCI is not conserved in all mammalian species. For example, in human pre-

implantation embryos XIST upregulation takes place at the blastocyst stage from both 

parental X chromosomes and X-linked dosage compensation between the two sexes is 

achieved by lowering expression levels of the X-linked genes in females from both X chro-

mosomes at the same time, rather than shutting down completely one X chromosome. 

This finding indicates that iXCI may be a feature of the mouse pre-implantation embryo 

solely and underscores the necessity of characterizing XCI in other rodent species. 

As the mouse embryo develops, iXCI is reversed in the inner cell mass (ICM) of the blas-

tocyst around embryonic day 4.5 (E4.5).  This X reactivation is then again followed by XCI 

at  approximately E5.5 in the epiblast cells. This time though, XCI is random, meaning that 

both parental X chromosomes have equal chances to get inactivated. The epiblast cells 

will give rise to the embryo proper. Once one X chromosome gets silenced in an epiblast 

cell de novo, its silenced state will be clonally propagated in the subsequent divisions. 
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At around E6.5 of mouse embryo development, the formation of the germline initiates 

in the dorsal epiblast through signalling emerging from the proximal extra-embryonic 

ectoderm. At this point the emerging primordial germ cells (PGCs) hold the same epige-

netic signature and gene expression profile as the surrounding epiblast cells, which are 

destined to become somatic in nature. While developing further, genome wide repro-

gramming takes place in PGCs. This includes global alterations in histone modifications 

e.g. loss of H3K9me2, enrichment of H3K27me3 and global loss of DNA methylation, 

including also DNA methylation marking imprinted genes. All these alterations will lead 

to silencing of the somatic gene expression program, and to the activation of a germline 

one. However, during this reprogramming wave, the pericentromeres may need to re-

tain their main epigenetic characteristics, especially since loss of histone modifications 

on these regions is linked to genetic aberrations. The inactive X chromosome does not 

escape from the genome wide epigenetic resetting in the germline and it is reactivated in 

the female PGCs. At around E13.5-E14.5, female PGCs enter meiosis, where both X chro-

mosomes within the developing oocyte remain active. In addition, during oogenesis the 

X chromosome acquires an imprint, which will ensure that the maternal X chromosome 

will remain active during early mouse preimplantation development. 

In male E13.5-E14.5 embryos, the PGCs enter mitotic arrest. Mitosis is resumed shortly 

after birth and male germ cells initiate spermatogenesis. As in females, male germ cells 

also enter meiosis, where homologous chromosomes pair and exchange genetic infor-

mation to eventually produce genetically unique haploid gametes. The pairing of the X 

and Y sex chromosomes is challenging since the sex chromosomes are highly non-ho-

mologous and only synapse in a small homologous region called pseudoautosomal re-

gion (PAR). The extensive asynapsis between the X and Y chromosomes is associated 

with their transcriptional inactivation in a process called Meiotic Sex Chromosome Inacti-

vation (MSCI). This transcriptional inactivation largely persists (although some genes are 

reactivated) one stage later, in the haploid round spermatids and is now termed as Post-

meiotic Sex Chromosome Repression (PSCR). Later on, during spermiogenesis, the vast 

majority of histones in the developing sperm is replaced by protamines, that will facilitate 

the further compaction of the sperm genome into the small sperm nucleus. 

Following fertilization, the protamines are removed and replaced with unmodified his-

tones provided by the oocyte. Current evidence suggests, that the Xp Xist gene becomes 

active at the 2-cell stage, concomitant with zygotic genome activation (ZGA). However, the 

possibility that certain epigenetic marks related to MSCI and PSCR persist on the sperm 

genome, and may have an impact on iXCI after fertilisation, cannot be excluded. 

All the above-mentioned reprogramming events must be tightly coordinated and con-

trolled, since defects in the cascade of steps comprising these events is linked to embry-
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onic lethality or infertility. In this thesis I have focused on characterising and understand-

ing epigenetic phenomena taking place during early rodent preimplantation and PGC 

development. 

Therefore, in Chapter 1 I provide a detailed theoretical overview of the epigenetic phe-

nomena examined in this thesis. 

