
A branch-and-cut algorithm for the Time Window

Assignment Vehicle Routing Problem

Kevin Dalmeijer∗ and Remy Spliet

Econometric Institute
Erasmus School of Economics
Erasmus University Rotterdam

October 19, 2016
EI2016-39

Abstract

This paper presents a branch-and-cut algorithm for the Time Window Assignment

Vehicle Routing Problem (TWAVRP), the problem of assigning time windows for

delivery before demand volume becomes known. A novel set of valid inequalities,

the precedence inequalities, is introduced and multiple separation heuristics are

presented. In our numerical experiments the branch-and-cut algorithm is 3.8 times

faster when separating precedence inequalities. Furthermore, in our experiments,

the branch-and-cut algorithm is 193.9 times faster than the best known algorithm

in the literature. Finally, using our algorithm, instances of the TWAVRP are solved

which are larger than the small scale instances previously presented in the literature.

Keywords: Vehicle Routing, Time Window Assignment, Precedence Inequalities.

MSC codes: 90B06 (Transportation), 90C11 (Mixed integer programming), 90C57

(Branch-and-cut).

∗E-mail: dalmeijer@ese.eur.nl; Phone: +3110 408 9059; Address: PO Box 1738, 3000DR

Rotterdam, The Netherlands; Corresponding author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/154414686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The Time Window Assignment Vehicle Routing Problem (TWAVRP) is the problem of
assigning time windows for delivery to clients in a distribution network when the demand
volume of the clients is uncertain, such that the expected transport costs are minimized.
First introduced by Spliet and Gabor (2014), the TWAVRP is inspired by distribution
networks of retailers.

In a retail network, the clients are retail stores whom place orders on a regular basis.
It is common that the time windows for delivery are �xed for a long period of time
(e.g., a year). This is convenient for the retailers, as it allows them to ensure that enough
personnel is available to process the delivery. Furthermore, it simpli�es inventory control.
Demand is uncertain and �uctuates per delivery. This results in orders of varying sizes,
which become known shortly before the vehicles are dispatched.

To deal with demand uncertainty, the TWAVRP requires demand scenarios and their
probability of occurrence to be known in advance. Note that if the number of scenarios
is equal to one, the problem reduces to a Vehicle Routing Problem with Time Windows
(VRPTW). Hence, the TWAVRP is NP-hard.

An increasing number of companies focus on achieving consistent service with their
deliveries (Kovacs et al., 2014). Also in the scienti�c literature, we see the same trend
towards consistency considerations in routing, as can be seen in the recent survey by
Kovacs et al. (2014). In this survey, three main pillars of consistency are described:
arrival time, person-oriented and delivery consistency, and the TWAVRP is categorized
within the �rst. Our study adds to the limited amount of research done so far on exact
methods for solving routing problems with consistency considerations.

Among the routing problems with consistency considerations, the TWAVRP is in
particular closely related to two speci�c models. Firstly, the TWAVRP is similar to the
Consistent Vehicle Routing Problem (ConVRP) introduced in Groër et al. (2009). The
ConVRP does not only impose consistent arrival time but also requires the same driver to
service the same customer. Another closely related model is the Vehicle Routing Problem
with self-imposed time windows, as introduced by Jabali et al. (2015). In their paper,
the authors assume demand to be given while travel times are uncertain.

The TWAVRP is a generalization of both the Capacitated Vehicle Routing Problem
(CVRP) and the VRPTW, and hence similar solution methods can be used. In a re-
cent survey, Baldacci et al. (2012) mention there are three formulations that have been
most successful when used to solve the CVRP. Two of them make use of �ow variables
(Laporte et al. (1985), Baldacci et al. (2004)), while the third is a set partitioning for-
mulation (Balinski and Quandt, 1964). For the VRPTW, a set partitioning formulation
in a branch-price-and-cut algorithm is very successful (Desaulniers et al., 2008). To solve
the TWAVRP, Spliet and Gabor (2014) also introduce a branch-price-and-cut algorithm
based on a set partitioning formulation, which allows for instances with up to 25 clients
and three demand scenarios to be solved to optimality within a one hour time limit.
Similarly, Spliet and Desaulniers (2015) solve the DTWAVRP, the discrete time window
variant of the TWAVRP.

In this paper, we present a new �ow formulation for the TWAVRP that is of polynomial
size in the number of clients and scenarios. This formulation is based on the MTZ-
inequalities in Miller et al. (1960) and the 2-commodity �ow formulation in Baldacci
et al. (2004). Based on this formulation, we construct a branch-and-cut algorithm that

1

is faster than the algorithm in Spliet and Gabor (2014). This new algorithm does not
only allow for obtaining solutions faster, but also allows for solving larger instances of
the TWAVRP, making it applicable to larger networks than previously possible.

One of the factors that contributes to the success of the branch-and-cut algorithm,
is the introduction of a novel class of valid inequalities speci�cally designed for the
TWAVRP: the precedence inequalities. We identify pairs of routes in di�erent scenarios
that cannot be selected simultaneously for any feasible time window assignment. Be-
cause time windows are not �xed in advance, identifying such pairs is a main challenge,
which we address. We subsequently create valid inequalities using these pairs, similar to
the valid inequalities designed by Ascheuer et al. (2000), which disallow infeasible paths
for the Asymmetric Traveling Salesman Problem with Time Windows (ATSPTW). We
show that separating precedence inequalities is co-NP-hard and present several separation
heuristics to �nd violated inequalities.

The remainder of this paper is structured as follows: in Section 2, we present the formu-
lation that is used in our branch-and-cut algorithm. In Section 3 we present the branch-
and-cut framework. Section 4 is dedicated to the precedence inequalities and heuristics
for separating them. Our numerical experiments and their results are presented in Sec-
tion 5. In the �nal section, we write our conclusions and present some directions for
further research.

2 Problem de�nition

In this section, we �rst formally introduce the TWAVRP. Then, we present a mixed
integer linear program to solve the problem.

Consider a set of n clients V ′ = {1, 2, ..., n}. Furthermore, location 0 represents the
starting depot and location n + 1 the ending depot. Let V = V ′ ∪ {0, n + 1} represent
the set of all locations. The directed graph G on vertex set V and with arc set A is used
to represent our distribution network. Arc set A consists of all arcs leaving the starting
depot, (0, i) for i ∈ V ′, all arcs entering the ending depot, (i, n + 1) for i ∈ V ′, and all
arcs between the clients in V ′.

For each directed arc (i, j) ∈ A a travel cost cij and a travel time tij is given. The travel
costs are assumed to be non-negative, cij ≥ 0, and to adhere to the triangle inequality,
cij + cjk ≥ cik. We assume the same properties for the travel times. Moreover, we require
all travel times to be strictly positive, the reason for this is highlighted later.

Let wi be the width of the time window that has to be assigned to client i ∈ V ′. We
refer to this time window as the endogenous time window of client i, as opposed to the
exogenous time window of client i which de�nes the interval in which the endogenous
time window should be chosen. The exogenous time window of each client i ∈ V ′ is �xed
and given by the interval [si, ei], with ei−si ≥ wi. Furthermore, the opening hours of the
starting depot are given by [s0, e0] and the opening hours of the ending depot are given
by [sn+1, en+1].

We assume that we have access to an unlimited number of homogeneous vehicles, each
with capacity Q. To model demand uncertainty, consider a �nite set of possible demand
scenarios Ω and corresponding probabilities pω such that

∑
ω∈Ω pω = 1. The demand of

client i ∈ V ′ in scenario ω ∈ Ω is given by 0 < dωi ≤ Q.
We now formally state the TWAVRP: �nd both 1) an assignment of the endogenous

2

time windows within the exogenous time windows and 2), for every demand scenario,
a routing of the vehicles adhering to the capacity constraints, and consistent with the
assigned endogenous time windows, such that the expected routing cost is minimized.

2.1 Mixed integer linear program

Next, we present a new mixed integer linear programming formulation for the TWAVRP.
First we introduce the decision variables. The time window decisions are given by the
continuous variables yi for i ∈ V ′, which indicate the starting times of the endogenous
time windows. That is, the endogenous time window of client i is given by [yi, yi + wi].
As the endogenous time window has to be within the exogenous time window, we require
yi ∈ [si, ei − wi].

The vehicle routes are determined by the binary �ow variables xωij for (i, j) ∈ A, which
are equal to one if a vehicle travels from i to j in scenario ω. The continuous variable tωi
indicates at what time client i ∈ V ′ receives delivery in scenario ω ∈ Ω.

For notational convenience, we introduce the arc set Ā. Let Ā be the set of arcs A
to which the arcs (i, 0) and (n+ 1, i) have been added for all i ∈ V ′. To model capacity,
similar to Baldacci et al. (2004), we introduce the �ow variables zωij for all (i, j) ∈ Ā,
ω ∈ Ω. Its interpretation depends on the direction the arc is traversed, as given by the
x-variables. If zωij follows this direction (xij = 1), it represents the total vehicle load
when traveling from client i to client j. If it follows the opposite direction (xji = 1), zωij
represents the leftover capacity on the vehicle when traveling from client j to client i. If
the connection between i and j is not used (xij = xji = 0), zωij is zero.

We also introduce the arc sets Aij for all i, j ∈ V . Let Aij be the intersection of A
and {(i, j), (j, i)}, i.e., the arcs between i and j that are in A.

