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Summary. The correct identification of the source of a propagation process is crucial in many
research fields. As a specific application, we consider source estimation of delays in public trans-
portation networks. We propose two approaches: an effective distance median and a backtrack-
ing method. The former is based on a structurally generic effective distance-based approach
for the identification of infectious disease origins, and the latter is specifically designed for de-
lay propagation. We examine the performance of both methods in simulation studies and in an
application to the German railway system, and we compare the results with those of a centrality-
based approach for source detection.
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1. Introduction

Although train delays can never be entirely avoided, it is desirable to minimize their effect.
Between April 2012 and March 2013, 20.4% of the German long-distance high-speed trains
were delayed by more than 5 min (on average 15 min; see Plochinger and Jaschensky (2013)).
These delays are not only an inconvenience for passengers but also a significant economic burden
for the system operator.

A key element in reducing delays in public transportation networks (PTNs) is the successful
identification of the source of delay (also called the origin) from a specific delay pattern. To
accomplish this goal, it is important to distinguish between source and propagated delays. On
the basis of this, it can be investigated whether the cause of delay can be dissipated or avoided.
Furthermore, the source is the basis for the prediction of the future propagation process on
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complex networks. However, it is surprisingly complicated to track sources of delays in PTNs,
because of the complex composition of delays. The recorded data are usually very inaccurate
and ambiguous (Yabuki et al., 2015). In this work, we consider examples of extensive delay
spreading provided by the largest German railway operator: Deutsche Bahn. The delays affect
large parts of the German railway network, of which the vast majority is caused in one particular
station.

For a mathematical formalization of delay spreading, we assume a PTN with a line plan, and
a predefined timetable. Exterior local influences, such as local construction sites, large regional
demonstrations or a malfunction of a local system, introduce disturbances in the form of delays
in the timetable. Those single-source delays are then propagated through the network. The delays
are also transmitted to other trains, because of dependences between the trains due to passenger
transfers or occupation of the track by subsequent trains. With respect to these dependences,
different strategies can be chosen to avoid the spread of delays (a delay management strategy).
A mathematical framework for describing the highly complex and irregular patterns of delay
spreading on PTNs are stochastic processes on networks.

Some previous work on analysing patterns of the spread delays in PTNs was based on certain
association rules (Yabuki ez al., 2015). Network theoretic analysis focuses on empirical inves-
tigation of structural properties, such as small world characteristics, of different types of PTN
such as bus and tramway networks (Sienkiewicz and Holyst, 2005) and entire city systems (von
Ferber et al., 2009). A few approaches have been suggested to deduce the source of complex
spreading patterns in other applications such as infectious disease epidemiology (Prakash et al.,
2012; Fioriti et al., 2014; Pinto et al., 2012; Comin and da Fontoura Costa, 2011), computer sci-
ence (Shah and Zaman, 2010) or communication studies (Lappas et al., 2010; Shah and Zaman,
2012; Adar and Adamic, 2005). For a comprehensive review see Jiang et al. (2014).

In this work, we present an approach towards source reconstruction of propagation processes
with a single source based on Brockmann and Helbing (2013) and Manitz et al. (2014). This is
a method which has initially been developed to reconstruct the origin of outbreaks of disease.
On the basis of a single snapshot of the propagation process, a regular wavefront spreading is
reconstructed by using an effective distance projection. In addition to this structurally generic
approach for source estimation, we suggest a recursive backtracking algorithm which is specifi-
cally designed for propagation mechanisms of delays in PTNs. Note that we restrict our analysis
to single-source problems. However, there are simple solutions to convert a multisource pattern
into a number of single-source estimation problems (see, for example, Zang et al. (2014)). We
compare our approaches against an adapted centrality-based method by Comin and da Fon-
toura Costa (2011). In an extensive simulation study, we investigate the performance of the
proposed methods in the multifaceted example of the identification of sources of delay in PTNss.
Based on a well-defined network, sophisticated models for delay propagation exist and are im-
plemented, for example, in LinTim (Goerigk ez al., 2013), so that complex diffusion patterns can
be mimicked. Since the spreading of delays is a dynamic phenomenon, the dependence on time
is studied. As noise is unavoidable, the performance of these methods is studied with respect
to different levels of noise. Further it is investigated whether the methods prove to be robust
with respect to different network structures and propagation patterns. Finally, the effect of the
centrality of source nodes is analysed.

