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Abstract

Motivation: High Throughput Sequencing (HTS) has enabled researchers to probe the human T

cell receptor (TCR) repertoire, which consists of many rare sequences. Distinguishing between true

but rare TCR sequences and variants generated by polymerase chain reaction (PCR) and sequenc-

ing errors remains a formidable challenge. The conventional approach to handle errors is to

remove low quality reads, and/or rare TCR sequences. Such filtering discards a large number of

true and often rare TCR sequences. However, accurate identification and quantification of rare TCR

sequences is essential for repertoire diversity estimation.

Results: We devised a pipeline, called Recover TCR (RTCR), that accurately recovers TCR se-

quences, including rare TCR sequences, from HTS data (including barcoded data) even at low

coverage. RTCR employs a data-driven statistical model to rectify PCR and sequencing errors in an

adaptive manner. Using simulations, we demonstrate that RTCR can easily adapt to the error pro-

files of different types of sequencers and exhibits consistently high recall and high precision even

at low coverages where other pipelines perform poorly. Using published real data, we show that

RTCR accurately resolves sequencing errors and outperforms all other pipelines.

Availability and Implementation: The RTCR pipeline is implemented in Python (v2.7) and C and is

freely available at http://uubram.github.io/RTCR/along with documentation and examples of typical

usage.

Contact: b.gerritsen@uu.nl

1 Introduction

T cells are crucial to the adaptive immune system, enabling it to rec-

ognize almost any pathogen that infects the host while remaining

tolerant to many self-antigens. The recognition of antigens by T cells

is mediated by the T cell receptor (TCR). Through random genetic

recombination, the immune system can potentially equip every T

cell with a different TCR, allowing it to bind different antigens than

other T cells. The different T cells together form a T cell repertoire,

which due to its pivotal role in the immune response, is studied ex-

tensively in areas such as infectious diseases, cancer, autoimmunity

and ageing (Bolotin et al., 2012; Suessmuth et al., 2015;

Woodsworth et al., 2013).

Classical TCRs are heterodimers, consisting of ab protein chains.

The genes encoding the a and b chains are generated via somatic sto-

chastic DNA rearrangements, in which germline variable (V), diver-

sity (D) and joining (J) gene segments recombine (Bassing et al.,

2002). Random deletions and non-templated nucleotide insertions

occur at the V(D)J junctions, which together with the random selec-

tion of gene segments is responsible for generating a full repertoire

of TCRs. Theoretically, �5� 1011 different TCR b chains are
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possible (Robins et al., 2010), which together with the TCRa chains

can result in more than 1015 distinct TCRs (Davis and Bjorkman,

1988). Because humans have �1012 T cells (Arstila et al., 1999),

every individual harbors at most only a small but diverse (Arstila

et al., 1999; Robins et al., 2010; Qi et al., 2014; Warren et al.,

2011) fraction of this potential repertoire.

High throughput sequencing (HTS) (Holt and Jones, 2008;

Shendure and Ji, 2008) is often used to probe the TCR repertoire

(Freeman et al., 2009; Klarenbeek et al., 2010; Ndifon et al., 2012;

Robins et al., 2009, 2010; Wang et al., 2010; Warren et al., 2011).

Analysing the repertoire is challenging because of its high diversity

and many rare clonotypes, pushing the boundaries of sequencing

technologies. Some of the important confounding factors in quantifi-

cation and identification of the repertoire are: short read length (e.g.

150 bp reads whereas the VDJ region of the TCR is �500 bp), un-

equal polymerase chain reaction (PCR) amplification, sequencing

errors and sampling biases (Baum et al., 2012; Calis and Rosenberg,

2014; Nguyen et al., 2011; Robins et al., 2009; Warren et al.,

2011). Despite the improvements in sequencing technologies, quan-

tification of true TCR repertoire diversity remains elusive, because

the repertoire is heavily undersampled and sequencing errors artifi-

cially skew the repertoire.

To analyse HTS data from TCR repertoires, multiple pipelines

have been developed. Some of these are: IMGT (Alamyar et al., 2012),

which provides a web interface and detailed annotations, iSSAKE

(Warren et al., 2009), which assembles immune receptors from very

short reads, IRmap (Wang et al., 2010), designed for 454 sequencing

data, Decombinator (Thomas et al., 2013), designed for fast annota-

tion, MiTCR (Bolotin et al., 2013), MiXCR (Bolotin et al., 2015) and

IMSEQ (Kuchenbecker et al., 2015) focusing on error correction,

Presto (Vander Heiden et al., 2014) and MiGEC (Shugay et al., 2014)

handling reads with unique molecular identifiers (‘barcoded’ data) and

TCRklass (Yang et al., 2015) annotating all reads including those that

lack the complementarity determining region 3 (CDR3) of the TCR.

Most of these pipelines filter out low quality reads and/or remove rare

TCR sequences. Since most unique TCR sequences are rare, such filter-

ing can cause a massive loss of true TCR sequences.

