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Abstract

management and improve outcomes.

Haemodynamic monitoring

Maintenance fluids in critically ill brain-injured patients are part of routine critical care. Both the amounts of fluid
volumes infused and the type and tonicity of maintenance fluids are relevant in understanding the impact of fluids
on the pathophysiology of secondary brain injuries in these patients. In this narrative review, current evidence
on routine fluid management of critically ill brain-injured patients and use of haemodynamic monitoring is
summarized. Pertinent guidelines and consensus statements on fluid management for brain-injured patients are
highlighted. In general, existing guidelines indicate that fluid management in these neurocritical care patients
should be targeted at euvolemia using isotonic fluids. A critical appraisal is made of the available literature
regarding the appropriate amount of fluids, haemodynamic monitoring and which types of fluids should be
administered or avoided and a practical approach to fluid management is elaborated. Although hypovolemia is
bound to contribute to secondary brain injury, some more recent data have emerged indicating the potential
risks of fluid overload. However, it is acknowledged that many factors govern the relationship between fluid
management and cerebral blood flow and oxygenation and more research seems warranted to optimise fluid
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Background

Fluid management in critically ill brain-injured patients
is aimed at maintaining adequate cerebral blood flow
(CBF) and oxygenation. However, fluid management in
brain-injured patients has several distinctive features
compared with non-brain-injured critically ill patients:
(1) fluid tonicity is a more pertinent issue; (2) tissue
oedema not only results in oxygen diffusion impairments
but may also impair CBF due to the unfavourable vol-
ume-—pressure characteristics of the intracranial content;
(3) fluid management is commonly regarded as ‘basic
care’ in brain injury, whereas fluid management in other
critically ill patients is commonly guided by haemodynamic
monitoring, rendering it ‘intensive care’; and (4) optimising
CBF with adequate fluid management seems intrinsically
more challenging than systemic circulation, because
sophisticated monitoring tools for CBF and cerebral
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oxygenation are generally less well implemented in
clinical practice. These distinctive features of fluid
management in brain-injured patients deserve scru-
tiny, because recent data (both within and outside the
area of neurocritical care) suggest that the ‘basic care’
of fluid administration in brain-injured patients may
have an impact on outcome [1-3]. This is especially
salient because fluid management practices in brain-
injured patients are highly variable [4, 5], which may
partly be caused by the fact that published guideline
recommendations on fluid management [6, 7] are based
on low-grade evidence or may be perceived as imprecise
(e.g. ‘euvolemia’ is subject to interpretation).

The aim of this narrative review is: to summarize
existing guidelines and contemporary literature on rou-
tine (maintenance) fluid management in critically ill
brain-injured patients (traumatic brain injury (TBI),
subarachnoid haemorrhage (SAH), intracerebral haem-
orrhage (ICH), ischaemic stroke), with a focus on the
amounts and types of fluids and volume and circulatory
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status monitoring; and to discuss practical issues of fluid
management.

Pathophysiological considerations

Some basic concepts are relevant to understand effective
fluid management in brain injury. The influence of fluid
administration or volume status on CBF and cerebral
oxygenation is complex because many factors determine
the influence of the first on the latter (Fig. 1). In addition,
critically ill brain-injured patients are particularly prone to
disturbances of intravascular volume, electrolyte and os-
motic disturbances due to central neuroendocrine dis-
turbances and use of therapies that perturb water and
sodium homeostasis, further complicating effective fluid
management.

Tonicity

Osmolality of plasma and brain interstitial fluid and CSF
are equal under normal circumstances [8]. Hypotonic
fluids cause water shifts to the brain because the blood—
brain barrier (BBB) is water permeable whereas hyper-
tonic fluids are well known for their ability to cause
brain dehydration, both when the BBB is intact and is
disrupted [9, 10]. Neurons can compensate for such fluid
shifts by active solute depletion to the extracellular
compartment to cause reactive ‘shrinkage, and the BBB
endothelial and other highly specialized cells within the
so-called neurovascular unit will operate similarly to
expel water to the intravascular compartment [11].
However, BBB disruption locally abolishes its ability to
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control homeostasis of electrolytes, water and other
solutes, and fluid shifts will become more dependent on
local pressure differences between the intravascular and
extravascular compartment than osmotic tension. In
contrast to peripheral tissues, where endothelium is
highly permeable to electrolytes and oedema formation
is more or less proportional to the infused volume of
isotonic fluids, electrolytes do not distribute freely through
an intact BBB. This is a key mechanism protecting the
brain from oedema even when very high amounts of iso-
tonic fluids are administered [11].

Oedema

Cerebral oedema is stratified depending on location
(intracellular or extracellular) and BBB disruption. Cyto-
toxic oedema is the cellular oedema of neurons or astro-
cytes and is the result of mainly sodium and water shifts
into the cells after an insult with ATP depletion and
mitochondrial dysfunction [8, 12]. Vasogenic oedema
represents both water and albumin shifts through dis-
rupted endothelial tight junctions. An intermediate type
of oedema is ionic oedema, resulting from compensatory
solute and water shifts from the vascular compartment
to the interstitium through an intact BBB after the for-
mation of cytotoxic oedema has decreased interstitial
osmolality.

Autoregulation
Autoregulation concerns the capacity of the blood
vessels in the brain to sustain CBF by vasodilation or

Many intermediate factors govern the relation between
fluid management and cerebral blood flow and oxygenation
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Fig. 1 The effect of fluid management on CBF and cerebral oxygenation is complex because many intermediate variables exist that should be
taken into account to fully appreciate possible cause and effect relationships. Some concepts relating to such intermediate variables are succinctly
reviewed in the main text. CBF cerebral blood flow, CSF cerebrospinal fluid
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vasoconstriction over a wide range of systemic blood
pressures, and in a more general sense may be regarded as
the capacity of brain vessels to regulate blood flow in
response to changes in metabolic needs. The connection
between volume status and intact autoregulation relates to
increased CBF to preserve oxygen delivery in response to
fluid loading and decreased haematocrit or to maintaining
constant CBF through vasodilation when blood pressure
drops due to hypovolemia.

