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Abstract

Background

Decision-analytic cost-effectiveness (CE) models combine many parameters, often

obtained after meta-analysis.

Aim

We compared different methods of mixed-treatment comparison (MTC) to combine transi-

tion and event probabilities derived from several trials, especially with respect to health-eco-

nomic (HE) outcomes like (quality adjusted) life years and costs.

Methods

Trials were drawn from a simulated reference population, comparing two of four fictitious

interventions. The goal was to estimate the CE between two of these. The amount of

heterogeneity between trials was varied in scenarios. Parameter estimates were com-

bined using direct comparison, MTC methods proposed by Song and Puhan, and Bayes-

ian generalized linear fixed effects (GLMFE) and random effects models (GLMRE).

Parameters were entered into a Markov model. Parameters and HE outcomes were com-

pared with the reference population using coverage, statistical power, bias and mean

absolute deviation (MAD) as performance indicators. Each analytical step was repeated

1,000 times.

Results

The direct comparison was outperformed by the MTC methods on all indicators, Song’s

method yielded low bias and MAD, but uncertainty was overestimated. Puhan’s method had

low bias and MAD and did not overestimate uncertainty. GLMFE generally had the lowest

bias and MAD, regardless of the amount of heterogeneity, but uncertainty was overesti-

mated. GLMRE showed large bias and MAD and overestimated uncertainty. Song’s and

Puhan’s methods lead to the least amount of uncertainty, reflected in the shape of the CE

acceptability curve. GLMFE showed slightly more uncertainty.
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Conclusions

Combining direct and indirect evidence is superior to using only direct evidence. Puhan’s

method and GLMFE are preferred.

1. Introduction

In 2006, The Netherlands implemented conditional reimbursement of potentially innovative,

but expensive hospital drugs, on the condition that further real-life evidence is collected.[1]

After four years, a new reimbursement decision is made, based on all evidence available.

Unfortunately, new drugs are often compared to placebo or standard care and the interven-

tions of interest vary by country or over time. Trials incorporating all competing interventions

are impractical at best, impossible at worst.[2] This means that a direct, head-to-head compari-

son may not be available. If a comparison via a common comparator is available, an indirect

treatment comparison (ITC) can be used to combine the relative effects of the two treatments

versus the a common comparator.[3] With three or more interventions, there may be direct

evidence for some pairs of interventions, while other pairs can be compared only via one or

more of the other interventions. Techniques to analyze all the available evidence simulta-

neously are called mixed treatment comparisons (MTC).

To aid reimbursement decision making, a probabilistic decision-analytic cost-effectiveness

(CE) model is often used, using parameters that are calculated from evidence combined using

meta-analysis. The choice of meta-analysis method can considerably affect final CE estimates.

[4] Most studies comparing meta-analysis methods focused on a single treatment effect (e.g.

[5–8]) or made a qualitative comparison (e.g. [9]). However, in modeling studies a wide range

of model parameters need to be estimated.[10] In this study we aimed the following:

To compare the performance of standard methods of MTCwhen applied to different types of
model parameters, especially with respect to their impact on health-economic (HE) outcomes.

We answered this question, by performing a simulation study. This paper is structured as fol-

lows. First, the setup of the simulation study is discussed in section 2.1, followed by the disease

and model structure used, in 2.2. In 2.3, we then discus the scenarios that have been used to ana-

lyze different amounts of heterogeneity between trials. The methods of meta-analysis compared

in this study are discussed in 2.4, followed by the indicators to compare the performance of

these methods in 2.5. The results are divided in outcomes on individual model input parameters

(3.1 and 3.2) and HE-outcomes (3.3). Section 4 contains a discussion of the results as well as a

conclusion. A similar comparison of direct meta-analysis methods is reported separately.[11]

2. Methods

2.1. Simulation study

In order to compare standard methods of MTC we have performed a simulation study. The set-

up of the simulation study is presented in this section. The simulation study, as well as the dis-

ease and HE model structure as discussed in section 2.2, is identical to that used in the earlier

publication.[11] The simulation consists of five steps (Fig 1). In step 1: Create reference popu-

lation, we simulated a superpopulation [12] containing 50,000 patients. The disease progression

was simulated four times for each patient, once for each of four fictitious interventions. The

The impact of MTC methods on health-economic outcomes
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mean values of parameters and HE outcomes within this reference population represent the

‘truth’ with which parameter estimates and HE outcomes were compared, referred to as refer-
ence parameters and reference outcomes. Parameters included transition and event probabilities,

maintenance and event costs, utilities and utility-decrements due to an event. HE outcomes

included (quality adjusted) life years (QALY/LY), intervention and maintenance costs, number

of events, incremental CE ratio (ICER) and CE acceptability curves (CEAC).