We developed a pipeline, called Recover TCR (RTCR), that at-

tempts to accurately recover TCR sequences at varying coverage,

including rare TCR sequences while maintaining high precision and

high recall. Accurate quantification of TCR repertoires is especially

important in clinical settings, where low coverage TCR sequencing

can be used for cost effectiveness. There are multiple ways to identify

sequence errors in HTS data. Some of these are: (i) base quality, i.e. a

low quality base is more likely to be false than a high quality base,

and (ii) similarity, i.e. true TCR sequences tend to be surrounded by

similar erroneous variants due to PCR and sequencing errors. In

RTCR, these strategies are translated into a simple binomial model

(Nguyen et al., 2011) together with several heuristics to rationally

eliminate PCR and sequencing errors. RTCR automatically sets its

parameters based on the data, relieving the user from setting arbitrary

parameters. RTCR supports ‘barcoded’ HTS data, combining

barcode-based error correction with its regular error correction.

To measure the performance of RTCR, we compared it to

TCRklass, MiTCR, MiXCR, IMSEQ and MiGEC, using simulated

and real HTS datasets. We demonstrate that RTCR can easily adapt

to error profiles of different types of sequencers and exhibits consist-

ently high recall and high precision even at low coverage. We bench-

mark different pipelines using several synthetic TCR HTS datasets

generated via realistic PCR and sequencing simulations. We find

that RTCR outperforms all other pipelines on recall and matches

the high precision of MiTCR, MiXCR and IMSEQ. Using real data

we then show that RTCR can accurately resolve apparent sequenc-

ing errors which are incompletely resolved by other pipelines.

2 Methods

2.1 RTCR pipeline
RTCR is a pipeline for identification and data-driven error correc-

tion of TCR sequences from HTS data. The pipeline was written in

Python v2.7 and C, and provides an easy to use command line inter-

face. Below we will explain the steps the RTCR pipeline takes to

analyse an HTS dataset.

Reads obtained from HTS are typically too short to span the

whole TCR gene and are error-prone. If a read contains the CDR3 re-

gion of a TCR, the corresponding TCR gene can be uniquely identi-

fied (provided the read also contains enough of the flanking V and J

segment nucleotides to unambiguously determine the correct V and J

segment). Every base in a read is assigned a ‘Phred’ score (Q), which

indicates the probability (p) of an erroneous base call by the sequen-

cer: Q ¼ �10log10p. To infer TCR sequences, RTCR aligns germline

V and J segments to the reads using an external aligner. We chose

Bowtie 2 (Langmead and Salzberg, 2012) as the default aligner for

RTCR, because it is fast, accurate (data not shown), and uses Phred

scores to score the alignments. The pipeline can easily be configured

to use a different aligner. The D segments are not aligned to the reads

because it is difficult to align them unambiguously and excluding the

D segments does not change the inference of a TCR sequence. RTCR

uses the alignments to identify and extract the CDR3 region from

every read, annotating it with the V and J segment identified by the

aligner. Sets of identical CDR3 sequences are collapsed as follows: (i)

a single CDR3 sequence is kept and assigned the number of se-

quences in the set as its abundance, (ii) each position in the CDR3 se-

quence is assigned the highest Phred score found at that position in

the set and (iii) the CDR3 sequence is assigned the VJ segment com-

bination most common in the set, breaking ties using the alignment

score assigned by the aligner. An option is provided to the user to

prevent RTCR from collapsing CDR3 sequences with identical

CDR3 but different V and J segment annotation. We chose to col-

lapse all identical CDR3 sequences by default to avoid generation of

false TCR sequences due to ambiguity in segment annotation.

It is known that PCR and sequencing experiments can generate

errors in some reads which would inflate the number of distinct

TCR sequences (Baum et al., 2012; Bolotin et al., 2012; Nguyen

et al., 2011). RTCR uses a simple statistical model to estimate the

number of erroneous sequences in the data and the total number of

errors these sequences may contain. Let � be the probability of an

error for a base in a read. If we assume all bases are independent

and are erroneous with the same probability (�), then a sequence

(i.e. a string of bases) can be modeled as a set of Bernoulli trials. The

probability of having exactly h errors in a sequence of length l is

then given by the conventional binomial:

ph ¼
l

h

 !
�hð1� �Þl�h ; for h 2 f0; 1; . . . ; lg: (1)

Next, consider a set of n sequences, each of length l. There are

n� ph sequences expected to have exactly h errors, and the max-

imum number of errors expected to occur in at least one sequence is:

H ¼ maxðfh : nph � 1gÞ: (2)

Consider for example n as the number of times a particular TCR

sequence of length l has been sequenced, then there are expected to
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be np0 correct copies of it in the data. The remaining nð1� p0Þ erro-

neous copies are spread across an unknown number of distinct vari-

ants and there is expected to be at least one erroneous copy having

H mismatches with the TCR sequence.

The quality merge (QMerge), iterative merge (IMerge) and

Levenshtein merge (LMerge) algorithms that are explained below,

use Equations (1) and (2) together with several heuristics to deter-

mine which and how many sequences are likely to be erroneous.

