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Abstract

Background The association between body composition (e.g. sarcopenia or visceral obesity) and treatment outcomes, such
as survival, using single-slice computed tomography (CT)-based measurements has recently been studied in various patient
groups. These studies have been conducted with different software programmes, each with their specific characteristics, of
which the inter-observer, intra-observer, and inter-software correlation are unknown. Therefore, a comparative study was
performed.
Methods Fifty abdominal CT scans were randomly selected from 50 different patients and independently assessed by two
observers. Cross-sectional muscle area (CSMA, i.e. rectus abdominis, oblique and transverse abdominal muscles, paraspinal
muscles, and the psoas muscle), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) were seg-
mented by using standard Hounsfield unit ranges and computed for regions of interest. The inter-software, intra-observer,
and inter-observer agreement for CSMA, VAT, and SAT measurements using FatSeg, OsiriX, ImageJ, and sliceOmatic were cal-
culated using intra-class correlation coefficients (ICCs) and Bland–Altman analyses. Cohen’s κ was calculated for the agree-
ment of sarcopenia and visceral obesity assessment. The Jaccard similarity coefficient was used to compare the similarity
and diversity of measurements.
Results Bland–Altman analyses and ICC indicated that the CSMA, VAT, and SAT measurements between the different soft-
ware programmes were highly comparable (ICC 0.979–1.000, P< 0.001). All programmes adequately distinguished between
the presence or absence of sarcopenia (κ = 0.88–0.96 for one observer and all κ = 1.00 for all comparisons of the other
observer) and visceral obesity (all κ = 1.00). Furthermore, excellent intra-observer (ICC 0.999–1.000, P< 0.001) and inter-
observer (ICC 0.998–0.999, P< 0.001) agreement for all software programmes were found. Accordingly, excellent Jaccard
similarity coefficients were found for all comparisons (mean≥ 0.964).
Conclusions FatSeg, OsiriX, ImageJ, and sliceOmatic showed an excellent agreement for CSMA, VAT, and SAT measurements
on abdominal CT scans. Furthermore, excellent inter-observer and intra-observer agreement were achieved. Therefore, results
of studies using these different software programmes can reliably be compared.
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Introduction

Biological frailty and analytic morphomics (i.e. body composi-
tion) have increasingly gained interest in recent years in rela-
tion to treatment outcomes, such as complications and
(disease-free) survival.1,2 Frailty, a state of increased vulnera-
bility towards stressors, leads to an increased risk of develop-
ing adverse health outcomes3 and is an important predictor
of complications after interventional procedures, such as
surgery and chemotherapy.4–7 For example, frail patients
undergoing colorectal surgery have a fourfold increased risk
to develop major post operative complications.5 One of the
hallmark signs of frailty is sarcopenia, the involuntary deple-
tion of skeletal muscle mass.8–11 It is estimated that up to
25% of persons under 70 years of age and over 50% of per-
sons of 80 years and older experience sarcopenia.12 In addi-
tion, up to 80% of patients with advanced cancer are
affected by cancer-induced cachexia, a clinical condition that
also results in skeletal muscle wasting with or without the
loss of body fat.13–15 Patients with cachexia are more prone
to a reduced therapy effect,16 and patients with low skeletal
muscle mass experience increased chemotherapy toxic-
ity.17,18 This ultimately results in death in nearly one-third
of all cancer patients.19–22

Over the last years, numerous studies have used abdomi-
nal computed tomography (CT) scans to quantify skeletal
muscle mass, for example, in clinical17,18,23–25 and surgical26

oncology, vascular surgery,27 and transplantation surgery28,29

patients. Furthermore, multiple studies measured visceral
and/or subcutaneous adipose tissue on CT scans.30–33 How-
ever, different software programmes have been used to per-
form these body composition analyses, such as FatSeg,33

OsiriX,7 ImageJ,24 and sliceOmatic.23 To be able to adequately
compare study results, the comparability of these various
software programmes should be known. Therefore, the aim
of this study was to investigate the agreement of these four
different software packages for the assessment of cross-
sectional skeletal muscle and subcutaneous and visceral adi-
pose tissue measurements on abdominal CT scans.

Materials and Methods

Patients

Fifty abdominal CT scans of patients who were scheduled for
rectal cancer resection at Erasmus MC University Medical
Centre (Rotterdam, the Netherlands) between 2005 and
2012 were randomly selected. All CT scans were routinely
performed as part of the pre-operative diagnostic work up
or assessment of down staging after neo-adjuvant therapy.
Only one CT scan was used per patient. None of the patients
had an ostomy, abdominal wall deformity, abdominal wall

tumour, or a CT scan with artefacts at the level of L3 that
could potentially influence measurements. Self-reported
weight and height in the pre-operative workup were retro-
spectively collected from electronic patient files.

Skeletal muscle and adipose tissue area
measurements

The cross-sectional skeletal muscle area (CSMA), subcutane-
ous adipose tissue area (SAT), and visceral adipose tissue area
(VAT) (cm2), including renal adipose tissue, were measured at
the mid third lumbar vertebra (L3) level on a slice showing
both transversal processes. The CSMA measurements
included the following muscles: psoas, paraspinal, transverse
abdominal, external oblique, internal oblique, and rectus
abdominis. All abdominal CT scans were assessed on identical
slices in a random order by two medically trained observers
[AG (observer A) and JLAvV (observer B)], with great knowl-
edge about radiological anatomy and extensive experience
in skeletal muscle and adipose tissue area measurements
using various software programmes. Observer A performed
measurements twice on identical a priori selected slices,
whereas observer B performed a second reading without a
priori selected slice numbers. The observers were blinded
for each other’s measurements and for patient details. For
each observer, the time interval between two readings in
the same patient with different software programmes was
at least 1week. This resulted in an interval of at least 4weeks
between two readings within one patient with the same soft-
ware programme. Only the first reading of observer B was
used for the inter-software and inter-observer comparisons.