3

We provide the following mixed integer linear programming formulation:

min
∑
ω∈Ω

pω
∑

(i,j)∈A

cijx
ω
ij (1)

s.t.
∑

j∈V ′∪{n+1}

xωij = 1 ∀i ∈ V ′, ω ∈ Ω (2)

∑
i∈V ′∪{0}

xωij = 1 ∀j ∈ V ′, ω ∈ Ω (3)

zωij + zωji =

 ∑
(k,l)∈Aij

xωkl

Q ∀(i, j) ∈ Ā, i < j, ω ∈ Ω (4)

∑
j∈V

(zωji − zωij) = 2dωi ∀i ∈ V ′, ω ∈ Ω (5)∑
j∈V ′

zω0j =
∑
i∈V ′

dωi ∀ω ∈ Ω (6)

∑
j∈V ′

zωn+1,j =

(∑
j∈V ′

xω0j

)
Q ∀ω ∈ Ω (7)

∑
j∈V ′

zωj0 =

(∑
j∈V ′

xω0j

)
Q−

∑
i∈V ′

dωi ∀ω ∈ Ω (8)

tωj − tωi ≥ tijx
ω
ij + (sj − ei)(1− xωij) ∀i ∈ V ′, j ∈ V ′, ω ∈ Ω (9)

s0 + t0j ≤ tωj ∀j ∈ V ′, ω ∈ Ω (10)

tωi + ti,n+1 ≤ en+1 ∀i ∈ V ′, ω ∈ Ω (11)

tωi ≥ yi ∀i ∈ V ′, ω ∈ Ω (12)

tωi ≤ yi + wi ∀i ∈ V ′, ω ∈ Ω (13)

yi ∈ [si, ei − wi] ∀i ∈ V ′ (14)

xωij ∈ B ∀(i, j) ∈ A, ω ∈ Ω (15)

zωij ≥ 0 ∀(i, j) ∈ Ā, ω ∈ Ω. (16)

The objective (1) is to minimize the expected traveling costs over all scenarios. Con-
straints (2) and (3) are the �ow conservation constraints. Constraints (15) make sure all
�ows are integral.

Vehicle capacity is modeled by Constraints (4)-(8) and (16), which are based on the
2-commodity �ow formulation in Baldacci et al. (2004). Constraints (4) relate opposing
arcs: when either (i, j) or (j, i) is used, the corresponding z-variables sum to the vehicle
capacity.

Constraints (5) can be seen as �ow conservation constraints for the z-variables: before
visiting the client, the load is dωi units more than afterwards. After visiting, the empty
space is dωi units more than before. Hence, the total di�erence in both �ows is equal to 2dωi .
The total vehicle load, capacity and excess capacity in the system are constrained by (6)-
(8). Constraints (6) set the total vehicle load equal to the total demand of all clients, and
Constraints (7) set the total capacity equal to the number of used vehicles multiplied by
the vehicle capacity. The total excess capacity of all vehicles leaving the starting depot is
set by Constraints (8). Finally, we enforce vehicle capacity to be respected by constraining

4

all empty space on the vehicles to be non-negative, as is done in Constraints (16). For
more details on these constraints, see Baldacci et al. (2004).

Constraints (9)-(14) deal with the time windows. Constraints (9) are the MTZ-
inequalities that model the time-of-service (Miller et al., 1960). If a vehicle travels from
client i to client j in scenario ω ∈ Ω, then xωij = 1 and hence tωj − tωi ≥ tij, i.e., the
time-of-service increases with at least the travel time from i to j. If no vehicle travels
from i to j in scenario ω, then xωij = 0 and the constraint reads tωj − tωi ≥ sj − ei, which
always holds as tωj ≥ sj and t

ω
i ≤ ei. Note that the MTZ-inequalities eliminate cycles,

because we have assumed that tij > 0 for all (i, j) ∈ A.
Constraints (10) guarantee that vehicles can only leave the starting depot after it

opens and Constraints (11) ensure that vehicles arrive at the ending depot before it
closes. Constraints (12) and (13) enforce that each client is served within its endogenous
time window, while Constraints (14) make sure these endogenous time windows are within
the exogenous time windows.

2.2 Remarks

In the above formulation, we model capacity using constraints that are based on the
2-commodity �ow formulation in Baldacci et al. (2004). The MTZ inequalities are used
to model time-of-service. Other formulations for capacity and time-of-service have been
considered as well, including several adaptations of models for the CVRP (Baldacci et al.,
2004) and the ATSPTW (Ascheuer et al., 2001).

Preliminary testing with all our combinations of capacity constraints and time-of-
service constraints in a branch-and-cut algorithm showed that the best performance is
achieved by the combination of the 2-commodity �ow formulation to model capacity and
the MTZ-inequalities to model time-of-service. This may seem surprising, as in general
the MTZ-inequalities typically do not contribute to strong bounds in the LP relaxation.
For our instances, however, we have seen that this is compensated for by the relatively
strong formulation for capacity.

The MTZ-inequalities require no additional variables and only n(n+1)|Ω| constraints.
This allows for a branch-and-cut strategy in which we process the nodes of the search
tree faster than in all other alternatives we considered. Using the 2-commodity �ow
formulation to model capacity yields a good trade-o� between the number of variables
and constraints, and the strength of the formulation.

3 Branch-and-cut algorithm

In this section, we present our branch-and-cut algorithm. First, we present valid inequal-
ities from the literature, which we use to strengthen the LP-bound of (1)-(16). Next,
we introduce our branching strategy. In Section 4 we separately introduce the novel
precedence inequalities.

3.1 2-cycle elimination

The current mixed integer linear program ensures that no integer feasible solution contains
cycles. Explicit cycle elimination, however, may still strengthen the LP-bound.

As there are only a quadratic number of 2-cycles in a given graph, we can eliminate
all 2-cycles with a relatively small number of constraints. We do so by adding all of the

5

following inequalities to the formulation:

xωij + xωji ≤ 1 ∀i ∈ V ′, j ∈ V ′, ω ∈ Ω. (17)

3.2 Rounded capacity inequalities

The capacity inequalities are well-known valid inequalities for the VRPTW, and thus
may be applied directly to the TWAVRP per scenario. Let λωS be the minimum number
of vehicles required to satisfy the demand of all clients in S ⊆ V ′ in scenario ω. The
capacity inequalities are given by∑

(i,j)∈A|i∈S,j∈V \S

xωij ≥ λωS ∀S ⊆ V ′, |S| ≥ 2, ω ∈ Ω. (18)

That is, we require for each subset S ⊆ V ′ that the total number of vehicles leaving S is
su�cient to satisfy all demand in S.

Calculating λωS requires solving a bin-packing problem, which is NP-hard in general.
Hence, as is commonly done, we only consider the weakened inequalities in which λωS
is replaced by the bin-packing lower bound d

(∑
i∈S d

ω
i

)
/Qe. These valid inequalities

are known as the rounded capacity inequalities. Simply adding all rounded capacity
inequalities is not e�cient, but when used in a branch-and-cut algorithm, they can be
very e�ective (Baldacci et al., 2012).

We add the following |Ω| inequalities to the formulation:∑
i∈V ′

xωi,n+1 ≥
⌈∑

i∈V ′ dωi
Q

⌉
∀ω ∈ Ω. (19)

The other rounded capacity inequalities are separated and added in a cutting plane
fashion. We use the separation algorithm from Lysgaard (2003). Details on this algorithm
can be found in Lysgaard et al. (2004).

3.3 Branching strategy

In the formulation in Section 2.1, we require each xωij to be binary. However, we show
that it is su�cient to require that all xωij ∈ [0, 1], that xωij is binary for all arcs connected
to one of the depots, and furthermore that xωij + xωji is binary for all i, j ∈ V ′(i 6= j). We
de�ne the following integrality conditions:

xω0j ∈ B ∀j ∈ V ′, ω ∈ Ω, (20)

xωi,n+1 ∈ B ∀i ∈ V ′, ω ∈ Ω, (21)

xωij + xωji ∈ B ∀i < j, i ∈ V ′, j ∈ V ′, ω ∈ Ω, (22)

xωij ∈ [0, 1] ∀(i, j) ∈ A, ω ∈ Ω. (23)

Proposition 1. All integer feasible solutions to (1)-(14), (16), (17), (19), and (20)-(23)
satisfy

xωij ∈ B ∀(i, j) ∈ A, ω ∈ Ω. (15)

Proof. See Appendix A.

6

Proposition 1 suggests that for any i, j ∈ V ′ instead of branching on whether a single
directed arc is used, we may also branch on whether a connection between i and j
(regardless of direction) is used. This decision can be made per connection, as xωij ∈ B
and xωji ∈ B together imply xωij +xωji ∈ B, xωij ∈ [0, 1] and xωji ∈ [0, 1]. That is, Proposition
1 is still applicable if for some connections we branch on both xωij and xωji and for the
other connections we branch on xωij + xωji.

Branching on xij means that we partition the feasible region in two parts. In the
�rst part it is assumed that j is visited directly after i by the same vehicle. In the other
part we assume j is not visited directly after i. Knowing whether j is visited directly
after i has important implications for the time-of-service variables tωi and tωj . The value
(sj−ei) in the MTZ-inequalities is essentially a big-M, hence fractional values of the �ow
variables cause the time constraints to be very weak or inactive. When xωij = 1, however,
we have tωj ≥ tωi + tij. Especially when tij is big, this inequality has a big e�ect on the
time-of-service variables.

If the value of tij is close to zero, this argument no longer holds, whether xij = 1 or
xji = 1 is not that important for the time-of-service variables. For the capacity constraints
it is important to know whether i and j are visited by the same vehicle, but it is less
important to know in which order this happens. Hence, it makes sense to branch on
xij + xji to split the feasible region in two parts: one part in which j is visited directly
after i, or the other way around, and one part in which there is no direct connection
between i and j.

To take these e�ects into account, we introduce the parameter ρ ∈ [0, 1]. Then, for
the fraction ρ of all arcs with the shortest travel time, we branch on the connections.
For the other arcs, we branch on xωij and xωji separately. Note that ρ = 0 corresponds
to always branching on individual arcs. If ρ = 1, we always branch on connections. By
varying ρ, a good compromise can be found between the number of variables and the
strength of the LP relaxation.

4 Precedence inequalities

In this section, we present a novel set of valid inequalities, the precedence inequalities,
in which each inequality involves multiple scenarios. First, we make some important
observations.

If we want to visit �rst i and later j, both within their respective time windows, the
time between the two visits is bounded. Let t̄ij be the maximum time between these visits,
for all i, j ∈ V ′. That is, we de�ne t̄ij = (yj + wj)− yi and similarly t̄ji = (yi + wi)− yj,
as illustrated in Figure 1. It follows that t̄ij + t̄ji = wi + wj.

Now consider a solution to the TWAVRP for which in scenario ω there is a route
visiting �rst i, and later j. Furthermore, assume there is a di�erent scenario ω′ with a
route visiting �rst j, and later i. It follows that the time taken to get from i to j in one
scenario, plus the time taken to get from j to i in another scenario, can be at most the
sum of the widths of the time windows, wi + wj.

We formalize this in Observation 2. Let Ap be the set of arcs used by path p in G and
let Pij be the set of all elementary paths in G starting at i ∈ V and ending at j ∈ V .