The algorithms depend primarily on the per base error rate (�).

RTCR estimates this error rate (�) from the number of mismatches

observed in the aligned germline sequences with the reads. RTCR

calculates two separate error rates, one from the V alignments with

the CDR3 region and one from the J alignments with the CDR3 re-

gion. To remain conservative in the number of distinct TCR se-

quences recovered, the higher of the two error rates is assigned to �.

Both QMerge and IMerge group TCR sequences by length and

error correct each length group independently. Due to stochasticity

and experimental bias, the true number of mismatches in a length

group may be higher or lower than expected given the error rate, �,

which was calculated using all TCR sequences in the HTS dataset.

To prevent underestimation of the true number of mismatches in a

length group, RTCR combines the information from the alignments

and the base quality (Phred) scores to calculate a length group spe-

cific error rate (�l):

�l ¼
ma þmu

n
; (3)

where l is the length of the TCR sequences, n is the number of bases

in the length group, ma is the number of mismatches found in the

aligned regions of the TCR sequences in the length group, and mu is

the number of mismatches expected in the unaligned regions of the

TCR sequences, estimated using the base quality scores:

mu ¼
X

Q

uQ10
�Q
10a; (4)

where Q is a Phred score, uQ, is the number of bases in the un-

aligned regions of the length group with a Phred score of Q, and a is

a normalization factor for the Phred scores. Since Phred scores re-

flect the probability that a base is false, every Phred score can be

recalculated by taking all aligned bases with a particular Phred score

and use the fraction f that was false, to calculate an effective Phred

score Qeff ¼ �10log10f . The normalization factor a is calculated

from the average ratio of observed Phred scores to the effective

Phred scores, a ¼
P

Q Q=Qeff. Finally, RTCR takes the maximum

of the globally calculated error rate (�) and the group specific error

rate (�l), maxð�; �lÞ, as the error rate for the length group in the

QMerge and IMerge algorithms.

The error correction algorithms of RTCR described below (includ-

ing barcode error correction) use the same approach to merging TCR

sequences. If two (parent) TCR sequences are merged, a (child) con-

sensus sequence is formed from the highest abundant base at every

position, breaking ties by selecting the higher quality base, using ‘N’ if

ties cannot be broken. The algorithms keep track of the frequencies of

the parent bases at every position using a position frequency matrix

(PFM). TCR(/consensus) sequences are merged by summing their

associated PFMs and generating a consensus sequence from the result-

ing PFM. Hence, the final error corrected TCR sequence is independ-

ent of the order in which its parent TCR sequences were merged.

Additionally, the error correction algorithms use the PFMs to keep

track of the number of mutations that have been performed, by sum-

ming the frequencies of the bases that were not selected for the TCR

sequences associated with the PFMs.

2.1.1 QMerge algorithm

QMerge groups sequences by length and merges sequences within

each group based upon their abundance and base quality scores. Let

n be the total number of sequences of length l under consideration.

To prevent RTCR from merging unrelated sequences, QMerge uses

Equation (2) and considers all pairs of sequences of length l differing

by at most H bases. We define a ‘merge quality score’ as the sum of

the minimum quality scores of all mismatching bases between two

sequences:

m ¼
X

i2mismatches

minðqi; q
0
iÞ; (5)

where q and q0 are vectors, each containing the base quality scores

of one of the two sequences in the pair; and mismatches contains the

indices of the mismatching bases. QMerge uses the merge quality

score to order the pairs and merge the lowest quality sequences first.

We define a ‘quality threshold’:

Q ¼ 10log10nl; (6)

which is the Phred score equivalent to the probability that one in

n� l bases is false. QMerge calculates the merge quality score (m)

for every pair of sequences (within Hamming distance (HD) H) and

considers pairs for which m � Q.

QMerge traverses sequence pairs in the following order: increas-

ing merge quality score (m), HD and decreasing abundance of the

more frequent sequence in the pair. A merge is not performed if it re-

quires mutation of a base with a quality score higher than the me-

dian Phred score in the data. The child inherits the VJ annotation of

the more abundant parent. Its abundance is the sum of the abun-

dances of both parents. After a successful merge, the parent se-

quences are removed from the data. If the child matches an existing

sequence, the child is merged to it. The merge quality score (m) is

(re)calculated for all pairs of sequences involving the child. The al-

gorithm halts when there are no more pairs to process or the ex-

pected number of false bases (n� l � �) in the set have been

corrected.

2.1.2 IMerge algorithm

After performing QMerge many errors are expected to remain in the

data. IMerge attempts to resolve these errors by using a clustering

approach where less abundant sequences are merged to more abun-

dant nearby sequences (Fig. 1). Like QMerge, IMerge also groups se-

quences by length and considers each group separately. Because true

TCR sequences (green circles in Fig. 1) may differ by a single nucleo-

tide substitution, their neighborhoods of erroneous sequences may

overlap. IMerge resolves clusters gradually to prevent true TCR se-

quences from merging to each other. All TCR sequences of length l,

starting with the most abundant, are allowed to absorb neighboring

erroneous sequences (red circles in Fig. 1), starting with the rarest,

within HD h in their neighborhood. The algorithm begins at h¼1

and increases h by one after every iteration over all sequences until

there are no more sequences that can be merged.