The paper is structured as follows. In Section 2, we introduce the PTNs that are used in
this study. In Section 3, the methods for source estimation are explained. Source estimation
performance is analysed in an extensive simulation study in Section 4. In Section 5, we apply the
methods to delay propagation data examples provided by the largest German railway operator:
Deutsche Bahn. Finally, we conclude our findings in Section 6.
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The data that are analysed in the simulation study can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Public transportation network data

In PTNs, nodes represent stops or stations. Two nodes are connected by a link if there is a
direct connection by a scheduled line between the stops. Hence, the PTNs naturally consist of
one connected component. In this work, we use delay data on four different transportation
networks: three artificial data sets L1, L2 and L3, and a real world case L0 that was provided by
Deutsche Bahn. We compare their structural characteristics with those from other PTNs that
have been reported in the literature (Table 1). In comparison with the food shipping network, that
was constructed for source detection during food-borne disease outbreaks in Germany (Manitz
et al., 2014), we can conclude that PTNs generally seem to be very sparse, with relatively long
path lengths and low transitivity. The network that was provided by Deutsche Bahn that is used
in the application (see Section 5) consists of 1049 nodes and 3484 links. This network has low
density, which is typical for PTNs. As a transregional system combining high speed and regional
connections, the average link number is larger than in city transportation networks. The longest
shortest path, i.e. the diameter, is quite low, meaning that the railway connections are efficient
compared with other PTNs. For our simulation study, we use three different PTNs from the
optimization software LinTim (Gattermann et al. (2016); see Section 4). All networks exhibit a
relatively low diameter compared with other PTNs reported in the literature (Sienkiewicz and

Table 1. Empirical network characteristics for various public transportation networks in comparison with
world city networks (ranges reported in von Ferber et al. (2009)), Polish bus and tram systems (Sienkiewicz
and Holyst, 2005) and the food shipping network based on the gravity model constructed to identify the origin
of food-borne disease outbreaks in Germany (Manitz et al., 2014)+

Number Number Density Average — Average  Diameter Transitivity
of nodes  of links degree unit
betweenness

Application

German railway LO 1049 3484 0.0064 6.64 0.0031 11 0.17

PTNs from LinTim

High-speed railway L1 319 446  0.0088 2.80 0.027 25 0.14

Gottingen bus L2 257 548  0.0083 4.26 0.096 35 0.12

Athens metro L3 51 52 0.0408 2.04 0.177 29 0.00

PTNs in the literature

World city networks (Minimum) 1494 5849  0.0009 2.18 0.0013 27 0.02
(Maximum) 44629 52885 0.0018 3.73 0.0097 210 0.14

Polish bus and tram (Minimum) 152 220 0.0010 2.53 — — 0.03
(Maximum) 2811 3978  0.0192 3.08 — — 0.16

Food shipping network
German gravity model 412 30646 0.1810 148.77 0.0066 5 0.64

FThe density is the proportion of all actual links compared with all possible links, the average degree is the mean
number of links connected to a node, the average unit betweenness is the average value of betweenness centrality,
measuring the number of shortest paths passing through a node, normalized to the unit interval, the diameter is the
greatest shortest path length between any two nodes in the network and transitivity measures the local clustering
by the empirical probability for a link between two neighbours of a node (for more details see Kolaczyk (2009)).
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Holyst (2005) and von Ferber et al. (2009); see Table 1). The first PTN, L1, is similar to the
German high-speed railway system. In contrast with the network LO in the application, this
PTN consists only of high-speed connections, so it is less detailed and comprises only 319 nodes
connected by 416 links. There are few stations of high importance with a large number of links.
This network seems to be a good representative for general transportation networks. The other
two networks, the bus network of the city of Gottingen (L2) and Athens metro (L3), mainly
serve for comparison. The Gottingen bus system is a directed network with 257 stations and 548
connections. It exhibits a strikingly high average degree in comparison with the other regional
PTNs. The Athens metro is quite a small network with 51 nodes and 52 links, which results in
a relatively low average degree. Additionally, it is noticeable that this network is an extremely
centralized network (average unit betweenness 0.18).