Observation 2. For given vertices i, j ∈ V ′ (i 6= j), for any integer feasible solution to
the TWAVRP in which both path p ∈Pij is used in scenario ω ∈ Ω and path q ∈Pji is

7

8 am 8 pm

tij

tji

yj

yi

yj+wj

yi+wi

8 am 8 pm

Client i

Client j

Figure 1: Example time window assignment and maximum allowed driving times.

used in scenario ω′ ∈ Ω the following holds:∑
(k,l)∈Ap

tkl +
∑

(k,l)∈Aq

tkl ≤ wi + wj. (24)

To construct valid inequalities based on Observation 2, we make use of Theorem (4.5) in
Ascheuer et al. (2000), which we restate for the TWAVRP as the following lemma.

Lemma 3. For any integer feasible TWAVRP solution, a set of clients S ⊆ V ′ and two
vertices i, j ∈ V ′\S (i 6= j), a single vehicle visits i �rst, then all clients in S and then j
consecutively in scenario ω ∈ Ω if and only if:∑

l∈S

xωil +
∑
k∈S

∑
l∈S

xωkl +
∑
k∈S

xωkj + xωij = |S|+ 1. (25)

Lemma 3 gives us a criterion for testing whether there is a path visiting client i, then
visiting a subset of other clients, and then visiting client j. Combining this lemma with
Observation 2 allows us to formulate the precedence inequalities.

Let us denote by (S : T) the set of arcs in A which start in S and end in T , for
S and T vertices or sets of vertices. For notational convenience we introduce the sets
S(i, j) = {S | S ⊆ V ′\{i, j}} for all i, j ∈ V ′. That is, S(i, j) is the set of all possible
subsets of clients not containing clients i and j. When traveling from i to j, visiting
exclusively clients from S, only the arcs in (i : S)∪ (S : S)∪ (S : j)∪ (i : j) are relevant.
Therefore, we introduce F(i, S, j) = {F | F ⊆ (i : S) ∪ (S : S) ∪ (S : j) ∪ (i : j)}, which
for given i, j ∈ V ′ and S ∈ S(i, j) is the set of all possible subsets of these arcs.

Furthermore, let δij(S, F) be the shortest possible travel time from client i ∈ V ′ to
client j ∈ V ′, visiting all clients in S ∈ S(i, j) in between, using only arcs from set
F ∈ F(i, S, j). If no such path exists δij(S, F) =∞. We then arrive at the main theorem
for the precedence inequalities:

Theorem 4. Precedence inequalities: For given scenarios ω, ω′ ∈ Ω (ω 6= ω′), given
clients i, j ∈ V ′ (i 6= j), given vertex set S ∈ S(i, j), corresponding to clients visited in

8

scenario ω, and vertex set S ′ ∈ S(j, i) corresponding to clients visited in scenario ω′, and
given arc sets F ∈ F(i, S, j) and F ′ ∈ F(j, S ′, i) such that δij(S, F)+δji(S

′, F ′) > wi+wj,
the following are valid inequalities:∑

(k,l)∈F

xωkl +
∑

(k,l)∈F ′

xω
′

kl ≤ |S|+ |S ′|+ 1. (26)

Proof. This is a direct application of Observation 2. Lemma 3 shows that Observation 2
is contradicted if and only if

∑
(k,l)∈F x

ω
kl +

∑
(k,l)∈F ′ xω

′

kl = |S|+ |S ′|+ 2. By integrality of
the x-variables, the theorem follows.

It is possible to generalize this result by rede�ning δij(S, F) to be the minimum travel
time to visit client i, all clients in S and then client j using only arcs of F , but only using
paths that can be feasible when considering the exogenous time windows. We choose not
to present this generalization, as we consider an application in which the exogenous time
windows are in general very wide. The proposed generalization is then unlikely to add
much value, while making it more complex to identify violated inequalities.

Clearly, the number of possible precedence inequalities is exponential in the number
of clients. Hence, it is not e�cient to add all precedence inequalities to the formulation
directly. Instead, we separate the precedence inequalities in a cutting plane fashion.
Note that exact separation of the precedence inequalities is di�cult, as �nding violated
precedence inequalities is co-NP-hard, which is proven in Appendix B. For this reason,
we separate subsets of the precedence inequalities exactly, and we present heuristics for
more general precedence inequalities.

Before we consider these subsets, we state the following two lemmas, which will be
useful when deriving our separation algorithms. We provide a lower bound on the �ow
in F for violated inequalities and we show that for every violated inequality F is cyclic
or F contains an elementary (i, j)-path visiting all vertices in S.

Lemma 5. Let i, j ∈ V ′, S ∈ S(i, j), S ′ ∈ S(j, i), F ∈ F(i, S, j) and F ′ ∈ F(j, S ′, i)
correspond to a violated precedence inequality, for a feasible solution to the LP relaxation
of the formulation (1)-(16), (17) and (19). Then both∑

(k,l)∈F

xωkl > |S| (27)

and ∑
(k,l)∈F ′

xω
′

kl > |S ′|. (28)

Proof. By de�nition of F(i, S, j) all directed arcs in F point to vertex j, or to a vertex in
S. Thus, by the �ow conservation constraints it follows that the total �ow in F is bounded
by |S|+1. Hence, we have

∑
(k,l)∈F x

ω
kl ≤ |S|+1 and similarly

∑
(k,l)∈F ′ xω

′

kl ≤ |S ′|+1. From

Theorem 4 it follows that for a violated precedence inequality
∑

(k,l)∈F x
ω
kl+
∑

(k,l)∈F ′ xω
′

kl >

|S|+ |S ′|+ 1. Combining these facts proves the lemma.

Lemma 6. Let i, j ∈ V ′, S ∈ S(i, j), S ′ ∈ S(j, i), F ∈ F(i, S, j) and F ′ ∈ F(j, S ′, i)
correspond to a violated precedence inequality, for a feasible solution to the LP relaxation
of the formulation (1)-(16), (17) and (19). Then F contains a cycle or F contains an
elementary (i, j)-path through all vertices of S. Also F ′ contains a cycle or F ′ contains
an elementary (j, i)-path through all vertices of S ′.

9

Proof. We prove this statement for F , as for F ′ the proof is analogous. If F contains a
cycle, the lemma holds. Next, we assume F is acyclic. Moreover, we assume that F does
not contain an elementary path from i to j through all vertices of S, and we show that
this leads to a contradiction.

Because F is acyclic, the vertices of S can be relabeled v1, v2, . . . , v|S| such that if l < k
then (vk, vl) /∈ F (see Kahn (1962)). By assumption, there is no elementary path from i
through all v1, v2, . . . , v|S| to j. Hence, there exists an integer g ∈ {1, 2, . . . , |S| − 1} such
that there is no arc from vg to vg+1.

Let U1 = {i, v1, v2, . . . , vg−1} and let U2 = {vg+2, vg+3, . . . , v|S|, j}. By construction,
we have that ∑

(k,l)∈F

xωkl =
∑

(k,l)∈
(
U1:(U1∪vg∪vg+1∪U2)

)⋂
F

xωkl +
∑

(k,l)∈
(

(vg∪vg+1∪U2):U2

)⋂
F

xωkl

≤ |U1|+ |U2| = |S|. (29)

This follows because the total out�ow of the vertices in U1 is bounded by |U1| due to the
�ow conservation constraints. Similarly, the total in�ow of the vertices in U2 is bounded
by |U2|. Hence, it follows that the total �ow captured by F is bounded by |U1|+|U2| = |S|.

This contradicts Lemma 6, which states that
∑

(k,l)∈F x
ω
kl > |S|. Thus, our assumption

that F does not contain an elementary path from i through S to j is false. Hence, we
have proven that F contains a cycle, or contains an elementary (i, j)-path visiting all
clients in S.

4.1 Path precedence inequalities

The �rst subset of precedence inequalities we consider, is the subset for which F and F ′

both form a single elementary path, which we refer to as the path precedence inequalities.
We make use of the following proposition:

Proposition 7. For any integer feasible solution to the TWAVRP:∑
(k,l)∈Ap

tkl +
∑

(k,l)∈Aq

tkl > wi + wj =⇒
∑

(k,l)∈Ap

xωkl +
∑

(k,l)∈Aq

xω
′

kl ≤ |Ap|+ |Aq| − 1

∀(i, j) ∈ A, p ∈Pij, q ∈Pji, ω ∈ Ω, ω′ ∈ Ω. (30)

Proof. This is a direct application of Theorem 4 with F = Ap and F
′ = Aq. Note that

δij(S, F) =
∑

(k,l)∈Ap
tkl, as following the path p is the only way to visit all vertices in

S using only vertices in F . Analogously, δji(S
′, F ′) =

∑
(k,l)∈Aq

tkl. Finally, note that

|S| = |Ap| − 1 and |S ′| = |Aq| − 1, and hence |S|+ |S ′|+ 1 = |Ap|+ |Aq| − 1.

Proposition 7 de�nes valid inequalities for paths only, instead of for arbitrary sets of
vertices and arcs. Next, we show some properties of the path precedence inequalities.
These properties are then used to prove that for a given solution to the LP relaxation,
all violated path precedence inequalities can be found in polynomial time.

Lemma 8. All violated path precedence inequalities adhere to the following two inequali-
ties: ∑

(k,l)∈Ap

xωkl > |Ap| − 1, (31)

10

∑
(k,l)∈Aq

xω
′

kl > |Aq| − 1. (32)

Proof. This is a direct application of Lemma 5 with F = Ap and F
′ = Aq.

Lemma 9. Let p and q correspond to a violated path precedence inequality. Path p in
graph G contains at most one arc (k, l) for which xwkl ≤ 1

2
. Path q contains at most one

arc (k′, l′) for which xω
′

k′l′ ≤ 1
2
.

Proof. Suppose p has m ≥ 2 arcs for which xωkl ≤ 1
2
. This implies

∑
(k,l)∈Ap

xωkl ≤ |Ap| −
1
2
m ≤ |Ap|−1. Hence (31) is not satis�ed. It follows that p has at most one arc for which
xωkl ≤ 1

2
. The proof for path q is analogous.

Proposition 10. All violated path precedence inequalities can be found in polynomial
time.

Proof. To �nd all violated path precedence inequalities, we generate an exhaustive list of
candidate paths from i to j which meet the necessary condition given by Lemma 9. If we
do the same for all candidate paths from j to i, we can check for all combinations of the
candidates whether (30) is violated.

