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Spillover Index and the Hafner and Herwartz (2006) analysis of multivariate GARCH models using volatility 

impulse response analysis. We use two sets of data, daily realized volatility estimates taken from the Oxford 

Man RV library, running from the beginning of 2000 to October 2016, for the S&P500 and the FTSE, plus ten 

years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index, from 3 January 

2005 to 31 January 2015. Both data sets capture both the Global Financial Crisis (GFC) and the subsequent 

European Sovereign Debt Crisis (ESDC). The spillover index captures the transmission of volatility to and from 

markets, plus net spillovers. The key difference between the measures is that the spillover index captures an 

average of spillovers over a period, whilst volatility impulse responses (VIRF) have to be calibrated to 

conditional volatility estimated at a particular point in time. The VIRF provide information about the impact of 

independent shocks on volatility. In the latter analysis, we explore the impact of three different shocks, the onset 

of the GFC, which we date as 9 August 2007 (GFC1). It took a year for the financial crisis to come to a head, 

but it did so on 15 September 2008, (GFC2). The third shock is 9 May 2010.  Our modelling includes leverage 

and asymmetric effects undertaken in the context of a multivariate GARCH model, which are then analysed 

using both BEKK and diagonal BEKK (DBEKK) models. A key result is that the impact of negative shocks is 

larger, in terms of the effects on variances and covariances, but shorter in duration, in this case a difference 

between three and six months. 
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1. INTRODUCTION

The similarities between GARCH and VARMA-type models provide a foundation for the approach to 

generalize impulse response analysis, as introduced by Sims (1980), to the analysis of shocks in 

financial volatility. Previous alternative approaches in the literature have been made towards tracing 

the impact of various types of shocks through time (see, for example, Koop et al. (1996), Engle and 

Ng, (1993), Gallant et al. (1993), and Lin (1997)). Koop et al. (1996) defined generalized impulse 

response functions for the conditional expectation using the mean of the response vector conditional 

on history and a current shock, as compared with a baseline that conditions only on historical 

innovations. The two metrics we use to capture spillovers in this paper build upon these approaches.  

Diebold and Yilmaz (2009, 2012) develop measures of return and volatility spillovers based on vector 

autoregressive (VAR) models. The Diebold and Yilmaz (2012) variant of their measure is based on 

generalized impulse responses and captures both directional and net spillovers between markets. The 

first set of analyses in this paper is based on the application of these metrics to analyse daily realized 

volatility (RV) metrics taken from the Oxford-Man Institute of Quantitative Finance Realized Library 

for the S&P500 and the FTSE index (See Gerd et al., (2009)).   

The Diebold and Yilmaz Spillover Index method has attracted some attention in the literature. 

Kloessner and Wagner (2012) present an algorithm, to explore the true range of the (2009) spillover 

index, in which the impulse response functions depended on the ordering of variables in the VAR. 

However, this issue has been avoided in the Diebold and Yilmaz (2012) measure. Alter and Beyer 

(2013) explore the dynamics of the European Sovereign Debt Crisis using a metric based on the 

Spillover Index. Diebold and Yilmaz (2014, 2016) have expanded their method to measure financial 

firm interconnectedness.  

The second set of analyses feature Hafner and Herwartz’s (2006) Volatility Impulse Response Functions 

(VIRFs) which also extend the generalized impulse response functions framework provided by Koop 

et al. (1996). Their approach is novel in that VIRF explores the conditional variance rather than the 

conditional mean. Given that GARCH models can be viewed as being linear in the squared 

innovations, and that multivariate GARCH models are known to have a VARMA representation with 

non-Gaussian errors, Hafner and Hewartz (2006) adopt this particular structure to calculate conditional 

expectations of volatility analytically in their VIRF analysis.  
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Panopoulou and Pantelidis (2009) examine volatility transmissions between the U.S. and the rest of 

the G-7 countries using daily stock market return data and report that the linkages between the markets 

had changed substantially with national markets becoming more interdependent. They provide 

evidence of direct volatility spillovers, running mainly from the US and point to more rapid 

information transmission during the later years of their study. Their analysis is the closest in spirit to 

the current study, but they do not examine the impact of asymmetric shocks in their GARCH 

framework or employ the Diebold and Yilmaz (2012) Spillover Index analysis. Jin et al., (2012), use 

VIRF to analyse the transmission of shocks in crude oil markets, whilst Le Pen and Sevi (2010), 

undertake a similar analysis of electricity markets. Ohlsen et al., (2014) employ VIRF analysis to 

explore the relationship between energy and equity markets. 

 

More generally, in the GARCH literature there has been a longstanding concern with modelling 

volatility transmission. An early study by Koutmos and Booth (1995) examined price volatility 

spillovers for the US, the UK and Japan in the context of a multivariate EGARCH model which 

permitted the capture of possible asymmetries in the volatility transmission mechanism. These authors 

found evidence of price spillovers, and extensive and reciprocal second moment interactions, which 

were asymmetric, i.e. negative innovations in a given market increased volatility in the next market to 

trade more than positive innovations. We further explore this issue in the current paper. Furthermore, 

Ross (1989), suggested that under appropriate conditions, the variance of price change equals the rate 

of information flow, and thus provided a direct link between the second moment and the flow of 

information, in an arbitrage free economy. In a continuation of this logic, Engle et al., (1990) noted 

that a possible explanation for ARCH effects and an explanation of the phenomenon of volatility 

clustering, must lie either in the arrival process of news, or in market dynamics in response to the news. 

If information comes in clusters, then the asset returns or prices may exhibit ARCH behaviour, even 

if the market perfectly and instantaneously adjusts to the news. The current paper follows in this 

tradition and uses impulse response analysis to analyse the transmission of shocks across markets.  

 

In our Generalized VIRF (GVIRF), we consider three major news events which act as shocks to the 

volatility of our two series. The onset of the GFC, which we date as 9 August 2007 (GFC1), began 

with the seizure in the banking system precipitated by BNP Paribas announcing that it was ceasing 

activity in three hedge funds that specialised in US mortgage debt. It took one year for the financial 

crisis to come to a head, but it did so on 15 September 2008 when the US government allowed the 

investment bank Lehman Brothers to go bankrupt (GFC2). The date 9 May 2010 marked the point at 

http://www.theguardian.com/business/lehmanbrothers
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which the focus of concern switched from the private sector to the public sector. By the time the IMF 

and the European Union announced they would provide financial help to Greece, the issue was no 

longer the solvency of banks but the solvency of governments, and this marks the onset of the European 

Sovereign Debt Crisis (ESDC). 