3. Network theoretic methods for source detection

In this section, we formalize the source estimation problem and general notation. In what
follows, we describe three source estimation approaches that are used in this work.

3.1. Data basis, model assumptions and notation

The goal of our source estimation methods is to find the starting point of general propagation
processes on complex networks from a single snapshot about the observed event counts at the
network nodes. In this context, we focus on single-source estimation problems.

We denote the underlying network graph as G = (K, £), which can be specified as a collection
of nodes K={1,..., K} that are connected by direct links from the set L= {(k,])|k,leK}. A
path is an ordered sequence of links in the network. When modelling food-borne infectious
diseases, the underlying network captures the transportation routes of contaminated food. In
the case of train delays, the PTN represents the stations and tracks which are used by trains and
on which delays are propagated (see Section 2).

Furthermore, we assume a time-dependent stochastic process { X (¢)} on the network nodes
k € I characterizing a propagation mechanism in a time range r=1, ..., T. The corresponding
observations x; (¢) in each node k are collected at different observation times 7 to find T sequential
snapshots of the distribution pattern. In the infectious disease spread context, we assume a
susceptible-infected model, where x (¢) refers to the incidence of infection in a reporting region
since onset of the outbreak. During the source estimation analysis in PTNs, x; (¢) corresponds
to the relative magnitude of delay observed in a station k£ within a time slot [z, ¢], i.e. the total
magnitude of delay (in minutes) in station k, normalized by the number of trains arriving and
departing at this node. For comparison we also analyse data in which x(#) corresponds to the
number of delayed trains in station k in a time slot [#, ¢]. If the spreading onset time # is not
known, 7y can be chosen arbitrarily or as 1) =¢ — 1. The latter refers to a susceptible-infected—
recovered model assumption in the infectious disease context.

3.2. Effective distance median
We generalize the source detection method of Manitz et al. (2014), which was originally suggested
for the reconstruction of infectious diseases breaking out from an epicentre (see also Brockmann
and Helbing (2013)), to general network-based propagation processes, so that it can also be
applied to the spread of delays in railway systems.

The key idea assumes that, given a definition of an effective distance, propagation phenomena
are spreading in a circular fashion from the origin kg € C (Manitz et al., 2014; Brockmann and
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Helbing, 2013). We suggest that the most likely source of a spreading pattern can be simply
estimated as the network median as defined in location theory. In contrast with Brockmann
and Helbing (2013) and Manitz et al. (2014), we obtain more robustness for noisy data by
considering not only the process events, but also their observed magnitude. Furthermore, we
avoid the estimation of variance, which tends to be unstable, if the number of affected nodes is
small.

The effective distance is defined as the effective length of a path + between any pair of nodes
k,le{l,...,K}, which is a combination of the topological length L(v) and the logarithmic
path probability Pr(v), minimized for all possible paths v € I'y; from origin / to destination
k. Thereby, the topological length L(v) is given by the number of links composing the path ~
along the nodes I =k, k1, ...,k =kry. The path probability is the product of the transition
probabilities py, r, , for i=1,...,L(y) of the corresponding links in the path £,. A path is
considered to be short, if the probability of transiting the path is high, i.e.

degr (k. 1) = min[L(y) —log{Pr(7)}]. for k,le K. (1
YEL K

For details on the derivation of this distance see the on-line supplementary material, section 1, as
well as Brockmann and Helbing (2013) and Manitz et al. (2014). The principal idea underlying
source reconstruction is to test different source candidates and to examine the concentricity of
the observed pattern on a minimum shortest path tree. This tree is composed of the shortest
paths from a candidate k as tree root to all other nodes in the network. Thus, given the effective
distance dfr, the source can be reconstructed by minimizing the expected value of the distance
wx (degrs ko, ) from the origin kg to all other network nodes k € KC specified by process X (2), i.¢.

ko(f) € arg min pux (defr; ko, 1). 2)
koe’C

The expected distance ux(defr; ko, ) can then be estimated by the average effective distance
defr (k, ko) from source kg to all destination nodes k£ weighted by the observed mean magnitude
of delays x4 (#) in node k until time . Thus,