To generate a list of candidates, we �rst use Lemma 9, which states that for scenario
ω ∈ Ω a candidate uses at most one arc for which xωkl ≤ 1

2
. Starting at i, the path thus

�rst uses a (possibly zero) number of arcs for which xωkl >
1
2
, followed by zero or one arcs

for which xωkl ≤ 1
2
. After that, we visit another (possibly zero) number of arcs for which

xωkl >
1
2
before we reach j.

By the �ow conservation constraints, the total out�ow and the total in�ow of a vertex
are both equal to one. Hence, at each vertex there can be at most one incoming arc and
one outgoing arc for which xωkl >

1
2
. This implies there is at most one elementary path

leaving i for which all arcs have an x value larger than 1
2
. Analogously there is at most

one elementary path entering j for which all x values are larger than 1
2
. Finding these

two elementary paths takes O(n2) time, as the paths contain O(n) vertices, and, for a
single vertex, determining which arc has value larger than 1

2
takes O(n) time.

All candidate paths from i to j can thus be constructed by starting in i, following the
arcs with x values larger than 1

2
up to a certain point after which an arc with x value

less or equal to 1
2
is taken to arrive at the path of arcs with x values larger than 1

2
that

arrives at j, which is followed until we reach j. That is, without loss of generality we
sequentially visit the vertices i = v1, v2, . . . , vf , wg, wg−1, . . . , w1 = j for integers f and g
between 1 and n.

For given f and g, the total �ow of the candidate path is given by
∑f−1

i=1 xvivi+1
+xvfwg+∑g−1

i=1 xwi+1wi
, and the total travel time is given by

∑f−1
i=1 tvivi+1

+ tvfwg +
∑g−1

i=1 twi+1wi
. By

precalculating the summations for all f and g in O(n2) time, this part only takes constant
time.

For each scenario, there are O(n2) combinations of f and g. We thus �nd O(|Ω|n2)
candidates from i to j. Then, we check for all combinations of candidates from i to j
and candidates from j to i if the condition in Proposition 7 is satis�ed. Per combination,
this takes constant time, as we only sum the predetermined values of total �ow and total
travel time. There are O((|Ω|n2)2) such combinations. As we repeat the procedure for
all combinations of two vertices i and j, the total time complexity is O(|Ω|2n6).

11

4.2 Tournament precedence inequalities

In the previous section, we have introduced the path precedence inequalities, which are
precedence inequalities based on elementary paths. In this section we present a broader
subset of the precedence inequalities, in which both (S, F) and (S ′, F ′) represent a directed
acyclic graph. Furthermore, we show that to satisfy all these valid inequalities it is
su�cient to restrict ourselves to those directed acyclic graphs F and F ′ obtained by
taking the transitive closures of an elementary path. The transitive closure of a set of
arcs F ⊆ A in graph G, is de�ned as follows:

trcl(F) := {(k, l) ∈ A : l can be reached from k using only arcs in F} . (33)

These inequalities are similar to the tournament constraints of Ascheuer et al. (2000),
hence we call this class the tournament precedence inequalities. In Ascheuer et al. (2000),
the tournament inequalities are introduced for the ATSPTW, which are obtained by
bounding the total �ow on the transitive closure of a simple path which violates (ex-
ogenous) time window constraints or cannot be extended without violating time window
constraints. Next we present the tournament precedence inequalities, discuss how to sep-
arate them, and show that if all tournament precedence inequalities are satis�ed then so
are all precedence inequalities based on directed acyclic graphs.

Proposition 11. For any integer feasible solution to the TWAVRP:∑
(k,l)∈Ap

tkl +
∑

(k,l)∈Aq

tkl > wi + wj =⇒
∑

(k,l)∈trcl(Ap)

xωkl +
∑

(k,l)∈trcl(Aq)

xω
′

kl ≤ |Ap|+ |Aq| − 1

∀(i, j) ∈ A, p ∈Pij, q ∈Pji, ω ∈ Ω, ω′ ∈ Ω. (34)

Proof. This is a direct application of Theorem 4 with F = trcl(Ap) and F ′ = trcl(Aq).
Observe that taking the transitive closure of an elementary path yields a directed acyclic
graph, which contains only a single path visiting all vertices. In particular, δij(S, F) =
δij(S, trcl(Ap)) = δij(S,Ap) =

∑
(k,l)∈Ap

tkl. Similarly, δji(S, F) =
∑

(k,l)∈Aq
tkl. Note that

|S| = |Ap| − 1 and |S ′| = |Aq| − 1, and hence |S|+ |S ′|+ 1 = |Ap|+ |Aq| − 1.

Corollary 12. If a path precedence inequality is violated, then its corresponding tourna-
ment precedence inequality (by taking transitive closures) is violated as well.

Proof. Follows directly from Proposition 11, the non-negativity of the x variables and
F ⊆ trcl(F) for all F ⊆ A.

As a result, we can �nd violated tournament precedence inequalities by separating path
precedence inequalities. However, not all violated tournament precedence inequalities
can be found in this way. Hence, to separate all tournament precedence inequalities, we
next present another algorithm.

First, per scenario, we make a list of all elementary paths in G, not involving the
depot vertices. By de�nition, each tournament precedence inequality is characterized
by two elementary paths and two scenarios. Hence, after we generate the lists, we can
separate the tournament precedence inequalities by combining elementary paths from the
lists, and checking the condition given in Proposition 11 for each pair.

To construct the list per scenario we use a procedure similar to that described in
Ascheuer et al. (2001) to detect violated tournament constraints for the ATSPTW. We

12

enumerate all paths but backtrack as soon as
∑

(k,l)∈trcl(Ap) x
ω
kl ≤ |Ap| − 1. It is suggested

in Ascheuer et al. (2001) that only a polynomial number of paths is generated this way,
which would imply that our separation routine, involving multiple scenarios, also requires
only a polynomial number of iterations.

We have mentioned that, for separating tournament precedence inequalities, restrict-
ing to transitive closures of elementary paths still allows us to capture all precedence
inequalities based on directed acyclic graphs. We state this formally in the following
lemma.

Lemma 13. Let i, j ∈ V ′, S ∈ S(i, j), S ′ ∈ S(j, i), F ∈ F(i, S, j) and F ′ ∈ F(j, S ′, i)
correspond to a precedence inequality, for a feasible solution to the LP relaxation of the
formulation (1)-(16), (17) and (19). Furthermore, assume F and F ′ are acyclic. If all
tournament precedence inequalities are satis�ed, then this precedence inequality is also
satis�ed.

Proof. As F is assumed to be acyclic, by Lemma 6 it contains an elementary path p ∈ Pij

through all vertices of S. By de�nition of the transitive closure, it follows that F ⊆
trcl(Ap). Analogously we have F ′ ⊆ trcl(Aq) for some q ∈ Pji visiting all vertices of S

′.
We have

∑
(k,l)∈F x

ω
kl+
∑

(k,l)∈F ′ xω
′

kl ≤
∑

(k,l)∈trcl(Ap) x
ω
kl+
∑

(k,l)∈trcl(Aq) x
ω′

kl ≤ |S|+|S ′|+
1, as all tournament precedence inequalities are assumed to be satis�ed. It follows that
if all tournament precedence inequalities are satis�ed, each precedence inequality based
on directed acyclic graphs is satis�ed as well.

4.3 Additional strategies

We have discussed two subsets of the precedence inequalities with corresponding separa-
tion strategies. There are, however, some additional strategies that can be utilized.

Note that both the separation algorithm for the path precedence inequalities and
the separation algorithm for the tournament precedence inequalities �rst generate a list
of viable candidates i, j ∈ V , S ∈ S(i, j) and F ∈ F(i, S, j) per scenario, after which
all combinations of candidates are checked to �nd violated inequalities. An additional
strategy is to opportunistically alter these candidates when combining them to create
stronger inequalities.

Recall that one way to do this, is by separating path precedence inequalities and
taking transitive closures, resulting in tournament precedence inequalities (Corollary 12).
Another strategy is to complete F by adding arcs. That is, let F ∗ be the maximum
cardinality element of F(i, S, j). By de�nition, F ∗ = (i : S)∪ (S : S)∪ (S : j). Note that
F ∗ is not acyclic, and hence in general δij(S, F

∗) 6= δij(S, F). Furthermore, δij(S, F
∗) is

hard to calculate.
Therefore, we introduce an easy to calculate lower bound on δij(S, F

∗). Note that any
violated precedence inequality found while using this lower bound is valid for the actual
value of δij(S, F

∗) as well. It is well known that the weights of a minimum spanning tree
can be used as a lower bound on the length of the shortest elementary path visiting all
vertices. It thus follows that:

δij(S, F
∗) ≥ min

k∈S
{tik}+ MST(S) + min

k∈S
{tkj}, (35)

in which MST(S) represents the weight of the minimum weight spanning tree of an
undirected complete graph with vertex set S and edge weight min{tkl, tlk} for each edge
(k, l).

13

We consider the following strategies. First, separate either path precedence inequal-
ities or tournament precedence inequalities. The path precedence inequalities may be
converted to tournament precedence inequalities. Each resulting tournament precedence
inequality corresponds to sets i, j ∈ V ′, S ∈ S(i, j), F ∈ F(i, S, j), S ′ ∈ S(j, i) and
F ∈ F(j, S, i). Now try whether a violated precedence inequality can be obtained by
replacing F by F ∗ and/or F ′ by F ′∗, using the lower bounds on travel time given by (35).
If so, use these stronger valid inequalities.

5 Numerical experiments

Next, we present the results of our numerical experiments to test the e�ectiveness of our
new formulation, the precedence inequalities and the branching strategy. Furthermore,
we present experiments in which our algorithm is compared to the branch-price-and-cut
algorithm of Spliet and Gabor (2014).

All experiments are run on an Intel i7 3.5GHz computer with 16GB of RAM. To allow
for a fair comparison between algorithms, we restrict all experiments to a single thread
on a single core. As a basis for our implementation, we use the commercial solver CPLEX
version 12.5, with default settings. We disable all CPLEX's built in valid inequalities, so
we can more accurately test the e�ect of the valid inequalities discussed in this paper.

Our own valid inequalities will be generated in a callback, which is called each time
the LP relaxation has been solved, or re-solved after adding valid inequalities. In this
callback we separate rounded capacity inequalities and precedence inequalities, and only
afterwards the LP is resolved. We use the built-in `traditional branch-and-cut' in combi-
nation with our own branching strategy as discussed in Section 3.

