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Abstract

Background

It has been suggested that greater maternal adiposity during pregnancy affects lifelong risk

of offspring fatness via intrauterine mechanisms. Our aim was to use Mendelian randomisa-

tion (MR) to investigate the causal effect of intrauterine exposure to greater maternal body

mass index (BMI) on offspring BMI and fat mass from childhood to early adulthood.

Methods and Findings

We used maternal genetic variants as instrumental variables (IVs) to test the causal effect

of maternal BMI in pregnancy on offspring fatness (BMI and dual-energy X-ray absorptiome-

try [DXA] determined fat mass index [FMI]) in a MR approach. This was investigated, with

repeat measurements, from ages 7 to 18 in the Avon Longitudinal Study of Parents and Chil-

dren (ALSPAC; n = 2,521 to 3,720 for different ages). We then sought to replicate findings

with results for BMI at age 6 in Generation R (n = 2,337 for replication sample; n = 6,057 for

total pooled sample).

In confounder-adjusted multivariable regression in ALSPAC, a 1 standard deviation (SD,

equivalent of 3.7 kg/m2) increase in maternal BMI was associated with a 0.25 SD (95% CI

0.21–0.29) increase in offspring BMI at age 7, with similar results at later ages and when

FMI was used as the outcome.

A weighted genetic risk score was generated from 32 genetic variants robustly associ-

ated with BMI (minimum F-statistic = 45 in ALSPAC). The MR results using this genetic risk

score as an IV in ALSPAC were close to the null at all ages (e.g., 0.04 SD (95% CI -0.21–

0.30) at age 7 and 0.03 SD (95% CI -0.26–0.32) at age 18 per SD increase in maternal

BMI), which was similar when a 97 variant generic risk score was used in ALSPAC.

PLOS Medicine | DOI:10.1371/journal.pmed.1002221 January 24, 2017 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Richmond RC, Timpson NJ, Felix JF,

Palmer T, Gaillard R, McMahon G, et al. (2017)

Using Genetic Variation to Explore the Causal Effect

of Maternal Pregnancy Adiposity on Future

Offspring Adiposity: A Mendelian Randomisation

Study. PLoS Med 14(1): e1002221. doi:10.1371/

journal.pmed.1002221

Academic Editor: Jenny E. Myers, University of

Manchester, UNITED KINGDOM

Received: August 10, 2016

Accepted: December 14, 2016

Published: January 24, 2017

Copyright: © 2017 Richmond et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data used for this

submission will be made available on request to

the ALSPAC executive committee (alspac-

exec@bristol.ac.uk). The ALSPAC data

management plan (available here: http://www.

bristol.ac.uk/alspac/researchers/data-access/

documents/alspac-data-management-plan.pdf)

describes in detail the policy regarding data

sharing, which is through a system of managed

open access. The Generation R study has an open

policy in regard to collaboration with other

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/154416181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002221&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002221&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002221&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002221&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002221&domain=pdf&date_stamp=2017-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002221&domain=pdf&date_stamp=2017-01-24
http://creativecommons.org/licenses/by/4.0/
mailto:alspac-exec@bristol.ac.uk
mailto:alspac-exec@bristol.ac.uk
http://www.bristol.ac.uk/alspac/researchers/data-access/documents/alspac-data-management-plan.pdf
http://www.bristol.ac.uk/alspac/researchers/data-access/documents/alspac-data-management-plan.pdf
http://www.bristol.ac.uk/alspac/researchers/data-access/documents/alspac-data-management-plan.pdf


When findings from age 7 in ALSPAC were meta-analysed with those from age 6 in Gen-

eration R, the pooled confounder-adjusted multivariable regression association was 0.22

SD (95% CI 0.19–0.25) per SD increase in maternal BMI and the pooled MR effect (pooling

the 97 variant score results from ALSPAC with the 32 variant score results from Generation

R) was 0.05 SD (95%CI -0.11–0.21) per SD increase in maternal BMI (p-value for difference

between the two results = 0.05). A number of sensitivity analyses exploring violation of the

MR results supported our main findings. However, power was limited for some of the sensi-

tivity tests and further studies with relevant data on maternal, offspring, and paternal geno-

type are required to obtain more precise (and unbiased) causal estimates.

Conclusions

Our findings provide little evidence to support a strong causal intrauterine effect of incre-

mentally greater maternal BMI resulting in greater offspring adiposity.

Author Summary

Why Was This Study Done?

• Being overweight or obese in pregnancy causes babies to be born larger.

• Whether these babies go into childhood and adolescence more overweight as a result of

their mothers being overweight in pregnancy has not been fully established.

• We wanted to investigate whether genetically elevated body mass index (BMI) of moth-

ers in pregnancy was causally associated with higher levels of fatness in their offspring

in childhood and adolescence, over and above the association expected given genetic

transmission of BMI-associated variants.

What Did the Researchers Do and Find?

• We used information on 6,057 mother–child pairs from two prospective birth cohort

studies, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Gen-

eration R study to assess this.

• Our findings provide little evidence to support the long-term impact of maternal BMI

in pregnancy on the child’s risk of fatness in childhood and adolescence.

• Rather, most of the association between a mother’s BMI in pregnancy and her child’s

fatness is explained by genetic transmission of BMI-associated variants.

What Do These Findings Mean?

• These findings suggest that public health interventions directed at all family members

and at different stages of the life course are likely to be important and are potentially

more likely to halt the obesity epidemic than a focus on maternal overweight and obesity

status in pregnancy.
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• Although we found no large effects of being overweight or obese in pregnancy on off-

spring’s risk of fatness in later life, further studies with relevant data are required to

determine whether there might be smaller effects that our study was unable to detect.

Introduction

The developmental overnutrition hypothesis suggests mechanisms by which intrauterine con-

ditions related to greater maternal adiposity might affect lifelong risk of offspring fatness [1].

Maternal body mass index (BMI) is positively associated with greater pregnancy-related

increases in circulating glucose, lipids, and fatty acids [2,3], and in turn higher maternal gesta-

tional levels of these nutrients are associated with greater birth size [4–6]. In support of this

hypothesis, strong evidence for a causal effect of greater maternal gestational adiposity and cir-

culating fasting glucose, but not triglycerides, on birth weight and ponderal index at birth has

recently been shown using a Mendelian randomisation (MR) approach [7]. As birth size is cor-

related with later size, it is possible that these effects will extend into later offspring postnatal

life. In addition to this proposed tracking effect, it has been suggested that intrauterine expo-

sure to higher levels of adiposity-related nutrients, such as glucose, results in permanent

changes to offspring appetite control, neuroendocrine functioning, or energy metabolism,

which subsequently result in greater adiposity in later life, irrespective of any effect on birth

size [8–10]. Ascertaining whether greater maternal gestational adiposity results in greater off-

spring adiposity through intrauterine effects is important because if it does then that mecha-

nism could result in acceleration of the obesity epidemic across generations [11,12] and would

emphasise the importance of preconception or antenatal interventions in women of reproduc-

tive age to halt and reverse the obesity epidemic [13,14].

