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Affective psychoses are a group of severe psychiatric disorders,

including schizoaffective disorder and bipolar I disorder,

together affecting �1% of the population. Despite their high

heritability, themolecular genetics and neurobiology of affective

psychosis remain largely elusive. Here, we describe the identifi-

cation of a structural genetic variant segregating with affective

psychosis in a family with multiple members suffering from

bipolar I disorder or schizoaffective disorder, bipolar type. A

balanced translocation involving chromosomes 6 and 15 was

detected by karyotyping and fluorescence in-situ hybridization

(FISH). Using whole-genome sequencing, we rapidly delineated

the translocation breakpoints as corresponding intragenic

events disrupting BCL2L10 and PNLDC1. These data warrant

further consideration for BCL2L10 and PNLDC1 as novel can-

didates for affective psychosis. � 2016 The Authors.American Journal of

Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Period-

icals, Inc.
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INTRODUCTION

Affective psychoses comprise a group of severely debilitating

psychiatric disorders, including bipolar I disorder and schizoaf-

fective disorder, together affecting �1% of the population [Per€al€a
et al., 2007]. These disorders profoundly impact quality of life,

including education, employment, and interpersonal relationships

[Saarni et al., 2010]. The suicide rate in patients with bipolar

disorder is �16% [Clements et al., 2013].

Bipolar disorder is well known to have a strong genetic

component, with heritability estimates as high as �0.75 [Sullivan

et al., 2012]. Despite this, the molecular genetic architecture of

bipolar disorder remains largely unknown. There has been

longstanding interest in the Mendelian genetics of severe mental

illness using family-based linkage approaches [Baron, 2002;

Badner et al., 2013] and genome-wide association studies

(GWAS) [Psychiatric GWAS Consortium Bipolar Disorder

Working Group, 2011]. However, replication of linkage findings
2016 The Authors. American Journal of Medical Genetics Part B: N
in independent cohorts has generally been lacking [Lewis et al.,

2003].

The emergence of next-generation sequencing (NGS), such as

whole-exome sequencing and whole-genome sequencing, have

enabled powerful family-based approaches for the identification

of the genetic causes of disease. Here, we report the results of our

investigations in a family with affective psychosis. Using traditional

cytogenetic techniques followed by whole-genome sequencing, we

identified a balanced translocation between the long arms of

chromosomes 6 and 15, which disrupts the genes BCL2L10 and

PNLDC1, and segregates with affective psychosis.
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FIG. 1. Pedigree. The index patient (III-4) is indicated with an arrow as the proband (P). Shaded symbols indicate family members with affective

psychosis. Subjects from whom DNA was available are numbered. Plus (þ) or minus (�) symbols indicate the presence or absence of the

balanced translocation.
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SUBJECTS AND METHODS

Participants
We ascertained a Dutch family of Caucasian ethnicity with a high

incidence of affective psychosis (bipolar I disorder and schizoaf-

fective disorder, bipolar type), compatible with an autosomal

dominant pattern of disease inheritance (Fig. 1). The participants

were diagnosed using the structured interview for DSM-IV

disorders (SCID-1). This study was performed in compliance

with the Declaration of Helsinki and was approved by the medi-

cal-ethical committee of the Erasmus University Medical Center.

All participants provided written informed consent.
Cytogenetic Studies
Karyotyping was performed on metaphase chromosomes isolated

from freshly cultured peripheral blood lymphocytes from the index

patient (III-4). Fluorescence in-situ hybridization (FISH) analyses

were performed for the index patient (III-4) on metaphase chromo-

somes derived from freshly cultured peripheral blood lymphocytes

according to previously published methods [Pinkel et al., 1986].