 

The major difference between the two approaches is that the first utilises a VAR approach to jointly 

analyse a time-series of the daily RV series for the two markets, as represented by the S&P500 and the 

FTSE. The method features an analysis of the average of the RV series for the two markets and the 

metrics applied capture spillovers to and from the two markets and the net spillovers. The VIRF 

analysis is developed in the context of a multivariate GARCH approach, incorporating assymetric 

effects, and featuring analysis of the impulse responses of the conditional volatility series. Given that 

volatility is conditional, it makes sense to condition the model on volatility at a given point in time, 

rather than an average. Hence, we use three different points in time, or subsamples, in our basic series 

to capture impacts at the onset of the GFC, the height of the GFC, and the beginning of subsequent 

European Sovereign debt crisis.  

 

The remainder of the paper is as follows. In Section 2 the research methods and data are discussed, 

including the Spillover Index, volatility impulse response functions, multivariate GARCH models, the 

regularity conditions for BEKK and diagonal BEKK (DBEKK) models, the triangular, Hadamard and 

full BEKK models, and diagonal and scalar BEKK models. The empirical results are discussed in 

Section 3, and some concluding remarks are given in Section 4. 

 

2. RESEARCH METHODS AND DATA 

 

We use two different parametric approaches to explore the transmission of volatility shocks across 

markets; the Diebold and Yilmaz (2009, 2012) Spillover Index and the Hafner and Herwartz (2006) 

multivariate volatility impulse response analysis. The next sub-sections introduce the methods used. 

 

2.1 Spillover index 

 

Diebold and Yilmaz (2009) develop a measure of return and volatility spillovers based on vector 

autoregressive (VAR) models in the broad tradition of Engle, Ito and Lin (1990). They concentrate on 

variance decompositions, and they demonstrate how it is possible to aggregate spillover effects across 

http://www.theguardian.com/world/eu
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markets, capturing a great deal of information into a single spillover measure. They construct their 

measure using variance decompositions associated with an N variable VAR. They proceed by taking 

each asset i, and adding the shares of its forecast error variance coming from shocks to asset j, for all 

j ≠ i, and then they add across all i, i =1,..., N. The variance decompositions allow permit them to split 

the forecast error variances of each variable into parts attributable to the various system shocks. They 

aggregate and conduct a spillover index. A drawback of the Diebold and Yilmaz (2009) spillover index 

is that it relies on Cholesky-factor identification of VARs, meaning that the resulting variance 

decompositions can be dependent on variable ordering. In addition their (2009) measure captures total 

spillovers but not directional spillovers. Diebold and Yilmaz (2012) extend their (2009) metric to make 

it invariant on ordering, by using generalised impulse response functions, and construct it in a manner 

that captures directional spillovers. They proceed in the following manner.   

 They consider a covariance stationary N-variable VAR(p), 𝑥𝑖 = ∑ Φ𝑖𝑥𝑖−1 + 𝜀𝑖 ,
𝑝
𝑖=1  where, 

𝜀 ~(0, ∑)  is a vector of i.i.d. disturbances. The moving average representation is 𝑥𝑖 = ∑ 𝐴𝑖𝜀𝑡−𝑖 ,∞
𝑖=0   

where the 𝑁 × 𝑁 coefficient matrices 𝐴𝑖 obey the recursion 𝐴𝑖 = Φ1𝐴𝑖−1 + Φ2𝐴𝑖−2 + ⋯ + Φ𝑝𝐴𝑖−𝑝,  

with 𝐴0 an 𝑁 × 𝑁 identity matrix and 𝐴𝑖 = 0 for 𝑖 < 0. 

The Diebold and Yilmaz (2009, 2012) spillover index measures use variance decompositions, which 

permit them to decompose the forecast error variances of each variable into parts attributable to the 

various system shocks. The innovation in Diebold and Yilmaz (2012) is that they employ a generalized 

VAR framework in the manner of Koop, Pesaran and Potter (1996) and Pesaran and Shin (1998). The 

generalized framework permits correlated shocks but treats them appropriately using the historically 

observed distribution of the errors.  

 Diebold and Yilmaz (2012) define own variance shares as the fraction of the H-step-ahead error 

variances in forecasting 𝑥𝑖 due to shocks to 𝑥𝑖, for 𝑖 = 1,2, … , 𝑁, and cross variance shares, or 

spillovers, as the fractions of the H-step-ahead error variances in forecasting 𝑥𝑖 resulting from shocks 

to 𝑥𝑗 , for i, 𝑗 = 1,2, … , 𝑁, such that 𝑖 ≠ 𝑗. 

 Diebold and Yilmaz (2012) write the generalised H-step-ahead forecast error variance 

decompositions by 𝜃𝑖𝑗
𝑔(𝐻), for H=1,2,…., resulting in 

𝜃𝑖𝑗
𝑔(𝐻) =

𝜎𝑖𝑖
−1 ∑ (𝑒𝑖

′𝐴ℎ ∑ 𝑒𝑗)2𝐻−1
ℎ=0

∑ (𝑒𝑖
′𝐴ℎ ∑ 𝐴ℎ

′𝐻−1
ℎ=0 )

     .                  (1) 

Where ∑ is the variance matrix for for the error vector 𝜀, 𝜎𝑖𝑖 is the standard deviation of the error 

term for the i th equation and 𝑒𝑖 is the selection vector with one as the i th element and zero otherwise. 
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Given that they have used generalised impulse response functions the sum of the elements of each row 

of the variance decomposition table is not equal to 1: ∑ 𝜃𝑖𝑗
𝑔𝑁

𝑗=1 ≠ 1. 