Venous outflow impedance

Perfusion pressure determinants are both upstream and
downstream pressures, with upstream pressures being
arterial and downstream pressures being venous. Both
lower arterial pressures and higher venous pressures will
theoretically result in lower perfusion pressures, albeit
with different consequences (i.e. low flow versus tissue
oedema) [13]. Increased central venous pressure (CVP)
may impede venous outflow from the brain and contrib-
ute to increased intracranial pressure (ICP) or cerebral
oedema. However, increased CVP will in principle not
be transferred to the intracranial compartment so long
as intracranial venous structures are collapsed under the
influence of ICP before exiting the cranium, and ICP
cannot be affected by the extracranial CVP that is gener-
ally much lower than the ICP (waterfall effect) [14].
Consequently, venous pressure transferral back to the
intracranial contents is possible when ICP is low com-
pared with either CVP or positive-end expiratory pres-
sure (PEEP) in mechanically ventilated patients with
brain trauma [15, 16], or when several adverse circum-
stances act simultaneously to antagonize brain compliance
(e.g. hypotonic fluid loading, high CVD, recent brain
injury with oedema) as has been shown in animal experi-
ments, but investigations have yielded contradictory re-
sults [17, 18]. Although high PEEP may influence ICP on
the ‘venous side’ via pressure back-transferral, it may also
and independently influence ICP on the ‘arterial side’
depending on whether autoregulation is intact (e.g. when
intact, PEEP impedes venous return, resulting in ar-
terial hypotension with cerebral vasodilation and ICP
surges) [16].

Overview of literature

Guidelines

Contemporary recommendations for routine fluid and
intravascular volume management are available from
several guidelines and consensus conferences [6, 7, 19-21].
The 2007 Brain Trauma Foundation guidelines [22] do not
provide specific recommendations on fluid management
reflecting the pressure-oriented approach. The guideline
and consensus recommendations are presented in Table 1.
In SAH, euvolemia is recommended to prevent delayed
cerebral ischaemia (DCI), routine hypervolemia is not
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recommended and hypotonic fluids and volume con-
traction are to be avoided. Furthermore, haemo-
dynamic monitoring to guide fluid management is not
advised routinely. Vigilant fluid balance assessment is
advised to guide fluid administration but aggressive
fluid administration aimed at hypervolemia is considered
harmful. The consensus statement on multimodality
monitoring in neurocritical care [19] recommends
haemodynamic monitoring in patients with haemo-
dynamic instability. Guidelines on ischaemic stroke
highlight the importance of isotonic rather than hypo-
tonic fluids and avoidance of hypovolemia and dextrose
solutions [20, 21].

Maintenance fluids: how much?

The current guidelines on fluid management in brain in-
jury recommend using fluid balances to guide volume
status (Table 1). A non-systematic overview of pertinent
contemporary studies in brain-injured patients is pro-
vided in Additional file 1 [3, 23-45]. Not all of the re-
ports in this overview studied fluid balance or fluid
intake as the primary aim, but because fluid amounts
were clearly reported some relevant information could
be extracted.

The mean fluid intake was around 3-4 L/day in SAH
patients who were treated with normovolemia or received
fluid management based on volumetric haemodynamic
monitoring versus 4-5 L/day in patients managed with
hypervolemic treatment which often included CVP or pul-
monary artery occlusion pressure (PAOP)-directed man-
agement. Fluid balances generally did not differ between
both treatment groups and varied around neutral balance
(-0.5 to +1 L) even in a study where mean daily fluid
intake was >8 L [28]. Only one study [30] included
weight-normalized fluid intake (ml/kg/day). Positive fluid
balances have been associated with (angiographic) vaso-
spasm, longer hospital length of stay and poor functional
outcomes [27, 37] (see Additional file 1). Higher fluid
intake has been associated with more cardiovascular side
effects and DCl/delayed ischaemic neurologic deficit
(DIND)/infarctions [25, 27, 28, 30, 31, 34, 35]. One may
argue that the adverse prognostic value of aggressive fluid
loading may reflect more intense treatments in more
severely affected patients rather than causal associations
because many of these studies are observational cohort
studies undoubtedly prone to confounding.

In the trial on prophylactic hypervolemia after aneurysm
clipping after SAH by Lennihan et al. [46] the hyper-
volemic group had a mean fluid intake of up to 4.5 L/day
versus around 3.7 L/day in the normovolemia group, with
similar daily net fluid balances in both groups (between
+0.7 and -0.7 L/day). Hypervolemia did not confer any
benefit with regard to CBF or clinical outcomes. The trial
by Egge et al. [47] randomized SAH patients between
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Table 1 Summary of guideline/consensus conference recommendations on routine fluid and circulatory volume management in

brain-injured patients

Source

Recommendations on routine fluid management and volume status

Monitoring

Management

AHA/ASA SAH guidelines (2012) [7]

Neurocritical Care Society
recommendations on critical care
management in SAH (2011) [6]

Consensus statement on
multi-modality monitoring in
neurocritical care (2014) [19]

Brain Trauma Foundation
guidelines on traumatic brain
injury (2007) [22]

AHA/ASA guidelines for the

early management of patients with
acute ischaemic stroke (2013) [20]

AHA/ASA Recommendations for
the management of cerebral and
cerebellar infarction with swelling [21]

1. Monitoring volume status in certain patients
with recent aneurysmal SAH by some combination
of central venous pressure, pulmonary wedge
pressure and fluid balance is reasonable, as is
treatment of volume contraction with crystalloid
or colloid fluids. (Class lla, evidence level B)

. Monitoring of volume status may be beneficial.
(Moderate quality evidence; weak recommendation)
Vigilant fluid balance management should be the
foundation for monitoring intravascular volume
status. While both non-invasive and invasive
monitoring technologies are available, no specific
modality can be recommended over clinical
assessment. (Moderate quality evidence;

weak recommendation)

. Central venous lines should not be placed solely
to obtain CVP measures and fluid management
based solely on CVP measurements is not
recommended. (Moderate quality evidence;
strong recommendation)

4. Use of PACs incurs risk and lacks evidence of

benefit. Routine use of PACs is not recommended.