In step 2: Trial selection, we sampled trials comparing two treatments from the reference

population. For each of the trials we calculated trial parameters. In step 3: Meta-analysis we

calculatedmodel parameters, by pooling trial parameters using several methods of meta-analy-

sis (section 3.4). We used a CE model in step 4: CE modeling, which was filled with a set of

model parameters obtained by each of the methods of meta-analysis. Based on the transition

probabilities obtained in step 3, patients change from one disease stage to the next. Costs and

utilities, also estimated in step 3, are counted for each cycle in a disease stage. These can be

summed over life time, which provides an estimate of the total costs and health outcomes for

each of the interventions that one wishes to compare. Probabilistic sensitivity analysis (PSA;

1,100 iterations), which takes into account parameter uncertainty, yieldedmodel outcomes.
To study systematic differences between the methods of meta-analysis, we repeated steps 2

to 4 in step 5: Repeat in 1,000 repetitions.
A complete overview of the software used in this study, as well as the outcomes of the simu-

lation study, can be found online at https://figshare.com/projects/Mix_and_match_-_A_

simulation_study_on_the_impact_of_mixed-treatment_comparison_methods_on_health-

economic_outcomes/13438.

Fig 1. Design of the simulation study. HE = Health-economic, CE = Cost-effectiveness.

doi:10.1371/journal.pone.0171292.g001
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2.2. Disease and model structure

In this section we discuss the specification of the disease and the structure of the HE model.

The structure is representative for common health economic models for chronic diseases that

is characterized by progression and the occurrence of temporary events, during which symp-

toms temporarily worsen, simulated using a four-stage Markov model (Fig 2). The structure is

identical to the structure used in an earlier publication.[11]

To simulate disease progression, we first defined the Reference Disease Progression (RDP),

which can be thought of as the disease progression of an untreated, base-case patient. The

RDP was modified based on individual patient characteristics and interventions, to simulate

a heterogeneous population of individual patients. Table 1 shows the characteristics of the ref-

erence population that was simulated. By sampling from sub-populations, it was possible to

add heterogeneity to trials in relevant scenarios.

Fig 2. Design of the chronic disease model.

doi:10.1371/journal.pone.0171292.g002

Table 1. Characteristics of the simulated patient population.

Total number of patients 50,000

Starting disease stage 5/8 in Moderate, 2/8 in Severe and 1/8 in Very Severe

Gender 50% male, 50% female

Age in years 18–34; 35–64; 65+

Determined by a random draw from a uniform distribution from 18 to 75

Developed/developing

country.

50% from developed countries, 50% developing countries

Body Mass Index (BMI) <25 (average or low); 25–30 (high); >30 (obese),

Determined by a random draw from a normal distribution with mean 23 and

standard deviation of 4.

Smoking status 30% smokers, 70% non-smokers

doi:10.1371/journal.pone.0171292.t001

The impact of MTC methods on health-economic outcomes
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The way patient characteristics and interventions influenced the RDP is stated in S1 Table.

Focusing on the interventions, “No Intervention” has no effects on the RDP. “Old Interven-

tion” decreases the probability of an event and has a positive effect on mortality, with a one-off

cost of €250 at the beginning of treatment. “Usual Care” decreases the probability of disease

progression at €60 per month. “New Intervention” costs €350 per month and decreases the

probability of disease progression, increases the probability of moving to a better disease stage

and decreases the probability of an event. The intervention effects are dependent on the disease

stage of the patient.

Changes to parameters were additive across patient characteristics and interventions. For

example, for a female patient aged 35–64 who gets New Intervention, the probability to move

from the severe disease stage to death was 10% (RDP) -2% (modification for gender) +4%

(age) -3% (intervention) = 9%.

The comparison of interest is that between New Intervention and Usual Care. Table 2 shows

the reference outcomes when applying these interventions to the complete patient population.

The structure of the HE model mirrors the disease progression. We assumed that trial data

was collected each month during one year. Likewise, the time horizon of the HE model was 1

year, with monthly cycles. We did not apply discounting. Simulation and modeling was per-

formed using SAS 9.2 and WinBUGS 1.4.3.

2.3. Scenarios

The amount of heterogeneity in the trials sampled in step 2: Trial selection was varied in eight

scenarios. We discuss these scenarios in this section. Heterogeneity in the meta-analysis litera-

ture is any kind of variability in outcomes between different studies,[13] which is caused by

both aleatoric uncertainty (the intrinsic uncertainty of a phenomenon) and (unknown or

unmeasured) underlying differences between the study characteristics. We used the mecha-

nism as discussed in section 2.2 to create this systematic heterogeneity between patients. All

Table 2. Reference outcomes for Usual Care and New Intervention, per patient after 12 cycles—Mean (Standard deviation)a.

Variables Usual Care New Intervention Difference

QALYsb 0.485 (0.232) 0.540 (0.231) 0.054

LYsb 0.740 (0.328) 0.786 (0.313) 0.046

Intervention costs €530 (€240) €3,300 (€1,310) €2770

Maintenance costs €3,260 (€2,080) €3,070 (€1,810) - €180

Event costs €2,330 (€2,610) €1,260 (€1,780) - €1070

Total costs €6,120 (€4,340) €7,630 (€3,830) €1520

Number of cycles in:

Moderate disease 5.171 (3.750) 6.209 (3.965) 1.038

Severe disease 2.477 (2.512) 2.313 (2.507) -0.164

Very severe disease 1.238 (1.850) 0.911 (1.554) -0.327

Death 3.114 (3.937) 2.567 (3.751) -0.547

Number of events 1.160 (1.259) 0.630 (0.856) -0.530

Proportion surviving 49.9% 58.3% 8.4%pt

ICER, total costs per QALYb €28,020

a ICER for other comparisons: New Intervention versus Old Intervention €30,440; Usual Care versus Old Intervention €42,760; New Intervention versus No

Intervention €21,830; Usual Care versus No Intervention €13,750; Old Intervention versus No Intervention €3,680. Mean and standard deviation for costs

were rounded to nearest €10.
b LY = life year, QALY = quality adjusted LY, ICER = incremental Cost-effectiveness Ratio

doi:10.1371/journal.pone.0171292.t002
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scenarios contained data from nine trials, with 500 patients in each of the two treatment arms.