For our branch-and-cut algorithm we use the 64 bit version of CPLEX, which allows
for the full 16GB of memory to be used. The algorithm of Spliet and Gabor (2014)
requires less memory, and hence we use the 32 bit version of CPLEX, which gives a
slightly better performance.

We use a one hour time limit per instance in all experiments. From preliminary tests
we have found that almost every instance is unsolvable within the time limit without
separating rounded capacity inequalities, so we separate those in all experiments.

5.1 Test-instances

First, we introduce the di�erent sets of test-instances which we use for our numerical
experiments.

5.1.1 Small instances

We use forty instances introduced by Spliet and Gabor (2014). These instances are
randomly generated instances, inspired by a Dutch retail chain. The set contains ten
instances of 10, 15, 20 and 25 clients respectively. The clients are uniformly distributed
over a square with sides of length �ve. Both the starting depot and the ending depot are
located in the center of the square. The travel cost and the travel time in hours between
two points in the square is equal to the Euclidean distance.

Each instance includes three demand scenarios, each with equal probability of oc-
currence. The average demand is about 1/6 vehicle load. The exogenous time windows

14

are rather wide: on average the exogenous time window of the client has width 10.8,
compared to an endogenous time window width of 2.

5.1.2 Large instances

To be able to test our branch-and-cut algorithm on larger instances as well, we have
generated �fty additional instances in the same way that the small instances have been
generated. That is, we created ten instances of 30, 35, 40, 45 and 50 clients respectively.
All instances are available online.

5.2 Branch-and-cut experiments

Next, we compare the branching strategies and the separation algorithms for the prece-
dence inequalities, using the forty small instances. We consider six di�erent strategies to
separate precedence inequalities, which have been detailed in Section 4.3:

N Do not separate precedence inequalities.

P Separate path precedence inequalities.

P2T 1) Separate path precedence inequalities.
2) Turn them into tournament precedence inequalities.

P2C 1) Separate path precedence inequalities.
2) Turn them into tournament precedence inequalities.
3) Complete F and/or F ′ by adding additional arcs and add corresponding vio-
lated precedence inequalities if they are found.

T Separate tournament precedence inequalities.

T2C 1) Separate tournament precedence inequalities.
2) Complete F and/or F ′ by adding additional arcs and add corresponding vio-
lated precedence inequalities if they are found.

For the branching strategy, we conduct experiments for ρ ∈ {0, 0.1, ..., 1}. Recall that
this corresponds to a strategy in which we branch on connections for the the fraction ρ
of arcs with the shortest travel time. For the other connections, we branch on arcs.

In Table 1 we have reported solution times for all combinations of separation and
branching strategies. These numbers are aggregated values obtained by computing the
average over the forty instances.

We see that strategies P2T and P2C are the best performers for most choices of ρ.
Setting ρ 6= 0 yields a positive e�ect for all separation strategies, although the exact
value of ρ does not seem to be that important. In the remainder of the experiments,
we will use the combination of ρ = 0.6 and P2C, as this combination yields the lowest
average solution time on our test set. If we compare the solution time of the combination
of ρ = 0.6 and P2C to the solution time of the combination of N and ρ = 0, we see
that introducing the precedence inequalities and the branching strategy together yields
a factor 6.6 improvement in solution time.

In Table 2, results of using the di�erent separation strategies are presented for ρ = 0.6.
The rows respectively present the average solution time in seconds, the average number
of visited nodes of the search trees, the average number of precedence inequalities and

15

Seconds Separation strategy

ρ N P P2T P2C T T2C

0.0 31.8 27.2 20.2 18.6 33.9 36.2
0.1 13.7 10.4 7.1 7.6 8.2 8.7
0.2 13.5 5.7 9.3 5.4 9.3 7.3
0.3 13.2 6.8 6.5 5.5 7.5 8.8
0.4 12.0 10.1 6.3 6.9 8.4 8.0
0.5 11.1 7.2 5.7 6.5 8.7 7.8
0.6 18.0 9.3 8.8 4.8 7.6 7.0
0.7 10.4 8.5 7.9 6.8 10.2 7.8
0.8 21.4 9.8 9.9 7.1 9.9 10.6
0.9 12.3 9.5 8.7 5.3 8.6 6.0
1.0 22.5 11.9 9.6 6.2 9.0 5.4

Table 1: Average solution times for various strategies.

rounded capacity inequalities added, and the percentages of the total solution time used
for the separation of the precedence inequalities and for the rounded capacity inequalities.
The last row displays for how many out of the forty instances the used separation strategy
yielded the shortest computation time. If multiple strategies have the same solution time
(rounded to milliseconds), they are all counted as best strategies.

N P P2T P2C T T2C

Seconds 18.0 9.3 8.8 4.8 7.6 7.0
Nodes 2,481 1,406 1,144 537 848 696

Precedence inequalities 0 117 107 66 97 101
Rounded capacity inequalities 575 426 413 341 405 390

% of time sep. prec. 0.0% 5.4% 6.2% 4.4% 8.0% 8.0%
% of time sep. cap. 2.7% 3.3% 3.0% 2.7% 3.0% 2.6%

Best strategy 6/40 9/40 9/40 14/40 7/40 14/40

Table 2: Average branch-and-cut statistics for various separation strategies (ρ = 0.6).

If we look at the total solution time, it becomes clear that all strategies yield an im-
provement over strategy N. Based on the tested instances, strategy P2C yields the lowest
computation time; a factor 3.8 better than strategy N.

Looking at the number of nodes in the search trees, we see that all strategies allow the
number of nodes to be greatly reduced compared to strategy N. We see that, on average,
using T2C allows for the largest number of violated precedence inequalities to be found
per node in the search tree. Still, strategy P2C is more e�ective. This observation cannot
be explained by the increase in separation time alone; the average time spend per instance
on separating precedence inequalities is 0.2 seconds for P2C, and 0.6 seconds for T2C.

There are two other e�ects that may explain the di�erence between P2C and T2C.
First, as more precedence inequalities are found, larger LP relaxations have to be solved,
which takes more time. Second, as more precedence inequalities can be found, it can

16

happen that the LP relaxation is resolved more often. It seems that this additional work
does not add much value over P2C.

Table 2 shows that P2C is the best strategy for 14 of the test-instances. For T2C,
this number is the same. Looking at the disaggregated data (Table 5 in Appendix C)
we see that for the instances with 20 clients, T2C is the best strategy 5 out of 10 times,
while P2C is never the best strategy. For the instances with 25 clients, however, P2C is
the best strategy 5 out of 10 times, while T2C is the best only once.

Surprisingly, after processing only the root node, there is almost no di�erence in lower
bounds between strategy N and the other strategies. For 35 instances the lower bounds
are exactly the same. For the other instances, di�erences between lower bounds of at most
0.04% are observed. The power of the precedence inequalities really shows further down
in the search tree. This could be explained by the nature of the precedence inequalities:
they disallow certain combinations of paths. If a solution is very fractional, not many
paths can be detected, and hence the precedence inequalities are of little use. Deeper in
the tree, where more variables are �xed, they become more e�ective.

5.3 Comparison with branch-price-and-cut

Next, we compare the performance of our branch-and-cut algorithm, using strategy P2C
and ρ = 0.6, to the performance of the branch-price-and-cut algorithm in Spliet and
Gabor (2014).

To this end, we run their implementation on the same computer as on which our
algorithm is run. The computation times are thus directly comparable. The results we
present are based on their branch-price-and-cut algorithm with 2-cycle elimination and
adding rounded capacity cuts, which is the solution method in Spliet and Gabor (2014)
yielding the best average time performance on the test set.

The results per instance can be found in Table 3. Per instance, data is provided on �ve
di�erent categories, both for the branch-price-and-cut algorithm (BP&C) and the branch-
and-cut algorithm (B&C). The columns labeled `Seconds' indicate the times in seconds
for solving the instance to optimality, the maximum time allowed being one hour. The
columns `Nodes' state the number of nodes of the search tree that have been explored
during that time. When the algorithm terminates, the percentual deviation from the
optimum is given in the column `Optimality gap'. A value of zero indicates the problem
was solved to optimality. The column `Root gap' shows a similar value, indicating the
optimality gap after processing only the root node. The optimality gap and the root gap
are calculated ex-post, using the actual optimal value. Finally, the column `Value' gives
the optimal objective value for that instance.

17

Seconds Nodes Optimality gap Root gap Value

Inst. Clients BP&C B&C BP&C B&C BP&C B&C BP&C B&C B&C

1 10 0.7 0.0 1 1 0 0 0 0 17.65
2 10 121.9 0.1 483 18 0 0 0.17 0.28 15.56
3 10 3.7 0.0 1 1 0 0 0 0 17.42
4 10 28.5 0.1 193 6 0 0 0.14 0.14 18.51
5 10 2.3 0.3 2 42 0 0 0 0.34 16.07
6 10 1.5 0.0 2 1 0 0 0 0 18.00
7 10 4.9 0.0 4 1 0 0 0 0 17.02
8 10 3.5 0.1 29 21 0 0 0.65 0.96 23.89
9 10 3.0 0.0 7 1 0 0 0 0 20.31
10 10 5.9 0.0 5 1 0 0 0 0 16.31

11 15 87.4 0.1 22 1 0 0 0 0 17.78
12 15 3,600.0 39.1 889 14,037 0.15 0 0.67 2.36 27.10
13 15 3,600.0 2.6 684 587 0.59 0 1.10 1.78 29.37
14 15 58.0 0.2 45 1 0 0 0 0.03 23.18
15 15 29.4 0.6 36 11 0 0 0 0.17 24.15
16 15 92.4 0.3 98 1 0 0 0.10 0.17 21.03
17 15 22.9 0.1 15 1 0 0 0 0 22.04
18 15 105.3 0.8 98 124 0 0 0.20 0.47 22.30
19 15 133.3 1.3 133 210 0 0 0.56 0.97 26.52
20 15 41.6 0.4 28 11 0 0 0 0 22.11

21 20 3,600.0 1.2 864 48 0.02 0 0.57 1.11 28.08
22 20 152.3 9.0 62 658 0 0 0.03 0.19 29.80
23 20 99.6 0.4 40 1 0 0 0 0.12 30.30
24 20 112.2 1.7 27 58 0 0 0.03 0.86 24.16
25 20 3,600.0 6.9 712 389 0.08 0 0.61 1.09 29.84
26 20 65.4 0.2 16 1 0 0 0 0 29.72
27 20 85.5 0.3 24 1 0 0 0 0 26.48
28 20 106.5 1.1 36 11 0 0 0 0.08 26.14
29 20 65.5 0.5 17 1 0 0 0 0.05 26.61
30 20 45.1 0.3 4 1 0 0 0 0 26.36

31 25 610.9 2.3 121 20 0 0 0.13 0.57 31.43
32 25 840.0 1.3 164 4 0 0 0.07 0 30.71
33 25 3,600.0 9.4 413 395 0.33 0 0.45 1.03 33.71
34 25 193.2 11.1 36 391 0 0 0 0.33 33.34
35 25 640.0 6.1 119 201 0 0 0 0.85 29.05
36 25 3,600.0 39.3 1,662 1,733 0.13 0 0.43 1.49 30.50
37 25 3,600.0 22.4 278 1,472 0.29 0 0.29 0.43 28.68
38 25 3,600.0 9.7 1,259 337 0.12 0 0.30 0.59 35.69
39 25 3,600.0 7.2 2,294 219 0 0 0.50 0.94 32.55
40 25 1,093.2 15.2 521 471 0 0 0.30 0.62 32.14

Average 931.4 4.8 286.1 537.2 0.04 0 0.18 0.45 25.29

Table 3: Comparison of branch-price-and-cut and branch-and-cut.