N

w

(Moderate quality evidence; strong recommendation)

. We recommend that hemodynamic monitoring
be used to establish goals that take into account
cerebral blood flow (CBF) and oxygenation. These
goals vary depending on diagnosis and disease
stage. (Strong recommendation, moderate quality
of evidence)
We recommend the use of additional
haemodynamic monitoring (e.g. intravascular
volume assessment, echocardiography,
cardiac output monitors) in selected patients
with haemodynamic instability.
(Strong recommendation, moderate
quality of evidence)
. We suggest that the choice of technique
for assessing pre-load, after-load, cardiac output
and global systemic perfusion should be guided
by specific evidence and local expertise.
(Weak recommendation, moderate quality
of evidence)

N

w

No recommendations

No recommendations

No recommendations

1. Maintenance of euvolemia and normal circulating
blood volume is recommended to prevent DCl.
(Class 1, evidence level B)

2. Prophylactic hypervolemia [...] before the
development of angiographic spasms is not
recommended. (Class lll, evidence level B)

. Administration of large volumes of hypotonic
fluids and intravascular volume contraction is
not recommended. (Class Ill, evidence level B)

w

. Intravascular volume management should target
euvolemia and avoid prophylactic hypervolemic
therapy. In contrast, there is evidence for harm
from aggressive administration of fluid aimed at
achieving hypervolemia. (High quality evidence;
strong recommendation)

2. Isotonic crystalloid is the preferred agent for
volume replacement. (Moderate quality evidence;
weak recommendation)

. In patients with a persistent negative fluid balance,
use of fludrocortisone or hydrocortisone may be
considered. (Moderate quality evidence;
weak recommendation)

w

Not applicable

No recommendations

. Daily fluid maintenance for adults estimated as
30 ml/kg body weight

2. Use isotonic fluids rather than hypotonic fluids

(might exacerbate ischaemic brain oedema)

Hypovolemia should be corrected with i.v.

normal saline

w

. Use of adequate fluid administration with isotonic
fluids might be considered. (Class llb, evidence
level C)

2. Hypotonic or hypo-osmolar fluids are not

recommended. (Class lll, evidence level C)

AHA/ASA American Heart Association/American Stroke Association, CVP central venous pressure, DC/ delayed cerebral ischemia, PAC pulmonary artery catheter,

SAH subarachnoid haemorrhage
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prophylactic hypertensive hypervolemic haemodilution
(triple-H) and normovolemia, and reported fluid intake of
approximately 3 L/day in the normovolemic group versus
4-5 L/day in the triple-H group (no exact data were pro-
vided in the publication). There were no differences in
clinical endpoints, but more complications with triple-H
(extradural haematoma, haemorrhagic diathesis, congest-
ive heart failure and arrhythmia). For fluid balances (in
contrast to fluid intake) such a trend for DCI/DIND/vaso-
spasm was less clear, although two studies reported more
adverse outcomes (not restricted to DCI) associated with
positive versus negative fluid balances. Data from three
other RCTs (of which two were by the same group) [25,
34, 35], a propensity matched analysis on prospective data
from a RCT in SAH patients [31] and a RCT on
echocardiography-guided fluid resuscitation in trauma pa-
tients [43] corroborated the association between more ag-
gressive fluid loading and adverse outcomes (DCI/DIND,
cardiovascular side effects, pulmonary oedema, functional
outcome and mortality) in both SAH and TBI patients. In
addition, a population-based study (n =5400) reported
a temporal association between increased fluid intake and
mortality when administered in the pre-DCI period in
SAH patients (days 1-3 after the bleed), although it
seemed to be beneficial in the DCI risk period (days 4—14)
[30]. The data from the RCTs, the propensity matched
analysis and the population-based study suggest that there
may indeed be a causal link between aggressive fluid load-
ing beyond euvolemia and adverse neurological outcomes,
since major confounding is much less likely in these stud-
ies. However, tailoring treatment in individual patients re-
mains important, which is exemplified by an investigation
in SAH patients showing that increased fluid intake was
associated with DIND whereas net negative fluid balances
seemed harmful, but only in patients with severe vaso-
spasm [31]. In line with this study and the fact that frank
hypovolemia is to be avoided in brain-injured patients, a
study in TBI patients found an association of negative fluid
balances (< -594 ml) with poor outcome [42]. The ICP
and CPP values did not differ between outcome groups,
which may indicate that fluid management might impact
on outcomes despite successful pressure-targeted manage-
ment in TBI [42]. Studies showing harm from more posi-
tive fluid balances and higher fluid intake and studies
specifically targeting fluid management with isotonic fluids
are scarce in TBI compared with SAH [42, 45, 48].

Maintenance fluids: which ones?

A recent review summarized current knowledge on risks
and benefits of different types of fluids that are used in
traumatic brain injuries [49], and therefore this will not
be dealt with in depth here. Some key points regarding
the fluid compounds in brain-injured patients are as fol-
lows: (1) isotonic fluids are the mainstay of maintenance
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fluid therapy [50]; (2) synthetic colloids may be harmful
after SAH [31, 51] and have not been thoroughly investi-
gated in TBI; (3) contrasting evidence on albumin exists
in TBI—its use has been associated with both harm
(SAFE study [52]) and benefit [53], but consensus exists
that it should generally not be used in TBI and in SAH
there is currently insufficient evidence on definite bene-
fit from albumin [54]; (4) in SAH, standard fluid man-
agement with saline may have alternatives with more
balanced solutions resulting in more stabile electrolytes,
less fluid intake and less activation of the pituitary axis
stress hormones (cortisol, TSH) [55]; and (5) sodium lac-
tate may hold promise as an alternative fluid to saline
solutions in routine fluid management in severe TBI be-
cause a recent pilot RCT showed improved ICP control,
better electrolyte profile and decreased fluid intake, and
its use may have interesting metabolic benefits for the
injured brain and its susceptibility to secondary injuries
[40]. Of note with regard to the SAFE study, equipoise ex-
ists regarding whether the adverse effects of albumin on
ICP were related to the relative hypotonicity of the 5 % so-
lution or leakage of albumin through a disrupted BBB cre-
ating oncotic shifts that promote oedema [56].

Monitoring of volume and circulatory status

A comprehensive literature search by delegates from a
2010 SAH consensus conference that selected studies on
clinical monitoring and volume status (z = 16) highlighted
several important findings [57]. First, bedside assessment
of volume status is not accurate because sensitivity and
positive predictive values for hypovolemia and hypervole-
mia were less than or equal to 0.37 and 0.06 respectively.
These data seem to call into question the effectiveness of
vigilant fluid balance management in establishing euvole-
mia. Second, blood volume measurements to guide fluid
management seem feasible and may contribute to the pre-
vention of hypovolemia, but these results are from a small
study and blood volume measurements are not widely
available. Third, transpulmonary thermodilution (TPT)
techniques seem feasible to guide fluid management after
SAH. The concluding remarks of this literature search fo-
cused on fluid ‘imbalance; but stressed hypovolemia as a
more stringent problem after SAH than hypervolemia. A
recent systematic review on advanced hemodynamic mon-
itoring in brain-injured patients (SAH, cardiac arrest, TBI,
stroke [58]) showed that such monitoring is widely applied
using many different protocols based on local experi-
ence. Many other—sometime contradictory—associa-
tions between haemodynamic parameters and clinically
relevant outcomes were found, but the authors concluded
that more research is necessary. The publication showed
that the relation between systemic haemodynamics
and cerebral perfusion and oxygenation was scarcely
studied [58].
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Transpulmonary thermodilution