K
AT kgl x5 (1) degr (k, ko) ©)

where N, (f) = Xxi(¢) is the total relative delay in the network at time ¢. Since px (defr; ko, t) 1S
continuous, we obtain with probability 1 a unique solution.

fix (defrs ko, 1) =

3.3. Recursive backtracking algorithm for delay propagation

The basic idea of backtracking is the tracing of delays back in time (see, for example, Yamamura
et al. (2013) and references therein). In comparison with the approach that was described there,
the data which are available in our situation are less precise. Hence, we introduce a backtracking
method that is adapted to the available data, while explicitly making use of the way that delays
spread in a PTN. Given a pattern at time ¢, let by =0 for all k € K be a variable counting events
as follows.

(a) Consider a node k € IC which has experienced a relative delay xi (7).
(b) We look for a node that is adjacent to k with highest relative delay
k* ear ma (1). 4
gk/eIC:(kjc(/)EEXk ® @
(c) If the relative magnitude of delay of this new node is higher than that of the first node
(o () = xx (1)), we jump to the new node and repeat (k :=k*; go to step (b)).
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(d) This process is executed until the current node relative delay magnitude is higher than all
of its adjacent nodes (x; (f) > maxy e (k. kyeL Xx (). In this case we increase by by 1.

The loop (a)—(d) is repeated for all nodes k € K which have experienced delay, i.e. x;(f) > 0.
Finally, all nodes k € K are ranked by by, which gives the number of times that such an iteration
ends at each node.

Note that the algorithm assumes that each delayed train carries delays with decreasing magni-
tude in a particular direction. Aggregating the individual train information results in a spread-
ing in all directions. However, recursive backtracking attempts to invert the mechanism of delay
propagation described. As a result, when viewed after the propagation, the path of a delay can
be tracked back along increasing delay magnitudes. Hence, backtracking implements this idea
of recursively following the path of each delay. We assume that the performance of backtracking
improves on a well-defined network, which highlights that the approach is specifically designed
for source estimation in PTNss.

3.4. Source estimation approach based on node centrality

In this section, we describe and adapt a simple centrality-based method for comparison. Comin
and da Fontoura Costa (2011) suggested that the starting point of a spreading process can
be reconstructed as the network node that obtains the highest centrality in the transmission
tree. The node centrality is measured by node betweenness normalized by the corresponding
node degree. Since in our setting no transmission tree is given, we consider the subgraph that is
induced by all nodes which are affected by delays. The subgraph might not be a tree. From this
subgraph the node with the highest centrality is estimated to be the source node. Note that it is
not possible to compute the betweenness for networks which are composed of fewer than three
nodes. In a two-node subgraph, we assign the source estimation to the node that experienced
the larger magnitude of event. If the subgraph consists of only one node, this node is estimated
as the source node.

4. Delay simulation study

We mimic diverse delay propagation mechanisms on different public transportation networks
to obtain different spread patterns. On the basis of these results, we compare the performance of
the effective distance median (EDM) source estimation approach and the recursive backtracking
algorithm to the adapted centrality-based method of Comin and da Fontoura Costa (2011). We
evaluate the performance in dependence of the observation time, analyse the robustness with
respect to various PTN structures and assess the influence of background noise.

4.1. Delay simulation setting and performance evaluation

To simulate different delay spreading patterns we use the software toolbox LinTim (Gattermann
et al., 2016). We generate an optimized line plan and a timetable for 4 h, consisting of arrival
and departure times of all trains at all stations, which represents a timetable as published by
railway operators.

In each run of a simulation scenario, we choose one of the stations in the PTN as the source
station and introduce 30 sources of delays that are propagated through the system according
to a predefined delay management strategy. The delay management strategies differ in their
decisions on passenger transfers to be dropped and train sequence reordering and hence lead
to different spread patterns. For more details, we refer to the on-line supplementary material,
section 1, and Schobel (2006, 2007) and Schachtebeck and Schobel (2010).
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Fig.1. Detection performance in the standard scenario under consideration of security distances and delay
management rule 2 based on L1 (------ , EDM using relative delay magnitude; , EDM using recursive
backtracking; - - - - - - , EDM using counts of delayed trains; - - - -- -, EDM using the centrality-based method):
(a) probability of correct detection; (b) rank of correct source; (c) distance to correct source; (d) standard
deviation of distance

The delay dispersal during the 4 h is recorded as 10 sequential snapshots (one every 24 min).
The gap between snapshots is chosen to be sufficiently long that the propagation of delays can be
observed. For each of the stations in the PTN, we consider the number of delayed trains as well
as the total magnitude of delay since the beginning of the dispersal. Typically, we estimate the
source considering the relative magnitude of delay, i.e. the total magnitude of delay normalized
by the number of trains.