Several large cohort studies have shown that maternal pre- or early-pregnancy BMI is

positively associated with offspring fatness, measured with BMI, waist circumference, or

more direct assessments of fat mass, across the whole maternal BMI distribution [1,15–18].

However, due to the high heritability of adiposity and shared environmental and behavioural

characteristics between mothers and their offspring, it is impossible to determine specific

intrauterine effects from such studies [1,19,20]. An intergenerational MR design in which

maternal genetic variants are used as instrumental variables (IVs) for environmentally modifi-

able intrauterine exposures, such as exposure to greater maternal adiposity, may be useful for

providing insights into the causal effect of these exposures on later offspring outcomes (Fig 1)

[21]. To our knowledge, this approach has only been used once to examine the causal effect of

maternal BMI on offspring adiposity in childhood [22]. In that study, a variant in the FTO
gene was used as an IV for pre-pregnancy BMI. The results suggested no causal effect of mater-

nal gestational BMI on offspring dual-energy X-ray absorptiometry (DXA)-determined fat

mass at age 10 y once offspring genotype was taken into account. However, the CI for the IV

estimate was very wide, and it could not be statistically distinguished from the positive multi-

variable association of maternal pregnancy BMI with offspring fat mass. That MR study and,

indeed, most of the conventional multivariable association studies have examined associations

only in infancy or early childhood rather than into adulthood [1]. Examining associations at

older ages is important because the potential for this mechanism to accelerate the obesity epi-

demic relates to maternal gestational adiposity, influencing their daughters’ adiposity during

their reproductive years, such that they go into their pregnancies somewhat fatter and influ-

ence the next generation and so on through generations [1].
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Our aim was to use MR to investigate the causal effect of intrauterine exposure to greater

pre-/early-pregnancy maternal BMI on offspring BMI and fat mass using repeat measurements

from childhood to early adulthood. The use of an allele score, generated from a large number

of BMI genetic variants identified in genome-wide association studies (GWAS), can act as a

stronger genetic instrument than a single variant [23,24]. Furthermore, we sought to replicate

findings in an independent study to explore whether any results might be due to chance and, if

results were replicated, to further increase study power by pooling results from the two studies.

Methods

Cohorts and Selection of Participants

We used data from mother–offspring pairs who participated in the Avon Longitudinal Study of

Parents and Children (ALSPAC) [25,26] cohort in the main analysis and from the Generation

R Study [27] in the replication analysis. In both studies, only singleton births were included

because of the markedly different intrauterine growth patterns between singleton and multiple

births. In ALSPAC, data were available on offspring BMI- and DXA-determined fat mass at

multiple ages between 7 to 18 y (n = 2,521 to 3,720 mother–offspring pairs for different ages),

whereas in Generation R (n = 2,337), offspring BMI at approximately 6 y of age was available.

ALSPAC

The ALSPAC is a population-based prospective birth cohort study that enrolled 14,541 preg-

nant women residing in the former County of Avon, United Kingdom, with an expected deliv-

ery date between April 1, 1991 and December 31, 1992 [26,27]. The study website contains

details of all available data through a fully searchable data dictionary (http://www.bristol.ac.uk/

alspac/researchers/data-access/data-dictionary/)). Ethical approval for the study was obtained

from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Of

the 13,678 live-born singleton offspring in ALSPAC, genotype data were available for 5,206

mother-offspring pairs. For the main analysis, self-reported pre-pregnancy BMI was available

for 4,629 of the included mother-offspring pairs, and of these, 3,720 offspring BMI measures

were obtained at a clinic when the offspring were a mean age of 7.5 y (referred to as 7-y

Fig 1. Intergenerational MR analysis to investigate a causal intrauterine effect of maternal BMI on offspring adiposity.

doi:10.1371/journal.pmed.1002221.g001
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assessment). In ALSPAC, adiposity measures were assessed at five further follow-up clinics.

These clinics took place when the offspring were mean ages 9.8, 11.7, 13.8, 15.4, and 17.8 y

(henceforth referred to as 10, 12, 14, 16, and 18 y). The number of eligible individuals at these

later clinics for inclusion in this study varied from 3,496 at age 10 to 2,521 at age 18 due to loss

to follow-up at the later time points.

Generation R

The Generation R study is a multiethnic population-based prospective cohort study from early

pregnancy onward based in Rotterdam, the Netherlands [27]. All pregnant women living in

the study area with a delivery date between April 2002 and January 2006 were eligible for

enrolment. The study protocol was approved by the Medical Ethical Committee of the Eras-

mus Medical Centre, Rotterdam. The cohort includes 9,778 mothers and their children (9,749

live-born children). Of these, 8,880 (91%) women were enrolled during pregnancy and 8,633

had singleton live births. Genotype data were available for 3,909 mother–offspring pairs. For

the main analysis, self-reported pre-pregnancy BMI was available for 3,199 of the included

mother–offspring pairs and of these, 2,337 offspring BMI measures at a 6-y clinic (offspring

mean age 6.2 y) were available.

Anthropometry

Self-reported pre-pregnancy weight and height were obtained for the mothers in both cohorts

during pregnancy and used as the main exposure. In both studies, recorded weight at the first

antenatal clinic visit correlated very highly with their maternal report of pre-pregnancy weight

at recruitment (correlation coefficients = 0.96). For each study, age (in 1-y categories) z-scores

for maternal BMI were derived using internal standardisation. In ALSPAC and Generation R,

offspring height and weight were measured at research clinics and used to calculate offspring

BMI. For each study, internally standardised sex and age (in month categories) z-scores for off-

spring BMI and (in ALSPAC only) DXA-determined fat mass index (FMI) were calculated.

ALSPAC

After enrolment, the mother was asked to report her height and pre-pregnancy weight in a

questionnaire administered at 12 wk gestation, from which pre-pregnancy BMI was calculated

(as weight [in kilograms] divided by height [in meters)]squared). The correlation of pre-preg-

nancy weight obtained by questionnaire and weight measured at the first antenatal visit (10–

12 wk gestation) was 0.96. The women’s partners (fathers of the children) reported their own

heights and weights in questionnaires completed at the same time as the mothers; these were

used to determine their BMI.