In SAH patients, TPT monitoring seems a feasible method
of assessing volume status and may help to improve
outcome [23, 25, 34]. SAH patients had lower global end-
diastolic index (GEDI, as a parameter for cardiac preload)
but higher cardiac index immediately after SAH, related
to increased catecholamines indicating sympathetic activa-
tion. The increased cardiac output in spite of reduced
GEDI is difficult to explain by true hypovolemia, since this
would result in low GEDI and low cardiac output.
Splanchnic vasoconstriction with acute fluid shifts from
the abdominal to the thoracic compartment was described
in animal experiments as a causal mechanism for neuro-
genic pulmonary oedema in acute brain trauma [59], and
may explain volume contraction in the situation of in-
creased cardiac output [60]. A relation between lower
GEDI and the occurrence of DCI has been described but
whether this reflects true hypovolemia remains to be
established [33]. With TPT, fluid intake could be signifi-
cantly reduced as compared with a fluid strategy aiming at
a CVP of 5-8 mmHg, resulting in less DCI and a trend
towards better functional outcome [25], confirmed in a
subsequent study by the same investigators [34]. Another
study found that influencing GEDI and cardiac output by
‘triple-H’ did not succeed despite effectively higher fluid
intake and blood pressures [32].

Fluid responsiveness

Fluid responsiveness (increased cardiac output in response
to a fluid challenge) in patients with cardiac output moni-
toring may help to improve cerebral oxygenation (partial
pressure of brain tissue oxygen (PBrO,)), which was in-
deed nicely shown in a recent study in SAH patients: fluid
responsiveness was associated with improvements in
PBrO, and cerebral perfusion pressure [61]. In contrast,
other studies in both SAH and TBI patients [62, 63] could
not confirm such associations between fluid loading or
cardiac output and CBF or PBrO,. Intravascular pressures,
especially CVP, have not been shown to be particularly
useful as clinical parameters to assess fluid responsiveness
[64]. In contrast, vena cava distensibility is described as a
reliable dynamic indicator of volume status in SAH
patients and may hold promise for clinical use [65].

Fluid management in critically ill brain-injured
patients: practical issues

Goals of fluid management

In line with the consensus statement on multimodality
monitoring in neurocritical care (Table 1 [19]) the goal
of fluid management is optimization of cerebral perfu-
sion and oxygenation and minimizing secondary brain
insults. Importantly, adequate fluid management in brain
injury should preferably be guided by some measure of
brain function as a reflection of adequacy of cerebral
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perfusion and oxygenation, since these are the actual
endpoints of fluid titration.

Volume status: how to define in brain injury?

There is broad consensus that hypovolemia should gen-
erally be avoided in acute brain injuries. Hypovolemia in
this context may be defined as an intravascular volume
that is insufficient to sustain minimally adequate cerebral
perfusion and oxygenation. Euvolemia may be defined as
an intravascular volume that sustains the required cere-
bral perfusion for adequate brain oxygenation. Defining
‘hypervolemia’ in brain injury is less straightforward. Of
note, the distinctive feature of hypervolemia versus hypo-
volemia or euvolemia is the fact that it concerns what is
outside the circulation (i.e. the extravascular space), which
makes its assessment and definition much more difficult.
For comparison, clinical examples outside neurocritical
care are oliguria in fluid-overloaded septic and decompen-
sated heart failure patients representing venous conges-
tion [66]. Obviously, these situations with oliguria do not
require fluid loading, since venous congestion will then in-
crease and the ‘congestive kidney failure’ worsen. An in-
crease in CVP will promote tissue oedema, resulting in a
dilution of the capillaries and increased tissue diffusion
distances for oxygen to the cells. This definition of hyper-
volemia derived from systemic circulation conflicts with
the general use of ‘hypervolemia’ within the older SAH lit-
erature, since this designation has been associated with
potential benefit for ‘clinical vasospasm’ (DCI) in some
classic studies that assumed beneficial effects of ‘hypervo-
lemia’ on blood rheology and prevention of hypovolemia
[67, 68]. Further, because definitions of ‘hypervolemia’ as a
therapeutic strategy have not been uniform in previous
studies, comparability of these studies is hampered [69].

A practical approach to fluid management; example

for SAH

A practical approach to fluid management in brain-
injured patients may include: maintenance fluid volumes
routinely administered, the type(s) of fluids allowed and
their tonicity; and triggers for more advanced haemo-
dynamic monitoring. Monitoring may include invasive
methods (e.g. TPT-guided) or less invasive methods (e.g.
oesophageal Doppler) [65]. Further, fluid management
based on fluid responsiveness [70], other dynamic
hemodynamic measures (e.g. pulse pressure variation)
or volumetric measures of preload (e.g. GEDI) [25]
may be favoured over filling-pressure measures such
as PAOP [71].

An algorithm has been used with success by the au-
thor in critically ill SAH patients to significantly reduce
fluid intake whilst maintaining sufficient cardiac output
and indices of cardiac preload (Fig. 2). This algorithm
serves as an example of how the basic tenets already
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GCS<15 and at least one of:
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Fig. 2 Fluid management algorithm as applied in the author’s institution in critically ill SAH patients. Principles underlying the algorithm include:
define maintenance fluids (40 ml/kg/day); use isotonic crystalloid fluids; define triggers for more advanced haemodynamic monitoring and define
haemodynamic goals, titrate management to these goals and give stopping rules to abort algorithm after improvements. In a subset of high-risk
SAH patients, this algorithm resulted in significant reductions in fluid intake whilst maintaining cardiac output and preload indices, thus avoiding
hypovolemia [75], in line with a previous study [25]. Both dynamic (e.g. fluid responsiveness) and static (e.g. GEDI) measures of volume
status may thus be used to guide fluid administration. SAH subarachnoid haemorrhage, TPT transpulmonary thermodilution-based haemodynamic
monitoring, DCI delayed cerebral ischaemia, MAP mean arterial pressure, NS normal saline (0.9 %), C/ cardiac index (L/min/m?), GCS Glasgow

Try inotropes

described may be materialized and made practical
Maintenance fluids should generally be aimed at 30—
40 ml/kg/day of isotonic crystalloids (normal saline
0.9 %), with SAH patients generally needing around
40 ml/kg/day due to higher tendency of polyuria com-
pared with most other brain-injured patients. Triggers
for application of haemodynamic monitoring with
TPT have been defined in the algorithm, including
subsequent haemodynamic goals and ‘stopping rules’.
Because the target organ concerns the brain, conscious-
ness assessed with the Glasgow Coma Scale (GCS) is in-
cluded in the algorithm assuming that a perfectly awake
patient will constitute a patient with adequate CBF. The
protocol is usually adhered to for up to 5 days. Related co-
morbidities and circumstances that are quite frequent in
brain-injured patients (diabetes insipidus, cerebral salt
wasting, osmotic therapies for increased ICP) are not
within the scope of this review and the reader is referred
to existing literature [50, 72].