In Chapter 2, we sought to examine the impact of the paternal epigenome on mouse 

iXCI. For this purpose, we made use of the round spermatid injection (ROSI) technology, 

and we injected round spermatids deficient for Xist (XpΔXist) and which already carry a 

largely transcriptionally inactive X chromosome (due to PSCR), enriched with silencing 

histone marks such as H3K9me3. We speculated that by bypassing the histone-to-pro-

tamine and protamine-to-histone transitions through ROSI and by injecting an already 

pre-inactivated Xp we might be able to establish Xp inactivation, in the absence of a func-

tional paternal Xist. At the same time we hypothesized that we would rescue female em-

bryonic lethality that is normally observed when sperm lacking functional Xist is used for 

fertilisation. Indeed, by performing ROSI with ΔXist round spermatids we were able to res-

cue the embryonic lethality of XpXistXm female embryos. Surprisingly though, RNA-DNA 

FISH experiments for the maternal wild type and the paternal mutated Xist gene and RNA 

revealed that the rescue was not mediated by an Xist independent inactivation of Xp, but 

rather by inactivating the maternal X chromosome (Xm) through maternally provided Xist 

mediated silencing. Initiation of Xm inactivation in XpΔXistΧm ROSI derived female embry-

os takes place later (~morula stage) compared to Xp inactivation in wild type embryos de-

rived either by natural mating or by injecting wild type round spermatids (~4-cell stage), 

and silencing marks (H3K27me3) are established in the blastocyst rather than during 

the morula stage. We found that an XCI trans-activator named RNF12 is present in high 

levels in male and female embryos, when performing ROSI. However, since we never ob-

served Xist expression in male embryos following ROSI, we speculate that additional still 

unknown factors act together with RNF12 to mediate to silencing of Xm, in the presence 

of XpΔXist. This then eventually allows survival of these female embryos. Interestingly, 

rescuing was not achieved when CAS/EiJ spermatids were used instead of C57BL6, indi-

cating that critical factors contributing to the rescuing may not be (sufficiently) expressed 

in the CAS/EiJ round spermatids. Overall, our data suggest that the correct regulation of 

expression of X-linked trans-activators of XCI from possibly both X chromosomes is of 

critical importance in the establishment of XCI in mouse. Future experimentation may 

provide evidence on the identity of such XCI trans-activators. 

Going one step later in development, in Chapter 3 we focused on the epigenetic sig-

nature of pericentric heterochromatin during PGC development. In this study, we used 

different fixation and sample preparation methods to carefully examine the epigenetic 
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state of pericentric heterochromatin during PGC development. Our results indicated that 

pericentric heterochromatin maintains its epigenetic marks throughout PGC develop-

ment. However, we did notice that under a certain condition the original observations 

by others - that pericentric heterochromatin loses its epigenetic identity at E11.5 mouse 

embryo development - could also be reproduced. The data we obtained nicely illustrated 

the necessity of evaluating results of different experimental approaches in order to reach 

valid conclusions. In addition, analysis by immunofluorescence with specific markers of 

pericentromeric clustering (chromocenter formation) revealed that pericentromeres did 

not cluster together in a similar fashion as in the surrounding somatic cells, but they 

mainly remained as individual entities within the E10.5-E13.5 PGC nuclei. This individ-

ualisation was not accompanied by transcriptional activation of pericentric transcripts 

(major satellites), and might reflect alterations in the organisation and structure of PGC 

pericentromeres. Lastly, we observed higher accumulation of the chromatin remodeller 

ATRX on the pericentromeres of E11.5 PGCs compared to the surrounding soma of the 

same developmental stage. In the future it would be interesting to examine what is the 

exact function of the elevated ATRX accumulation in the pericentromeres of E11.5 PGCs, 

and when the dissociation of the chromocenters initiates in the germline.

In Chapter 4 we established a robust in vitro differentiation strategy in order to exam-

ine XCI in rat differentiating stem cells (ESCs). Studying XCI in a species other than the 

mouse may provide valuable information about the conserved aspects of iXCI in rodents. 

This is particularly important, especially since iXCI does not seem to be conserved in 

all mammalian species e.g. human. With the use of our in vitro strategy, we were able 

to demonstrate that the process of XCI in the female rat cell lines initiates at ~ day 2 of 

differentiation by accumulation of Xist transcripts on one of the two X chromosomes. 

X-linked gene silencing through H3K27me3 enrichment on the same X chromosome also 

rapidly follows the Xist accumulation. Importantly, by overexpressing factors known to be 

decisive for XCI in mouse (REX1 and RNF12), in rESCs we observed that certain XCI regula-

tion aspects (REX1-RNF12 axis) are indeed conserved between mouse and rat.