They use the information available in the variance decomposition matrix for the construction of the 

spillover index by normalizing each entry of the variance decomposition matrix by the row sum as: 

�̃�𝑖𝑗
𝑔(𝐻) =

𝜃𝑖𝑗
𝑔

(𝐻)

∑ 𝜃𝑖𝑗
𝑔

(𝐻)𝑁
𝑗=1

     .           (2) 

In this construction, ∑ �̃�𝑖𝑗
𝑔(𝐻) = 1𝑁

𝑗=1  and ∑ �̃�𝑖𝑗
𝑔(𝐻) = 𝑁.𝑁

𝑖,𝑗=1  

 

Deibold and Yilmaz (2012) then proceed to construct a total volatility spillover index as: 

𝑆𝑔(𝐻) =

∑ �̃�𝑖𝑗
𝑔

(𝐻)𝑁
𝑖,𝑗=1
𝑖≠𝑗

∑ �̃�𝑖𝑗
𝑔

(𝐻)𝑁
𝑖,𝑗=1

 .100    =  

∑ �̃�𝑖𝑗
𝑔

(𝐻)𝑁
𝑖,𝑗=1
𝑖≠𝑗

𝑁
 .100.          (3)      

They further construct a directional spillover measure to illuminate how volatility spills across from 

different assets or asset classes. They do this by using the normalized elements of the generalized 

variance decomposition matrix. Their measure of directional volatility spillover received by market i  

from other markets j as: 

𝑆𝑖∙
𝑔(𝐻) =

∑ �̃�𝑖𝑗
𝑔

(𝐻)𝑁
𝑗=1
𝑗≠𝑖

∑ �̃�𝑖𝑗
𝑔

(𝐻)𝑁
𝑗=1

 ∙ 100 .         (4) 

 

By contrast directional volatility spillovers transmitted by market i to market j as:    

𝑆𝑖∙
𝑔(𝐻) =

∑ �̃�𝑗𝑖
𝑔

(𝐻)𝑁
𝑗=1
𝑗≠𝑖

∑ �̃�𝑖𝑗
𝑔

(𝐻)𝑁
𝑗=1

 ∙ 100 .         (5)  

Finally, Diebold and Yilmaz (2012) compute net spillovers from market i to all other markets j  as: 

     𝑆𝑖
𝑔(𝐻) = 𝑆∙𝑖

𝑔(𝐻) − 𝑆𝑖∙
𝑔(𝐻).              (6) 

The net volatility spillover is the difference between gross volatility shocks transmitted to and gross 

volatility shocks received from all other markets.  

We use these measures and the multivariate volatility impulse response functions introduced in the 

next subsection.  

 

2.2 Multivariate volatility impulse response functions 
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Hafner and Herwartz (2006) develop their model by letting t  denote an N-dimensional random vector, 

so that: 

 

ttt P  ,         (7)  

 

where  ttt PP '
and t  denotes an iid random vector of dimension N, with independent components, 

mean zero and identity covariance matrix. Hafner and Herwartz assume that t
is measurable with 

respect to the information set available at time t-1, 1tF . Equation (1) implies that   ,01 tt FE   and 

   ttt FVar .1  They note that t  could be the error of a VARMA process. If t  is a multivariate 

GARCH process, then equation (1) may be called a strong GARCH model, according to Drost and 

Nijman (1993). This is convenient because it permits the modelling of news events as appearing in the 

iid innovation, t . They identify t  by assuming that tP  is a lower triangular matrix, which permits 

the use of a Choleski decomposition of  t
.  They also use the fact that independent news can often be 

identified by means of a Jordan decomposition, which will permit identification when the innovation 

vector is non-normal.  

 

Hafner and Herwartz adopt a multivariate GARCH(p,q) model framework, given by:  

 

 







p

j
itjitit

q

i

it
vechBvechAcvech

1

'

1

),()()(      (8) 

 

and use the BEKK model of Baba et al. (1985) and Engle and Kroner (1995), which is a special case 

of equation (8), and is specified as: 
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K
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p

i
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t

itit

K

k

q

i

kit
GGAACC .

1 1

'

1 1

''

00       (9) 

 

In equation (9), 0C is a lower triangular matrix, and kiA  and kiG  are NN   parameter matrices.  

 

2.3 Volatility Impulse Response Functions 
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Hafner and Herwartz (2006) proceed by assuming that, at time t, some independent news is reflected 

in 0 , and it is not specified whether the news is good or bad. The conditional covariance matrix, ,t

is a function of the innovations, ,,....., 11 t the original shock, 0 , and0
.  Hafner and Herwartz define 

VIRF as the expectation of volatility conditional on an initial shock and on history, minus the baseline 

expectation that only conditions on history, as given in the following: 

 

   1100 )(,)()(    FvechEFvechEV
ttt        (10) 

 

In equation (10), )( 0tV  is an *N -dimensional vector.  

 

Hafner and Herwartz consider a VARMA representation of a multivariate GARCH(p,q) model in order 

to find an explicit expression for )( 0tV , and define ).( '

ttt vech    They define the multivariate 

GARCH(p,q) model as a VARMA(max(p,q), p) model: 

 

 
 

 
),max(

1 1

,)(
qp

i

p

j

tjtjitiit uuBBA        (11) 

 

where 
t

tt vechu )(  is a white noise vector. From equation (11), Hafner and Herwartz derive the 

VMA(∞) specification, as follows: 

 

,)(
0

 





i

itit uvech                                (12) 

 

where the ** NN   matrices i  can be determined recursively. The general expression for VIRF is: 

 

).()()( '

00

2/1

0

2/1

0

0 NNNtt IvechDDV           (13) 

 

Hafner and Herwartz (2006) consider a variety of specifications for the baseline shock. The behaviour 

implied by equation (13) is different from traditional impulse response analysis. In (13), the impulse 

is an even, not odd, function of the shock, it is not linear in the shock, and the VIRF depends on the 
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history of the process, although this is via the volatility state at the time the shock occurs. The decay 

or persistence is given by the moving average matrices, t , which is similar to traditional impulse 

response analysis.  

 

Further complications arise from the choice of baseline because no natural baseline exists for 0

0  in 

VIRF, as any given baseline deviates from the average volatility state. For example, a zero baseline 

would represent the lowest volatility state and volatility forecasts would increase from this baseline. 

After discussing various alternatives, Hafner and Herwartz (2006) adopt the definition given in 

equation (10). In their original analysis of exchange rates, Hafner and Herwartz examine the impact of 

particular historical shocks that occur in their sample, as well as considering random shocks for their 

estimated model.  

 

In an empirical analysis of US and UK indices,we consider the onset of the GFC, which we date as 9 

August 2007 (GFC1), then the date when the financial crisis came to a head, 15 September 2008, when 

the US government allowed the investment bank Lehman Brothers to go bankrupt (GFC2). The date 

9 May 2010 marked the point at which the focus of concern switched from the private sector to the 

public sector, and this marks the onset of the European Sovereign Debt Crisis (ESDC). We also 

consider random shocks in the empirical analysis.  