The CSMA was corrected for height squared (m2), resulting
in the L3 muscle index (SMI, cm2/m2). Patients were classified
as having sarcopenia or not having sarcopenia according to
previously described cut-off values (52.4 cm2/m2 for men
and 38.5 cm2/m2 for women).23 Predefined cut-off values
for VAT to define visceral obesity of 163.8 cm2 for men and
80.1 cm2 for women were used.34 For subcutaneous adipose
tissue, no cut-off values have been reported in the literature.

Four software programmes were compared: FatSeg [devel-
oped by the Biomedical Imaging Group Rotterdam of Erasmus
MC, Rotterdam, the Netherlands, using MeVisLab (Mevis
Medical Solutions, Bremen, Germany)], OsiriX (Pixmeo SARL,
Geneva, Switzerland), ImageJ (National Institutes of Health,
Bethesda, MD, USA), and sliceOmatic (TomoVision, Magog,
Canada). The CSMA, VAT, and SAT were segmented using
standard Hounsfield unit (HU) thresholds in all four software
programmes. An intensity window between �30 and
+150HU was used for skeletal muscle tissue.35 For adipose
tissue, an intensity window between �190 and �30HU was
used.36 Because the tissue of interest is manually selected,
competency in anatomic radiology is a prerequisite for these
measurements.
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FatSeg

FatSeg is an in-house developed software programme to per-
form soft tissue measurements on CT scans and was
developed using the MeVisLab development environment
for medical image processing and visualization version 2.4
(available from http://www.mevislab.de). Inner and outer
contours of aforementioned skeletal muscle and adipose tis-
sue regions were manually traced. The skeletal muscle and ad-
ipose tissue areas were computed automatically using the
preset HU intensity thresholds and expressed in square
centimetre. Intraluminal contents initially marked as adipose
tissue were manually erased. Cutaneous tissue was included
in the SAT measurement. Measurements were performed on
a 3.2GHz Intel® Core™ i5 Dell (Dell Inc., Round Rock, TX,
USA) personal computer.

OsiriX

The open-source 32-bit edition of OsiriX version 5.8.5 (avail-
able from http://www.osirix-viewer.com) was used. The ‘Grow
Region (2D/3D Segmentation)’ tool was used to semi-
automatically select skeletal muscle and adipose tissue re-
gions within our preset HU intensity thresholds. Non-skeletal
muscle tissue regions adjacent to skeletal muscle were manu-
ally removed from the area selection using the brush option.
The brush option was also used to manually erase intraluminal
areas with contents having radiological density between�190
and �30HU, resembling fatty content. Cutaneous tissue was
not included in the SAT measurement. The skeletal muscle
and adipose tissue areas were computed automatically and
expressed in square centimetre using a 1.3GHz Intel® Core™

i5 MacBook Air (Apple Inc., Cupertino, CA, USA) and computer
mouse.

ImageJ

ImageJ version 1.48 is a freely downloadable public domain
software programme developed by the National Institutes of
Health for image processing and analyzing (available from
http://rsbweb.nih.gov/ij/download.html). First, manual delin-
eation of the outer contour of the abdominal wall and
paraspinal muscles was performed, and the surface area of tis-
sue with an attenuation between �30 and +150HU was com-
puted automatically (mm2) and manually divided by 100,
resulting in square centimetre. Second, delineation of the in-
ner contour of the abdominal wall, paraspinal, and psoas mus-
cles was performed in a similar fashion to allow for
subsequent correction of intra-abdominal content with atten-
uation between the preset HU intensity thresholds. The inner
contour was manually subtracted from the outer contour
surface area, resulting in the cross-sectional skeletal muscle
area (cm2).37 The SAT measurements were performed in a

similar manner as the muscle measurements, whereas VAT
measurements were performed by delineating a contour
through the inner contour of the abdominal wall muscles,
psoas muscles, and vertebrae followed by manual erasing of
intraluminal fatty content. Cutaneous tissue was included in
the SAT measurement. A 3.2GHz Intel® Core™ i5 Dell personal
computer was used.

SliceOmatic

SliceOmatic (TomoVIsion, Magog, Canada) version 5.0 (64 bit;
available from http://www.tomovision.com) was used. Tissue
was semi-automatically selected with the ‘Region Growing’
mode using the ‘Grow 2D’ and ‘Paint’ tools. Non-skeletal mus-
cle tissue regions adjacent to skeletal muscle having radiolog-
ical density between the predefined HU thresholds were
manually erased using the ‘Paint’ tool. Cutaneous tissue was
included in the SAT measurement. A 3.2 GHz Intel® Core™ i5
Dell personal computer was used.