The comparisons made in each of the trials can be found in Fig 3. It is clear from this graph

that the nine trials provide evidence for all available contrasts. A similar structure can be found

in Hasselblad [14] and Lu and Ades.[15]

The heterogeneity in all eight scenarios is described in Table 3. In scenario 8 we used het-

erogeneity definitions at extreme values. This scenario is included as a stress test for the meth-

ods, with extreme amounts of heterogeneity between trials. In practice, trials that display this

amount of heterogeneity would (should) not be combined.

2.4. Methods of meta-analysis

In this section, we discuss the methods of meta-analysis to be included in this study. We first

discuss combining only the available direct evidence in the network. This is a relevant compar-

ison, since it has been debated whether or not direct and indirect evidence can and should be

combined, or even if indirect methods should be used at all. Since there is no reason not to use

Fig 3. Evidence network for simulation study. The figures in curly brackets are the trial numbers making the corresponding comparisons, as described

in the text. Trials 1, 6 and 8 are trials that may be drawn from a subpopulation in selected scenarios.

doi:10.1371/journal.pone.0171292.g003
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direct evidence when it is available, results on indirect treatment comparison methods, disre-

garding direct evidence, were not reported separately in this paper. The four methods of indi-

rect meta-analysis compared in this study are the methods proposed by Song et al. [16], the

logistic regression approach proposed by Puhan et al. [17] and Strassman et al. [18], and the

Bayesian generalized linear model, either in a fixed effect or random effect specification.

[19,20]

All methods attempt to calculate d̂ jk, estimates of the relative difference between two treat-

ments j and k = 1,. . ., K, δjk. Despite being used in many applications of MTC, the odds ratio

(OR) is not commonly used in HE modeling. We have chosen to use the natural logarithm of

the relative risk ln(RR) as relative measure of treatment benefit for the transition and event

probabilities. For all non-relative variables in the model -costs, quality of life weights and base-

line values for the comparator-, we used estimates obtained with the DerSimonian-Laird ran-

dom effects method (DL).[21]

This method is also used as a baseline method, to combine all available direct evidence

(DIRECT) on the difference between New Intervention and Usual Care in the network. The

Table 3. Overview of heterogeneity of different scenarios in the simulation study. Scenarios discussed

in detail in the main text are in bold. Other scenarios are primarily shown in the appendix.

Scenario Added heterogeneity with effect on disease progression

1 9 randomly drawn trials, with 500 patients in each of the treatment arms.

2 8 randomly drawn trials

Non-random trial 1 (Old Intervention versus No Intervention), with worse average health.a

3 8 randomly drawn trials

Non-random trial 6 (New Intervention versus No Intervention), with worse average health.a

4 8 randomly drawn trials

Non-random trial 8 (New Intervention versus Usual Care directly), with worse average

health.a

5 7 randomly drawn trials

Non-random trial 1 (Old Intervention versus No Intervention), with worse average health.a

Non-random trial 6 (New Intervention versus No Intervention), with lower average age.b

6 6 randomly drawn trials

Non-random trial 1 (Old Intervention versus No Intervention), with worse average health.a

Non-random trial 6 (New Intervention versus No Intervention), with lower average age.b

Non-random trial 8 (New Intervention versus Usual Care directly), with higher average age.c

7 6 randomly drawn trials

Non-random trials 1 (Old Intervention versus No Intervention), 6 (New Intervention

versus No Intervention) and 8 (New Intervention versus Usual Care), with worse average

health.a

8 6 randomly drawn trials

Non-random trials 1 (Old Intervention versus No Intervention), 6 (New Intervention versus No

Intervention) and 8 (New Intervention versus Usual Care), with worse average health.a

Extreme scenario

a Trial contains, on average, patients with a higher age, more smokers and more obesity; patients have

therefore on average a more rapid disease deterioration, higher event probability, higher maintenance costs,

lower quality of life.
b Trial contains, on average, patients with a lower age; patients have therefore on average a slower disease

deterioration.
c Trial contains, on average, patients with a higher age; patients have therefore on average a more rapid

disease deterioration.

doi:10.1371/journal.pone.0171292.t003
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pooled estimate d̂DLjk , in this case on a ln(RR) scale, is calculated as a weighted average of indi-

vidual study estimates, using the inverse of the within-study and between-study variance