 

2.4 Multivariate GARCH Models 

 

The analysis in the paper features applications of both the BEKK and Diagonal BEKK (DBEKK) 

models. The BEKK model was introduced by Baba et al. (1985) and Engle and Kroner (1995). In the 

case of a model with single lags, the BEKK recursion is: 

 

,1

''

11

'' BHBAuuACCH tttt          (14) 

 

where H is a matrix of the covariances, and C, A and B are the coefficient matrices. The expression 

above is written in vech format to generate the VIRFs, as shown below: 

 

)()()()()()( 1

'''

11

'''

  tttt HvecBBuuvecAACCvecHvec .   (15) 

 

http://www.theguardian.com/business/lehmanbrothers
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However, a drawback of using the BEKK model is that there are no regularity conditions or statistical 

properties for full BEKK, as discussed in the next subsection. Chang et al. (2015) discuss stochastic 

processes for univariate and multivariate conditional volatility models, and the following subsections 

2.3-2.5 draw closely on their analysis.  

 

2.5 Regularity Conditions for BEKK and DBEKK 

 

The original multivariate extension of univariate GARCH is given in Baba et al. (1985) and Engle and 

Kroner (1995), while a consideration of leverage effects and the multivariate extension of univariate 

GJR is given in McAleer et al. (2009). The asymmetry conditions for multivariate GJR are given in 

the VARMA-AGARCH model of McAleer et al. (2009). Leverage has typically been presented for 

individual equations only, as defined by Black (1976) for univariate processes using arguments based 

on the debt-to-equity ratio.  

 

In order to establish volatility spillovers in a multivariate framework, it is useful to define the 

multivariate extension of the relationship between the returns shocks and the standardized residuals, 

that is: 

 

,/ ttt h     

 

where th  denotes univariate conditional volatility. A multivariate extension of an equation for the 

conditional mean of financial returns can be written as:  

 

,)|( 1 tttt IyEy          

 

if it is assumed that the three components are 1m  vectors, where m is the number of financial assets. 

The multivariate definition of the relationship between t  and t  is given as: 

 

ttt D  2/1
 ,          (16) 
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where ),....,,( 21 mtttt hhhdiagD  is a diagonal matrix comprising the univariate conditional volatilities. 

Define the conditional covariance matrix of t  as tQ . As the 1m  vector, t , is assumed to be iid for 

all m elements, the conditional correlation matrix of t , which is equivalent to the conditional 

correlation matrix of t , is given by t . Therefore, the conditional expectation of (16) is defined as: 

 

     
2/12/1

tttt DDQ 
 .      (17)  

 

Equivalently, the conditional correlation matrix, t , can be defined as: 

 

2/12/1  tttt DQD .         (18) 

      

Equation (17) is useful if a model of t  is available for purposes of estimating tQ , whereas equation 

(18) is useful if a model of tQ  is available for purposes of estimating t . 

 

Both equations (17) and (18) are instructive for a discussion of asymptotic properties. As the elements 

of tD  are consistent and asymptotically normal, the consistency of tQ  in equation (17) depends on 

consistent estimation of t , whereas the consistency of t  in equation (18) depends on consistent 

estimation of tQ . As both tQ and t  are products of matrices, neither the QMLE of tQ  or t  will be 

asymptotically normal based on the definitions given in equations (17) and (18).  

 

2.6 Triangular, Hadamard and Full BEKK 

 

Without actually deriving the model from an appropriate stochastic process, Baba et al. (1985) and 

Engle and Kroner (1995) considered the full BEKK model, as well as the special cases of triangular 

and Hadamard (element-by-element multiplication) BEKK models. The specification of the 

multivariate model is the same as the specification in equation (14), namely: 

 

,1

''

11

'' BHBAuuACCH tttt          (19) 

       

except that A and B are full, Hadamard or triangular matrices.  
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Although estimation of the full, Hadamard and triangular BEKK models is available in some standard 

econometric and statistical software packages, it is not clear how the likelihood functions might be 

determined. Moreover, the so-called “curse of dimensionality”, whereby the number of parameters to 

be estimated is excessively large, makes convergence of any estimation algorithm somewhat 

problematic. 

 

Jeantheau (1998) showed that the QMLE of the parameters of the full BEKK model is consistent under 

a multivariate log-moment condition, while Comte and Lieberman (2003) showed that the QMLE are 

asymptotically normal under the assumption of the existence of eighth moments. Specifically, the 

multivariate log-moment conditions are difficult to verify when the matrices A and B are neither 

diagonal nor scalar matrices, and the eighth moment condition cannot be verified for a full BEKK 

model. Therefore, there are as yet no verifiable asymptotic properties of the full, Hadamard or 

triangular BEKK models. 

 

2.7 Diagonal and Scalar BEKK 

 

Consider a vector random coefficient autoregressive process of order one:  

 

tttt   1          (20) 

         

where 

 

t  and t are 1m  vectors, and t  is an mm  matrix of random coefficients, and  

 

t  ~ iid ),0( A , 

t  ~ iid )',0( QQ . 

 

Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to vec A can have 

dimension as high as 22 mm  , whereas the half-vectorization of a symmetric matrix A to vech A can 

have dimension as low as 2/)1(2/)1(  mmmm . 
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In a case where A is either a diagonal matrix or the special case of a scalar matrix, maIA  , McAleer 

et al. (2008) showed that the multivariate extension of GARCH(1,1) from equation (20), incorporating 

an infinite geometric lag in terms of the returns shocks, is given as the diagonal BEKK (DBEKK) or 

scalar BEKK model, namely: 

 

'

1

''

11' BBQAAQQQ tttt     ,       (21) 

    

where A and B are both either diagonal or scalar matrices.  

 

McAleer et al. (2008) showed that the QMLE of the parameters of the diagonal or scalar BEKK models 

were consistent and asymptotically normal, so that standard statistical inference on testing hypotheses 

is valid. Moreover, as tQ  in equation (21) can be estimated consistently, t  in equation (18) can also 

be estimated consistently. 

 

Given the above considerations, we present the results of both full BEKK and DBEKK in the empirical 

analysis that follows. We can be confident about the statistical properties of DBEKK when it is used 

to calculate VIRFs, and the important consideration is whether the two methods and their associated 

VIRFs, have the same implications for our results. If they point to the same conclusions, we can have 

more confidence in the results.  

 

3. EMPIRICAL RESULTS 

 

Summary statistics for the two sets of series, Oxford-Man RV series for the S&P500 and the FTSE, 

for a period beginning 3 January 2000 to 4th October 2016, totaling 4378 observations, and the index 

return series for the NYSE and the FTSE, for the period 3 January 2005 to 31 December 2014, giving 

a total of 2608 valid observations, are shown in Table 1. All the series, both the two RV and the two 

returns series the display excess kurtosis and are skewed, positively in the case of the RV series and 

negatively in the case of the returns. The time series plots of the index values are shown in Figure 1.  