The performance of our source estimation methods is quantified by using four performance
measures. The probability of correct detection measures the relative number of correct source
estimations. From the method-specific ranking of nodes, we report the rank of the correct source
as the rank of correct detection. Finally, we evaluate the distance to correct detection, which is the
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Fig. 2. Comparison of source estimation performance in simulations on various public transportation sys-
tems (German railway (— — —, L1), Goéttingen bus ( , L2) and Athens metro (- - - - - - , L3)) (O, EDM; A,

backtracking): (a) probability of correct detection; (b) rank of correct source

length of the shortest path between the correct and the detected source node (in kilometres or
travel time minutes), and its standard deviation, the standard deviation of the distance to correct
detection.

4.2. Results
In this section, we compare the methods’ performances in various scenarios of delay spreading.

4.2.1. Comparison of source estimation methods

In the first scenario, we simulate 319 delay spread patterns based on a fixed waiting time delay
management rule and under consideration of security distances by using the simulated German
railway network L1. In this situation, a train waits for transferring passengers from a delayed
train only if the delay is below a fixed time, whereas the train sequence is left as planned (rule
2; see the on-line supplementary material, section 2). This is frequently used in practice.

For all source estimation methods, the results reveal decreasing performance as the obser-
vation time progresses, whereas the detection rates diverge for the different source estimation
methods applied (Fig. 1). This result is intuitive, since the spreading can be regarded as a stochas-
tic process. Hence the delay pattern becomes more complex over time, thereby making source
estimation more difficult. We observe that backtracking is the most successful method overall,
followed by the EDM method. Note that, for the EDM, better estimation performance is en-
sured if the more comprehensive relative delay magnitude is taken into account instead of the
number of delayed trains. The fact that the backtracking method performs well is to be expected,
since the backtracking method is specifically engineered for delay source estimation. The obser-
vation that the EDM method with relative delay magnitude performs nearly as well indicates
that it can be applied beyond its original context of detecting origins of diseases. Backtracking
as well as EDM outperform Comin’s centrality-based source estimation method.

The results with respect to the rank of correct detection and distance to correct source are
similar. Although backtracking is on average very successful in estimating the correct source,
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Fig. 3. Comparison of source estimation performance in simulations of scenarios with background noise
on L1 (O, EDM; A, backtracking): (a) probability of correct detection; (b) rank of correct source; (c) distance
to correct source; (d) standard deviation of distance

it shows large variation in particular at the beginning of the observation period. Altogether,
the results show that the methods EDM and backtracking are suitable for source-of-delay
estimation.

4.2.2. Network structure

In this analysis, we compare the source estimation performance on the German railway network
(L1) with the results from the networks of the Gottingen bus (L2) and the Athens metro (L3).
As described in Section 2, the networks have very different layouts. Again, the fixed waiting time
delay management rule is used to generate delay spreading patterns.
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For both methods, the best source estimation performances can be found on the German
railway network, followed by the Gottingen bus network and the Athens metro system (Fig. 2).
This evaluation indicates that, for more complex networks, both methods are more reliable. Note
that the differences in performance are smaller for backtracking than for the EDM approach.
Further, as the structure of the network becomes simpler, the EDM proves to be less effective.
This indicates that the EDM is more sensitive to unusual network structures than backtracking.
However, it is more important that the methods proposed work well on complex networks, as
the spreading patterns are more difficult to observe. We conclude that both methods provide a
tool for analysing hidden patterns, particularly for complex networks.