(heterogeneity) as weights. We denote an estimate of δjk from study s = 1,. . ., S by d̂s, and its

precision, defined as the reciprocal of the estimate’s within-study variance, by ws. The model is

assumed to be

d̂s � NðmsðdÞ; vsÞ; msðdÞ � NðmðdÞ; t
2

i
Þ ð1Þ

An estimate of the between-study heterogeneity t2

i
is obtained from:

t̂2 ¼

P
wsðds � d̂FEjk Þ

2
� ðS � 1Þ

P
ws �

P
w2
sP
ws

;
P
wsðds � d̂FEjk Þ

2
� ðS � 1Þ

0 ;
P
wsðds � d̂FEjk Þ

2
< ðS � 1Þ

ð2Þ

8
>>>><

>>>>:

where d̂FEjk is the fixed effect estimate of δjk, calculated as a weighted average of the individual

study estimates, using only ws as weights. The DL estimate incorporates t̂2

i
into the weights:

d̂DLjk ¼

P
w�s d̂sP
w�s

; w�s ¼ ðw
� 1

s þ t̂2Þ
� 1

ð3Þ

The variance of the DL-estimate v̂DLjk is calculated as.

v̂DLjk ¼
1

P
w�i

ð4Þ

The first MTC method in our study was proposed by Song et al. (SONG).[16] If direct evi-

dence is available between baseline intervention 1 and intervention of interest k, a direct esti-

mate d̂DL
1k is calculated for the difference between the two interventions, using the DL method

described above. Next, all possible indirect estimates, via intermediate interventions denoted

as j, are calculated.[22] For any combination for which direct evidence is available between

interventions 1 and j, and k and j, the estimate of indirect association on a ln(RR) scale d̂
j
1k is

calculated as

d̂
j
1k ¼ d̂DL

1j � d̂DLkj ð5Þ

The paired comparisons of 1 versus j, d̂DL
1j , and k versus j, d̂DLkj are calculated using the DL-

method, The estimated variance of d̂
j
1k can be obtained from

v̂ j1k ¼ v̂
DL
1j þ v̂

DL
kj ð6Þ

The SONG estimate d̂SONG
1k of the association between 1 and k, in our study Usual Care and

New Intervention, is then calculated by performing a DL meta-analysis, where each direct and

indirect estimate and its estimated variance, is treated as if it were a single trial.[16]

The second method in our study was proposed by Puhan et al., who performed a fixed effect

logistic regression (PUHAN) [17,18]:

log
pi

1 � pi

� �

¼ bþ
XK

k¼2

d1kTrki þ
XS

s¼2

lsStsi ð7Þ
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A data set is first created, based on summary tables from each included study. The number

of data entries is equal to the number of patients in each respective study, with treatment vari-

ables Trk,k = 2,. . .,K as independent dummy variables. To preserve randomization within

each trial, a study dummy variable Sts,s = 2,. . .,Swas also included. This dummy variable also

adjusts for differences in patient profiles and study setup between trials.[17] Intervention 1

and study 1 are treated as baseline. The binomial dependent variable was whether or not

patient imade the transition, or experienced the event that was being modeled. The parameter

estimate d̂1k belonging to treatment k can be interpreted as the ln(OR) of the event occurring

between interventions 1 and k. We estimated d̂PUHAN
1k on a ln(RR) scale and its estimated vari-

ance, using the ln(OR) estimates from the model, and the treatment effects of the baseline

intervention. See S1 Text for the calculation used.

The generalized linear model (GLM) is the most widely used method of MTC, and is also

applicable for direct meta-analysis.[19,20] Where frequentist methods such as DIRECT,

SONG and PUHAN implicitly assume a normal distribution, Bayesian GLM allows the defini-

tion of many different possible link functions, depending on the nature of the data. The fixed

effects specification of the GLM (GLMFE) requires the trial data, the definition of a prior for

the parameter of interest and a likelihood function linking both. Defining nsk as the number of

events, out of the total number of patients in each arm nsk, for intervention arm k of study s,
we assumed that the data generation process follows a binomial likelihood:

rsk � Binomialðpsk; nskÞ ð8Þ

where psk represents the probability of an event in arm k of trial s. We modeled the probabili-

ties of events psk on the logit-scale, the most commonly used link function for a binomial likeli-

hood [19]:

log
psk

1 � psk

� �

¼ ms þ ds;1k � Iðk 6¼ 1Þ ð9Þ

where I(k 6¼ 1) takes the value 0 when intervention k is equal to baseline intervention 1, and 1

otherwise, μs is the trial-specific log-odds in the comparator arm, and δs,1k is the trial-specific

log OR of events for treatment group j compared to baseline intervention 1. Notice the similar-

ities between the GLM specification, and PUHAN.

For the random effects specification (GLMRE), we assumed

ds;1k � Nðd1k; s
2Þ ð10Þ

where σ2 represents the between-trial heterogeneity. Note that the heterogeneity variance is

assumed to be the same between different treatment comparisons; a necessary restriction

unless there are large numbers of studies per comparison. For the GLMFE, (Eq 8) reduces to

log itðpskÞ ¼ ms þ d1k � Iðk 6¼ 1Þ ð11Þ

which is equivalent to setting σ2 in (Eq 10) to zero, thus assuming homogeneity of the underly-

ing treatment effects. The GLM procedure calculates a posterior estimate for d̂1k on a log OR

scale. Using a different link function and therefore directly calculating outcomes on a ln(RR)

scale is possible, but may run into computational problems.[23] We therefore estimated d̂GLM
1k

on a ln(RR) scale and its dispersion parameter, using the ln(OR) estimates from the model,

and the treatment effect of the baseline intervention.