 

Table 2 provides tests of skewness, kurtosis and whether the return series for the two daily realized 

volatility series and two index series are normally distributed. The Jarque-Bera (JB) test rejects 

normality at any standard level of significance for all series, and all display significant skewness and 

excess kurtosis with the exception of the FTSE RV series, which does not show excess kurtosis. 
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3.1 Spillover Index Results 

 

The results of the application of the Diebold Yilmaz (2012) Spillover Index model are shown in Table 

3. We experimented with various lag lengths in the VAR but extending the lags beyond 4 did not make 

an appreciable difference to the Spillover Index results. The Durbin-Watson statistic with a value of 

2.03 suggests that serial correlation is not an issue. When the FTSE RV is used as the dependent 

variable, all the coefficients are highly significant apart from lag 4 on the FTSE RV. If the S&P500 is 

the dependent variable, all coefficients are again highly significant with the exception of lag 2 on 

S&P500 RV. In this case the Durbin-Watson statistic is 2.04 and the F statistics for both equations is 

highly significant. We can therefore proceed to the Spillover Index analysis with confidence.  

 

Table 4 presents details of the Spillovers across the two series. The results for the daily RV series for 

the two series, S&P500 and the FTSE are reasonably symmetric. Shocks to the S&P500 RV explain 

83.52% of its own variability, in the generalized forecast error decompositions, whilst contributions 

from the FTSE RV series explain 16.5% of its variability. On the reverse side of the coin, the FTSE 

RV series explains 79.78% of its own variability with a contribution from the S&P500 RV of 20.2%.  

However, these are average results across the whole sample period. 

 

To further sharpen the results, we followed Diebold and Yilmaz (2012) and estimated volatility 

spillovers using 200-day rolling samples, which permits the assessment of the extent and the nature of 

spillover variation over time via the corresponding time series of spillover indices, which are presented 

graphically in the so-called total spillover plot of Figure 2. It can be seen that there are peaks in 

spillovers at the height of the GFC in 2008 and in 2010 at the onset of the European Sovereign debt 

crisis. (We analyse this further in the next section in our VIRF analysis).  

 

Figure 3 shows directional spillovers from the two markets, and we have not included a graph of 

directional spillovers to the two markets, as this is a mirror image, given that we are dealing with two 

markets only. Of greater interest is Figure 4 which shows net spillovers as the difference between 

S&P500 RV – FTSE RV. Plots below zero on the graph show the periods in which the FTSE RV 

contributed more to S&P500 RV than vice-versa. Clearly, the predominant net contribution is from 

the S&P500 RV, as most of the graph plots above 0, but there are 5 distinct periods in which the reverse 

is the case, and notably in 2009-2010 which coincides with the emergence of sovereign debt problems 
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in Europe and again in 2012. The impact of conditional volatility at specific dates will be explored in 

the next section.  

 

 

3.2 Multivariate GARCH analysis 

The presence of excess skewness leads us to employ the Student t distribution which is used in the 

subsequent GARCH analysis. We filter the return series through an AR(1) process before proceeding 

to use the subsequent residuals in a multivariate BEKK analysis to generate the VIRF, as in Hafner 

and Herwartz (2006).  

 

Table 5 shows the results of the application of the filters, and Table 6 gives the diagnostics for the 

residuals. The application of the AR(1) model appears to whiten the residuals, and the Ljung-Box Q 

statistics for serial correlation suggest that correlation is not a problem. The Jarque-Bera (JB) test 

strongly rejects normality for the shocks, so we conduct the subsequent analysis using the t-

distribution.   

 

3.1 Results from BEKK analysis 

 

Table 7 shows the results of the application of the BEKK model. We can forecast the volatility and 

correlations for the two series using the BEKK model. We forecast for 100 days at the end of the time 

series and use a window of 400 daily observations to fit the model. The results are shown in Figure 5. 

The recent experience of relatively high volatilities cause the increase in the two forecast volatilities, 

while the correlation tends towards the mean over the sub-sample.  

                                                     

Plots of the VIRFs are shown in Figure 6, Panels A and B.  The VIRF impulse responses for 9 August 

2007, as shown in Panel A, use the variance at that point in time as the baseline. The initial response 

for the NYSE is scaled at just under 10000. When this is compared to the impulse response of the 

FTSE in the UK, the response is even larger at just over 10000.  These have been computed using a 

baseline of the estimated volatility state, so they are excess over the predicted covariance. They can be 

contrasted with the impact of the EU debt crisis on 5 May 2010, in which the NYSE initial response 

is just over 1500, while the FTSE response at the same point in time is nearly 2000, suggesting that, 

as might be expected, the EU debt crisis had a larger impact in London than it had in New York.   
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These shocks have been predicted using a baseline of zero. The 2007 shocks take a period of about 6 

months to work through, while the 2010 shocks take a longer period of 8-9 months, but this may well 

reflect the choice of a lower baseline. The covariances show a dramatic spike in response to both 

shocks but remain higher for longer, in relation to the 2010 shock, possibly in response to the choice 

of baseline, as mentioned above. Thus, the choice of baseline remains a key issue in the implementation 

of VIRF analysis. 

 

Panel B of Figure 6 contrasts the 15 September 2008 GFC impact with the 5 May 2010 EU debt crisis 

once again, and the choice of baselines mirrors that in Panel A. The impact of the shock in 2008, at 

the height of the GFC, is relatively higher than previously, in both New York and London. On the 

NYSE it approaches 25000, while on the FTSE it is even higher, approaching 40000, and the shocks 

in both markets take longer to die out than they did in 2007, taking 9 months to return to equilibrium. 

The covariance approaches 20000 and remains at high levels for 6-7 months. The 5 May 2010 graphs 

are the same as in Panel A, and are included for the purpose of a direct comparison.  

 

Given that we are considering VIRF in the context of stock market indices, it seems appropriate to 

consider asymmetry effects via the introduction of the separate consideration of the impact of negative 

shocks. The estimates of the BEKK and asymmetric BEKK-t models are shown in Tables 7 and 9, and 

the eigenvalues from BEKK-t and asymmetric BEKK-t are given in Tables 8 and 10, respectively (for 

the sake of brevity, only the multivariate GARCH and asymmetric terms are reported in the tables). 