Whole-chromosome-specific paints were obtained from a commer-

cialprovider (Eurodiagnostica,Malmo,Sweden).Probeswere labeled

with either biotin (Bio) or digoxigenin (Dig) using the Nick Labeling

Kit (Roche, Basel, Switserland). Bio/Dig were detected with a one-

layer amplification step using streptavidin Alexa 594 (Molecular

Probes, Eugene, OR) and anti-Dig-fluorescence (Roche). Chromo-

somes were counterstained with Vectashield (Vector, Laboratories,

Burlingame, CA) containing 4,6-diamidino-2-phenylindole (Sigma,

St. Louis, MO). Images were captured using a Zeiss Axioskop II

fluorescence microscope and Genetiscan Power Gene System

(Applied Imaging, Grand Rapids, MI).
Whole-Genome Sequencing
Genomic DNA was isolated from peripheral blood using standard

protocols. Whole-genome sequencing was performed in the index

patient (III-4) at 40� average coverage depth (Fig. 1) (Complete

Genomics, Mountain View, CA). After an adapter build-in step,

�400 base pair genomic fragments underwent circular PCR
amplification on DNA nanoballs. Self-assembling nanoarrays

with one nanoball per well were used for combinatorial probe-

anchor ligation (cPALTM) to build in fluorophore-labeled dNTPs.

Reads were aligned to the human reference genome version

GRCh37/hg19. Mapped reads and coverage depth were used to

identify single nucleotide variants (SNVs), small insertions and

deletions (indels), copy number variants (CNVs), structural rear-

rangements, andmobile element insertions [Drmanac et al., 2010].
Polymerase Chain Reaction (PCR) and Sanger
Sequencing
The translocation breakpoint and flanking sequence were con-

firmed by Sanger sequencing in the DNA samples of all ascertained

family members (II-1, II-2, III-1, III-2, III-3, and III-4) (Supple-

mentary Methods, Supplementary Table SI).
Reference Sequences
The GRCh37/hg19 build was used for annotation of the whole-

genome sequencing data, design of the Sanger sequencing pri-

mers, and Sanger sequence analysis. All variants identified were

annotated according to GenBank reference sequences with

accession numbers for BCL2L10 (NM_020396) and PNLDC1

(NM_173516).
RESULTS

The phenotypic profile of all ascertained family members is

provided in Table I. The index patient (III-4) suffered from

schizoaffective disorder, bipolar type with a history of manic-

psychotic episodes, and multiple inpatient psychiatric hospital

admissions. In addition, she experienced a spontaneous termi-

nation of pregnancy at age 30. She was clinically stable on

a maintenance regimen of 375mg/day quetiapine. The index

patient was the youngest of five siblings, with a brother and

three older sisters. Her eldest sister (III-1) was diagnosed with

bipolar I disorder and maintained on 75mg/day quetiapine with

residual depressive symptoms. The second oldest sister (III-2)

suffered from fibromyalgia, chronic fatigue syndrome, and



TABLE I. Clinical Characteristics

Ped ID II-1 II-2 III-1 III-2 III-3 III-4

t(6;15)(q26;q21) translocation

carrier

Yes No No Yes Yes Yes

DSM-IV Diagnosis Bipolar I

disorder

None None Bipolar I

disorder

None Schizoaffective

disorder,

bipolar type

Age at examination Deceased

(at age

69)

83 53 55 50 40

Age of onset depressive episodes Unknown 16 Na 17

Number of depressive episodes >10 3

Age of onset manic-psychotic

episodes

Unknown 44 Na 23

Number of manic-psychotic episodes 3 1

Medication Unknown Metoprolol,

barnidipine,

triamterene,

carbasalate

calcium

Fentanyl

plasters,

clonidine,

estriadol

valerate,

clonazepam

Quetiapine None Quetiapine

Other diagnoses None Hypertension,

essential

thrombocythemia

Fibromyalgia,

chronic fatigue

syndrome,

anxiety

symptoms

None Three

spontaneous

terminations

of pregnancy

Single

spontaneous

termination of

pregnancy

Educational level Primary

school

Primary school Secondary

education

Secondary

education

Higher

professional

education

Higher

professional

education
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anxiety symptoms. Their brother had no significant history of

psychiatric symptoms. Her youngest sister (III-3) had multiple

spontaneous abortions in the first trimester of pregnancy in

the setting of clomifene therapy to induce ovulation, but no

significant history of psychiatric symptoms. Their father (II-1)

was deceased but reported by the family as having a diagnosis

of bipolar I disorder with multiple inpatient psychiatric hospi-

talizations. His medical records were unavailable for indepen-

dent review. Their mother (II-2) had no significant psychiatric

history.