In Chapter 5 we established a powerful and rapid DNA-RNA FISH protocol, which ena-

bles the simultaneous detection of DNA and RNA molecules in mouse pre-implantation 

embryos, without compromising the sample’s quality. This was achieved by incorporating 

and adapting steps used in DNA FISH such as sample incubation in HCl solution in our 

RNA FISH protocol common. The use of our DNA-RNA FISH protocol may be a valuable 

tool not only in basic science, for example when studying different XCI aspects in the 

early embryo, but also in diagnostics, since it could be potentially adapted and applied to 

any other type of material (e.g. cultured cells, patient tissue samples) where both nascent 

RNA transcripts (Xist or others) and genomic positions need to be detected. 
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To conclude, in Chapter 6 I have discussed the results obtained during the course of 

my Ph.D. study in light of the current knowledge concerning the epigenetic phenomena 

presented and studied in this thesis. Finally, I provide suggestions for future research 

directions, in line with experimental restrictions but also possibilities when studying low 

abundance-cells, such as PGCs or early embryos, that will facilitate obtaining a better 

overview of the examined epigenetic phenomena described here.
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Samenvatting

Tijdens het leven van zoogdieren reageert het epigenoom van elke lichaamscel op intra- 

en extracellulaire stimuli en adapteert en vormt zich daarnaar (door middel van bijvoor-

beeld histon modificaties en DNA methylatie). Dit in tegenstelling tot het genoom zelf, wat 

vrijwel onveranderd blijft tijdens het leven en nagenoeg identiek is in elke lichaamscel.

 Desalniettemin, resulteren de onderling gecoördineerde functies van het genoom en 

het epigenoom in genexpressie patronen die specifiek zijn voor elk cel type. Hierdoor 

wordt uiteindelijk de functionele identiteit gedefinieerd tijdens de ontwikkeling. In dit 

proefschrift focus ik op verschillende belangrijke grootschalige veranderingen in het 

epigenoom die plaatsvinden in het pre-implantatie embryo en tijdens gametogenese bij 

knaagdieren (muis en rat). Een van de epigenetische veranderingen die plaatsvinden in de 

vroege ontwikkeling van de muis is specifiek voor vrouwelijke pre-implantatie embryo’s 

en betreft de regulatie van de activiteit van de twee X chromosomen. Na bevruchting is 

er een gendosering verschil tussen mannelijke embryo’s die over één X chromosoom per 

cel beschikt en de vrouwelijke embryo’s die over 2 exemplaren beschikken.

Om gen expressie van de X chromosomen en de autosomale chromosomen in evenwicht 

te brengen en om de verschillen in dosering van X chromosoom gelinkte genexpressie 

tussen de seksen te compenseren, inactiveert het vrouwelijke embryo één van de X chro-

mosomen door middel van een proces dat bekend staat als X chromosoom inactivatie 

(XCI). In de pre-implantatie stadia bij de muis is het altijd het paternale X chromosoom 

(Xp) dat geinactiveerd wordt. Daarom is dit een geïmprint XCI (iXCI) mechanisme. XCI 

wordt geïnitieerd door Xist, een lang, niet coderend RNA dat wordt afgeschreven van het 

toekomstige inactieve X chromosoom en het chromosoom bedekt in cis. Interessant is 

dat iXCI niet geconserveerd is in alle zoogdier soorten. Bijvoorbeeld, in humane pre-im-

plantatie embryo’s vindt verhoogde expressie van XIST plaats van beide X chromosomen. 

Dosering van expressie van de X chromosomen wordt bij de mens tot stand gebracht 

door verlaging van expressie niveaus van de X-chromosoom gelinkte genen voor beide 

chromosomen in het blastocysten stadium, niet door het volledig inactiveren van één 

heel chromosoom.  Deze vinding geeft aan dat iXCI een eigenschap kan zijn specifiek 

voor muis pre-implantatie embryo’s en geeft het belang aan voor beschrijving van XCI in 

andere knaagdier soorten.