The analysis is broadly similar as described above. 

 

Figure 6 shows the VIRF (for the sake of brevity only September 2008 and May 2010 are considered). 

The key difference in the results, when compared to the previous analysis, is that the VIRFs are larger 

and of shorter duration. For example, the NYSE variance increases to 8000 and the FTSE variance 

increases to 15,000 in September 2008. The duration of the response for both 2008 and 2010 is reduced 

to 3 months for both the variances and covariances.  

 

However, in Section 2.3 in this paper noted that we can be confident about the statistical properties of 

DBEKK when it is used to calculate VIRFs, which is not the case for full BEKK.  The key finding is 

whether the two methods and their associated VIRFs have the same implications for the empirical 

results. If the empirical results lead to the same conclusions, we can have greater confidence in the 
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empirical results. In Section 3.2 we present the empirical results and VIRFs from a diagonal BEKK 

(DBEKK) analysis.  

 

3.2 Results from DBEKK 

 

The DBEKK model has valid statistical properties and regularity conditions, so we can be confident 

in the empirical results. It has to be borne in mind that DBEKK has fewer parameters, so its VIRFs are 

simpler than are those for full BEKK. We estimate DBEKK using the same procedure as discussed 

previously, and use a t-distribution and include asymmetry.  

 

The asymmetric DBEKK model estimated using a t-distribution (DBEKK-t) is much better behaved, 

as can be seen in Table 10. All the coefficients apart from one that are shown in Table 5 are significant. 

The eigenvalues shown in Table 11 are stable, given that all are less than one.  

 

Figure 8 shows the impulse responses generated by the asymmetric DBEKK model estimated using a 

t distribution (DBEKK-t). The results in Panel A reflect the fact that the 9 August 2007 VIRF has a 

baseline calculated on the shock at that point in time, while the 15 September 2008 shock has a baseline 

of zero. The results are consistent with the previous BEKK estimates in that the asymmetric DBEKK 

model produces negative shocks that last for only 3 months in duration. The 2008 shocks again are 

larger in LFTSERET than on NYSERET.  

 

Panel B in Figure 8 is constructed in a similar manner. The 9 August 2007 VIRF is calculated on the 

shock at that point in time, while the 15 September 2008 shock is calculated using a zero baseline. 

Consistent with the previous results, the shocks have a three-month duration, and their relative sizes 

are the same as previously calculated, revealing that both the BEKK and DBEKK results are entirely 

consistent.  

 

In order to complete the analysis, we also calculate a DBEKK model without asymmetries and present 

the results in Tables 12-13 and in Figure 9. All the coefficients for the DBEKK model, without 

asymmetries, as shown in Table 12, are highly significant. The eigenvalues, as shown in Table 13, are 

closer to one than for the DBEKK model with asymmetries, as reported in Table 10, suggesting that 

the standard BEKK model is less stable.  
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In Figure 9, for purposes of comparison, we depict the VIRFs for the GFC2 period and the Euro debt 

crisis. The VIRFs in Figure 9 are consistent with the previous analysis using the full BEKK model 

without asymmetries. The impact of the 2008 shock is larger in London than in New York, using the 

shock at that point in time as a baseline. A similar pattern is observed in the 2010 Euro-debt shock. 

Once again, we observe, ignoring the asymmetries, the duration of the shock is much longer, and now 

extends to eighteen months in all figures before equilibrium is re-established. This is more than double 

the durations of the VIRFs recorded for the full BEKK model without asymmetries, but the relative 

durations remain consistent. 

 

4. CONCLUSION 

 

In this paper we have applied two different methods based on VAR and impulse response analysis to 

examine volatility spillovers between the New York and the London stock markets. We analysed daily 

RV estimates taken from the Oxford-Man Realised Library running from the beginning of 2000 to-

date using the Diebold and Yilmaz (2012) Spillover Index. The analysis revealed that both the S&P500 

and the FTSE contributed around 20% in terms of spillovers to the RV of the other market. Figure 2 

revealed that total spillovers across the two markets peaked in 2008 and in 2010, whilst Figure 4 

showing net spillovers, revealed that though the predominant direction of spillovers was from the 

S&P500 RV to the FTSE RV, there were still 5 periods in which the direction of spillovers was 

reversed, the most recent being in 2010 and 2012. This first portion of the analysis concentrated on 

RV series, as analysed in a VAR and generalized impulse response framework. 

 

The second portion of the analysis used the Hafner and Herwartz (2006) Volatility Impulse Response 

Function (VIRF) approach to examine ten years of daily return series from the New York Stock 

Exchange Index, and the London Stock Exchange FTSE 100 index, for the period 3 January 2005 to 

31 January 2015. An attractive feature of VIRF analysis of the effects of shocks on volatility through 

time is that the shocks are treated as endogenous. In this analysis the focus is on shocks to conditional 

volatility, as opposed to RV. Given that we are operating in a multivariate GARCH framework, we 

can accommodate asymmetry effects, and study positive and negative shocks separately, a luxury not 

afforded by our daily RV series.  

 

An important difference in this portion of the analysis is that we use a particular point in time for the 

commencement of our conditional volatility modelling. However, we also note that the choice of the 
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baseline for the shock makes a considerable difference. A useful contribution of this paper is to 

consider asymmetric effects, which are well documented in the empirical analysis of stock markets 

(see, for example, Engle and Ng (1993)). We showed that the impacts of negative shocks are larger, 

but of shorter duration, than those implied by a symmetric treatment of shocks.  

 

Our empirical analysis is based on application of the full BEKK model, for which no verifiable 

asymptotic properties exist, as well as the diagonal BEKK (DBEKK) model, which is not so 

constrained. The empirical results our consistent and suggest that the inclusion of asymmetries is 

important when VIRF analysis is applied to stock market data. It was found that the responses to 

negative shocks are deeper and of shorter duration than the responses to positive shocks. The empirical 

results of both the BEKK and DBEKK models are strongly consistent with each other.  

 

The results of our analysis are not necessarily good news for investors. Volatility spillovers increase 

in times of crises, making hedging more difficult, and the response is particularly sharp, though more 

short lived, as revealed by the VIRF analysis, to negative shocks.  
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Table 1  

 

Summary Statistics, using the observations 2000-01-03 - 2016-10-04 

for the variable SP500rv10 (4307 valid observations) 

 Mean Median Minimum Maximum 

0.000123594 5.71766e-005 1.58546e-006 0.00778409 

 Std. Dev. C.V. Skewness Ex. kurtosis 

0.000263820 2.13457 10.5658 205.991 

 5% Perc. 95% Perc. IQ range Missing obs. 