When IMerge considers a particular TCR sequence of length l, it

estimates the true abundance of the TCR sequence. To not under-

estimate the true abundance of the TCR, IMerge calculates the 99%

lower confidence interval using a normal approximation:

n ¼ norig þ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
norigð1� p0Þ

p
p0

; (7)

where z is the 99% normal quantile, p0 is the probability of having

zero errors in a sequence (defined by Equation (1)), and norig is the

3100 B.Gerritsen et al.
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abundance of the TCR sequence in the original data (norig ¼ 0 for

novel TCR sequences generated by QMerge). IMerge considers all

neighboring sequences within HD Hþ1 (where H is defined by

Equation (2)) from the TCR sequence. IMerge calculates the ex-

pected abundance of a TCR sequence if this TCR sequence would

absorb all its erroneous copies within HD h:

Nh ¼ nQMerge þ
n� nQMerge

1� p0

Xh

d¼1

pd; (8)

where nQMerge is the abundance of a TCR sequence obtained after

QMerge; and 1 � h � H þ 1. IMerge orders all sequences (neigh-

bors) within HD h by increasing abundance and minimum base

quality score, and merges the neighbors to the TCR sequence.

A merge is not performed if the resulting abundance of the TCR se-

quence would exceed Nh, i.e. its expected abundance if it would ab-

sorb all its erroneous copies until HD h (note, NH � n). This

limiting of the number of neighbors that can be absorbed within HD

h allows true TCR sequences to protect themselves from being ab-

sorbed by merging their (erroneous) neighbors (Fig. 1). The algo-

rithm halts when no merges can be performed for any TCR

sequence.

2.1.3 LMerge algorithm

After the QMerge and IMerge algorithms, indels are expected to re-

main in the data (sometimes in combination with mismatches).

RTCR estimates the expected number of deletions (insertions), nd

(ni), from the number of deletions (insertions) found in the align-

ments of germline V and J sequences with the CDR3 region. The

LMerge algorithm is similar to IMerge, with an important difference

being that it calculates the Levenshtein instead of HD between TCR

sequences. Similar to the IMerge stopping criteria, the LMerge algo-

rithm also does not introduce more than nd deletions or ni

insertions.

RTCR performs a post-processing step where CDR3 sequences

with unresolved bases (‘N’) are merged to the nearest CDR3 se-

quence that differs with it only on the unresolved positions. Finally,

CDR3 sequences containing a base quality score below five are dis-

carded. This culling of low quality sequences is performed only after

error correction.

2.2 Simulation of TCR HTS
We used the probabilistic model of Murugan et al. (2012) to simu-

late the biological process of rearranging V, D and J segments, gen-

erating a synthetic repertoire of 104 TCRB chain sequences. Because

TCRB sequences are generally too long to be spanned by reads, HTS

protocols such as 50 RACE (Warren et al., 2011) are used to amplify

the part of the TCRB sequence containing the CDR3 region. To get

sequence lengths similar to the 50 RACE protocol we included only

the first 61 bp of the constant region in the synthetic TCR se-

quences. To mimick the heavy-tailed distribution of TCRB se-

quences in humans (Mora et al., 2010; Venturi et al., 2011), we

expanded the synthetic repertoire to 105 sequences according an em-

pirical TCRB distribution. This distribution was derived from lane

SRR060714 of Warren et al. (2011) using MiTCR (Bolotin et al.,

2013).

HTS protocols involve PCR amplification. PCR can distort se-

quence abundances (Best et al., 2014) because not all sequences are

doubled in a PCR cycle and polymerases can have a sequence bias.

Additionally, false but abundant TCR sequences can be formed if

mutations occur in early PCR cycles. We simulated a simplified PCR

process to introduce imperfect amplification and to generate TCR

variants. In every cycle of in silico PCR the number of TCR se-

quences was doubled using sampling with replacement so that some

sequences were missed in every doubling. Every TCR sequence was

doubled �18 times, with a substitution error rate of 5� 10�5 (Cline

et al., 1996), resulting in 105 � 218 synthetic amplicons with �2%

of the amplicons containing one or more PCR errors.

We used the Illumina simulator of ART (Huang et al., 2012) ver-

sion 2.3.7 to generate paired-end reads from subsets of the synthetic

amplicons. The size of the subset determined the fold coverage

(i.e. number of reads per ‘cell’). For example, a subset of 106 ampli-

cons represents 10� coverage, because the synthetic repertoire con-

sisted of 105 TCRB sequences (and 104 clonotypes), and ART

generates at least one paired-end read for every amplicon in the sub-

set. We simulated two recent sequencers, HiSeq 2500 and MiSeq,

using the default error profiles provided by ART. For HiSeq (MiSeq)

the settings were: read length 150 (250), mean fragment length 200

(500), standard deviation 15 (0). Finally, we merged read pairs as

follows: read pairs with <18 bp paired end overlap were dropped;

for overlapping regions a consensus sequence was created by select-

ing the higher quality base when bases agreed, or if one had �Q30

and the other<Q20, in all other cases an ‘N’ with Q0 was recorded.