Tijdens de verdere ontwikkeling van de muis wordt iXCI ongedaan gemaakt in de embry-

oblast van de blastocyst rond dag 4.5 van de embryonale ontwikkeling (E4.5). Deze reac-

tivatie van het X chromosoom wordt wederom gevolgd door XCI rondom dag E5.5 in de 

epiblast cellen. Echter, in dit stadium vindt XCI willekeurig plaats, wat betekent dat beide 
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ouderlijke chromosomen een evenredige kans hebben om geïnactiveerd te worden. De 

epiblast cellen vormen later het eigenlijke embryo. Zodra een van de twee X chromo-

somen geïnactiveerd wordt in een epiblast cel, dan zal deze de novo geïnactiveerde staat 

clonaal gepropageerd worden tijdens de volgende celdelingen. 

De formatie van de kiembaan wordt rond dag E6.5 dorsaal in de epiblast geïnitieerd door 

signalen komend uit het proximale embryologische ectoderm. In dit stadium hebben 

de primordiale kiemcellen (PKCs) dezelfde epigenetische opmaak en gen expressie als 

de naburige epiblast cellen, welke voorbestemd zijn het toekomstige soma te worden. 

Tijdens de verdere ontwikkeling, vindt herprogrammering van het gehele genoom plaats 

in PKCs. Dit gaat gepaard met veranderingen in histon modificaties, bijvoorbeeld verlies 

van H3K9me2, verrijking van H3K27me3 en verlies van DNA methylatie, inclusief DNA 

methylatie markering van geïmprinte genen. Al deze veranderingen leiden tot het inacti-

veren van het gen expressie patroon specifiek voor somatische cellen en de vorming van 

een gen expressie patroon specifiek voor kiemcellen.  

De pericentromeren zouden wel eens uitgezonderd kunnen zijn van deze herprogram-

mering, in het bijzonder omdat verlies van histon modificaties in deze regionen gelinked 

zijn aan genetische afwijkingen. Het inactieve X chromosoom wordt niet uitgezonderd 

van de epigenetische herprogrammering in de kiembaan en wordt gereactiveerd in vrou-

welijks PKCs. Rondom dag 13.5-14.5 van de embryonale ontwikkeling beginnen vrouweli-

jke PKCs aan de meiose, tijdens welke beide X chromosomen transcriptioneel actief zijn. 

Daarnaast krijgt het X chromosoom tijdens de oögenese een imprint die ervoor zorgt dat 

het maternale X chromosoom actief blijft tijdens de pre-implantatie stadia van de muis. 

In mannelijke embryo’s raken de PKCs op dit embryonale tijdstip mitotisch gearresteerd. 

De mitotische delingen worden vervolgd kort na geboorte en de mannelijke kiemcellen 

initiëren spermatogenese. Net als in de vrouwelijke sekse, doorlopen mannelijke kiem-

cellen meiose. Hierin worden homologe chromosomen gepaard gepositioneerd en waar-

na dan genetische informatie uitgeruild wordt, om zo uiteindelijk genetisch unieke hap-

loïde gameten te vormen. Het paren van de X en Y chromosomen is een uitdaging omdat 

de sex chromosomen grotendeels niet homoloog zijn. Een kleine homoloog domein, ge-

naamd de pseudoautosomale regio (PAR) is de enige plek waar synapsis plaats vindt. Het 

grotendeels ontbreken van synapsis is geassocieerd met hun transcriptionele inactivatie 

in een proces genaamd Meiotische Sex Chromosoom Inactivatie (MSCI). Deze transcrip-

tionele inactivatie wordt grotendeels gehandhaafd (met de uitzondering van enkele ge-

nen) tijdens het daaropvolgende stadium in de spermiogenese. Daar wordt dit fenomeen 

dan Postmeiotische Sex Chromosoom Repressie (PSCR) genoemd. Tijdens de spermio-

genese wordt in de elongerende spermatide het merendeel van de histonen verwijderd 

en vervangen door protamines. Deze zullen de verdere compactie van de nucleus van de 
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zaadcel faciliteren.

Gelijk na de bevruchting worden de protamines verwijderd en vervangen door ongem-

odificeerde maternale histonen. Inzichten van nu suggereren dat het Xist gen gelegen op 

het paternale X chromosoom actief wordt in het 2-cellig embryo, tegelijkertijd met de ac-

tivatie van het embryonale genoom. Toch blijft het mogelijk dat bepaalde epigenetische 

markeringen gerelateerd aan MSCI en PSCR aanwezig blijven in het zaadcel genoom en 

een mogelijke invloed hebben op het proces  van iXCI na bevruchting.