What immediately stands out is the enormous decrease in computation time of our
new algorithm with respect to the previous algorithm. The instances that can be solved
to optimality by the branch-price-and-cut algorithm, can be solved to optimality by the
branch-and-cut algorithm 89.6 times faster on average. In total, 9 instances cannot be
solved to optimality by the branch-price-and-cut algorithm after a total of 9 hours of
computation time. With the branch-and-cut algorithm, all these instances can be solved
to optimality in 137.9 seconds. Hence, this is a speedup of at least a factor 234.9.

The new algorithm is faster for all tested instances by at least a factor 7.6 and even
up to a factor 2997 for instance 21. If we consider the time necessary to attempt to
solve all instances combined, the total time decreases from 37,255.3 seconds in total to
192.1 seconds; a speedup factor of 193.9. We point out that this di�erence is not the
result of using rounded capacity cuts, as both the branch-and-cut algorithm and the
branch-price-and-cut algorithm use these valid inequalities.

It can be seen that an advantage of the branch-price-and-cut algorithm is the stronger
LP bound it provides, as for almost all instances the root gap is smaller than the gap
given by the branch-and-cut algorithm. However, this strength is less apparent in the
remainder of the search tree, as on average the branch-and-cut algorithm processes only
twice the number of nodes in the branch-price-and-cut algorithm. There are some extreme
instances, however, where processing a lot of nodes is necessary, e.g., instances 12 and 36.
Here, we observe that the branch-and-cut algorithm is able to process a large number of
nodes in little time (14000+ in less than 40 seconds for instance 12). The branch-price-
and-cut algorithm generates stronger bounds, but cannot process enough nodes in the
given time to solve the problem.

5.4 Performance on larger instances

As our branch-and-cut algorithm is able to solve all 40 test-instances used in Spliet and
Gabor (2014), we also test our algorithm on larger instances, as introduced in Section 5.1.
Recall that these instances are generated in a similar way as the �rst forty instances. The
only di�erence is that the number of clients is larger: between 30 and 50.

In Table 4 we report results for the instances with 30 and 35 clients. This table is
structured in the same way as Table 3. The column `Value' is replaced by the columns
`Lower bound' and `Upper bound', as not all instances can be solved to optimality. The
reported root gaps are no longer ex post, but based on the best known upper bound.

It can be seen that all but one of the instances with 30 clients can be solved to
optimality within one hour of computation time, and for the remaining instance we �nd
a solution with an optimality gap of 1.66%.

The instances with 35 clients are more di�cult: 6 out of the 10 instances can be solved
to optimality within one hour. The remaining instances have an optimality gap of less
than 1.32%.

The instances with 40, 45 and 50 customers cannot be solved consistently by our
branch-and-cut algorithm, which proves optimality of the found solution for only two of
these instances in one hour of computation time. In Table 6 in Appendix C, we report the
results for these instances, including best found lower and upper bounds. The instances
with 40 clients have optimality gaps below 2.09%. The instances with 45 clients have
optimality gaps between 0.48% and 7.12%. The instances with 50 clients have optimality
gaps between 3.09% and 7.23%.

19

Inst. Clients Seconds Nodes Optimality gap Root gap Lower bound Upper bound

41 30 137.0 3,281 0 1.99 36.38 36.38
42 30 3,600.0 40,701 1.66 3.48 34.16 34.74
43 30 187.6 8,317 0 1.91 35.48 35.48
44 30 60.6 1,296 0 1.46 35.88 35.88
45 30 110.8 4,158 0 1.78 35.55 35.55
46 30 7.7 165 0 0.58 37.47 37.47
47 30 17.8 292 0 0.70 32.54 32.54
48 30 357.9 9,657 0 1.84 36.32 36.32
49 30 930.3 24,789 0 2.34 35.30 35.30
50 30 30.7 710 0 0.72 40.27 40.27

51 35 18.2 114 0 0.78 43.46 43.46
52 35 14.0 69 0 0.06 41.84 41.84
53 35 3,600.0 32,201 1.32 2.86 44.54 45.14
54 35 3,600.0 50,601 0.87 3.06 41.20 41.57
55 35 68.5 983 0 0.68 37.92 37.92
56 35 3,600.0 42,289 0.92 2.58 44.08 44.49
57 35 3,600.0 31,201 0.44 1.85 40.65 40.83
58 35 127.9 1,871 0 0.89 41.22 41.22
59 35 245.1 2,485 0 0.93 43.43 43.43
60 35 443.3 6,655 0 1.32 42.27 42.27

Table 4: Result for the branch-and-cut algorithm on instances 41 to 60.

20

6 Conclusion

In this paper we present a compact formulation for the TWAVRP based on the 2-
commodity �ow formulation introduced by Baldacci et al. (2004) and the MTZ-inequalities
introduced by Miller et al. (1960). We use this formulation in a branch-and-cut algorithm
in which rounded capacity cuts are separated in each node of the search tree.

To further improve the performance of our algorithm, we introduce a branching rule
and a novel class of valid inequalities: the precedence inequalities. These TWAVRP
speci�c inequalities are hard to separate in general. Therefore, we introduce exact sepa-
ration algorithms for two subsets, the path precedence inequalities and the tournament
precedence inequalities. Furthermore, we extend these algorithms to separation heuristics
for general precedence inequalities. Using the branching rule and separating precedence
inequalities makes our algorithm 6.6 times faster.

The new algorithm is superior to the best known algorithm in the literature, the
algorithm of Spliet and Gabor (2014), for all tested instances. Overall, an average speedup
factor of 193.9 is achieved.

Finally, we test our algorithm on larger instances. Of the instances with 30 clients, 9
out of 10 instances could be solved to optimality within the one hour time limit. For the
instances with 35 clients, we found the optimal solution for 6 out of 10 instances. The
instances that could not be solved to optimality all have an optimality gap of less than
1.66%. Instances with 40 clients and more, however, could not be solved to optimality
consistently.

In this paper, we compare our results to the branch-price-and-cut algorithm of Spliet
and Gabor (2014). Even without the use of precedence inequalities, our algorithm shows
a substantial speedup over the branch-price-and-cut algorithm. It it still interesting,
though, to investigate the e�ect of incorporating the precedence inequalities in a branch-
price-and-cut algorithm. Similarly, it is interesting to see how the precedence inequalities
would perform on the DTWAVRP.

Another interesting topic of further research concerns algorithms for separating prece-
dence inequalities. In the future, TWAVRP algorithms would bene�t from new algorithms
for separating the remaining class of precedence inequalities, corresponding to directed
cyclic graphs.

21

References

Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. A Polyhedral Study of the
Asymmetric Traveling Salesman Problem with Rime Qindows. Networks, 36(2):69�79,
2000.

Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. Solving the Asymmetric
Travelling Salesman Problem with time windows by branch-and-cut. Mathematical
Programming, 90(3):475�506, 2001.

Roberto Baldacci, Eleni Hadjiconstantinou, and Aristide Mingozzi. An Exact Algorithm
for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network
Flow Formulation. Operations Research, 52(5):723�738, 2004.

Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. Recent exact algorithms
for solving the vehicle routing problem under capacity and time window constraints.
European Journal of Operational Research, 218(1):1�6, 2012.

Michel L Balinski and Richard E Quandt. On an Integer Program for a Delivery Problem.
Operations Research, 12(2):300�304, 1964.

Guy Desaulniers, François Lessard, and Ahmed Hadjar. Tabu Search, Partial Elemen-
tarity, and Generalized k-path Inequalities for the Vehicle Routing Problem with Time
Windows. Transportation Science, 42(3):387�404, 2008.

Chris Groër, Bruce Golden, and Edward Wasil. The Consistent Vehicle Routing Problem.
Manufacturing & service operations management, 11(4):630�643, 2009.

Ola Jabali, Roel Leus, Tom Van Woensel, and Ton De Kok. Self-imposed time windows
in vehicle routing problems. OR Spectrum, 37(2):331�352, 2015.

Arthur B Kahn. Topological Sorting of Large Networks. Communications of the ACM,
5(11):558�562, 1962.

Attila A Kovacs, Bruce L Golden, Richard F Hartl, and Sophie N Parragh. Vehicle
Routing Problems in Which Consistency Considerations are Important: A Survey.
Networks, 64(3):192�213, 2014.

Gilbert Laporte, Yves Nobert, and Martin Desrochers. Optimal Routing under Capacity
and Distance Restrictions. Operations research, 33(5):1050�1073, 1985.

Jens Lysgaard. CVRPSEP: A package of separation routines for the Capacitated Vehicle
Routing Problem. Working paper, Aarhus School of Business, 2003.

Jens Lysgaard, Adam N Letchford, and Richard W Eglese. A new branch-and-cut al-
gorithm for the capacitated vehicle routing problem. Mathematical Programming, 100
(2):423�445, 2004.

Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer Programming Formu-
lation of Traveling Salesman Problems. Journal of the ACM (JACM), 7(4):326�329,
1960.