From age 7 onwards, offspring were invited to follow-up clinics where anthropometry was

measured. Weight and height were measured with the child in light clothing and without

shoes. Weight was measured to the nearest 0.1kg using a Tanita Body Fat Analyser (Model

TBF 305; Tanita UK Limited, Viewsley, UK) and height to the nearest 0.1cm using a Harpen-

den Stadiometer (Holtain Limited, Dyfed, UK). BMI (kg/m2) was then calculated as weight (in

kilograms) divided by height (in meters) squared. The age of the child when they attended the

research clinic was recorded in months.

From the 9-y clinic onwards, total fat mass (kg) and total lean mass (kg) were assessed by

whole body DXA with the use of a Lunar Prodigy DXA scanner (GE Medical Systems Lunar,

Madison, WI). The scans were visually inspected and realigned where necessary. Once com-

plete, the tester examined the scan to ensure its quality and, if necessary, repeated the scan.

Mendelian Randomization of Developmental Overnutrition
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FMI was subsequently calculated as total fat mass (in kilograms) divided by height (in meters)

squared.

Generation R

Information about maternal weight just before pregnancy was obtained by questionnaire,

and height was measured without shoes and heavy clothing on enrolment, from which BMI

(kg/m2) was calculated. The correlation of pre-pregnancy weight obtained by questionnaire

and weight measured at the first antenatal visit was 0.96. Partner’s height (cm) and weight (kg)

were also measured at enrolment.

When the children were age 5 onwards, they were invited to participate in a hands-on

assessment of anthropometry. Their height and weight without shoes and heavy clothing were

measured and used to calculate BMI. Weight (kg) was measured using a mechanical personal

scale (SECA, Almere, The Netherlands) and height (m) was determined in standing position

using a Harpenden stadiometer (Holtain Limited, Dyfed, UK). The age of the child when they

attended the research clinic was recorded in months.

Genotyping

The genotyping procedures and details of the BMI SNPs obtained from genotyping for the

mothers and offspring in the two cohorts are outlined below.

ALSPAC

ALSPAC mothers were genotyped using the Illumina 660K quad SNP chip (Illumina Inc., San

Diego, CA, US) at the Centre National de Genotypage, Paris. PLINK software [28] (v1.07) was

used to carry out quality control (QC) measures. Individuals with incorrect sex assignments,

unusual genome-wide or X-chromosome heterozygosity, disproportionate levels of individual

missingness (>5%), evidence of cryptic relatedness (>12.5% identity-by-descent [IBD]), or

those of non-European ancestry determined from multidimensional scaling analysis seeded

with individuals from the International HapMap project [29] were excluded. The resulting

dataset consisted of 8340 individuals [30].

SNPs with a minor allele frequency (MAF) of<1%, a call rate of<95%, or those not in

Hardy–Weinberg equilibrium (HWE, p< 1 x 10−6) were removed [30]. Imputation of the

directly genotyped data has been conducted with MaCH (v1.0.16) Markov Chain Haplotyping

software [31,32] using CEU individuals from HapMap phase 2 (release 22) as a reference set

for autosomal imputation [29].

ALSPAC offspring were genotyped using the Illumina HumanHap550 quad genome-wide

SNP genotyping platform (Illumina Inc., San Diego, CA, US) by the Wellcome Trust Sanger

Institute (Cambridge, UK) and the Laboratory Corporation of America (Burlington, NC, US).

A similar QC procedure to that performed in the ALSPAC mothers was carried out. Individuals

with incorrect sex assignments, extreme heterozygosity (<0.320 and>0.345 for Wellcome

Trust Sanger Institute data and<0.310 and>0.330 for LabCorp data), disproportionate levels

of individual missingness (>3%), evidence of cryptic relatedness (>10% IBD), or those of non-

European ancestry were excluded. The resulting dataset consisted of 8,365 individuals. [33,34]

SNPs with a MAF of<1%, a call rate of<95%, or those not in HWE (p< 5 x 10−7) were

removed [33,34]. Imputation of the directly genotyped data has been conducted in the same

way as the mothers.

Established BMI variants [35,36] in the ALSPAC mothers and offspring were extracted

from the data set imputed using the HapMap individuals as a reference set (in which all geno-

types for BMI were present).

Mendelian Randomization of Developmental Overnutrition
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Generation R

Genome-wide data are currently not available for the mothers in Generation R, but DNA is

available for genotyping in candidate gene or replication studies. Therefore, custom genotyp-

ing of 32 SNPs identified in a large-scale GWAS meta-analysis for BMI [35] was carried out by

LGC Genomics (formerly Kbiosciences) using a Taqman allelic discrimination assay (Applied

Biosystems, Foster City, CA) and Abgene QPCR ROX mix (Abgene, Hamburg, Germany)

with a call rate of 99.3%, duplicate concordance of 99.8%, and all considered SNPs found to be

in HWE, with the exception of rs4836133 (ZNF608; p = 3 x 10−15). To confirm the accuracy of

the genotyping results, 276 randomly selected samples were genotyped for a second time using

the same method, with an error rate of<1%.

Genome-wide genotyping in the offspring was performed using either the Illumina

HumanHap 610 or 660 Quad chips (Illumina Inc., San Diego, US) depending on time of DNA

collection [37,38]. QC of the genotype and imputation process was performed in the study as

previously described [38,39]. In brief, individuals with duplicate detection, low call rates

(<97.5%), sex mismatches, and high heterozygosity (>4 standard deviations [SDs]) were

excluded, and SNPs with low call rates (<98.0%), not in HWE (p< 1 x 10−6), with a low MAF

(< 0.1%) or those with differential missingness between the two chips (p< 1 x 10−7) were

excluded.

Ethnic composition of the sample was estimated by Identity-By-State analysis using princi-

pal components analysis (PCA) seeded with International HapMap Phase 2 release 22 individ-

uals [29]. Participants were defined as being of non-European ancestry when they deviated

more than 4 SDs from the CEU panel mean value in any of the first four principal components.

Cryptic familial relationships were identified through IBD analysis.

MaCH imputation [32] of the offspring genetic data was done using both HapMap Phase 2

release 22 [29] and 1000 Genomes Phase 3 [40] reference panels, using all available haplotypes

from the different populations in a “cosmopolitan” approach [38]. Established BMI variants

[35] were extracted from the 1000 Genomes imputed data set due to missingness of three of

the SNPs in the HapMap phase 2 data set.