Alle hierboven genoemde herprogrammering gebeurtenissen moeten zorgvuldig 

gecoördineerd en gecontroleerd worden. Defecten in deze processen zijn gelinkt aan 

embryonale sterfte of infertiliteit.

In dit proefschrift heb ik gefocust op het beschrijven en begrijpen van epigenetische 

fenomenen die plaats vinden in de vroege, pre-implantatie stadia en PKC ontwikkeling 

bij knaagdieren. 

Hiertoe geef ik in Hoofdstuk 1 een gedetailleerd theoretisch overzicht van de epigenet-

ische fenomenen die aan bod komen in dit proefschrift. 

In Hoofdstuk 2 hebben we geprobeerd de impact van het paternale epigenoom te be-

palen op iXCI in de muis, We hebben gebruik gemaakt van ROnde Spermatide Injecties 

(ROSI) waarbij ronde spermatiden in oocyten worden geïnjecteerd. We hebben sper-

matiden geïnjecteerd waarbij het Xist gen ontbrak (Xp∆Xist) en die al een grotendeels 

door PSCR transcriptioneel geïnactiveerd X chromosoom dragen, wat verrijkt is met in-

actieve markering zoals H3K9me3. We speculeren dat door het overslaan van de his-

ton-naar-protamine transitie en het injecteren van een al geïnactiveerd Xp we in staat 

zijn om Xp inactivatie te bewerkstelligen in de afwezigheid van een functioneel paternal 

Xist gen. Tegelijkertijd was onze hypothese dat we sterfte die in vrouwelijke embryo’s op-

treedt wanneer deze zijn bevrucht met zaadcellen  waarin het Xist gen ontbreekt zouden 

kunnen voorkomen. 

Inderdaad waren we in staat om de sterfte van vrouwelijke embryo’s te voorkomen door 

∆Xist ronde spermatiden te injecteren. Verrassend was onze observatie, met RNA-DNA 

FISH experimenten voor het maternale normale Xist allel en het paternale gemuteerde 

Xist gen en RNA, dat dit niet werd voorkomen door een Xist onafhankelijke inactivatie 

van het Xp maar door inactivatie van het maternale X chromosoom (Xm) door maternaal 

geleverd, Xist gemedieerde inactivatie.

Initiatie van de inactivatie van Xm in de met ROSI tot stand gebrachte Xp∆XistXm vrou-

welijke  embryo’s  vindt later plaats (~morula stadium) dan Xp inactivatie in normale em-

bryo’s die op de normale manier of met ROSI tot stand zijn gebracht (~4 cellig stadium), 

en inactieve histon modificaties verschijnen in het blastocyste stadium in plaats van in 

het morula stadium.
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We hebben gevonden dat  een XCI trans-activeerder genaamd RNF12 in hoge niveaus 

aanwezig is in mannelijke en vrouwelijke embryo’s wanneer er ROSI wordt uigevoerd. 

Maar omdat er door ons nooit XIST expressie is waargenomen in mannelijke embryo’s na 

ROSI, speculeren we dat additionele nog onbekende factoren samen werken met RNF12 

om inactivatie van Xm in de aanwezigheid van Xp∆Xist te medieëren. Dit zorgt er dan 

uiteindelijk voor dat deze vrouwelijke embryo’s overleven. Interessant is ook dat vrou-

welijke embryo’s niet gered konden worden als CAS/EiJ spermatiden in plaats van C57BL6 

gebruikt werden. Dit suggereert dat kritische factoren die bijdragen aan de overleving 

van deze embryo’s niet (voldoende) tot expressie komen in ronde CAS/EiJ spermatiden. 

Alles bij elkaar genomen laat onze data zien dat correcte regulatie van expressie van X 

gelinkte trans activatoren van XCI, mogelijkerwijs van beide X chromosomen, zeer belan-

grijk is voor de uitvoer van XCI in de muis. Toekomstige experimenten kunnen mogelijk 

deze XCI transactivatoren identificeren.