1.14322e-005 0.000412656 9.19428e-005 2 

 

Summary Statistics, using the observations 2000-01-03 - 2016-10-04 

for the variable FTSErv10 (4309 valid observations) 

 Mean Median Minimum Maximum 

0.000137715 7.92406e-005 4.80005e-006 0.00391275 

 Std. Dev. C.V. Skewness Ex. kurtosis 

0.000208074 1.51090 6.56405 73.2867 

 5% Perc. 95% Perc. IQ range Missing obs. 

1.64529e-005 0.000425980 0.000114844 0 

 

Summary Statistics for 2005-01-03 - 2014-12-31 (2608 valid observations) 

NYSERET (2608 valid observations) 

 Mean Median Minimum Maximum 

0.000154204 0.000431926 -0.102321 0.115258 

 Std. Dev. C.V. Skewness Ex. kurtosis 

0.0133989 86.8909 -0.417694 10.8634 

 5% Perc. 95% Perc. IQ range Missing obs. 

-0.0202854 0.0179030 0.0103402 0 

 

Summary Statistics for 2005-01-03 - 2014-12-31 (2608 valid observations) 

FTSERET  

 Mean Median Minimum Maximum 

3.92100e-005 0.000475224 -0.105381 0.122189 

 Std. Dev. C.V. Skewness Ex. kurtosis 

0.0148037 377.549 -0.110113 9.87695 

 5% Perc. 95% Perc. IQ range Missing obs. 

-0.0227705 0.0205110 0.0132403 0 
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Table 2 

Tests of Skewness, Excess Kurtosis, and Normality, Base Series 

 

 

S&P500 RV 

Skewness       0.408550       Signif Level (Sk=0)  0.0 

Kurtosis (excess)     0.313096      Signif Level (Ku=0) 0.000028 

Jarque-Bera          12954.814995      Signif Level (JB=0)    0.0 

FTSERET RV 

Skewness       0.242345           Signif Level (Sk=0)      0.0                 

Kurtosis (excess)   -0.072373        Signif Level (Ku=0)         0.332565 

Jarque-Bera          43.119157         Signif Level (JB=0)         0.0 

NYSERET(*100) 

Skewness                -0.417934          Signif Level (Sk=0)    0.0 

Kurtosis (excess)       10.886570      Signif Level (Ku=0)    0.0 

Jarque-Bera          12954.814995      Signif Level (JB=0)    0.0 

FTSERET(*100) 

Skewness                -0.110176          Signif Level (Sk=0)    0.021693 

Kurtosis (excess)        9.898215       Signif Level (Ku=0)   0.0 

Jarque-Bera          10651.855632      Signif Level (JB=0)    0.0 
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Table 3 VAR analysis of RV Series 

 
VAR/System - Estimation by Least Squares 

Daily(5) Data From 2000:01:07 To 2016:07:07 

Usable Observations                      4305 

 

Dependent Variable SP500RV 

Mean of Dependent Variable       -9.717844778 

Std Error of Dependent Variable   1.106068769 

Standard Error of Estimate        0.638009300 

Sum of Squared Residuals         1748.7120061 

Durbin-Watson Statistic                2.0273 

 

    Variable                        Coeff      Std Error      T-Stat      Signif 

************************************************************************************ 

1.  SP500RV{1}                    0.369228436  0.015969475     23.12089  0.00000000 

2.  SP500RV{2}                    0.217602857  0.016798795     12.95348  0.00000000 

3.  SP500RV{3}                    0.108657867  0.016779418      6.47566  0.00000000 

4.  SP500RV{4}                    0.154975784  0.016092016      9.63060  0.00000000 

5.  FTSERV{1}                     0.141650177  0.018892250      7.49779  0.00000000 

6.  FTSERV{2}                    -0.045139245  0.019999553     -2.25701  0.02405731 

7.  FTSERV{3}                    -0.045568212  0.020026164     -2.27543  0.02292896 

8.  FTSERV{4}                     0.017123961  0.018739773      0.91378  0.36088565 

9.  Constant                     -0.811716415  0.105384744     -7.70241  0.00000000 

 

    F-Tests, Dependent Variable SP500RV 

              Variable           F-Statistic     Signif 

    ******************************************************* 

    SP500RV                          896.7972    0.0000000 

    FTSERV                            16.7243    0.0000000 

 

 

Dependent Variable FTSERV 

Mean of Dependent Variable       -9.434120085 

Std Error of Dependent Variable   1.003790906 

Standard Error of Estimate        0.539330643 

Sum of Squared Residuals         1249.6099216 

Durbin-Watson Statistic                2.0416 

 

    Variable                        Coeff      Std Error      T-Stat      Signif 

************************************************************************************ 

1.  SP500RV{1}                    0.134081679  0.013499533      9.93232  0.00000000 

2.  SP500RV{2}                    0.010093840  0.014200585      0.71080  0.47724395 

3.  SP500RV{3}                   -0.049085468  0.014184205     -3.46057  0.00054428 

4.  SP500RV{4}                   -0.032477007  0.013603120     -2.38747  0.01700789 

5.  FTSERV{1}                     0.393528700  0.015970252     24.64136  0.00000000 

6.  FTSERV{2}                     0.176177989  0.016906293     10.42085  0.00000000 

7.  FTSERV{3}                     0.124847940  0.016928788      7.37489  0.00000000 

8.  FTSERV{4}                     0.166495693  0.015841358     10.51019  0.00000000 

9.  Constant                     -0.703033965  0.089085256     -7.89170  0.00000000 

 

    F-Tests, Dependent Variable FTSERV 

              Variable           F-Statistic     Signif 

    ******************************************************* 

    SP500RV                           29.8631    0.0000000 

    FTSERV                          1081.5072    0.0000000 
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Table 4 Spillover Index  
 

                             SP500 RV  FTSE RV  From Others 

SP500 RV                       83.52     16.48         16.5 

FTSE RV                        20.22     79.78         20.2 

Contribution to others     20.2      16.5         36.7 
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Table 5 

AR(1) and preliminary GARCH(1,1) analysis of return series 

 

NYSE    

Variables Coefficient t-statistic Significance 

Constant 0.054269041 3.39885 0 

LNYSERET(1) -0.050346740 -2.49472 0.013 

GARCH(1,1)    