Cutaneous tissue disclosure

In OsiriX, cutaneous tissue is not included in the SAT measure-
ment, because this is not automatically selected using the
‘Grow Region (2D/3D Segmentation)’ tool. SliceOmatic also al-
lows to exclude encompassed skin. However, not all software
programmes allow to reliably exclude cutaneous tissue from
SAT as a consequence of their measurement method: the de-
lineation of tissue of interest using inner and outer contours.
Consequently, to ensure highly comparable measurements in
three rather than two software programmes, cutaneous tissue
was included in the SAT measurements with sliceOmatic. A
comparison of SAT measurements using sliceOmatic with
and without the inclusion of cutaneous tissue resulted in a
median difference of 2.3% (interquartile range 0.8–3.8) and
was considered acceptable.

Statistical analysis

Continuous data are presented as mean with the standard
error of the mean. Normality was tested using the
Shapiro–Wilk test. Differences between the different software
packages and within and between observers were compared
using the paired samples t-test for normally distributed data
and the Wilcoxon signed rank test for data that were not
normally distributed. The inter-software and inter-observer
and intra-observer agreement for the cross-sectional skeletal
muscle, visceral adipose tissue, and subcutaneous adipose
tissue measurements were calculated using intra-class
correlation coefficients (ICCs) with 95% confidence interval
using a two-way mixed single measures model with absolute
agreement. For the inter-observer correlation, reading 1 of
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observer B was compared with reading 1 of observer A.
Ninety-five per cent limits of agreement were determined to
investigate the agreement between the various software
programmes, according to the method described by Bland
and Altman.38 The presence of proportional systematic bias
was determined by linear regression analysis of the difference
and mean of two measurements. The inter-software, inter-
observer and intra-observer agreement of the assessment of
sarcopenia and visceral obesity were analyzed using Cohen’s
κ coefficients. The ICCs and Cohen’s κ coefficients were
interpreted as poor (0.00–0.49), fair to good (0.50–0.74),
and excellent (0.75–1.00), as proposed by Shrout and Fleiss.39

The Jaccard similarity coefficient, ranging from 0 to 1, was
used to compare the similarity and diversity of measurements
by dividing the area of the intersection by the size of the union
of two measurements.40 An overlay of two measurements
was created, and the Jaccard similarity coefficient was
calculated using MeVisLab version 2.7.1 (MeVis Medical
Solutions AG, Bremen, Germany). A Jaccard similarity
coefficient of 1 represents perfect overlap of two samples,
whereas 0 represents no overlap. Two-tailed P-values <0.05
were considered statistically significant. All statistical analyses
were performed using IBM SPSS Statistics for Windows
version 21.0 (IBM Corp. Armonk, NY, USA).

Results

Patients

The study population consisted of 29 men (58%) and 21
women (42%) with a median age of 62 years (range 33–81)

and a median body mass index of 24.6 kg/m2 (range
16.5–38.8). Ten patients had stage II (20.0%), 24 stage III
(48.0%), and 15 stage IV (30.0%) rectal cancer. Tumour stage
was unknown for one patient. The mean CSMA, VAT, and SAT
for all measurements are provided in Tables 1 and 2.

Inter-software agreement

The inter-software ICCs were excellent (≥0.999) for
the CSMA, VAT, and SAT for all software programmes with
P-values <0.001 (Table 3). Figure 1 and Supporting Infor-
mation, Figures S1 and S2 show the Bland–Altman 95%
limits of agreement plots, with the mean difference and
95% limits of agreement for the CSMA, VAT, and SAT for
both observers. All plots show a good agreement between
the various software programmes. Small limits of agree-
ment are observed in the CSMA measurements, whereas
these limits of agreement are greater for the VAT and
SAT measurements. Proportional systematic bias was ob-
served between FatSeg and OsiriX for CSMA (P = 0.049)
for observer B (Figure 1A) and between FatSeg and
sliceOmatic for SAT (P = 0.031) for observer A (Supporting
Information, Figure S2C). Furthermore, proportional system-
atic bias was frequently observed between programmes for
VAT measurements (Supporting Information, Figure S1).
Comparable results were achieved when non a priori
selected slices of observer B (reading 2) were analyzed
(data not shown). The mean Jaccard similarity coefficients
for the inter-software comparisons are summarized in Table
4 and depicted in Figure 2.

Table 1 Mean cross-sectional skeletal muscle and visceral and subcutaneous adipose tissue area (cm
2
) measurements and intra-observer agreement

indices (i.e. ICC) using FatSeg, OsiriX, ImageJ, and sliceOmatic of observer A

Software

Observer A

Reading 1 (cm2) SEM Reading 2 (cm2) SEM Mean difference (95% CI) P-value ICC (95% CI)

Skeletal muscle area
FatSeg 139.0 5.2 139.3 5.2 �0.3 (�0.6; 0.0) 0.072a 0.999 (0.999–1.000)
OsiriX 139.4 5.2 138.7 5.1 0.7 (0.4; 1.0) <0.001a 0.999 (0.999–1.000)
ImageJ 139.0 5.2 139.3 5.1 �0.3 (�0.6; �0.1) 0.013a 1.000 (0.999–1.000)
sliceOmatic 138.7 5.2 138.6 5.2 0.1 (�0.2; 0.4) 0.441a 1.000 (0.999–1.000)

Visceral adipose tissue area
FatSeg 149.9 13.1 149.2 13.1 0.7 (0.3; 1.0) <0.001b 1.000 (1.000–1.000)
OsiriX 147.6 13.0 147.3 13.0 0.3 (�0.3; 0.8) 0.220b 1.000 (1.000–1.000)
ImageJ 148.6 13.0 150.8 12.8 �2.2 (�7.5; 3.1) 0.003b 0.979 (0.964–0.988)
sliceOmatic 147.1 13.0 146.6 13.0 0.5 (0.2; 0.9) 0.004b 1.000 (1.000–1.000)