In Hoofdstuk 3 hebben we gekeken naar een proces wat later in de embryonale ontwik-

keling plaatsvindt: de epigenetische opmaak van het pericentrische heterochromatine 

tijdens PKC ontwikkeling. In dit onderzoek hebben we verschillende fixatie en prepareer 

protocollen toegepast om zorgvuldig de epigenetische opmaak van het pericentrische 

heterochromatine tijdens PKC ontwikkeling in kaart te brengen. Onze resultaten laten 

zien dat pericentrisch heterochromatine zijn epigenetische markering behoud tijdens het 

proces van differentiatie.  De observatie van anderen, dat pericentrisch heterochroma-

tine zijn epigenetische opmaak verliest op embryonale dag 11.5, konden we ook repro-

duceren door specifieke fixatie en prepareer omstandigheden. Deze data laat goed zien 

hoe noodzakelijk het is om verschillende experimentele methoden te evalueren om tot 

de juiste conclusies te komen. Daarnaast heeft analyse door middel van immunofluo-

rescentie met specifieke makers van pericentrische clustering (chromocenter formatie) 

laten zien dat pericentromeren niet clusteren op de manier waarin dit gebeurd in soma-

tische cellen maar veelal individueel aanwezig bleven in de PKC nucleus.  Deze individu-

alisering ging niet samen met transcriptionele activatie van pericentrische transcripten, 

en dit is wellicht een teken van en verandering in de organisatie en structuur van peri-

centromeren in PKCs. Als laatste hebben we ook een verhoogde aanwezigheid van de 

chromatine hervormer ATRX op de pericentromeren van PKCs op embryonale dag 11.5 

waargenomen in vergelijking met de daarom liggende somatische cellen. Verder onder-

zoek zal moeten uitwijzen wat de exacte functie is van deze verhoogde ATRX niveaus en 

wanneer de dissociaties van chromocentra in de kiembaan geïnitieerd wordt.

In hoofdstuk 4 hebben we een robuuste in vitro differentiatie strategie voor embryonale 

stam cellen van de rat (rESCs) ontwikkeld voor het bestuderen van XCI in deze knaagdier 

soort. Het bestuderen van XCI in een soort ander dan de muis kan waardevolle inzicht-
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en geven over geconserveerde aspecten van iXCI in knaagdieren. Dit is in het bijzonder 

van belang omdat iXCI niet geconserveerd lijkt te zijn in alle zoogdieren (bijvoorbeeld de 

mens). Door middel van onze in vitro strategie zijn we er in geslaagd te demonstreren dat 

het proces van XCI in vrouwelijke rat cellen op ~dag 2 geïnitieerd wordt door accumulat-

ie van Xist transcripten op een van de twee X chromosomen. Inactivatie van X gelinkte 

genen door verrijking van H3K27me3 op hetzelfde X chromosoom volgt ook snel op Xist 

accumulatie. Belangrijk is dat het tot over expressie brengen van factoren die een es-

sentiële functie hebben in XCI in de muis (REX1 en RNF12), in rESCs dezelfde regulatoire 

effecten hebben en dat de REX1-RNF12 as inderdaad geconserveerd is in zowel de muis 

en de rat.

In Hoofdstuk 5 presenteren we een krachtig en snel DNA-RNA FISH protocol, welke het 

mogelijk maakt om tegelijkertijd DNA en RNA moleculen in pre-implantatie embryo’s van 

de muis te detecteren zonder de integriteit van het sample te compromiseren. Dit werd 

bewerkstelligd door bepaalde stappen toe te voegen en bestaande stappen te modificer-

en in gebruikte DNA FISH protocollen zoals incubatie van samples in HCl oplossingen. Het 

gebruik van ons DNA-RNA FISH protocol kan niet alleen een waardevolle toevoeging zijn 

voor fundamenteel onderzoek, bijvoorbeeld het bestuderen van verschillende aspecten 

van XCI in het vroege embryo, maar ook in een diagnostische setting, omdat het aange-

past en toegepast kan worden voor ander materiaal (bijvoorbeeld weefsels van patiënt-

en) waar zowel RNA transcripten (Xist of andere) en genomische locaties gedetecteerd 

moeten worden.