From the maternal and offspring genotype data, weighted BMI allele scores were generated

using 32 independent variants that have been shown to be reliably associated with BMI in both

cohorts [41]. In ALSPAC, it was also possible to generate an additional allele score composed

of 97 independent variants associated with BMI in a more recent GWAS [36], as ALSPAC has

full genome-wide data on both mothers and offspring. Allele scores were derived using the

dose of the effect (BMI-increasing) allele at each SNP, which was first weighted by the effect

size of the variant in GWAS [36,41] and then summed:

Weighted BMI score ¼ w1 � SNP1 þ w2 � SNP2 þ � � � wn � SNPn

where w is the weight (i.e., the beta-coefficient of association of the SNP with BMI from the

published GWAS) and SNP is the dosage of BMI-raising alleles at that locus (i.e., 0, 1, or 2

BMI-raising alleles). The weights used are provided in S1 Table. The score was then rescaled to

reflect the average number of BMI-increasing alleles carried by an individual using the formula

described in Lin et al. [42]:

Rescaled weighted BMI score ¼
Weighted score � Number of SNPs available

Sum of weights of available SNPs

Mendelian Randomization of Developmental Overnutrition
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Other Variables

Parental social class and education, maternal smoking during pregnancy, parity, and paternal

BMI were considered as potential confounding factors in the multivariable regression analyses.

Ethnicity was also considered as a potential confounder in Generation R, a multiethnic cohort

(in ALSPAC, 95% of participants were white European origin). Details of how each of these

confounders were assessed in the two cohorts are outlined below.

ALSPAC

Parity, defined as the number of previous pregnancies resulting in a live or stillbirth, was

recorded in a questionnaire completed at 18 wk gestation. In a questionnaire completed at 32

wk of gestation, mothers recorded the occupation and education of themselves and their part-

ners. Highest occupation of the mother or their partner was used to allocate family social class

groups (classes I [professional occupations], II [managerial and technical occupations], III

non-manual [skilled non-manual occupations], III manual [skilled manual occupations], IV

[partly skilled occupations], V [unskilled occupations]) using the 1991 British Office of Popu-

lation Censuses and Surveys classification. Highest educational qualifications of the mother

and father were treated as separate variables, and each was collapsed into one of four catego-

ries: education up to age 16 y with vocational training or certificate of secondary education,

education up to age 16 y with general certification of education (ordinary level), education up

to age 18 with general certificate of education (advanced level), and university degree. Informa-

tion on mothers’ smoking status during pregnancy was obtained in questionnaires administered

at 18 and 32 wk of gestation. Data were used to generate a categorical variable: never smoked

during pregnancy, smoked in early pregnancy only, and smoked throughout pregnancy. Mater-

nal age at delivery was derived from the mother’s date of birth, which was recorded at the time

of recruitment, and the date of birth of her offspring. Offspring sex was recorded in the delivery

room and abstracted from obstetric records and/or birth notifications.

Generation R

Information about the mother’s parity, defined as the number of times that the woman had

given birth to a foetus with a gestational age of 24 wk or more, was obtained by questionnaire

at enrolment. Information about household income (euro/month) was obtained from a ques-

tionnaire administered during pregnancy. The highest completed education level (primary

school, secondary school, higher education) for both mothers and fathers was obtained from

questionnaires administered at enrolment. Information about maternal smoking in pregnancy

was assessed by questionnaire in each trimester and was categorised into never smoked during

pregnancy, smoked in early pregnancy only, and smoked throughout pregnancy. Maternal age

was obtained in the questionnaire administered at enrolment. Using this and information

about the gestational age of the foetus at enrolment and gestational age at birth, mother’s age

at delivery was derived. Offspring sex was obtained from midwife and hospital registries at

birth.

Statistical Analysis

We examined multivariable regression associations and MR effects of maternal pre-pregnancy

BMI on offspring BMI at ages 6–7 y in the two cohorts and both BMI and DXA fat mass at all

ages with available data up to the age of 18 y in ALSPAC. We were unable to find any other

study with relevant data on maternal and offspring genetic variants, maternal pre- or early-

pregnancy BMI, and offspring BMI or fat mass in adolescence/early adulthood and so could
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not explore replication of ALSPAC findings at older ages. Results are presented in males and

females combined as point estimates and looked very similar in both sexes, and there was no

strong statistical evidence for an interaction by sex in either the multivariable or MR analyses

(all p-values>0.07).

We followed an analysis plan, which was written before analysing any data for the main

analyses, while some sensitivity analyses were carried out post hoc (S1 Appendix). All analyses

were undertaken using Stata (Stata Corp, TX, US), version 13.

Analysis of Effect of Maternal Pre-pregnancy BMI on Offspring Adiposity

through Childhood to Young Adulthood in ALSPAC

Multivariable linear regression was performed to examine the association of maternal pre-

pregnancy BMI with offspring BMI from ages 7 to 18 and FMI from ages 10 to 18. In the first

model, maternal age, offspring age, and sex were controlled in the standardised exposure and

outcome. In the second model, we additionally adjusted for potential confounding by parental

social class, parental education, maternal smoking during pregnancy, parity, and paternal

BMI.

MR analysis was first carried out using the maternal weighted BMI allele score composed

of 32 SNPs as an IV for her pre-/early-pregnancy BMI to assess its causal effect on offspring

BMI (from ages 7 to 18) and offspring FMI (from ages 10 to 18). Both multivariable and IV

approaches examined the same relationship, i.e., the SD change in outcome per 1 SD increase

in maternal pre-/early-pregnancy BMI.

We used two-stage least squares (TSLS) IV analysis for the MR approach. We assumed an

additive genetic model as supported by the original GWAS [41]. The strength of the IV was

assessed by examining the R2 and F-statistics from the first stage regression for each analysis

[43]. Maternal age, offspring age, and sex were controlled in all MR analyses by the use of

exposure and outcome measurements standardised for these characteristics. Despite evidence

that the lifestyle and socioeconomic characteristics that commonly confound observational

studies are randomly distributed with respect to genotype [44], we tested this assumption in

our study by examining associations between the allele score and potential confounders of the

observational association [45].

To obtain a causal estimate of the intrauterine influence of maternal BMI on offspring BMI,

it is important to adjust for offspring genotype to exclude the possibility of another indepen-

dent pathway between the genetic instrument and outcome, i.e., through genetic transmission

from the mother to their offspring (Fig 1). This was achieved by adding the offspring weighted

BMI allele score to the IV models. A z-test was used to test for a difference between this MR IV

analysis and the confounder-adjusted multivariable regression analysis, with evidence for a dif-

ference between the two being indicative of the possibility of unobserved confounding in the

multivariable analysis. The z-statistic was calculated by estimating the covariance between the

multivariable regression and IV estimates using a bootstrapping procedure.

We generated an additional weighted allele score from 97 genetic variants, using SNP-spe-

cific weights taken from the recent GWAS meta-analysis in which they were all identified [36],

in order to explore whether our main findings were consistent when using this score, with

potentially greater power.