2.3 Analysis of TCR HTS
Analyses were performed using TCRklass 0.6.0, MiTCR 1.0.3,

MiXCR 1.6, IMSEQ 1.0.1, MiGEC 1.2.3 and RTCR 0.3.0, using

the default settings. As ’default settings’ for IMSEQ we turned on its

clustering based error correction and merging of identical CDR3 se-

quences with ambiguous segment identification, i.e. ‘-ma -qc -sc’.

Before evaluating the performance of each pipeline, non-functional

TCR sequences (i.e. those that are out-of-frame or contain a stop-

codon) were removed. For the analyses of non-barcoded HTS data

(real and simulated), all pipelines, with the exception of MiXCR

which uses its own reference, were run with the germline reference

sequences of MiTCR. For the analysis of barcoded HTS data,

RTCR was run with the V(D)J reference sequences of MiGEC. To

compare the error correction of MiGEC and RTCR, the latter was

run on the sequences resulting from the Checkout utility of MiGEC

so that both had the same starting point. MiGEC was run with an

‘overseq’ threshold of 5 (i.e. discarding UMI groups with fewer than

five reads).

Fig. 1. Schematic of IMerge algorithm. Top row shows one true TCR se-

quence (green) surrounded by erroneous variants (red); the diameter of sym-

bols represents the abundance of the TCR sequence. IMerge considers all

nearby TCR sequences as potential erroneous variants. Erroneous variants

present at HD 1 can get merged to the true TCR sequence depending upon

the abundance of the true sequence, abundance of erroneous variant and the

error rate determined from the data (top row second column). Once all se-

quences at HD 1 are considered IMerge iterates over the TCR sequences con-

sidering all variants present at HD�2. The bottom row demonstrates a

scenario where two true TCR sequences are neighbors but do not get merged

due to abundance and HD thresholds defined by Equations (2) and (8)
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Both TCRklass and IMSEQ pipelines report identical CDR3 se-

quences with different VJ combinations by default which can inflate

the false positive rate. To make the reporting equivalent among the

pipelines, we collapsed these sequences and summed their counts.

Collapsing these sequences had only a minor positive effect on the

precision of TCRklass and IMSEQ and no effect on the recall.

3 Results and discussion

HTS produces millions of reads, each potentially containing one or

more errors, and retrieving TCR sequences from the reads without

performing any error correction results in many false TCR se-

quences (Baum et al., 2012; Bolotin et al., 2012). Error correction of

TCR sequences, especially the CDR3 region of the TCR, is a com-

plex problem because true TCR sequences may differ from each

other by as little as a single nucleotide. We developed the RTCR

pipeline to accurately retrieve TCR sequences from HTS sequencing

data. To test the performance of RTCR we compare it to four other

recent pipelines TCRklass (Yang et al., 2015), MiTCR (Bolotin

et al., 2013), MiXCR (Bolotin et al., 2015), IMSEQ (Kuchenbecker

et al., 2015) and MiGEC (Shugay et al., 2014).

3.1 In silico TCR HTS data
To determine the accuracy of the TCR pipelines we generated in sil-

ico sequencing reads (see Section 2.2) from a simulated TCRB reper-

toire of 105 cells with 104 distinct sequences (simulations were

performed in triplicate). Since real sequencing experiments differ in

quality and coverage (number of reads per cell), we used error pro-

files of two recent sequencers, HiSeq 2500 and MiSeq, and varied

the coverage over a wide range from 1� to 100�.

We compare the pipelines on their recall, i.e. on the fraction of

true CDR3s recovered from the HTS dataset, and on their precision,

i.e. the fraction of recovered CDR3s that are correct. For all pipe-

lines the recall tends to increase with higher coverage, but for

TCRklass this comes at the cost of very low precision (Fig. 2). We

therefore omit TCRklass from further comparison. MiTCR has very

high precision in all datasets (Figs. 2 and 3), but its recall is relatively

low, especially in lower coverage datasets. Similar to MiTCR,

IMSEQ has poor recall in the lower coverage (1� and 10�) datasets

(Figs. 2 and 3). Although the recall of IMSEQ is better than that of

MiTCR in the MiSEQ datasets, the precision of IMSEQ is lower, es-

pecially in the 1� HiSeq 2500 datasets. MiXCR has better recall

than IMSEQ in the HiSeq 2500 datasets, but the situation is reversed

in the MiSeq datasets. Only RTCR is able to maintain both high

precision and high recall in both HiSeq 2500 and MiSeq datasets,

showing over 90% precision and recall on average (Table 1).