4.2.3. Considering background noise

In realistic spread patterns, we always observe background noise, i.e. small delays triggered at
stations which are not considered to be the major source of delay. In this section, we analyse
the suggested source estimation approaches with respect to their ability to differentiate between
noise and signal delays. Signal delays are those incurred by the source which is to be detected,
whereas noise delays include all remaining delays. In addition to the delay pattern in the standard
scenario, we add small-to-large delays to the remaining activities. For instance, delaying 1% of
the remaining activities corresponds to almost 200 activities (in contrast with 30 source delay
activities), where random noise is drawn from an exponential distribution with a mean value of
60 s. Again, the fixed waiting time delay management rule is used to generate the delay spreading
patterns on the network L1.

When considering noise, we recognize that estimation performance, in terms of the prob-
ability of correct detection, decreases with advancing observation time (Fig. 3). However, in
terms of rank of correct detection and distance to correct detection, detection performance im-
proves during the first observation time as the signal comes to the fore. Furthermore, the results
clearly indicate that the performance of the EDM and backtracking decreases as the amount
of noise increases. As small amounts of noise are imposed, the performances of both methods
are still reliable. However, the estimation performance of both methods decreases rapidly for
large amounts of noise, because the actual signal is not recognizable anymore. As in the stan-
dard scenario, backtracking achieves a slightly better performance in all performance measures
except the standard deviation of the distance to correct detection. In this performance mea-
sure, the backtracking method shows much higher values, which means that the fluctuation of
backtracking is larger than the fluctuation of the EDM.

4.2.4.  Further performance results
The influence of time and node centrality on the performance in the standard scenario is further
analysed by a generalized additive model for location, shape and scale (Rigby and Stasinopoulos
(2005); see the on-line supplementary material, section 5). The results of the model confirm
the effect of observation time on source estimation performance and also indicate that node
centrality does not have a considerable influence on the estimation performance. Furthermore,
even though the probability of detection is found to be slightly lower for the EDM by using the
relative delay magnitude in comparison with backtracking, it is not different from a statistical
point of view. In terms of distance to correct detection, the performance of EDM estimates by
using relative delay magnitude are expected to be closer to the correct source than those from
backtracking.

The robustness of the methods with respect to different propagation mechanisms is tested by
generating different spreading patterns by using various delay management rules (see the on-
line supplementary material, section 3). The results reveal that both the EDM and backtracking
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can cope with such different patterns very reliably. We also observe a strong dependence on the
total relative delay magnitude in the system, so a larger amount of delays results in lower per-
formance.

Further analyses show that additional knowledge about train or passenger traffic when defin-
ing the network improves the source estimation performance only slightly (see the on-line sup-
plementary material, section 4). The source estimation methods perform only slightly worse on
unweighted networks than for passenger- and train-weighted networks. Hence, the approaches
can be recommended even without knowledge of the network link weighting.

5. Application: train delays on German railway system

In collaboration with the department for Transportation Network Development and Transport
Models of the largest German railway operator Deutsche Bahn, three real examples of delay
spreading on the German railway system (L0) were selected and analysed by using the source
estimation methods developed. We compare the results of the EDM and backtracking with those
of the centrality-based source estimation by using the rank of correct detection and distance to
correct detection (the travel time in minutes) as defined in Section 4.1. Note that the performance
cannot be measured in terms of the probability of correct detection since for every observation
time there is only one estimation.

The railway network consists of 1049 stations that are connected by 3484 links, including
regional connections (for more details see Table 1). However, for this analysis only the delays for
high-speed trains are available. As a result, we have information on only delays for a subnetwork
with fewer than 300 nodes (depending on the example). Because of confidentiality, we do not
provide the names of the stations, but their degrees and betweenness centralities cp and c,
respectively. After 6 a.m., the data are aggregated to state the relative magnitudes of delay with
respect to 30-min time slots day long.

5.1. Source detection results

In the first example, the delays originate in station x.152 (¢cp = 144; cg = 131897), where damage
was recorded at 6.25 a.m. We have delay data for 289 stations. Using the delay patterns from
3 h after the damage report, the EDM method performs well and locates the actual source
(Fig. 4 and the on-line supplementary material, section 6). On the basis of data recorded the first
3 h after the damage report, the EDM estimates station x.105 (cp = 113;¢g = 115020) to be
the source. This station is 126 min from the actual source station. This station is known to
introduce large disturbances in the system. In comparison, the recursive backtracking method
identifies the true origin or a station nearby (cp €[15; 144]; cg €[1068; 131 897]) on the basis of
all delay patterns recorded within 4 h of the damage report. However, the estimation is less
stable in its reliability compared with other methods. The estimations based on delay patterns
recorded later than 4 h after the damage report detect sources in an area which is known to
be a large tunnel construction site. The centrality-based approach never identifies the origin of
delays but always ranks it within the top 10 throughout the day. However, the method finds
stations which are smaller and more than 200 km from the correct detection (cp €[5;18];¢p €
[4245;15237)).