Replication in an Independent Cohort and Meta-Analysis

We undertook multivariable regression and MR IV analyses in the replication Generation R

Study using the same methods as described above for ALSPAC, with the additional adjustment

for ethnicity, by including the first 20 principal components obtained from the offspring
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genotype data as covariates in both analyses. We were only able to complete IV analyses using

the 32-SNP weighted allele score in this cohort.

We used a fixed effects meta-analysis to combine the multivariable regression results from

ALSPAC and Generation R and used Cochran’s Q test and the I2 statistic to explore heteroge-

neity between the results from these two cohorts [46]. We took a similar approach to pooling

the MR IV results. We did this by pooling the results from the two stages of the IV analyses

separately: (i) the maternal allele score (with and without adjustment for offspring allele score)

association with maternal BMI (first regression) and (ii) the maternal allele score (with and

without adjustment for offspring allele score) association with offspring BMI at age 6 (second

regression). We then combined these two pooled estimates to obtain the IV MR causal effect

using the ratio estimate, i.e., the pooled results of (ii)� the pooled results of (i) [47]. The stan-

dard errors of these estimates were calculated using a Taylor series approximation [48]. We

pooled results using the 32-SNP scores generated in both studies and also results using the

97-SNP score in ALSPAC with the 32-SNP score in Generation R. We compared the pooled

offspring allele score-adjusted MR IV results with the pooled confounder-adjusted multivari-

able estimates using a z-test and bootstrapping, as described above for ALSPAC.

To provide results that are more interpretable for clinical and public health use, we con-

verted the results on the SD scale to BMI units by multiplying them by a representative value

of the SD of pre-pregnancy BMI (3.7 kg/m2) and offspring BMI (2.0 kg/m2) taken from the

Discovery and largest study (ALSPAC).

Sensitivity Analyses

In the MR analysis, it is necessary to adjust for offspring BMI allele score to separate the influ-

ence of genetic inheritance from the intrauterine effect of maternal adiposity during preg-

nancy. However, as was highlighted in a response to the previous paper where this method was

used [49], adjustment may introduce a form of bias known as collider bias in estimating the

exposure–outcome association. This is because by adjusting for offspring allele score in the

MR IV analyses, we may induce an association via paternal genetic variants (which we do not

have data on; S1 Fig). We explain this possibility in more detail in the appendix (S1 Appendix)

and also describe how we undertook simulation studies to explore the likelihood of this biasing

our main results with adjustment for offspring allele score. Furthermore, an alternative

method for avoiding possible collider bias is to use only the maternal non-transmitted alleles

[50]. We explored the use of this approach within ALSPAC and present results in the appendix

(S1 Appendix) only given the relatively low statistical power associated with this method.

A high degree of heterogeneity between causal estimates of the individual SNPs comprising the

allele scores could indicate violation of the MR assumption that there is no pleiotropy. We there-

fore performed inverse-variance weighted (IVW) meta-analysis of the individual SNP estimates in

both ALSPAC and Generation R and calculated Cochran’s Q and I2 statistic to estimate the degree

of heterogeneity in the fixed effects meta-analysis [51]. We also investigated potential bias due to

pleiotropy by performing MR Egger regression [52] for the model adjusted for offspring allele

score. The intercept in this analysis provides a test for overall directional pleiotropy, and the coeffi-

cient provides a valid causal estimate in the presence of pleiotropy. Results were obtained for both

ALSPAC (using both sets of 32 SNPs and 97 SNPs) and Generation R (using the set of 32 SNPs).

The intercepts and slopes were meta-analysed and compared with those obtained using IVW of

the individual SNPs. Analysis was performed using the mrrobust Stata package [53].

Lastly, we investigated possible nonlinearity of the association in both the multivariable

regression and MR analyses by overlaying a nonparametric loess smoother and a line of best

fit on an augmented partial residual plot.
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Results

Table 1 shows the key characteristics of the Discovery and Replication cohort.

Analyses from Childhood to Early Adulthood in ALSPAC

The sample size at each age from 7 to 18 decreased as a result of loss to follow-up, but the pro-

portion of males and females and the distribution of birth weight (of those remaining in the

cohort) were similar in each age group (S2 Table). Height, weight, BMI, fat mass, FMI, and

lean mass increased with increasing age from 7 to 18 y as expected (S2 Table).

Maternal BMI was associated with characteristics that a priori we considered to be likely

confounders (S3 Table). With one exception, the maternal BMI allele score was not associated

with these confounders. There was a weak inverse association with paternal education (sug-

gesting that on average each category increase of paternal education was associated with a

-0.03 [95% CI -0.07–0.00] SD change in the weighted allele score [S3 Table]). The maternal

BMI allele score was normally distributed and was robustly associated with maternal pre-preg-

nancy BMI, explaining 2.2% of the variation in BMI (S4 Table), and with first-stage F-statistics

for each of the MR analyses all being >45 (S5 Table).

Table 2 shows the confounder-adjusted multivariable associations of maternal pre-preg-

nancy BMI with offspring BMI and FMI at each age and the equivalent MR results (with

adjustment for offspring allele scores). S6 and S7 Tables show more detailed results, including

the multivariable results unadjusted for offspring allele scores and MR results. In confounder-

adjusted multivariable regression, a 1 SD (equivalent to 3.7 kg/m2) higher age-adjusted mater-

nal BMI was associated with a 0.25 (0.21, 0.29) SD higher offspring BMI at age 7 and a 0.33 SD

higher offspring BMI (0.28, 0.37) at age 18 (equivalent of 0.56 and 0.76 kg/m2, respectively;

Table 2). Equivalent results for the genetic IV analyses with adjustment for offspring allele

score were 0.04 (-0.21, 0.30) SD at age 7 and -0.03 (-0.32, 0.26) SD at age 18 (Table 2). Results

for FMI from ages 10 to 18 were similar for both the multivariable regression and MR results

to those seen with BMI (Table 2). We further evaluated, in a post hoc manner, the impact of

additionally adjusting for maternal and offspring allele score in the multivariable regression

models and found that these additional adjustments did not substantially change the point

estimates for mean difference (S14 Table).

There was strong statistical evidence that the MR IV analysis results differed from the mul-

tivariable regression analysis results, with the exception of offspring BMI at age 7 and FMI at

age 10, where the IV associations had point estimates that were smaller than the multivariable

regression analysis results but were statistically consistent with those results (Table 2). Results

were similar when the 97-SNP BMI allele score was used as an IV (S8 and S9 Tables).

Table 1. Characteristics of the offspring and their mothers in the Discovery and Replication cohorts.