Ten slotte bediscussieer ik in Hoofdstuk 6 de resultaten die behaald tijdens mijn pro-

motie onderzoek  in de context van de huidige kennis omtrent de epigenetische fenome-

nen die in mijn proefschrift zijn gepresenteerd. Ook presenteer ik suggesties voor verder 

toekomstig onderzoek, welke rekening houden met de experimentele restricties, maar 

ook de mogelijkheden wanneer schaars materiaal zoals PKCs of vroege embryo’s worden 

bestudeerd. Deze suggesties zullen het verkrijgen van een beter overzicht van de epige-

netische fenomenen die hier in dit proefschrift beschreven worden faciliteren.
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LIST OF ABBREVIATIONS

Actb  actin b

AID/AICD activation induced cytidine deaminase

AT  Acidic Tyrode’s Solution

ATR  ataxia telangiectasia and Rad3-related protein (Serine/threonine-pro  

  tein kinase)

ATRX  alpha thalassemia/mental retardation syndrome X-linked

BAC  bacterial artificial chromosome

BMI  B cell-specific Moloney murine leukemia virus integration site

BMP  bone morphogenetic protein

BRCA  breast cancer

BSA  bovine serum albumin

Canx  calnexin

CBX  chromobox

CD  chromodomain

cDNA  complementary DNA

CENP  centromere protein

ChIP  chromatin immunoprecipitation

CREST  calcium-responsive transactivator

Ct  theshold cycle

DAPI  4’,6-Diamidino-2-Phenylindole

DAXX  death domain associated

DMR  differentially methylated region

DNA  deoxyribonucleic acid

DNMT  DNA methyltransferase

DSB  double strand breaks

E  embryonic day

Eif2s3y  eukaryotic translation initiation factor 2, subunit 3 (Y-linked)

Esrrb  estrogen related receptor

ExE  extra embryonic ectoderm

ERV  endogenous retroviruses

ESC  embryonic stem cells

FA  formamide

FACS  fluorescence-activated cell sorting 

FISH   fluorescence in situ hybridisation
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FITC  fluorescein isothiocyanate

fg  fully grown

FSH  follicle stimulating hormone 

Gapdh  Glyceraldehyde 3-phosphate dehydrogenase

GFP  Green fluorescent protein

GLP  G9a-like protein

hCG  human chorionic gonadotropin

HCl  hydrochloric acid

HORMAD HORMA domain containing 1

HP1  heterochromatin protein 1

IAP   intracisternal A particle

ICM  inner cell mass

ICSI   intracytoplasmic sperm injection

IVF  in vitro fertilisation

iXCI   imprinted X chromosome inactivation

iPSC  induced pluripotent stem cells

LH  luteneizing hormone

LTR  long terminal repeats

MNase   micrococcal nuclease

MSCI  meiotic sex chromosome inactivation

MSUC   meiotic silencing of unsynapsed chromatin

ng  non-growing

NIH-3T3  National Institute of Health 3-day transfer, inoculum 3 x 105 cells 

NPB  nuclear precursor body

O.C.T.  Optimal cutting temperature compound

OCT4  octamer-binding transcription factor 4 

P  postpatrum or placenta

PAR  pseudoautosomal region

PBS  phosphate buffered saline

PGC  primordial germ cell

Pgk1  phosphoglycerate kinase 1

PFA  paraformaldehyde

PHC  pericentric heterochromatin

PMSC  post meiotic sex chromosome 

PRC  Polycomb repressive complex

PRDM  PR/SET domain 

Prm  protamine
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PRMT  Protein arginine methyltransferase

(q) PCR  (quantitative) polymerase chain reaction

PSCR  postmeiotic sex chromatin repression

Rex  Reduced expression 

RNA  ribonuclei acid

RNA pol II RNA polymerase II

RNF  RING finger protein

ROCK  Rho-associated, coiled-coil containing protein kinase

ROSI  round spermatid injection

RS  round spermatid

RT  reverse transcription

rXCI  random X chromosome inactivation

SOX  SRY (sex determining region Y)-box 2

SSC  or spermatogonial stem cells

PMSG  pregnant mare’s serum gonadrotopin

P.Sp./S.Sp. primary spermatocyte/secondary spermatocyte

Rsx  RNA-on-the-silent X

StCl2  strontium chloride

SUMO  small ubiquitin-related modifier

SUV39H  suppressor of variegation 3-9 homolog

Tet  tet-eleven translocation

Tfap2  transcription factor AP-2

Tp  transition protein

TS  Tris-saline

Tsix  X inactive specific transcript, antisense

VRC  vanadyl ribosyc complex

WT  wild type

XCI   X chromosome inactivation

Xic  X inactivation center 

Xm   maternal X chromosome

Xp  paternal X chromosome

ZGA  zygotic genome activation

γH2AX  phosphorylated H2AX
5mC/5hmC 5-methyl-cytosine/5-hydroxylmethyl-cytosine
5caC/5fC 5-carboxylcytosine/5-formylcytosine
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