Subcutaneous adipose tissue area
FatSeg 158.9 11.2 158.9 11.2 0.1 (�0.2; 0.3) 0.359b 1.000 (1.000–1.000)
OsiriX 155.9 11.2 155.7 11.3 0.2 (�0.1; 0.4) 0.137b 1.000 (1.000–1.000)
ImageJ 158.9 11.2 159.1 11.3 �0.2 (�0.5; 0.0) 0.201b 1.000 (1.000–1.000)
sliceOmatic 158.8 11.3 158.8 11.3 0.0 (�0.3; 0.2) 0.448b 1.000 (1.000–1.000)

CI confidence interval; ICC, intra-class correlation coefficient; SEM, standard error of the mean.
aCalculated with paired sample t-test.
bCalculated with Wilcoxon signed rank test.
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Intra-observer and inter-observer agreement

The ICCs for the intra-observer agreement of observer A were
all 0.979 or higher for the different software programmes,
approaching perfect correlation (Table 1). The ICCs for the
inter-observer agreement also approached perfect agree-
ment (all ≥0.999, Table 2). The mean CSMA was significantly
lower for observer A compared with observer B for all soft-
ware programmes. A significantly higher mean VAT of

observer A was found using FatSeg (149.9 cm2 vs.
148.7 cm2, P< 0.001) and ImageJ (148.6 cm2 vs. 148.4 cm2,
P = 0.015) compared with observer B, whereas the mean
VAT of both observers did not significantly differ for OsiriX
(P = 0.133) and sliceOmatic (P = 0.412). The mean SAT did sig-
nificantly differ for FatSeg (158.9 cm2 vs. 159.2 cm2, P = 0.005)
between the observers. Comparable results were observed
when non a priori selected slices of reading 2 of observer B
were used for analyses (data not shown). The mean Jaccard

Table 2 Mean cross-sectional skeletal muscle and visceral and subcutaneous adipose tissue area (cm2) measurements and inter-observer agreement
indices (i.e. ICC) using FatSeg, OsiriX, ImageJ, and sliceOmatic of reading 1 of observers A and B

Software

Observer A Observer B
Mean difference

(95% CI) P-value ICC (95% CI)Reading 1 (cm2) SEM Reading 1 (cm2) SEM

Skeletal muscle area (CSMA)
FatSeg 139.0 5.2 140.1 5.2 �1.1 (�1.4; �0.8) <0.001a 0.999 (0.989–1.000)
OsiriX 139.4 5.2 139.7 5.1 �0.3 (�0.5; 0.0) 0.047a 1.000 (0.999–1.000)
ImageJ 139.0 5.2 139.8 5.2 �0.8 (�1.0; �0.5) <0.001a 0.999 (0.997–1.000)
sliceOmatic 138.7 5.2 139.3 5.2 �0.6 (�0.9; �0.2) 0.006a 0.999 (0.998–1.000)
Visceral adipose tissue area (VAT)
FatSeg 149.9 13.1 148.7 13.1 1.2 (0.8; 1.5) <0.001b 1.000 (0.999–1.000)
OsiriX 147.6 13.0 147.3 13.0 0.3 (�0.3; 0.8) 0.133b 1.000 (1.000–1.000)
ImageJ 148.6 13.0 148.4 13.1 0.3 (�0.1; 0.6) 0.015b 1.000 (1.000–1.000)
sliceOmatic 147.1 13.0 146.9 13.0 0.2 (�0.1; 0.5) 0.412b 1.000 (1.000–1.000)
Subcutaneous adipose tissue area (SAT)
FatSeg 158.9 11.2 159.2 11.3 �0.3 (�0.5; �0.1) 0.005b 1.000 (1.000–1.000)
OsiriX 155.9 11.2 155.8 11.3 0.1 (�0.3; 0.5) 0.918b 1.000 (1.000–1.000)
ImageJ 158.9 11.2 158.7 11.2 0.2 (�0.2; 0.5) 0.306b 1.000 (1.000–1.000)
sliceOmatic 158.8 11.3 158.5 11.2 0.2 (0.0; 0.5) 0.183b 1.000 (1.000–1.000)

CI confidence interval; ICC, intra-class correlation coefficient; SEM, standard error of the mean.
aCalculated with paired sample t-test.
bCalculated with Wilcoxon signed rank test.

Table 3 Mean cross-sectional skeletal muscle and visceral and subcutaneous adipose tissue area (cm2) measurements and inter-software agreement
indices (i.e. ICC) using FatSeg, OsiriX, ImageJ, and sliceOmatic of reading 1 of observer B

Software programme Mean difference (cm2) (95% CI) SEM P-value ICC (95% CI)