ALSPAC (Discovery) Generation R (Replication) Generation R (Europeans)*

n 3,720 2,337 1,280

Males (%) 48.6% 49.6% 49.4%

Offspring age in months (SD) 89.6 (1.9) 74.3 (6.1) 73.2 (4.6)

Offspring birth weight in gs (SD) 3,465 (511) 3,479 (507) 3,561 (506)

Offspring weight in kgs (SD) 25.6 (4.4) 23.2 (4.1) 22.8 (3.4)

Offspring height in cm (SD) 125.7 (5.4) 119.5 (5.9) 119.5 (5.4)

Offspring BMI in kg/m2 (SD) 16.2 (2.0) 16.2 (1.8) 15.9 (1.4)

Maternal BMI in kg/m2 (SD) 22.9 (3.7) 23.5 (4.1) 23.2 (3.8)

*Generation R is a multiethnic cohort; these are characteristics for those of European origin only (as defined by 4 SDs from the HapMap CEU panel mean

value for all four principal components from the genetic data).

doi:10.1371/journal.pmed.1002221.t001
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Replication and Meta-Analysis with an Additional Independent Cohort

Maternal BMI was associated with potential confounders in Generation R (S10 Table). The

maternal BMI allele score was normally distributed with similar mean and SD as in ALSPAC

and was robustly associated with maternal pre-pregnancy BMI (S4 Table). Similar to ALSPAC,

maternal BMI allele score was weakly inversely related to paternal education in Generation R

but not to other observed confounders (S10 Table).

Age- and sex-adjusted results were similar to those in ALSPAC, although there was evi-

dence of heterogeneity in the confounder-adjusted multivariable regression results (I2 = 82%;

S2 Fig). Pooling results from both studies showed that a 1 SD (equivalent of 3.7 kg/m2)

increase in age-adjusted maternal BMI was associated with a 0.22 (0.19, 0.25) SD (equivalent

of 0.44 [0.38, 0.50] kg/m2) increase in offspring BMI in the confounder-adjusted model. The

maternal BMI allele score was similarly positively associated with offspring BMI in both stud-

ies but with adjustment for offspring allele score the associations attenuated to the null, with

no evidence for heterogeneity between the estimates (S3 Fig).

There were similar associations of the maternal allele score with maternal BMI and with off-

spring BMI between the two cohorts (ALSPAC and Generation R; S3 Fig). Although the MR

effect when pooling the offspring-adjusted results based on the 32-SNP allele score in both

cohorts appeared weaker than our confounder-adjusted multivariable estimate, 0.10 (-0.11,

0.31) SD (equivalent of 0.20 [-0.22, 0.62] kg/m2) versus 0.22 (0.19, 0.25) SD (equivalent of 0.44

[0.38, 0.50) kg/m2] per 1 SD greater maternal pre-pregnancy BMI, there was no strong statisti-

cal evidence that these two estimates differed from each other (p(diff) = 0.34; Fig 2). When we

pooled the MR results using the 97-SNP allele score from ALSPAC with those from Genera-

tion R using the 32-SNP allele score, the point estimates were closer to the null and were more

precisely estimated (0.05 [-0.11, 0.21] SD per 1 SD greater maternal pre-pregnancy BMI), and

there was increasing statistical evidence for a difference between these MR results and the con-

founder-adjusted multivariable estimate (p(diff) = 0.05; Fig 2).

Table 2. Confounder-adjusted multivariable and genetic IV (MR) associations of maternal pregnancy BMI with offspring BMI and FMI from ages 7

to 18 in ALSPAC (Discovery sample).

Offspring

outcome

Confoundera-adjusted multivariable regression results MR (genetic IV maternal allele score-adjusted for

offspring allele score) results

p-

differenceb

n Difference in mean offspring outcome (SD) per

1SD increase maternal BMI (95%CI)

n Difference in mean offspring outcome (SD) per

1SD increase maternal BMI (95%CI)

BMI age 7 2,565 0.25 (0.21–0.29) 3,720 0.04 (-0.21–0.30) 0.13

BMI age 10 2,507 0.31 (0.27–0.35) 3,657 0.03 (-0.23–0.29) 0.03

BMI age 12 2,411 0.32 (0.29–0.36) 3,496 0.00 (-0.26–0.26) 0.02

BMI age 14 2,254 0.32 (0.28–0.36) 3,227 -0.07 (-0.34–0.20) 0.01

BMI age 16 1,979 0.34 (0.30–0.39) 2,806 -0.10 (-0.41–0.20) 0.003

BMI age 18 1,798 0.33 (0.28–0.37) 2,521 -0.03 (-0.32–0.26) 0.01

FMI age 10 2,413 0.30 (0.26–0.33) 3,495 0.13 (-0.13–0.39) 0.221

FMI age 12 2,375 0.31 (0.27–0.35) 3,444 0.04 (-0.22–0.30) 0.053

FMI age 14 2,233 0.30 (0.26–0.34) 3,192 0.03 (-0.23–0.29) 0.043

FMI age 16 1,927 0.33 (0.29–0.38) 2,715 -0.10 (-0.40–0.21) 0.001

FMI age 18 1,739 0.32 (0.27–0.37) 2,430 0.03 (-0.27–0.32) 0.033

In all analyses, offspring BMI has been standardised on their sex and age and maternal BMI has been standardised on her age.
aThe following were adjusted for in multivariable regression analyses: parental social class, parental education, maternal smoking during pregnancy, parity,

and paternal BMI.
bTesting the null hypothesis that the multivariable regression analysis results do not differ from the MR results.

Abbreviations: BMI, body mass index; FMI, fat mass index.

doi:10.1371/journal.pmed.1002221.t002
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All results are difference in mean offspring BMI at age 7 (SD units) per increase in 1 SD

maternal pregnancy BMI pooling the results from ALSPAC (Discovery cohort) with those

from Generation R Study (Replication cohort). In all analyses, offspring age and sex are con-

trolled for through standardisation of the offspring BMI, and maternal age is controlled for by

standardisation of BMI on age. The multivariable regression analyses results are controlled for

parental social class, parental education, maternal smoking during pregnancy, parity, and

paternal BMI and in Generation R only for ethnicity (adjusting for top 20 principal compo-

nents of offspring genome-wide array data). The MR results are adjusted for offspring allele

score and in Generation R only for ethnicity (adjusting for top 20 principal components of off-

spring genome-wide data).

Given the weak association of the maternal allele score with paternal education in both cohorts,

we re-ran all of the IV analyses with additional adjustment for paternal education. Additional

adjustment for paternal education did not alter the null MR estimate following adjustment for off-

spring allele score (S4 Fig). In addition, analyses restricted to those of European ancestry in Gen-

eration R were similar to those including all Generation R participants (S5 Fig).