We used a flat beta prior Beta(0.5,0.5) for all baseline transitions, and a flat normal

prior N(0,1E12) for all other baseline parameters. We used a flat normal prior centered on

The impact of MTC methods on health-economic outcomes
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N(0,1E8) for all treatment effects of the comparator. For GLMRE, we used the inverse of

a squared uniform distribution U(0.001,10) for 1/σ2 where σ2 is the between-trial heteroge-

neity from (Eq 10). The minimum value of this prior was not 0, to avoid numerical

problems.

Conceptually, confidence intervals in frequentist statistics and credibility intervals in Bayes-

ian statistics have very different interpretations (e.g. [24,25]). However, for convenience and

legibility, we abbreviate both as CI. For each pooled parameter estimate, we report the mean

and the 95% CI. Interested readers may request code on both the simulation study and the

methods of meta-analysis from the corresponding author.

2.5. Comparing performance

In this section, we discuss the metrics to compare the statistical performance of the methods.

We assumed that a researcher doing a meta-analysis aims to estimate the CE of the New

Intervention compared to Usual Care in the entire patient population, not a specific sub-

group. Evidence on other interventions is solely used to provide extra evidence for this com-

parison. We further assumed that the researcher is unaware of the fact that heterogeneity,

when present, was caused by sampling from subgroups. To the researcher, heterogeneity is

either caused by random sampling or unobserved trial differences. These assumptions are

made, because if these differences in design are known, either the trials would not be synthe-

sized at all, or a way has to be found to control for these differences. These assumptions

made it possible to judge the performance of the different methods of meta-analyses by com-

paring model parameters and HE outcomes with the reference values. Because the same

patients were included to calculate HE outcomes for each method of meta-analysis, any dif-

ference between the methods can be attributed to the methods themselves (moderately inde-

pendent simulations).[12]

Statistical performance is measured using coverage, statistical power, bias and mean abso-

lute deviation (MAD). Coverage is the percentage of all repetitions, that the simulated CI cov-

ered the ‘truth’. Since the coverage is based on 95% CIs, we would expect that, if all trials are

drawn randomly, the coverage should on average be close to 95%.[5,12,26] Over-coverage,

where the CI are so wide that coverage rates are above 95 per cent, suggests the results are too

conservative, which leads to a loss of statistical power. Under-coverage, coverage rates lower

than 95 per cent, indicates over-confidence in the estimates, which leads to higher than

expected type I error, since more simulations will incorrectly detect a significant result.[12]

We said a method underestimated uncertainty if the coverage was smaller than 90%; and over-

estimated if the coverage was higher than 98%.

Statistical power is the percentage of all repetitions where the simulated result yields a statis-

tically significant difference between the two treatments. Bias is the difference between the

point estimate in the simulated data set and the true population value, averaged over all repeti-

tions. MAD is the average, over all repetitions, of the absolute value of the bias. The MAD indi-

cates how far the estimated value was from the ‘truth’, regardless of whether it was too high or

too low.

3. Results

3.1. Parameter estimates for one set of trials

We first compare the methods of meta-analysis on one example parameter for each of the sce-

narios, using only the first repetition (Fig 4). From bottom to top, we compare the different

meta-analysis models for the eight scenarios. Each dot represents the point estimate for the

parameter, in this case the transition probability from severe to very severe disease, and the bars

The impact of MTC methods on health-economic outcomes
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the estimated CIs. The ‘true’ population value is displayed at the bottom. As can be seen, when

all trials were drawn randomly (scenario 1), GLMRE had the broadest CI, followed by DIRECT,

GLMFE and SONG. PUHAN had the smallest CI. All methods had the true parameter value in

its CI and the point estimates were all very similar. In the other scenarios, each with a different

amount of heterogeneity, we see a similar pattern as in scenario 1, except that in scenario 7

SONG had a relatively larger CI. The point estimate of SONG and PUHAN, and of GLMFE

and GLMRE are very similar.

Based on similar patterns for other parameters (not shown), we can conclude that DIRECT

and GLMRE yielded the widest CI. GLMFE had a point estimate that is generally closer to the

true parameter value than DIRECT, with a smaller CI. The smallest CI was found for SONG

and PUHAN. In all scenarios, for all methods, the true parameter value lay within the CI of the

estimated parameters.

Fig 4. Meta-analysis on the logarithm of the risk ratio of the transition from the severe to very severe disease stage, for the New

Intervention arm compared to the Usual Care arm, for one repetition. All scenarios have nine trials, each with 500 patients in both

treatment arms.

doi:10.1371/journal.pone.0171292.g004
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3.2. Parameter estimates for 1,000 repetitions

The results from the previous section might be due to chance. To see if there were systematic

differences, we now discuss parameter estimates averaged over 1,000 repetitions. Table 4

shows the number of parameters that correspond to several threshold values of coverage, bias

Table 4. Summary of the results of meta-analysis on parameters of the health-economic model, which require network meta-analysis for three of

the eight scenarios. Means over 1,000 repetitions.