In another example, delays are reported in 297 stations. The signal delays are caused at
station X.95004823 (cp = 36;cg = 14671) from 10.30 a.m. because of an electrical failure in a
switch tower. The relative performances of the methods are similar to those in the first example.
On the basis of the first observation times the EDM identifies a large high influence station
and about 3 h after the damage the actual source is identified correctly. Again, the backtracking
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locates the region of the correct source shortly after the damage report but the estimations based
on patterns 4 h after the damage report lead to a station about 81 km from the real source.
The centrality-based approach detects only sources which are much further compared with the
previous methods. Finally, we analysed a delay spread pattern (recorded data for 299 stations)
originating from station x.105 (cp = 113;cg = 115020) at 7.45 a.m. Also, in this example, the
relative performances of the different approaches hold (see the on-line supplementary material,
section 6).
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Altogether, the application of the methods suggested to the three real world examples of delay
spreading gives reasonable results and shows the general applicability of the methods on real
data. The EDM method seems to be a robust approach as it reliably identifies the origin on the
basis of delay patterns recorded a few hours after the damage report. In contrast, backtracking
is a highly sensitive approach. Backtracking determines the area of the source on the basis of
patterns recorded shortly after the damage report but has difficulties settling on a particular
station. As a result, the method is quite unstable. The backtracking method’s performance
decreases when applied to delay spreading patterns which are recorded a few hours after the
damage report. The centrality-based source estimation is the least reliable approach.

Considering the potential effect of source node centrality, we make the following observations:
In all examples, we recognize that station x.105 is likely to be detected, in particular by the
EDM. This station is a node of high centrality and is known to cause many disturbances in the
German railway system. However, in the second example, the EDM identifies the actual origin
(cp =36;cg = 14671) even though a neighbouring node has much higher centrality (x.93244; 9
min travel time; cp = 55; cg =30189).

5.2. Uncertainty assessment via subsampling for effective distance median estimates
The source estimation methods presented result in estimates without quantifying their uncer-
tainty. In what follows, we show the construction of an assessment of uncertainty for EDMs by
using a subsampling procedure. This is inspired by the idea of variation estimation with delete
d jackknife resampling, which is a linear approximation of the bootstrap for estimators that are
not ‘smooth’ (Efron and Tibshirani, 1994).

We create subsamples of individual trains and their punctuality by using a sampling propor-
tion p €[0, 1]. After aggregating the data, we apply the source estimation approach. Using this
result, we deduce the relative frequency of how often the source estimate that is obtained with
the complete data set can be recovered by source estimation based on the subsample. Thus, the
uncertainty of the estimate is assessed by the proportion of estimate recovery. Since we use a
subsampling technique, we underestimate the true uncertainty of estimation. Thus, we deduce
only an upper bound for the probability of estimate recovery. However, for a fixed subsampling
proportion p, the results are comparable with advancing observation time. Furthermore, the
proportion of estimate recovery can be used to construct confidence sets of nodes that are likely
to be the source of spreading.

As an example, the procedure is applied to the case of the EDM and on the first example
of delay spreading on the German railway system by using different sample proportions; see
Fig. 4(c). We use 100 resamplings of individual trains and their punctuality information. For
incorrect source estimate x.105 between 6.30 a.m. and 9 a.m., the proportion of estimate recovery
fluctuates for all sampling proportions considerably. After identifying the correct origin in node
x.152 at 9.30 a.m., the proportions of estimate recovery increases more steadily. Note that the
proportions of estimate recovery for p=0.7 and p =0.9 do not differ considerably, so lower
sampling proportions seem to be more informative. Using the assessment of uncertainty on a
specific case of application, where the true origin is not known, we suggest selecting a fixed
proportion for sampling depending on the signal strength presumed.