Sensitivity Analyses

Our investigation of the possibility of introducing bias via paternal genotype suggested that

the offspring allele score-adjusted MR estimate was the least bias result of the causal effect of

maternal pre-pregnancy BMI on offspring BMI. Although the inability to also adjust for pater-

nal genetic variants meant this was somewhat biased towards the null, it was unlikely to have

markedly changed our findings (S1 Appendix and S11 Table). Furthermore, we explored the

use of the non-transmitted (to offspring) haplotype approach [50] in ALSPAC and both the

32-SNP and 97-SNP haplotype scores revealed that the non-transmitted maternal haplotype

score did not show strong evidence of association with offspring while the transmitted mater-

nal haplotype score was strongly associated, indicating the expected offspring genetic influence

on their own BMI but providing little support for a maternal BMI intrauterine effect on off-

spring BMI (S1 Appendix and S12 Table).

Fig 2. Relationship of maternal pregnancy BMI with offspring BMI at age 7: pooled ALSPAC and Generation-R multivariable and

MR analyses.

doi:10.1371/journal.pmed.1002221.g002
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Results of the IVW MR approach showed estimates approximately equal to the TSLS allele

score approach. Furthermore, this approach showed no clear evidence for heterogeneity of

effect estimates of the individual SNPs comprising the score in ALSPAC or Generation R (I2 =

0%; S6 Fig, S13 Table). In addition, the MR Egger method gave no indication of directional

pleiotropy influencing the results of the MR analysis (intercept = 0.005 [-0.003, 0.013],

p = 0.13) for the meta-analysis of 97 SNPs in ALSPAC and 32 SNPs in Generation R) and pro-

vided evidence for a lack of consistent causal effect of maternal BMI on offspring BMI in the

models adjusted for offspring genotype (coefficient = 0.08 SD [-0.12, 0.28], p = 0.07) in the

meta-analysis of estimates from ALSPAC and Generation R, although there was some degree

of heterogeneity between the two studies (I2 for slope = 70%; S6 Fig, S13 Table). There was no

strong evidence for departure from linearity in the relation of maternal BMI with offspring

BMI in either multivariable or MR analyses (S7 Fig and S8 Fig).

Discussion

In ALSPAC, we found positive associations of maternal pre-pregnancy BMI with offspring

BMI and FMI at all ages from childhood to early adulthood in confounder-adjusted multivari-

able regression analyses. However, we found no evidence for these associations being causal

in MR IV analyses using a weighted allele score of 32 (or 97) genetic variants known to be

robustly associated with BMI. There was statistical evidence that the confounder-adjusted mul-

tivariable analyses differed from the offspring genetic variant-adjusted MR analyses, and

results were virtually identical when we used FMI measured by DXA scan. ALSPAC findings

were replicated in the independent Generation R Study with BMI assessed at age 6 y. Taken

together, these results do not support an important causal intrauterine effect of greater mater-

nal BMI on later offspring adiposity. This is in contrast to evidence of a causal effect of greater

maternal adiposity on birth weight and ponderal index at birth identified using MR in a previ-

ous study that included both of the cohorts used here [7], potentially indicating a diminishing

effect of this intrauterine exposure over the life course (Fig 3).

Findings of a null causal effect from MR analysis in both ALSPAC (at all ages from child-

hood to early adulthood) and Generation R (in childhood) are consistent with most of the neg-

ative control studies, which show a similar magnitude of association between maternal pre-

pregnancy BMI and offspring BMI as that between paternal BMI and offspring BMI [54–59],

although none of those studies assessed outcomes in early adulthood. They are also consistent

with a large within-sibling analysis, which suggested that shared familial characteristics con-

founded the positive maternal early-pregnancy BMI–offspring BMI association at age 18, as

this disappeared when analyses were conducted within siblings with close matching of shared

family characteristics [60]. However, that study was performed in male offspring only. Lastly,

the results are consistent with the previous MR study in ALSPAC conducted using the FTO
variant only as an IV for maternal BMI and examining offspring BMI- and DXA-determined

fat mass at age 10 [22]. By combining a large number of genetic variants in an allele score, in

this study, we have increased statistical power and shown a difference between the multivari-

able and IV analysis in ALSPAC at multiple ages (from childhood to early adulthood), which

was not the case with the previous ALSPAC publication. We have also shown independent

replication of our findings in Generation R, investigated the use of multiple instruments, and

tested for potential pleiotropic effects.

For the MR analysis, we thoroughly investigated any violation of the main assumptions of

this approach, which are that the IV is robustly associated with the exposure of interest, not

related to confounding factors of the exposure–outcome association, and not related to the

outcome independent of its effect on the exposure [45].
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The allele scores derived from established variants for BMI were strongly associated with

the exposure of interest (maternal BMI) in the full cohorts, and large F-statistics indicated suf-

ficient strength as IVs, enabling a more precise assessment of the effect of maternal BMI than

was previously possible with the use of a single genetic variant [22].

The allele scores were not consistently associated with a range of socioeconomic factors,

and this illustrates a key strength of the MR approach. In addition, by adjusting for offspring

genotype, intergenerational MR is able to distinguish between causal maternal effects on off-

spring adiposity from genetic transmission of adiposity variants.

The existence of pleiotropy, in which a genetic instrument has an effect on an outcome

(offspring BMI) independent of its effect on the exposure (maternal BMI), would have im-

plications for the assumptions made in the MR analysis. Similarly, if a genetic variant in the

score was in linkage disequilibrium with another genetic variant that influences the outcome

through a pathway that is unrelated to the exposure, this could bias the causal estimate. The

fact that some BMI variants relate to glucose and other metabolites [61,62] is an example of

type 2 or spurious pleiotropy and is unlikely to bias the IV effects [63]. We have attempted to

control for the effect of offspring genotype, which is related to maternal genotype, on offspring

BMI by adjusting for offspring genotype. It is hard to determine a real pleiotropic effect that

Fig 3. Diminishing causal effect of developmental overnutrition across the life course. Multivariable and

IV effect estimates from ALSPAC at ages 7–18 (Table 2) compared with those obtained when investigating the

effect of maternal BMI on offspring ponderal index (kg/m3) at birth in the same cohort.

doi:10.1371/journal.pmed.1002221.g003
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would produce the null effects seen following this adjustment. In addition, the consistency of

IV estimates obtained using two allele scores in this study suggests that pleiotropy is unlikely.

Furthermore, there was no strong evidence for heterogeneity of individual SNP estimates com-

prising the allele scores, and the MR Egger method gave no indication of directional pleiotropy

in ALSPAC or Generation R.