Epilogue

The scarce available evidence indicates that fluid manage-
ment in brain-injured patients should generally be targeted
at euvolemia using isotonic fluids. Consequently, it seems
that not only ‘too dry’ but also ‘too wet’ is detrimental

[62, 69]. Avoiding strong deviations from ‘normality’
therefore seems the best option for most brain-
injured patients (Fig. 3). However, routine fluid man-
agement is complicated by the circumstance that fluid
overload, by definition pertaining to extravascular fluid
accumulation in contrast to hypovolemia or euvolemia, is
difficult to assess in the brain. This may be an important
explanation of why the incidence and potential risks of
fluid overload or ‘hypervolemia’ in haemodynamically
stable brain-injured patients are understudied in contrast
to the emerging literature on this topic in the non-brain-
injured critically ill patient [2]. It is important to note that
the current literature on fluid management in brain-
injured patients has had a main focus on SAH, which is
probably related to the well-known risk of hypovolemia
associated with cerebral salt wasting syndrome after SAH,
whereas studies on fluid management in TBI, ICH and
ischaemic stroke are much less numerous. Whether this
imbalance in fluid management studies between different
types of brain injuries is a reflection of differences in
clinical relevance of fluid management is not clear.

It is intriguing that fluid balances seem less clearly
associated with secondary brain injuries than fluid intake
(especially after SAH). This may indicate that ‘fluid
throughput’ may be harmful [1], but it is unknown how
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Fig. 3 Conceptual explanation of the relation between volume status, fluid intake and risk of secondary brain injury (SBI) in critically ill brain-injured
patients. Both hypovolemia and hypervolemia may contribute to SBI. More research is necessary to confirm this concept and establish its

exactly this may contribute to brain injury. One may
hypothesize that even very small amounts of fluid ex-
travasated to the brain extravascular interstitium may
have a significant impact on brain compliance in an
already ‘tight’ situation, although such small amounts of
fluid extravasates may not be detectable in net fluid bal-
ances. Scarce data suggest that normal saline loading,
which is a ubiquitous practice in brain-injury manage-
ment, may have a significant impact on cerebral oedema
formation when the BBB is disrupted [73].

Endpoints of fluid management should be clearly
defined in future investigations; these endpoints may
concern derived parameters of cerebral perfusion and
oxygenation when direct effects of (systemic) fluid man-
agement on the brain are examined, such as PBrO, [61],
or clinical outcome endpoints, such as the modified
Rankin scale. In view of the often indirect and compli-
cated relation between fluid management and CBF (Fig. 1),
it may be more sensible to focus on associations between
cerebral perfusion or function and fluid management in
larger populations to uncover potentially deleterious as-
pects of fluid management, for instance with comparative
effectiveness research approaches exploiting the impact of
between-centre practice differences to study best practices
[74] or prospective randomized studies. When such stud-
ies are undertaken, interventions may include haemo-
dynamic monitoring in selected patients deemed at high
risk for deviations from euvolemic status. In addition, it is
proposed that in such studies details of other medical
treatments that may impact on prognosis (and thus con-
found statistical associations) are meticulously reported,
such as blood glucose monitoring and temperature man-
agement. We have recently found in high-risk SAH
patients that application of a protocolled TPT fluid

management protocol, based on fluid responsiveness,
resulted in significantly less fluid intake and increased
diuresis after starting the protocol (Fig. 2) [75]. The
increase in diuresis was accompanied by a significant
decrease in CVP (unpublished observation). In our view
this may have indicated the presence of venous congestion
due to fluid overload prior to the TPT protocol. Increased
CVP was related to hypervolemic fluid therapy and more
positive fluid balances in several of the referenced investi-
gations in Additional file 1 [27, 46, 47]. These associations,
however, should be regarded as contentious and ‘hypoth-
esis generating’ at present.

Although monitoring and treatment aimed directly at
the injured brain is an important area of intense research,
the data presented seem to indicate that appropriate fluid
management is clinically relevant. This notion is in line
with previous research indicating that systemic complica-
tions and management may have a major impact on mor-
tality in critically ill brain-injured patients [3].

Conclusion

Routine fluid management may influence clinical out-
comes in brain-injured patients. However, the impact of
fluid management on brain pathophysiology is compli-
cated due to many intermediate factors governing their
relationship. More recent literature has indicated that
hypervolemia may be detrimental similar to non-brain-
injured critically ill patients. However, research on con-
sequences of fluid overload is seriously hampered by a
lack of uniform definitions and the fact that cerebral
oedema is difficult to routinely assess. Although the
general aim of fluid management in critically ill brain-
injured patients is euvolemia using isotonic fluids, ascer-
tainment of euvolemia is problematic in routine clinical



van der Jagt Critical Care (2016) 20:126

practice without haemodynamic monitoring. Therefore,
awareness of potential harm from both hypovolemia and
hypervolemia may currently be insufficient.

Additional file

Additional file 1: is a table presenting a summary of salient features of
contemporary studies in neurocritical care patients reporting associations
of fluid balances or fluid intake with relevant clinical outcomes or
haemodynamic variables. (DOCX 80 kb)

Abbreviations

BBB: blood-brain barrier; CBF: cerebral blood flow; CVP: central venous
pressure; CSF: cerebrospinal fluid; DCI: delayed cerebral ischaemia;

DIND: delayed ischaemic neurologic deficit; GEDI: global end-diastolic index;
ICH: intracranial haemorrhage; ICP: intracranial pressure; PAOP: pulmonary
artery occlusion pressure (wedge); PBrO,: partial pressure of brain tissue
oxygen; PEEP: positive-end expiratory pressure; SAH: subarachnoid
haemorrhage; TBI: traumatic brain injury; TPT: transpulmonary thermodilution;
triple-H: hypertensive hypervolemic haemodilution.