Scenario 1 Scenario 4 Scenario 7

Total number of parameters 12 12 12

Parameters influenced by added heterogeneity 0 9 9

Heterogeneity in the following trials - Trial 8 (New Int vs Usual) Trial 1 + Trial 6 + Trial 8

Total number of parameters for which:

Mean coverage < 90% (underestimation of uncertainty)

Direct comparison (DIRECT) 0 0 0

Song’s method (SONG) 0 0 0

Puhan’s method (PUHAN) 0 0 0

Bayesian GLM FE method (GLMFE) 0 0 0

Bayesian GLM RE method (GLMRE) 0 0 0

Mean coverage > 98% (overestimation of uncertainty)

DIRECT 1 0 2

SONG 11 4 7

PUHAN 3 1 3

GLMFE 10 6 4

GLMRE 12 12 12

Mean bias 1%-2%

DIRECT 2 0 0

SONG 0 1 1

PUHAN 0 2 1

GLMFE 4 0 1

GLMRE 1 1 1

Mean bias > 2%

DIRECT 0 9 9

SONG 0 8 8

PUHAN 0 8 8

GLMFE 1 9 9

GLMRE 9 10 11

Mean MADa 4%-7%

DIRECT 5 4 4

SONG 8 8 8

PUHAN 8 9 9

GLMFE 5 4 4

GLMRE 4 4 4

Mean MADa > 7%

DIRECT 6 7 7

SONG 1 2 3

PUHAN 0 0 0

GLMFE 7 8 8

GLMRE 8 8 8

a MAD = Mean absolute deviation, minimum found is 2.6%.

doi:10.1371/journal.pone.0171292.t004
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and MAD for three scenarios. Information on other scenarios can be found in S2 Table. No

parameter had a mean coverage below 90%, which we defined as underestimation of uncer-

tainty. The least overestimation of uncertainty could be found with DIRECT and PUHAN,

regardless of the amount of heterogeneity.

In scenario 1, GLMRE had a large number of parameters with an average bias larger than

1% or even 2%. All methods had a large number of parameters with a large bias in scenario 4,

where extra heterogeneity was added to trial 8, which directly compares the Usual Care with

the New Intervention. In scenario 7, where three out of nine trials have patients drawn from

a subpopulation, all methods showed bias in several parameters. The lowest amount of bias

was found in SONG and PUHAN, with a similar number of parameters in each category of

bias.

For all methods, the estimated parameter value was quite far from the true population

value. The minimum MAD, averaged over 1,000 estimates of the same parameters (not in

graphs/tables), ranged from 2.6% for PUHAN to 4.2% for GLMRE. In other words, none of

the methods estimated parameters with an average MAD lower than 2.6%. The maximum

MAD, averaged over 1,000 estimates of the parameters, was 14.4% for GLMRE in scenario 7.

This means that one of the parameters, in this case ln(RR) of the number of events in the

severe disease stage, differed from the reference value by more than 14%, averaged over

1,000 repetitions. The discrepancy will therefore be much larger for individual repetitions.

SONG and PUHAN generally had the lowest number of parameters in each of the categories

of MAD.

Generally, SONG, GLMFE and GLMRE overestimated uncertainty for most parameters.

PUHAN overestimated uncertainty for fewer parameters. Neither of these methods underesti-

mated uncertainty. The bias and MAD was generally lowest for SONG and PUHAN, followed

by GLMFE.

3.3. Health-economic outcomes for 1,000 repetitions

After having compared the methods of meta-analysis on the parameters, we now turn our

attention to the HE outcomes. In Table 5, we show the coverage, statistical power, bias and

MAD for three scenarios. Information on other scenarios can be found in S3 Table. It shows

the range in values over the four types of HE outcomes, the difference in QALYs, LYs, number

of events and total costs. PUHAN had a coverage closest to the benchmark of 95%. Only in

case of heterogeneity (scenario 7) did PUHAN overestimate uncertainty. Both GLMFE and

GLMRE had a coverage above 99% for all methods, for all HE outcomes. No method underes-

timated uncertainty.

Regardless of heterogeneity, GLMRE had the lowest statistical power. For the difference in

LYs, GLMRE had a statistical power below 10% in scenario 1, where all trials were drawn ran-

domly, and even lower in scenarios with added heterogeneity. All methods had a statistical

power of 100% for the number of events and above 99% for total costs, in all scenarios.

PUHAN generally had the lowest bias and MAD across all scenarios. GLMRE had the highest

MAD for all HE outcomes in all scenarios. In S3 Table, the results for the different HE out-

comes are presented separately.

In Fig 5 we show the CE acceptability curves (CEACs) for scenario 7 where three trials are

drawn from a less healthy population. The five graphs represent the methods we compared. In

each graph, we show the CEAC of ten repetitions, the median and 2.5th and 97.5th percentiles

over 1,000 repetitions. The vertical line indicates the true population ICER. Graphs for other

scenarios can be found in S1 Fig. Ideally, the methods would show a low value for the CEAC

below the true population ICER, and a high value above.
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In this scenario, we can see that SONG and PUHAN displayed a steeper shape than the

other methods. This indicates that they were more certain of the CE of the New Intervention

than the other methods. At a WTP of €30,000 per QALY, which is close, but slightly above the

true population ICER, the median likelihood that the New Intervention was cost-effective was

56% for SONG, 52% for PUHAN, 47% for GLMFE and 45% for GLMRE. At higher WTPs,

GLMFE and GLMRE were less certain than the other methods. At a WTP of €60,000 per

QALY, the median probability of the New Intervention being accepted was 100% for SONG

and PUHAN, 96% for GLMFE and 86% for GLMRE. At a WTP of €60,000 per QALY, the dif-

ference between the 2.5th percentile and the 97.5th percentile was 9 percentage points (%pt,

100%-91%) for SONG. For PUHAN this difference was 3%pt, for GLMFE 29%pt and for

GLMRE 36%pt. With less heterogeneity (scenario 1 and 4), the CEACs express a higher cer-

tainty for all methods. Still, SONG and PUHAN seem to be the most certain of the CE, in these

scenarios followed by GLMFE. SONG and PUHAN still had the most certainty around the CE.