Skeletal muscle area (CSMA)
FatSeg–OsiriX �0.4 (�0.8; 0.0) 0.184 0.047 0.999 (0.999–1.000)
FatSeg–ImageJ 0.0 (�0.3; 0.3) 0.151 0.992 1.000 (0.999–1.000)
FatSeg–sliceOmatic 0.3 (�0.2; 0.8) 0.230 0.207 0.999 (0.998–0.999)
OsiriX–ImageJ 0.4 (0.1; 0.7) 0.161 0.023 0.999 (0.999–1.000)
OsiriX–sliceOmatic 0.7 (0.3; 1.1) 0.189 0.001 0.999 (0.998–1.000)
ImageJ–sliceOmatic 0.3 (�0.1; 0.7) 0.208 0.165 0.999 (0.999–1.000)
Visceral adipose tissue area (VAT)
FatSeg–OsiriX 2.3 (1.6; 2.9) 0.326 <0.001 0.999 (0.995–1.000)
FatSeg–ImageJ 1.2 (0.8; 1.7) 0.203 <0.001 1.000 (0.999–1.000)
FatSeg–sliceOmatic 2.8 (2.3; 3.2) 0.238 <0.001 0.999 (0.971–1.000)
OsiriX–ImageJ �1.0 (�1.5; �0.6) 0.237 <0.001 1.000 (0.999–1.000)
OsiriX–sliceOmatic 0.5 (0.0; 0.9) 0.229 0.044 1.000 (1.000–1.000)
ImageJ–sliceOmatic 1.5 (1.2; 1.8) 0.158 <0.001 1.000 (0.995–1.000)
Subcutaneous adipose tissue area (SAT)
FatSeg–OsiriX 3.0 (2.5; 3.6) 0.256 <0.001 0.999 (0.948–1.000)
FatSeg–ImageJ 0.1 (–0.3; 0.4) 0.180 0.698 1.000 (1.000–1.000)
FatSeg–sliceOmatic 0.2 (�0.1; 0.5) 0.141 0.240 1.000 (1.000–1.000)
OsiriX–ImageJ �3.0 (�3.5; �2.5) 0.260 <0.001 0.999 (0.956–1.000)
OsiriX–sliceOmatic �2.9 (�3.3; �2.5) 0.211 <0.001 0.999 (0.932–1.000)
ImageJ–sliceOmatic 0.1 (�0.2; 0.4) 0.139 0.485 1.000 (1.000–1.000)

The results of observer A are comparable with those of observer B.
CI confidence interval; ICC, inter-class and intra-class correlation coefficients; SEM, standard error of the mean.
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Figure 1 Bland–Altman 95% limits of agreement plots for the agreement between the various software programmes (provided on the x-axes and y-
axes) for CSMA (cm2). The dotted lines are the mean of the difference and the 95% limits of agreement (±2 SD) between the CSMA of reading 1 of
observer A and the solid lines of reading 1 of observer B. (A) There was no proportional systematic bias for observer A (P = 0.908), whereas there
was significant bias for observer B (P = 0.049). (B) There was no proportional systematic bias for any observer (P = 0.738 and P = 0.359). (C) There
was no proportional systematic bias for any observer (P = 0.238 and P = 0.704). (D) There was no proportional systematic bias for any observer
(P = 0.857 and P = 0.363). (E) There was no proportional systematic bias for any observer (P = 0.185 and P = 0.228). (F) There was no proportional sys-
tematic bias for any observer (P = 0.289 and P = 0.843).
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similarity coefficients for the inter-observer and intra-
observer comparisons are summarized in Table 5 and
depicted in Supporting Information, Figures S3 and S4. All
remaining worst Jaccard similarity coefficients are provided
in Supporting Information, Figure S5.

The classification of sarcopenia and visceral
obesity

The inter-software Cohen’s κ’s of the first reading of observer
A for the classification of sarcopenia were 0.96 (between
FatSeg and Osirix, OsiriX and ImageJ, and ImageJ and
sliceOmatic), 0.92 (between FatSeg and ImageJ, and Osirix
and sliceOmatic), and 0.88 (between FatSeg and sliceOmatic).
No inter-software differences were found in the classification
of patients with and without sarcopenia for observer B.
According to the cut-off values used, all software programmes
diagnosed sarcopenia in 16 men (55.2%) and 8 women
(38.1%). This resulted in a Cohen’s κ of 1.00 for all compari-
sons between software programmes (P< 0.001).

The Cohen’s κ for the intra-observer agreement of
sarcopenia assessment of observer A was 0.96 using FatSeg
and ImageJ and 1.00 for OsiriX and sliceOmatic (all P< 0.001).

The Cohen’s κ for the inter-observer agreement (reading 1
of observer A vs. reading 1 of observer B) of sarcopenia as-
sessment was 0.92 for sliceOmatic, 0.96 for FatSeg and
ImageJ, and 1.00 for Osirix (all P< 0.001).

The classification of visceral obesity

In total, 17 men (58.6%) and 9 women (42.9%) were classified
as visceral obese using FatSeg, OsiriX, ImageJ, and
sliceOmatic in all readings. This resulted in a Cohen’s κ of
1.00 for all comparisons (all P< 0.001).

Discussion

This study shows that the inter-software agreement was
excellent for all software programmes. Furthermore, the
inter-observer and intra-observer agreements were excellent
for four distinct software programmes to assess CSMA, VAT,
and SAT on abdominal CT scans with high Jaccard similarity
coefficients.

Body composition analyses using abdominal CT scans are
increasingly being performed. In multiple surgical popula-
tions, such as vascular,27 gastrointestinal,7,33 urological,41–
43 gynaecological,44 and transplantation surgery,29 the asso-
ciation between low skeletal muscle mass and an increased
risk of post operative complications, recurrent disease, or
impaired survival has been shown. Low skeletal muscle
mass is also related to discharge destination in elderlyTa
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trauma patients,45 associated with an increased risk of dose-
limiting chemotherapy toxicity17,24,25,46 and with morbidity and
mortality in various oncologic populations, such as lung cancer
and melanoma patients.47,48 Furthermore, CT-assessed visceral
obesity is associated with worse short-term and long-term out-
come in distinct patient populations undergoing surgery.30 Vari-
ous software programmes have been used to measure body
composition in these studies. The current study shows that the

results of these studies can reliably be compared. Based on
our findings, it is likely that this is also true for other software
programmes, which similarly compute skeletal muscle area by
quantifying selected voxels within preset HU intensity thresh-
olds [e.g. studies that used software programmes designed in
MATLAB (MathWorks, Natick, MA, USA)49].