Competing interests
The author declares that he has no competing interests.

Author’s contributions

MvdJ conceived, designed and drafted the manuscript. The author takes full
responsibility for the intellectual content and is accountable for all aspects of
this work.

Author’s information

The author is a consultant neurointensivist and staff member at the
Department of Intensive Care, Erasmus Medical Center, Rotterdam, the
Netherlands.

Acknowledgements

The author wishes to thank Professor Jan Bakker and Professor A.B. Johan
Groeneveld (Department of Intensive Care, Erasmus Medical Center,
Rotterdam, the Netherlands) for their kind suggestions on a previous version
of the manuscript.

Published online: 31 May 2016

References

1. Orfanakis A, Brambrink AM. Long-term outcome call into question the
benefit of positive fluid balance and colloid treatment after aneurysmal
subarachnoid hemorrhage. Neurocrit Care. 2013;19(2):137-9.

2. Acheampong A, Vincent JL. A positive fluid balance is an independent
prognostic factor in patients with sepsis. Crit Care. 2015;19:251.

3. Mascia L, Sakr Y, Pasero D, Payen D, Reinhart K, Vincent JL. Sepsis
Occurrence in Acutely Il Patients I. Extracranial complications in patients
with acute brain injury: a post-hoc analysis of the SOAP study. Intensive
Care Med. 2008;34(4):720-7.

4. Meyer R, Deem S, Yanez ND, Souter M, Lam A, Treggiari MM. Current
practices of triple-H prophylaxis and therapy in patients with subarachnoid
hemorrhage. Neurocrit Care. 2011;14(1):24-36.

5. Velly LJ, Bilotta F, Fabregas N, Soehle M, Bruder NJ, Nathanson MH, et al.
Anaesthetic and ICU management of aneurysmal subarachnoid
haemorrhage: a survey of European practice. Eur J Anaesthesiol.
2015;32(3):168-76.

6.  Diringer MN, Bleck TP, Claude Hemphill 3rd J, Menon D, Shutter L, Vespa P,
et al. Critical care management of patients following aneurysmal
subarachnoid hemorrhage: recommendations from the Neurocritical
Care Society's Multidisciplinary Consensus Conference. Neurocrit Care.
2011;15(2):211-40.

7. Connolly Jr ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J,
Higashida RT, et al. Guidelines for the management of aneurysmal
subarachnoid hemorrhage: a guideline for healthcare professionals
from the American Heart Association/American Stroke Association.
Stroke. 2012;43(6):1711-37.

20.

21,

22.

23.

24.

25.

26.

27.

28.

29.

Page 9 of 11

Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral
edema. J Cereb Blood Flow Metab. 2016;36(3):513-38.

Shackford SR, Zhuang J, Schmoker J. Intravenous fluid tonicity: effect on
intracranial pressure, cerebral blood flow, and cerebral oxygen delivery in
focal brain injury. J Neurosurg. 1992;76(1):91-8.

Tommasino C, Moore S, Todd MM. Cerebral effects of isovolemic
hemodilution with crystalloid or colloid solutions. Crit Care Med.
1988;16(9):862-8.

Ertmer C, Van Aken H. Fluid therapy in patients with brain injury: what does
physiology tell us? Crit Care. 2014;18(2):119.

Michinaga S, Koyama Y. Pathogenesis of brain edema and investigation into
anti-edema drugs. Int J Mol Sci. 2015;16(5):9949-75.

Leone M, Asfar P, Radermacher P, Vincent JL, Martin C. Optimizing mean
arterial pressure in septic shock: a critical reappraisal of the literature.

Crit Care. 2015;19:101.

Luce JM, Huseby JS, Kirk W, Butler J. A Starling resistor regulates cerebral
venous outflow in dogs. J Appl Physiol Respir Environ Exerc Physiol.
1982,53(6):1496-503.

Kurishima C, Tsuda M, Shiima Y, Kasai M, Abe S, Ohata J, et al. Coupling of
central venous pressure and intracranial pressure in a 6-year-old patient
with fontan circulation and intracranial hemorrhage. Ann Thorac Surg.
2011,91(5):1611-3.

Mascia L, Grasso S, Fiore T, Bruno F, Berardino M, Ducati A.
Cerebro-pulmonary interactions during the application of low levels of
positive end-expiratory pressure. Intensive Care Med. 2005;31(3):373-9.
Hariri RJ, Firlick AD, Shepard SR, Cohen DS, Barie PS, Emery 3rd JM, et al.
Traumatic brain injury, hemorrhagic shock, and fluid resuscitation: effects on
intracranial pressure and brain compliance. J Neurosurg. 1993;79(3):421-7.
Trevisani GT, Shackford SR, Zhuang J, Schmoker JD. Brain edema formation
after brain injury, shock, and resuscitation: effects of venous and arterial
pressure. J Trauma. 1994;37(3):452-8.

Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, et al.
Consensus summary statement of the International Multidisciplinary
Consensus Conference on Multimodality Monitoring in Neurocritical Care: a
statement for healthcare professionals from the Neurocritical Care Society
and the European Society of Intensive Care Medicine. Intensive Care Med.
2014;40(9):1189-209.

Jauch EC, Saver JL, Adams Jr HP, Bruno A, Connors JJ, Demaerschalk BM, et
al. Guidelines for the early management of patients with acute ischemic
stroke: a guideline for healthcare professionals from the American Heart
Association/American Stroke Association. Stroke. 2013;44(3):870-947.
Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, et al.
Recommendations for the management of cerebral and cerebellar
infarction with swelling: a statement for healthcare professionals from

the American Heart Association/American Stroke Association. Stroke.
2014;45(4):1222-38.

Brain Trauma Foundation, American Association of Neurological Surgeons,
Congress of Neurological Surgeons et al. Guidelines for the management
of severe traumatic brain injury. J Neurotrauma. 2007,24(1):S1-5106.

Mutoh T, Kazumata K, Ajiki M, Ushikoshi S, Terasaka S. Goal-directed fluid
management by bedside transpulmonary hemodynamic monitoring after
subarachnoid hemorrhage. Stroke. 2007,38(12):3218-24.

Hoff RG, van Dijk GW, Algra A, Kalkman CJ, Rinkel GJ. Fluid balance and
blood volume measurement after aneurysmal subarachnoid hemorrhage.
Neurocrit Care. 2008;8(3):391-7.