C 0.016988318 2.95313 0.003 

A 0.093671095 6.40479 0 

B 0.893694731 61.55474 0 

FTSE    

Constant 4.7248e-004 2.35012 0.019 

LFTSERET(1) -0.0463 -2.27302 0.023 

C 1.7113e-006 2.90809 0 

A 0.0911 5.66440 0 

B 0.9013 52.15142 0 

 

 

 

 

Table 6 

Residual diagnostics  

 

ARCH-LM(1) JB Q(10) Q(20) 

LNYSERET    

8.476 (0.004) 472.482 (0.000) 9.000 (0.437) 23.055(0.235) 

LFTSERET    

0.002 (0.967) 197.09 (0.000) 5.125 (0.823) 17.914(0.528) 
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Table 7 

BEKK 

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

Constant 0.094673045 0.015120103 6.26140 0 

LNYSERET{1} -0.252211378 0.018119393 -13.91942 0 

Constant 0.077323881 0.019894664 3.88666 0 

LFTSERET{1} -0.168032092 0.016587251 -10.13020 0 

C(1,1) -0.097175963 0.044805916 -2.16882 0.03 

C(2,1) -0.264611585 0.034032404 -7.77528 0 

C(2,2) -0.000000180 0.149309283 -1.20715e-

006 

0.999 

A(1,1) 0.021678144 0.041879070 0.51764 0.605 

A(1,2) -0.383455482 0.052098541 -7.36020 0 

A(2,1) -0.222393062 0.035195693 -6.31876 0 

A(2,2) -0.063023626 0.046314167 -1.36079 0.173 

B(1,1) 1.202152703 0.015121227 79.50100 0 

B(1,2) 0.450960714 0.027752985 16.24909 0 

B(2,1) -0.354541888 0.021500835 -16.48968 0 

B(2,2) 0.591348452 0.024731239 23.91099 0 

Shape 7.670707369 0.748939459 10.24209 0 

 

 

 

Table 8 

Eigenvalues from BEKK-t 

 

0.98025 0 0.72696 -0.46101 0.72696 0.46101 

Var JB p-value 

1 147.280 0 

2 69.556 0 

All 216.836 0 
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Table 9 

Asymmetric BEKK-t 

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

A(1,1) -0.022753722   0.060798967      -0.37425   0.708 

A(1,2) -0.405700847   0.065933722      -6.15316   0 

A(2,1)  0.148631275   0.035519302       4.18452   0 

A(2,2) 0.296233075   0.041308360       7.17126   0 

B(1,1) 0.812855262   0.026787787      30.34425   0 

B(1,2) -0.151242974   0.031493570      -4.80234   0 

B(2,1) 0.161414758   0.030535132       5.28620   0 

B(2,2) 0.997063705   0.025611106      38.93091   0 

D(1,1) -0.469369500   0.036937131     -12.70725   0 

D(1,2) -0.393521072   0.089578341      -4.39304   0 

D(2,1) 0.211373660   0.061407304       3.44216   0 

D(2,2) -0.083147397   0.085927903      -0.96764   0.333 

Shape 8.904691765   0.951329821       9.36026   0 
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Table 10 

Asymmetric DBEKK-t 

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

Mean Model 

LNYSERET 

    

Constant 0.072214891   0.016514826       4.37273   0 

LNYSERET(1)  -0.246671385   0.017309242     -14.25085   0 

Mean Model 

LFTSERET 

    

Constant 0.051226153   0.019264661       2.65907   0.008 

LFTSERET(1) -0.129102063   0.016647036      -7.75526 0 

C(1,1) 0.122517499   0.012861431       9.52596   0 

C(2,1) 0.110032035   0.015744065       6.98879   0 

C(2,2) 0.088019683   0.012074757       7.28956   0 

A(1) -0.024217524   0.033245856      -0.72844   0.466 

A(2) -0.150597648   0.029857611      -5.04386   0 

B(1) 0.959878240   0.004026069     238.41572   0 

B(2) 0.959775221   0.005034805     190.62807   0 

D(1) 0.338891628   0.018669042      18.15260   0 

D(2) 0.283093998   0.025964433      10.90315   0 

Shape 7.623084667   0.738881477      10.31706   0 

 

 

 

Table 11 

Eigenvalues from Asymmetric BEKK-t 

0.94383, 0 0.92489, 0 0.92193, 0 

Var JB p-value 

1 153.216 0 

2 224.941    0 

All 378.157    0 
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Table 12 

DBEKK-t without Asymmetries  

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

Mean Model 

LNYSERET 

    

Constant 0.090305522   0.015901813       5.67895   0 

LNYSERET(1) -0.251500344   0.017757663         -14.16292   0 

Mean Model 

LFTSERET 

    

Constant 0.064511941     0.019540751           3.30141   0.001 

LFTSERET(1)  -0.138112219    0.016239859      -8.50452 0 

C(1,1) 0.120332752   0.014853367       8.10138   0 

C(2,1) 0.079599176   0.013060471 6.09466   0 

C(2,2) 0.092005900   0.013195478       6.97253   0 

A(1) 0.281404331   0.016505582      17.04904   0 

A(2) 0.243537494   0.016343016      14.90162   0 

B(1)  0.954923410    0.005051244     189.04719   0 

B(2) 0.966108091   0.004134165     233.68881   0 

Shape 6.754575562   0.611797521      11.04054   0 

 

 

 

Table 13 

Eigenvalues from BEKK-t 

0.99268,  0 0.99109,  0 0.99107, 0 

Var JB p-value 

1 159.968    0 

2 240.138    0 

All 400.106       0 
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Figure 1 Plots of FTSE and NYSE values, plus S&P500 and FTES RV  

 

 

Note: NYSE - Blue, FTSE – Black. 
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Figure 4 Net Pairwise Volatility Spillovers SP500 RV-FTSE RV 
 

 
 

 

 

 

 

 

Figure 2. Total Volatility Spillovers, Two Markets
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Figure 5 

 

100 day forecasts based on BEKK 
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Figure 6 

 

VIRF Panel A: Baselines 9 August 2007 and 5 May 2010 

 

 

 

 

 

VIRF Panel B: Baselines 15 September 2008 and 5 May 2010 
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Figure 7 

VIRF Asymmetric BEKK (responses to negative price movements) 
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Figure 8 

VIRF Asymmetric DBEKK-t 

Panel A 

Panel B 
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Figure 9 

VIRF for GFC2 and Euro Debt crisis using DBEKK-t 