Software programmes for various body composition mea-
surements on CT images, such as adipose tissue surface area,

Figure 2 Jaccard similarity coefficients (lowest and highest are shown) for inter-software comparisons of CSMA, VAT, and SAT (cm
2
) measurements

(reading 1 of observer B). The green area represents similarity, whereas the red area represents discrepancy in measurements. (A) The CSMA mea-
sured with FatSeg and ImageJ (1) and FatSeg and sliceOmatic (2), resulting in Jaccard similarity coefficients of 0.998 and 0.927, respectively. (B) The
VAT measured with ImageJ and sliceOmatic (1, 2), resulting in Jaccard similarity coefficients of 0.998 and 0.855, respectively. (C) The SAT measured
with ImageJ and sliceOmatic (1) and OsiriX and sliceOmatic (2), resulting in Jaccard similarity coefficients of 0.999 and 0.923, respectively.

292 J.L.A. van Vugt et al.

Journal of Cachexia, Sarcopenia and Muscle 2017; 8: 285–297
DOI: 10.1002/jcsm.12158



skeletal muscle tissue surface area, and liver volumetric
measurements, have been compared in multiple previous
studies, demonstrating high levels of agreement.50–53 Excel-
lent agreement levels between sliceOmatic and ImageJ,54 as
well as between observers using sliceOmatic55 for CSMA
measurements have previously been reported. Furthermore,
excellent agreement levels between OsiriX and ImageJ have
been observed for paraspinal muscle measurements on mag-
netic resonance images.56 Nevertheless, this is the first study
to compare multiple software programmes for the measure-
ment of CSMA, VAT, and SAT, showing that previous studies
investigating the association between skeletal muscle mass
on the one side and visceral or subcutaneous adipose tissue
on the other side, and patient outcomes can reliably be
compared.

The skeletal muscle area (cm2) measured at a single cross-
sectional CT image at the level of the third lumbar vertebra
(L3) is linearly related to total body skeletal muscle mass57

and is therefore corrected for height squared (m2), as is
conventional for body composition measures. This results in
the L3 muscle index (cm2/m2).18 Another frequently used
method is measuring the total psoas area (TPA).27 The princi-
ple of TPA measurements is identical to L3 muscle area mea-
surements, using single cross-sectional CT images. Therefore,
the findings of this study may be extrapolated to TPA
measurements as well. Nevertheless, this should be con-
firmed in a future study.

Significant differences were observed between the mean
skeletal muscle areas within and between observers. How-
ever, these mean differences are small and consequently
could be considered as not clinically relevant. Differences
in individual measurements resulted, for instance, from
the incorrect annotation of skeletal muscle tissue (see Fig-
ure 2A2 for an example of an intra-observer difference).
However, we decided not to correct measurements in ret-
rospect to show inter-observer and intra-observer agree-
ments. In our opinion, this study reflects daily practice,
with observers who have excellent (radiological) anatomical
knowledge performing body composition measurements.
Regardless of these human errors and some inter-observer
and intra-observer differences, high comparability between
software programmes was observed.

Significant differences between VAT measurements were
also observed with greater mean differences between soft-
ware. This could be due to the greater complexity of the mea-
surement technique, as intraluminal content (i.e. fat in stool)
needs to be manually erased. The greatest significant mean
differences in SAT could partly been explained by the fact
that in OsiriX the cutaneous adipose tissue in not included
in the SAT, in contrast to the other software programmes.
Furthermore, every tissue of interest needs to be manually
selected in OsiriX, in contrast to the other programmes in
which methods of delineating or a painting brush can be used
to select regions of interest.Ta
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Significant differences in the mean VAT (FatSeg and
ImageJ) within observer A and in the mean VAT (FatSeg,
OsiriX, and sliceOmatic) and SAT (FatSeg, OsiriX, and
ImageJ) between observers (reading 2 of observer A with
non a priori selected slices; data not shown) were found,
whereas the CSMA did not significantly differ. One explana-
tion for the differences in VAT and SAT could be the ran-
dom slice selection. After all, the distribution of the intra-
abdominal content (e.g. bowel) can greatly differ between
slices. Consequently, single slice measurement of visceral
adipose tissue would not be clinical applicable and should
be reserved for clinical research of patient cohorts rather
than individual patients. For SAT, the variance of subcuta-
neous adipose tissue distribution could have led to the ob-
served differences. Nevertheless, all differences are
relatively small and could therefore be considered as not
clinically relevant. The inter-observer agreement levels for
OsiriX and sliceOmatic are in line with previous studies that
showed a strong and significant correlation between CSMA
measurements of two observers.7,55 The inter-observer
agreements for FatSeg and ImageJ have never been re-
ported before, whereas a high agreement for the classifica-
tion of patients with sarcopenia, as expressed in Cohen’s κ,
has previously been reported.7

Several limitations apply to the current study and the
used software programmes. First, both observers in the
current study were experienced in quantifying skeletal
muscle mass using these software programmes prior to
conducting this study. Therefore, the agreement rates that
were obtained may not apply to less experienced users.
Second, OsiriX is only compatible with Macintosh, which
is less commonly used in clinical practice. Furthermore,
FatSeg is not freely downloadable as it is an in-house de-
veloped software programme that has not been made pub-
lically available, in contrast to OsiriX and ImageJ. A license
is required for the use of sliceOmatic. Third, this study
could only assess the agreement of the measurement with
different software programmes on the same data. Intra-
scanner and inter-scanner reproducibility of the measure-
ment could not be assessed with the current study design.
Last, previous studies reported an approximate time of
8min to quantify skeletal muscle, visceral, and subcutane-
ous adipose tissue in liver transplant patients using
sliceOmatic.55 Although some differences in user-
friendliness were observed while performing the measure-
ments, these were not objectively observed and scored in
the current study. Consequently, these are not described.