Mutoh T, Kazumata K, Ishikawa T, Terasaka S. Performance of bedside
transpulmonary thermodilution monitoring for goal-directed hemodynamic
management after subarachnoid hemorrhage. Stroke. 2009;40(7):2368-74.
Hoff RG, Rinkel GJ, Verweij BH, Algra A, Kalkman CJ. Pulmonary edema and
blood volume after aneurysmal subarachnoid hemorrhage: a prospective
observational study. Crit Care. 2010;14(2):R43.

Martini RP, Deem S, Brown M, Souter MJ, Yanez ND, Daniel S, et al. The
association between fluid balance and outcomes after subarachnoid
hemorrhage. Neurocrit Care. 2012;17(2):191-8.

Gura M, Elmaci |, Cerci A, Sagiroglu E, Coskun KK. Haemodynamic
augmentation in the treatment of vasospasm in aneurysmal subarachnoid
hemorrhage. Turk Neurosurg. 2012;22(4):435-40.

Watanabe A, Tagami T, Yokobori S, Matsumoto G, Igarashi Y, Suzuki G, et al.
Global end-diastolic volume is associated with the occurrence of delayed
cerebral ischemia and pulmonary edema after subarachnoid hemorrhage.
Shock. 2012;38(5):480-5.


dx.doi.org/10.1186/s13054-016-1309-2

van der Jagt Critical Care (2016) 20:126

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45,

46.

47.

48.

49.

50.

Kuwabara K, Fushimi K, Matsuda S, Ishikawa KB, Horiguchi H, Fujimori K.
Association of early post-procedure hemodynamic management with

the outcomes of subarachnoid hemorrhage patients. J Neurol.
2013;260(3):820-31.

Ibrahim GM, Macdonald RL. The effects of fluid balance and colloid
administration on outcomes in patients with aneurysmal subarachnoid
hemorrhage: a propensity score-matched analysis. Neurocrit Care.
2013;19(2):140-9.

Tagami T, Kuwamoto K, Watanabe A, Unemoto K, Yokobori S, Matsumoto G,
et al. Effect of triple-H prophylaxis on global end-diastolic volume and
clinical outcomes in patients with aneurysmal subarachnoid hemorrhage.
Neurocrit Care. 2014;21(3):462-9.

Tagami T, Kuwamoto K, Watanabe A, Unemoto K, Yokobori S, Matsumoto G,
et al. Optimal range of global end-diastolic volume for fluid management
after aneurysmal subarachnoid hemorrhage: a multicenter prospective
cohort study. Crit Care Med. 2014;42(6):1348-56.

Mutoh T, Kazumata K, Terasaka S, Taki Y, Suzuki A, Ishikawa T.

Early intensive versus minimally invasive approach to postoperative
hemodynamic management after subarachnoid hemorrhage. Stroke.
2014;45(5):1280-4.

Togashi K, Joffe AM, Sekhar L, Kim L, Lam A, Yanez D, et al. Randomized
pilot trial of intensive management of blood pressure or volume expansion
in subarachnoid hemorrhage (IMPROVES). Neurosurgery. 2015;76(2):125-34.
discussion 134-5; quiz 135.

Joffe AM, Khandelwal N, Hallman MR, Treggiari MM. Assessment of
circulating blood volume with fluid administration targeting euvolemia or
hypervolemia. Neurocrit Care. 2015;22(1):82-8.

Kissoon NR, Mandrekar JN, Fugate JE, Lanzino G, Wijdicks EF, Rabinstein AA.
Positive fluid balance is associated with poor outcomes in subarachnoid
hemorrhage. J Stroke Cerebrovasc Dis. 2015;24(10):2245-51.

Mutoh T, Kazumata K, Yokoyama Y, Ishikawa T, Taki Y, Terasaka S, et al.
Comparison of postoperative volume status and hemodynamics between
surgical clipping and endovascular coiling in patients after subarachnoid
hemorrhage. J Neurosurg Anesthesiol. 2015;27(1):7-15.

Rodling Wahlstrom M, Olivecrona M, Nystrom F, Koskinen LO, Naredi S.
Fluid therapy and the use of albumin in the treatment of severe traumatic
brain injury. Acta Anaesthesiol Scand. 2009;53(1):18-25.

Ichai C, Payen JF, Orban JC, Quintard H, Roth H, Legrand R, et al. Half-molar
sodium lactate infusion to prevent intracranial hypertensive episodes in
severe traumatic brain injured patients: a randomized controlled trial.
Intensive Care Med. 2013,39(8):1413-22.

Yumoto T, Sato K, Ugawa T, Ichiba S, Ujike Y. Prevalence, risk factors, and
short-term consequences of traumatic brain injury-associated hyponatremia.
Acta Med Okayama. 2015,69(4):213-8.

Clifton GL, Miller ER, Choi SC, Levin HS. Fluid thresholds and outcome from
severe brain injury. Crit Care Med. 2002,30(4):739-45.

Ferrada P, Evans D, Wolfe L, Anand RJ, Vanguri P, Mayglothling J, et al.
Findings of a randomized controlled trial using limited transthoracic
echocardiogram (LTTE) as a hemodynamic monitoring tool in the trauma
bay. J Trauma Acute Care Surg. 2014;76(1):31-7. discussion 37-8.

Elmer J, Hou P, Wilcox SR, Chang Y, Schreiber H, Okechukwu |, et al.

Acute respiratory distress syndrome after spontaneous intracerebral
hemorrhage. Crit Care Med. 2013;41(8):1992-2001.

Fletcher JJ, Bergman K, Blostein PA, Kramer AH. Fluid balance,
complications, and brain tissue oxygen tension monitoring following severe
traumatic brain injury. Neurocrit Care. 2010;13(1):47-56.

Lennihan L, Mayer SA, Fink ME, Beckford A, Paik MC, Zhang H, et al.
Effect of hypervolemic therapy on cerebral blood flow after
subarachnoid hemorrhage: a randomized controlled trial. Stroke.
2000;31(2):383-91.

Egge A, Waterloo K, Sjoholm H, Solberg T, Ingebrigtsen T, Romner B.
Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal
subarachnoid hemorrhage: a clinical, prospective, randomized, controlled
study. Neurosurgery. 2001;49(3):593-605. discussion 605-6.

Schmoker JD, Shackford SR, Wald SL, Pietropaoli JA. An analysis of the
relationship between fluid and sodium administration and intracranial
pressure after head injury. J Trauma. 1992;33(3):476-81.