SONG had all the CEACs lying closest to each other.

Regardless of the amount of heterogeneity, SONG and PUHAN lead to the least amount of

uncertainty. GLMFE model is slightly less certain. DIRECT and GLMRE have a lot of uncer-

tainty, even at WTP values far from the true population ICER. They also display a lot of differ-

ences between the different repetitions.

Table 5. Coverage, statistical power, absolute value of the bias and mean absolute deviation (MAD) of health-economic outcomes for three of the

eight scenarios.

Direct

comparison

Song’s

method

Puhan’s

method

GLM FE

method

GLM RE

method

Coverage, range in values over the four health-economic

outcomesa

Scenario 1: Nine randomly drawn trials >98% >98% 97.0%-97.3% >98% 100%

Scenario 4: Eight randomly drawn trials; one trial drawn from a less

health population

97.1%-98.6% >98% 96.8%-97.9% >99% 100%

Scenario 7: Six randomly drawn trials; three trials drawn from a

less healthy population

97.2%-99.1% 97.9%-99.3% 96.3%-98.2% >99% 100%

Statistical power, range in values over the four health-economic

outcomesa

Scenario 1: Nine randomly drawn trials 81.5%-100% 95.3%-100% >99% 73.4%-100% 5.8%-95.9%

Scenario 4: Eight randomly drawn trials; one trial drawn from a less

healthy population

76.3%-100% 93.5%-100% >98% 56.8%-100% 4.1%-94.3%

Scenario 7: Six randomly drawn trials; three trials drawn from a

less healthy population

79.3%-100% 91.9%-100% >98% 60.3%-100% 3.6%-93.5%

Bias, range in values over the four health-economic outcomesa

Scenario 1: Nine randomly drawn trials 0.4%-5.7% 0.2%-3.0% 0.2%-2.1% 0.3%-3.5% 0.3%-13.6%

Scenario 4: Eight randomly drawn trials; one trial drawn from a less

healthy population

0.5%-11.8% 0.5%-5.5% 0.5%-5.4% 0.8%-9.3% 2.0%-6.3%

Scenario 7: Six randomly drawn trials; three trials drawn from a

less healthy population

0.2%-10.1% 0.5%-9.7% 0.4%-8.1% 0.0%-7.7% 0.2%-17.8%

MAD, range in values over the four health-economic outcomesa

Scenario 1: Nine randomly drawn trials 6.0%-21.7% 5.1%-17.9% 4.9%-16.9% 6.2%-22.7% 6.9%-25.9%

Scenario 4: Eight randomly drawn trials; one trial drawn from a less

healthy population

6.6%-23.5% 5.3%-18.4% 5.1%-17.4% 6.8%-25.1% 7.9%-29.9%

Scenario 7: Six randomly drawn trials; three trials drawn from a

less healthy population

6.3%-22.8% 5.4%-19.2% 5.1%-18.0% 6.8%-24.1% 7.9%-28.5%

a QALYs, LYs, number of events and total costs

doi:10.1371/journal.pone.0171292.t005
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Fig 5. Cost-effectiveness acceptability curves (CEACs) for the five meta-analysis methods in the heterogeneous scenario 7. The vertical lines

depicts median, 2.5th and 97.5th percentile of the likelihood that the New Intervention is cost-effective compared with Usual care, at various threshold

values of a QALY (averaged over 1,000 repetitions). The curves are the CEACs for the first 10 repetitions. The dotted vertical line is the ‘true’ population

ICER.

doi:10.1371/journal.pone.0171292.g005
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4. Discussion

In this study, we compared four methods of indirect meta-analysis in a simulation study and

judged their statistical performance by creating a gold standard. On a parameter level, Puhan’s

method (PUHAN) showed the best performance, overestimating uncertainty for the fewest

parameters with low bias and MAD. Song’s method (SONG) and the Bayesian fixed effect gen-

eralized linear model (GLMFE) also had generally low bias and MAD.

On HE outcomes, PUHAN showed a coverage closest to 95%, regardless of heterogeneity.

Only with high heterogeneity did PUHAN overestimate uncertainty. Both PUHAN and

GLMFE performed best on bias and MAD, followed by SONG. GLMFE had a very high cover-

age, which we defined as overestimating uncertainty. The same is true for the Bayesian random

effect generalized linear model (GLMRE), which also had the lowest statistical power and the

highest MAD for all HE outcomes.