Karyotyping and FISH revealed a balanced translocation in the

index patient (III-4). The translocation breakpoints were localized

to cytogenetic bands at 6q26 and 15q21, with a formal karyotype of

46,XX,t(6;15)(q26;q21) (Fig. 2). In order to map the precise

chromosomal breakpoints, we performed whole-genome sequenc-

ing using Complete Genomics technology and confirmed by

Sanger sequencing (Fig. 3). The breakpoint on chromosome 6

was located in intron 11 of Poly(A)-specific ribonuclease (PARN)-

like domain containing 1 (PNLDC1), which is transcribed from the

forward strand t(6;15)(q26;q21)1097þ1227_1097þ1228. The

breakpoint on chromosome 15 was located in intron 1 of the

gene B-cell lymphoma 2 Like 10 (BCL2L10), which is transcribed

from the reverse strand t(6;15)(q26;q21)538þ 1460_538þ 1461.

As a consequence of this balanced translocation, the structure and

expression of a single copy of both PNLDC1 and BCL2L10 were

disrupted and predicted to result in a heterozygous loss of function.
The presence or absence of the translocation was evaluated by

Sanger sequencing in all ascertained family members (Fig. 1).

Individuals II-1, III-1, and III-3 were found to carry the t(6;15)

(q26;q21) translocationwith the identical breakpoints and flanking

sequence as the index patient (III-4). In addition to the Sanger

sequencing confirmation, individuals III-1 and III-3 were also

found to carry the translocation by clinical diagnostic karyotyping.

Individual III-1 had two sons, of which the eldest was confirmed by

clinical diagnostic karyotyping to have inherited the translocation.

Neither of the two children of the index patient III-4 were found to

carry the translocation by clinical genetic testing.
DISCUSSION

We identified a balanced translocation disrupting PNLDC1 and

BCL2L10 that segregated with affective psychosis within a family

across at least two generations. Independent genetic replicationwill

be required to definitively evaluate the association of PNLDC1 and

BCL2L10 with affective psychosis.

BCL2L10 encodes a 204 amino acid intracellular membrane-

associated BCL2 family protein which is expressed in the brain and

localized to mitochondria [Zhang et al., 2001]. The BCL2L10

protein functions to negatively regulate apoptosis in themitochon-

drial death pathway by preventing cytochrome c release, caspase 3

activation, and mitochondrial membrane potential collapse

[Zhang et al., 2001; Cory and Adams, 2002]. A previous study



FIG. 2. Cytogenetic studies. (A) Complete karyogram from subject III-4 with the inherited balanced translocation: 46,XX,t(6;15)(q26;q21). (B)

Selected karyogram images demonstrating the heterozygous abnormal representation of chromosome 6 (top row) and chromosome 15

(bottom row). (C and D) Fluorescence in-situ hybridization showing the abnormalities in chromosome 6 (C) and chromosome 15 (D) indicated

by the arrows. In (C), probes pertaining to chromosome 6 are labeled in red, and probes pertaining to chromosome 15 are labeled in green. In

(D), probes pertaining to chromosome 15 are labeled in red, and probes pertaining to chromosome 6 are labeled in green. For both (C) and

(D), chromosomes are visualized in blue.
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using array-based expression analysis identified alterations of an

apoptosis-related gene set in lithium-responsive patients with

unipolar depression [Lowthert et al., 2012]. Notably, anti-apopto-

tic BCL2 family transcripts, of which BCL2L10 is a member, were

upregulated while pro-apoptotic family members were downregu-

lated in the lithium responsive group. Analogously, the apoptotic

regulatory function of BCL2L10 may also have contributed to the

occurrence of multiple spontaneous abortions in family members

carrying the BCL2L10 disruption, as two different studies have

confirmed high expression levels of this gene in human oocytes for

which abnormal subcellular localization of BCL2L10 was associ-

ated with poor-quality embryos during preimplantation screening

[Guillemin et al., 2009; Yoon et al., 2009; Gu�erin et al., 2013].
However, an important and non-mutually exclusive possibility is

that the spontaneous abortions are a consequence of embryos

inheriting an unbalanced translocation leading to aneuploidy as a

result of meiosis involving the maternal translocation [Tharapel

et al., 1985].