Conclusions

In conclusion, this study showed that four different software
programmes have an excellent agreement to measure VAT

and SAT, and CSMA in particular on abdominal CT scans,
which enables reliable comparison of results of studies that
use these different software programmes. Multiple slice anal-
ysis is preferred for VAT and SAT measurements.

Acknowledgements

The authors would like to thank Laurens Groenendijk and
Elsaline Rijkse of the Imaging Trial Office, department of Ra-
diology and Nuclear Medicine, Erasmus MC University Medi-
cal Centre, Rotterdam, the Netherlands, for anonymizing and
providing the CT scans, and Yves Martel of sliceOmatic
(TomoVision, Magog, Canada) for providing a temporary free
license to use the software package. The authors certify that
they comply with the ethical guidelines for publishing in the
Journal of Cachexia, Sarcopenia and Muscle: update 2015.58

JLAvV designed the study, performed the measurements
(observer B), analyzed and interpreted the data, and wrote
the manuscript. SL designed the study, interpreted the data,
and wrote the manuscript. AG performed the measurements
(observer A) and analyzed the data. MK and WJN developed
and provided the FatSeg software programme and provided
technical advice and support for the measurements and the
calculation of the Jaccard similarity coefficients. SPW pro-
vided statistical and methodological advice and interpreted
the data. JWA Burger provided the clinical data. RWFdB and
JNMIJ interpreted the data and supervised the study. All
authors critically revized the manuscript and approved the
manuscript for publication.

Online supplementary material

Additional Supporting Information may be found in the online
version of this article at the publisher’s website:

Supplementary figure 1. Bland-Altman 95% limits of agree-
ment plots for the agreement between the various software
programs (provided on the X-axes and Y-axes) for VAT
(cm2). The dotted lines are the mean of the difference and
the 95% limits of agreement (±2 SD) between the VAT of
reading 1 of observer A and the solid lines of reading 1 of ob-
server B
Supplementary figure 1a. There was proportional systematic
bias for both observers (p =0.004 and p=0.043, respectively).
Supplementary figure 1b. There was proportional systematic
bias for observer A (p =0.038), but not for observer B (p =0.154).
Supplementary figure 1c. There was proportional systematic
bias for both observers (both p=0.002).
Supplementary figure 1d. There was proportional systematic
bias for observer A (p =0.045), whereas there was no propor-
tional systematic bias for observer B (p =0.202).
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Supplementary figure 1e. There was no proportional systematic
bias for any observer (p =0.412 and p=0.114, respectively).
Supplementary figure 1f. There was no proportional systematic
bias for observer A (p =0.068), whereas therewas significant bias
for observer B (p =0.014).
Supplementary figure 2. Bland-Altman 95% limits of agreement
plots for the agreement between the various software programs
(provided on the X-axes and Y-axes) for SAT (cm2). The dotted
lines are the mean of the difference and the 95% limits of agree-
ment (±2 SD) between the SAT of reading 1 of observer A and the
solid lines of reading 1 of observer B.
Supplementary figure 2a. There was no proportional systematic
bias for any observer (p =0.534 and p=0.801, respectively).
Supplementary figure 2b. There was no proportional systematic
bias for any observer (p =0.538 and p=0.112, respectively).
Supplementary figure 2c. There was proportional systematic
bias for observer A (p =0.031), whereas there was no
proportional systematic bias for observer B (p =0.134).
Supplementary figure 2d. There was no proportional systematic
bias for any observer (p =0.853 and p=0.344, respectively).
Supplementary figure 2e. There was no proportional systematic
bias for any observer (p =0.511 and p=0.305, respectively).
Supplementary figure 2f. There was no proportional systematic
bias for any observer (p =0.175 and p=0.939, respectively).
Supplementary figure 3. Jaccard similarity coefficients (lowest
and highest are shown) for inter-observer comparisons of CSMA,
VAT, and SAT (cm2) measurements (reading 1 of observer A ver-
sus reading 1 of observer B). The green area represents similarity,
whereas the red area represents discrepancy in measurements.
Supplementary figure 3a. The CSMA measured with FatSeg (1)
and ImageJ (2), resulting in Jaccard similarity coefficients of
0.997 and 0.931, respectively.
Supplementary figure 3b. The VAT measured with FatSeg (1)
and OsiriX (2), resulting in Jaccard similarity coefficients of
0.998 and 0.835, respectively.
Supplementary figure 3c. The SAT measured with OsiriX (1) and
ImageJ (2), resulting in Jaccard similarity coefficients of 1.000 and
0.899, respectively.
Supplementary figure 4. Jaccard similarity coefficients (lowest
and highest are shown) for intra-observer comparisons of CSMA,
VAT, and SAT (cm2)measurements (reading 1 versus reading 2 of
observer A). The green area represents similarity, whereas the
red area represents discrepancy in measurements.
Supplementary figure 4a. The CSMA measured with FatSeg (1)
and OsiriX (2), resulting in Jaccard similarity coefficients of
1.000 and 0.953, respectively.
Supplementary figure 4b. The VAT measured with FatSeg (1)
and OsiriX (2), resulting in Jaccard similarity coefficients of
0.999 and 0.838, respectively.
Supplementary figure 4c. The SAT measured with ImageJ (1, 2),
resulting in Jaccard similarity coefficients of 1.000 and 0.900, re-
spectively. Furthermore, a Jaccard similarity coefficient of 1.000
was also observed in two other patients measured with FatSeg
and OsiriX.