Gantner D, Moore EM, Cooper DJ. Intravenous fluids in traumatic brain
injury: what's the solution? Curr Opin Crit Care. 2014;20(4):385-9.

Wright WL. Sodium and fluid management in acute brain injury.

Curr Neurol Neurosci Rep. 2012;12(4):466-73.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Page 10 of 11

Tseng MY, Hutchinson PJ, Kirkpatrick PJ. Effects of fluid therapy following
aneurysmal subarachnoid haemorrhage: a prospective clinical study.

Br J Neurosurg. 2008;22(2):257-68.

SAFE Study Investigators, Australian and New Zealand Intensive Care
Society Clinical Trials Group, Australian Red Cross Blood Service, George
Institute for International Health, Myburgh J, Cooper DJ, Finfer S, Bellomo R,
Norton R, et al. Saline or albumin for fluid resuscitation in patients with
traumatic brain injury. N Engl J Med. 2007;357(9):874-84.

Baker AJ, Park E, Hare GM, Liu E, Sikich N, Mazer DC. Effects of resuscitation
fluid on neurologic physiology after cerebral trauma and hemorrhage.

J Trauma. 2008,64(2):348-57.

Suarez JI, Martin RH, Calvillo E, Dillon C, Bershad EM, Macdonald RL, et al.
The Albumin in Subarachnoid Hemorrhage (ALISAH) multicenter pilot
clinical trial: safety and neurologic outcomes. Stroke. 2012;43(3):683-90.
Lehmann L, Bendel S, Uehlinger DE, Takala J, Schafer M, Reinert M, et al.
Randomized, double-blind trial of the effect of fluid composition on
electrolyte, acid-base, and fluid homeostasis in patients early after
subarachnoid hemorrhage. Neurocrit Care. 2013;18(1):5-12.

Cooper DJ, Myburgh J, Heritier S, Finfer S, Bellomo R, Billot L, et al.
Albumin resuscitation for traumatic brain injury: is intracranial hypertension
the cause of increased mortality? J Neurotrauma. 2013;30(7):512-8.

Gress DR, Participants in the International Multi-Disciplinary Consensus
Conference on the Critical Care Management of Subarachnoid
Hemmorhage. Monitoring of volume status after subarachnoid hemorrhage.
Neurocrit Care. 2011;15(2):270-4.

Taccone FS, Citerio G, Participants in the International Multi-disciplinary
Consensus Conference on Multimodality Monitoring. Advanced monitoring
of systemic hemodynamics in critically ill patients with acute brain injury.
Neurocrit Care. 2014;21(2):538-63.

Maire FW, Patton HD. Role of the splanchnic nerve and the adrenal
medulla in the genesis of preoptic pulmonary edema. Am J Physiol.
1956;184(2):351-5.

Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C, et al.
Early administration of norepinephrine increases cardiac preload and
cardiac output in septic patients with life-threatening hypotension.

Crit Care. 2010;14(4):R142.

Kurtz P, Helbok R, Ko SB, Claassen J, Schmidt JM, Fernandez L, et al. Fluid
responsiveness and brain tissue oxygen augmentation after subarachnoid
hemorrhage. Neurocrit Care. 2014;20(2):247-54.

Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, et al. Effects of
hypervolemia and hypertension on regional cerebral blood flow, intracranial
pressure, and brain tissue oxygenation after subarachnoid hemorrhage.
Crit Care Med. 2007;35(8):1844-51. quiz 1852.

Bouma GJ, Muizelaar JP. Relationship between cardiac output and cerebral
blood flow in patients with intact and with impaired autoregulation.

J Neurosurg. 1990;73(3):368-74.

Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac
filling pressures are not appropriate to predict hemodynamic response to
volume challenge. Crit Care Med. 2007;35(1):64-8.

Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid
responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care.
2010;13(1):3-9.

Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in
septic shock: a positive fluid balance and elevated central venous pressure
are associated with increased mortality. Crit Care Med. 2011;39(2):259-65.
Kassell NF, Peerless SJ, Durward QJ, Beck DW, Drake CG, Adams HP.
Treatment of ischemic deficits from vasospasm with intravascular

volume expansion and induced arterial hypertension. Neurosurgery.
1982;11(3):337-43.

Awad IA, Carter LP, Spetzler RF, Medina M, Williams Jr FC. Clinical
vasospasm after subarachnoid hemorrhage: response to hypervolemic
hemodilution and arterial hypertension. Stroke. 1987;18(2):365-72.
Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC. Effect of different components
of triple-H therapy on cerebral perfusion in patients with aneurysmal
subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14(1):R23.
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al.
Consensus on circulatory shock and hemodynamic monitoring. Task Force
of the European Society of Intensive Care Medicine. Intensive Care Med.
2014;40(12):1795-815.

Lazaridis C. Advanced hemodynamic monitoring: principles and practice in
neurocritical care. Neurocrit Care. 2012;16(1):163-9.



van der Jagt Critical Care (2016) 20:126

72.

73.

74.

75.

Stocchetti N, Maas Al. Traumatic intracranial hypertension. N Engl J Med.
2014;370(22):2121-30.

Chen CH, Toung TJ, Sapirstein A, Bhardwaj A. Effect of duration of
osmotherapy on blood-brain barrier disruption and regional cerebral edema
after experimental stroke. J Cereb Blood Flow Metab. 2006;26(7):951-8.
Maas Al, Menon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al.
Collaborative European NeuroTrauma Effectiveness Research in Traumatic
Brain Injury (CENTER-TBI): a prospective longitudinal observational study.
Neurosurgery. 2015;76(1):67-80.

Bergmans B, Egal M, Van Bommel J, Bakker J, Van der Jagt M. Effects of
cardiac-output guided hemodynamic management on fluid administration
after aneurysmal subarachnoid hemorrhage. Crit Care. 2014;18 Suppl:455.

Page 11 of 11



	Abstract
	Background
	Pathophysiological considerations
	Tonicity
	Oedema
	Autoregulation
	Venous outflow impedance

	Overview of literature
	Guidelines
	Maintenance fluids: how much?
	Maintenance fluids: which ones?
	Monitoring of volume and circulatory status
	Transpulmonary thermodilution
	Fluid responsiveness


	Fluid management in critically ill brain-injured �patients: practical issues
	Goals of fluid management
	Volume status: how to define in brain injury?
	A practical approach to fluid management; example �for SAH

	Epilogue
	Conclusion
	Additional file
	Abbreviations
	Competing interests
	Author’s contributions
	Author’s information
	Acknowledgements
	References