The other gene disrupted by the balanced translocation,

PNLDC1, encodes a 520 amino acid protein containing an RNa-

seH-like domain and RNAse_CAF1 domain. The poly(A)-specific

ribonuclease group of proteins are involved in deadenylation of

mRNA in eurkaryotes, thereby regulating mRNA levels and trans-

lation. However, the function of the nuclease-containing PARN-

like protein PNLDC1 has not been investigated [Virtanen et al.,

2013].



FIG. 3. Chromosomal rearrangement. (A) Schematic view of the balanced translocation involving chromosomes 6 and 15. (B) Electrophero-

grams of the DNA sequence across the translocation breakpoints.
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To our knowledge, there is currently no evidence for linkage

with affective psychosis in the regions surrounding BCL2L10 or

PNLDC1, nor for common variants to be associated with affective

psychosis, based on the data in the Johns Hopkins Metamoodics

database for genome-wide linkage which comprises 972 families

with bipolar disorder and schizoaffective disorder and GWAS data

of bipolar disorder comprising 7,616 cases and 10,340 controls

[Seifuddin et al., 2012; Pirooznia et al., 2014]. In addition, the

GWAS dataset from the Psychiatric Genomics Consortium of

11,974 cases and 51,792 controls provides no clear evidence of

common alleles in these regions associated with bipolar disorder

[PsychiatricGWASConsortiumBipolarDisorderWorkingGroup,

2011]. Furthermore, genome-wide exome sequencing studies are

not yet publically available for bipolar disorder to examine the

presence of rare exonic variants in these regions.

Although schizophrenia is a form of non-affective psychosis,

multiple CNVs have been identified which increase the risk of

schizophrenia and bipolar disorder [Rodriguez-Murillo et al.,

2012; Green et al., 2016]. Therefore, we examined the data available

from the recently published Sweden Schizophrenia Exome study

which involved whole-exome sequencing of 2,536 patients with

schizophrenia and 2,543 unaffected controls [Purcell et al., 2014].

In BCL2L10, only a single rare coding variant was identified in the

entire cohort (c.467G>A, p.W156�, MAF<0.005, nonsynony-

mous), which was found in one patient and no controls. In

PNLDC1, two coding variants were identified: c.13 C>T, p.R5�

present in one patient and one control (within transcript

NM_001271862, the effect of this variant is c.77–31 C>T), and

c.244 C>T, p.L82F (NM_001271862: c.277 C>T p.L93F in) pres-

ent in one patient and two controls. This scenario illustrates the

difficulties in conclusively establishing a disease-causing role for

very rare disease-associated variants. Longitudinal follow-up stud-

ies of this family, in addition to continued screening of other

probands and case/control cohorts for rare coding variants in these
genes, have the potential to provide further clarity regarding the

pathophysiology of affective psychosis.

The study of patients who carry rare cytogenetic abnormalities

has long been an important strategy for the identification of

candidate disease-causing genes, including the first reported can-

didate gene for psychosis (DISC1) [MacIntyre et al., 2003]. Al-

though highly penetrant mutations are rare causes of psychiatric

disorders, their identification have the potential to highlight

molecular pathways that are mechanistically involved in disease

pathogenesis among the wider group of patients who do not carry

high-penetrancemutations. Prominent examples for brain diseases

with an otherwise complex genetic architecture include the iden-

tification of mutations in the gene coding for amyloid precursor

protein (APP) for Alzheimer’s disease [Goate et al., 1991; Kamino

et al., 1992; Tanzi et al., 1992] and the gene encoding alpha-

synuclein (SNCA) in Parkinson’s disease and dementia with

Lewy bodies [Polymeropoulos et al., 1996]. Therefore, we believe

that family-based genetic studies coupled with next-generation

DNA sequencing technologies hold considerable potential to con-

tribute to the understanding of the neurobiological underpinnings

of severe psychiatric illness.
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