The use of these methods would lead to differences in policy decisions. Using either only

the direct evidence or GLMRE would lead to more rejections of new treatments compared to

the other methods or more unnecessary research. Generally speaking, sophisticated methods

require more data than simple methods, because of the increased number of parameters. It is

possible that the GLMRE method, which requires the largest number of parameter to be esti-

mated, may have more desirable properties when more trials have to be combined. Unfortu-

nately, this situation is unlikely within the scope of the expensive drug program in the

Netherlands. Based on this study, we would recommend either PUHAN or GLMFE. PUHAN

is easier to implement and more easily understood by physicians and policy makers who will

be using the results. GLMFE is the most widely used method, but requires advanced knowl-

edge of statistical programming.

In scenarios, we covered many likely situations. We have drawn all trials randomly, added

heterogeneity on the different “legs” of the network, and changed the amount of heterogeneity.

One of the scenarios was “extreme” scenario 8, with trials that display such an amount of hetero-

geneity that in practice would not be combined. Although this lowered the practical applicability,

it does give insight into the performance of the different methods (see Supporting Information

for results). For example, no parameter had a mean coverage below 90% (section 3.2), except in

scenario 8. In this scenario GLMFE and GLMRE had the least amount of parameters for which

uncertainty was underestimated. The maximum MAD over all methods in this extreme scenario

ranged from 17.6% for SONG, to 27.6% for GLMRE. Compared to a few large trials, the effect of

having more but smaller trials and trials with differences in trial sizes, on the performance of dif-

ferent methods of meta-analysis is small.[11] We therefore feel our study results are generalizable

to many other situations where parameters for a HE model are obtained through MTC.

However, the network is very “regular” with direct evidence for all treatment combinations.

This is often not the case. New interventions are usually only compared to the latest alternative,

or to placebo. Other forms of the evidence network are routinely found in MTC research. It

remains open to further research how adding irregularity to such networks will change the

results of this study. In particular, due to the regularity of the network, SONG could be used to

full effect in our study, using information from all possible indirect comparisons. Since SONG

can only be used in triangular networks, it is possible that not all available evidence can be

used when applying SONG. This would for example be true in our study if no evidence existed

on one of the treatment combinations. PUHAN, GLMFE and GLMRE would still be able to

use all available data. This will likely diminish the performance of SONG compared with the

other three methods.

Another limitation is the choice of prior for the Bayesian models. In the case of meta-analy-

sis, a small number of studies is extra vulnerable to the type of prior.[8,27] As we did not
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assume the researcher to have prior information, we used vague priors. Even though they are

supposed to be “uninformative”, they may influence posterior outcomes, especially for scale

parameters.[27] We tested several different prior specifications but did not find any differences

in outcomes.

Bayesian statistics at its heart is ideally suited for meta-analysis, since the premise of both

are the same: prior available information is updated with new data.[28] However, the numeri-

cal method used for the Bayesian methods is not ideally suited for a simulation study such as

we have done. Checking for convergence requires visual examination of plots, and careful

examination of other outcome measures, which is infeasible when performing 1,000 repeti-

tions. We therefore assumed that the MCMC procedure used to fit the Bayesian models

achieved convergence in all simulations.

A final limitation is that no formal testing was performed on the consistency of the net-

works included.[29,30] Inconsistency can be thought of as a conflict between the direct and

indirect evidence that is combined. Inconsistency, as with heterogeneity, is caused by an

imbalance in the distribution of effect modifiers in the different arms.[29]

Within the MTC approach, evidence can be treated as a coherent whole, more data may

be included, and in some cases the assumptions made in pair-wise approaches can be

relaxed.[31] However, in practice, there is still a strong preference to use direct over indirect

evidence. One of the main concerns is that indirect comparisons may be subject to greater

biases than direct comparisons.[18] They are essentially observational findings across trials,

and may have similar biases. The Cochrane Handbook for Systematic Reviews of Interven-

tions recommends that direct and indirect evidence is considered separately and direct

comparisons should take precedence as a basis for forming conclusions.[8] In contrast, it

has also been argued that it would be improper to exclude any evidence.[32] Our study

seems to support this second view: the direct comparison has a smaller statistical power,

leading to new interventions not being found statistically different from older interventions.

The biases and MAD are also higher than the MTC methods, except for the GLMRE

method.

Heterogeneity in our reference population is modelled in a systematic manner, in order to

see whether the methods would detect the heterogeneity that was introduced. If the heteroge-

neity would be drawn from a random distribution, as was done in for example [33], there is a

possibility that a draw in one iteration would cancel the random draw in another iteration. By

having heterogeneity in the same direction for each iteration, we could see how each method

deals with this.

A crucial assumption is that the researcher performing the meta-analysis is not aware of

these differences, as is very often the case in real life when heterogeneity is caused by unob-

served factors.

If the confounding factor is unknown (e.g. genetics), the outcomes of heterogeneity tests

might indicate “heterogeneity present” and the analysis might still be done. The latter is the

case we are simulating, as we were interested in seeing whether the choice of method would

impact reimbursement decisions.

In conclusion, when indirect evidence is available to inform a comparison between two

interventions, regardless of the amount of heterogeneity present, combining all evidence is

superior to using only the evidence from a head-to-head comparison of these two interven-

tions. Puhan’s method and GLMFE showed similar results, with GLMFE having the tendency

to overestimate uncertainty, but also having lower average bias and MAD. Based on this study,

where we had to combine nine trials in a network that includes evidence for all treatment com-

binations, we would recommend PUHAN or GLMFE as the preferred method of indirect

meta-analysis.
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