We compared the CDR3 sequences reported by the pipelines to

those of the ‘true’ simulated TCRB repertoire (Fig. 3). The horizon-

tal line in each panel depicts the number of CDR3 sequences of the

‘true’ repertoire that was represented by one or more reads that

spanned the CDR3 region. If a bar falls below this line, the pipeline

underpredicted the number of CDR3 sequences in the HTS dataset;

conversely, if a bar is higher than the black line, the number of

CDR3 sequences was overpredicted by the pipeline. To visualize the

quality of the reported list of CDR3 sequences, we colored the bars

reflecting the fraction of the reported sequences that perfectly

matched a CDR3 in the ‘true’ repertoire (green) that had one

mismatch with the most similar true CDR3 sequence (yellow), two

mismatches (orange) or more than two mismatches (red). All pipe-

lines, except TCRklass, tend to underreport the true number of se-

quences. The number of clones reported by RTCR is closest to the

true diversity.

Since MiTCR had consistently high precision in all datasets, we

attempted to increase the recall of MiTCR by changing several of its

parameters. First, we tested the ‘save my diversity’ parameter, but

this resulted in a loss of precision with hardly any increase in recall

Fig. 2. Precision and recall of CDR3 sequences retrieved from the same data-

sets as shown in Figure 3. Every data point is an average of three independ-

ent datasets. Circles represent the coverage, in order or increasing size:

1�, 10� and 100�. Coverage tends to increase recall, but decrease precision.

Accurate analyses result in circles in the upper right corner. On both HiSeq

and MiSeq data RTCR is already accurate at the lowest coverage
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Fig. 3. Accuracy of CDR3 sequences retrieved by several pipelines from simu-

lated HTS datasets. ART was used to simulate 150 bp HiSeq 2500 (top-row)

and 250 bp MiSeq (bottom row) paired-end reads. The fold coverage of every

dataset, was 1�, 10� or 100�. Due to sampling only a subset of the in silico

CDR3 sequences was spanned by one or more reads (horizontal black lines)

and could potentially be retrieved. The merged paired-end reads of HiSeq

2500 and MiSeq had an average Phred quality of 37 and 35, respectively, and

a substitution error rate of �1%. We ran the analysis on several independent

datasets and here show one representative example. Number of mismatches

with the most similar true CDR3 sequence of the same length

Table 1. Average precision and recall of the pipelines on all HiSeq

2500 and MiSeq datasets (1�, 10� and 100� coverages combined)

Pipeline HiSeq 2500 MiSeq

Precision (%) Recall (%) Precision (%) Recall (%)

TCRklass 63.7 84.8 60.0 74.5

MiTCR 98.4 81.7 98.4 66.5

MiXCR 93.5 88.2 95.8 75.9

IMSEQ 89.7 79.6 94.1 87.1

RTCR 98.4 92.0 97.2 94.6
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(data not shown). As MiTCR ascribes high quality TCR sequences

as core sequences (ignoring the low quality sequences), using a ‘qual-

ity’ parameter to differentiate between them, we also attempted to

increase the recall by lowering this parameter to 5. Although this

lead to an increase in recall (data not shown), it markedly reduced

the precision in the MiSeq data. This large difference between

MiTCR and MiTCR_Q5 suggests the high precision of MiTCR re-

sults from discarding low quality sequences prior to its error

correction.

With increasing coverage in the HiSeq 2500 datasets, the recall

of RTCR increased from 84% to 97% while precision remained

�98% (Figs. 2 and 3). In the MiSeq datasets, the recall of RTCR

increased from 91% to 96% with increasing coverage, and precision

ranged from 95% to 99%. Comparing the HiSeq 2500 and MiSeq

results of RTCR, the recall varies more in the HiSeq datasets. Closer

inspection showed that the recall dropped largely due to a failure to

identify the CDR3 sequences in the reads. The recall of RTCR be-

fore error correction was �85% for the 1� coverage HiSeq 2500

datasets. So the lower recall in the HiSeq 2500 1� coverage datasets

was not due to overzealous error correction. Different settings

for Bowtie 2, or a different aligner, might increase the recall of

RTCR.

In summary, the precision and recall of RTCR is more stable

across different coverages and sequencers than that of TCRklass,

MiTCR, MiXCR and IMSEQ. Importantly, RTCR had the highest

recall in the low coverage datasets (1� and 10�), which markedly

reduces sequencing costs, allowing more libraries to be sequenced.

Typically, researchers apply abundance and quality filters to

their raw reads. We think these filters should not be used in combin-

ation with the advanced data-driven error correction of RTCR. To

test the effect of such filters, we ran RTCR on one of the HiSeq

2500 10� simulated datasets, applying either an abundance or qual-

ity filter (Fig. 4). The abundance filter, which was applied after

RTCR analysis, led to a large decrease in recall without a corres-

ponding gain in precision. The quality filter, applied to raw reads

(Fig. 4, right panel), strongly decreased recall, whereas the precision

was either unaffected or decreased somewhat, because RTCR bene-

fits from the additional information provided by low quality reads.