Although maternal genetic variants are being used as an unconfounded proxy for an intra-

uterine exposure, these variants will also impact on maternal BMI after pregnancy and so any

causal effect, had it been identified, might also incorporate postnatal effects. For example,

mothers who are genetically predisposed to have a higher BMI might influence their off-

spring’s adiposity through postnatal characteristics such as maternal feeding behaviours [64].

The heterogeneity observed in the confounder-adjusted multivariable models could represent

variation in prevailing postnatal environmental contexts, for example cultural influences on

parents’ child-feeding behaviour [65]. However, the MR effects were null in both ALSPAC and

Generation R, suggesting that the causal effect of postnatal maternal BMI on offspring adipos-

ity is at most very small. The weak inverse association of maternal BMI allele scores with their

partners (but not their own) education that we saw in both cohorts is intriguing and worth fur-

ther exploration, but adjusting for this did not alter our MR results.

It is important to adjust for offspring genotype in the MR analyses, but in doing so we

might introduce a path between maternal genotype and offspring BMI via paternal genotype.

Our simulations suggested that this would result in a weak bias towards the null, but this bias

would not fully explain the null effects we observe as the results in the simulation study with

adjustment for offspring allele score were close to the true simulated result (S11 Table). Fur-

thermore, our findings were corroborated with results from the non-transmitted haplotype

analysis [50], applied in ALSPAC, which revealed that the non-transmitted maternal haplotype

score did not show strong evidence of association with offspring BMI.

In the MR meta-analysis using the 97-SNP allele score in ALSPAC and the 32-SNP allele

score in Generation R, with adjustment for offspring genotype (n = 6,057), we had 82% power

to detect a causal effect the size of that seen in the multivariable analysis controlled for age and

sex (0.28 SD) with a two-sided α = 0.05 in our MR analysis. Therefore, we were adequately

powered to detect an effect the size of that seen observationally, and the heterogeneity we see

between the multivariable and MR results is unlikely to be due to chance. However, we would

need a much larger number of participants to completely rule out evidence for a weaker causal

effect.

Furthermore, power was limited for some of the sensitivity tests such as the evaluation of

SNP heterogeneity, the MR Egger analysis, and the evaluation of heterogeneity in causal esti-

mates between ALSPAC and Generation R. Further studies with relevant data on maternal,

offspring, and paternal genotype are required to obtain more precise (and unbiased) causal

estimates.

Further limitations to the MR analysis include the possibility of population stratification

and canalisation [66]. Although in ALSPAC population stratification is unlikely because the

participants are unrelated individuals of European ancestry, the Generation R Study is a multi-

ethnic cohort. However, attempts made to adjust for population stratification by including

principal components and analyses restricted to those of European ancestry were similar on

the whole (S3 Fig). Developmental canalisation, in which systems develop differently to coun-

terbalance the effects of a particular genotype, may pose a problem for conventional MR. How-

ever, this is less of an issue in intergenerational MR analysis. This is because when maternal

genotype is used as an indicator of the intrauterine environment, then this will only influence

the developmental environment of the offspring through the exposure of interest and not by

competing mechanisms [67].
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Maternal pre-pregnancy BMI was self-reported in both cohorts. Although these measures

of self-report have been shown to correlate strongly with measured BMI in early pregnancy

[68–70], the possibility of systematic under-reporting, for example, if those who are heavier

systematically under-report their weight, might bias findings. However, previous analysis in

ALSPAC has shown that misreporting is similar for the majority of participants and is not

markedly influenced by mean weight [71]. Furthermore, the magnitude of the association of

the weighted allele score with maternal BMI in this study was similar to that seen for its rela-

tionship to BMI based on measured weight and height from other studies [7].

A general limitation of the longitudinal measures in ALSPAC is loss to follow-up of the

sample over time, from 3,720 participants at age 7 to 2,521 at age 17. Nonetheless, the distribu-

tion of birth weight was similar in groups at each age. In addition, loss to follow-up bias is

unlikely to influence the MR estimates, as genetic associations are unlikely to be biased by

missing data [72]. This is supported by the fact that the allele scores used in this study were not

strongly associated with a range of risk factors associated with loss to follow-up.

In this study we have looked at outcomes at each time point separately in order to explore

whether magnitudes are similar at each age. It might also be valuable to examine whether

maternal exposures relate to the rate of change in offspring adiposity across childhood and

into adulthood using multilevel models. Methods of applying genome-wide data to such mod-

els have recently been developed [73]. However, we are not aware of them being used in an

MR IV framework, and we feel the approach we have adopted is relevant to our aim and pro-

duces results that are easy to interpret.

Our study examined the effect of linear (incremental) increases in maternal BMI with off-

spring outcomes. Although methods for assessing nonlinear effects using MR have been

recently developed [74], these require very large sample sizes and we are not able to apply

these to our data. Thus, we cannot rule out the possibility of, for example, a nonlinear thresh-

old effect of extreme maternal obesity having a causal intrauterine effect on offspring adiposity.

However, we did not find any clear departures from linearity for either the multivariable

regression or MR analyses (S7 Fig and S8 Fig). Lastly, although the pattern of positive multi-

variable regression and null MR results was consistent across ages in ALSPAC, we acknowl-

edge that it would be valuable to show further replication of our results in large independent

cohorts, particularly at older ages.

Given our results, together with those from sibling comparison [60] and negative control

studies [54–59,65], it seems unlikely that subtle incremental differences in maternal pre- or

early-pregnancy BMI play a key role in initiating or perpetuating the obesity epidemic [11,12].

Although some negative control [22,75–77] and sibling comparisons [78,79] suggest weak pos-

itive effects of maternal pre- or early-pregnancy BMI on offspring childhood BMI, in general,

those studies are smaller than the ones finding null effects and have not explored associations

into adulthood [1]. Our results showed no effect up to the age of 18 in females and males in the

ALSPAC cohort. This finding is important given that a lack of effect in offspring entering their

reproductive life course suggests that incrementally greater maternal adiposity across the pop-

ulation in pregnancy is unlikely to fuel the obesity epidemic across generations, although we

cannot rule out an effect of more extreme phenotypes, such as extreme obesity or gestational

diabetes [1]. In addition, we have not been able to investigate the causal effect of gestational

weight gain during pregnancy on offspring adiposity using MR, given the current absence of

robust genetic instruments for this exposure [80].

These findings suggest that overreliance on interventions in pregnancy to reduce popula-

tion obesity may not be warranted and that consensus statements [14], which direct public

health interventions to all family members [81,82] and at different stages of the life course, and

not just intrauterine or early life [13], are likely to be important. For example, interventions
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aimed at the whole population (i.e., all family members at all life course stages), such as pro-

posals for excess tax on obesogenic foods [83], are potentially more likely to halt the obesity

epidemic than a focus on maternal pre-pregnancy BMI.
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