6. Conclusion and discussion

We propose two source estimation approaches that are conceptually simple and computationally
efficient: EDM and recursive backtracking. The EDM estimates the source on the basis of the
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effective distance, whereas recursive backtracking is specifically designed for the estimation of
sources of delays in public transport.

Both methods show good performance with differing strengths and weaknesses when applied
to a simulation study as well as to a real example from the largest German railway operator
Deutsche Bahn. In the simulation study, backtracking has somewhat better performance but
has the drawback of larger variations compared with the EDM approach. In the real examples,
the EDM source estimation is a robust method for source detection, which steadily identifies
the actual origin on the basis of the delay spread patterns that are recorded a few hours after
a damage report. Recursive backtracking complements the EDM by being a sensitive method,
which locates the area of origin shortly after the damage report and for the first observation times,
but the estimation loses accuracy as the observation time advances. Note that the observations
in the simulation study are not much different from the findings based on the real examples. In
the simulation study with background noise, we observe that the performance of all methods
increases for the first observation times and decreases after that. In the real examples, the
performance of the EDM steadily improves as the observation time advances. We speculate that
this improvement is due to a larger quantity of data and an increased ability to distinguish noise
and signal. Hence, the results from the real examples can be seen as a further extension of the
results from the simulation study. The analysis of the simulation study and the real examples
both show that the EDM and backtracking are effective for source detection, whereas the
centrality-based method proves to be inferior compared with both.

Although the EDM approach was originally developed for application to infectious disease
propagation, the method proves to be applicable to delay spreading in train networks. We also
analysed whether backtracking is applicable to other spreading processes. For comparison, we
tested the recursive backtracking approach on food-borne disease spreading data from the en-
terohaemorrhagic Escherichia coli-haemolytic uraemic syndrome outbreak. This application
assumed a food dispersal network approximated by the gravity model of trade (see Manitz et al.
(2014)). The backtracking results show that its source estimate is very inaccurate; there were
no examples of cases in which the source was determined correctly. Backtracking exhibits a
preference for estimating source nodes which are better connected and have higher incidence of
infection compared with the correct source. We conclude that this method is designed for situa-
tions in which the source node constantly introduces new delays in the network. Accordingly, its
performance decreases when the source node stops introducing new delays in the system. The
method is not limited to circular spreading patterns, but in most cases it determines the source
as the node with the highest relative delay.

Note that our approaches are designed for the estimation of a single source. This assumption
can seem very restrictive. However, Zang et al. (2014) recently suggested a method that converts
a multiple-source location problem into a number of single-source detection problems. This
approach is based on the decomposition of the network graph into a number of subgraphs by
applying simple community cluster algorithms. Initial simulations show promising results (see
the on-line supplementary material, section 7), and it would be interesting to investigate the
performance in an extensive simulation study. Furthermore, we discussed only sources of delays
which originate from stations, but the methods can also be adjusted to deal with sources of
delays originating from failures between stations.

The results encourage the application of these methods (in particular of the EDM approach) to
various source estimation problems, e.g. the roots of delays in supply chains processes (Giannakis
and Louis, 2011), initial failure detection during blackouts in power grids (Crucitti et al., 2004),
the origin of computer virus attacks in the Internet (Shah and Zaman, 2010), the source of
invasive species in ecology (Stevenson et al., 2012), the beginning of rumour or misinformation
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in social networks (Shah and Zaman, 2012) and also the reconstruction of the epicentre of
outbreaks of infectious disease (Pinto et al., 2012). Knowledge of the origin of a propagation
process empowers one to prevent further spreading.

7. Data accessibility

The network data of the simulation studies (L1, L2 and L3) were obtained from LinTim
(Gattermann et al., 2016) and are freely accessible. LinTim was used also to generate the
delay patterns for our simulation. The performance evaluation and statistical network anal-
ysis were conducted with the statistical software package R (R Core Team, 2014). The related
R package NetOrigin containing the implementation for the methods presented in this paper
is available on the Comprehensive R Archive Network (Manitz and Harbering, 2016). Because
of a confidentiality agreement, we cannot make the Deutsche Bahn delay example data (L0)
available.
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