Together these results demonstrate that quality and abundance fil-

ters can be detrimental to the precision and recall of RTCR.

To test how well the pipelines recover CDR3 abundances, we

compared the abundances of the reported CDR3 sequences to their

true abundances in the reads (Fig. 5). Most pipelines accurately pre-

dicted the abundance of identified TCR sequences, but all pipe-

lines missed some low frequency (� 10�4) TCR sequences in the

10� HiSeq 2500 datasets. MiTCR also missed abundant (� 10�3)

TCR sequences (black circles in Fig. 5), suggesting it is too ambi-

tious in its error correction.

3.2 Analysis of a published TCR HTS dataset
Having tested TCRklass, MiTCR, MiXCR, IMSEQ and RTCR on

simulated HTS datasets, where correctness of reported CDR3 se-

quences can be measured directly, we next compared the pipelines

using a published TCR HTS dataset (Warren et al., 2011). Warren

et al. (2011) obtained two blood samples of 20 ml each, 1 week

apart, from a healthy adult male and sequenced these using an

Illumina GAIIx Analyzer. Unfortunately, only the quality filtered

reads, i.e. those having a CDR3 containing only bases with a quality

score of at least Q30, were published. If the filtering removed many

true TCR sequences, then this limits the benefit of the error correc-

tion of RTCR. To handle any remaining errors in the high fidelity

reads, Warren et al. applied an abundance based filter, called D96,

removing low-abundance sequence variants comprising a total of

4% of the reads. We analysed the published data of blood draws

one and two with MiTCR, MiXCR, IMSEQ and RTCR, and com-

pared the number of CDR3 sequences reported. We removed all

out-of-frame CDR3 sequences and those containing a stop-codon

(Warren et al., 2011).

Despite the many errors that may have been removed by the

quality filtering, it is likely that different pipelines may not correct

all errors. To test this hypothesis we visualized the sequence space

around three representative abundant sequences in lane SRR060714

(Fig. 6). The sequence space around the chosen sequences had pro-

gressively less abundant sequences at higher HD, suggesting that the

surrounding sequences might be erroneous variants (all three col-

umns). The sequence (CSVPGQGGYEQYF) chosen for the first col-

umn broke this pattern with a medium abundant sequence
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Fig. 4. Applying naive filters can negatively affect the accuracy of RTCR. Left

panel, an abundance threshold was applied to clones reported by RTCR, dis-

carding any clones with a count lower than the threshold. Right panel, to

emulate discarding low quality reads, a quality filter was applied to raw se-

quence data before RTCR analysis, discarding all reads containing one or

more bases in the CDR3 region with a Phred score below the threshold. One

of the simulated HiSeq 2500 10� datasets was used for both panels
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Fig. 5. Quantitative TCR profiling of a HiSeq 2500 dataset, 10� coverage.

CDR3 sequences (dots) retrieved by a pipeline are colored according to HD

from the nearest true CDR3 sequence. Black open circles located at the bot-

tom of each panel indicate missed CDR3 sequences. The reported frequency

is the relative count assigned to a CDR3 sequence by a pipeline. The fre-

quency of a CDR3 sequence in a HTS dataset is the ratio of reads spanning

the particular CDR3 and the total number of reads spanning any CDR3
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(CSVPGQGVYEQYF) of about 600 reads, at HD 3. It is likely a

correct sequence (similar to Fig. 1) because it was both abundant

and assigned a different V gene (V29-1 instead of V20-1). All tested

pipelines reported this sequence (Fig. 6, for every pipeline in the first

column the rightmost circle from the center), but TCRklass and

MiTCR also reported many (much) less abundant sequences. This

example results suggest MiXCR, IMSEQ and RTCR are better at

correcting PCR errors than MiTCR and TCRklass. However,

MiXCR reported fewer clones than the uncorrected (‘Raw’) data

and had a smaller overlap between the blood draws (Table 2), sug-

gesting that this pipeline might not be correcting as many PCR

errors as IMSEQ and RTCR.

All pipelines reported more sequences than D96 (Table 2) and

a smaller overlap (as measured by the Jaccard index) between the

blood draws. Interestingly, IMSEQ reported considerably fewer

CDR3 sequences, and had a lower overlap between the blood

draws than RTCR, suggesting that IMSEQ removed true CDR3

sequences.

3.3 Analysis of a published barcoded TCR HTS data
A recent advance in HTS is the addition of unique molecular identi-

fiers (‘barcodes’) to every template molecule (Kinde et al., 2011;

Kivioja et al., 2012). With barcoded HTS data, many PCR and

sequencing errors can be corrected by grouping reads with the same

barcode together for consensus assembly (Shugay et al., 2014). This

also enables direct quantification of the number of template mol-

ecules in the input (Kivioja et al., 2012) (i.e. the abundance), reduc-

ing the effect of PCR amplification bias on estimation of the true

abundances of TCR sequences. RTCR supports the analysis of bar-

coded HTS data. First, RTCR collapses groups of sequences with

the same barcode using consensus assembly. Next, RTCR runs the

remainder of the pipeline as it would with non-barcoded data, com-

bining barcode error correction with data-driven quality and

frequency-based error correction. As RTCR has additional error

correction on top of consensus assembly, it considers even small

‘barcode groups’ containing a single sequence, which are typically

discarded by other pipelines.