Supplementary figure 5. All worst Jaccard similarity coefficients
for the inter-software (5a), inter-observer (5b) and intra-ob-
server (5c) agreement for the three body composition analyses
except the ones that are shown in figure 2 and supplementary
figures 2 and 3.
Supplementary figure 5a1a. CSMA measured with FatSeg and
Image resulting in a Jaccard similarity coefficient of 0.959.
Supplementary figure 5a1b. CSMA measured with FatSeg and
OsiriX resulting in a Jaccard similarity coefficient of 0.948.
Supplementary figure 5a1c. CSMA measured with ImageJ and
OsiriX resulting in a Jaccard similarity coefficient of0.948.
Supplementary figure 5a1d. CSMA measured with ImageJ and
sliceOmatic resulting in a Jaccard similarity coefficient of 0.932.
Supplementary figure 5a1e. CSMA measured with OsiriX and
sliceOmatic resulting in a Jaccard similarity coefficient of0.944.
Supplementary figure 5a2a. VAT measured with FatSeg and
ImageJ resulting in a Jaccard similarity coefficient of0.903.
Supplementary figure 5a2b. VAT measured with FatSeg and
OsiriX resulting in a Jaccard similarity coefficient of 0.886.
Supplementary figure 5a2c. VAT measured with FatSeg and
sliceOmatic resulting in a Jaccard similarity coefficient of 0.860.
Supplementary figure 5a2d. VAT measured with ImageJ and
OsiriX resulting in a Jaccard similarity coefficient of 0.891.
Supplementary figure 5a2e. VAT measured with OsiriX and
sliceOmatic resulting in a Jaccard similarity coefficient of 0.884.
Supplementary figure 5a3a. SAT measured with FatSeg and
ImageJ resulting in a Jaccard similarity coefficient of0.968.
Supplementary figure 5a3b. SAT measured with FatSeg and
OsiriX resulting in a Jaccard similarity coefficient of 0.926.
Supplementary figure 5a3c. SAT measured with FatSeg and
sliceOmatic resulting in a Jaccard similarity coefficient of 0.960.
Supplementary figure 5a3d. SAT measured with ImageJ and
OsiriX resulting in a Jaccard similarity coefficient of 0.927.
Supplementary figure 5a3e. SAT measured with ImageJ and
sliceOmatic resulting in a Jaccard similarity coefficient of 0.965.
Supplementary figure 5b1a. CSMA measured with FatSeg
resulting in a Jaccard similarity coefficient of 0.949.
Supplementary figure 5b1b. CSMA measured with OsiriX
resulting in a Jaccard similarity coefficient of 0.931.
Supplementary figure 5b1c. CSMA measured with sliceOmatic
resulting in a Jaccard similarity coefficient of 0.939.
Supplementary figure 5b2a. VAT measured with FatSeg
resulting in a Jaccard similarity coefficient of 0.908.
Supplementary figure 5b2b. VAT measured with ImageJ
resulting in a Jaccard similarity coefficient of 0.905.
Supplementary figure 5b2c. VAT measured with sliceOmatic
resulting in a Jaccard similarity coefficient of 0.876.
Supplementaryfigure 5b3a. SATmeasuredwith FatSeg resulting
in a Jaccard similarity coefficient of 0.969.
Supplementary figure 5b3b. SATmeasured with OsiriX resulting
in a Jaccard similarity coefficient of 0.961.
Supplementary figure 5b3c. SAT measured with sliceOmatic
resulting in a Jaccard similarity coefficient of 0.959.
Supplementary figure 5c1a. CSMA measured with FatSeg
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resulting in a Jaccard similarity coefficient of 0.961.
Supplementary figure 5c1b. CSMA measured with ImageJ
resulting in a Jaccard similarity coefficient of 0.948.
Supplementary figure 5c1c. CSMA measured with sliceOmatic
resulting in a Jaccard similarity coefficient of 0.961.
Supplementaryfigure 5c2a.VATmeasuredwith FatSeg resulting
in a Jaccard similarity coefficient of 0.916.
Supplementary figure 5c2b. VAT measured with ImageJ
resulting in a Jaccard similarity coefficient of 0.891.
Supplementary figure 5c2c. VAT measured with sliceOmatic
resulting in a Jaccard similarity coefficient of 0.901.
Supplementary figure 5c3a. SATmeasuredwith FatSeg resulting
in a Jaccard similarity coefficient of 0.956.

Supplementary figure 5c3b. SAT measured with OsiriX resulting
in a Jaccard similarity coefficient of 0.967.
Supplementary figure 5c3c. SAT measured with sliceOmatic
resulting in a Jaccard similarity coefficient of 0.967.
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