22

Christos H Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoretical Computer Science, 4(3):237�244, 1977.

Remy Spliet and Guy Desaulniers. The discrete time window assignment vehicle routing
problem. European Journal of Operational Research, 244(2):379�391, 2015.

Remy Spliet and Adriana F Gabor. The Time Window Assignment Vehicle Routing
Problem. Transportation Science, 49(4):721�731, 2014.

23

A Proof Proposition 1

Proposition 1. All integer feasible solutions to (1)-(14), (16), (17), (19), and (20)-(23)
satisfy

xωij ∈ B ∀(i, j) ∈ A, ω ∈ Ω. (15)

Proof. Constraints (20) and (21) state that xω0j, x
ω
j,n+1 ∈ B for all j ∈ V ′. Next, we

will prove that if xωij = 1 with i ∈ V ′ ∪ {0} and j ∈ V ′, then there exists a unique
k ∈ V ′ ∪ {n+ 1}, k 6= i such that xωjk = 1.

Suppose that xωij = 1 for some i ∈ V ′ ∪ {0} and j ∈ V ′. Due to the �ow conservation
constraints xωlj = 0 for all l 6= i and furthermore there exists a vertex k ∈ V ′ ∪ {n + 1}
such that xωjk > 0. If k = n + 1, then by integrality of the �ows going into the depot,
we have xωjk = 1 and by the �ow conservation constraints we have xωjl = 0 for all l 6= k.
Finally, suppose k 6= n+1. Note that k 6= i as xjk > 0 while xji = 0 because xij +xji = 1.
Constraints (22) and (23) state that xωjk +xωkj = 1 and since xωlj = 0 for all l 6= i, it follows
that xωjk = 1. Using again the �ow conservation constraints, xjl = 0 for all l 6= k.

We know that all �ows out of the depot are equal to one. We have just proven that
any vertex in V ′ with a single in�ow of 1 also has a single out�ow of 1. It follows that
all �ows between the depots are of size 1.

What remains to be proven is that all clients are contained in the integral �ows be-
tween the depots. Because of the �ow conservation constraints (2)-(3), the only other
possibility is that there exists a cycle, given by edges (1, 2), (2, 3), ..., (k−1, k), (k, 1) such
that for each arc (i, j) in this cycle we have xωij + xωji = 1. Using the �ow conservation
constraints (2)-(3), we have that all arcs adjacent to this cycle have zero �ow. Con-
straints (4) and (16) together state that if xij + xji = 0, then zij = zji = 0. Hence, if a
cycle exists, (5) contains the following constraints:

zωk,1 − zω1,k + zω2,1 − zω1,2 = 2dω1
zω1,2 − zω2,1 + zω3,2 − zω2,3 = 2dω2

...

zωk−1,k − zωk,k−1 + zω1,k − zωk,1 = 2dωk

Summing these constraints gives 0 = 2
∑k

i=1 d
ω
i > 0, which is a contradiction. Hence, all

clients are contained in the integer �ows between the depots. It follows that all x-variables
are integer and that (15) is satis�ed.

I

B Separating precedence inequalities is co-NP-hard

We prove that separating precedence inequalities is co-NP-hard. First, we present a brief
outline of the proof.

We construct a speci�c instance of the TWAVRP and a corresponding optimal solution
to the LP relaxation of (1)-(16), (17) and (19). This optimal solution to the LP relax-
ation is an instance of the separation problem of �nding violated precedence inequalities.
We will refer to this instance as instance I. Next, we characterize this instance of the
separation problem as a decision problem. Finally, we show that separating precedence
inequalities is co-NP-hard. We show this by a polynomial time reduction from Euclidean
TSP.

TWAVRP instance

Consider n ≥ 4 clients, travel times tij adhering to the triangle inequality, and endogenous
time window widths wi. Let t

max be the maximum of the given travel times, and let wmax

be the maximum of the given endogenous time window widths.
We set si = 0 and ei = 2tmax+wmax for all locations i ∈ V and we de�ne two scenarios

Ω = {1, 2}, both with probability 0.5 of occurring. In both scenarios, we set the demand
of every client equal to 1. The vehicle capacity Q is set equal to n. We set all travel
costs equal to zero, such that any feasible solution to the LP relaxation is also an optimal
solution.

Solution to the LP relaxation

Next, we describe an optimal solution to the LP relaxation. We start with setting the
x-variables. For scenario 1, set x1

1i = x1
ij = x1

in = 1
n−2

for all i = 2, 3, . . . , n − 1 and
j = 2, 3, . . . , n − 1 (i 6= j) and set x1

01 = x1
n,n+1 = 1. All other x-variables for scenario 1

are set to zero.
For scenario 2, we set x2

01 = x2
n,n+1 = 1− 1

n−1
. Furthermore, we set x2

0i = x2
i,n+1 = 1 for

all i = 2, 3, . . . n − 1. Moreover, we set x2
0n = x2

1,n+1 = 1 and x2
n1 = 1

n−1
. The remaining

�ow variables are set to zero.
As an example, Figures 2 and 3 present the �ows given by the x-variables when n = 4.

1/2

1/2
1/2

1/2

1/2

1/2

11
0 1

2 3

4 5

Figure 2: Flows given by the x-variables in scenario 1 when n = 4.

Next, we also present an assignment for the z-variables. For scenario 1 we set z1
01 =

z1
n+1,n = n. Furthermore, we set z1

1i = z1
ni = n−1

n−2
and z1

i1 = z1
in = 1

n−2
for all i =

2, 3, . . . , n− 1. Finally, we set z1
ij = n

n−2
for all i = 2, 3, . . . , n− 1 and j = 2, 3, . . . , n− 1

(i 6= j). All other z-variables are set to zero.
For scenario 2 we set z2

01 = n−2
n−1

, z2
10 = n − 2, z2

0n = n
n−1

, z2
n0 = n − n

n−1
, z2

1n = 1,

z2
n1 = 1

n−1
, z2

n+1,1 = n, z2
n+1,n = n(n−2)

n−1
and �nally z2

0i = 1, z2
i0 = n − 1 and z2

n+1,i = n for
all i = 2, 3, . . . , n− 1. All remaining z-variables are set to zero.

Finally, set yi = tmax for all i ∈ V ′ and tωi = tmax for all i ∈ V ′ and all ω ∈ Ω.

II

1
1 1

1

1

1

1/3

2/3 2/30

2

1 4

3

5

Figure 3: Flows given by the x-variables in scenario 2 when n = 4.

It is straightforward to check that the described variables give a feasible solution to
the LP relaxation of (1)-(16), (17) and (19). As all costs are equal to zero, this solution
is also optimal. By de�nition, our optimal solution to the LP relaxation is an instance
of the separation problem. In the remainder, we refer to this instance of the separation
problem as instance I.

Characterization as a decision problem

Next, we characterize instance I of the separation problem as a decision problem. First,
we prove the following lemma.

Lemma 14. If instance I contains a violated precedence inequality, then the only violated
precedence inequality is given by (using the notation of Theorem 4) i = 1, j = n, S =
{2, 3, . . . , n− 1}, F = (1 : S) ∪ (S : S) ∪ (S : n), S ′ = ∅ and F ′ = {(n, 1)}.

Proof. By de�nition, F ′ cannot contain arcs involving the depot vertices. Therefore,
considering the assigned values of the x-variables in scenario 2, we have that the arc
(n, 1) is the only arc with non-zero �ow that may be in F ′. Hence,

∑
(k,l)∈F ′ x2

kl = 0 if

(n, 1) /∈ F ′ or 0 <
∑

(k,l)∈F ′ x2
kl = 1

n−1
< 1 if (n, 1) ∈ F ′. By Lemma 5 we have that∑

(k,l)∈F ′ x2
kl > |S ′| ≥ 0. Thus, (n, 1) is contained in F ′. Using that

∑
(k,l)∈F ′ x2

kl < 1

and
∑

(k,l)∈F ′ x2
kl > |S ′| it follows that |S ′| = 0 and hence S ′ = ∅. As S ′ = ∅ and

(n, 1) ∈ F ′, it follows that i = 1, j = n and F ′ = {(n, 1)}. It remains to be shown that
S = {2, 3, . . . , n− 1} and F = (1 : S) ∪ (S : S) ∪ (S : n).

Suppose by contradiction that S ∈ S(1, n) is such that |S| ≤ n− 3. In this case, the
largest set F ∈ F(1, S, n) is given by F = (1 : S)∪(S : S)∪(S : n). Therefore, the number
of arcs in F is bounded by |1 : S|+ |S : S|+ |S : n| = |S|+ |S|(|S|−1)+ |S| = |S|(|S|+1).
For instance I, all these arcs have �ow equal to 1

n−2
. It follows that

∑
(k,l)∈F x

1
kl ≤ |S|(|S|+

1) 1
n−2

for all S ∈ S(1, n) and F ∈ F(1, S, n). Recall that
∑

(k,l)∈F ′ x2
kl = 1

n−1
and |S ′| = 0.

Using |S| + 1 ≤ n − 2 we derive
∑

(k,l)∈F x
1
kl +

∑
(k,l)∈F ′ x2

kl ≤ |S|(|S| + 1) 1
n−2

+ 1
n−1
≤

|S|+ |S ′|+ 1 for all |S| ≤ n− 3. By Theorem 4, the corresponding precedence inequality
is not violated, which is a contradiction. It follows that |S| = n − 2, which implies
S = {2, 3, . . . , n− 1}.

Finally, we show that F = (1 : S) ∪ (S : S) ∪ (S : n) by contradiction. Suppose that
F 6= (1 : S) ∪ (S : S) ∪ (S : n). Recall that S = {2, 3, . . . , n − 1} and thus |S| = n − 2.
Therefore, |F | ≤ |S|(|S|+1)−1 = (n−2)(n−1)−1. Hence,

∑
(k,l)∈F x

1
kl +

∑
(k,l)∈F x

2
kl ≤

((n − 2)(n − 1) − 1) 1
n−2

+ 1
n−1

= n − 1 − 1
n−2

+ 1
n−1
≤ n − 1 = |S| + |S ′| + 1, which

is a contradiction of the precedence inequality being violated. It follows that F = (1 :
S) ∪ (S : S) ∪ (S : n).