To evaluate the performance of RTCR, we used a high quality

and extremely deeply sequenced barcoded HTS dataset

(‘Experiment 1’ from Egorov et al. (2015)), and compared the re-

sults to that of MiGEC, a pipeline designed to analyse barcoded
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Fig. 6. The sequence space of three abundant sequences from lane

SRR060714 of Warren et al. (2011). The number above each column indicates

the abundance of the chosen sequence in the ‘raw’ data, i.e. the CDR3 se-

quences identified by RTCR before error correction. Sequences (gray circles)

within three HD of a central clonotype (columns) are connected (black lines).

Circle area is the log-abundance ratio between a sequence and the total abun-

dance of all sequences within the panel

Table 2. CDR3 statistics of several analyses of Warren et al.’s Male

1 dataset

Pipeline CDR3 BD 1 CDR3 BD 2 Overlap Jaccard index

Raw 4 635 984 1 271 640 159 900 0.028

TCRklass 4 404 901 1 192 925 150 829 0.028

MiTCR 1 202 106 490 500 52 561 0.032

MiXCR 1 458 062 687 732 55 142 0.026

IMSEQ 879 442 363 206 38 355 0.032

RTCR 955 694 451 488 47 653 0.035

D96 494 796 352 139 45 150 0.056

The D96 counts and overlap are from Warren et al. (2011). Raw: the

CDR3 sequences reported by RTCR before error correction. Sequences with

stop-codon and out-of-frame sequences have been removed. BD, blood draw.
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Fig. 7. Capturing reproducible clones. Left panel, all distinct CDR3 sequences

reported by MiGEC in each of the eight replicas of Egorov et al. (2015) were

pooled and their frequencies of occurrence tallied, showing only those clones

that occurred in more than one replica. Right panel, the same for RTCR
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data (Egorov et al., 2015; Shugay et al., 2014). Egorov et al. ob-

tained blood from a 50-year-old male donor and divided it into eight

replicas of �4000 peripheral blood mononuclear cells each. We

used the barcoded TCRb sequences (Illumina MiSeq 2� 150 bp

paired-end reads) to compare both pipelines. MiGEC reported 236

clones of which most, 229, were also reported by RTCR. RTCR re-

ported many more clones, 2717 in total across the eight replicas.

This large difference is not unexpected, because RTCR recovers

clones from barcode groups supported by only one sequence. The

fact that RTCR recovers more clones that are reproducibly found in

more than one library (Fig. 7), suggests that RTCR markedly out-

performs MiGEC on recall because reproducible clones are more

likely to be real. Importantly, reproducible clones are not guaran-

teed to have a correct sequence, as PCR errors are highly reprodu-

cible (Shugay et al., 2014), and their presence in multiple samples

can be due to cross-sample contamination (Mamedov et al., 2013).

Additionally, RTCR reported many more non-reproducible clones

(2543) than MiGEC (151). However, given that there should be

�2000 T cells present in each replica, and that about half of these

are expected to be naive singletons, a diversity of several thousand

clones across eight replicas is a very realistic result. In addition, the

median Levenshtein distance from the non-reproducible clones to

their closest neighbor was 6 (not shown), suggesting these clones are

truly different. Together, these results suggest RTCR has a much

higher recall than MiGEC. Unfortunately, we cannot quantify the

precision and recall, because these measures cannot be reliably esti-

mated in real data.

3.4 Performance
On an 8 core Intel Xeon 3.2Ghz 32GB RAM, RTCR takes

�136 min (of which Bowtie 2 takes �63 min) to analyse a HiSeq

2500 dataset consisting of 10 million 150bp paired-end reads.

4 Conclusion

TCRs exhibit enormous diversity due to somatic recombination. The

advent of HTS has enabled us to sequence large number of TCR se-

quences from an individual. However, HTS is marred by errors and

given the TCR diversity it becomes difficult to distinguish between

true TCR sequence and erroneous variants. We here present RTCR, a

pipeline designed to accurately recover TCR sequences from error-

prone HTS data. RTCR performs error correction using a statistical

model and estimates the model parameters from the data, relieving

the user from setting arbitrary parameters. Using simulations and ex-

perimental data, we demonstrate that RTCR can identify, and correct

PCR and sequencing errors exhibiting consistently high precision and

recall. The high accuracy of RTCR makes it well suited for estimation

of repertoire diversity and for disease profiling. Especially in the lower

coverage (1� and 10�) simulated datasets, RTCR outperformed all

other pipelines. This means that RTCR has the potential to make the

analysis of repertoire sequencing data more cost effective.
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