III

Hence, the only potentially violated precedence inequality is given by i = 1, j = n,
S = {2, 3, . . . , n − 1}, F = (1 : S) ∪ (S : S) ∪ (S : n), S ′ = ∅ and F ′ = {(n, 1)}. By
assumption, a violated precedence inequality exists, hence, this is the only one.

The next corollary follows from Lemma 14 and characterizes instance I of the separation
problem as a decision problem.

Corollary 15. Instance I contains a violated precedence inequality if and only if

δ1n(S, F) > w1 + wn − tn1 (36)

with S = {2, 3, . . . , n− 1} and F = (1 : S) ∪ (S : S) ∪ (S : n).

Proof. Assume instance I contains a violated precedence inequality. By Lemma 14,
i = 1, j = n, S = {2, 3, . . . , n − 1}, F = (1 : S) ∪ (S : S) ∪ (S : n), S ′ = ∅ and
F ′ = {(n, 1)}. By Theorem 4 all precedence inequalities satisfy δ1n(S, F) + δn1(S ′, F ′) >
w1 + wn. Substituting δn1(S ′, F ′) = δn1(∅, {(n, 1)}) = tn1 then gives (36).

For the reverse implication, let S = {2, 3, . . . , n− 1}, F = (1 : S) ∪ (S : S) ∪ (S : n),
S ′ = ∅ and F ′ = {(n, 1)} and assume that δ1n(S, F) > w1 +wn− tn1, which is equivalent
to δ1n(S, F)+δn1(S ′, F ′) > w1 +wn as shown earlier. Similar as in the proof of Lemma 14,
we have

∑
(k,l)∈F x

1
kl +

∑
(k,l)∈F ′ x2

kl = |S|(|S|+ 1) 1
n−2

+ 1
n−1

= n− 1 + 1
n−1

> |S|+ |S ′|+ 1.
Hence, by Theorem 4, we have that i, j, S, F , S ′ and F ′ de�ne a violated precedence
inequality.

The decision problem is co-NP-complete

Next, we show that the decision problem δ1n(S, F) > w1 + wn − tn1 is co-NP-complete.
First, we note that the decision problem is in co-NP. A polynomial certi�cate for the
NO-answer is given by a path from 1 to n visiting all vertices of S and using only arcs
of F , of length w1 + wn − tn1 or less. Next, we show that the decision problem is co-NP
complete. We show this with a reduction from Euclidean TSP.

Consider the Euclidean TSP problem: given n distinct points in Euclidean space,
determine whether there exists a tour visiting all vertices with total travel time α or less.
The travel time between two points is given by their Euclidean distance. Let these travel
times be tij. Clearly, the travel times are positive and satisfy the triangle inequality.

Next, we show that the Euclidean TSP problem can be reduced to answering a poly-
nomial number of instances of the complement of the decision problem δ1n(S, F) >
w1 + wn − tn1. For every edge (k, l) we do the following. Without loss of generality,
relabel the vertices such that k = 1 and l = n. Now construct an instance I of the sepa-
ration problem by using the same n and t, and by arbitrarily choosing wi ≥ 0 for all i ∈ V ′
in such a way that w1 + wn = α. Next, determine whether δ1n(S, F) ≤ w1 + wn − tn1,
which is the complement of δ1n(S, F) > w1 + wn − tn1. If for any (k, l) the answer is
Y ES, this implies that there exists a tour of length at most w1 + wn − tn1 + tn1 = α,
and hence the answer to the Euclidean TSP problem is Y ES. If the answer is NO for all
(k, l), it follows that it is impossible to construct a tour that is su�ciently short. Hence,
the answer to the Euclidean TSP problem is NO.

As the number of edges is polynomial, we solve the Euclidean TSP problem by an-
swering the complement of the decision problem δ1n(S, F) > w1 +wn − tn1 a polynomial
number of times. As Euclidean TSP is NP-complete (Papadimitriou, 1977), it follows
that answering δ1n(S, F) > w1 + wn − tn1 is co-NP-complete.

IV

Separating precedence inequalities is co-NP-hard

Finally, consider a separation algorithm that returns a violated precedence inequality if
one exists, or returns that no violated precedence inequality exists. Now use this sepa-
ration algorithm on instance I. By Corollary 15, there is only one potential precedence
inequality in I that may be violated. Hence, if a violated precedence inequality is found,
it is established that δ1n(S, F) > w1 + wn − tn1, for a given S and F . Since determining
whether δ1n(S, F) > w1 + wn − tn1 is co-NP-complete, it follows that the problem of
separating precedence inequalities is co-NP-hard in general.

C Additional tables

V

Seconds

Inst. Clients N P P2T P2C T T2C

1 10 0.0 0.0 0.0 0.0 0.0 0.0
2 10 0.6 0.1 0.1 0.1 0.1 0.1
3 10 0.0 0.0 0.0 0.0 0.0 0.0
4 10 0.8 0.1 0.1 0.1 0.1 0.1
5 10 0.2 0.1 0.1 0.3 0.1 0.1
6 10 0.0 0.0 0.0 0.0 0.0 0.0
7 10 0.0 0.0 0.0 0.0 0.0 0.0
8 10 0.4 0.1 0.1 0.1 0.2 0.1
9 10 0.0 0.0 0.0 0.0 0.0 0.0
10 10 0.0 0.0 0.0 0.0 0.0 0.0

11 15 0.1 0.1 0.1 0.1 0.1 0.1
12 15 68.0 143.2 95.5 39.1 60.8 63.8
13 15 8.7 3.9 3.7 2.6 4.1 3.0
14 15 0.2 0.2 0.2 0.2 0.7 0.7
15 15 1.6 0.5 0.9 0.6 0.5 0.6
16 15 0.9 0.3 0.3 0.3 0.3 0.3
17 15 0.1 0.1 0.1 0.1 0.1 0.1
18 15 1.7 0.8 1.7 0.8 2.2 1.7
19 15 0.7 0.7 0.8 1.3 1.3 1.3
20 15 0.2 1.2 0.7 0.4 0.7 0.4

21 20 1.2 1.1 1.2 1.2 1.1 1.2
22 20 8.1 1.9 5.9 9.0 5.9 1.3
23 20 0.3 0.4 0.4 0.4 0.4 0.5
24 20 1.8 2.1 3.5 1.7 3.6 1.7
25 20 13.5 12.2 7.1 6.9 8.3 4.4
26 20 0.3 0.3 0.3 0.2 0.3 0.2
27 20 2.1 0.4 0.4 0.3 0.5 0.3
28 20 1.1 1.0 1.2 1.1 1.2 1.1
29 20 0.6 0.5 0.5 0.5 0.5 0.5
30 20 0.2 0.3 0.3 0.3 0.3 0.3

31 25 12.0 15.7 18.2 2.3 5.0 15.0
32 25 5.5 4.3 8.0 1.3 2.8 5.3
33 25 35.3 9.2 37.8 9.4 11.3 14.4
34 25 2.6 8.4 2.3 11.1 2.4 15.8
35 25 26.6 4.6 15.1 6.1 19.0 6.2
36 25 33.9 39.0 31.9 39.3 31.5 47.7
37 25 339.9 42.7 70.7 22.4 75.4 23.6
38 25 79.4 12.9 14.5 9.7 17.7 23.2
39 25 51.3 35.5 10.1 7.2 17.1 37.0
40 25 20.5 27.0 18.3 15.2 27.2 6.7

Average 18.0 9.3 8.8 4.8 7.6 7.0

Table 5: Solution times for various strategies, using ρ = 0.6.

VI

Inst. Clients Seconds Nodes Optimality gap Root gap Lower bound Upper bound

61 40 3,600.0 17,282 2.09 3.29 45.38 46.35
62 40 550.3 8,479 0 1.08 48.35 48.35
63 40 3,600.0 36,554 0.23 1.83 44.38 44.48
64 40 3,169.7 18,069 0 1.88 43.75 43.75
65 40 3,600.0 37,915 0.77 2.22 43.13 43.46
66 40 3,600.0 32,601 1.22 2.79 44.14 44.68
67 40 3,600.0 27,201 0.67 1.89 46.64 46.96
68 40 3,600.0 16,210 1.76 2.88 44.23 45.02
69 40 3,600.0 17,822 1.88 3.25 42.39 43.20
70 40 3,600.0 16,901 0.68 1.76 42.71 43.00

71 45 3,600.0 5,741 4.36 5.08 49.52 51.78
72 45 3,600.0 9,201 2.69 3.40 50.73 52.13
73 45 3,600.0 14,001 0.48 1.70 41.50 41.70
74 45 3,600.0 4,789 1.23 2.18 47.25 47.84
75 45 3,600.0 9,501 2.19 2.90 48.77 49.86
76 45 3,600.0 6,401 7.12 7.61 48.38 52.09
77 45 3,600.0 12,064 2.13 2.87 50.09 51.18
78 45 3,600.0 8,501 3.58 4.18 52.02 53.95
79 45 3,600.0 20,601 1.58 2.71 47.45 48.21
80 45 3,600.0 10,097 1.99 2.75 49.57 50.57

81 50 3,600.0 5,898 3.46 4.08 56.81 58.85
82 50 3,600.0 5,701 3.19 3.85 51.50 53.20
83 50 3,600.0 4,001 5.31 5.61 57.45 60.67
84 50 3,600.0 4,401 7.23 7.71 52.31 56.38
85 50 3,600.0 3,146 4.17 4.92 53.74 56.07
86 50 3,600.0 3,585 5.63 6.14 51.68 54.76
87 50 3,600.0 6,611 3.09 3.65 52.47 54.14
88 50 3,600.0 6,801 3.68 4.39 54.82 56.91
89 50 3,600.0 4,001 3.71 4.06 59.23 61.51
90 50 3,600.0 4,901 3.15 3.69 57.68 59.55

Table 6: Results for the branch-and-cut algorithm on instances 61 to 90.

VII

	Introduction
	Problem definition
	Mixed integer linear program
	Remarks

	Branch-and-cut algorithm
	2-cycle elimination
	Rounded capacity inequalities
	Branching strategy

	Precedence inequalities
	Path precedence inequalities
	Tournament precedence inequalities
	Additional strategies

	Numerical experiments
	Test-instances
	Small instances
	Large instances

	Branch-and-cut experiments
	Comparison with branch-price-and-cut
	Performance on larger instances

	Conclusion
	Proof Proposition 1
	Separating precedence inequalities is co-NP-hard
	Additional tables

